hardware_xiaomi/hidl/sensors/1.0/Sensors.cpp
Cosmin Tanislav 3d946592e6
hidl: sensors: 1.0: Standardize xiaomi pickup sensor
* use standard sensor type
 * ignore non-wakeup sensor variant
 * ignore events that do not properly match a pickup

Change-Id: I32bb097afb33603190dfd00a21202301a56bda08
2023-04-14 01:12:52 +02:00

359 lines
11 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Sensors.h"
#include "convert.h"
#include "multihal.h"
#include <android-base/logging.h>
#include <sys/stat.h>
namespace android {
namespace hardware {
namespace sensors {
namespace V1_0 {
namespace implementation {
/*
* If a multi-hal configuration file exists in the proper location,
* return true indicating we need to use multi-hal functionality.
*/
static bool UseMultiHal() {
const std::string& name = MULTI_HAL_CONFIG_FILE_PATH;
struct stat buffer;
return (stat(name.c_str(), &buffer) == 0);
}
static Result ResultFromStatus(status_t err) {
switch (err) {
case OK:
return Result::OK;
case PERMISSION_DENIED:
return Result::PERMISSION_DENIED;
case NO_MEMORY:
return Result::NO_MEMORY;
case BAD_VALUE:
return Result::BAD_VALUE;
default:
return Result::INVALID_OPERATION;
}
}
Sensors::Sensors() : mInitCheck(NO_INIT), mSensorModule(nullptr), mSensorDevice(nullptr) {
status_t err = OK;
if (UseMultiHal()) {
mSensorModule = ::get_multi_hal_module_info();
} else {
err = hw_get_module(SENSORS_HARDWARE_MODULE_ID, (hw_module_t const**)&mSensorModule);
}
if (mSensorModule == NULL) {
err = UNKNOWN_ERROR;
}
if (err != OK) {
LOG(ERROR) << "Couldn't load " << SENSORS_HARDWARE_MODULE_ID << " module ("
<< strerror(-err) << ")";
mInitCheck = err;
return;
}
err = sensors_open_1(&mSensorModule->common, &mSensorDevice);
if (err != OK) {
LOG(ERROR) << "Couldn't open device for module " << SENSORS_HARDWARE_MODULE_ID << " ("
<< strerror(-err) << ")";
mInitCheck = err;
return;
}
// Require all the old HAL APIs to be present except for injection, which
// is considered optional.
CHECK_GE(getHalDeviceVersion(), SENSORS_DEVICE_API_VERSION_1_3);
if (getHalDeviceVersion() == SENSORS_DEVICE_API_VERSION_1_4) {
if (mSensorDevice->inject_sensor_data == nullptr) {
LOG(ERROR) << "HAL specifies version 1.4, but does not implement inject_sensor_data()";
}
if (mSensorModule->set_operation_mode == nullptr) {
LOG(ERROR) << "HAL specifies version 1.4, but does not implement set_operation_mode()";
}
}
mInitCheck = OK;
}
status_t Sensors::initCheck() const {
return mInitCheck;
}
Return<void> Sensors::getSensorsList(getSensorsList_cb _hidl_cb) {
hidl_vec<SensorInfo> out = getFixedUpSensorList();
_hidl_cb(out);
return Void();
}
int Sensors::getHalDeviceVersion() const {
if (!mSensorDevice) {
return -1;
}
return mSensorDevice->common.version;
}
Return<Result> Sensors::setOperationMode(OperationMode mode) {
if (getHalDeviceVersion() < SENSORS_DEVICE_API_VERSION_1_4 ||
mSensorModule->set_operation_mode == nullptr) {
return Result::INVALID_OPERATION;
}
return ResultFromStatus(mSensorModule->set_operation_mode((uint32_t)mode));
}
Return<Result> Sensors::activate(int32_t sensor_handle, bool enabled) {
return ResultFromStatus(mSensorDevice->activate(
reinterpret_cast<sensors_poll_device_t*>(mSensorDevice), sensor_handle, enabled));
}
Return<void> Sensors::poll(int32_t maxCount, poll_cb _hidl_cb) {
hidl_vec<Event> out;
hidl_vec<SensorInfo> dynamicSensorsAdded;
std::unique_ptr<sensors_event_t[]> data;
int err = android::NO_ERROR;
{ // scope of reentry lock
// This enforces a single client, meaning that a maximum of one client can call poll().
// If this function is re-entred, it means that we are stuck in a state that may prevent
// the system from proceeding normally.
//
// Exit and let the system restart the sensor-hal-implementation hidl service.
//
// This function must not call _hidl_cb(...) or return until there is no risk of blocking.
std::unique_lock<std::mutex> lock(mPollLock, std::try_to_lock);
if (!lock.owns_lock()) {
// cannot get the lock, hidl service will go into deadlock if it is not restarted.
// This is guaranteed to not trigger in passthrough mode.
LOG(ERROR)
<< "ISensors::poll() re-entry. I do not know what to do except killing myself.";
::exit(-1);
}
if (maxCount <= 0) {
err = android::BAD_VALUE;
} else {
int bufferSize = maxCount <= kPollMaxBufferSize ? maxCount : kPollMaxBufferSize;
data.reset(new sensors_event_t[bufferSize]);
err = mSensorDevice->poll(reinterpret_cast<sensors_poll_device_t*>(mSensorDevice),
data.get(), bufferSize);
}
}
if (err < 0) {
_hidl_cb(ResultFromStatus(err), out, dynamicSensorsAdded);
return Void();
}
const size_t count = (size_t)err;
for (size_t i = 0; i < count; ++i) {
if (data[i].type != SENSOR_TYPE_DYNAMIC_SENSOR_META) {
continue;
}
const dynamic_sensor_meta_event_t* dyn = &data[i].dynamic_sensor_meta;
if (!dyn->connected) {
continue;
}
CHECK(dyn->sensor != nullptr);
CHECK_EQ(dyn->sensor->handle, dyn->handle);
SensorInfo info;
convertFromSensor(*dyn->sensor, &info);
size_t numDynamicSensors = dynamicSensorsAdded.size();
dynamicSensorsAdded.resize(numDynamicSensors + 1);
dynamicSensorsAdded[numDynamicSensors] = info;
}
std::vector<Event> events;
convertFromSensorEvents(err, data.get(), events, getFixedUpSensorList());
out = events;
_hidl_cb(Result::OK, out, dynamicSensorsAdded);
return Void();
}
Return<Result> Sensors::batch(int32_t sensor_handle, int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
return ResultFromStatus(mSensorDevice->batch(mSensorDevice, sensor_handle, 0, /*flags*/
sampling_period_ns, max_report_latency_ns));
}
Return<Result> Sensors::flush(int32_t sensor_handle) {
return ResultFromStatus(mSensorDevice->flush(mSensorDevice, sensor_handle));
}
Return<Result> Sensors::injectSensorData(const Event& event) {
if (getHalDeviceVersion() < SENSORS_DEVICE_API_VERSION_1_4 ||
mSensorDevice->inject_sensor_data == nullptr) {
return Result::INVALID_OPERATION;
}
sensors_event_t out;
convertToSensorEvent(event, &out);
return ResultFromStatus(mSensorDevice->inject_sensor_data(mSensorDevice, &out));
}
Return<void> Sensors::registerDirectChannel(const SharedMemInfo& mem,
registerDirectChannel_cb _hidl_cb) {
if (mSensorDevice->register_direct_channel == nullptr ||
mSensorDevice->config_direct_report == nullptr) {
// HAL does not support
_hidl_cb(Result::INVALID_OPERATION, -1);
return Void();
}
sensors_direct_mem_t m;
if (!convertFromSharedMemInfo(mem, &m)) {
_hidl_cb(Result::BAD_VALUE, -1);
return Void();
}
int err = mSensorDevice->register_direct_channel(mSensorDevice, &m, -1);
if (err < 0) {
_hidl_cb(ResultFromStatus(err), -1);
} else {
int32_t channelHandle = static_cast<int32_t>(err);
_hidl_cb(Result::OK, channelHandle);
}
return Void();
}
Return<Result> Sensors::unregisterDirectChannel(int32_t channelHandle) {
if (mSensorDevice->register_direct_channel == nullptr ||
mSensorDevice->config_direct_report == nullptr) {
// HAL does not support
return Result::INVALID_OPERATION;
}
mSensorDevice->register_direct_channel(mSensorDevice, nullptr, channelHandle);
return Result::OK;
}
Return<void> Sensors::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
RateLevel rate, configDirectReport_cb _hidl_cb) {
if (mSensorDevice->register_direct_channel == nullptr ||
mSensorDevice->config_direct_report == nullptr) {
// HAL does not support
_hidl_cb(Result::INVALID_OPERATION, -1);
return Void();
}
sensors_direct_cfg_t cfg = {.rate_level = convertFromRateLevel(rate)};
if (cfg.rate_level < 0) {
_hidl_cb(Result::BAD_VALUE, -1);
return Void();
}
int err = mSensorDevice->config_direct_report(mSensorDevice, sensorHandle, channelHandle, &cfg);
if (rate == RateLevel::STOP) {
_hidl_cb(ResultFromStatus(err), -1);
} else {
_hidl_cb(err > 0 ? Result::OK : ResultFromStatus(err), err);
}
return Void();
}
std::vector<SensorInfo> Sensors::getFixedUpSensorList() {
std::vector<SensorInfo> sensors;
sensor_t const* list;
size_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
for (size_t i = 0; i < count; ++i) {
const sensor_t* src = &list[i];
SensorInfo sensor;
convertFromSensor(*src, &sensor);
bool keep = patchXiaomiPickupSensor(sensor);
if (keep) {
sensors.push_back(sensor);
}
}
return sensors;
};
// static
void Sensors::convertFromSensorEvents(size_t count, const sensors_event_t* srcArray,
std::vector<Event>& dstVec,
std::vector<SensorInfo> sensorsList) {
for (size_t i = 0; i < count; ++i) {
const sensors_event_t& src = srcArray[i];
Event event;
convertFromSensorEvent(src, &event);
SensorInfo* sensor = nullptr;
for (auto& s : sensorsList) {
if (s.sensorHandle == event.sensorHandle) {
sensor = &s;
break;
}
}
if (sensor && sensor->type == SensorType::PICK_UP_GESTURE) {
if (event.u.scalar != 1) {
continue;
}
event.sensorType = SensorType::PICK_UP_GESTURE;
}
dstVec.push_back(event);
}
}
ISensors* HIDL_FETCH_ISensors(const char* /* hal */) {
Sensors* sensors = new Sensors;
if (sensors->initCheck() != OK) {
delete sensors;
sensors = nullptr;
return nullptr;
}
return sensors;
}
} // namespace implementation
} // namespace V1_0
} // namespace sensors
} // namespace hardware
} // namespace android