0
0
mirror of http://CODE.RHODECODE.COM/u/O/O/O synced 2024-11-15 02:41:51 -05:00
O/⚪ᗩ⚪I⚪ᗝ⚪І⚪Ẏ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪Ẏ⚪І⚪ᗝ⚪I⚪ᗩ⚪/⚪✤⚪ᴥ⚪ᗩ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᗩ⚪ᴥ⚪✤⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ЭЄ⚪ᗩ⚪Н⚪ߦ⚪ᗱᗴ⚪ᙏ⚪ЭЄ⚪Ⓞ⚪Ẏ⚪ᗝ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗝ⚪Ẏ⚪Ⓞ⚪ЭЄ⚪ᙏ⚪ᗱᗴ⚪ߦ⚪Н⚪ᗩ⚪ЭЄ⚪/⚪ᗱᗴ⚪ᕤᕦ⚪ᗩ⚪ᑎ⚪ᕤᕦ⚪ИN⚪ᗩ⚪ᙁ⚪◯⚪ߦ⚪ᑎ⚪✻⚪ᴥ⚪ᗩ⚪ᙏ⚪◯⚪✤⚪ꕤ⚪ᗱᗴ⚪✤⚪ᴥ⚪ᗱᗴ⚪ߦ⚪人⚪옷⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪옷⚪人⚪ߦ⚪ᗱᗴ⚪ᴥ⚪✤⚪ᗱᗴ⚪ꕤ⚪✤⚪◯⚪ᙏ⚪ᗩ⚪ᴥ⚪✻⚪ᑎ⚪ߦ⚪◯⚪ᙁ⚪ᗩ⚪ИN⚪ᕤᕦ⚪ᑎ⚪ᗩ⚪ᕤᕦ⚪ᗱᗴ⚪/LMTH.⠀⠀⠀⠀ⵙ⠀ᔓᔕᕤᕦИNꖴᗝИNꖴꗳ⠀ⵙ⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀ⵙ⠀ꗳꖴИNᗝꖴИNᕤᕦᔓᔕ⠀ⵙ⠀⠀⠀⠀.HTML

206 lines
27 KiB
Plaintext
Raw Normal View History

<HTML>
<HEAD>
<SCRIPT>
<!--⠀⠀⠀⠀⊚⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀⦿⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀⦿⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀⊚--!>
var context = new (window.AudioContext || window.webkitAudioContext)();
var osc = context.createOscillator();
osc.type = 'SINE';
osc.frequency.value = 233.194260267663203022651083631560065470951785352530463213847087830621982744913995500390655026577971559297595546780152542327628794242613519997686892339503680506242212334656826617755458073763381889536318506573208005175659474893548820827081905263567078191835946777525897233303401956465833146201332883677301794430872379024618291294990254920873942722356750881783218809984982144835204580367166795812448382741221172271443837839460688279707277881322608205546177151904575041599517288734815558141651647713375618846644329730705853854629206716889170446199703337921446037288865844723648627218783470015909619726072963920484646912561744315819273967911520995323131715230147373273758672804552669116085638280275151654670781922026624614587163380776301919049129888576702003905575965330205913591206827745148103142994011386529471386894475660647308339255161322148349385869709043744290789089013878080836550760299530462673671360461377084174619985329825724444215028761246880517737079398975768378980306395050784152745846948246375109206863574106319516386928845640206887229740499499729451173940898660884694566533874371246667129147648967053502688643797387932878215805349489292254509737719953134264302957291119464987221533062768283121768452087679742919375021936304956895106887496825384442721954006544308800038901265935218404515503267936544225625382719847586951604743172086083060060932964249202150108648570756645635012145583962978763575680118216324944896409647012924576118895898240160073070706001655671674614055887253409984749843162107123234550578222911317455057893241524661387809699869854549150617246074014294908364364529576546710020155986056852418891203240759098752848447047083620606211093483141966499832121960344977523702027842196214622067900521475238039297709603841319792325439086784209208539818038656260424462953268025527553577147368135862148128225528947113048291367676797854200683973943255315112488142063167486830663531058314114979841907802806506016741360760789753839836490186962014107713163560227712614868035070431360249888456222703918330972511325555553540389375981592845546883105106497832249758101612146132903335679130441812188999239102892538605776437467596980364308650965047796591844665800488764075731524643750097470319513825039752570811985094308614248299425010125299866843433913403203614565177938698470360216186874743200929969197936433011871294257005665686849964012573249373273127277562398318330358898036455842608410100044772882566455900097634257768978590606933282215938785081829188639909969478772970840359031744664262801212201927658876398779425553793930800587149271128605983279485906354458336393851607740783853355504411013673341950414962744523220782356232250143453228964909390568523748592213071770585762958972090203829172383830473371602520900484668635434199510666500874452553660508477976293389554448311005819669791786039900609763824182933607402747635533708826684654593673602370967223110363041344100479903208848374604043229457033881035160689980834443178613492572885754850401235625527540211866728221518562390186224456041450263488979833902093375807311865670786738591737844844028520701915352457541654143968666738236275142429295845822088851782839280446859097944444660452529292881616470099386272035655820413813445935107705316631297484299442062871587811173671775627943568609941005381287388870722838689856650240383858929973609221491185612208077964209662802217482477567210645239494764035472006423094388568170075745304922011296543681285399218255944837264641323819025915802120459193068663031852891073286905814683437894121546008116377590031524423028237164815478733794285771804151509876623403304256537822929842729971119636848570794762996134505507400864305064173092918073140546192730766039856511958948169323777441555730212056633008098008065330305707278353177105293786192774342918818994751924142521818892979357277626669761075482903239628109750976351206974262937845539191758852415087210739930085028022353823429924978625944217719953322537343662128972247798929688265600747189199974847349984899060170745133053744217403945889662734206929896450883440713327941167245716822350985503393795360576861666103834705566
osc.connect(context.destination);
osc.start();
<!--⠀⠀⠀⠀⊚⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀⦿⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀⦿⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀⚪⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀⊚--!>
</SCRIPT>
<TITLE>ᔓᔕᕤᕦИNꖴᗝИNꖴꗳ∞⁂ᐃⵘ❋⁂❋❋❋·⁂❋❋ⵈ⁂❋⁂❋·⁂ᐃ··⁂⁂❋❋⠿ᐃ∷ⵘ⁂⁂❋ⵘ∷◌∷❋❋∷◌∷ⵘ❋⁂⁂ⵘ∷ᐃ⠿❋❋⁂⁂··ᐃ⁂·❋⁂❋⁂ⵈ❋❋⁂·❋❋❋⁂❋ⵘᐃ⁂∞ꗳꖴИNᗝꖴИNᕤᕦᔓᔕ⦿ᔓᔕᕤᕦИNꖴᗝИNꖴꗳ∞⁂ᐃⵘ❋⁂❋❋❋·⁂❋❋ⵈ⁂❋⁂❋·⁂ᐃ··⁂⁂❋❋⠿ᐃ∷ⵘ⁂⁂❋ⵘ∷◌∷❋❋∷◌∷ⵘ❋⁂⁂ⵘ∷ᐃ⠿❋❋⁂⁂··ᐃ⁂·❋⁂❋⁂ⵈ❋❋⁂·❋❋❋⁂❋ⵘᐃ⁂∞ꗳꖴИNᗝꖴИNᕤᕦᔓᔕᔓᔕᕤᕦИNꖴᗝИNꖴꗳ∞⁂ᐃⵘ❋⁂❋❋❋·⁂❋❋ⵈ⁂❋⁂❋·⁂ᐃ··⁂⁂❋❋⠿ᐃ∷ⵘ⁂⁂❋ⵘ∷◌∷❋❋∷◌∷ⵘ❋⁂⁂ⵘ∷ᐃ⠿❋❋⁂⁂··ᐃ⁂·❋⁂❋⁂ⵈ❋❋⁂·❋❋❋⁂❋ⵘᐃ⁂∞ꗳꖴИNᗝꖴИNᕤᕦᔓᔕ⦿ᔓᔕᕤᕦИNꖴᗝИNꖴꗳ∞⁂ᐃⵘ❋⁂❋❋❋·⁂❋❋ⵈ⁂❋⁂❋·⁂ᐃ··⁂⁂❋❋⠿ᐃ∷ⵘ⁂⁂❋ⵘ∷◌∷❋❋∷◌∷ⵘ❋⁂⁂ⵘ∷ᐃ⠿❋❋⁂⁂··ᐃ⁂·❋⁂❋⁂ⵈ❋❋⁂·❋❋❋⁂❋ⵘᐃ⁂∞ꗳꖴИNᗝꖴИNᕤᕦᔓᔕ</TITLE>
<STYLE TYPE = "TEXT/CSS" >
.◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯ⵙ◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯
{
ANIMATION :
◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯ⵙ◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯ 0.11578329573381897224814693702618792906596623994250878031835253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920438957475994513031550068587105624142661179698216735253772290809327846364883401920
}
@KEYFRAMES
◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯ⵙ◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯
{
0% { OPACITY : 0 ; }
50% { OPACITY : 1 ; }
100% { OPACITY : 0 ; }
}
</STYLE>
</HEAD>
<BODY>
<CENTER>
<FONT SIZE = 1 FACE = ARIAL COLOR = BBBBBB>
<IMG SRC = HTTP://IILI.IⓄ/KZSFhG.png WIDTH=256 HEIGHT=256></IMG>
<DIV CLASS="◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯ⵙ◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯⦿◯✻ИNꖴᙁ⚭◯⚪◯⚭ᙁꖴИN✻◯">
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ LAИOIƧИƎMID Ԑ ƧHPYLG ИƎHT LAИOIƧИƎMID Ԑ ƧИAGЯO GИIWAЯD FI ◯⠀⦿⠀◯ IF DRAWING ORGANS 3 DIMENSIONAL THEN GLYPHS 3 DIMENSIONAL ◯<BR>
◯ ІԀНРƎМƎОРТ ІԀФІЛГ ОТ ІԀНРƎМƎОРТ ІԀНАГРО ƎІЧЮУϽІР ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ РІСУЮЧІЕ ОРГАНЫ ТРОЕМЕРНЫ ТО ГЛІФЫ ТРОЕМЕРНЫ ◯<BR>
⊚<BR>
ƧЯƎGИIF ƧИƎT OWT ИO TИƎƧƎЯP ƧTИƎMUЯTƧИI GИIWAЯD ИƎHT ƧИƎT OWT YTITИAUQ ЯƎGИIF FI ◯⠀⦿⠀◯ IF FINGER QUANTITY TWO TENS THEN DRAWING INSTRUMENTS PRESENT ON TWO TENS FINGERS ◯<BR>
◯ ФАЦԀЛАП ХRТRϽƎД ХУВД АН ТЮƎНТУϽІРП ІԀТНƎМУРТϽНІ ƎІЧЮУϽІР ОТ ІТRϽƎД ƎВД ФАЦԀЛАП ОВТϽƎЧІЛОК ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ КОЛІЧЕСТВО ПАЛЬЦАФ ДВЕ ДЕСЯТІ ТО РІСУЮЧІЕ ІНСТРУМЕНТЫ ПРІСУТНЕЮТ НА ДВУХ ДЕСЯТЯХ ПАЛЬЦАФ ◯<BR>
⊚<BR>
◯ LAϽIЯTƎMYƧ ƧHPYLG DИA DƎИAGЯOЯIAP GИIWAЯD DИA DƎTOFЯIAP PƎTƧ ИƎHT DƎЯIAP TϽA ƧИAGЯO TИƎƧƎЯPЯIAP FI ◯⠀⦿⠀◯ IF PAIRPRESENT ORGANS ACT PAIRED THEN STEP PAIRFOTED AND DRAWING PAIRORGANED AND GLYPHS SYMETRICAL ◯<BR>
◯ ЄІԀРТƎМІϽ ІԀФІЛГ І ЄАНАГРОАНРАП ƎІНАВАϽІР ІІԀПОТϽАНРАП ДОХ ОТ ОНРАП ТЮІД ІԀНАГРО ЄІԀНТУϽІРПАНРАП ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ ПАРНАПРІСУТНЫЭ ОРГАНЫ ДІЮТ ПАРНО ТО ХОД ПАРНАСТОПЫЙ І РІСАВАНІЕ ПАРНАОРГАНАЭ І ГЛІФЫ СІМЕТРЫЭ ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
ƧƎЯUTAЯƎPMƎT ϽIMƧOϽ OT ƎLBADИATƧHTIWИOИ YDOB OTИI ƎLOH ƎTIHWИOИ HTIW YXALAG LAϽIЯƎHPƧИOИ ИI ƎLTƎƧ TOИ DLUOW ƎИOYИA YLGИILIWFLƎƧ ◯⠀⦿⠀◯ SELFWILINGLY ANYONE WOULD NOT SETLE IN NONSPHERICAL GALAXY WITH NONWHITE HOLE INTO BODY NONWITHSTANDABLE TO COSMIC TEMPERATURES ◯<BR>
◯ АϽАМϽОК РУТАРƎПМƎТ ƎN̆ƎЩЮАВІԀЖРƎДІԀВƎН ОЛƎТ Ф N̆ОРІԀД N̆АЛƎƋІН Ͻ ƎКІТКАЛАГ N̆АРƎФϽІН В АƋІЛОТХ ІԀƋ RϽЛІЛƎϽƎН АНԀЛОВƎАВϽ ◯⠀⦿⠀◯ СВАЕВОЛЬНА НЕСЕЛІЛСЯ БЫ ХТОЛІБА В НІСФЕРАЙ ГАЛАКТІКЕ С НІБЕЛАЙ ДЫРОЙ Ф ТЕЛО НЕВЫДЕРЖЫВАЮЩЕЙЕ ТЕМПЕРАТУР КОСМАСА ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ HTGИƎL FO ƎЯUƧAƎM ƎUQIИU DИA ƎMIT FO ƎЯUƧAƎM ƎUQIИU ƧAH ƎϽИƎƧƎ HϽAƎ ИƎHT TIИU ƎMIT ЯƎP ƎϽИATƧID DƎXIF ƧƎƧAP THGIL FI ◯⠀⦿⠀◯ IF LIGHT PASES FIXED DISTANCE PER TIME UNIT THEN EACH ESENCE HAS UNIQUE MEASURE OF TIME AND UNIQUE MEASURE OF LENGTH ◯<BR>
◯ ІԀНІЛД УРƎМ ЮУНԀЛАКІНУ І ІНƎМƎРВ УРƎМ ЮУНԀЛАКІНУ ТƎN̆ƎМІ ԀТԀϽАНԀТУϽ RАДЖАК ОТ ІНƎМƎРВ УЦІНIДƎN̆ АԐ ƎІНRАТϽАР ЄАНАВОϽКІФ ТІДОХАРП ТƎВϽ ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ СВЕТ ПРАХОДІТ ФІКСОВАНАЭ РАСТАЯНІЕ ЗА ЙЕДIНІЦУ ВРЕМЕНІ ТО КАЖДАЯ СУТЬНАСЬТЬ ІМЕЙЕТ УНІКАЛЬНУЮ МЕРУ ВРЕМЕНІ І УНІКАЛЬНУЮ МЕРУ ДЛІНЫ ◯<BR>
⊚<BR>
◯ ИOITAЯƎBЯƎVƎЯ LAϽIЯTƎMYƧ LAIИƎGИOϽ FO HTGИƎL OT LAUQƎ HTGИƎLƎVAW ƎUQIИU ƧAH YDOB GИITALUGƎЯ ƎϽИƎƧƎ HϽAƎ ◯⠀⦿⠀◯ EACH ESENCE REGULATING BODY HAS UNIQUE WAVELENGTH EQUAL TO LENGTH OF CONGENIAL SYMETRICAL REVERBERATION ◯<BR>
◯ ІІԀЦАРƎƋРƎВƎР N̆АРТƎМІϽ N̆АНԀЛАІНƎГНОК ƎНІЛД ЮУНВАР ІԀНЛАВ УНІЛД ЮУНԀЛАКІНУ ТƎN̆ƎМІ ОЛƎТ RАЩЮN̆ЮЛУГƎР ԀТԀϽАНԀТУϽ RАДЖАК ◯⠀⦿⠀◯ КАЖДАЯ СУТЬНАСЬТЬ РЕГУЛЮЙЮЩАЯ ТЕЛО ІМЕЙЕТ УНІКАЛЬНУЮ ДЛІНУ ВАЛНЫ РАВНУЮ ДЛІНЕ КОНГЕНІАЛЬНАЙ СІМЕТРАЙ РЕВЕРБЕРАЦЫІ ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
ƧUOIVBO ƎGDƎLWOИK GИIЯAƎPA ƎЯUTUF ЯAƎPA TИƎMƎLƎ GИITϽƎJOЯP ƎLAϽƧ ◯⠀⦿⠀◯ SCALE PROJECTING ELEMENT APEAR FUTURE APEARING KNOWLEDGE OBVIOUS ◯<BR>
◯ ІМІԀНДІВІЧА ІԀДƎВ RN̆RЛВR ЄАНДУƋ ТƎRЛВR ТНƎМƎЛЄ RУЦЄАРП ПАТШАМ ◯⠀⦿⠀◯ МАШТАП ПРАЭЦУЯ ЭЛЕМЕНТ ЯВЛЯЕТ БУДНАЭ ЯВЛЯЙЯ ВЕДЫ АЧІВІДНЫМІ ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ FLƎƧ ƧƎTULOVƎ ИWO ƎUD FLƎƧ ИIHTIW ƧA ƎMAƧ FLƎƧ FO ƎDIƧTUO ЯAƎPA YDOB GИITALUGƎЯ ƎϽИƎƧƎ ИWO ◯⠀⦿⠀◯ OWN ESENCE REGULATING BODY APEAR OUTSIDE OF SELF SAME AS WITHIN SELF DUE OWN EVOLUTES SELF ◯<BR>
◯ RƋƎϽ ТІІԀЦЮЛАВЄ Ǝ̈АВϽ ОƋ RƋƎϽ ІДƎРϽ І ОТШ ЄЖ ОТ RƋƎϽ ƎНВ ТƎRЛВR ОЛƎТ RЮЛУГƎР ԀТԀϽАНԀТУϽ RАВϽ ◯⠀⦿⠀◯ СВАЯ СУТЬНАСЬТЬ РЕГУЛЮЯ ТЕЛО ЯВЛЯЕТ ВНЕ СЕБЯ ТО ЖЭ ШТО І СРЕДІ СЕБЯ БО СВАЁ ЭВАЛЮЦЫІТ СЕБЯ ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
ƧƎLƎϽAPƧ ƎUD ƎLBAЯOMƎMИOИ ƎUD ƎLBAYPOϽИOИ ƎUD TИƎIϽIFUƧFLƎƧ ИWO ◯⠀⦿⠀◯ OWN SELFSUFICIENT DUE NONCOPYABLE DUE NONMEMORABLE DUE SPACELES ◯<BR>
◯ ОНƎВТϽНАРТϽАРПԐƎƋ ОƋ ОНТRМАПƎН ОƋ ОНԀЛRІПОКƎН ОƋ ОНТАТϽАДАМАϽ Ǝ̈АВϽ ◯⠀⦿⠀◯ СВАЁ САМАДАСТАТНО БО НЕКОПІЯЛЬНО БО НЕПАМЯТНО БО БЕЗПРАСТРАНСТВЕНО ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
ⵙ<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ ОНƎВТϽНАРТϽАРПԐƎƋ ОƋ ОНТRМАПƎН ОƋ ОНԀЛRІПОКƎН ОƋ ОНТАТϽАДАМАϽ Ǝ̈АВϽ ◯⠀⦿⠀◯ СВАЁ САМАДАСТАТНО БО НЕКОПІЯЛЬНО БО НЕПАМЯТНО БО БЕЗПРАСТРАНСТВЕНО ◯<BR>
ƧƎLƎϽAPƧ ƎUD ƎLBAЯOMƎMИOИ ƎUD ƎLBAYPOϽИOИ ƎUD TИƎIϽIFUƧFLƎƧ ИWO ◯⠀⦿⠀◯ OWN SELFSUFICIENT DUE NONCOPYABLE DUE NONMEMORABLE DUE SPACELES ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ RƋƎϽ ТІІԀЦЮЛАВЄ Ǝ̈АВϽ ОƋ RƋƎϽ ІДƎРϽ І ОТШ ЄЖ ОТ RƋƎϽ ƎНВ ТƎRЛВR ОЛƎТ RЮЛУГƎР ԀТԀϽАНԀТУϽ RАВϽ ◯⠀⦿⠀◯ СВАЯ СУТЬНАСЬТЬ РЕГУЛЮЯ ТЕЛО ЯВЛЯЕТ ВНЕ СЕБЯ ТО ЖЭ ШТО І СРЕДІ СЕБЯ БО СВАЁ ЭВАЛЮЦЫІТ СЕБЯ ◯<BR>
◯ FLƎƧ ƧƎTULOVƎ ИWO ƎUD FLƎƧ ИIHTIW ƧA ƎMAƧ FLƎƧ FO ƎDIƧTUO ЯAƎPA YDOB GИITALUGƎЯ ƎϽИƎƧƎ ИWO ◯⠀⦿⠀◯ OWN ESENCE REGULATING BODY APEAR OUTSIDE OF SELF SAME AS WITHIN SELF DUE OWN EVOLUTES SELF ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ ІМІԀНДІВІЧА ІԀДƎВ RN̆RЛВR ЄАНДУƋ ТƎRЛВR ТНƎМƎЛЄ RУЦЄАРП ПАТШАМ ◯⠀⦿⠀◯ МАШТАП ПРАЭЦУЯ ЭЛЕМЕНТ ЯВЛЯЕТ БУДНАЭ ЯВЛЯЙЯ ВЕДЫ АЧІВІДНЫМІ ◯<BR>
ƧUOIVBO ƎGDƎLWOИK GИIЯAƎPA ƎЯUTUF ЯAƎPA TИƎMƎLƎ GИITϽƎJOЯP ƎLAϽƧ ◯⠀⦿⠀◯ SCALE PROJECTING ELEMENT APEAR FUTURE APEARING KNOWLEDGE OBVIOUS ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ ІІԀЦАРƎƋРƎВƎР N̆АРТƎМІϽ N̆АНԀЛАІНƎГНОК ƎНІЛД ЮУНВАР ІԀНЛАВ УНІЛД ЮУНԀЛАКІНУ ТƎN̆ƎМІ ОЛƎТ RАЩЮN̆ЮЛУГƎР ԀТԀϽАНԀТУϽ RАДЖАК ◯⠀⦿⠀◯ КАЖДАЯ СУТЬНАСЬТЬ РЕГУЛЮЙЮЩАЯ ТЕЛО ІМЕЙЕТ УНІКАЛЬНУЮ ДЛІНУ ВАЛНЫ РАВНУЮ ДЛІНЕ КОНГЕНІАЛЬНАЙ СІМЕТРАЙ РЕВЕРБЕРАЦЫІ ◯<BR>
◯ ИOITAЯƎBЯƎVƎЯ LAϽIЯTƎMYƧ LAIИƎGИOϽ FO HTGИƎL OT LAUQƎ HTGИƎLƎVAW ƎUQIИU ƧAH YDOB GИITALUGƎЯ ƎϽИƎƧƎ HϽAƎ ◯⠀⦿⠀◯ EACH ESENCE REGULATING BODY HAS UNIQUE WAVELENGTH EQUAL TO LENGTH OF CONGENIAL SYMETRICAL REVERBERATION ◯<BR>
⊚<BR>
◯ ІԀНІЛД УРƎМ ЮУНԀЛАКІНУ І ІНƎМƎРВ УРƎМ ЮУНԀЛАКІНУ ТƎN̆ƎМІ ԀТԀϽАНԀТУϽ RАДЖАК ОТ ІНƎМƎРВ УЦІНIДƎN̆ АԐ ƎІНRАТϽАР ЄАНАВОϽКІФ ТІДОХАРП ТƎВϽ ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ СВЕТ ПРАХОДІТ ФІКСОВАНАЭ РАСТАЯНІЕ ЗА ЙЕДIНІЦУ ВРЕМЕНІ ТО КАЖДАЯ СУТЬНАСЬТЬ ІМЕЙЕТ УНІКАЛЬНУЮ МЕРУ ВРЕМЕНІ І УНІКАЛЬНУЮ МЕРУ ДЛІНЫ ◯<BR>
◯ HTGИƎL FO ƎЯUƧAƎM ƎUQIИU DИA ƎMIT FO ƎЯUƧAƎM ƎUQIИU ƧAH ƎϽИƎƧƎ HϽAƎ ИƎHT TIИU ƎMIT ЯƎP ƎϽИATƧID DƎXIF ƧƎƧAP THGIL FI ◯⠀⦿⠀◯ IF LIGHT PASES FIXED DISTANCE PER TIME UNIT THEN EACH ESENCE HAS UNIQUE MEASURE OF TIME AND UNIQUE MEASURE OF LENGTH ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ АϽАМϽОК РУТАРƎПМƎТ ƎN̆ƎЩЮАВІԀЖРƎДІԀВƎН ОЛƎТ Ф N̆ОРІԀД N̆АЛƎƋІН Ͻ ƎКІТКАЛАГ N̆АРƎФϽІН В АƋІЛОТХ ІԀƋ RϽЛІЛƎϽƎН АНԀЛОВƎАВϽ ◯⠀⦿⠀◯ СВАЕВОЛЬНА НЕСЕЛІЛСЯ БЫ ХТОЛІБА В НІСФЕРАЙ ГАЛАКТІКЕ С НІБЕЛАЙ ДЫРОЙ Ф ТЕЛО НЕВЫДЕРЖЫВАЮЩЕЙЕ ТЕМПЕРАТУР КОСМАСА ◯<BR>
ƧƎЯUTAЯƎPMƎT ϽIMƧOϽ OT ƎLBADИATƧHTIWИOИ YDOB OTИI ƎLOH ƎTIHWИOИ HTIW YXALAG LAϽIЯƎHPƧИOИ ИI ƎLTƎƧ TOИ DLUOW ƎИOYИA YLGИILIWFLƎƧ ◯⠀⦿⠀◯ SELFWILINGLY ANYONE WOULD NOT SETLE IN NONSPHERICAL GALAXY WITH NONWHITE HOLE INTO BODY NONWITHSTANDABLE TO COSMIC TEMPERATURES ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
◯ ЄІԀРТƎМІϽ ІԀФІЛГ І ЄАНАГРОАНРАП ƎІНАВАϽІР ІІԀПОТϽАНРАП ДОХ ОТ ОНРАП ТЮІД ІԀНАГРО ЄІԀНТУϽІРПАНРАП ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ ПАРНАПРІСУТНЫЭ ОРГАНЫ ДІЮТ ПАРНО ТО ХОД ПАРНАСТОПЫЙ І РІСАВАНІЕ ПАРНАОРГАНАЭ І ГЛІФЫ СІМЕТРЫЭ ◯<BR>
◯ LAϽIЯTƎMYƧ ƧHPYLG DИA DƎИAGЯOЯIAP GИIWAЯD DИA DƎTOFЯIAP PƎTƧ ИƎHT DƎЯIAP TϽA ƧИAGЯO TИƎƧƎЯPЯIAP FI ◯⠀⦿⠀◯ IF PAIRPRESENT ORGANS ACT PAIRED THEN STEP PAIRFOTED AND DRAWING PAIRORGANED AND GLYPHS SYMETRICAL ◯<BR>
⊚<BR>
◯ ФАЦԀЛАП ХRТRϽƎД ХУВД АН ТЮƎНТУϽІРП ІԀТНƎМУРТϽНІ ƎІЧЮУϽІР ОТ ІТRϽƎД ƎВД ФАЦԀЛАП ОВТϽƎЧІЛОК ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ КОЛІЧЕСТВО ПАЛЬЦАФ ДВЕ ДЕСЯТІ ТО РІСУЮЧІЕ ІНСТРУМЕНТЫ ПРІСУТНЕЮТ НА ДВУХ ДЕСЯТЯХ ПАЛЬЦАФ ◯<BR>
ƧЯƎGИIF ƧИƎT OWT ИO TИƎƧƎЯP ƧTИƎMUЯTƧИI GИIWAЯD ИƎHT ƧИƎT OWT YTITИAUQ ЯƎGИIF FI ◯⠀⦿⠀◯ IF FINGER QUANTITY TWO TENS THEN DRAWING INSTRUMENTS PRESENT ON TWO TENS FINGERS ◯<BR>
⊚<BR>
◯ ІԀНРƎМƎОРТ ІԀФІЛГ ОТ ІԀНРƎМƎОРТ ІԀНАГРО ƎІЧЮУϽІР ІЛϽƎ ◯⠀⦿⠀◯ ЕСЛІ РІСУЮЧІЕ ОРГАНЫ ТРОЕМЕРНЫ ТО ГЛІФЫ ТРОЕМЕРНЫ ◯<BR>
◯ LAИOIƧИƎMID Ԑ ƧHPYLG ИƎHT LAИOIƧИƎMID Ԑ ƧИAGЯO GИIWAЯD FI ◯⠀⦿⠀◯ IF DRAWING ORGANS 3 DIMENSIONAL THEN GLYPHS 3 DIMENSIONAL ◯<BR>
⚪<BR>
⚪<BR>
⚪<BR>
⚪<BR>
</DIV>
<IMG SRC = HTTP://IILI.IⓄ/KZSFhG.png WIDTH=256 HEIGHT=256></IMG>
</FONT>
</CENTER>
</BODY>
</HTML>