From 4cc63e9a569da784b4f79f93aabc7a3407168337 Mon Sep 17 00:00:00 2001
From: 0000OOOO0000 <63518686+0000OOOO0000@users.noreply.github.com>
Date: Sat, 25 Jun 2022 23:26:40 +0300
Subject: [PATCH] =?UTF-8?q?=E2=A0=80?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
.../XHG...⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀...GHX | 171592 +++++++++++++++
.../XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX | 96717 ++++++++
2 files changed, 268309 insertions(+)
create mode 100644 ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG...⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀...GHX
create mode 100644 ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX
diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG...⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀...GHX b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG...⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀...GHX
new file mode 100644
index 00000000..42d6c9bf
--- /dev/null
+++ b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG...⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀...GHX
@@ -0,0 +1,171592 @@
+
+
+
+
+
+
+ -
+ 0
+ 2
+ 2
+
+
+
+
+
+ -
+ 1
+ 0
+ 7
+
+
+
+
+
+ - e88083df-301b-4845-9c9a-5323111273ec
+ - Shaded
+ - 0
+ -
+ 100;240;240;240
+
+ -
+ 100;207;207;207
+
+
+
+
+
+ - 637915032433308485
+
+ - XHG...⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀...GHX
+
+
+
+
+ - 0
+
+
+
+
+ -
+ -2634
+ 5530
+
+ - 0.686852336
+
+
+
+
+ - 0
+
+
+
+
+
+
+ - 0
+
+
+
+
+ - 2
+
+
+
+
+ - Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
+ - 3.0.0.0
+ - Michael Pryor
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Pufferfish
+ - 3.0.0.0
+
+
+
+
+ - Heteroptera, Version=0.7.2.4, Culture=neutral, PublicKeyToken=null
+ - 0.7.2.4
+ - Amin Bahrami [Studio Helioripple]
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - Heteroptera
+ - 0.7.2.4
+
+
+
+
+
+
+ - 1551
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 16a52424-0794-4f9c-a139-1eb37fe23898
+ - 04f6dd45-a05e-4255-b431-1cf39447f2cb
+ - bad1c978-837c-473b-b4f0-a58dfe6f997e
+ - d4204f84-391f-45d9-b27d-4db0c38c8965
+ - 7719845b-c4fb-40bb-aebe-71f18acb63b2
+ - ed9b8f84-205b-4c77-9d51-bd3196eb98a9
+ - 20e239d4-cb33-4204-a2c2-5343e1abd3b3
+ - 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d
+ - b6b23334-d964-49d1-8bf0-e6c862f69bf1
+ - e0a23baf-b2b5-496b-8de7-e4c471e49cc9
+ - ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8
+ - 10b0d55a-a9b1-453a-bc7d-e912f93c21c3
+ - e1a9b758-7cee-4396-b62f-58ea93311af9
+ - d619928d-8087-4f94-9a55-02fd5b30666e
+ - 99b73b36-7459-46d9-b1f0-3937348f98af
+ - 2b983b05-b6d6-4399-9b66-2339c3acc21a
+ - 6ef43a54-6999-4ccc-a174-6fba07e915d7
+ - cc8b95bb-4946-4823-ad8a-25ceaba8d32e
+ - 70a003fd-4063-4183-a099-bb1e8ff9b09a
+ - 784a1ba3-f468-4303-a0ee-270fe195e74f
+ - 83802b83-02bd-494d-b870-ea094c68a146
+ - 05267ad3-2494-4a34-afff-4d362694e47c
+ - 22
+ - e1295131-4df4-436a-ac28-dd49d2ec2943
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c6d9ed22-f3b6-404a-9a1d-71836c532265
+ - d7333872-0e06-4c03-ba89-d6407be7554d
+ - 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
+ - 8f05758f-528d-4abe-a396-7016cab37bc7
+ - 481c1239-c2c2-4b27-9952-e232e2177102
+ - 60502e3d-7b53-49fc-8044-ffd2cd121805
+ - de643b94-4758-4fff-9527-348baf5052a6
+ - 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
+ - bfe8449c-a942-4118-b8c0-f94999971aed
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - b71aae03-de35-454b-80fa-09eb419fe2bf
+ - 3f8b08e2-012b-4117-8562-193ac6d58cd1
+ - 03a735fb-f0b8-408e-aa2e-38f3423396cb
+ - d4d70d80-e818-4fef-ba8e-09da9f91679c
+ - d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
+ - 4ba46890-e14d-4ffa-988f-1dd7b7759090
+ - 5d0d4ef0-d8de-470e-bbae-355a6b237935
+ - 6f661aea-4de1-4ccd-be9b-060c820f3253
+ - 9b636a61-698d-4830-96f5-74961596764f
+ - 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
+ - 0e85845b-9b1b-4be3-a812-e90c459106d4
+ - 9f7d1187-713e-4c8f-8c68-69b4d351ce97
+ - 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
+ - 14114d11-a3cb-41ea-8397-075cb5e9d027
+ - 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
+ - 231a94e3-3b48-4943-adac-c96d778b2484
+ - af7b7c8d-309a-4b1f-b7d3-7aea131dc644
+ - c5ec0fcd-b093-4db4-a17e-e93eede44c55
+ - 078cfa5d-a810-4461-afe5-3c7c6eff34df
+ - a1bef049-0c2f-4984-922a-a6675bf3c7b6
+ - 56534c49-1ea7-41c6-bf7c-258cabb3efce
+ - 08894441-b02f-4060-97bc-c16752f15988
+ - 37fb66b0-e790-4304-86c0-b0774e5826b8
+ - 5d29b998-e767-4908-9bd2-1eb4bcb4b5b9
+ - 34
+ - 24aeeca9-e806-44d7-b3c9-760bc20f33d3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 323d251f-6e65-42e2-a0ed-7d56aeb82679
+ - a0bba763-0936-4c88-a047-e5512c2ce288
+ - faab667e-5a31-446d-9df5-62d1fb98dd78
+ - b96f97f9-1163-4f69-8493-078db94ec775
+ - b5bfeeda-dfe6-46de-93d1-b762b9bdcfef
+ - 7292bcf1-8a62-4adc-8f64-9825c537d2d0
+ - 8aa897df-9fca-48aa-ba32-8aa452f7a4b4
+ - 2b7eac1d-f600-4eff-90ef-3e3caed8387d
+ - 0430ac85-9cee-45ae-b7d9-c48cee3f94fd
+ - e536f346-c2a7-4f67-9e54-01f53d06d92f
+ - d9082955-a981-4b4e-933c-24ee73910995
+ - d0db6d1f-005c-4599-ad03-e5e1298ca9b1
+ - 37850090-1f89-414f-a475-cd78f7946709
+ - 9530229d-2340-4f06-b2eb-2a75d4bc811f
+ - e2b00b73-8601-4e61-9b3e-f5f0b1508ee6
+ - 2cc54b6b-6a27-4347-ba1d-ad81725a8522
+ - b4a4a92f-f13b-4445-b2dd-58356b29fa0e
+ - 37878e6a-dc90-46a6-bfdd-572c29007bbc
+ - f8342b6b-15c7-478d-88c8-5933a2ef1e09
+ - 0341b73f-f7f8-4b04-9f93-e590bbc75247
+ - 34521a17-b7e4-42f7-bc4c-f5a2c804e428
+ - 7fa07956-23c0-4600-9960-b23370a32f2b
+ - 1e539816-62d2-49f3-b7dc-a17e5e68207f
+ - a26d1668-a53e-4720-8aa2-43cf9a2c28b9
+ - 24
+ - cbd5cee5-7699-4c42-af63-e2abf186af3f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7719845b-c4fb-40bb-aebe-71f18acb63b2
+ - ed9b8f84-205b-4c77-9d51-bd3196eb98a9
+ - 20e239d4-cb33-4204-a2c2-5343e1abd3b3
+ - 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d
+ - b6b23334-d964-49d1-8bf0-e6c862f69bf1
+ - e0a23baf-b2b5-496b-8de7-e4c471e49cc9
+ - ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8
+ - 10b0d55a-a9b1-453a-bc7d-e912f93c21c3
+ - e1a9b758-7cee-4396-b62f-58ea93311af9
+ - d619928d-8087-4f94-9a55-02fd5b30666e
+ - 99b73b36-7459-46d9-b1f0-3937348f98af
+ - 94e2a1cf-7e04-4d30-9f4f-09bcfed4b895
+ - 12
+ - 16a52424-0794-4f9c-a139-1eb37fe23898
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97602853-3e3e-4ea3-bccf-23d81ae84039
+ - 4da276be-89da-408b-8dc4-821f992e6a62
+ - 91242ca9-e406-47a2-893f-f68e4deecb2e
+ - 1984de07-4690-4d15-83ab-ca5ac7ba39c7
+ - 273aa071-b046-4c31-896d-6c812d648444
+ - 756d8dbe-1ffd-4616-8e58-093e60e39611
+ - 476b90b0-0b4b-464e-94a2-2d01dbc41bf2
+ - a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9
+ - 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5
+ - d6ce5ae8-4b3b-4dee-8441-52ee778febf0
+ - 14ccdfe7-041f-4ff7-b930-7473962ac27d
+ - 0e6380b4-7593-419b-a389-4238dbe87854
+ - 7c1a2569-b9d6-4ee6-a14e-357b1b128d42
+ - 38622d6e-1a4b-49a2-ae95-c398f56cbef4
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca
+ - a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d
+ - 61a87901-43ff-4f47-aae0-451d19806d9b
+ - 51a9cb88-e33f-4a56-bc83-f540c2b28374
+ - 241405ca-83b3-4478-94fc-fcce1c927c67
+ - ad832235-2f45-429e-88b4-71fdd54d3135
+ - f7a69548-1486-4abf-af34-435335bc55eb
+ - b7dff3c8-6998-400a-86c1-93344a002f5b
+ - 7fba6d47-f327-4abc-8332-cb072b40575d
+ - dd328417-f2f6-43dd-9c6a-57016cf47aa9
+ - 8415c0ad-da98-495f-a1d8-521fbb923339
+ - 1f60e8a7-f805-4f31-bb22-c674c43c383a
+ - 2c3a92e7-c8ad-4456-8ea8-baa10fb82052
+ - 74acc247-99e9-4190-8610-0d03e087bd07
+ - 18152b12-b828-4c2a-b1ed-119c6a76e5c2
+ - 78edcb05-0f20-4b9a-9e9a-568887d9bff3
+ - 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3
+ - 198e96ba-1b71-4ced-b09d-05b7949855ab
+ - d2b47dc8-db36-4d13-9e45-ddc2a7e3e223
+ - cba88513-3c9b-4cd4-adc0-c0681dfb069a
+ - 12a2eb83-f215-42e0-a529-0af180f3b656
+ - 32ee87fd-809e-4d75-b802-d8cf14460d4a
+ - 02e70f58-d9ac-421f-9454-279371d479d9
+ - ca5e1db8-8f38-4ca8-a9fd-8ae3bb30cefe
+ - b140a825-f831-4c75-b129-fd2aacab08a2
+ - c4af1fb1-2376-498f-97b1-8227cff3d55b
+ - d9fdc742-0047-44b5-940d-ede4925ef952
+ - f603e053-8f5c-4e76-bd7f-e791aa0351ff
+ - 75ff8eaf-db18-4de7-8968-47178e8313b3
+ - b6174ffb-29ba-4234-a1df-b6fceaa7b08f
+ - 2a2995c1-9fcd-4d07-93c9-6fa3fb680b84
+ - ceb1084b-0f2d-45ad-bde4-528181c70e9e
+ - d75407d2-1b46-4319-b031-d0e0f8889e8c
+ - be07e18b-ee2b-425f-8717-647d2c0762de
+ - 253ffe5d-009c-4834-aad1-ffdc18d7364f
+ - 910470c3-c24c-4e4c-a8a1-7ebf3ef4edb5
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - e4e439d5-2bfe-4a7a-99d5-72e4a4d936b5
+ - 21745270-0d6d-4a43-af3b-acda9251102d
+ - 33bc4610-c1e3-4eb2-b168-674aba0039e2
+ - b83103ca-a33b-468d-9406-a510d64596df
+ - b4671e64-ccc0-47c3-b109-c46ed36fafb3
+ - 015d43a6-a11d-4625-9eab-b4277ad14e5d
+ - b3333154-b6fd-47c4-9adb-cca60594fda8
+ - b9b4ea3a-3781-44e3-bec8-372e076bfc97
+ - 9152e93e-fc06-473a-87de-817dd123dc69
+ - bd9b3b2e-928a-4927-9e9b-f7ec41b3fa13
+ - eaacf0ad-c530-4f55-9eac-32e6212af5cb
+ - c1c641d7-d0f1-405c-b761-3ea255249986
+ - 23c5e705-57eb-4fce-8c17-2e061dc9cfe5
+ - 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6
+ - f475cbf4-4912-4270-bdd1-e0af1c26774e
+ - c771f533-a7d0-49a4-810b-6fe9255e3606
+ - a97ebc4a-f948-4909-84db-94415087a878
+ - 45abe2ff-547c-476b-b92c-442e9f8c2fd5
+ - bcb09746-9364-4bb4-bb5b-e2a04f08d1be
+ - 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26
+ - 17682d40-32c3-40f2-9c75-1551cfde5a93
+ - 8eed39b3-b8cf-4370-bb00-d39f6814dd82
+ - f047974c-a1ba-466a-901b-34bae44155f3
+ - 30c4ac7c-f35d-4173-b361-906a0d951d01
+ - d60c0706-6576-4328-88c6-6acf5a73cfda
+ - 193ea5e5-0782-4606-a720-e997392040f4
+ - eab2df7a-df01-4295-a49f-d16252df0110
+ - 4f9e4afc-4d5d-4f05-953b-9de13f68867e
+ - 62725a2d-d086-480b-b59c-20d70e010c2a
+ - c85b89ea-2c35-443e-b453-7c323d985667
+ - 83cd24a5-9dca-42f9-9595-2944c134e6f1
+ - 83
+ - 6ea1988c-9bd3-45b8-933e-53d96dbb3714
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0be06014-0ecf-459b-a86e-d5a9462f0857
+ - fd5f3d6b-8312-4598-8717-bd7013158ac8
+ - d5ad4ac6-a82d-4a23-9599-a70c0eaea546
+ - 0fce987b-8641-4118-b7cc-114b6846d188
+ - 809af6a8-4634-4d16-b1e7-6d725f788939
+ - e53b5806-1278-48b0-b40d-8251f7d8e523
+ - c83888d0-b894-40fe-820b-af825c904fc3
+ - 8678bd6b-c571-4190-8bed-27a19fbb5a4b
+ - 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
+ - 88f963a4-8bce-4d2b-969a-528dbf52cec6
+ - 96e719b4-9a6d-452e-8f37-602b6adb9fa3
+ - 45c3e10d-573a-4dad-962c-2e7c9f645ad9
+ - e74e59b2-8cd1-4463-9f9e-699a51228e3e
+ - 908290ff-2ae5-443a-8c02-efd3ed2fe118
+ - 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
+ - 50ab8d1b-85d8-4277-8f06-ed620cbe042a
+ - 8cacd258-ba73-4c62-93cd-8d1e686a3c02
+ - ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
+ - 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
+ - 383b2bad-9847-47e8-a0fb-694d2a476a78
+ - 4c448985-1964-4d98-a54b-8c378b64c191
+ - de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad
+ - be5f0e4e-5875-4c70-aa36-870c817df9e1
+ - a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36
+ - a17b5425-b933-4a96-b022-239c9056d234
+ - bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505
+ - 6263d839-2890-4f51-a4ca-400b76341a46
+ - 684dab19-ebc3-4fa2-85ae-30ba890d75cf
+ - 89237e9f-871d-48dd-9eab-340be1f24133
+ - b60b5335-5a6b-4be3-8839-241b11937a8e
+ - 4204693a-6067-4379-a243-8448862f25b8
+ - 009cb74a-f9f4-4ccd-ab1c-2dd05580acb6
+ - d461fc59-ff17-43bd-8530-b47d4e0b9d07
+ - e00c36a5-d637-4c31-9c20-859c86dbc3f4
+ - 0258f90b-2449-4f50-9f7c-8ed53b74791e
+ - 574c27c9-3452-47a9-97c9-e01fb407b925
+ - c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
+ - c36c8810-c429-4a65-81c2-ee9afc72aab1
+ - 37daf086-17fc-4e47-ba8c-391198555b78
+ - 44fe1fbd-5b85-4a6f-b9c6-e285398e2914
+ - a102b448-aa77-41af-b3e1-af7787a09310
+ - c362505c-12b2-46bf-a82f-8c1d92073bd1
+ - d689d842-3ece-40aa-8820-e9f429d00049
+ - 2f9e1ab9-aab9-423a-812a-3c7da9b498b3
+ - a8987895-1926-435c-ac30-b55cbdf38020
+ - 69ffacb2-16a1-4129-973b-aa48634a37a7
+ - ea54cb37-f08c-491b-ac20-a65e4389cca7
+ - 5d38ad1e-9c75-4669-82cd-7bb63c08c77d
+ - c531f81c-9d53-4f73-8799-3bd516a3edc6
+ - 877569dd-746a-480a-b6ae-2a0b26b46cb9
+ - b0780f8b-24b8-49e3-9ca2-ead4f899b3af
+ - 5104e935-fd94-4795-b481-644285836bda
+ - ba05c31e-27c7-43c9-bb03-bdcfd5e8adcf
+ - 77c1dbe1-728b-4cff-a941-f348a22d517d
+ - ed7e6822-10cf-46e3-98d5-7d186149277e
+ - 36704715-e6fa-4103-b9c9-63c99693e5b3
+ - 3bfe6f5e-0bc5-434b-8a1f-1ea9e1325374
+ - 957deaf1-c564-47c7-b565-4f0dae2b1c92
+ - 6bd5e34d-dcf5-42c1-94eb-d3b84215d27e
+ - ad71ca87-a761-4963-809d-57f3d493a3b4
+ - 247eb013-2062-40dc-bced-7540d1c2f75f
+ - 056f1928-832c-436e-9583-925fe9f79c8d
+ - 693be2ef-8a44-48e6-8210-de71cb311eb1
+ - 2542a3f2-90db-4e1a-8579-508a04e14002
+ - 64568223-14eb-4477-af37-fa9297e41d7f
+ - eb97d3e3-58d2-4ca4-83ec-e802f3da77ff
+ - f8f514f7-3e33-426a-8203-3b6e245b29bf
+ - b59b106e-8761-4626-a895-2e38e0d747eb
+ - 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f
+ - 5c493b6d-4ec3-4a33-9878-718b9f7f7899
+ - f1ee4950-7f56-4f3d-8d6b-542a35f21276
+ - 24402fa4-4cf6-4928-aa18-97b2fb379b92
+ - b53adb78-a001-472e-b4d9-21016d5a1502
+ - 0510202c-a370-465f-bd2a-2d6d989d6cf9
+ - 140588d4-2e33-43b3-9043-f29b91eda6ed
+ - ae0232f3-71a2-4c0b-b75d-03d815a4ab4a
+ - 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1
+ - 728569ed-5597-44af-981b-e70a8a64f2f2
+ - 4ccebb54-ff4f-4137-9be2-9b59e9e078ef
+ - 79
+ - 74e4bfc2-0153-4e05-8e73-4e6607ccec40
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4da276be-89da-408b-8dc4-821f992e6a62
+ - 91242ca9-e406-47a2-893f-f68e4deecb2e
+ - 1984de07-4690-4d15-83ab-ca5ac7ba39c7
+ - 273aa071-b046-4c31-896d-6c812d648444
+ - 756d8dbe-1ffd-4616-8e58-093e60e39611
+ - 476b90b0-0b4b-464e-94a2-2d01dbc41bf2
+ - a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9
+ - 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5
+ - d6ce5ae8-4b3b-4dee-8441-52ee778febf0
+ - 14ccdfe7-041f-4ff7-b930-7473962ac27d
+ - 0e6380b4-7593-419b-a389-4238dbe87854
+ - 7c1a2569-b9d6-4ee6-a14e-357b1b128d42
+ - 38622d6e-1a4b-49a2-ae95-c398f56cbef4
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca
+ - a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d
+ - 61a87901-43ff-4f47-aae0-451d19806d9b
+ - 51a9cb88-e33f-4a56-bc83-f540c2b28374
+ - 241405ca-83b3-4478-94fc-fcce1c927c67
+ - ad832235-2f45-429e-88b4-71fdd54d3135
+ - f7a69548-1486-4abf-af34-435335bc55eb
+ - b7dff3c8-6998-400a-86c1-93344a002f5b
+ - 7fba6d47-f327-4abc-8332-cb072b40575d
+ - dd328417-f2f6-43dd-9c6a-57016cf47aa9
+ - 8415c0ad-da98-495f-a1d8-521fbb923339
+ - 1f60e8a7-f805-4f31-bb22-c674c43c383a
+ - 2c3a92e7-c8ad-4456-8ea8-baa10fb82052
+ - 74acc247-99e9-4190-8610-0d03e087bd07
+ - 18152b12-b828-4c2a-b1ed-119c6a76e5c2
+ - 78edcb05-0f20-4b9a-9e9a-568887d9bff3
+ - 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3
+ - 198e96ba-1b71-4ced-b09d-05b7949855ab
+ - d2b47dc8-db36-4d13-9e45-ddc2a7e3e223
+ - cba88513-3c9b-4cd4-adc0-c0681dfb069a
+ - 12a2eb83-f215-42e0-a529-0af180f3b656
+ - 32ee87fd-809e-4d75-b802-d8cf14460d4a
+ - 02e70f58-d9ac-421f-9454-279371d479d9
+ - ca5e1db8-8f38-4ca8-a9fd-8ae3bb30cefe
+ - b140a825-f831-4c75-b129-fd2aacab08a2
+ - c4af1fb1-2376-498f-97b1-8227cff3d55b
+ - d9fdc742-0047-44b5-940d-ede4925ef952
+ - f603e053-8f5c-4e76-bd7f-e791aa0351ff
+ - 75ff8eaf-db18-4de7-8968-47178e8313b3
+ - b6174ffb-29ba-4234-a1df-b6fceaa7b08f
+ - 2a2995c1-9fcd-4d07-93c9-6fa3fb680b84
+ - ceb1084b-0f2d-45ad-bde4-528181c70e9e
+ - d75407d2-1b46-4319-b031-d0e0f8889e8c
+ - be07e18b-ee2b-425f-8717-647d2c0762de
+ - 253ffe5d-009c-4834-aad1-ffdc18d7364f
+ - 910470c3-c24c-4e4c-a8a1-7ebf3ef4edb5
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - e4e439d5-2bfe-4a7a-99d5-72e4a4d936b5
+ - 21745270-0d6d-4a43-af3b-acda9251102d
+ - 33bc4610-c1e3-4eb2-b168-674aba0039e2
+ - b83103ca-a33b-468d-9406-a510d64596df
+ - b4671e64-ccc0-47c3-b109-c46ed36fafb3
+ - 015d43a6-a11d-4625-9eab-b4277ad14e5d
+ - b3333154-b6fd-47c4-9adb-cca60594fda8
+ - b9b4ea3a-3781-44e3-bec8-372e076bfc97
+ - 9152e93e-fc06-473a-87de-817dd123dc69
+ - bd9b3b2e-928a-4927-9e9b-f7ec41b3fa13
+ - eaacf0ad-c530-4f55-9eac-32e6212af5cb
+ - c1c641d7-d0f1-405c-b761-3ea255249986
+ - 23c5e705-57eb-4fce-8c17-2e061dc9cfe5
+ - 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6
+ - f475cbf4-4912-4270-bdd1-e0af1c26774e
+ - c771f533-a7d0-49a4-810b-6fe9255e3606
+ - a97ebc4a-f948-4909-84db-94415087a878
+ - 45abe2ff-547c-476b-b92c-442e9f8c2fd5
+ - bcb09746-9364-4bb4-bb5b-e2a04f08d1be
+ - 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26
+ - 17682d40-32c3-40f2-9c75-1551cfde5a93
+ - 8eed39b3-b8cf-4370-bb00-d39f6814dd82
+ - f047974c-a1ba-466a-901b-34bae44155f3
+ - 30c4ac7c-f35d-4173-b361-906a0d951d01
+ - d60c0706-6576-4328-88c6-6acf5a73cfda
+ - 193ea5e5-0782-4606-a720-e997392040f4
+ - eab2df7a-df01-4295-a49f-d16252df0110
+ - 4f9e4afc-4d5d-4f05-953b-9de13f68867e
+ - 79
+ - 97602853-3e3e-4ea3-bccf-23d81ae84039
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a274c88d-0131-427a-9dd0-3bda6e2eff29
+ - 64f5057a-5eca-4ebd-adac-a9588cc43a37
+ - 211d3ab7-e6e9-4dd3-bbe9-4076a44479de
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - dbd22ad0-e116-471c-a510-5155790fca7b
+ - 68343da5-7432-441a-8a19-50a1f21b220e
+ - 45305164-c779-4caf-a203-99cb10700df1
+ - 3b518049-a721-4682-9863-fde5cd56ec7a
+ - 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
+ - 3cdaef40-695e-4325-a023-127dff8a13a4
+ - 5e982791-82ff-440d-bacc-09c972bd83f7
+ - ee304c2e-7991-484f-9da6-ff4fc47e9e92
+ - 8d8f743b-370c-4c43-90de-d16a3d5ab270
+ - bf9904f8-fa01-421a-bbee-9be7276335f0
+ - 0592f089-92c7-4e08-8b1d-72b16d1814ee
+ - 2d8f7591-dfcc-4bab-82e3-0db34a1e332a
+ - 1f4f6537-e674-47b2-a3cc-0c14bffb73b6
+ - 9f5c6da6-1b66-497a-a401-6d7c972dd8f3
+ - d14b1d35-9269-44ee-821f-67f2cd1897b1
+ - 35dc89a9-722a-43d7-a22e-b79159522d82
+ - 0a516f0c-a574-4254-9e94-e7e5df613da5
+ - 5e62133f-3e96-4273-aa14-46485a1d2993
+ - 0a9edd9f-b92b-4495-a186-4d2d750d8705
+ - 65613610-dbaa-4036-a8cf-1716c76246e5
+ - f9a3ac63-bb35-4cd5-a701-0bc94605a753
+ - e225702c-37cb-414c-b6ee-0dea08840fbd
+ - 2760a5c3-b698-426f-ab03-8032d516a479
+ - da8953b6-d8e3-4aa4-bee0-df0ede441feb
+ - f439fa6b-f226-46ca-b01c-8ef27a697da4
+ - 0178cc91-2c55-4f13-8715-c9ae8cde7381
+ - 32aa66bf-b8f9-40a8-8447-dc53ebfd950d
+ - 44c51f6f-2d13-489d-a8d0-33396ca312d1
+ - 3e25c677-18d2-4a81-a487-3590cf9df727
+ - dd4e68d8-40f1-4109-a9cb-bcf9fe696818
+ - acfeae50-20a9-479f-aa7f-c6af7ab4d63b
+ - 85038b7a-945c-4f71-941f-78812db35fab
+ - 76614d91-3d1a-498e-8900-459619131110
+ - 3ae51560-a358-4655-aba3-08bdf86d0fc2
+ - 70bc89ee-6b70-4472-b8e5-64a5c9cb84a7
+ - 874e9e2e-591d-4afa-96d9-2baecebac97f
+ - 5ee0c642-0a89-4957-83c5-74bafd3f7d48
+ - 0943cba2-39fe-4125-9623-f70d3326971c
+ - 894c2165-9c4a-4fa0-a0bc-198755fb7e0f
+ - 3c806f62-3e23-4451-8b4c-1d0ee1812fe8
+ - 75434d61-d5bb-4800-bc6b-c6a0d8505f6c
+ - 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
+ - 85c52366-0982-406d-b91c-f42517f13990
+ - 48b8c9ef-cb3c-4009-9684-cd48d749b5ab
+ - 044cb778-9490-4df3-9437-dd5b56522471
+ - 69e5ea57-7d81-4a09-8ef9-ccb25d57d505
+ - a99be150-24a5-4ed5-b21a-92a285b690b0
+ - 8c5832d9-8a03-428a-be62-bf491697ddaa
+ - 30d2560c-f4c6-4925-a86c-db46776c8475
+ - b62f19ca-87db-46ca-8c31-ea7e17696ffe
+ - 1c99c25f-7d5e-4c63-966a-976daadcec48
+ - b2e78911-4591-4927-ad08-76285da0ffdc
+ - a47ffe02-4103-4c38-89e1-ede0b95c5a37
+ - d2418b07-7276-422b-95a0-4b06d47778e7
+ - 68798621-f2f5-4d68-ab21-b493ba17bc76
+ - e95c3dbd-5e70-4ea6-85cd-43d87435112a
+ - 13811ab4-b356-4a2f-bf6a-563f34659a7a
+ - 47d309cc-0087-490d-85c8-cf3d129b0f93
+ - 3f22465c-a1d8-4425-9fdc-e6135a397fbc
+ - 771a3c18-faa6-4281-b469-5031ab7617a5
+ - 3b43cc9f-9bf8-4ad1-96ae-3c1d8d223edd
+ - a5de6231-a691-45d0-887d-4c677b2cd883
+ - ec2d9eee-a658-42ed-bf34-e56a1ed0c919
+ - d473a50c-3902-4af3-ad36-6f85c9f36bc0
+ - 256d4876-ebd8-4914-aa20-11c64a0e56d7
+ - 52cee108-6acb-47c9-b99f-f64546acc12c
+ - d900ebd2-5fc1-475e-a940-194803b564d6
+ - 6c8e0d06-15c6-49e1-9067-12321dd4ee3b
+ - cd610f91-fe93-4eaa-b6dc-0b8fadea311f
+ - 600b5815-4862-4828-a936-e2ea98a22934
+ - ff2db1c1-6c13-43aa-8303-844eb49d3ae6
+ - 8c08f54a-7801-4d61-a733-3a8ba0d87024
+ - 95874953-5edd-4e0b-9115-5fc68fd0f28d
+ - 5cb126fd-9c09-4d9d-9448-82cbad266c75
+ - 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
+ - 4d8c850a-204d-4ade-81d2-820fdd96b58a
+ - 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
+ - fa5ecd94-e7d5-46d8-825e-477b6d112c2b
+ - e2051d40-1ccc-45fe-82e2-b1b90760ee46
+ - 39c932f0-cb48-431a-af49-df26495dad11
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - 37daf650-3934-4620-a463-416b35449969
+ - f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
+ - 1770ef93-fafd-46b6-9880-ef4537069dfd
+ - e51056f8-3107-4b1a-8fd5-ad73176b3deb
+ - d8ed0680-6313-4ea3-9083-6b6ef5b3df8e
+ - a746965c-93a8-4c42-ba22-60615b10d09a
+ - 1b5fbf91-fdf8-4030-a119-19e9899bcf85
+ - 49903633-9080-429b-8a6d-d1e6ebe41d4e
+ - 0964cac6-acfd-4cc9-9eaf-953e88fd0fc0
+ - 6cb2edf8-8cdf-4c12-85d6-a8bd4ae5d89e
+ - 6a8af3f4-c4cb-42f8-8235-d36afb706fae
+ - 50a35e3a-c50a-483f-ba6a-4078685fc7f5
+ - 7d097b82-7572-4bca-82b7-1d6802a40156
+ - 6668afd9-5abf-4c53-9854-9dacd7e2c2c6
+ - 99
+ - d2ba622f-885f-4a7d-9b75-56c1bc638d23
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d7333872-0e06-4c03-ba89-d6407be7554d
+ - 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
+ - 8f05758f-528d-4abe-a396-7016cab37bc7
+ - 481c1239-c2c2-4b27-9952-e232e2177102
+ - 136cd97b-9deb-4449-b884-bf54a4c926d4
+ - 60502e3d-7b53-49fc-8044-ffd2cd121805
+ - de643b94-4758-4fff-9527-348baf5052a6
+ - 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
+ - bfe8449c-a942-4118-b8c0-f94999971aed
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - b71aae03-de35-454b-80fa-09eb419fe2bf
+ - 3f8b08e2-012b-4117-8562-193ac6d58cd1
+ - 03a735fb-f0b8-408e-aa2e-38f3423396cb
+ - d4d70d80-e818-4fef-ba8e-09da9f91679c
+ - d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
+ - 4ba46890-e14d-4ffa-988f-1dd7b7759090
+ - 5d0d4ef0-d8de-470e-bbae-355a6b237935
+ - 6f661aea-4de1-4ccd-be9b-060c820f3253
+ - 9b636a61-698d-4830-96f5-74961596764f
+ - 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
+ - 0e85845b-9b1b-4be3-a812-e90c459106d4
+ - 9f7d1187-713e-4c8f-8c68-69b4d351ce97
+ - 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
+ - 14114d11-a3cb-41ea-8397-075cb5e9d027
+ - 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
+ - 5d29b998-e767-4908-9bd2-1eb4bcb4b5b9
+ - 26
+ - c6d9ed22-f3b6-404a-9a1d-71836c532265
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
+ - 8f05758f-528d-4abe-a396-7016cab37bc7
+ - 481c1239-c2c2-4b27-9952-e232e2177102
+ - 136cd97b-9deb-4449-b884-bf54a4c926d4
+ - 60502e3d-7b53-49fc-8044-ffd2cd121805
+ - 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2
+ - 91acf8ab-b95d-4cf9-9042-41f5397d7e87
+ - de643b94-4758-4fff-9527-348baf5052a6
+ - 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
+ - bfe8449c-a942-4118-b8c0-f94999971aed
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - b71aae03-de35-454b-80fa-09eb419fe2bf
+ - 3f8b08e2-012b-4117-8562-193ac6d58cd1
+ - 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc
+ - 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
+ - 231a94e3-3b48-4943-adac-c96d778b2484
+ - 16
+ - d7333872-0e06-4c03-ba89-d6407be7554d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1
+ - 1
+ - 0be06014-0ecf-459b-a86e-d5a9462f0857
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d5ad4ac6-a82d-4a23-9599-a70c0eaea546
+ - 1
+ - fd5f3d6b-8312-4598-8717-bd7013158ac8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0fce987b-8641-4118-b7cc-114b6846d188
+ - 1
+ - d5ad4ac6-a82d-4a23-9599-a70c0eaea546
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 809af6a8-4634-4d16-b1e7-6d725f788939
+ - 1
+ - 0fce987b-8641-4118-b7cc-114b6846d188
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 15296d3b-06c5-4a78-9204-c362bebd73b3
+ - 1
+ - 304daaaf-330d-4eca-a6e7-7296e3c523a5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 15296d3b-06c5-4a78-9204-c362bebd73b3
+ - 1
+ - c6d60dfe-4cb1-4743-9f16-d670ec8d290d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9b792e59-c476-4a7d-a5f9-efa565758290
+ - 1
+ - 4d4e3f11-e0fb-440f-b1bc-1562a0a3130f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e53b5806-1278-48b0-b40d-8251f7d8e523
+ - 1
+ - 809af6a8-4634-4d16-b1e7-6d725f788939
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c83888d0-b894-40fe-820b-af825c904fc3
+ - 1
+ - e53b5806-1278-48b0-b40d-8251f7d8e523
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
+ - 1
+ - c83888d0-b894-40fe-820b-af825c904fc3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 64fca20e-296f-4f79-aa7f-c53c5f88866e
+ - 9b2a37bb-1555-4475-9897-d38d08b21505
+ - 27ab2024-18fc-4363-8275-015d2368f9de
+ - 26be2798-ae8b-4fb0-b7a2-e9f1edff6049
+ - 6525660d-29ee-4269-9203-539923b24a8e
+ - 708c9f15-3d1c-406b-8e76-cab318b67adc
+ - 936ab982-35fa-4088-8bfe-32405957deea
+ - 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0
+ - b6df8fad-340c-4555-a43a-639976bc59fe
+ - 47d36a7d-3cd2-4782-9f53-9f4088b19d4b
+ - a4a55193-86eb-40c0-8f54-9e700ffb5262
+ - 84f4a890-2b31-4a54-b2a5-49681a5484c7
+ - c20dd2aa-56ce-4ff5-8e86-52afad8c2c96
+ - 5ccec4b3-fea6-45d3-8cbe-91c674ae3851
+ - ff82ce22-4075-4b1a-9609-55239f281a35
+ - 377c7605-11b6-4673-94de-cc5176b48b51
+ - c3df9ab9-ce47-48e9-994e-14f1d7735c94
+ - 431dbfbf-14de-4cae-b7cc-93329a70f66c
+ - ff436794-13e0-4e1f-80d6-7f5a87203812
+ - 3eeef9bc-d5a9-4e6a-b71c-b4dfe8f6b841
+ - 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
+ - 74e89f85-5cd3-4475-b942-4195b9b26127
+ - e32b8a72-3026-4389-9167-05dd22abd69e
+ - b9b95f50-9e5f-4c1f-9c6b-75e6fd956e6e
+ - 8fbbff63-ce96-4927-842d-2fd30969fea0
+ - 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
+ - e0516fed-bf3c-4077-8700-ea6a5d8fd259
+ - c376d704-0c1b-47cd-9bc3-72920e4bfead
+ - 9e30a520-265b-486e-a6d0-566777e09451
+ - 11c2aced-e753-46f2-bc94-82c65cf9d659
+ - dbbe7cdd-1102-4fb8-9b97-609a8d9fa450
+ - 8ec0c145-f345-40f1-b548-bdeae4656453
+ - 8398b5f4-fd6c-4c31-b15b-85d87dd315bc
+ - 878ef2e7-03c9-4c81-ab95-3f6612107a06
+ - 759a9424-cadf-4276-8b23-6f50b024aaa8
+ - 35
+ - 56d9a1a8-56b7-414f-a794-eab21813130e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - db956c37-8884-4b12-b22f-f8e62287b5cc
+ - bad32d9f-a228-4096-a7ad-611612df1ecf
+ - 5edee65c-191d-441c-951b-b650d396ebf2
+ - 13678ac4-534d-449b-a806-30e2c5627bc4
+ - ed880257-cb73-4b3d-bdba-4c629f2654a0
+ - 2e4f40d1-57e5-4c19-a99f-429ba726780a
+ - 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
+ - 6232a007-7131-40f6-a98e-54bf4f5de0e2
+ - be88ae4a-34e9-40cb-900e-04d4d78a0355
+ - cd03c22d-ecbe-479f-b24c-a9fc71964bbd
+ - ee60103a-50e1-4b3b-8a4b-e878472c2e33
+ - fe0cca38-ef8c-474b-bb0d-65546deb0f8e
+ - cd3a4016-c65b-423e-80fe-187b9b727aaa
+ - 510ca252-0b8c-434d-87ff-0bb19e02de48
+ - fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d
+ - 8b79d317-11af-4b0d-a24a-275e14631f8a
+ - b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad
+ - 964cb3ac-1a1f-431e-8b84-0556874d46d4
+ - 226f21c6-4fc4-4167-b7fd-59d96537bf6d
+ - a265b490-ccac-453e-82c7-8ff5a0e23517
+ - 44a14ffd-ef9a-45e3-b6f8-a5425130a8bf
+ - 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
+ - c09e5ae2-030b-42b1-a084-044710815d2e
+ - e8733214-56ad-40ea-83a2-5e5d6fee430d
+ - 26a2087c-6b34-4cba-a4ca-cfd8860323fa
+ - 7b796d98-9d29-4777-978b-4e0f43e188d2
+ - 1b261338-78de-4ea1-819d-e804feffeeca
+ - c0c89fc9-9439-46ab-9f7e-31f42bf53c28
+ - 5086f2ab-1b64-44ce-8ebb-d3bf4b9ebde8
+ - bfb9c742-ccba-40e2-9d19-47e55cf92c4b
+ - 3a3cdcad-cb6e-42a2-b26f-eabf35d1c224
+ - 6243360b-4cd0-4b51-bf13-b41a10039126
+ - 5d416a89-7386-4795-804d-85aad6db5f35
+ - b998e5cb-ac9b-472c-bca9-b12d2a814ca3
+ - 1bcfcd5d-8614-4116-bfb8-776af73c4a1a
+ - 7b988f86-3299-4057-83e2-a2dfad7edd14
+ - 43169f25-9f97-4cc6-a9fb-70b22569a90b
+ - d14d45ee-9a5e-435f-8e00-0ea848456dec
+ - 7996ffe7-23e4-4271-8379-50fdc86d5ee4
+ - 35de8717-4eea-481e-bcfd-f9b50b3335bb
+ - 231d76fe-2789-4a1c-ac87-314c5549f831
+ - 09336dd8-3c4b-476c-b62d-d3b399ef2780
+ - f14968fc-8c03-4bf0-9731-e104bcf98382
+ - ab15d115-f73b-4d08-9382-99436259ff41
+ - c4aa530e-cb9a-4448-b893-7d5534deb0e5
+ - 18765130-12d0-4e81-bb07-50c6d539a331
+ - f0b3f7a9-a89a-41f9-8cd9-128e13fc28e9
+ - 0f3c6a22-bd04-4fde-9840-bae5878a8350
+ - 86e6e907-dd69-4742-a0dc-d9d47d443ec0
+ - f3d39ea9-6927-457d-ada0-8a62ba409d0a
+ - f8227a59-b3bb-490c-a577-e7486021c81f
+ - 013e4f07-7992-470f-8e86-91ffaa46f551
+ - ab1114a9-a08d-4c5d-b8cd-f951279bbcf5
+ - a850910a-8d6e-49e7-b143-923ad41fdb78
+ - 22991b0e-0e2a-4ba1-a379-96fc369abcee
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - 2b8982ad-31cf-4594-b562-7f255387572d
+ - f57f0a05-8d67-4d43-83ba-1fa5cf42da0e
+ - 47449d6f-59a8-4e29-bbce-0d0b02c29488
+ - 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
+ - 60
+ - adde6a87-48a5-4b41-b3ac-b4cd01a228f1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a265b490-ccac-453e-82c7-8ff5a0e23517
+ - 1
+ - db956c37-8884-4b12-b22f-f8e62287b5cc
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5edee65c-191d-441c-951b-b650d396ebf2
+ - 13678ac4-534d-449b-a806-30e2c5627bc4
+ - ed880257-cb73-4b3d-bdba-4c629f2654a0
+ - 2e4f40d1-57e5-4c19-a99f-429ba726780a
+ - 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
+ - 6232a007-7131-40f6-a98e-54bf4f5de0e2
+ - be88ae4a-34e9-40cb-900e-04d4d78a0355
+ - cd03c22d-ecbe-479f-b24c-a9fc71964bbd
+ - fe0cca38-ef8c-474b-bb0d-65546deb0f8e
+ - ee60103a-50e1-4b3b-8a4b-e878472c2e33
+ - db956c37-8884-4b12-b22f-f8e62287b5cc
+ - 11
+ - bad32d9f-a228-4096-a7ad-611612df1ecf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 5edee65c-191d-441c-951b-b650d396ebf2
+ - true
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ -227
+ 13075
+ 104
+ 64
+
+ -
+ -168
+ 13107
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 0fee1575-1b05-4e95-854f-38deb1513e17
+ - true
+ - Data
+ - Data
+ - false
+ - e24c881f-304c-4235-90c4-49a1c051ffe0
+ - 1
+
+
+
+
+ -
+ -225
+ 13077
+ 42
+ 20
+
+ -
+ -202.5
+ 13087
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - f0603782-24ec-4e61-9a14-a9bb8e32d6d4
+ - true
+ - Number
+ - Number
+ - false
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - 1
+
+
+
+
+ -
+ -225
+ 13097
+ 42
+ 20
+
+ -
+ -202.5
+ 13107
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - cf5c548b-4ee5-41bd-9812-7d13de137bbe
+ - true
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ -225
+ 13117
+ 42
+ 20
+
+ -
+ -202.5
+ 13127
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - e09a8eb0-1bfc-4cc0-88ea-41d013cd872a
+ - true
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ -153
+ 13077
+ 28
+ 60
+
+ -
+ -137.5
+ 13107
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 13678ac4-534d-449b-a806-30e2c5627bc4
+ - true
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ -233
+ 12147
+ 116
+ 44
+
+ -
+ -172
+ 12169
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 994adef1-ec29-44d1-8210-b36829a504f0
+ - true
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - e09a8eb0-1bfc-4cc0-88ea-41d013cd872a
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ -231
+ 12149
+ 44
+ 20
+
+ -
+ -207.5
+ 12159
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - f68aca5b-03a6-457f-8891-8d8897d5c5fe
+ - true
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ -231
+ 12169
+ 44
+ 20
+
+ -
+ -207.5
+ 12179
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 570b8aa3-f1c3-484e-8b48-2d2b2dc5a7a0
+ - true
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ -157
+ 12149
+ 38
+ 20
+
+ -
+ -136.5
+ 12159
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 387adaa7-7978-4287-b8f0-fb7ef543c454
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ -157
+ 12169
+ 38
+ 20
+
+ -
+ -136.5
+ 12179
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - ed880257-cb73-4b3d-bdba-4c629f2654a0
+ - true
+ - Point
+ - Point
+ - false
+ - 387adaa7-7978-4287-b8f0-fb7ef543c454
+ - 1
+
+
+
+
+ -
+ -198
+ 11952
+ 50
+ 24
+
+ -
+ -173.876
+ 11964.12
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 2e4f40d1-57e5-4c19-a99f-429ba726780a
+ - true
+ - Series
+ - Series
+
+
+
+
+ -
+ -225
+ 12615
+ 101
+ 64
+
+ -
+ -175
+ 12647
+
+
+
+
+
+ - First number in the series
+ - 2a4b9236-af46-4ebb-bee9-bac256e25c4c
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ -223
+ 12617
+ 33
+ 20
+
+ -
+ -205
+ 12627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 2068224f-000f-4842-b679-1038ed72efc1
+ - true
+ - Step
+ - Step
+ - false
+ - ddf56dc6-bdbe-4989-a020-ed82978a53db
+ - 1
+
+
+
+
+ -
+ -223
+ 12637
+ 33
+ 20
+
+ -
+ -205
+ 12647
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - b43fd2f8-4acc-4fee-aba5-8ef775813a61
+ - true
+ - Count
+ - Count
+ - false
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - 1
+
+
+
+
+ -
+ -223
+ 12657
+ 33
+ 20
+
+ -
+ -205
+ 12667
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 9b1cb421-16d8-4a53-b2e0-8d1623cb2148
+ - true
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ -160
+ 12617
+ 34
+ 60
+
+ -
+ -141.5
+ 12647
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -250
+ 13254
+ 150
+ 20
+
+ -
+ -249.166
+ 13254.55
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 4096
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 6232a007-7131-40f6-a98e-54bf4f5de0e2
+ - true
+ - Radians
+ - Radians
+
+
+
+
+ -
+ -235
+ 12740
+ 120
+ 28
+
+ -
+ -174
+ 12754
+
+
+
+
+
+ - Angle in degrees
+ - 94b44f49-bf88-4b7c-9e90-82dd5652fc76
+ - true
+ - Degrees
+ - Degrees
+ - false
+ - e8733214-56ad-40ea-83a2-5e5d6fee430d
+ - 1
+
+
+
+
+ -
+ -233
+ 12742
+ 44
+ 24
+
+ -
+ -209.5
+ 12754
+
+
+
+
+
+
+
+ - Angle in radians
+ - ddf56dc6-bdbe-4989-a020-ed82978a53db
+ - true
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ -159
+ 12742
+ 42
+ 24
+
+ -
+ -136.5
+ 12754
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - be88ae4a-34e9-40cb-900e-04d4d78a0355
+ - true
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000033527
+
+
+
+
+ -
+ -299
+ 13045
+ 250
+ 20
+
+ -
+ -298.8889
+ 13045.59
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - cd03c22d-ecbe-479f-b24c-a9fc71964bbd
+ - true
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ -225
+ 13157
+ 100
+ 28
+
+ -
+ -176
+ 13171
+
+
+
+
+
+ - Input value
+ - 31286c5a-c56a-4319-b789-d91bcab4d77b
+ - true
+ - Value
+ - Value
+ - false
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - 1
+
+
+
+
+ -
+ -223
+ 13159
+ 32
+ 24
+
+ -
+ -205.5
+ 13171
+
+
+
+
+
+
+
+ - Output value
+ - e24c881f-304c-4235-90c4-49a1c051ffe0
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -161
+ 13159
+ 34
+ 24
+
+ -
+ -142.5
+ 13171
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - a274c88d-0131-427a-9dd0-3bda6e2eff29
+ - Number
+ - Number
+ - false
+ - 931b1327-0f41-42e6-b1eb-00468f33d6c8
+ - 1
+
+
+
+
+ -
+ 4283
+ 7033
+ 50
+ 24
+
+ -
+ 4308.785
+ 7045.021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - 64f5057a-5eca-4ebd-adac-a9588cc43a37
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ 4239
+ 6863
+ 137
+ 64
+
+ -
+ 4309
+ 6895
+
+
+
+
+
+ - Curve to evaluate
+ - 3b3e217b-67a2-4987-bc0b-5480d1231817
+ - Curve
+ - Curve
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4241
+ 6865
+ 53
+ 30
+
+ -
+ 4269
+ 6880
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 72aacb95-9932-42b0-98f9-824d4c6656e9
+ - Parameter
+ - Parameter
+ - false
+ - 46971004-a130-4645-b7c1-54287fdbbeac
+ - 1
+
+
+
+
+ -
+ 4241
+ 6895
+ 53
+ 30
+
+ -
+ 4269
+ 6910
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 6865
+ 50
+ 20
+
+ -
+ 4350.5
+ 6875
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - b51c5bf6-0a16-4070-a003-702890971c28
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 6885
+ 50
+ 20
+
+ -
+ 4350.5
+ 6895
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - 1411ee7a-158c-4ff3-87de-d1e1ca9a657d
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 6905
+ 50
+ 20
+
+ -
+ 4350.5
+ 6915
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 211d3ab7-e6e9-4dd3-bbe9-4076a44479de
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 4245
+ 6946
+ 125
+ 64
+
+ -
+ 4295
+ 6978
+
+
+
+
+
+ - Curve to divide
+ - 3a59b0e7-5804-4f1a-abe8-1612cc2fb746
+ - Curve
+ - Curve
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4247
+ 6948
+ 33
+ 20
+
+ -
+ 4265
+ 6958
+
+
+
+
+
+
+
+ - Number of segments
+ - a0ba21d8-309a-472d-a546-60bd4c28509a
+ - Count
+ - Count
+ - false
+ - a274c88d-0131-427a-9dd0-3bda6e2eff29
+ - 1
+
+
+
+
+ -
+ 4247
+ 6968
+ 33
+ 20
+
+ -
+ 4265
+ 6978
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 6a1149f7-6ba9-4473-b567-1dc58e824b31
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 6988
+ 33
+ 20
+
+ -
+ 4265
+ 6998
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 88e859b5-6de1-472e-89ad-c54242edd85c
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ 6948
+ 58
+ 20
+
+ -
+ 4340.5
+ 6958
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - ad961923-5380-4be3-93a2-d2bc10db712c
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ 6968
+ 58
+ 20
+
+ -
+ 4340.5
+ 6978
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 46971004-a130-4645-b7c1-54287fdbbeac
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ 6988
+ 58
+ 20
+
+ -
+ 4340.5
+ 6998
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 2
+ - Curve
+ - Curve
+ - false
+ - 23098590-a917-496b-a7fa-ab7fc86169d0
+ - 1
+
+
+
+
+ -
+ 4281
+ 7462
+ 53
+ 24
+
+ -
+ 4317.5
+ 7474.836
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - dbd22ad0-e116-471c-a510-5155790fca7b
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ 4251
+ 6782
+ 114
+ 64
+
+ -
+ 4291
+ 6814
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 1d07eff1-b47d-4814-b941-e64ad1187bc7
+ - Arc
+ - Arc
+ - false
+ - 1411ee7a-158c-4ff3-87de-d1e1ca9a657d
+ - 1
+
+
+
+
+ -
+ 4253
+ 6784
+ 23
+ 60
+
+ -
+ 4266
+ 6814
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - e6300693-bbb2-45d5-a8f4-6f70e4a2a26b
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ 6784
+ 57
+ 20
+
+ -
+ 4336
+ 6794
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 5078cf9d-5a65-46c0-801d-34f40bee0f1b
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ 6804
+ 57
+ 20
+
+ -
+ 4336
+ 6814
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - 35aed2e6-13c9-42bf-8a37-77b587a3e345
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ 6824
+ 57
+ 20
+
+ -
+ 4336
+ 6834
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 68343da5-7432-441a-8a19-50a1f21b220e
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 4258
+ 6286
+ 100
+ 28
+
+ -
+ 4307
+ 6300
+
+
+
+
+
+ - Input value
+ - beaa0d02-9628-4ea2-87b4-3f70b19314d7
+ - Value
+ - Value
+ - false
+ - 771a3c18-faa6-4281-b469-5031ab7617a5
+ - 1
+
+
+
+
+ -
+ 4260
+ 6288
+ 32
+ 24
+
+ -
+ 4277.5
+ 6300
+
+
+
+
+
+
+
+ - Output value
+ - b06621f6-9ae3-437e-aa25-87164cfe5a2a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ 6288
+ 34
+ 24
+
+ -
+ 4340.5
+ 6300
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 45305164-c779-4caf-a203-99cb10700df1
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 0a516f0c-a574-4254-9e94-e7e5df613da5
+ - 1
+
+
+
+
+ -
+ 4233
+ 6104
+ 150
+ 150
+
+ -
+ 4233.486
+ 6104.676
+
+ - -1
+
+
+
+
+
+
+
+
+ - 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
+ - Line
+
+
+
+
+ - Create a line between two points.
+ - true
+ - 3b518049-a721-4682-9863-fde5cd56ec7a
+ - Line
+ - Line
+
+
+
+
+ -
+ 4251
+ 6350
+ 114
+ 44
+
+ -
+ 4323
+ 6372
+
+
+
+
+
+ - Line start point
+ - f9d77711-655e-4f78-83f6-5507d1e3a4c9
+ - Start Point
+ - Start Point
+ - false
+ - e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1
+ - 1
+
+
+
+
+ -
+ 4253
+ 6352
+ 55
+ 20
+
+ -
+ 4282
+ 6362
+
+
+
+
+
+
+
+ - Line end point
+ - 3ad08e43-3dda-4f44-b0ae-1242d6063195
+ - End Point
+ - End Point
+ - false
+ - e6300693-bbb2-45d5-a8f4-6f70e4a2a26b
+ - 1
+
+
+
+
+ -
+ 4253
+ 6372
+ 55
+ 20
+
+ -
+ 4282
+ 6382
+
+
+
+
+
+
+
+ - Line segment
+ - c61c2f63-af12-47bf-ac8f-3ed53b4c2ca9
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 6352
+ 25
+ 40
+
+ -
+ 4352
+ 6372
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4230
+ 5268
+ 150
+ 20
+
+ -
+ 4230.236
+ 5268.513
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 2
+ - 0
+ - 0
+ - 0.043752
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 3cdaef40-695e-4325-a023-127dff8a13a4
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4247
+ 5150
+ 122
+ 64
+
+ -
+ 4327
+ 5182
+
+
+
+
+
+ - Line start point
+ - 3286d7d3-eab9-4125-817c-42f3bee3f20c
+ - Start
+ - Start
+ - false
+ - e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1
+ - 1
+
+
+
+
+ -
+ 4249
+ 5152
+ 63
+ 20
+
+ -
+ 4290
+ 5162
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - e8c607a5-494a-485e-ae31-9a08bd478f18
+ - Direction
+ - Direction
+ - false
+ - 4836c153-f996-4137-982e-b59f019e6830
+ - 1
+
+
+
+
+ -
+ 4249
+ 5172
+ 63
+ 20
+
+ -
+ 4290
+ 5182
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 963d17b4-30bc-44c1-9e9a-e6c01a52c1fd
+ - -X
+ - Length
+ - Length
+ - false
+ - 8c5832d9-8a03-428a-be62-bf491697ddaa
+ - 1
+
+
+
+
+ -
+ 4249
+ 5192
+ 63
+ 20
+
+ -
+ 4290
+ 5202
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ 5152
+ 25
+ 60
+
+ -
+ 4356
+ 5182
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5e982791-82ff-440d-bacc-09c972bd83f7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4236
+ 4886
+ 144
+ 64
+
+ -
+ 4310
+ 4918
+
+
+
+
+
+ - Curve to evaluate
+ - 71ee2099-99ad-4c54-871b-fa71c5868e9d
+ - Curve
+ - Curve
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4238
+ 4888
+ 57
+ 20
+
+ -
+ 4268
+ 4898
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a6327641-3497-419f-a005-6e3bc1a1946a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4908
+ 57
+ 20
+
+ -
+ 4268
+ 4918
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c07b7a00-371b-4554-9541-b72e32c1ab5e
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4928
+ 57
+ 20
+
+ -
+ 4268
+ 4938
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4b649cee-a63e-4418-b303-e383307f5e39
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 4888
+ 53
+ 20
+
+ -
+ 4353
+ 4898
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - dd207488-6941-4306-9e5a-2e8ca02eef28
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 4908
+ 53
+ 20
+
+ -
+ 4353
+ 4918
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - fa6e7b64-7166-4723-9a64-31604937ca06
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 4928
+ 53
+ 20
+
+ -
+ 4353
+ 4938
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - ee304c2e-7991-484f-9da6-ff4fc47e9e92
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4245
+ 4784
+ 125
+ 84
+
+ -
+ 4312
+ 4826
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 380ab18e-7626-439f-b5b2-9b3801878901
+ - Vertices
+ - Vertices
+ - false
+ - 4b649cee-a63e-4418-b303-e383307f5e39
+ - 1
+
+
+
+
+ -
+ 4247
+ 4786
+ 50
+ 20
+
+ -
+ 4273.5
+ 4796
+
+
+
+
+
+
+
+ - Curve degree
+ - bd7258d3-c797-48d5-8b1d-5e9a747941d0
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 4806
+ 50
+ 20
+
+ -
+ 4273.5
+ 4816
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 4a64f453-b023-45ab-9fc4-5a233b0013b1
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 4826
+ 50
+ 20
+
+ -
+ 4273.5
+ 4836
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 8e13ed2c-66de-4bd1-92c3-b37c8c0e87a5
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 4846
+ 50
+ 20
+
+ -
+ 4273.5
+ 4856
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 71f0aa5a-eb75-494a-90f3-1bed30c8af4a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 4786
+ 41
+ 26
+
+ -
+ 4349
+ 4799.333
+
+
+
+
+
+
+
+ - Curve length
+ - 263d1019-1a33-41fc-a2e4-98a24dc87b4b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 4812
+ 41
+ 27
+
+ -
+ 4349
+ 4826
+
+
+
+
+
+
+
+ - Curve domain
+ - 03b60dca-5fc7-40b1-b3cc-833ce43733c1
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 4839
+ 41
+ 27
+
+ -
+ 4349
+ 4852.667
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a274c88d-0131-427a-9dd0-3bda6e2eff29
+ - 64f5057a-5eca-4ebd-adac-a9588cc43a37
+ - 211d3ab7-e6e9-4dd3-bbe9-4076a44479de
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - dbd22ad0-e116-471c-a510-5155790fca7b
+ - 68343da5-7432-441a-8a19-50a1f21b220e
+ - 45305164-c779-4caf-a203-99cb10700df1
+ - 42201d77-7bc4-437d-baaf-c8290f91a477
+ - 3b518049-a721-4682-9863-fde5cd56ec7a
+ - dc8b9948-0b61-495f-bb5c-30271010864e
+ - 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
+ - 3cdaef40-695e-4325-a023-127dff8a13a4
+ - 90f74d47-d623-4b80-a1f4-bde635cc690f
+ - 5e982791-82ff-440d-bacc-09c972bd83f7
+ - ee304c2e-7991-484f-9da6-ff4fc47e9e92
+ - f9a3ac63-bb35-4cd5-a701-0bc94605a753
+ - e225702c-37cb-414c-b6ee-0dea08840fbd
+ - 0a9edd9f-b92b-4495-a186-4d2d750d8705
+ - 65613610-dbaa-4036-a8cf-1716c76246e5
+ - 2760a5c3-b698-426f-ab03-8032d516a479
+ - da8953b6-d8e3-4aa4-bee0-df0ede441feb
+ - 75434d61-d5bb-4800-bc6b-c6a0d8505f6c
+ - 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
+ - a5de6231-a691-45d0-887d-4c677b2cd883
+ - ec2d9eee-a658-42ed-bf34-e56a1ed0c919
+ - d473a50c-3902-4af3-ad36-6f85c9f36bc0
+ - 256d4876-ebd8-4914-aa20-11c64a0e56d7
+ - 52cee108-6acb-47c9-b99f-f64546acc12c
+ - bf9904f8-fa01-421a-bbee-9be7276335f0
+ - 0592f089-92c7-4e08-8b1d-72b16d1814ee
+ - 35dc89a9-722a-43d7-a22e-b79159522d82
+ - cd610f91-fe93-4eaa-b6dc-0b8fadea311f
+ - 600b5815-4862-4828-a936-e2ea98a22934
+ - ff2db1c1-6c13-43aa-8303-844eb49d3ae6
+ - 8c08f54a-7801-4d61-a733-3a8ba0d87024
+ - 95874953-5edd-4e0b-9115-5fc68fd0f28d
+ - 5cb126fd-9c09-4d9d-9448-82cbad266c75
+ - 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
+ - 4d8c850a-204d-4ade-81d2-820fdd96b58a
+ - 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
+ - fa5ecd94-e7d5-46d8-825e-477b6d112c2b
+ - 1dd7f4ab-a114-475c-95ae-55222fa823af
+ - 42
+ - 8d8f743b-370c-4c43-90de-d16a3d5ab270
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - bf9904f8-fa01-421a-bbee-9be7276335f0
+ - Number
+ - Number
+ - false
+ - a274c88d-0131-427a-9dd0-3bda6e2eff29
+ - 1
+
+
+
+
+ -
+ 4283
+ 4435
+ 50
+ 24
+
+ -
+ 4308
+ 4447.974
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 0592f089-92c7-4e08-8b1d-72b16d1814ee
+ - Curve
+ - Curve
+ - false
+ - 71f0aa5a-eb75-494a-90f3-1bed30c8af4a
+ - 1
+
+
+
+
+ -
+ 4283
+ 4478
+ 50
+ 24
+
+ -
+ 4308
+ 4490.896
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2d8f7591-dfcc-4bab-82e3-0db34a1e332a
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4247
+ 3131
+ 122
+ 64
+
+ -
+ 4327
+ 3163
+
+
+
+
+
+ - Line start point
+ - dbcefbd2-614b-4797-832b-f81d701edb22
+ - Start
+ - Start
+ - false
+ - 4b649cee-a63e-4418-b303-e383307f5e39
+ - 1
+
+
+
+
+ -
+ 4249
+ 3133
+ 63
+ 20
+
+ -
+ 4290
+ 3143
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - a62f7611-d05a-45a4-99b8-5fa2c0c877b8
+ - Direction
+ - Direction
+ - false
+ - 85c52366-0982-406d-b91c-f42517f13990
+ - 1
+
+
+
+
+ -
+ 4249
+ 3153
+ 63
+ 20
+
+ -
+ 4290
+ 3163
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 8094c76e-7ac6-446a-9a69-e9a6d5ed0353
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 68798621-f2f5-4d68-ab21-b493ba17bc76
+ - 1
+
+
+
+
+ -
+ 4249
+ 3173
+ 63
+ 20
+
+ -
+ 4290
+ 3183
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 5f024167-e348-42e4-83bc-dd9abab2d75e
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ 3133
+ 25
+ 60
+
+ -
+ 4356
+ 3163
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1f4f6537-e674-47b2-a3cc-0c14bffb73b6
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4236
+ 2808
+ 144
+ 64
+
+ -
+ 4310
+ 2840
+
+
+
+
+
+ - Curve to evaluate
+ - a9f5ae23-e2e8-4d50-bd0a-1302109c8202
+ - Curve
+ - Curve
+ - false
+ - 39c932f0-cb48-431a-af49-df26495dad11
+ - 1
+
+
+
+
+ -
+ 4238
+ 2810
+ 57
+ 20
+
+ -
+ 4268
+ 2820
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a855f905-eb00-4e85-9ac6-5358c993cc3b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 2830
+ 57
+ 20
+
+ -
+ 4268
+ 2840
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9d96a222-e833-4263-ae23-adc8d8ac4235
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 2850
+ 57
+ 20
+
+ -
+ 4268
+ 2860
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - bb672236-a7b7-45ef-afb8-18f1a2792e58
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 2810
+ 53
+ 20
+
+ -
+ 4353
+ 2820
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ebdcc7f4-d376-494e-8670-0983c734abd2
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 2830
+ 53
+ 20
+
+ -
+ 4353
+ 2840
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - cad9e2f2-8f98-4f70-9ba2-226ce27dd3c0
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 2850
+ 53
+ 20
+
+ -
+ 4353
+ 2860
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 9f5c6da6-1b66-497a-a401-6d7c972dd8f3
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4245
+ 1805
+ 125
+ 84
+
+ -
+ 4312
+ 1847
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 88806293-82d6-45f0-80c7-39622388bf14
+ - Vertices
+ - Vertices
+ - false
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - 1
+
+
+
+
+ -
+ 4247
+ 1807
+ 50
+ 20
+
+ -
+ 4273.5
+ 1817
+
+
+
+
+
+
+
+ - Curve degree
+ - fb8aa358-182c-4ed8-99c3-40914e0d15b8
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 1827
+ 50
+ 20
+
+ -
+ 4273.5
+ 1837
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 45907537-5a67-4cc8-8ad9-5cec2617ba05
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 1847
+ 50
+ 20
+
+ -
+ 4273.5
+ 1857
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 9d25bf79-6925-466f-b4b5-dff8e01cf608
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 1867
+ 50
+ 20
+
+ -
+ 4273.5
+ 1877
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 1da8162b-ae51-4827-ad1c-b7cd643f0310
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 1807
+ 41
+ 26
+
+ -
+ 4349
+ 1820.333
+
+
+
+
+
+
+
+ - Curve length
+ - 54e28d59-6e6c-4a56-9108-4641e6543cc6
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 1833
+ 41
+ 27
+
+ -
+ 4349
+ 1847
+
+
+
+
+
+
+
+ - Curve domain
+ - c4b541f4-9081-4c7e-8daa-575e1720bef9
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 1860
+ 41
+ 27
+
+ -
+ 4349
+ 1873.667
+
+
+
+
+
+
+
+
+
+
+
+ - dde71aef-d6ed-40a6-af98-6b0673983c82
+ - Nurbs Curve
+
+
+
+
+ - Construct a nurbs curve from control points.
+ - true
+ - d14b1d35-9269-44ee-821f-67f2cd1897b1
+ - Nurbs Curve
+ - Nurbs Curve
+
+
+
+
+ -
+ 4249
+ 4702
+ 118
+ 64
+
+ -
+ 4309
+ 4734
+
+
+
+
+
+ - 1
+ - Curve control points
+ - 3ff18bf3-5d68-4b9e-9917-b7bb61af2bf2
+ - Vertices
+ - Vertices
+ - false
+ - 4b649cee-a63e-4418-b303-e383307f5e39
+ - 1
+
+
+
+
+ -
+ 4251
+ 4704
+ 43
+ 20
+
+ -
+ 4274
+ 4714
+
+
+
+
+
+
+
+ - Curve degree
+ - b14f2c14-eb36-4789-967c-700423c1ba52
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4251
+ 4724
+ 43
+ 20
+
+ -
+ 4274
+ 4734
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 6f008703-f6bc-4846-addf-3a1ff452f192
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4251
+ 4744
+ 43
+ 20
+
+ -
+ 4274
+ 4754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - c4b8f674-25d7-435f-9a2d-167cba22f51d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 4704
+ 41
+ 20
+
+ -
+ 4346
+ 4714
+
+
+
+
+
+
+
+ - Curve length
+ - aa04aa2c-23cd-43d3-907e-2116eea30857
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 4724
+ 41
+ 20
+
+ -
+ 4346
+ 4734
+
+
+
+
+
+
+
+ - Curve domain
+ - ae54b1a5-92a7-46ff-80a7-a1e5bd027488
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 4744
+ 41
+ 20
+
+ -
+ 4346
+ 4754
+
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 35dc89a9-722a-43d7-a22e-b79159522d82
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4244
+ 4289
+ 128
+ 28
+
+ -
+ 4297
+ 4303
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - dc912cd1-d87a-4e87-bfcd-553952104036
+ - Values
+ - Values
+ - false
+ - 1f0b848f-eb55-4dd9-a62f-a216daed8c78
+ - 1
+
+
+
+
+ -
+ 4246
+ 4291
+ 36
+ 24
+
+ -
+ 4265.5
+ 4303
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 080fa6d7-bbb3-4f71-a556-fd84a9bd5303
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ 4291
+ 58
+ 24
+
+ -
+ 4342.5
+ 4303
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0a516f0c-a574-4254-9e94-e7e5df613da5
+ - Relay
+ -
+ - false
+ - b06621f6-9ae3-437e-aa25-87164cfe5a2a
+ - 1
+
+
+
+
+ -
+ 4288
+ 6270
+ 40
+ 16
+
+ -
+ 4308
+ 6278
+
+
+
+
+
+
+
+
+
+ - ab14760f-87a6-462e-b481-4a2c26a9a0d7
+ - Derivatives
+
+
+
+
+ - Evaluate the derivatives of a curve at a specified parameter.
+ - true
+ - 5e62133f-3e96-4273-aa14-46485a1d2993
+ - true
+ - Derivatives
+ - Derivatives
+
+
+
+
+ -
+ 4366
+ -9537
+ 117
+ 144
+
+ -
+ 4436
+ -9465
+
+
+
+
+
+ - 2
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 7
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+
+
+
+
+ - Curve to evaluate
+ - adce5e85-6367-4fd0-937a-81ee71fc7bae
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4368
+ -9535
+ 53
+ 70
+
+ -
+ 4396
+ -9500
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - cb7449e1-4990-44d4-b5c2-c25cabb4dd9e
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 46971004-a130-4645-b7c1-54287fdbbeac
+ - 1
+
+
+
+
+ -
+ 4368
+ -9465
+ 53
+ 70
+
+ -
+ 4396
+ -9430
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - ae3a695a-cc15-499e-9427-1231fcbea6e4
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9535
+ 30
+ 20
+
+ -
+ 4467.5
+ -9525
+
+
+
+
+
+
+
+ - First curve derivative at t (Velocity)
+ - 60d7cf46-ac14-418d-825d-d81b9b00022b
+ - true
+ - false
+ - First derivative
+ - 1
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9515
+ 30
+ 20
+
+ -
+ 4467.5
+ -9505
+
+
+
+
+
+
+
+ - Second curve derivative at t (Acceleration)
+ - bf13852d-01bb-4747-8df7-3dc60b6e7510
+ - true
+ - false
+ - Second derivative
+ - 2
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9495
+ 30
+ 20
+
+ -
+ 4467.5
+ -9485
+
+
+
+
+
+
+
+ - Third curve derivative at t (Jolt)
+ - 313febab-a771-45da-a567-310cd4182e68
+ - true
+ - false
+ - Third derivative
+ - 3
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9475
+ 30
+ 20
+
+ -
+ 4467.5
+ -9465
+
+
+
+
+
+
+
+ - Fourth curve derivative at t (Jounce)
+ - b7204c31-0fde-4f40-9482-20f3fbf74e06
+ - true
+ - false
+ - Fourth derivative
+ - 4
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9455
+ 30
+ 20
+
+ -
+ 4467.5
+ -9445
+
+
+
+
+
+
+
+ - Fifth curve derivative at t
+ - 48e9cfcc-4536-4f94-9f62-f42b525b36e5
+ - true
+ - false
+ - Fifth derivative
+ - 5
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9435
+ 30
+ 20
+
+ -
+ 4467.5
+ -9425
+
+
+
+
+
+
+
+ - Sixth curve derivative at t
+ - 7ca4635d-ac36-43c9-b4e8-aba60332ab9f
+ - true
+ - false
+ - Sixth derivative
+ - 6
+ - false
+ - 0
+
+
+
+
+ -
+ 4451
+ -9415
+ 30
+ 20
+
+ -
+ 4467.5
+ -9405
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 0a9edd9f-b92b-4495-a186-4d2d750d8705
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 5030
+ 144
+ 104
+
+ -
+ 4320
+ 5082
+
+
+
+
+
+ - Colour of the diffuse channel
+ - a7202bc8-4598-42f8-957a-f6555a07c6aa
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 5032
+ 67
+ 20
+
+ -
+ 4273
+ 5042
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 5d0527bc-72be-4663-872d-6eb577a8ac79
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 5052
+ 67
+ 20
+
+ -
+ 4273
+ 5062
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 47f1cb23-a432-4071-8600-aebcd5842f3c
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 5072
+ 67
+ 20
+
+ -
+ 4273
+ 5082
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 294b4b85-55d2-4e16-ac87-cded169a7fe0
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 5092
+ 67
+ 20
+
+ -
+ 4273
+ 5102
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 94f8e021-e6b2-4d56-a720-491809182fec
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 5112
+ 67
+ 20
+
+ -
+ 4273
+ 5122
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f879f6ef-08b1-4623-b20f-9af580c53c42
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 5032
+ 43
+ 100
+
+ -
+ 4358
+ 5082
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 65613610-dbaa-4036-a8cf-1716c76246e5
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 4968
+ 82
+ 44
+
+ -
+ 4335
+ 4990
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - fad5b3a6-49a8-4f82-a9f6-18d5d74b27da
+ - Geometry
+ - Geometry
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4269
+ 4970
+ 51
+ 20
+
+ -
+ 4296
+ 4980
+
+
+
+
+
+
+
+ - The material override
+ - e3ce37ad-d33b-4831-bab7-83b4ca952e13
+ - Material
+ - Material
+ - false
+ - f879f6ef-08b1-4623-b20f-9af580c53c42
+ - 1
+
+
+
+
+ -
+ 4269
+ 4990
+ 51
+ 20
+
+ -
+ 4296
+ 5000
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - f9a3ac63-bb35-4cd5-a701-0bc94605a753
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 7293
+ 144
+ 104
+
+ -
+ 4320
+ 7345
+
+
+
+
+
+ - Colour of the diffuse channel
+ - c676bfd6-b42e-4a4f-8422-55fdbfa4fe01
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 7295
+ 67
+ 20
+
+ -
+ 4273
+ 7305
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - afbce2bb-1b53-4415-abf2-4245c033b044
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 7315
+ 67
+ 20
+
+ -
+ 4273
+ 7325
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f6841a37-fb17-4321-9ed3-0cb027307ef9
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 7335
+ 67
+ 20
+
+ -
+ 4273
+ 7345
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ea379476-7fab-4a1e-8355-ee1d08126eae
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 7355
+ 67
+ 20
+
+ -
+ 4273
+ 7365
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8062fb9b-9c42-4850-bcdf-f865358e48bd
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 7375
+ 67
+ 20
+
+ -
+ 4273
+ 7385
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0215cbc4-028c-4365-90da-fc87e4da209a
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 7295
+ 43
+ 100
+
+ -
+ 4358
+ 7345
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - e225702c-37cb-414c-b6ee-0dea08840fbd
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 7232
+ 82
+ 44
+
+ -
+ 4335
+ 7254
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 134b542f-fee7-495d-b747-f9d4cf6d1a83
+ - Geometry
+ - Geometry
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4269
+ 7234
+ 51
+ 20
+
+ -
+ 4296
+ 7244
+
+
+
+
+
+
+
+ - The material override
+ - 7b5413ed-65c9-44e2-8b86-ef9ccbf75ef2
+ - Material
+ - Material
+ - false
+ - 0215cbc4-028c-4365-90da-fc87e4da209a
+ - 1
+
+
+
+
+ -
+ 4269
+ 7254
+ 51
+ 20
+
+ -
+ 4296
+ 7264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 2760a5c3-b698-426f-ab03-8032d516a479
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 4580
+ 144
+ 104
+
+ -
+ 4320
+ 4632
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 3004ed07-b408-4bc0-9f42-eab20a9913b4
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4582
+ 67
+ 20
+
+ -
+ 4273
+ 4592
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 326a914e-4cdd-4b71-9281-a5919bcf7baa
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4602
+ 67
+ 20
+
+ -
+ 4273
+ 4612
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 8fe53ab0-2b1a-4163-8a29-185170fe17a8
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4622
+ 67
+ 20
+
+ -
+ 4273
+ 4632
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 031a6a8e-aefe-4c31-a56b-469422b15bd1
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4642
+ 67
+ 20
+
+ -
+ 4273
+ 4652
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a0b5a56f-450e-4954-9df5-97e3bc851a26
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 4662
+ 67
+ 20
+
+ -
+ 4273
+ 4672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f6602620-7a60-4871-a019-14148ed2fb01
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4582
+ 43
+ 100
+
+ -
+ 4358
+ 4632
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - da8953b6-d8e3-4aa4-bee0-df0ede441feb
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 4518
+ 82
+ 44
+
+ -
+ 4335
+ 4540
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 339c6a8c-fc22-4cc3-977a-83fbcb85d4af
+ - Geometry
+ - Geometry
+ - false
+ - 0592f089-92c7-4e08-8b1d-72b16d1814ee
+ - 1
+
+
+
+
+ -
+ 4269
+ 4520
+ 51
+ 20
+
+ -
+ 4296
+ 4530
+
+
+
+
+
+
+
+ - The material override
+ - 76efd886-8cd1-4f71-8ee3-a159fa2f19f4
+ - Material
+ - Material
+ - false
+ - f6602620-7a60-4871-a019-14148ed2fb01
+ - 1
+
+
+
+
+ -
+ 4269
+ 4540
+ 51
+ 20
+
+ -
+ 4296
+ 4550
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - f439fa6b-f226-46ca-b01c-8ef27a697da4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 3006
+ 144
+ 104
+
+ -
+ 4320
+ 3058
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 0416a759-ff94-4b06-851b-c108dbd684cc
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 3008
+ 67
+ 20
+
+ -
+ 4273
+ 3018
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4c205008-b0ed-43a1-956e-3cf50cc1a793
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 3028
+ 67
+ 20
+
+ -
+ 4273
+ 3038
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 6b966806-b30a-4470-bbeb-5b10b43e2ba5
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 3048
+ 67
+ 20
+
+ -
+ 4273
+ 3058
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 73b07a02-8696-4088-9279-7465b6e0db16
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 3068
+ 67
+ 20
+
+ -
+ 4273
+ 3078
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1d39b7f2-bc53-4ce2-bc31-c29c7c63e83a
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 3088
+ 67
+ 20
+
+ -
+ 4273
+ 3098
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f370679e-4137-46e5-90d0-7a08608cb812
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 3008
+ 43
+ 100
+
+ -
+ 4358
+ 3058
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 0178cc91-2c55-4f13-8715-c9ae8cde7381
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 2944
+ 82
+ 44
+
+ -
+ 4335
+ 2966
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 0f98a5d2-51bb-4a8a-909e-5a183993c521
+ - Geometry
+ - Geometry
+ - false
+ - 5f024167-e348-42e4-83bc-dd9abab2d75e
+ - 1
+
+
+
+
+ -
+ 4269
+ 2946
+ 51
+ 20
+
+ -
+ 4296
+ 2956
+
+
+
+
+
+
+
+ - The material override
+ - a6df5039-34d5-4f10-9741-52b06df6a14a
+ - Material
+ - Material
+ - false
+ - f370679e-4137-46e5-90d0-7a08608cb812
+ - 1
+
+
+
+
+ -
+ 4269
+ 2966
+ 51
+ 20
+
+ -
+ 4296
+ 2976
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 32aa66bf-b8f9-40a8-8447-dc53ebfd950d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 1681
+ 144
+ 104
+
+ -
+ 4320
+ 1733
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e8adebd8-6175-4942-bb80-64935d55aa67
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 1683
+ 67
+ 20
+
+ -
+ 4273
+ 1693
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 94bee261-3f2c-4380-8b54-66fe1127b97f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 1703
+ 67
+ 20
+
+ -
+ 4273
+ 1713
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 186a9b34-2cfc-4d95-a08f-7df92b2244fe
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 1723
+ 67
+ 20
+
+ -
+ 4273
+ 1733
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 70acf2e0-b087-4c5a-a9dc-f6e9a5d8b9ad
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 1743
+ 67
+ 20
+
+ -
+ 4273
+ 1753
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 4d3af56a-115c-4482-9c5f-f6e9b611454d
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 1763
+ 67
+ 20
+
+ -
+ 4273
+ 1773
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 3962c6a1-a3db-4768-983c-51adadc81907
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 1683
+ 43
+ 100
+
+ -
+ 4358
+ 1733
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 44c51f6f-2d13-489d-a8d0-33396ca312d1
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 1621
+ 82
+ 44
+
+ -
+ 4335
+ 1643
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 31c8f3ef-c718-4172-afbf-959475f7f9df
+ - Geometry
+ - Geometry
+ - false
+ - 1da8162b-ae51-4827-ad1c-b7cd643f0310
+ - 1
+
+
+
+
+ -
+ 4269
+ 1623
+ 51
+ 20
+
+ -
+ 4296
+ 1633
+
+
+
+
+
+
+
+ - The material override
+ - de51e392-4b52-4541-81af-eac785c5e2b2
+ - Material
+ - Material
+ - false
+ - 3962c6a1-a3db-4768-983c-51adadc81907
+ - 1
+
+
+
+
+ -
+ 4269
+ 1643
+ 51
+ 20
+
+ -
+ 4296
+ 1653
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 3e25c677-18d2-4a81-a487-3590cf9df727
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4364
+ -10800
+ 122
+ 64
+
+ -
+ 4444
+ -10768
+
+
+
+
+
+ - Line start point
+ - 942dd0ac-dcb9-48b0-936d-2ee2ea08759a
+ - Start
+ - Start
+ - false
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - 1
+
+
+
+
+ -
+ 4366
+ -10798
+ 63
+ 20
+
+ -
+ 4407
+ -10788
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 1c110a20-f0df-4b1f-8f07-97cc9061cc6d
+ - Direction
+ - Direction
+ - false
+ - 313febab-a771-45da-a567-310cd4182e68
+ - 1
+
+
+
+
+ -
+ 4366
+ -10778
+ 63
+ 20
+
+ -
+ 4407
+ -10768
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e4cd914a-2710-4c25-bfb8-2062da80e245
+ - -X
+ - Length
+ - Length
+ - false
+ - 68798621-f2f5-4d68-ab21-b493ba17bc76
+ - 1
+
+
+
+
+ -
+ 4366
+ -10758
+ 63
+ 20
+
+ -
+ 4407
+ -10748
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 9dd13fb8-1000-4255-abae-a29abaced959
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4459
+ -10798
+ 25
+ 60
+
+ -
+ 4473
+ -10768
+
+
+
+
+
+
+
+
+
+
+
+ - 71b5b089-500a-4ea6-81c5-2f960441a0e8
+ - PolyLine
+
+
+
+
+ - Create a polyline connecting a number of points.
+ - true
+ - dd4e68d8-40f1-4109-a9cb-bcf9fe696818
+ - PolyLine
+ - PolyLine
+
+
+
+
+ -
+ 4249
+ 2705
+ 118
+ 44
+
+ -
+ 4309
+ 2727
+
+
+
+
+
+ - 1
+ - Polyline vertex points
+ - e3d0b096-bd0f-4da3-9f01-58f9104484e7
+ - Vertices
+ - Vertices
+ - false
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - 1
+
+
+
+
+ -
+ 4251
+ 2707
+ 43
+ 20
+
+ -
+ 4274
+ 2717
+
+
+
+
+
+
+
+ - Close polyline
+ - 9915d3ec-2519-48fc-82fb-c2af8cbc300c
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ 4251
+ 2727
+ 43
+ 20
+
+ -
+ 4274
+ 2737
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting polyline
+ - b7ca3e16-396e-4dae-ae87-2357a527d9d3
+ - Polyline
+ - Polyline
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 2707
+ 41
+ 40
+
+ -
+ 4346
+ 2727
+
+
+
+
+
+
+
+
+
+
+
+ - afb96615-c59a-45c9-9cac-e27acb1c7ca0
+ - Explode
+
+
+
+
+ - Explode a curve into smaller segments.
+ - true
+ - acfeae50-20a9-479f-aa7f-c6af7ab4d63b
+ - Explode
+ - Explode
+
+
+
+
+ -
+ 4240
+ 2642
+ 136
+ 44
+
+ -
+ 4307
+ 2664
+
+
+
+
+
+ - Curve to explode
+ - 7d7ade89-8572-4344-a579-2ef1a35f81fc
+ - Curve
+ - Curve
+ - false
+ - b7ca3e16-396e-4dae-ae87-2357a527d9d3
+ - 1
+
+
+
+
+ -
+ 4242
+ 2644
+ 50
+ 20
+
+ -
+ 4268.5
+ 2654
+
+
+
+
+
+
+
+ - Recursive decomposition until all segments are atomic
+ - 2423035f-5e94-4fe9-aa63-504f956b7906
+ - Recursive
+ - Recursive
+ - false
+ - 0
+
+
+
+
+ -
+ 4242
+ 2664
+ 50
+ 20
+
+ -
+ 4268.5
+ 2674
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Exploded segments that make up the base curve
+ - 27f38398-7433-4312-9f44-e7e1155e5725
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ 2644
+ 52
+ 20
+
+ -
+ 4349.5
+ 2654
+
+
+
+
+
+
+
+ - 1
+ - Vertices of the exploded segments
+ - 2caa6f7d-a080-4170-88e1-71f328feabf4
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ 2664
+ 52
+ 20
+
+ -
+ 4349.5
+ 2674
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 85038b7a-945c-4f71-941f-78812db35fab
+ - 1
+ - Curve
+ - Curve
+ - false
+ - 27f38398-7433-4312-9f44-e7e1155e5725
+ - 1
+
+
+
+
+ -
+ 4282
+ 2598
+ 53
+ 24
+
+ -
+ 4318
+ 2610.144
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 76614d91-3d1a-498e-8900-459619131110
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4243
+ 2484
+ 130
+ 44
+
+ -
+ 4308
+ 2506
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 51b6bbaf-0364-4adc-9798-246e82302730
+ - Keys
+ - Keys
+ - false
+ - 5aa52642-225e-442f-843f-1f051f77e0ac
+ - 1
+
+
+
+
+ -
+ 4245
+ 2486
+ 48
+ 20
+
+ -
+ 4270.5
+ 2496
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - a9112f66-0a37-4330-a32c-ef5afed08a17
+ - Values Values A
+ - Values A
+ - true
+ - 85038b7a-945c-4f71-941f-78812db35fab
+ - 1
+
+
+
+
+ -
+ 4245
+ 2506
+ 48
+ 20
+
+ -
+ 4270.5
+ 2516
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 5b746e58-f682-41be-a162-14fdf355725d
+ - Keys
+ - Keys
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 2486
+ 48
+ 20
+
+ -
+ 4348.5
+ 2496
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in Values A
+ - 381361b4-db26-4b75-8518-89d520b8405a
+ - Values Values A
+ - Values A
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 2506
+ 48
+ 20
+
+ -
+ 4348.5
+ 2516
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 3ae51560-a358-4655-aba3-08bdf86d0fc2
+ - Length
+ - Length
+
+
+
+
+ -
+ 4256
+ 2548
+ 104
+ 28
+
+ -
+ 4306
+ 2562
+
+
+
+
+
+ - Curve to measure
+ - 7c56ae0f-6703-4b32-be52-6af0ede5c339
+ - Curve
+ - Curve
+ - false
+ - 85038b7a-945c-4f71-941f-78812db35fab
+ - 1
+
+
+
+
+ -
+ 4258
+ 2550
+ 33
+ 24
+
+ -
+ 4276
+ 2562
+
+
+
+
+
+
+
+ - Curve length
+ - 5aa52642-225e-442f-843f-1f051f77e0ac
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ 2550
+ 37
+ 24
+
+ -
+ 4341
+ 2562
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 70bc89ee-6b70-4472-b8e5-64a5c9cb84a7
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4271
+ 2007
+ 74
+ 64
+
+ -
+ 4319
+ 2039
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 7bf82eff-016f-4d39-a14d-5f7db1f92f0d
+ - List
+ - List
+ - false
+ - 5b746e58-f682-41be-a162-14fdf355725d
+ - 1
+
+
+
+
+ -
+ 4273
+ 2009
+ 31
+ 20
+
+ -
+ 4290
+ 2019
+
+
+
+
+
+
+
+ - Item index
+ - ca0d5804-11e3-455a-bb0b-a2197b555dcd
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4273
+ 2029
+ 31
+ 20
+
+ -
+ 4290
+ 2039
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 771ab200-3a73-45b6-843c-ed1984ec3668
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4273
+ 2049
+ 31
+ 20
+
+ -
+ 4290
+ 2059
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 8e54098a-6065-4d4a-a69b-cd4b228d604f
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 2009
+ 9
+ 60
+
+ -
+ 4340
+ 2039
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
+ - Dot Display
+
+
+
+
+ - Draw a collection of coloured dots
+ - true
+ - false
+ - 874e9e2e-591d-4afa-96d9-2baecebac97f
+ - Dot Display
+ - Dot Display
+
+
+
+
+ -
+ 4266
+ 1908
+ 83
+ 64
+
+ -
+ 4335
+ 1940
+
+
+
+
+
+ - Dot location
+ - true
+ - f7168ed5-33bc-455e-b0fe-90817048b08b
+ - Point
+ - Point
+ - false
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - 1
+
+
+
+
+ -
+ 4268
+ 1910
+ 52
+ 20
+
+ -
+ 4303.5
+ 1920
+
+
+
+
+
+
+
+ - Dot colour
+ - 4ccc0b44-470f-454d-8830-231a71a351f6
+ - Colour
+ - Colour
+ - false
+ - 0
+
+
+
+
+ -
+ 4268
+ 1930
+ 52
+ 20
+
+ -
+ 4303.5
+ 1940
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Dot size
+ - f4559c99-dad2-4da9-bcf8-9f54935de914
+ - X/2
+ - Size
+ - Size
+ - false
+ - 8e54098a-6065-4d4a-a69b-cd4b228d604f
+ - 1
+
+
+
+
+ -
+ 4268
+ 1950
+ 52
+ 20
+
+ -
+ 4303.5
+ 1960
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 5ee0c642-0a89-4957-83c5-74bafd3f7d48
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4353
+ -10924
+ 144
+ 104
+
+ -
+ 4437
+ -10872
+
+
+
+
+
+ - Colour of the diffuse channel
+ - cd5bc4d8-893b-4b05-946c-baead3230f7e
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -10922
+ 67
+ 20
+
+ -
+ 4390
+ -10912
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d5a0cbb2-eb0a-4e4a-b39f-31339525b863
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -10902
+ 67
+ 20
+
+ -
+ 4390
+ -10892
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 5e2687cd-424e-49b4-bef1-d7afec1abb1b
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -10882
+ 67
+ 20
+
+ -
+ 4390
+ -10872
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 6318290d-39c5-4c22-bb7d-0c8704d92d8f
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -10862
+ 67
+ 20
+
+ -
+ 4390
+ -10852
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 242612c9-861c-48eb-822b-b37357c5c7d1
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -10842
+ 67
+ 20
+
+ -
+ 4390
+ -10832
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 3eac8c27-eb1a-4691-aae0-5834962df0ee
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4452
+ -10922
+ 43
+ 100
+
+ -
+ 4475
+ -10872
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 0943cba2-39fe-4125-9623-f70d3326971c
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4384
+ -10987
+ 82
+ 44
+
+ -
+ 4452
+ -10965
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - aaf13ab8-8091-4aac-949b-0328caac6257
+ - Geometry
+ - Geometry
+ - false
+ - 9dd13fb8-1000-4255-abae-a29abaced959
+ - 1
+
+
+
+
+ -
+ 4386
+ -10985
+ 51
+ 20
+
+ -
+ 4413
+ -10975
+
+
+
+
+
+
+
+ - The material override
+ - 71dbdb3c-5df4-4d92-a450-4df5a8e77cc4
+ - Material
+ - Material
+ - false
+ - 3eac8c27-eb1a-4691-aae0-5834962df0ee
+ - 1
+
+
+
+
+ -
+ 4386
+ -10965
+ 51
+ 20
+
+ -
+ 4413
+ -10955
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 894c2165-9c4a-4fa0-a0bc-198755fb7e0f
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4353
+ -11071
+ 144
+ 64
+
+ -
+ 4427
+ -11039
+
+
+
+
+
+ - Curve to evaluate
+ - c346d149-b7fb-412c-a009-137f4538e11d
+ - Curve
+ - Curve
+ - false
+ - 9dd13fb8-1000-4255-abae-a29abaced959
+ - 1
+
+
+
+
+ -
+ 4355
+ -11069
+ 57
+ 20
+
+ -
+ 4385
+ -11059
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b8532543-8f37-400b-bc04-c8f7f67a68b1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11049
+ 57
+ 20
+
+ -
+ 4385
+ -11039
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1eb81f65-f577-4e40-8ec3-4711034e0683
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11029
+ 57
+ 20
+
+ -
+ 4385
+ -11019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 71f06c1d-d566-45ae-86ef-8987eb309b61
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4442
+ -11069
+ 53
+ 20
+
+ -
+ 4470
+ -11059
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ce73c10d-6ef1-4034-889e-01da701851c3
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4442
+ -11049
+ 53
+ 20
+
+ -
+ 4470
+ -11039
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 30d3880f-a685-46b8-b6f3-de16802c8b0d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4442
+ -11029
+ 53
+ 20
+
+ -
+ 4470
+ -11019
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 3c806f62-3e23-4451-8b4c-1d0ee1812fe8
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4362
+ -11175
+ 125
+ 84
+
+ -
+ 4429
+ -11133
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - acd0ae42-6de9-479d-b234-71dc4c8c339a
+ - Vertices
+ - Vertices
+ - false
+ - 71f06c1d-d566-45ae-86ef-8987eb309b61
+ - 1
+
+
+
+
+ -
+ 4364
+ -11173
+ 50
+ 20
+
+ -
+ 4390.5
+ -11163
+
+
+
+
+
+
+
+ - Curve degree
+ - f01152aa-b4aa-4a8e-be08-375e305f592d
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ -11153
+ 50
+ 20
+
+ -
+ 4390.5
+ -11143
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 1563a0db-98d6-4d37-aaa5-7621a6e12d17
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ -11133
+ 50
+ 20
+
+ -
+ 4390.5
+ -11123
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - f96f7dee-be9a-4b23-93bd-a8b7664eda86
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ -11113
+ 50
+ 20
+
+ -
+ 4390.5
+ -11103
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - f61f2111-5326-4648-ba8c-1d4458c660dd
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4444
+ -11173
+ 41
+ 26
+
+ -
+ 4466
+ -11159.67
+
+
+
+
+
+
+
+ - Curve length
+ - 1c905852-3b56-4242-b499-2e7e7a432d49
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4444
+ -11147
+ 41
+ 27
+
+ -
+ 4466
+ -11133
+
+
+
+
+
+
+
+ - Curve domain
+ - ccc00b0b-d5a3-4fe5-99aa-0b660e38fd54
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4444
+ -11120
+ 41
+ 27
+
+ -
+ 4466
+ -11106.33
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 2730
+ 5559
+ 125
+ 64
+
+ -
+ 2780
+ 5591
+
+
+
+
+
+ - Curve to divide
+ - 8c9779e4-652d-4829-8f16-6dd31fc15821
+ - Curve
+ - Curve
+ - false
+ - d0820e9a-52d6-4e80-af35-61b08c2f010e
+ - 1
+
+
+
+
+ -
+ 2732
+ 5561
+ 33
+ 20
+
+ -
+ 2750
+ 5571
+
+
+
+
+
+
+
+ - Number of segments
+ - f1e327a6-5efc-4dce-9e92-dd7898cf6072
+ - Count
+ - Count
+ - false
+ - 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
+ - 1
+
+
+
+
+ -
+ 2732
+ 5581
+ 33
+ 20
+
+ -
+ 2750
+ 5591
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - e3e208ab-47f8-4da4-8666-5fd2b2147baf
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 5601
+ 33
+ 20
+
+ -
+ 2750
+ 5611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2795
+ 5561
+ 58
+ 20
+
+ -
+ 2825.5
+ 5571
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 3adc8599-1af2-41cc-8236-86d9abed6c09
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 2795
+ 5581
+ 58
+ 20
+
+ -
+ 2825.5
+ 5591
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - a9e3d460-fa20-477f-9b99-4150b54e9bac
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 2795
+ 5601
+ 58
+ 20
+
+ -
+ 2825.5
+ 5611
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 8f05758f-528d-4abe-a396-7016cab37bc7
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ 5642
+ 106
+ 64
+
+ -
+ 2804
+ 5674
+
+
+
+
+
+ - Line start point
+ - 2568b4db-9a85-4c73-a9b2-333f3b1cec89
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 5644
+ 47
+ 20
+
+ -
+ 2767
+ 5654
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - ec9873b6-74e3-42d4-a0cc-0323d6a4527c
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 5664
+ 47
+ 20
+
+ -
+ 2767
+ 5674
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - f8e8ab59-815f-457e-b45d-540005a6e03c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 5684
+ 47
+ 20
+
+ -
+ 2767
+ 5694
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d0820e9a-52d6-4e80-af35-61b08c2f010e
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 5644
+ 25
+ 60
+
+ -
+ 2833
+ 5674
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 481c1239-c2c2-4b27-9952-e232e2177102
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ 5371
+ 106
+ 64
+
+ -
+ 2804
+ 5403
+
+
+
+
+
+ - Line start point
+ - 10f7649a-403a-4475-a644-c1effa89f4e5
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2742
+ 5373
+ 47
+ 20
+
+ -
+ 2767
+ 5383
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - d783b12f-3971-478a-a61f-7a88efca0f03
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 5393
+ 47
+ 20
+
+ -
+ 2767
+ 5403
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e5f3cdd3-07ca-4730-875f-7ce54355206e
+ - Length
+ - Length
+ - false
+ - 6cd0d5e1-a76e-4157-bcb0-cfc84b7fb662
+ - 1
+
+
+
+
+ -
+ 2742
+ 5413
+ 47
+ 20
+
+ -
+ 2767
+ 5423
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 9b049f30-c8fb-42e2-8753-3a7428f5fa04
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 5373
+ 25
+ 60
+
+ -
+ 2833
+ 5403
+
+
+
+
+
+
+
+
+
+
+
+ - 7376fe41-74ec-497e-b367-1ffe5072608b
+ - Curvature Graph
+
+
+
+
+ - Draws Rhino Curvature Graphs.
+ - true
+ - 75434d61-d5bb-4800-bc6b-c6a0d8505f6c
+ - true
+ - Curvature Graph
+ - Curvature Graph
+
+
+
+
+ -
+ 4267
+ 7111
+ 71
+ 64
+
+ -
+ 4324
+ 7143
+
+
+
+
+
+ - Curve for Curvature graph display
+ - true
+ - ba1b9963-5e52-444a-8ce0-0d312a00a656
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4269
+ 7113
+ 40
+ 20
+
+ -
+ 4290.5
+ 7123
+
+
+
+
+
+
+
+ - Sampling density of the Graph
+ - efc842a1-618e-4f18-8e41-c618ee60a1f3
+ - true
+ - Density
+ - Density
+ - false
+ - 0
+
+
+
+
+ -
+ 4269
+ 7133
+ 40
+ 20
+
+ -
+ 4290.5
+ 7143
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scale of graph
+ - f3648ad9-3ac7-4f51-8b71-1e52739b775f
+ - true
+ - Scale
+ - Scale
+ - false
+ - 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
+ - 1
+
+
+
+
+ -
+ 4269
+ 7153
+ 40
+ 20
+
+ -
+ 4290.5
+ 7163
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 105
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 87.0
+
+
+
+
+ -
+ 4183
+ 7201
+ 250
+ 20
+
+ -
+ 4183.743
+ 7201.873
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 85c52366-0982-406d-b91c-f42517f13990
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4288
+ 3213
+ 40
+ 16
+
+ -
+ 4308
+ 3221
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 48b8c9ef-cb3c-4009-9684-cd48d749b5ab
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4250
+ 5460
+ 115
+ 64
+
+ -
+ 4305
+ 5492
+
+
+
+
+
+ - Value to remap
+ - b5993e70-779b-4583-bbb5-6362587acad0
+ - Value
+ - Value
+ - false
+ - a99be150-24a5-4ed5-b21a-92a285b690b0
+ - 1
+
+
+
+
+ -
+ 4252
+ 5462
+ 38
+ 20
+
+ -
+ 4272.5
+ 5472
+
+
+
+
+
+
+
+ - Source domain
+ - 276d7e42-20ad-4da8-8fc0-f069a844c500
+ - Source
+ - Source
+ - false
+ - e05b6516-f34d-4422-b08d-a2c40e898aa1
+ - 1
+
+
+
+
+ -
+ 4252
+ 5482
+ 38
+ 20
+
+ -
+ 4272.5
+ 5492
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 3f7124d4-dcea-40aa-a60d-137b8d5f00e9
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 5502
+ 38
+ 20
+
+ -
+ 4272.5
+ 5512
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 2f63ad6a-50d9-44f8-b78a-6d8a197ff60b
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 5462
+ 43
+ 30
+
+ -
+ 4343
+ 5477
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - d27f1f0d-ad67-4a25-922b-b171843d62d1
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 5492
+ 43
+ 30
+
+ -
+ 4343
+ 5507
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 044cb778-9490-4df3-9437-dd5b56522471
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4247
+ 5542
+ 122
+ 28
+
+ -
+ 4311
+ 5556
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - e44f4cb9-e713-4977-895d-ad88998e3db9
+ - Numbers
+ - Numbers
+ - false
+ - a99be150-24a5-4ed5-b21a-92a285b690b0
+ - 1
+
+
+
+
+ -
+ 4249
+ 5544
+ 47
+ 24
+
+ -
+ 4274
+ 5556
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - e05b6516-f34d-4422-b08d-a2c40e898aa1
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ 5544
+ 41
+ 24
+
+ -
+ 4348
+ 5556
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 48b8c9ef-cb3c-4009-9684-cd48d749b5ab
+ - 044cb778-9490-4df3-9437-dd5b56522471
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 8c5832d9-8a03-428a-be62-bf491697ddaa
+ - a99be150-24a5-4ed5-b21a-92a285b690b0
+ - 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
+ - 30d2560c-f4c6-4925-a86c-db46776c8475
+ - 8a2d2bc3-4a52-4743-b71a-fe728e225613
+ - 15
+ - 69e5ea57-7d81-4a09-8ef9-ccb25d57d505
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a99be150-24a5-4ed5-b21a-92a285b690b0
+ - Relay
+ -
+ - false
+ - 0a516f0c-a574-4254-9e94-e7e5df613da5
+ - 1
+
+
+
+
+ -
+ 4288
+ 5589
+ 40
+ 16
+
+ -
+ 4308
+ 5597
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8c5832d9-8a03-428a-be62-bf491697ddaa
+ - Relay
+ -
+ - false
+ - f7d55e75-471d-4ce7-af53-e36391965052
+ - 1
+
+
+
+
+ -
+ 4288
+ 5233
+ 40
+ 16
+
+ -
+ 4308
+ 5241
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 30d2560c-f4c6-4925-a86c-db46776c8475
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ 5305
+ 82
+ 44
+
+ -
+ 4298
+ 5327
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 7feef527-fa5c-4d89-aa11-45026d59f487
+ - A
+ - A
+ - true
+ - 14bd8a6a-5af9-451e-86ed-f6bf0cd39f40
+ - 1
+
+
+
+
+ -
+ 4269
+ 5307
+ 14
+ 20
+
+ -
+ 4277.5
+ 5317
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 5690a543-f357-4f26-ad44-7255a70c6a8e
+ - B
+ - B
+ - true
+ - 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
+ - 1
+
+
+
+
+ -
+ 4269
+ 5327
+ 14
+ 20
+
+ -
+ 4277.5
+ 5337
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f7d55e75-471d-4ce7-af53-e36391965052
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ 5307
+ 34
+ 40
+
+ -
+ 4331.5
+ 5327
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - b62f19ca-87db-46ca-8c31-ea7e17696ffe
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4236
+ 3360
+ 150
+ 20
+
+ -
+ 4236
+ 3360.007
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0.020588
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 1c99c25f-7d5e-4c63-966a-976daadcec48
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4250
+ 3495
+ 115
+ 64
+
+ -
+ 4305
+ 3527
+
+
+
+
+
+ - Value to remap
+ - ea2236d0-ef35-487a-8adb-a97612168788
+ - Value
+ - Value
+ - false
+ - d2418b07-7276-422b-95a0-4b06d47778e7
+ - 1
+
+
+
+
+ -
+ 4252
+ 3497
+ 38
+ 20
+
+ -
+ 4272.5
+ 3507
+
+
+
+
+
+
+
+ - Source domain
+ - 1eae3eec-6538-43f5-9cd6-7333fec36f2e
+ - Source
+ - Source
+ - false
+ - 5b9c6745-344e-40ce-b703-687ff7634d53
+ - 1
+
+
+
+
+ -
+ 4252
+ 3517
+ 38
+ 20
+
+ -
+ 4272.5
+ 3527
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 3d89d664-685b-4863-9292-8d672d390813
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 3537
+ 38
+ 20
+
+ -
+ 4272.5
+ 3547
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - eca5d769-7430-4ced-8208-a3645409d38b
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 3497
+ 43
+ 30
+
+ -
+ 4343
+ 3512
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - d24d2594-3f8b-414d-abcd-9e0136a48398
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 3527
+ 43
+ 30
+
+ -
+ 4343
+ 3542
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - b2e78911-4591-4927-ad08-76285da0ffdc
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4247
+ 3578
+ 122
+ 28
+
+ -
+ 4311
+ 3592
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - cd807512-c9ea-4f30-b657-cc117e38ffb4
+ - Numbers
+ - Numbers
+ - false
+ - d2418b07-7276-422b-95a0-4b06d47778e7
+ - 1
+
+
+
+
+ -
+ 4249
+ 3580
+ 47
+ 24
+
+ -
+ 4274
+ 3592
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 5b9c6745-344e-40ce-b703-687ff7634d53
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ 3580
+ 41
+ 24
+
+ -
+ 4348
+ 3592
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 1c99c25f-7d5e-4c63-966a-976daadcec48
+ - b2e78911-4591-4927-ad08-76285da0ffdc
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 68798621-f2f5-4d68-ab21-b493ba17bc76
+ - d2418b07-7276-422b-95a0-4b06d47778e7
+ - b62f19ca-87db-46ca-8c31-ea7e17696ffe
+ - e95c3dbd-5e70-4ea6-85cd-43d87435112a
+ - 14
+ - a47ffe02-4103-4c38-89e1-ede0b95c5a37
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d2418b07-7276-422b-95a0-4b06d47778e7
+ - Relay
+ -
+ - false
+ - ff2db1c1-6c13-43aa-8303-844eb49d3ae6
+ - 1
+
+
+
+
+ -
+ 4288
+ 3623
+ 40
+ 16
+
+ -
+ 4308
+ 3631
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 68798621-f2f5-4d68-ab21-b493ba17bc76
+ - Relay
+ -
+ - false
+ - 12ea02f8-81c6-46a9-a43c-8a7adbaf384c
+ - 1
+
+
+
+
+ -
+ 4288
+ 3256
+ 40
+ 16
+
+ -
+ 4308
+ 3264
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e95c3dbd-5e70-4ea6-85cd-43d87435112a
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ 3295
+ 82
+ 44
+
+ -
+ 4298
+ 3317
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ac4a55df-2bb3-4fb0-958d-257c7d151572
+ - A
+ - A
+ - true
+ - 32f0b35d-e913-4f06-b93a-97544ad5d63d
+ - 1
+
+
+
+
+ -
+ 4269
+ 3297
+ 14
+ 20
+
+ -
+ 4277.5
+ 3307
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 1c3d4bbb-df13-478b-ad73-7162f665914a
+ - B
+ - B
+ - true
+ - b62f19ca-87db-46ca-8c31-ea7e17696ffe
+ - 1
+
+
+
+
+ -
+ 4269
+ 3317
+ 14
+ 20
+
+ -
+ 4277.5
+ 3327
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 12ea02f8-81c6-46a9-a43c-8a7adbaf384c
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ 3297
+ 34
+ 40
+
+ -
+ 4331.5
+ 3317
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - ee60103a-50e1-4b3b-8a4b-e878472c2e33
+ - true
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ -247
+ 11844
+ 144
+ 84
+
+ -
+ -161
+ 11886
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 5e0892dc-4a0f-40e2-9b7f-dd8496e6f8c7
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - ed880257-cb73-4b3d-bdba-4c629f2654a0
+ - 1
+
+
+
+
+ -
+ -245
+ 11846
+ 69
+ 20
+
+ -
+ -209
+ 11856
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 3baa2089-7b0b-4d73-b557-3897101d5075
+ - true
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11866
+ 69
+ 20
+
+ -
+ -209
+ 11876
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - bca82fcd-eda9-4855-aae8-a31dd638ce75
+ - true
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11886
+ 69
+ 20
+
+ -
+ -209
+ 11896
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - a91d8d40-4371-494c-92f6-2daa4a0f5a61
+ - true
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11906
+ 69
+ 20
+
+ -
+ -209
+ 11916
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - d1cad267-2905-49dd-863c-5ec306105c06
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -146
+ 11846
+ 41
+ 26
+
+ -
+ -124
+ 11859.33
+
+
+
+
+
+
+
+ - Curve length
+ - d4e8f984-2d5d-4099-a64b-d7ee84c5d11f
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -146
+ 11872
+ 41
+ 27
+
+ -
+ -124
+ 11886
+
+
+
+
+
+
+
+ - Curve domain
+ - aae9e7c9-c70b-470e-967d-8965a1c4bdc0
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -146
+ 11899
+ 41
+ 27
+
+ -
+ -124
+ 11912.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5edee65c-191d-441c-951b-b650d396ebf2
+ - 13678ac4-534d-449b-a806-30e2c5627bc4
+ - ed880257-cb73-4b3d-bdba-4c629f2654a0
+ - 2e4f40d1-57e5-4c19-a99f-429ba726780a
+ - 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
+ - 6232a007-7131-40f6-a98e-54bf4f5de0e2
+ - be88ae4a-34e9-40cb-900e-04d4d78a0355
+ - cd03c22d-ecbe-479f-b24c-a9fc71964bbd
+ - 8
+ - fe0cca38-ef8c-474b-bb0d-65546deb0f8e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - cd3a4016-c65b-423e-80fe-187b9b727aaa
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -247
+ 11676
+ 144
+ 64
+
+ -
+ -173
+ 11708
+
+
+
+
+
+ - Curve to evaluate
+ - ab270c13-482f-4dba-8f8c-667cf2bccfb0
+ - true
+ - Curve
+ - Curve
+ - false
+ - d1cad267-2905-49dd-863c-5ec306105c06
+ - 1
+
+
+
+
+ -
+ -245
+ 11678
+ 57
+ 20
+
+ -
+ -215
+ 11688
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b77d2cd7-d893-4dc6-ba2d-b654d3634874
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11698
+ 57
+ 20
+
+ -
+ -215
+ 11708
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2ce86cd5-5fbd-43f2-9e46-762f0ea8ad48
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11718
+ 57
+ 20
+
+ -
+ -215
+ 11728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 6de6fb51-beda-4a9c-8bf6-44fc7c3a928c
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11678
+ 53
+ 20
+
+ -
+ -130
+ 11688
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ff8aacdd-97f6-438f-817a-9a56a4536825
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11698
+ 53
+ 20
+
+ -
+ -130
+ 11708
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ab545d28-efad-4fdc-9b57-d09124c3720b
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11718
+ 53
+ 20
+
+ -
+ -130
+ 11728
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 510ca252-0b8c-434d-87ff-0bb19e02de48
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ -244
+ 11614
+ 138
+ 44
+
+ -
+ -176
+ 11636
+
+
+
+
+
+ - Base geometry
+ - 241d2c7e-0587-403a-8cbf-f467d610bc5d
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - d1cad267-2905-49dd-863c-5ec306105c06
+ - 1
+
+
+
+
+ -
+ -242
+ 11616
+ 51
+ 20
+
+ -
+ -215
+ 11626
+
+
+
+
+
+
+
+ - Mirror plane
+ - b73fb547-2a14-42af-9268-8741c8dfe5b9
+ - true
+ - Plane
+ - Plane
+ - false
+ - 809cc5ac-960d-4e08-8dab-40148f659f12
+ - 1
+
+
+
+
+ -
+ -242
+ 11636
+ 51
+ 20
+
+ -
+ -215
+ 11646
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 80d8dfba-b9c1-4d87-9fdf-6ebc1450d987
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ -161
+ 11616
+ 53
+ 20
+
+ -
+ -133
+ 11626
+
+
+
+
+
+
+
+ - Transformation data
+ - 77e150c8-9396-4806-94c3-34aa0a3dc3d5
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ -161
+ 11636
+ 53
+ 20
+
+ -
+ -133
+ 11646
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -228
+ 11760
+ 106
+ 64
+
+ -
+ -164
+ 11792
+
+
+
+
+
+ - Line start point
+ - 7e2a4f3e-5d27-453e-a9f9-bf4f1f748e31
+ - true
+ - Start
+ - Start
+ - false
+ - 6de6fb51-beda-4a9c-8bf6-44fc7c3a928c
+ - 1
+
+
+
+
+ -
+ -226
+ 11762
+ 47
+ 20
+
+ -
+ -201
+ 11772
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 442a7145-a8ad-4fe0-87aa-87496e7e5ece
+ - true
+ - Direction
+ - Direction
+ - false
+ - ff8aacdd-97f6-438f-817a-9a56a4536825
+ - 1
+
+
+
+
+ -
+ -226
+ 11782
+ 47
+ 20
+
+ -
+ -201
+ 11792
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0a0ac73a-af02-46ff-b234-7ef64334bc2f
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -226
+ 11802
+ 47
+ 20
+
+ -
+ -201
+ 11812
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 809cc5ac-960d-4e08-8dab-40148f659f12
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -149
+ 11762
+ 25
+ 60
+
+ -
+ -135
+ 11792
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 8b79d317-11af-4b0d-a24a-275e14631f8a
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ -234
+ 11552
+ 118
+ 44
+
+ -
+ -171
+ 11574
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 6cdce605-31fd-491c-ac36-766bfea93faa
+ - true
+ - Curves
+ - Curves
+ - false
+ - d1cad267-2905-49dd-863c-5ec306105c06
+ - 80d8dfba-b9c1-4d87-9fdf-6ebc1450d987
+ - 2
+
+
+
+
+ -
+ -232
+ 11554
+ 46
+ 20
+
+ -
+ -207.5
+ 11564
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 0d3969ce-31e3-4f57-9696-c46ee1366602
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ -232
+ 11574
+ 46
+ 20
+
+ -
+ -207.5
+ 11584
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - cf31e72b-6a90-4794-a19d-2be419d19aed
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ -156
+ 11554
+ 38
+ 40
+
+ -
+ -135.5
+ 11574
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -247
+ 11468
+ 144
+ 64
+
+ -
+ -173
+ 11500
+
+
+
+
+
+ - Curve to evaluate
+ - 38f6fc31-45bd-4a70-9b17-4bb06e38031f
+ - true
+ - Curve
+ - Curve
+ - false
+ - cf31e72b-6a90-4794-a19d-2be419d19aed
+ - 1
+
+
+
+
+ -
+ -245
+ 11470
+ 57
+ 20
+
+ -
+ -215
+ 11480
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2bb72ac2-f495-44e3-a11a-a308c204bbcb
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11490
+ 57
+ 20
+
+ -
+ -215
+ 11500
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 29839782-8065-4d8b-b1b7-a13bf9dbdc4e
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11510
+ 57
+ 20
+
+ -
+ -215
+ 11520
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - b39750aa-21ef-4a5a-8740-7fdd65d5b48e
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11470
+ 53
+ 20
+
+ -
+ -130
+ 11480
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 372674e2-50b7-4bfb-ab1d-bb7e8b75c515
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11490
+ 53
+ 20
+
+ -
+ -130
+ 11500
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - f5bb72c6-4e2d-47d4-a871-ce65caed868f
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11510
+ 53
+ 20
+
+ -
+ -130
+ 11520
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 964cb3ac-1a1f-431e-8b84-0556874d46d4
+ - true
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ -244
+ 11385
+ 138
+ 64
+
+ -
+ -176
+ 11417
+
+
+
+
+
+ - Base geometry
+ - a4f21410-70fe-46e7-98d7-8793224d8bde
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - cf31e72b-6a90-4794-a19d-2be419d19aed
+ - 1
+
+
+
+
+ -
+ -242
+ 11387
+ 51
+ 20
+
+ -
+ -215
+ 11397
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - c56df01d-4b47-4c8e-81ba-7057ced1d137
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ -242
+ 11407
+ 51
+ 20
+
+ -
+ -215
+ 11417
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - d9195291-084b-4fd6-b715-ff7af59871b1
+ - true
+ - Plane
+ - Plane
+ - false
+ - b39750aa-21ef-4a5a-8740-7fdd65d5b48e
+ - 1
+
+
+
+
+ -
+ -242
+ 11427
+ 51
+ 20
+
+ -
+ -215
+ 11437
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 4b7f81ba-718b-415d-8e5a-3c633d24346e
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ -161
+ 11387
+ 53
+ 30
+
+ -
+ -133
+ 11402
+
+
+
+
+
+
+
+ - Transformation data
+ - 3a5d1ebf-3ae7-46da-8628-59f4ad4e7905
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ -161
+ 11417
+ 53
+ 30
+
+ -
+ -133
+ 11432
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 226f21c6-4fc4-4167-b7fd-59d96537bf6d
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ -234
+ 11322
+ 118
+ 44
+
+ -
+ -171
+ 11344
+
+
+
+
+
+ - 1
+ - Curves to join
+ - fabf4137-ead8-4c4a-a166-95a58b4c0bad
+ - true
+ - Curves
+ - Curves
+ - false
+ - cf31e72b-6a90-4794-a19d-2be419d19aed
+ - 4b7f81ba-718b-415d-8e5a-3c633d24346e
+ - 2
+
+
+
+
+ -
+ -232
+ 11324
+ 46
+ 20
+
+ -
+ -207.5
+ 11334
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 6d100315-3d62-488c-be52-bbab983fd914
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ -232
+ 11344
+ 46
+ 20
+
+ -
+ -207.5
+ 11354
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 04d2c425-92a8-4d5b-bf08-b063e28d5edf
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ -156
+ 11324
+ 38
+ 40
+
+ -
+ -135.5
+ 11344
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ee60103a-50e1-4b3b-8a4b-e878472c2e33
+ - cd3a4016-c65b-423e-80fe-187b9b727aaa
+ - 510ca252-0b8c-434d-87ff-0bb19e02de48
+ - fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d
+ - 8b79d317-11af-4b0d-a24a-275e14631f8a
+ - b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad
+ - 964cb3ac-1a1f-431e-8b84-0556874d46d4
+ - 226f21c6-4fc4-4167-b7fd-59d96537bf6d
+ - 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
+ - 9
+ - a265b490-ccac-453e-82c7-8ff5a0e23517
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 44a14ffd-ef9a-45e3-b6f8-a5425130a8bf
+ - true
+ - Panel
+
+ - false
+ - 0
+ - b998e5cb-ac9b-472c-bca9-b12d2a814ca3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -247
+ 12706
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -246.8201
+ 12706.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
+ - true
+ - Curve
+ - Curve
+ - false
+ - 04d2c425-92a8-4d5b-bf08-b063e28d5edf
+ - 1
+
+
+
+
+ -
+ -199
+ 11286
+ 50
+ 24
+
+ -
+ -174
+ 11298.23
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
+ - 1
+ - c09e5ae2-030b-42b1-a084-044710815d2e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e8733214-56ad-40ea-83a2-5e5d6fee430d
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0000053644183496292
+
+
+
+
+ -
+ -394
+ 12797
+ 439
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ -393.022
+ 12797.16
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 26a2087c-6b34-4cba-a4ca-cfd8860323fa
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -247
+ 11196
+ 144
+ 64
+
+ -
+ -173
+ 11228
+
+
+
+
+
+ - Curve to evaluate
+ - a966cf4a-5ec5-41d3-82f6-4fd16d9818b3
+ - true
+ - Curve
+ - Curve
+ - false
+ - 04d2c425-92a8-4d5b-bf08-b063e28d5edf
+ - 1
+
+
+
+
+ -
+ -245
+ 11198
+ 57
+ 20
+
+ -
+ -215
+ 11208
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 17838106-ce01-4b50-8dce-2b29ead2dae4
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11218
+ 57
+ 20
+
+ -
+ -215
+ 11228
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - fb8f5ae1-7d69-43b3-8269-948425a13989
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 11238
+ 57
+ 20
+
+ -
+ -215
+ 11248
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d4d5ac12-1a31-4022-8d91-9b0deff373a2
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11198
+ 53
+ 20
+
+ -
+ -130
+ 11208
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c87ee5d0-529a-44f0-9205-ac78add5f358
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11218
+ 53
+ 20
+
+ -
+ -130
+ 11228
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 3779e032-21bf-4d31-a613-b3331d3baf0f
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 11238
+ 53
+ 20
+
+ -
+ -130
+ 11248
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7b796d98-9d29-4777-978b-4e0f43e188d2
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 10974
+ 194
+ 28
+
+ -
+ -172
+ 10988
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 872253d1-d04f-4f48-88b0-5a56b0b2f8b6
+ - true
+ - Variable O
+ - O
+ - true
+ - 429b9784-3991-40dd-b4fc-7324008c5239
+ - 1
+
+
+
+
+ -
+ -270
+ 10976
+ 14
+ 24
+
+ -
+ -261.5
+ 10988
+
+
+
+
+
+
+
+ - Result of expression
+ - 44c4e463-8e39-49cf-b1e3-7f0a2ce242a0
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 10976
+ 9
+ 24
+
+ -
+ -83
+ 10988
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 1b261338-78de-4ea1-819d-e804feffeeca
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ -241
+ 11108
+ 132
+ 64
+
+ -
+ -194
+ 11140
+
+
+
+
+
+ - Input point
+ - 92303b98-af3c-4290-b699-a801dc759d98
+ - true
+ - Point
+ - Point
+ - false
+ - d4d5ac12-1a31-4022-8d91-9b0deff373a2
+ - 1
+
+
+
+
+ -
+ -239
+ 11110
+ 30
+ 60
+
+ -
+ -222.5
+ 11140
+
+
+
+
+
+
+
+ - Point {x} component
+ - 429b9784-3991-40dd-b4fc-7324008c5239
+ - true
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ -179
+ 11110
+ 68
+ 20
+
+ -
+ -143.5
+ 11120
+
+
+
+
+
+
+
+ - Point {y} component
+ - d92a6eb8-3adc-42ab-b1dd-cc6fd5ae1b75
+ - true
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ -179
+ 11130
+ 68
+ 20
+
+ -
+ -143.5
+ 11140
+
+
+
+
+
+
+
+ - Point {z} component
+ - 693d19df-77a5-490c-a58d-735f7e092501
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ -179
+ 11150
+ 68
+ 20
+
+ -
+ -143.5
+ 11160
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c0c89fc9-9439-46ab-9f7e-31f42bf53c28
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 44c4e463-8e39-49cf-b1e3-7f0a2ce242a0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -254
+ 10942
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -253.5063
+ 10942.22
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5086f2ab-1b64-44ce-8ebb-d3bf4b9ebde8
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 10888
+ 194
+ 28
+
+ -
+ -172
+ 10902
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 40d84ac4-901b-4025-995e-5a7b2cd3b051
+ - true
+ - Variable O
+ - O
+ - true
+ - d92a6eb8-3adc-42ab-b1dd-cc6fd5ae1b75
+ - 1
+
+
+
+
+ -
+ -270
+ 10890
+ 14
+ 24
+
+ -
+ -261.5
+ 10902
+
+
+
+
+
+
+
+ - Result of expression
+ - df1a2729-a520-499a-9fd0-a8b65794d183
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 10890
+ 9
+ 24
+
+ -
+ -83
+ 10902
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bfb9c742-ccba-40e2-9d19-47e55cf92c4b
+ - true
+ - Panel
+
+ - false
+ - 0
+ - df1a2729-a520-499a-9fd0-a8b65794d183
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -254
+ 10853
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -253.5063
+ 10853.8
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 3a3cdcad-cb6e-42a2-b26f-eabf35d1c224
+ - true
+ - Division
+ - Division
+
+
+
+
+ -
+ -216
+ 10786
+ 82
+ 44
+
+ -
+ -185
+ 10808
+
+
+
+
+
+ - Item to divide (dividend)
+ - 26ba875e-d26b-4715-9873-17f18d0efde2
+ - true
+ - A
+ - A
+ - false
+ - c0c89fc9-9439-46ab-9f7e-31f42bf53c28
+ - 1
+
+
+
+
+ -
+ -214
+ 10788
+ 14
+ 20
+
+ -
+ -205.5
+ 10798
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - ed06cc38-fdf9-4b45-ab41-3d6287ca0a47
+ - true
+ - B
+ - B
+ - false
+ - bfb9c742-ccba-40e2-9d19-47e55cf92c4b
+ - 1
+
+
+
+
+ -
+ -214
+ 10808
+ 14
+ 20
+
+ -
+ -205.5
+ 10818
+
+
+
+
+
+
+
+ - The result of the Division
+ - 616fbb74-cb75-40af-8a97-d383c34f36ba
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -170
+ 10788
+ 34
+ 40
+
+ -
+ -151.5
+ 10808
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6243360b-4cd0-4b51-bf13-b41a10039126
+ - true
+ - Panel
+
+ - false
+ - 0
+ - b998e5cb-ac9b-472c-bca9-b12d2a814ca3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -255
+ 10706
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -254.2581
+ 10706.28
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5d416a89-7386-4795-804d-85aad6db5f35
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 10739
+ 194
+ 28
+
+ -
+ -172
+ 10753
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bb19316b-746a-4f27-8652-2823c6953f72
+ - true
+ - Variable O
+ - O
+ - true
+ - 616fbb74-cb75-40af-8a97-d383c34f36ba
+ - 1
+
+
+
+
+ -
+ -270
+ 10741
+ 14
+ 24
+
+ -
+ -261.5
+ 10753
+
+
+
+
+
+
+
+ - Result of expression
+ - 8261f4ba-6e49-4a2c-a90d-63b86dddb45b
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 10741
+ 9
+ 24
+
+ -
+ -83
+ 10753
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b998e5cb-ac9b-472c-bca9-b12d2a814ca3
+ - true
+ - Relay
+
+ - false
+ - 8261f4ba-6e49-4a2c-a90d-63b86dddb45b
+ - 1
+
+
+
+
+ -
+ -195
+ 10664
+ 40
+ 16
+
+ -
+ -175
+ 10672
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 1bcfcd5d-8614-4116-bfb8-776af73c4a1a
+ - true
+ - Addition
+ - Addition
+
+
+
+
+ -
+ -216
+ 10601
+ 82
+ 44
+
+ -
+ -185
+ 10623
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - a0ed3f37-6fa3-45a8-858d-063127ff8a9b
+ - true
+ - A
+ - A
+ - true
+ - bfb9c742-ccba-40e2-9d19-47e55cf92c4b
+ - 1
+
+
+
+
+ -
+ -214
+ 10603
+ 14
+ 20
+
+ -
+ -205.5
+ 10613
+
+
+
+
+
+
+
+ - Second item for addition
+ - 01fa2527-fed9-4679-8d0b-13154e15b8aa
+ - true
+ - B
+ - B
+ - true
+ - c0c89fc9-9439-46ab-9f7e-31f42bf53c28
+ - 1
+
+
+
+
+ -
+ -214
+ 10623
+ 14
+ 20
+
+ -
+ -205.5
+ 10633
+
+
+
+
+
+
+
+ - Result of addition
+ - 2e5b0884-c422-418c-985d-a3d108281c45
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -170
+ 10603
+ 34
+ 40
+
+ -
+ -151.5
+ 10623
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 7b988f86-3299-4057-83e2-a2dfad7edd14
+ - true
+ - Division
+ - Division
+
+
+
+
+ -
+ -216
+ 10451
+ 82
+ 44
+
+ -
+ -185
+ 10473
+
+
+
+
+
+ - Item to divide (dividend)
+ - 7af19144-101f-4fd7-b4ae-b0ec49544cb3
+ - true
+ - A
+ - A
+ - false
+ - 7996ffe7-23e4-4271-8379-50fdc86d5ee4
+ - 1
+
+
+
+
+ -
+ -214
+ 10453
+ 14
+ 20
+
+ -
+ -205.5
+ 10463
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 2e88e802-2d32-449a-955c-da6d6f7cd324
+ - true
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ -214
+ 10473
+ 14
+ 20
+
+ -
+ -205.5
+ 10483
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 544e5366-cc02-4c90-87a2-fee9bebd91ea
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -170
+ 10453
+ 34
+ 40
+
+ -
+ -151.5
+ 10473
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 43169f25-9f97-4cc6-a9fb-70b22569a90b
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 10403
+ 194
+ 28
+
+ -
+ -172
+ 10417
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fc92cf4d-201d-4cfa-8e79-eb21e2742cc5
+ - true
+ - Variable O
+ - O
+ - true
+ - 544e5366-cc02-4c90-87a2-fee9bebd91ea
+ - 1
+
+
+
+
+ -
+ -270
+ 10405
+ 14
+ 24
+
+ -
+ -261.5
+ 10417
+
+
+
+
+
+
+
+ - Result of expression
+ - 1f548497-6dc7-4aab-896a-5843cdcb8ea7
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 10405
+ 9
+ 24
+
+ -
+ -83
+ 10417
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d14d45ee-9a5e-435f-8e00-0ea848456dec
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 1f548497-6dc7-4aab-896a-5843cdcb8ea7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -254
+ 10370
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -253.5063
+ 10370.14
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7996ffe7-23e4-4271-8379-50fdc86d5ee4
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 12e30454-d44f-4207-9e27-41c21b4ca838
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -254
+ 10522
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -253.5063
+ 10522.05
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 35de8717-4eea-481e-bcfd-f9b50b3335bb
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 10554
+ 194
+ 28
+
+ -
+ -172
+ 10568
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 71cf5f71-6390-4db3-b49d-a155bdb8635d
+ - true
+ - Variable O
+ - O
+ - true
+ - 2e5b0884-c422-418c-985d-a3d108281c45
+ - 1
+
+
+
+
+ -
+ -270
+ 10556
+ 14
+ 24
+
+ -
+ -261.5
+ 10568
+
+
+
+
+
+
+
+ - Result of expression
+ - 12e30454-d44f-4207-9e27-41c21b4ca838
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 10556
+ 9
+ 24
+
+ -
+ -83
+ 10568
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 231d76fe-2789-4a1c-ac87-314c5549f831
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ -252
+ 10280
+ 154
+ 64
+
+ -
+ -168
+ 10312
+
+
+
+
+
+ - Base geometry
+ - 2f89036f-a302-4c26-8c58-a257774f9004
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
+ - 1
+
+
+
+
+ -
+ -250
+ 10282
+ 67
+ 20
+
+ -
+ -207
+ 10292
+
+
+
+
+
+
+
+ - Center of scaling
+ - 1813bed0-02d6-4db0-b77f-366a4a290b1c
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ -250
+ 10302
+ 67
+ 20
+
+ -
+ -207
+ 10312
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 68c9537b-eb7c-480a-b5ee-0770d1eae50a
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - d14d45ee-9a5e-435f-8e00-0ea848456dec
+ - 1
+
+
+
+
+ -
+ -250
+ 10322
+ 67
+ 20
+
+ -
+ -207
+ 10332
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ -153
+ 10282
+ 53
+ 30
+
+ -
+ -125
+ 10297
+
+
+
+
+
+
+
+ - Transformation data
+ - d7ce92c8-46c2-463c-99cf-b2526261e09a
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ -153
+ 10312
+ 53
+ 30
+
+ -
+ -125
+ 10327
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 09336dd8-3c4b-476c-b62d-d3b399ef2780
+ - true
+ - Curve
+ - Curve
+ - false
+ - ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86
+ - 1
+
+
+
+
+ -
+ -198
+ 9818
+ 50
+ 24
+
+ -
+ -173.5334
+ 9830.496
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f14968fc-8c03-4bf0-9731-e104bcf98382
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 11061
+ 194
+ 28
+
+ -
+ -172
+ 11075
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b2b86f5d-c078-454b-829f-05dc9c8931b7
+ - true
+ - Variable O
+ - O
+ - true
+ - 693d19df-77a5-490c-a58d-735f7e092501
+ - 1
+
+
+
+
+ -
+ -270
+ 11063
+ 14
+ 24
+
+ -
+ -261.5
+ 11075
+
+
+
+
+
+
+
+ - Result of expression
+ - 58bc3cd2-b8a5-4b29-9bc0-8c5da1c2d852
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 11063
+ 9
+ 24
+
+ -
+ -83
+ 11075
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ab15d115-f73b-4d08-9382-99436259ff41
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 58bc3cd2-b8a5-4b29-9bc0-8c5da1c2d852
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -254
+ 11027
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -253.6343
+ 11027.99
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - c4aa530e-cb9a-4448-b893-7d5534deb0e5
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -247
+ 10197
+ 144
+ 64
+
+ -
+ -173
+ 10229
+
+
+
+
+
+ - Curve to evaluate
+ - 2d7bcaf1-a4ba-425f-968c-c962f2bb6c85
+ - true
+ - Curve
+ - Curve
+ - false
+ - ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86
+ - 1
+
+
+
+
+ -
+ -245
+ 10199
+ 57
+ 20
+
+ -
+ -215
+ 10209
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 1a3512d3-14c6-484e-a725-8ee8fb9d44d0
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 10219
+ 57
+ 20
+
+ -
+ -215
+ 10229
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1efbe105-5434-4501-b1b8-0f2cf92ec77f
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -245
+ 10239
+ 57
+ 20
+
+ -
+ -215
+ 10249
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 53e8fe8a-51ac-4ae0-a3c1-fb0e6e7d6a7e
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 10199
+ 53
+ 20
+
+ -
+ -130
+ 10209
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 693f19a5-23b5-40d2-8501-3a342be28e63
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 10219
+ 53
+ 20
+
+ -
+ -130
+ 10229
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 4d17e914-bbe1-481c-8fe9-a2528e296ff9
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -158
+ 10239
+ 53
+ 20
+
+ -
+ -130
+ 10249
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 18765130-12d0-4e81-bb07-50c6d539a331
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 9980
+ 194
+ 28
+
+ -
+ -172
+ 9994
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7a7c3697-e63a-45b2-bd06-037d2f29b817
+ - true
+ - Variable O
+ - O
+ - true
+ - fc7c12b9-2081-4dd6-a05e-919a971f9006
+ - 1
+
+
+
+
+ -
+ -270
+ 9982
+ 14
+ 24
+
+ -
+ -261.5
+ 9994
+
+
+
+
+
+
+
+ - Result of expression
+ - e5c82fa4-8603-4911-9120-70602d5d82d0
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 9982
+ 9
+ 24
+
+ -
+ -83
+ 9994
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - f0b3f7a9-a89a-41f9-8cd9-128e13fc28e9
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ -241
+ 10114
+ 132
+ 64
+
+ -
+ -194
+ 10146
+
+
+
+
+
+ - Input point
+ - fd02f4e8-674d-438a-82b2-23a5bbbfc706
+ - true
+ - Point
+ - Point
+ - false
+ - 53e8fe8a-51ac-4ae0-a3c1-fb0e6e7d6a7e
+ - 1
+
+
+
+
+ -
+ -239
+ 10116
+ 30
+ 60
+
+ -
+ -222.5
+ 10146
+
+
+
+
+
+
+
+ - Point {x} component
+ - fc7c12b9-2081-4dd6-a05e-919a971f9006
+ - true
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ -179
+ 10116
+ 68
+ 20
+
+ -
+ -143.5
+ 10126
+
+
+
+
+
+
+
+ - Point {y} component
+ - 239975f6-acba-4a08-91ad-5e51ab86046c
+ - true
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ -179
+ 10136
+ 68
+ 20
+
+ -
+ -143.5
+ 10146
+
+
+
+
+
+
+
+ - Point {z} component
+ - f0e11f46-3d6e-4e37-b2c1-807face13f86
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ -179
+ 10156
+ 68
+ 20
+
+ -
+ -143.5
+ 10166
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0f3c6a22-bd04-4fde-9840-bae5878a8350
+ - true
+ - Panel
+
+ - false
+ - 0
+ - e5c82fa4-8603-4911-9120-70602d5d82d0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -255
+ 9948
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -254.2507
+ 9948.498
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 86e6e907-dd69-4742-a0dc-d9d47d443ec0
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 9894
+ 194
+ 28
+
+ -
+ -172
+ 9908
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 54334a24-036b-4ac5-b49b-69c3f3f22e89
+ - true
+ - Variable O
+ - O
+ - true
+ - 239975f6-acba-4a08-91ad-5e51ab86046c
+ - 1
+
+
+
+
+ -
+ -270
+ 9896
+ 14
+ 24
+
+ -
+ -261.5
+ 9908
+
+
+
+
+
+
+
+ - Result of expression
+ - 0e99674f-be62-4152-b526-bf587f10b195
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 9896
+ 9
+ 24
+
+ -
+ -83
+ 9908
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f3d39ea9-6927-457d-ada0-8a62ba409d0a
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 0e99674f-be62-4152-b526-bf587f10b195
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -255
+ 9861
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -254.2507
+ 9861.789
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f8227a59-b3bb-490c-a577-e7486021c81f
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 10066
+ 194
+ 28
+
+ -
+ -172
+ 10080
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c47913c4-1cd6-40fc-9d28-6bb1a5a7a9aa
+ - true
+ - Variable O
+ - O
+ - true
+ - f0e11f46-3d6e-4e37-b2c1-807face13f86
+ - 1
+
+
+
+
+ -
+ -270
+ 10068
+ 14
+ 24
+
+ -
+ -261.5
+ 10080
+
+
+
+
+
+
+
+ - Result of expression
+ - 77239e3d-e6f7-4fea-bfcc-6de786eddc7e
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 10068
+ 9
+ 24
+
+ -
+ -83
+ 10080
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 013e4f07-7992-470f-8e86-91ffaa46f551
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 77239e3d-e6f7-4fea-bfcc-6de786eddc7e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -254
+ 10034
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ -253.5063
+ 10034.71
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ab1114a9-a08d-4c5d-b8cd-f951279bbcf5
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0 256 0.0013733120705119695
+0 4096 0.0000053644183496292
+
+
+
+
+ -
+ -364
+ 12921
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ -363.4622
+ 12921.74
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a850910a-8d6e-49e7-b143-923ad41fdb78
+ - true
+ - Panel
+
+ - false
+ - 1
+ - ad2d44fb-710b-47ac-aa9a-d583f9f0b202
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -352
+ 11993
+ 355
+ 100
+
+ - 0
+ - 0
+ - 0
+ -
+ -351.8826
+ 11993.72
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 22991b0e-0e2a-4ba1-a379-96fc369abcee
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 12100
+ 194
+ 28
+
+ -
+ -172
+ 12114
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8350c149-7b8d-4513-9da7-d9fe62d90ee5
+ - true
+ - Variable O
+ - O
+ - true
+ - 387adaa7-7978-4287-b8f0-fb7ef543c454
+ - 1
+
+
+
+
+ -
+ -270
+ 12102
+ 14
+ 24
+
+ -
+ -261.5
+ 12114
+
+
+
+
+
+
+
+ - Result of expression
+ - ad2d44fb-710b-47ac-aa9a-d583f9f0b202
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 12102
+ 9
+ 24
+
+ -
+ -83
+ 12114
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - true
+ - Number
+ - Number
+ - false
+ - 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
+ - 1
+
+
+
+
+ -
+ -199
+ 13211
+ 50
+ 24
+
+ -
+ -174.0857
+ 13223.4
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 64fca20e-296f-4f79-aa7f-c53c5f88866e
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 12705
+ 5609
+ 141
+ 64
+
+ -
+ 12771
+ 5641
+
+
+
+
+
+ - Curve to divide
+ - 1b6b6509-be85-4df8-8cd8-fc7585d8fed2
+ - true
+ - Curve
+ - Curve
+ - false
+ - d503ccca-e824-4afd-9579-51924ddeda66
+ - 1
+
+
+
+
+ -
+ 12707
+ 5611
+ 49
+ 20
+
+ -
+ 12741
+ 5621
+
+
+
+
+
+
+
+ - Number of segments
+ - a5718a38-f8fc-4e21-bc6c-347bef03792e
+ - X/2
+ - true
+ - Count
+ - Count
+ - false
+ - 47d36a7d-3cd2-4782-9f53-9f4088b19d4b
+ - 1
+
+
+
+
+ -
+ 12707
+ 5631
+ 49
+ 20
+
+ -
+ 12741
+ 5641
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 9bfed599-46fa-4ecf-b3a1-348888166b9d
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 12707
+ 5651
+ 49
+ 20
+
+ -
+ 12741
+ 5661
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 233fdd06-e7d5-4a0c-a4d7-8f0b3d0d4612
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 12786
+ 5611
+ 58
+ 20
+
+ -
+ 12816.5
+ 5621
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - fee105b6-3bc7-4a27-9c25-60d8b44db38c
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 12786
+ 5631
+ 58
+ 20
+
+ -
+ 12816.5
+ 5641
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - a0a908c6-1192-411c-a22a-5f77810ee1b7
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 12786
+ 5651
+ 58
+ 20
+
+ -
+ 12816.5
+ 5661
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 9b2a37bb-1555-4475-9897-d38d08b21505
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 12715
+ 5691
+ 122
+ 64
+
+ -
+ 12795
+ 5723
+
+
+
+
+
+ - Line start point
+ - 5e507055-cbe2-432a-bbce-fc424c470038
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 12717
+ 5693
+ 63
+ 20
+
+ -
+ 12758
+ 5703
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 3d0e9370-3dae-4ec7-9308-a63c1461b179
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 12717
+ 5713
+ 63
+ 20
+
+ -
+ 12758
+ 5723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 8dae98a7-0e9b-4185-8c60-8a77623f52e4
+ - X/2
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12717
+ 5733
+ 63
+ 20
+
+ -
+ 12758
+ 5743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d503ccca-e824-4afd-9579-51924ddeda66
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 12810
+ 5693
+ 25
+ 60
+
+ -
+ 12824
+ 5723
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 27ab2024-18fc-4363-8275-015d2368f9de
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 12723
+ 5527
+ 106
+ 64
+
+ -
+ 12787
+ 5559
+
+
+
+
+
+ - Line start point
+ - 78014ac8-12a2-4fa9-8a65-e18ceda7f175
+ - true
+ - Start
+ - Start
+ - false
+ - 233fdd06-e7d5-4a0c-a4d7-8f0b3d0d4612
+ - 1
+
+
+
+
+ -
+ 12725
+ 5529
+ 47
+ 20
+
+ -
+ 12750
+ 5539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 6f93dfe1-d4ed-43b8-8d3f-ca0a604718fe
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 12725
+ 5549
+ 47
+ 20
+
+ -
+ 12750
+ 5559
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - d817c66f-cbcc-4261-8bae-dd8ed1a3db70
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12725
+ 5569
+ 47
+ 20
+
+ -
+ 12750
+ 5579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 38f60d72-95b9-474c-a523-e27fbbd26166
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 12802
+ 5529
+ 25
+ 60
+
+ -
+ 12816
+ 5559
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 26be2798-ae8b-4fb0-b7a2-e9f1edff6049
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 377c7605-11b6-4673-94de-cc5176b48b51
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12852
+ 3893
+ 194
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 12852.65
+ 3893.202
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 6525660d-29ee-4269-9203-539923b24a8e
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 12702
+ 4307
+ 148
+ 64
+
+ -
+ 12749
+ 4339
+
+
+
+
+
+ - Input point
+ - 424e3fe1-4f4b-43de-b9bc-242d9800f378
+ - true
+ - Point
+ - Point
+ - false
+ - e370e985-4ce7-46a6-9272-61e578a1277f
+ - 1
+
+
+
+
+ -
+ 12704
+ 4309
+ 30
+ 60
+
+ -
+ 12720.5
+ 4339
+
+
+
+
+
+
+
+ - Point {x} component
+ - 0b7cd3a8-2836-435f-b6ae-6abbe8053e01
+ - true
+ - 2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 12764
+ 4309
+ 84
+ 20
+
+ -
+ 12799.5
+ 4319
+
+
+
+
+
+
+
+ - Point {y} component
+ - ccd28879-e08a-4aaa-95c3-f7812fa57d94
+ - true
+ - 2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 12764
+ 4329
+ 84
+ 20
+
+ -
+ 12799.5
+ 4339
+
+
+
+
+
+
+
+ - Point {z} component
+ - d73bd698-c2ba-47ab-a022-c8f6738c678c
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 12764
+ 4349
+ 84
+ 20
+
+ -
+ 12799.5
+ 4359
+
+
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - VB Script
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 708c9f15-3d1c-406b-8e76-cab318b67adc
+ - true
+ - VB Script
+ - TxtWriter
+ - true
+ - 0
+ - If activate Then
+
+ Dim i As Integer
+ Dim aryText(4) As String
+
+ aryText(0) = "Mary WriteLine"
+ aryText(1) = "Had"
+ aryText(2) = "Another"
+ aryText(3) = "Little"
+ aryText(4) = "One"
+
+ ' the data is appended to the file. If file doesnt exist, a new file is created
+ Dim objWriter As New System.IO.StreamWriter(filePath, append)
+
+ For i = 0 To data.Count - 1
+ objWriter.WriteLine(data(i))
+ Next
+
+ objWriter.Close()
+
+ End If
+
+ If clearFile Then
+ Dim objWriter As New System.IO.StreamWriter(filePath, False)
+ objWriter.Close()
+ End If
+
+
+
+
+
+ -
+ 12718
+ 3758
+ 115
+ 104
+
+ -
+ 12794
+ 3810
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable filePath
+ - 5e6166c1-8f32-4c96-a7ef-94db1e35eca9
+ - true
+ - filePath
+ - filePath
+ - true
+ - 0
+ - true
+ - 936ab982-35fa-4088-8bfe-32405957deea
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 12720
+ 3760
+ 59
+ 20
+
+ -
+ 12759
+ 3770
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable data
+ - 2b82532a-02b6-40b4-acbc-7bf91bc4da68
+ - true
+ - 1
+ - data
+ - data
+ - true
+ - 1
+ - true
+ - 26be2798-ae8b-4fb0-b7a2-e9f1edff6049
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 12720
+ 3780
+ 59
+ 20
+
+ -
+ 12759
+ 3790
+
+
+
+
+
+
+
+ - true
+ - Script Variable append
+ - aca517b8-0c59-4e5d-af97-a06b3482f5f5
+ - true
+ - append
+ - append
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 12720
+ 3800
+ 59
+ 20
+
+ -
+ 12759
+ 3810
+
+
+
+
+
+
+
+ - true
+ - Script Variable activate
+ - db3c8491-f6fb-47a1-b7b0-99f86cb86ca5
+ - true
+ - activate
+ - activate
+ - true
+ - 0
+ - true
+ - 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0
+ - 1
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 12720
+ 3820
+ 59
+ 20
+
+ -
+ 12759
+ 3830
+
+
+
+
+
+
+
+ - true
+ - Script Variable clearFile
+ - 3f95a4f7-45ac-4a38-8791-86d6583fade9
+ - true
+ - clearFile
+ - clearFile
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 12720
+ 3840
+ 59
+ 20
+
+ -
+ 12759
+ 3850
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 0d196d2d-27eb-4232-8ac3-43330fd192b5
+ - true
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 12809
+ 3760
+ 22
+ 50
+
+ -
+ 12821.5
+ 3785
+
+
+
+
+
+
+
+ - Output parameter A
+ - cdf76903-298c-4cd4-bc34-601277df82d6
+ - true
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 12809
+ 3810
+ 22
+ 50
+
+ -
+ 12821.5
+ 3835
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 06953bda-1d37-4d58-9b38-4b3c74e54c8f
+ - File Path
+
+
+
+
+ - Contains a collection of file paths
+ - false
+ - All files|*.*
+ - 936ab982-35fa-4088-8bfe-32405957deea
+ - true
+ - File Path
+ - File Path
+ - false
+ - 0
+
+
+
+
+ -
+ 12754
+ 3892
+ 50
+ 24
+
+ -
+ 12779.03
+ 3904.481
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+ - C:\IICSA.O____48361_EDIWID_1_TNEMERCNI____TNEIDARG_PUKOOL_ROLOC_DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF_EKUN____O____NUKE_FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID_COLOR_LOOKUP_GRADIENT____INCREMENT_1_DIWIDE_16384____O.ASCII
+
+
+
+
+
+
+
+
+
+
+
+
+ - a8b97322-2d53-47cd-905e-b932c3ccd74e
+ - Button
+
+
+
+
+ - Button object with two values
+ - False
+ - True
+ - 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0
+ - true
+ - Button
+
+ - false
+ - 0
+
+
+
+
+ -
+ 12743
+ 3717
+ 66
+ 22
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
+ - true
+ - Curve
+ - Curve
+ - false
+ - e15c0da3-15dc-4bcb-8939-2c5ec5698b15
+ - 1
+
+
+
+
+ -
+ 14200
+ 6000
+ 50
+ 24
+
+ -
+ 14225.53
+ 6012.492
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 391fa384-4978-4146-9509-512cbdc302c5
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 14141
+ 5902
+ 160
+ 64
+
+ -
+ 14231
+ 5934
+
+
+
+
+
+ - Curve to evaluate
+ - e2627c34-f2b2-4092-bf76-a9749b13996a
+ - true
+ - Curve
+ - Curve
+ - false
+ - f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
+ - 1
+
+
+
+
+ -
+ 14143
+ 5904
+ 73
+ 20
+
+ -
+ 14189
+ 5914
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 728fac84-864b-4c8a-82a7-06415b3356cd
+ - true
+ - 1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14143
+ 5924
+ 73
+ 20
+
+ -
+ 14189
+ 5934
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 72cac29d-b8f9-4681-9eaf-eea5c1b08077
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 14143
+ 5944
+ 73
+ 20
+
+ -
+ 14189
+ 5954
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - fff8fda2-863f-489e-8499-7ed0fd9118e8
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14246
+ 5904
+ 53
+ 20
+
+ -
+ 14274
+ 5914
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 0fd64b62-df1b-4ff8-8372-a03fc9fd689e
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 14246
+ 5924
+ 53
+ 20
+
+ -
+ 14274
+ 5934
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8165b44d-a61d-47a1-aceb-28259c1254c4
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 14246
+ 5944
+ 53
+ 20
+
+ -
+ 14274
+ 5954
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 05c68ab6-a4a6-4531-b120-cd1f09e2ec7b
+ - true
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 14172
+ 5855
+ 98
+ 28
+
+ -
+ 14222
+ 5869
+
+
+
+
+
+ - Origin of plane
+ - d834e7d0-a9f3-4861-9f50-7030de4cfa24
+ - true
+ - Origin
+ - Origin
+ - false
+ - fff8fda2-863f-489e-8499-7ed0fd9118e8
+ - 1
+
+
+
+
+ -
+ 14174
+ 5857
+ 33
+ 24
+
+ -
+ 14192
+ 5869
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - d0ae266b-1682-491c-bee6-76496606fcb1
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 14237
+ 5857
+ 31
+ 24
+
+ -
+ 14254
+ 5869
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 57c99f13-3937-47f8-9b4a-59d033ef07aa
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 14152
+ 5793
+ 138
+ 44
+
+ -
+ 14220
+ 5815
+
+
+
+
+
+ - Base geometry
+ - e1372fd8-1f6b-46f6-aff4-1497de199bf0
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
+ - 1
+
+
+
+
+ -
+ 14154
+ 5795
+ 51
+ 20
+
+ -
+ 14181
+ 5805
+
+
+
+
+
+
+
+ - Mirror plane
+ - b67b11e5-f515-4970-ba07-e4efad992b88
+ - true
+ - Plane
+ - Plane
+ - false
+ - d0ae266b-1682-491c-bee6-76496606fcb1
+ - 1
+
+
+
+
+ -
+ 14154
+ 5815
+ 51
+ 20
+
+ -
+ 14181
+ 5825
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - af90f00b-316f-4b79-b6d5-c26969e27a7d
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5795
+ 53
+ 20
+
+ -
+ 14263
+ 5805
+
+
+
+
+
+
+
+ - Transformation data
+ - dfa3bfe2-d964-4ef7-b3d4-3dd2cdc2ba81
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5815
+ 53
+ 20
+
+ -
+ 14263
+ 5825
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 8e038213-7c24-4b93-8b8f-587867a7e2ae
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 14162
+ 5731
+ 118
+ 44
+
+ -
+ 14225
+ 5753
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 3f04730d-e061-4ce5-870b-f5dd685fc3b5
+ - true
+ - Curves
+ - Curves
+ - false
+ - f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
+ - af90f00b-316f-4b79-b6d5-c26969e27a7d
+ - 2
+
+
+
+
+ -
+ 14164
+ 5733
+ 46
+ 20
+
+ -
+ 14188.5
+ 5743
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 830e99be-e7eb-42d0-8674-e8ada6194bbb
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 14164
+ 5753
+ 46
+ 20
+
+ -
+ 14188.5
+ 5763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 0062ed90-a595-40fe-804c-2efd80987eb9
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 14240
+ 5733
+ 38
+ 40
+
+ -
+ 14260.5
+ 5753
+
+
+
+
+
+
+
+
+
+
+
+ - e87db220-a0a0-4d67-a405-f97fd14b2d7a
+ - Linear Array
+
+
+
+
+ - Create a linear array of geometry.
+ - true
+ - 87b5a07c-0959-48af-b3ea-1850aab4001c
+ - true
+ - Linear Array
+ - Linear Array
+
+
+
+
+ -
+ 14152
+ 5649
+ 138
+ 64
+
+ -
+ 14220
+ 5681
+
+
+
+
+
+ - Base geometry
+ - 6c39ac1f-6d7e-4afa-9784-7505cec6b5aa
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 0062ed90-a595-40fe-804c-2efd80987eb9
+ - 1
+
+
+
+
+ -
+ 14154
+ 5651
+ 51
+ 20
+
+ -
+ 14181
+ 5661
+
+
+
+
+
+
+
+ - Linear array direction and interval
+ - 86849e41-c369-4e2e-8e88-3e49d728480a
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 14154
+ 5671
+ 51
+ 20
+
+ -
+ 14181
+ 5681
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 2
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Number of elements in array.
+ - a696f77a-9e2a-454c-81dc-0594079dda9a
+ - true
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 14154
+ 5691
+ 51
+ 20
+
+ -
+ 14181
+ 5701
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Arrayed geometry
+ - d1c74620-5515-4d7d-8719-106dac105140
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5651
+ 53
+ 30
+
+ -
+ 14263
+ 5666
+
+
+
+
+
+
+
+ - 1
+ - Transformation data
+ - 52055a79-39cb-4026-8925-151ee0a65b01
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5681
+ 53
+ 30
+
+ -
+ 14263
+ 5696
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 49c9c7fd-8ff8-4fd2-812a-32a26c6caa11
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 14162
+ 5587
+ 118
+ 44
+
+ -
+ 14225
+ 5609
+
+
+
+
+
+ - 1
+ - Curves to join
+ - aeed4693-6839-40fe-81f1-dba3eb2d45c3
+ - true
+ - Curves
+ - Curves
+ - false
+ - d1c74620-5515-4d7d-8719-106dac105140
+ - 1
+
+
+
+
+ -
+ 14164
+ 5589
+ 46
+ 20
+
+ -
+ 14188.5
+ 5599
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 863f4c8d-3241-49ad-b908-ee3f8d14f244
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 14164
+ 5609
+ 46
+ 20
+
+ -
+ 14188.5
+ 5619
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 14240
+ 5589
+ 38
+ 40
+
+ -
+ 14260.5
+ 5609
+
+
+
+
+
+
+
+
+
+
+
+ - ccfd6ba8-ecb1-44df-a47e-08126a653c51
+ - Curve Domain
+
+
+
+
+ - Measure and set the curve domain
+ - true
+ - 2e2550a6-0f32-4b90-92f0-a88401c43eb5
+ - true
+ - Curve Domain
+ - Curve Domain
+
+
+
+
+ -
+ 14163
+ 5342
+ 116
+ 44
+
+ -
+ 14221
+ 5364
+
+
+
+
+
+ - Curve to measure/modify
+ - 6f0b21df-7243-4a6f-880d-4bf9ec4d5295
+ - true
+ - Curve
+ - Curve
+ - false
+ - a4a42a27-5fc4-490b-8303-ab18a562494f
+ - 1
+
+
+
+
+ -
+ 14165
+ 5344
+ 41
+ 20
+
+ -
+ 14187
+ 5354
+
+
+
+
+
+
+
+ - Optional domain, if omitted the curve will not be modified.
+ - 495e6c26-65b4-4514-9d7a-d835d5c8891c
+ - true
+ - Domain
+ - Domain
+ - true
+ - 0
+
+
+
+
+ -
+ 14165
+ 5364
+ 41
+ 20
+
+ -
+ 14187
+ 5374
+
+
+
+
+
+
+
+ - Curve with new domain.
+ - ed3ec7e8-0919-40b1-ba85-4d0a5c4a6884
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14236
+ 5344
+ 41
+ 20
+
+ -
+ 14258
+ 5354
+
+
+
+
+
+
+
+ - Domain of original curve.
+ - 27c34c8f-207d-457e-b731-e3b60290a9db
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 14236
+ 5364
+ 41
+ 20
+
+ -
+ 14258
+ 5374
+
+
+
+
+
+
+
+
+
+
+
+ - 429cbba9-55ee-4e84-98ea-876c44db879a
+ - Sub Curve
+
+
+
+
+ - Construct a curve from the sub-domain of a base curve.
+ - true
+ - 7b213b96-e17b-456d-ad30-40abe337bbab
+ - true
+ - Sub Curve
+ - Sub Curve
+
+
+
+
+ -
+ 14159
+ 5156
+ 124
+ 44
+
+ -
+ 14233
+ 5178
+
+
+
+
+
+ - Base curve
+ - 906f829e-51de-4f4a-9ff3-4a267aeec2d3
+ - true
+ - Base curve
+ - Base curve
+ - false
+ - ed3ec7e8-0919-40b1-ba85-4d0a5c4a6884
+ - 1
+
+
+
+
+ -
+ 14161
+ 5158
+ 57
+ 20
+
+ -
+ 14191
+ 5168
+
+
+
+
+
+
+
+ - Sub-domain to extract
+ - 8671c79d-4307-409c-ac8e-0d2a445dd560
+ - true
+ - Domain
+ - Domain
+ - false
+ - 8eb97c76-eb9f-48c8-9612-d1b43ebbd702
+ - 1
+
+
+
+
+ -
+ 14161
+ 5178
+ 57
+ 20
+
+ -
+ 14191
+ 5188
+
+
+
+
+
+
+
+ - Resulting sub curve
+ - e28d5d2e-89dd-4827-85f5-e2e51f7fb521
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14248
+ 5158
+ 33
+ 40
+
+ -
+ 14266
+ 5178
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 32cf64eb-77e3-47c3-b29f-62154dec420f
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 14169
+ 5280
+ 104
+ 44
+
+ -
+ 14227
+ 5302
+
+
+
+
+
+ - Base domain
+ - 51fb18cd-b90b-40e9-9ad0-e930de0d3f5e
+ - true
+ - Domain
+ - Domain
+ - false
+ - 27c34c8f-207d-457e-b731-e3b60290a9db
+ - 1
+
+
+
+
+ -
+ 14171
+ 5282
+ 41
+ 40
+
+ -
+ 14193
+ 5302
+
+
+
+
+
+
+
+ - Start of domain
+ - 3751a54b-d1e2-4c42-8628-0a159963cec7
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 14242
+ 5282
+ 29
+ 20
+
+ -
+ 14258
+ 5292
+
+
+
+
+
+
+
+ - End of domain
+ - 570c62b9-9108-47c6-9eaa-216ba72a2455
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 14242
+ 5302
+ 29
+ 20
+
+ -
+ 14258
+ 5312
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - 5b7c8774-56f8-42e4-bf79-9877cd6b989a
+ - true
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 14143
+ 5218
+ 156
+ 44
+
+ -
+ 14241
+ 5240
+
+
+
+
+
+ - Start value of numeric domain
+ - 22fa7f17-f5da-40b4-8863-2c88b10ec655
+ - X/8
+ - true
+ - Domain start
+ - Domain start
+ - false
+ - 570c62b9-9108-47c6-9eaa-216ba72a2455
+ - 1
+
+
+
+
+ -
+ 14145
+ 5220
+ 81
+ 20
+
+ -
+ 14195
+ 5230
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - b6f88ef2-8810-41e8-ae51-ffc2cdf72cb2
+ - X*5/8
+ - true
+ - Domain end
+ - Domain end
+ - false
+ - 570c62b9-9108-47c6-9eaa-216ba72a2455
+ - 1
+
+
+
+
+ -
+ 14145
+ 5240
+ 81
+ 20
+
+ -
+ 14195
+ 5250
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - 8eb97c76-eb9f-48c8-9612-d1b43ebbd702
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 14256
+ 5220
+ 41
+ 40
+
+ -
+ 14278
+ 5240
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 2ec48aa0-7402-4ddd-b500-bcfd1a1aa573
+ - true
+ - Move
+ - Move
+
+
+
+
+ -
+ 14152
+ 5094
+ 138
+ 44
+
+ -
+ 14220
+ 5116
+
+
+
+
+
+ - Base geometry
+ - f8152c64-e40d-4b71-bb87-55154d01b43e
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - e28d5d2e-89dd-4827-85f5-e2e51f7fb521
+ - 1
+
+
+
+
+ -
+ 14154
+ 5096
+ 51
+ 20
+
+ -
+ 14181
+ 5106
+
+
+
+
+
+
+
+ - Translation vector
+ - af49a999-8441-471b-9c57-83312322e672
+ - true
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 14154
+ 5116
+ 51
+ 20
+
+ -
+ 14181
+ 5126
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -0.5
+ -0.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - bc56f6fb-d650-47f3-8d71-7e9e9e3c0fcd
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5096
+ 53
+ 20
+
+ -
+ 14263
+ 5106
+
+
+
+
+
+
+
+ - Transformation data
+ - 5f161da1-07b5-46b9-b8bd-ad83b10a137e
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5116
+ 53
+ 20
+
+ -
+ 14263
+ 5126
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - eefdf17f-2113-431d-95b3-ae53cd004df8
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14152
+ 5012
+ 138
+ 64
+
+ -
+ 14220
+ 5044
+
+
+
+
+
+ - Base geometry
+ - 73e0633a-d04f-4133-ae51-48174c988f9e
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - bc56f6fb-d650-47f3-8d71-7e9e9e3c0fcd
+ - 1
+
+
+
+
+ -
+ 14154
+ 5014
+ 51
+ 20
+
+ -
+ 14181
+ 5024
+
+
+
+
+
+
+
+ - Center of scaling
+ - 3d4f3445-c33e-4002-9028-64d983a31393
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14154
+ 5034
+ 51
+ 20
+
+ -
+ 14181
+ 5044
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 458e71c8-1595-4d92-ae8a-3224e12907ad
+ - true
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 14154
+ 5054
+ 51
+ 20
+
+ -
+ 14181
+ 5064
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - a63d6f9b-92ab-4a73-8a8c-f1af180d3bbc
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5014
+ 53
+ 30
+
+ -
+ 14263
+ 5029
+
+
+
+
+
+
+
+ - Transformation data
+ - bc976f17-f482-49e6-8c51-77a28370063a
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14235
+ 5044
+ 53
+ 30
+
+ -
+ 14263
+ 5059
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 619e43ea-a120-4fab-9439-afa674d35b7e
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 14137
+ 4848
+ 168
+ 64
+
+ -
+ 14184
+ 4880
+
+
+
+
+
+ - Input point
+ - 692b111f-81c9-413e-af24-fc033d7b22d6
+ - true
+ - Point
+ - Point
+ - false
+ - 7572c58f-0269-435e-9399-fdf575ea00ba
+ - 1
+
+
+
+
+ -
+ 14139
+ 4850
+ 30
+ 60
+
+ -
+ 14155.5
+ 4880
+
+
+
+
+
+
+
+ - Point {x} component
+ - d46a2e9b-cf34-47c3-9abd-1bfccd68cb57
+ - true
+ - 2
+ - X component
+ - X component
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 14199
+ 4850
+ 104
+ 20
+
+ -
+ 14234.5
+ 4860
+
+
+
+
+
+
+
+ - Point {y} component
+ - 9cdd5043-0ca1-4a2a-9517-9ba56e5a9d2d
+ - true
+ - 2
+ - Y component
+ - Y component
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 14199
+ 4870
+ 104
+ 20
+
+ -
+ 14234.5
+ 4880
+
+
+
+
+
+
+
+ - Point {z} component
+ - 68cee5b5-1a0c-414a-b42f-283a736eae0f
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 14199
+ 4890
+ 104
+ 20
+
+ -
+ 14234.5
+ 4900
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 6e4f0f3c-ab3d-4848-ae83-8423b238e701
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 14158
+ 4930
+ 125
+ 64
+
+ -
+ 14208
+ 4962
+
+
+
+
+
+ - Curve to divide
+ - 4326514c-02cd-4318-bd8f-7c6612541ce4
+ - true
+ - Curve
+ - Curve
+ - false
+ - a63d6f9b-92ab-4a73-8a8c-f1af180d3bbc
+ - 1
+
+
+
+
+ -
+ 14160
+ 4932
+ 33
+ 20
+
+ -
+ 14178
+ 4942
+
+
+
+
+
+
+
+ - Number of segments
+ - e9df65e3-97f0-47bf-97c6-e75623abd4bc
+ - true
+ - Count
+ - Count
+ - false
+ - 9cc45261-b02e-4259-9e30-07f8e180b8a3
+ - 1
+
+
+
+
+ -
+ 14160
+ 4952
+ 33
+ 20
+
+ -
+ 14178
+ 4962
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 4607a3e8-e812-4cd6-bb96-1800ca21fff9
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 14160
+ 4972
+ 33
+ 20
+
+ -
+ 14178
+ 4982
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 7572c58f-0269-435e-9399-fdf575ea00ba
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14223
+ 4932
+ 58
+ 20
+
+ -
+ 14253.5
+ 4942
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 40fb623b-2279-43dc-acba-322373661414
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 14223
+ 4952
+ 58
+ 20
+
+ -
+ 14253.5
+ 4962
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 56615695-3f7f-46b4-a0b7-69d010edea23
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 14223
+ 4972
+ 58
+ 20
+
+ -
+ 14253.5
+ 4982
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c188a258-5114-47ba-a541-5d1a01b556cc
+ - true
+ - Panel
+
+ - false
+ - 0
+ - c0ec556d-72a4-4920-addc-a25ff2e1e4be
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14316
+ 4330
+ 181
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 14316.53
+ 4330.292
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7c43d191-00a5-4c0d-b322-e5061edff1ea
+ - true
+ - Panel
+
+ - false
+ - 0
+ - a0441a5a-2668-4e8c-b7fc-12917502af54
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13953
+ 4330
+ 181
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 13953.73
+ 4330.292
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 2013e425-8713-42e2-a661-b57e78840337
+ - Concatenate
+
+
+
+
+ - Concatenate some fragments of text
+ - true
+ - 1bd31810-4c01-4950-b1a0-29cc3d316a9b
+ - true
+ - Concatenate
+ - Concatenate
+
+
+
+
+ -
+ 14174
+ 4235
+ 93
+ 64
+
+ -
+ 14200
+ 4267
+
+
+
+
+
+ - 3
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 1
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+
+
+
+
+ - First text fragment
+ - e3887edc-d139-4aeb-be02-b05144212562
+ - true
+ - Fragment A
+
+ - true
+ - 7c43d191-00a5-4c0d-b322-e5061edff1ea
+ - 1
+
+
+
+
+ -
+ 14176
+ 4237
+ 9
+ 20
+
+ -
+ 14182
+ 4247
+
+
+
+
+
+
+
+ - Second text fragment
+ - f5683864-7c84-4d00-a36a-8541771e0f35
+ - true
+ - Fragment B
+
+ - true
+ - f94b8dec-f42d-4a01-b6ff-da3f549f8b30
+ - 1
+
+
+
+
+ -
+ 14176
+ 4257
+ 9
+ 20
+
+ -
+ 14182
+ 4267
+
+
+
+
+
+
+
+ - Third text fragment
+ - 553d771c-20da-4de2-b911-f77033af3a50
+ - true
+ - Fragment A
+
+ - true
+ - c188a258-5114-47ba-a541-5d1a01b556cc
+ - 1
+
+
+
+
+ -
+ 14176
+ 4277
+ 9
+ 20
+
+ -
+ 14182
+ 4287
+
+
+
+
+
+
+
+ - Resulting text consisting of all the fragments
+ - e47489ce-947c-436c-877c-c81e4a5e7b13
+ - true
+ - 1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14215
+ 4237
+ 50
+ 60
+
+ -
+ 14233.5
+ 4267
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b22abe4a-d6ea-4ecd-9217-7ee811022f89
+ - true
+ - Panel
+
+ - false
+ - 0
+ - e47489ce-947c-436c-877c-c81e4a5e7b13
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14049
+ 3937
+ 350
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 14049.72
+ 3937.652
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 5a4eac60-4579-4169-adb8-3bff092e8404
+ - true
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 14174
+ 4757
+ 93
+ 28
+
+ -
+ 14213
+ 4771
+
+
+
+
+
+ - 1
+ - Base list
+ - 329d4e52-e590-4168-9b90-df419aae0516
+ - true
+ - List
+ - List
+ - false
+ - 7572c58f-0269-435e-9399-fdf575ea00ba
+ - 1
+
+
+
+
+ -
+ 14176
+ 4759
+ 22
+ 24
+
+ -
+ 14188.5
+ 4771
+
+
+
+
+
+
+
+ - Number of items in L
+ - 99d769f2-5d60-4f73-8631-ccffc8011575
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14228
+ 4759
+ 37
+ 24
+
+ -
+ 14248
+ 4771
+
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 935a4e27-0ed1-4c7f-bf85-72097409dfad
+ - true
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 14151
+ 4674
+ 140
+ 64
+
+ -
+ 14210
+ 4706
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 68fbaf93-b1cc-445b-b92a-aab258d1644a
+ - true
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 14153
+ 4676
+ 42
+ 20
+
+ -
+ 14175.5
+ 4686
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_String
+ - false
+ - ;
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - f65f88ac-c79b-4d2a-b9b7-1a1674aca4d9
+ - true
+ - Number
+ - Number
+ - false
+ - 99d769f2-5d60-4f73-8631-ccffc8011575
+ - 1
+
+
+
+
+ -
+ 14153
+ 4696
+ 42
+ 20
+
+ -
+ 14175.5
+ 4706
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - d2a93bf6-60fb-4842-8daa-dda4ab94980d
+ - true
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 14153
+ 4716
+ 42
+ 20
+
+ -
+ 14175.5
+ 4726
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 150762f9-c5aa-4a4d-b6d7-6f411b9beb0c
+ - true
+ - 2
+ - Data
+ - Data
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 14225
+ 4676
+ 64
+ 60
+
+ -
+ 14240.5
+ 4706
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",X)
+ - true
+ - 78676aa6-d630-4afc-9928-fb1b343389e0
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14111
+ 4803
+ 219
+ 28
+
+ -
+ 14211
+ 4817
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d7e2d80b-6ab2-458b-a564-1bacb2b40d82
+ - true
+ - Variable X
+ - X
+ - true
+ - d46a2e9b-cf34-47c3-9abd-1bfccd68cb57
+ - 1
+
+
+
+
+ -
+ 14113
+ 4805
+ 14
+ 24
+
+ -
+ 14121.5
+ 4817
+
+
+
+
+
+
+
+ - Result of expression
+ - a0441a5a-2668-4e8c-b7fc-12917502af54
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14294
+ 4805
+ 34
+ 24
+
+ -
+ 14312.5
+ 4817
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",Y)
+ - true
+ - 105c7a8a-c93d-47b9-af1f-5d0a78ade9ac
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14112
+ 4628
+ 218
+ 28
+
+ -
+ 14211
+ 4642
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - eabf4994-4c69-4fb2-9c2f-32dc63698d53
+ - true
+ - Variable Y
+ - Y
+ - true
+ - 9cdd5043-0ca1-4a2a-9517-9ba56e5a9d2d
+ - 1
+
+
+
+
+ -
+ 14114
+ 4630
+ 13
+ 24
+
+ -
+ 14122
+ 4642
+
+
+
+
+
+
+
+ - Result of expression
+ - c0ec556d-72a4-4920-addc-a25ff2e1e4be
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14294
+ 4630
+ 34
+ 24
+
+ -
+ 14312.5
+ 4642
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f94b8dec-f42d-4a01-b6ff-da3f549f8b30
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 150762f9-c5aa-4a4d-b6d7-6f411b9beb0c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14134
+ 4331
+ 181
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 14134.63
+ 4331.261
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
+ - 391fa384-4978-4146-9509-512cbdc302c5
+ - 05c68ab6-a4a6-4531-b120-cd1f09e2ec7b
+ - 57c99f13-3937-47f8-9b4a-59d033ef07aa
+ - 8e038213-7c24-4b93-8b8f-587867a7e2ae
+ - 87b5a07c-0959-48af-b3ea-1850aab4001c
+ - 49c9c7fd-8ff8-4fd2-812a-32a26c6caa11
+ - 2e2550a6-0f32-4b90-92f0-a88401c43eb5
+ - 7b213b96-e17b-456d-ad30-40abe337bbab
+ - 32cf64eb-77e3-47c3-b29f-62154dec420f
+ - 5b7c8774-56f8-42e4-bf79-9877cd6b989a
+ - 2ec48aa0-7402-4ddd-b500-bcfd1a1aa573
+ - eefdf17f-2113-431d-95b3-ae53cd004df8
+ - 619e43ea-a120-4fab-9439-afa674d35b7e
+ - 6e4f0f3c-ab3d-4848-ae83-8423b238e701
+ - c188a258-5114-47ba-a541-5d1a01b556cc
+ - 7c43d191-00a5-4c0d-b322-e5061edff1ea
+ - 1bd31810-4c01-4950-b1a0-29cc3d316a9b
+ - b22abe4a-d6ea-4ecd-9217-7ee811022f89
+ - 5a4eac60-4579-4169-adb8-3bff092e8404
+ - 935a4e27-0ed1-4c7f-bf85-72097409dfad
+ - 78676aa6-d630-4afc-9928-fb1b343389e0
+ - 105c7a8a-c93d-47b9-af1f-5d0a78ade9ac
+ - f94b8dec-f42d-4a01-b6ff-da3f549f8b30
+ - a0ba8fac-f83b-475c-87c1-b7d4071e7084
+ - 1e6793b9-7876-44c3-81db-1f581a66cc6f
+ - 3d6e8a3d-110b-4477-9808-a3778be44782
+ - 9cc45261-b02e-4259-9e30-07f8e180b8a3
+ - 109e374b-4a2e-479b-9c78-4a16f0374be6
+ - 95f96cf7-23b6-4aba-a210-769d38bbb41c
+ - d112c991-f144-4804-bdab-b416453265b1
+ - 31
+ - 78fe944a-9bbd-4518-a13c-f4d11f1f61cd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - eb12b45e-e57a-4979-9ae6-195bec0817cc
+ - true
+ - Curve
+ - Curve
+ - false
+ - 2c62e475-50df-4188-ac09-8024f05be84e
+ - 1
+
+
+
+
+ -
+ 13486
+ 5106
+ 50
+ 24
+
+ -
+ 13511.43
+ 5118.921
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 5f716f01-b809-441a-87bc-b0e3f99103e3
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 13434
+ 4930
+ 148
+ 64
+
+ -
+ 13481
+ 4962
+
+
+
+
+
+ - Input point
+ - 89d0a090-e62e-4893-bb65-2ca861c9b120
+ - true
+ - Point
+ - Point
+ - false
+ - e928512a-abc1-483c-bb4a-342192a50806
+ - 1
+
+
+
+
+ -
+ 13436
+ 4932
+ 30
+ 60
+
+ -
+ 13452.5
+ 4962
+
+
+
+
+
+
+
+ - Point {x} component
+ - 4440b01d-0727-488c-b655-f93cd16a720e
+ - true
+ - 2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 13496
+ 4932
+ 84
+ 20
+
+ -
+ 13531.5
+ 4942
+
+
+
+
+
+
+
+ - Point {y} component
+ - 6b0a7edd-e6c0-47a0-8363-8ecf033a1975
+ - true
+ - 2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 13496
+ 4952
+ 84
+ 20
+
+ -
+ 13531.5
+ 4962
+
+
+
+
+
+
+
+ - Point {z} component
+ - 867b8623-1bac-49a9-8148-1bb73db2132a
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 13496
+ 4972
+ 84
+ 20
+
+ -
+ 13531.5
+ 4982
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - f6912693-e9d0-43ec-adb1-42336dd047c2
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 13445
+ 5013
+ 125
+ 64
+
+ -
+ 13495
+ 5045
+
+
+
+
+
+ - Curve to divide
+ - 85e31ae8-ed79-457f-8aa1-e97d69f0e2b0
+ - true
+ - Curve
+ - Curve
+ - false
+ - eb12b45e-e57a-4979-9ae6-195bec0817cc
+ - 1
+
+
+
+
+ -
+ 13447
+ 5015
+ 33
+ 20
+
+ -
+ 13465
+ 5025
+
+
+
+
+
+
+
+ - Number of segments
+ - 281188f5-08fc-45b5-9296-0e61d6ceaf1b
+ - true
+ - Count
+ - Count
+ - false
+ - 1c624bab-037b-49da-8d79-e902bf35524d
+ - 1
+
+
+
+
+ -
+ 13447
+ 5035
+ 33
+ 20
+
+ -
+ 13465
+ 5045
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 57785e03-c562-49f4-a08a-deae7e2bbc6d
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 13447
+ 5055
+ 33
+ 20
+
+ -
+ 13465
+ 5065
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - e928512a-abc1-483c-bb4a-342192a50806
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 13510
+ 5015
+ 58
+ 20
+
+ -
+ 13540.5
+ 5025
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 1f3b5ed3-f417-41b2-921e-be18a6eb525a
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 13510
+ 5035
+ 58
+ 20
+
+ -
+ 13540.5
+ 5045
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 26cf8e6c-4987-4589-9b48-2a625d096ea5
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 13510
+ 5055
+ 58
+ 20
+
+ -
+ 13540.5
+ 5065
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b3a72a53-7382-458b-becc-3846cbbe9bd8
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 3f7c5dba-b728-47a8-ad2a-b092b6ddcd39
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13597
+ 4318
+ 172
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 13597.43
+ 4318.551
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf
+ - true
+ - Panel
+
+ - false
+ - 1
+ - c316a043-8820-4d2c-97ec-4950f3274d54
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13252
+ 4318
+ 172
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 13252.94
+ 4318.912
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 2013e425-8713-42e2-a661-b57e78840337
+ - Concatenate
+
+
+
+
+ - Concatenate some fragments of text
+ - true
+ - 9872d5d2-39a4-4ec9-adc7-34328fee7da2
+ - true
+ - Concatenate
+ - Concatenate
+
+
+
+
+ -
+ 13461
+ 4223
+ 93
+ 64
+
+ -
+ 13487
+ 4255
+
+
+
+
+
+ - 3
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 1
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+
+
+
+
+ - First text fragment
+ - ef656576-c493-481f-ae0c-c6891cba1a56
+ - true
+ - Fragment A
+
+ - true
+ - bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf
+ - 1
+
+
+
+
+ -
+ 13463
+ 4225
+ 9
+ 20
+
+ -
+ 13469
+ 4235
+
+
+
+
+
+
+
+ - Second text fragment
+ - 86018d3f-98ba-416b-b295-c0bffa1d76de
+ - true
+ - Fragment B
+
+ - true
+ - 90365ad6-e298-473a-86cb-d4633ee6db2f
+ - 1
+
+
+
+
+ -
+ 13463
+ 4245
+ 9
+ 20
+
+ -
+ 13469
+ 4255
+
+
+
+
+
+
+
+ - Third text fragment
+ - a8d20419-37a2-40c8-a92a-d5af32a1a3ef
+ - true
+ - Fragment A
+
+ - true
+ - b3a72a53-7382-458b-becc-3846cbbe9bd8
+ - 1
+
+
+
+
+ -
+ 13463
+ 4265
+ 9
+ 20
+
+ -
+ 13469
+ 4275
+
+
+
+
+
+
+
+ - Resulting text consisting of all the fragments
+ - 4d12f9f7-cab6-4b98-9042-bb2352899f85
+ - true
+ - 1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13502
+ 4225
+ 50
+ 60
+
+ -
+ 13520.5
+ 4255
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e9a82133-4720-4769-90c5-47f7ce7ac89c
+ - true
+ - Panel
+
+ - false
+ - 0.53023098409175873
+ - 4d12f9f7-cab6-4b98-9042-bb2352899f85
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13335
+ 3926
+ 350
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 13335.66
+ 3926.851
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 2282d336-365c-4bdb-b9c9-f6153d2023fd
+ - true
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 13461
+ 4791
+ 93
+ 28
+
+ -
+ 13500
+ 4805
+
+
+
+
+
+ - 1
+ - Base list
+ - 2011b464-fc7a-4d43-b880-9a7d071e906f
+ - true
+ - List
+ - List
+ - false
+ - e928512a-abc1-483c-bb4a-342192a50806
+ - 1
+
+
+
+
+ -
+ 13463
+ 4793
+ 22
+ 24
+
+ -
+ 13475.5
+ 4805
+
+
+
+
+
+
+
+ - Number of items in L
+ - b5b9a4a5-3ee0-42a1-a18a-fdaa72576c56
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13515
+ 4793
+ 37
+ 24
+
+ -
+ 13535
+ 4805
+
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 96613f16-8c7e-4e3e-9244-f130eb890b95
+ - true
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 13438
+ 4708
+ 140
+ 64
+
+ -
+ 13497
+ 4740
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 7d490ed8-969e-4a1e-98c8-52e5f066545f
+ - true
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 13440
+ 4710
+ 42
+ 20
+
+ -
+ 13462.5
+ 4720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_String
+ - false
+ - ,
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - d9c03fee-a0fb-4d7a-84c1-6f5ef7eff5dc
+ - true
+ - Number
+ - Number
+ - false
+ - b5b9a4a5-3ee0-42a1-a18a-fdaa72576c56
+ - 1
+
+
+
+
+ -
+ 13440
+ 4730
+ 42
+ 20
+
+ -
+ 13462.5
+ 4740
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - e4d4fa99-bb30-4b43-81ed-fefc20bda121
+ - true
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 13440
+ 4750
+ 42
+ 20
+
+ -
+ 13462.5
+ 4760
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 4c47a8cd-b9b0-461a-a5dd-9a48a45b66a3
+ - true
+ - 2
+ - Data
+ - Data
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 13512
+ 4710
+ 64
+ 60
+
+ -
+ 13527.5
+ 4740
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",X)
+ - true
+ - 87a4439e-5ed1-4725-98bb-f7d115ff7478
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13390
+ 4884
+ 235
+ 28
+
+ -
+ 13490
+ 4898
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ede71a7a-bac6-4b77-8756-ed81f96fc065
+ - true
+ - Variable X
+ - X
+ - true
+ - 4440b01d-0727-488c-b655-f93cd16a720e
+ - 1
+
+
+
+
+ -
+ 13392
+ 4886
+ 14
+ 24
+
+ -
+ 13400.5
+ 4898
+
+
+
+
+
+
+
+ - Result of expression
+ - c316a043-8820-4d2c-97ec-4950f3274d54
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 13573
+ 4886
+ 50
+ 24
+
+ -
+ 13591.5
+ 4898
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",Y)
+ - true
+ - b30c2f20-07f0-4998-a514-8066fc6a1a12
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13391
+ 4661
+ 234
+ 28
+
+ -
+ 13490
+ 4675
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9accc4fb-e73f-4433-a286-c59ae478fb26
+ - true
+ - Variable Y
+ - Y
+ - true
+ - 6b0a7edd-e6c0-47a0-8363-8ecf033a1975
+ - 1
+
+
+
+
+ -
+ 13393
+ 4663
+ 13
+ 24
+
+ -
+ 13401
+ 4675
+
+
+
+
+
+
+
+ - Result of expression
+ - 3f7c5dba-b728-47a8-ad2a-b092b6ddcd39
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 13573
+ 4663
+ 50
+ 24
+
+ -
+ 13591.5
+ 4675
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 90365ad6-e298-473a-86cb-d4633ee6db2f
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 4c47a8cd-b9b0-461a-a5dd-9a48a45b66a3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13425
+ 4318
+ 172
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 13425.46
+ 4318.702
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eb12b45e-e57a-4979-9ae6-195bec0817cc
+ - d8eea3ec-5157-4ac0-92dd-492058fad237
+ - 59c8374e-36a2-40df-af0f-1946fb9c4c2e
+ - 6a58cb78-3aa0-4c67-9585-8364f6f684f5
+ - 2aafa1cf-f50a-4433-9467-6e2ba9b0a462
+ - 2ac06252-6a62-48fb-9825-5298bdbe9536
+ - 30aa3e57-dd88-4f54-ad69-4b2473594537
+ - 3662d19c-7316-4361-b4a3-db2bbd218382
+ - b60eeacc-25e7-4f56-826d-40476555687d
+ - 71a4b562-3bee-43d5-9fb6-1c99bc3cd4cb
+ - ee5295ed-8446-4093-9cff-155530db048a
+ - 10338e33-43fc-4848-9f86-5e4608e349ae
+ - 5c73a0f5-f091-4315-897f-65bd97a0d6aa
+ - 5f716f01-b809-441a-87bc-b0e3f99103e3
+ - f6912693-e9d0-43ec-adb1-42336dd047c2
+ - b3a72a53-7382-458b-becc-3846cbbe9bd8
+ - bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf
+ - 9872d5d2-39a4-4ec9-adc7-34328fee7da2
+ - e9a82133-4720-4769-90c5-47f7ce7ac89c
+ - 2282d336-365c-4bdb-b9c9-f6153d2023fd
+ - 96613f16-8c7e-4e3e-9244-f130eb890b95
+ - 87a4439e-5ed1-4725-98bb-f7d115ff7478
+ - b30c2f20-07f0-4998-a514-8066fc6a1a12
+ - 90365ad6-e298-473a-86cb-d4633ee6db2f
+ - dbba226e-a179-44e2-9128-0825b4dea6d8
+ - 6ccf331f-85f1-4064-857f-79b781e718d5
+ - ad7bb29b-12e4-46ba-bd41-fb424d75c5d9
+ - 1c624bab-037b-49da-8d79-e902bf35524d
+ - 0d7b8cff-2594-4e45-ab9e-2f5f1341fd9b
+ - f6313031-c550-4d1d-8f43-99d56b12c44c
+ - 30
+ - e409bbb2-316f-409c-95e6-3f4b7c2dc8b6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - VB Script
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - dbba226e-a179-44e2-9128-0825b4dea6d8
+ - true
+ - VB Script
+ - TxtWriter
+ - true
+ - 0
+ - If activate Then
+
+ Dim i As Integer
+ Dim aryText(4) As String
+
+ aryText(0) = "Mary WriteLine"
+ aryText(1) = "Had"
+ aryText(2) = "Another"
+ aryText(3) = "Little"
+ aryText(4) = "One"
+
+ ' the data is appended to the file. If file doesnt exist, a new file is created
+ Dim objWriter As New System.IO.StreamWriter(filePath, append)
+
+ For i = 0 To data.Count - 1
+ objWriter.WriteLine(data(i))
+ Next
+
+ objWriter.Close()
+
+ End If
+
+ If clearFile Then
+ Dim objWriter As New System.IO.StreamWriter(filePath, False)
+ objWriter.Close()
+ End If
+
+
+
+
+
+ -
+ 13450
+ 3748
+ 115
+ 104
+
+ -
+ 13526
+ 3800
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable filePath
+ - a23fff20-bfb8-4cc6-9e17-fcd7a01790a8
+ - true
+ - filePath
+ - filePath
+ - true
+ - 0
+ - true
+ - 6ccf331f-85f1-4064-857f-79b781e718d5
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 13452
+ 3750
+ 59
+ 20
+
+ -
+ 13491
+ 3760
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable data
+ - 72d8161f-b538-4ae5-9384-58bbcb9cf13d
+ - true
+ - 1
+ - data
+ - data
+ - true
+ - 1
+ - true
+ - e9a82133-4720-4769-90c5-47f7ce7ac89c
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 13452
+ 3770
+ 59
+ 20
+
+ -
+ 13491
+ 3780
+
+
+
+
+
+
+
+ - true
+ - Script Variable append
+ - 0c4995db-4b39-40f5-8333-6c42d3a67924
+ - true
+ - append
+ - append
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 13452
+ 3790
+ 59
+ 20
+
+ -
+ 13491
+ 3800
+
+
+
+
+
+
+
+ - true
+ - Script Variable activate
+ - 71dd2150-8eb6-430d-8654-4fcf43527fdf
+ - true
+ - activate
+ - activate
+ - true
+ - 0
+ - true
+ - ad7bb29b-12e4-46ba-bd41-fb424d75c5d9
+ - 1
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 13452
+ 3810
+ 59
+ 20
+
+ -
+ 13491
+ 3820
+
+
+
+
+
+
+
+ - true
+ - Script Variable clearFile
+ - cd661c15-4878-4982-b105-55468f1c7b12
+ - true
+ - clearFile
+ - clearFile
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 13452
+ 3830
+ 59
+ 20
+
+ -
+ 13491
+ 3840
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 55b76fbc-c929-4370-963b-82599d65189f
+ - true
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 13541
+ 3750
+ 22
+ 50
+
+ -
+ 13553.5
+ 3775
+
+
+
+
+
+
+
+ - Output parameter A
+ - dc1f9c8e-fa52-4000-8ad6-e630813683e2
+ - true
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 13541
+ 3800
+ 22
+ 50
+
+ -
+ 13553.5
+ 3825
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 06953bda-1d37-4d58-9b38-4b3c74e54c8f
+ - File Path
+
+
+
+
+ - Contains a collection of file paths
+ - false
+ - All files|*.*
+ - 6ccf331f-85f1-4064-857f-79b781e718d5
+ - true
+ - File Path
+ - File Path
+ - false
+ - 0
+
+
+
+
+ -
+ 13486
+ 3883
+ 50
+ 24
+
+ -
+ 13511.12
+ 3895.681
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+ - C:\VSC.O____STNEMGES_48361____DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID____16384_SEGMENTS____O.CSV
+
+
+
+
+
+
+
+
+
+
+
+
+ - a8b97322-2d53-47cd-905e-b932c3ccd74e
+ - Button
+
+
+
+
+ - Button object with two values
+ - False
+ - True
+ - ad7bb29b-12e4-46ba-bd41-fb424d75c5d9
+ - true
+ - Button
+
+ - false
+ - 0
+
+
+
+
+ -
+ 13475
+ 3726
+ 66
+ 22
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - VB Script
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - a0ba8fac-f83b-475c-87c1-b7d4071e7084
+ - true
+ - VB Script
+ - TxtWriter
+ - true
+ - 0
+ - If activate Then
+
+ Dim i As Integer
+ Dim aryText(4) As String
+
+ aryText(0) = "Mary WriteLine"
+ aryText(1) = "Had"
+ aryText(2) = "Another"
+ aryText(3) = "Little"
+ aryText(4) = "One"
+
+ ' the data is appended to the file. If file doesnt exist, a new file is created
+ Dim objWriter As New System.IO.StreamWriter(filePath, append)
+
+ For i = 0 To data.Count - 1
+ objWriter.WriteLine(data(i))
+ Next
+
+ objWriter.Close()
+
+ End If
+
+ If clearFile Then
+ Dim objWriter As New System.IO.StreamWriter(filePath, False)
+ objWriter.Close()
+ End If
+
+
+
+
+
+ -
+ 14163
+ 3760
+ 115
+ 104
+
+ -
+ 14239
+ 3812
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable filePath
+ - c90dafc0-991b-4b24-b372-26f3457b24f4
+ - true
+ - filePath
+ - filePath
+ - true
+ - 0
+ - true
+ - 1e6793b9-7876-44c3-81db-1f581a66cc6f
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 14165
+ 3762
+ 59
+ 20
+
+ -
+ 14204
+ 3772
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable data
+ - 9a8a9cfe-d534-4b28-bd9c-3166283e3d8e
+ - true
+ - 1
+ - data
+ - data
+ - true
+ - 1
+ - true
+ - b22abe4a-d6ea-4ecd-9217-7ee811022f89
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 14165
+ 3782
+ 59
+ 20
+
+ -
+ 14204
+ 3792
+
+
+
+
+
+
+
+ - true
+ - Script Variable append
+ - 49879d42-8c70-443c-96f2-8e94c165a300
+ - true
+ - append
+ - append
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 14165
+ 3802
+ 59
+ 20
+
+ -
+ 14204
+ 3812
+
+
+
+
+
+
+
+ - true
+ - Script Variable activate
+ - 67010aa9-6eee-435c-81ac-14a2beb83430
+ - true
+ - activate
+ - activate
+ - true
+ - 0
+ - true
+ - 3d6e8a3d-110b-4477-9808-a3778be44782
+ - 1
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 14165
+ 3822
+ 59
+ 20
+
+ -
+ 14204
+ 3832
+
+
+
+
+
+
+
+ - true
+ - Script Variable clearFile
+ - af9a7a01-6d0a-4d7a-bc79-9a0507585127
+ - true
+ - clearFile
+ - clearFile
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 14165
+ 3842
+ 59
+ 20
+
+ -
+ 14204
+ 3852
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 9c6f31cd-da7a-4aef-b4d7-b8908e1751b9
+ - true
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 14254
+ 3762
+ 22
+ 50
+
+ -
+ 14266.5
+ 3787
+
+
+
+
+
+
+
+ - Output parameter A
+ - 961bc7c5-a1af-472e-9695-84c8c25be36c
+ - true
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 14254
+ 3812
+ 22
+ 50
+
+ -
+ 14266.5
+ 3837
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 06953bda-1d37-4d58-9b38-4b3c74e54c8f
+ - File Path
+
+
+
+
+ - Contains a collection of file paths
+ - false
+ - All files|*.*
+ - 1e6793b9-7876-44c3-81db-1f581a66cc6f
+ - true
+ - File Path
+ - File Path
+ - false
+ - 0
+
+
+
+
+ -
+ 14200
+ 3895
+ 50
+ 24
+
+ -
+ 14225.3
+ 3907.431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+ - C:\VSC.O____EPAHS_LANGIS____STNEMGES_48361____DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID____16384_SEGMENTS____SIGNAL_SHAPE____O.CSV
+
+
+
+
+
+
+
+
+
+
+
+
+ - a8b97322-2d53-47cd-905e-b932c3ccd74e
+ - Button
+
+
+
+
+ - Button object with two values
+ - False
+ - True
+ - 3d6e8a3d-110b-4477-9808-a3778be44782
+ - true
+ - Button
+
+ - false
+ - 0
+
+
+
+
+ -
+ 14188
+ 3720
+ 66
+ 22
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b6df8fad-340c-4555-a43a-639976bc59fe
+ - true
+ - Panel
+
+ - false
+ - 1
+ - c3df9ab9-ce47-48e9-994e-14f1d7735c94
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12511
+ 3892
+ 194
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 12511.15
+ 3892.481
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 47d36a7d-3cd2-4782-9f53-9f4088b19d4b
+ - X*4
+ - true
+ - Number
+ - Number
+ - false
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - 1
+
+
+
+
+ -
+ 12752
+ 5827
+ 53
+ 24
+
+ -
+ 12788.34
+ 5839.792
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 1c624bab-037b-49da-8d79-e902bf35524d
+ - true
+ - Number
+ - Number
+ - false
+ - 931b1327-0f41-42e6-b1eb-00468f33d6c8
+ - 1
+
+
+
+
+ -
+ 13495
+ 5148
+ 50
+ 24
+
+ -
+ 13520.43
+ 5160.391
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 9cc45261-b02e-4259-9e30-07f8e180b8a3
+ - X*4
+ - true
+ - Number
+ - Number
+ - false
+ - e02db1d3-13e3-4587-a331-19c777c3db08
+ - 1
+
+
+
+
+ -
+ 14198
+ 6043
+ 53
+ 24
+
+ -
+ 14234.53
+ 6055.111
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a4a55193-86eb-40c0-8f54-9e700ffb5262
+ - true
+ - Curve
+ - Curve
+ - false
+ - e15c0da3-15dc-4bcb-8939-2c5ec5698b15
+ - 1
+
+
+
+
+ -
+ 12753
+ 5785
+ 50
+ 24
+
+ -
+ 12778.51
+ 5797.582
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 84f4a890-2b31-4a54-b2a5-49681a5484c7
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12508
+ 4261
+ 194
+ 28
+
+ -
+ 12608
+ 4275
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 94f9eda3-bd56-4fd8-861a-2825f6c8b43f
+ - true
+ - Variable O
+ - O
+ - true
+ - 0b7cd3a8-2836-435f-b6ae-6abbe8053e01
+ - 1
+
+
+
+
+ -
+ 12510
+ 4263
+ 14
+ 24
+
+ -
+ 12518.5
+ 4275
+
+
+
+
+
+
+
+ - Result of expression
+ - 005faa35-deb5-475f-bb9e-bf2deeb54731
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 12691
+ 4263
+ 9
+ 24
+
+ -
+ 12697
+ 4275
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c20dd2aa-56ce-4ff5-8e86-52afad8c2c96
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12850
+ 4261
+ 194
+ 28
+
+ -
+ 12950
+ 4275
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 10578647-61a2-434e-9cb2-13331d6797ac
+ - true
+ - Variable O
+ - O
+ - true
+ - ccd28879-e08a-4aaa-95c3-f7812fa57d94
+ - 1
+
+
+
+
+ -
+ 12852
+ 4263
+ 14
+ 24
+
+ -
+ 12860.5
+ 4275
+
+
+
+
+
+
+
+ - Result of expression
+ - 7fa81195-a3d3-4cb0-a588-f06d82c50a40
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13033
+ 4263
+ 9
+ 24
+
+ -
+ 13039
+ 4275
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000}",O)
+ - true
+ - 5ccec4b3-fea6-45d3-8cbe-91c674ae3851
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12446
+ 4233
+ 318
+ 28
+
+ -
+ 12608
+ 4247
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 150fabf1-ca09-423e-b50c-caeaf17f351a
+ - true
+ - Variable O
+ - O
+ - true
+ - 0b7cd3a8-2836-435f-b6ae-6abbe8053e01
+ - 1
+
+
+
+
+ -
+ 12448
+ 4235
+ 14
+ 24
+
+ -
+ 12456.5
+ 4247
+
+
+
+
+
+
+
+ - Result of expression
+ - 9d725916-6db6-4992-991f-cb735f009979
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 12753
+ 4235
+ 9
+ 24
+
+ -
+ 12759
+ 4247
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000}",O)
+ - true
+ - ff82ce22-4075-4b1a-9609-55239f281a35
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12788
+ 4233
+ 318
+ 28
+
+ -
+ 12950
+ 4247
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d746fd29-ce1c-41d1-81f2-fdf9c5f169de
+ - true
+ - Variable O
+ - O
+ - true
+ - ccd28879-e08a-4aaa-95c3-f7812fa57d94
+ - 1
+
+
+
+
+ -
+ 12790
+ 4235
+ 14
+ 24
+
+ -
+ 12798.5
+ 4247
+
+
+
+
+
+
+
+ - Result of expression
+ - bdc74c8b-0903-4034-9228-c3b65ca33ade
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13095
+ 4235
+ 9
+ 24
+
+ -
+ 13101
+ 4247
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - Data
+
+
+
+
+ - Contains a collection of generic data
+ - true
+ - 377c7605-11b6-4673-94de-cc5176b48b51
+ - true
+ - Data
+ - Data
+ - false
+ - 7fa81195-a3d3-4cb0-a588-f06d82c50a40
+ - 1
+
+
+
+
+ -
+ 12924
+ 4203
+ 50
+ 24
+
+ -
+ 12949.51
+ 4215.431
+
+
+
+
+
+
+
+
+
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - Data
+
+
+
+
+ - Contains a collection of generic data
+ - true
+ - c3df9ab9-ce47-48e9-994e-14f1d7735c94
+ - true
+ - Data
+ - Data
+ - false
+ - 005faa35-deb5-475f-bb9e-bf2deeb54731
+ - 1
+
+
+
+
+ -
+ 12582
+ 4203
+ 50
+ 24
+
+ -
+ 12607.51
+ 4215.912
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 431dbfbf-14de-4cae-b7cc-93329a70f66c
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12707
+ 5348
+ 138
+ 64
+
+ -
+ 12775
+ 5380
+
+
+
+
+
+ - Base geometry
+ - 535babb8-98b7-4909-b3b3-e6e549c1c92a
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - a4a55193-86eb-40c0-8f54-9e700ffb5262
+ - 1
+
+
+
+
+ -
+ 12709
+ 5350
+ 51
+ 20
+
+ -
+ 12736
+ 5360
+
+
+
+
+
+
+
+ - Center of scaling
+ - 9ad4454f-9f59-40e3-be99-632d1a1461a3
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12709
+ 5370
+ 51
+ 20
+
+ -
+ 12736
+ 5380
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 444ebc82-f6a0-4084-8984-dd4c66d945bf
+ - true
+ - Factor
+ - Factor
+ - false
+ - 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
+ - 1
+
+
+
+
+ -
+ 12709
+ 5390
+ 51
+ 20
+
+ -
+ 12736
+ 5400
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 2979390f-d371-4b3d-81eb-02a4ec91d8aa
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 12790
+ 5350
+ 53
+ 30
+
+ -
+ 12818
+ 5365
+
+
+
+
+
+
+
+ - Transformation data
+ - 3c95fe8e-b4a3-4ade-9777-00ba055b0e82
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 12790
+ 5380
+ 53
+ 30
+
+ -
+ 12818
+ 5395
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - ff436794-13e0-4e1f-80d6-7f5a87203812
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12707
+ 5265
+ 138
+ 64
+
+ -
+ 12775
+ 5297
+
+
+
+
+
+ - Base geometry
+ - e2e063e4-7a57-4670-b883-9610ae650a01
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 38f60d72-95b9-474c-a523-e27fbbd26166
+ - 1
+
+
+
+
+ -
+ 12709
+ 5267
+ 51
+ 20
+
+ -
+ 12736
+ 5277
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7d0b0dfa-0f1c-4ed6-8e42-8083399ec7d1
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12709
+ 5287
+ 51
+ 20
+
+ -
+ 12736
+ 5297
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 03c65af6-f9df-4a0c-8c8d-2be13ae05be2
+ - true
+ - Factor
+ - Factor
+ - false
+ - 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
+ - 1
+
+
+
+
+ -
+ 12709
+ 5307
+ 51
+ 20
+
+ -
+ 12736
+ 5317
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1000
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 05d9ac10-8297-4558-bcc4-512a79bb9aef
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 12790
+ 5267
+ 53
+ 30
+
+ -
+ 12818
+ 5282
+
+
+
+
+
+
+
+ - Transformation data
+ - 4299bd6c-069d-4df0-b014-c60c42cf8307
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 12790
+ 5297
+ 53
+ 30
+
+ -
+ 12818
+ 5312
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 3eeef9bc-d5a9-4e6a-b71c-b4dfe8f6b841
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12699
+ 5119
+ 154
+ 64
+
+ -
+ 12783
+ 5151
+
+
+
+
+
+ - Base geometry
+ - 2c95390f-c055-43de-a302-eea659970034
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 8f680386-5218-475e-a977-751a09d1b381
+ - 1
+
+
+
+
+ -
+ 12701
+ 5121
+ 67
+ 20
+
+ -
+ 12744
+ 5131
+
+
+
+
+
+
+
+ - Center of scaling
+ - 3a890d52-159e-41a4-813d-beb71d5c9b4a
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12701
+ 5141
+ 67
+ 20
+
+ -
+ 12744
+ 5151
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 0a0662f4-f3b0-42c3-babc-bae1f1d8d4d4
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
+ - 1
+
+
+
+
+ -
+ 12701
+ 5161
+ 67
+ 20
+
+ -
+ 12744
+ 5171
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1000
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - bc8d2834-7710-4101-8531-0bee4494488a
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 12798
+ 5121
+ 53
+ 30
+
+ -
+ 12826
+ 5136
+
+
+
+
+
+
+
+ - Transformation data
+ - 346351ac-a4dd-4b84-b239-5abf88a81ea2
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 12798
+ 5151
+ 53
+ 30
+
+ -
+ 12826
+ 5166
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
+ - true
+ - Relay
+
+ - false
+ - 878ef2e7-03c9-4c81-ab95-3f6612107a06
+ - 1
+
+
+
+
+ -
+ 12756
+ 5412
+ 40
+ 16
+
+ -
+ 12776
+ 5420
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 74e89f85-5cd3-4475-b942-4195b9b26127
+ - true
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 11
+
+ - 65536.0
+
+
+
+
+ -
+ 12653
+ 5501
+ 250
+ 20
+
+ -
+ 12653.73
+ 5501.082
+
+
+
+
+
+
+
+
+
+ - 84627490-0fb2-4498-8138-ad134ee4cb36
+ - Curve | Curve
+
+
+
+
+ - Solve intersection events for two curves.
+ - true
+ - e32b8a72-3026-4389-9167-05dd22abd69e
+ - true
+ - Curve | Curve
+ - Curve | Curve
+
+
+
+
+ -
+ 12703
+ 5201
+ 146
+ 64
+
+ -
+ 12764
+ 5233
+
+
+
+
+
+ - First curve
+ - d663952a-5d9a-4e44-9b51-a361869661a8
+ - true
+ - Curve A
+ - Curve A
+ - false
+ - 2979390f-d371-4b3d-81eb-02a4ec91d8aa
+ - 1
+
+
+
+
+ -
+ 12705
+ 5203
+ 44
+ 30
+
+ -
+ 12728.5
+ 5218
+
+
+
+
+
+
+
+ - Second curve
+ - 4a95121f-390e-453e-9934-7dc6daa08f5c
+ - true
+ - Curve B
+ - Curve B
+ - false
+ - 05d9ac10-8297-4558-bcc4-512a79bb9aef
+ - 1
+
+
+
+
+ -
+ 12705
+ 5233
+ 44
+ 30
+
+ -
+ 12728.5
+ 5248
+
+
+
+
+
+
+
+ - 1
+ - Intersection events
+ - 8f680386-5218-475e-a977-751a09d1b381
+ - true
+ - 1
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 12779
+ 5203
+ 68
+ 20
+
+ -
+ 12806.5
+ 5213
+
+
+
+
+
+
+
+ - 1
+ - Parameters on first curve
+ - 7312b7f3-a9b2-4cf7-9fcb-b816dbf4b790
+ - true
+ - Params A
+ - Params A
+ - false
+ - 0
+
+
+
+
+ -
+ 12779
+ 5223
+ 68
+ 20
+
+ -
+ 12806.5
+ 5233
+
+
+
+
+
+
+
+ - 1
+ - Parameters on second curve
+ - 54580081-ce6c-42c4-94fd-fd0ef709e245
+ - true
+ - Params B
+ - Params B
+ - false
+ - 0
+
+
+
+
+ -
+ 12779
+ 5243
+ 68
+ 20
+
+ -
+ 12806.5
+ 5253
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - b9b95f50-9e5f-4c1f-9c6b-75e6fd956e6e
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 12692
+ 4951
+ 168
+ 64
+
+ -
+ 12739
+ 4983
+
+
+
+
+
+ - Input point
+ - 9691647a-31ba-4d02-8adf-58cd81f7b5cc
+ - true
+ - Point
+ - Point
+ - false
+ - bc8d2834-7710-4101-8531-0bee4494488a
+ - 1
+
+
+
+
+ -
+ 12694
+ 4953
+ 30
+ 60
+
+ -
+ 12710.5
+ 4983
+
+
+
+
+
+
+
+ - Point {x} component
+ - b486aa7d-f6a1-4814-b3cf-438ef0cca74b
+ - ABS(X)
+ - true
+ - 2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 12754
+ 4953
+ 104
+ 20
+
+ -
+ 12789.5
+ 4963
+
+
+
+
+
+
+
+ - Point {y} component
+ - 7048b7e4-2b82-4636-addb-a3fc267cbf8e
+ - ABS(X)
+ - true
+ - 2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 12754
+ 4973
+ 104
+ 20
+
+ -
+ 12789.5
+ 4983
+
+
+
+
+
+
+
+ - Point {z} component
+ - c48c8651-0127-48e2-8179-5e6f8376cd04
+ - ABS(X)
+ - true
+ - 2
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 12754
+ 4993
+ 104
+ 20
+
+ -
+ 12789.5
+ 5003
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 8fbbff63-ce96-4927-842d-2fd30969fea0
+ - true
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 12729
+ 5072
+ 93
+ 28
+
+ -
+ 12768
+ 5086
+
+
+
+
+
+ - 1
+ - Base list
+ - 6490099b-4346-4da0-87fe-2ce6e2bb25ca
+ - true
+ - List
+ - List
+ - false
+ - bc8d2834-7710-4101-8531-0bee4494488a
+ - 1
+
+
+
+
+ -
+ 12731
+ 5074
+ 22
+ 24
+
+ -
+ 12743.5
+ 5086
+
+
+
+
+
+
+
+ - Number of items in L
+ - 21f3c613-50f4-4a4f-87c2-37cfe1944c59
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12783
+ 5074
+ 37
+ 24
+
+ -
+ 12803
+ 5086
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 21f3c613-50f4-4a4f-87c2-37cfe1944c59
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12753
+ 5044
+ 50
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12753.64
+ 5044.721
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9445ca40-cc73-4861-a455-146308676855
+ - Range
+
+
+
+
+ - Create a range of numbers.
+ - true
+ - e0516fed-bf3c-4077-8700-ea6a5d8fd259
+ - true
+ - Range
+ - Range
+
+
+
+
+ -
+ 12713
+ 4743
+ 126
+ 44
+
+ -
+ 12787
+ 4765
+
+
+
+
+
+ - Domain of numeric range
+ - b48f44ac-2a16-467a-928e-3aac4e3b52ed
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0303c363-c34f-496f-bac0-3710a5f8be4b
+ - 1
+
+
+
+
+ -
+ 12715
+ 4745
+ 57
+ 20
+
+ -
+ 12753
+ 4755
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Number of steps
+ - f707cf1c-d935-4b7a-855b-75a23f57f628
+ - X-2
+ - true
+ - Steps
+ - Steps
+ - false
+ - 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
+ - 1
+
+
+
+
+ -
+ 12715
+ 4765
+ 57
+ 20
+
+ -
+ 12753
+ 4775
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Range of numbers
+ - f21a2bc8-f755-4872-bdce-aa048e0bdaa6
+ - true
+ - Range
+ - Range
+ - false
+ - 0
+
+
+
+
+ -
+ 12802
+ 4745
+ 35
+ 40
+
+ -
+ 12821
+ 4765
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - c376d704-0c1b-47cd-9bc3-72920e4bfead
+ - true
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 12698
+ 4805
+ 156
+ 44
+
+ -
+ 12796
+ 4827
+
+
+
+
+
+ - Start value of numeric domain
+ - 3a3b46e2-d11f-4046-bb4b-163f2e97c77d
+ - true
+ - Domain start
+ - Domain start
+ - false
+ - 0
+
+
+
+
+ -
+ 12700
+ 4807
+ 81
+ 20
+
+ -
+ 12750
+ 4817
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - dd78b44c-eb2d-4532-8861-76b8ae124f11
+ - X-2
+ - true
+ - Domain end
+ - Domain end
+ - false
+ - 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
+ - 1
+
+
+
+
+ -
+ 12700
+ 4827
+ 81
+ 20
+
+ -
+ 12750
+ 4837
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - 0303c363-c34f-496f-bac0-3710a5f8be4b
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 12811
+ 4807
+ 41
+ 40
+
+ -
+ 12833
+ 4827
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 9e30a520-265b-486e-a6d0-566777e09451
+ - true
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 12723
+ 4659
+ 106
+ 64
+
+ -
+ 12787
+ 4691
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 545715ba-a983-47e9-99b0-90738844316b
+ - true
+ - 1
+ - List
+ - List
+ - false
+ - 4113c65f-aeda-403a-bd7b-e956ee7d8850
+ - 1
+
+
+
+
+ -
+ 12725
+ 4661
+ 47
+ 20
+
+ -
+ 12758
+ 4671
+
+
+
+
+
+
+
+ - Item index
+ - a01827ce-2506-4ae1-a7c4-8d1d98fbde8f
+ - true
+ - Index
+ - Index
+ - false
+ - f21a2bc8-f755-4872-bdce-aa048e0bdaa6
+ - 1
+
+
+
+
+ -
+ 12725
+ 4681
+ 47
+ 20
+
+ -
+ 12758
+ 4691
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 9a23e5fd-c798-4468-9248-0ed9d8c620e0
+ - true
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 12725
+ 4701
+ 47
+ 20
+
+ -
+ 12758
+ 4711
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 491b4f9f-15b4-4a31-b218-8efc762778e3
+ - true
+ - 1
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 12802
+ 4661
+ 25
+ 60
+
+ -
+ 12808
+ 4691
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3581f42a-9592-4549-bd6b-1c0fc39d067b
+ - Construct Point
+
+
+
+
+ - Construct a point from {xyz} coordinates.
+ - true
+ - 11c2aced-e753-46f2-bc94-82c65cf9d659
+ - true
+ - Construct Point
+ - Construct Point
+
+
+
+
+ -
+ 12703
+ 4576
+ 145
+ 64
+
+ -
+ 12785
+ 4608
+
+
+
+
+
+ - {x} coordinate
+ - 773d5f0f-95c0-42aa-8bfd-fb61807d5c99
+ - true
+ - X coordinate
+ - X coordinate
+ - false
+ - 0
+
+
+
+
+ -
+ 12705
+ 4578
+ 65
+ 20
+
+ -
+ 12739
+ 4588
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - {y} coordinate
+ - 7b2fbd6d-d0a0-4121-9253-5c6ac9e9f763
+ - true
+ - Y coordinate
+ - Y coordinate
+ - false
+ - 0
+
+
+
+
+ -
+ 12705
+ 4598
+ 65
+ 20
+
+ -
+ 12739
+ 4608
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - {z} coordinate
+ - 6cabc128-7571-4ab6-8707-6b677c5773d2
+ - true
+ - Z coordinate
+ - Z coordinate
+ - false
+ - 0
+
+
+
+
+ -
+ 12705
+ 4618
+ 65
+ 20
+
+ -
+ 12739
+ 4628
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Point coordinate
+ - 5c03ce7b-657d-446c-93c8-a977f6b2ff83
+ - true
+ - 1
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 12800
+ 4578
+ 46
+ 60
+
+ -
+ 12816.5
+ 4608
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - dbbe7cdd-1102-4fb8-9b97-609a8d9fa450
+ - true
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 12689
+ 4493
+ 174
+ 64
+
+ -
+ 12757
+ 4525
+
+
+
+
+
+ - Base geometry
+ - e4f07825-ecca-4d9c-83e0-7ac2829d9654
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 491b4f9f-15b4-4a31-b218-8efc762778e3
+ - 1
+
+
+
+
+ -
+ 12691
+ 4495
+ 51
+ 20
+
+ -
+ 12718
+ 4505
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 89bbb4e4-d7ab-4f46-9dd3-e676f0f789d8
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 12691
+ 4515
+ 51
+ 20
+
+ -
+ 12718
+ 4525
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - c98d6df7-a5d5-4a90-86c5-0c4bfa86f7f0
+ - true
+ - Plane
+ - Plane
+ - false
+ - 5c03ce7b-657d-446c-93c8-a977f6b2ff83
+ - 1
+
+
+
+
+ -
+ 12691
+ 4535
+ 51
+ 20
+
+ -
+ 12718
+ 4545
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 0d4bbc48-88bc-4b87-beae-ef8b19c22fad
+ - true
+ - 1
+ - Geometry
+ - Geometry
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 12772
+ 4495
+ 89
+ 30
+
+ -
+ 12800
+ 4510
+
+
+
+
+
+
+
+ - Transformation data
+ - fd0c334d-96af-47d5-b15a-fbe52889d2ad
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 12772
+ 4525
+ 89
+ 30
+
+ -
+ 12800
+ 4540
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d9ec1ef5-676f-48f2-92d9-91fe8fd24407
+ - 1f4605c1-9dbc-43c9-9132-f66d279638cf
+ - 9d3bb84a-af3e-4616-8f79-46bdd551a731
+ - 7f1d4dec-c817-4bcb-8251-77aff2d99383
+ - 4
+ - 31971a09-e2f8-415e-b91f-27183d2502ab
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3581f42a-9592-4549-bd6b-1c0fc39d067b
+ - Construct Point
+
+
+
+
+ - Construct a point from {xyz} coordinates.
+ - true
+ - 8ec0c145-f345-40f1-b548-bdeae4656453
+ - true
+ - Construct Point
+ - Construct Point
+
+
+
+
+ -
+ 12711
+ 4869
+ 129
+ 64
+
+ -
+ 12793
+ 4901
+
+
+
+
+
+ - {x} coordinate
+ - ef971293-49dd-46bc-a9c2-f111f8b3c18d
+ - true
+ - X coordinate
+ - X coordinate
+ - false
+ - b486aa7d-f6a1-4814-b3cf-438ef0cca74b
+ - 1
+
+
+
+
+ -
+ 12713
+ 4871
+ 65
+ 20
+
+ -
+ 12747
+ 4881
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {y} coordinate
+ - 365fb45d-7784-45bf-accf-51778b039137
+ - true
+ - Y coordinate
+ - Y coordinate
+ - false
+ - 7048b7e4-2b82-4636-addb-a3fc267cbf8e
+ - 1
+
+
+
+
+ -
+ 12713
+ 4891
+ 65
+ 20
+
+ -
+ 12747
+ 4901
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {z} coordinate
+ - cbcb329a-d34b-4956-a4ae-c46e163bc3bc
+ - true
+ - Z coordinate
+ - Z coordinate
+ - false
+ - c48c8651-0127-48e2-8179-5e6f8376cd04
+ - 1
+
+
+
+
+ -
+ 12713
+ 4911
+ 65
+ 20
+
+ -
+ 12747
+ 4921
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Point coordinate
+ - 4113c65f-aeda-403a-bd7b-e956ee7d8850
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 12808
+ 4871
+ 30
+ 60
+
+ -
+ 12824.5
+ 4901
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fb10ff99-648c-4894-877f-9f74f536f80b
+ - 42c748e2-6b54-4ec4-8f80-278f307ae0c2
+ - bd126e88-c131-4b1c-89af-0295006e1a7e
+ - ffe7ddf2-2629-4b1b-9093-40905fccbf9c
+ - 4
+ - dff2d18f-b44d-4334-8ed3-7a80aaa034b2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 8398b5f4-fd6c-4c31-b15b-85d87dd315bc
+ - true
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 12732
+ 4390
+ 87
+ 84
+
+ -
+ 12768
+ 4432
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - a97d8f7a-cae8-4d4b-8dbf-44cec9080f23
+ - true
+ - false
+ - Data 1
+ - D1
+ - true
+ - 491b4f9f-15b4-4a31-b218-8efc762778e3
+ - 1
+
+
+
+
+ -
+ 12734
+ 4392
+ 19
+ 20
+
+ -
+ 12745
+ 4402
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - e4056e67-c874-44dc-9e8a-585885bf4a19
+ - true
+ - false
+ - Data 2
+ - D2
+ - true
+ - 5c03ce7b-657d-446c-93c8-a977f6b2ff83
+ - 1
+
+
+
+
+ -
+ 12734
+ 4412
+ 19
+ 20
+
+ -
+ 12745
+ 4422
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 67f0aac8-1206-4ea8-93f9-27b6f45c2741
+ - true
+ - false
+ - Data 3
+ - D3
+ - true
+ - 0d4bbc48-88bc-4b87-beae-ef8b19c22fad
+ - 1
+
+
+
+
+ -
+ 12734
+ 4432
+ 19
+ 20
+
+ -
+ 12745
+ 4442
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - 5e3bfd68-e2f3-499b-ab68-9c445051efe3
+ - true
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ 12734
+ 4452
+ 19
+ 20
+
+ -
+ 12745
+ 4462
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - e370e985-4ce7-46a6-9272-61e578a1277f
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 12783
+ 4392
+ 34
+ 80
+
+ -
+ 12801.5
+ 4432
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 878ef2e7-03c9-4c81-ab95-3f6612107a06
+ - true
+ - Number
+ - Number
+ - false
+ - 74e89f85-5cd3-4475-b942-4195b9b26127
+ - 1
+
+
+
+
+ -
+ 12753
+ 5457
+ 50
+ 24
+
+ -
+ 12778.84
+ 5469.211
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 65536
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8ec0c145-f345-40f1-b548-bdeae4656453
+ - 1
+ - 759a9424-cadf-4276-8b23-6f50b024aaa8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e15c0da3-15dc-4bcb-8939-2c5ec5698b15
+ - Relay
+
+ - false
+ - 09336dd8-3c4b-476c-b62d-d3b399ef2780
+ - 1
+
+
+
+
+ -
+ -2409
+ 17401
+ 40
+ 16
+
+ -
+ -2389
+ 17409
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",ROUND(X, 15))
+ - true
+ - 0d7b8cff-2594-4e45-ab9e-2f5f1341fd9b
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13345
+ 4837
+ 326
+ 28
+
+ -
+ 13490
+ 4851
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f80f3bcd-a545-45b0-bb2c-9b22a3d97200
+ - true
+ - Variable X
+ - X
+ - true
+ - 4440b01d-0727-488c-b655-f93cd16a720e
+ - 1
+
+
+
+
+ -
+ 13347
+ 4839
+ 14
+ 24
+
+ -
+ 13355.5
+ 4851
+
+
+
+
+
+
+
+ - Result of expression
+ - 1af3d812-d361-4591-832f-34ad39b46812
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 13619
+ 4839
+ 50
+ 24
+
+ -
+ 13637.5
+ 4851
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",ROUND(Y, 15))
+ - true
+ - f6313031-c550-4d1d-8f43-99d56b12c44c
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13345
+ 4616
+ 325
+ 28
+
+ -
+ 13489
+ 4630
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7ce655c3-f528-4834-9984-15478742baa2
+ - true
+ - Variable Y
+ - Y
+ - true
+ - 6b0a7edd-e6c0-47a0-8363-8ecf033a1975
+ - 1
+
+
+
+
+ -
+ 13347
+ 4618
+ 13
+ 24
+
+ -
+ 13355
+ 4630
+
+
+
+
+
+
+
+ - Result of expression
+ - ac13e7bf-b02b-40c3-97b3-55d6fb7c2433
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 13618
+ 4618
+ 50
+ 24
+
+ -
+ 13636.5
+ 4630
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 22990b1f-9be6-477c-ad89-f775cd347105
+ - Flip Curve
+
+
+
+
+ - Flip a curve using an optional guide curve.
+ - true
+ - 109e374b-4a2e-479b-9c78-4a16f0374be6
+ - true
+ - Flip Curve
+ - Flip Curve
+
+
+
+
+ -
+ 14171
+ 5524
+ 100
+ 44
+
+ -
+ 14221
+ 5546
+
+
+
+
+
+ - Curve to flip
+ - 7941a2a5-8fb8-4bec-ba86-6ddf24efa4ff
+ - true
+ - Curve
+ - Curve
+ - false
+ - 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0
+ - 1
+
+
+
+
+ -
+ 14173
+ 5526
+ 33
+ 20
+
+ -
+ 14191
+ 5536
+
+
+
+
+
+
+
+ - Optional guide curve
+ - c7a0a6b9-4199-4d42-b407-00be7c1ec496
+ - true
+ - Guide
+ - Guide
+ - true
+ - 0
+
+
+
+
+ -
+ 14173
+ 5546
+ 33
+ 20
+
+ -
+ 14191
+ 5556
+
+
+
+
+
+
+
+ - Flipped curve
+ - 453387b1-bbdb-436b-a38f-26663ecda336
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14236
+ 5526
+ 33
+ 20
+
+ -
+ 14254
+ 5536
+
+
+
+
+
+
+
+ - Flip action
+ - 2a41d5da-d734-4b6c-a309-ee64c2cafce3
+ - true
+ - Flag
+ - Flag
+ - false
+ - 0
+
+
+
+
+ -
+ 14236
+ 5546
+ 33
+ 20
+
+ -
+ 14254
+ 5556
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 95f96cf7-23b6-4aba-a210-769d38bbb41c
+ - true
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 14187
+ 5404
+ 89
+ 64
+
+ -
+ 14232
+ 5436
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - dcd11d44-a57d-43fb-a60d-81403468801f
+ - true
+ - Gate
+ - Gate
+ - false
+ - d112c991-f144-4804-bdab-b416453265b1
+ - 1
+
+
+
+
+ -
+ 14189
+ 5406
+ 28
+ 20
+
+ -
+ 14204.5
+ 5416
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - bfd95814-63f0-481e-bd33-57f6162181ec
+ - true
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0
+ - 1
+
+
+
+
+ -
+ 14189
+ 5426
+ 28
+ 20
+
+ -
+ 14204.5
+ 5436
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 585c0802-ec70-464a-a377-31d5b8c7a0a0
+ - true
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 453387b1-bbdb-436b-a38f-26663ecda336
+ - 1
+
+
+
+
+ -
+ 14189
+ 5446
+ 28
+ 20
+
+ -
+ 14204.5
+ 5456
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - a4a42a27-5fc4-490b-8303-ab18a562494f
+ - true
+ - false
+ - Stream
+ - S(0)
+ - false
+ - 0
+
+
+
+
+ -
+ 14247
+ 5406
+ 27
+ 60
+
+ -
+ 14262
+ 5436
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - d112c991-f144-4804-bdab-b416453265b1
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14154
+ 5499
+ 150
+ 20
+
+ -
+ 14154.68
+ 5499.282
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8678bd6b-c571-4190-8bed-27a19fbb5a4b
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 25359
+ 12081
+ 50
+ 24
+
+ -
+ 25384.7
+ 12093.21
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8678bd6b-c571-4190-8bed-27a19fbb5a4b
+ - 1
+ - 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 89237e9f-871d-48dd-9eab-340be1f24133
+ - 1
+ - 88f963a4-8bce-4d2b-969a-528dbf52cec6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 45c3e10d-573a-4dad-962c-2e7c9f645ad9
+ - e74e59b2-8cd1-4463-9f9e-699a51228e3e
+ - 908290ff-2ae5-443a-8c02-efd3ed2fe118
+ - 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
+ - 50ab8d1b-85d8-4277-8f06-ed620cbe042a
+ - 8cacd258-ba73-4c62-93cd-8d1e686a3c02
+ - ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
+ - 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
+ - 4c448985-1964-4d98-a54b-8c378b64c191
+ - 383b2bad-9847-47e8-a0fb-694d2a476a78
+ - 88f963a4-8bce-4d2b-969a-528dbf52cec6
+ - 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
+ - eb97d3e3-58d2-4ca4-83ec-e802f3da77ff
+ - f8f514f7-3e33-426a-8203-3b6e245b29bf
+ - b59b106e-8761-4626-a895-2e38e0d747eb
+ - 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f
+ - 5c493b6d-4ec3-4a33-9878-718b9f7f7899
+ - f1ee4950-7f56-4f3d-8d6b-542a35f21276
+ - 693be2ef-8a44-48e6-8210-de71cb311eb1
+ - 2542a3f2-90db-4e1a-8579-508a04e14002
+ - 20
+ - 96e719b4-9a6d-452e-8f37-602b6adb9fa3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 45c3e10d-573a-4dad-962c-2e7c9f645ad9
+ - true
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 25331
+ 13065
+ 104
+ 64
+
+ -
+ 25390
+ 13097
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 6ab95784-ed61-435b-96a0-975d216bf164
+ - true
+ - Data
+ - Data
+ - false
+ - ff663701-35a8-41a9-a9e6-3ed043495116
+ - 1
+
+
+
+
+ -
+ 25333
+ 13067
+ 42
+ 20
+
+ -
+ 25355.5
+ 13077
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 20eb3084-35ca-4289-9219-b2d49c898a33
+ - true
+ - Number
+ - Number
+ - false
+ - 64568223-14eb-4477-af37-fa9297e41d7f
+ - 1
+
+
+
+
+ -
+ 25333
+ 13087
+ 42
+ 20
+
+ -
+ 25355.5
+ 13097
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 681ab8bb-eefc-4d58-b9e9-5392382a6f36
+ - true
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 25333
+ 13107
+ 42
+ 20
+
+ -
+ 25355.5
+ 13117
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 34f0dba0-0301-4b92-a3fe-a19ba56a6ef7
+ - true
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 25405
+ 13067
+ 28
+ 60
+
+ -
+ 25420.5
+ 13097
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - e74e59b2-8cd1-4463-9f9e-699a51228e3e
+ - true
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 25325
+ 11467
+ 116
+ 44
+
+ -
+ 25386
+ 11489
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - d16ee258-d9ab-458a-9bb1-c212d6ddaeca
+ - true
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 34f0dba0-0301-4b92-a3fe-a19ba56a6ef7
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 25327
+ 11469
+ 44
+ 20
+
+ -
+ 25350.5
+ 11479
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 6459e70f-df80-4cc7-813b-b513d9113360
+ - true
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - d5250384-0cfc-461f-8d2e-aed83cb60717
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 25327
+ 11489
+ 44
+ 20
+
+ -
+ 25350.5
+ 11499
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - ef2a9db7-8232-4f58-bc22-400ae95d8013
+ - true
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 25401
+ 11469
+ 38
+ 20
+
+ -
+ 25421.5
+ 11479
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 4b2d6be0-031f-4559-89a4-0096c0e9e848
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 25401
+ 11489
+ 38
+ 20
+
+ -
+ 25421.5
+ 11499
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 908290ff-2ae5-443a-8c02-efd3ed2fe118
+ - true
+ - Point
+ - Point
+ - false
+ - 4b2d6be0-031f-4559-89a4-0096c0e9e848
+ - 1
+
+
+
+
+ -
+ 25359
+ 11086
+ 50
+ 24
+
+ -
+ 25384.81
+ 11098.8
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
+ - true
+ - Series
+ - Series
+
+
+
+
+ -
+ 25333
+ 12522
+ 101
+ 64
+
+ -
+ 25383
+ 12554
+
+
+
+
+
+ - First number in the series
+ - 0657e0c5-7dbf-4982-b197-efc5dcd5b8ad
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 25335
+ 12524
+ 33
+ 20
+
+ -
+ 25353
+ 12534
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - d19029f6-92c1-4cd8-8fcf-c6af38366e01
+ - true
+ - Step
+ - Step
+ - false
+ - ae0232f3-71a2-4c0b-b75d-03d815a4ab4a
+ - 1
+
+
+
+
+ -
+ 25335
+ 12544
+ 33
+ 20
+
+ -
+ 25353
+ 12554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 907ce87c-d3fb-4a83-a928-cbe5a9c019a0
+ - true
+ - Count
+ - Count
+ - false
+ - 64568223-14eb-4477-af37-fa9297e41d7f
+ - 1
+
+
+
+
+ -
+ 25335
+ 12564
+ 33
+ 20
+
+ -
+ 25353
+ 12574
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 49c1b877-fdb3-4465-b110-c6b10cdf2441
+ - true
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 25398
+ 12524
+ 34
+ 60
+
+ -
+ 25416.5
+ 12554
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 50ab8d1b-85d8-4277-8f06-ed620cbe042a
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25310
+ 13245
+ 150
+ 20
+
+ -
+ 25310.63
+ 13245.66
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 8cacd258-ba73-4c62-93cd-8d1e686a3c02
+ - true
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 25323
+ 12733
+ 120
+ 28
+
+ -
+ 25384
+ 12747
+
+
+
+
+
+ - Angle in degrees
+ - 21c53376-7559-40bc-8bdb-6f23af54aebc
+ - true
+ - Degrees
+ - Degrees
+ - false
+ - d461fc59-ff17-43bd-8530-b47d4e0b9d07
+ - 1
+
+
+
+
+ -
+ 25325
+ 12735
+ 44
+ 24
+
+ -
+ 25348.5
+ 12747
+
+
+
+
+
+
+
+ - Angle in radians
+ - 325f27d4-a4e3-4de0-b22e-2b7e9d4d37b4
+ - true
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 25399
+ 12735
+ 42
+ 24
+
+ -
+ 25421.5
+ 12747
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
+ - true
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140216731
+
+
+
+
+ -
+ 25260
+ 13037
+ 250
+ 20
+
+ -
+ 25260.35
+ 13037.21
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
+ - true
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 25333
+ 13147
+ 100
+ 28
+
+ -
+ 25382
+ 13161
+
+
+
+
+
+ - Input value
+ - 6add9a57-8003-4b63-b7e0-cf662a38f736
+ - true
+ - Value
+ - Value
+ - false
+ - 64568223-14eb-4477-af37-fa9297e41d7f
+ - 1
+
+
+
+
+ -
+ 25335
+ 13149
+ 32
+ 24
+
+ -
+ 25352.5
+ 13161
+
+
+
+
+
+
+
+ - Output value
+ - ff663701-35a8-41a9-a9e6-3ed043495116
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 25397
+ 13149
+ 34
+ 24
+
+ -
+ 25415.5
+ 13161
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 383b2bad-9847-47e8-a0fb-694d2a476a78
+ - true
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 25311
+ 10979
+ 144
+ 84
+
+ -
+ 25397
+ 11021
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 56262534-3c57-4f1c-83af-555e0482f4aa
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 908290ff-2ae5-443a-8c02-efd3ed2fe118
+ - 1
+
+
+
+
+ -
+ 25313
+ 10981
+ 69
+ 20
+
+ -
+ 25349
+ 10991
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - c257fa5a-8ab8-4230-840b-c953eaf64795
+ - true
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 11001
+ 69
+ 20
+
+ -
+ 25349
+ 11011
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 79fe44e7-09b5-418d-8178-0d0c98fef165
+ - true
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 11021
+ 69
+ 20
+
+ -
+ 25349
+ 11031
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 08a99958-2a27-4991-abbf-c817c9714716
+ - true
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 11041
+ 69
+ 20
+
+ -
+ 25349
+ 11051
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4050ad2c-5e3d-4904-a320-abd7fe2221d2
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 25412
+ 10981
+ 41
+ 26
+
+ -
+ 25434
+ 10994.33
+
+
+
+
+
+
+
+ - Curve length
+ - 094dfd85-1e34-4fd1-8c16-0b45ca704387
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25412
+ 11007
+ 41
+ 27
+
+ -
+ 25434
+ 11021
+
+
+
+
+
+
+
+ - Curve domain
+ - 6e59181b-1f9a-4a9f-9ee1-f12d89d7b0a8
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 25412
+ 11034
+ 41
+ 27
+
+ -
+ 25434
+ 11047.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 45c3e10d-573a-4dad-962c-2e7c9f645ad9
+ - e74e59b2-8cd1-4463-9f9e-699a51228e3e
+ - 908290ff-2ae5-443a-8c02-efd3ed2fe118
+ - 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
+ - 50ab8d1b-85d8-4277-8f06-ed620cbe042a
+ - 8cacd258-ba73-4c62-93cd-8d1e686a3c02
+ - ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
+ - 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
+ - b53adb78-a001-472e-b4d9-21016d5a1502
+ - d461fc59-ff17-43bd-8530-b47d4e0b9d07
+ - 056f1928-832c-436e-9583-925fe9f79c8d
+ - 24402fa4-4cf6-4928-aa18-97b2fb379b92
+ - 0510202c-a370-465f-bd2a-2d6d989d6cf9
+ - 13
+ - 4c448985-1964-4d98-a54b-8c378b64c191
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 25311
+ 10811
+ 144
+ 64
+
+ -
+ 25385
+ 10843
+
+
+
+
+
+ - Curve to evaluate
+ - 31717ae1-93c2-428d-af92-84c7cf5909de
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4050ad2c-5e3d-4904-a320-abd7fe2221d2
+ - 1
+
+
+
+
+ -
+ 25313
+ 10813
+ 57
+ 20
+
+ -
+ 25343
+ 10823
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - f34e43ea-2b73-42f6-aebc-fea9c02b1efd
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 10833
+ 57
+ 20
+
+ -
+ 25343
+ 10843
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - e5e93e34-4260-4398-a936-af912206afe4
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 10853
+ 57
+ 20
+
+ -
+ 25343
+ 10863
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 1a277a71-111e-4f61-b188-0fbd711c6f12
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10813
+ 53
+ 20
+
+ -
+ 25428
+ 10823
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - beb0d37e-13fa-4d79-bebc-f79d675fa129
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10833
+ 53
+ 20
+
+ -
+ 25428
+ 10843
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e11b4dc8-aa19-4daf-b73a-a85f3773043f
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10853
+ 53
+ 20
+
+ -
+ 25428
+ 10863
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - be5f0e4e-5875-4c70-aa36-870c817df9e1
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 25314
+ 10749
+ 138
+ 44
+
+ -
+ 25382
+ 10771
+
+
+
+
+
+ - Base geometry
+ - af084c56-70bd-42cc-8609-94f4b24be4b3
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 4050ad2c-5e3d-4904-a320-abd7fe2221d2
+ - 1
+
+
+
+
+ -
+ 25316
+ 10751
+ 51
+ 20
+
+ -
+ 25343
+ 10761
+
+
+
+
+
+
+
+ - Mirror plane
+ - 061313de-0895-42fb-a091-c2e0b3409d26
+ - true
+ - Plane
+ - Plane
+ - false
+ - b61e6070-fb9d-4232-bc37-354c6df94646
+ - 1
+
+
+
+
+ -
+ 25316
+ 10771
+ 51
+ 20
+
+ -
+ 25343
+ 10781
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - b3fab030-ec36-413b-bb22-a1a708a15c8d
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 25397
+ 10751
+ 53
+ 20
+
+ -
+ 25425
+ 10761
+
+
+
+
+
+
+
+ - Transformation data
+ - 44d19e6f-1e47-488b-a099-6fe1ebef7448
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 25397
+ 10771
+ 53
+ 20
+
+ -
+ 25425
+ 10781
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 25330
+ 10895
+ 106
+ 64
+
+ -
+ 25394
+ 10927
+
+
+
+
+
+ - Line start point
+ - ff18a17c-fa27-4ca7-a35c-dd81a4c8e840
+ - true
+ - Start
+ - Start
+ - false
+ - 1a277a71-111e-4f61-b188-0fbd711c6f12
+ - 1
+
+
+
+
+ -
+ 25332
+ 10897
+ 47
+ 20
+
+ -
+ 25357
+ 10907
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 0770b59d-c58b-4bbd-b3e6-f1f7ac55dfd7
+ - true
+ - Direction
+ - Direction
+ - false
+ - beb0d37e-13fa-4d79-bebc-f79d675fa129
+ - 1
+
+
+
+
+ -
+ 25332
+ 10917
+ 47
+ 20
+
+ -
+ 25357
+ 10927
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 94054e0a-a900-446c-8edd-2dfd16b0dd8e
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25332
+ 10937
+ 47
+ 20
+
+ -
+ 25357
+ 10947
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - b61e6070-fb9d-4232-bc37-354c6df94646
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 25409
+ 10897
+ 25
+ 60
+
+ -
+ 25423
+ 10927
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - a17b5425-b933-4a96-b022-239c9056d234
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 25324
+ 10687
+ 118
+ 44
+
+ -
+ 25387
+ 10709
+
+
+
+
+
+ - 1
+ - Curves to join
+ - a7d2f32f-0347-4692-a16b-a8fa7c986d30
+ - true
+ - Curves
+ - Curves
+ - false
+ - 4050ad2c-5e3d-4904-a320-abd7fe2221d2
+ - b3fab030-ec36-413b-bb22-a1a708a15c8d
+ - 2
+
+
+
+
+ -
+ 25326
+ 10689
+ 46
+ 20
+
+ -
+ 25350.5
+ 10699
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - cbae510b-8019-476e-bc88-f52db782c55d
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 25326
+ 10709
+ 46
+ 20
+
+ -
+ 25350.5
+ 10719
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 25402
+ 10689
+ 38
+ 40
+
+ -
+ 25422.5
+ 10709
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 25311
+ 10603
+ 144
+ 64
+
+ -
+ 25385
+ 10635
+
+
+
+
+
+ - Curve to evaluate
+ - 6658536e-acb5-403c-a29a-ad84914513d3
+ - true
+ - Curve
+ - Curve
+ - false
+ - 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
+ - 1
+
+
+
+
+ -
+ 25313
+ 10605
+ 57
+ 20
+
+ -
+ 25343
+ 10615
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 9fa261d4-fc4c-4556-af9d-922e95fe9244
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 10625
+ 57
+ 20
+
+ -
+ 25343
+ 10635
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 081a47dd-8367-4a9d-a6d3-8018753b2efd
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 10645
+ 57
+ 20
+
+ -
+ 25343
+ 10655
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 02e1596d-ffca-497b-b85b-2c3356fb951a
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10605
+ 53
+ 20
+
+ -
+ 25428
+ 10615
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - cece903c-8bbe-400e-b48e-6f2a408e9b79
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10625
+ 53
+ 20
+
+ -
+ 25428
+ 10635
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 00ee014d-ef1b-46b9-add5-50183cdd34e5
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10645
+ 53
+ 20
+
+ -
+ 25428
+ 10655
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 6263d839-2890-4f51-a4ca-400b76341a46
+ - true
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 25314
+ 10520
+ 138
+ 64
+
+ -
+ 25382
+ 10552
+
+
+
+
+
+ - Base geometry
+ - 2ea3fff0-67f2-4944-b6bf-ab33219b19f7
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
+ - 1
+
+
+
+
+ -
+ 25316
+ 10522
+ 51
+ 20
+
+ -
+ 25343
+ 10532
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - cc6072d9-502c-4084-8377-d319d0627489
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 25316
+ 10542
+ 51
+ 20
+
+ -
+ 25343
+ 10552
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - ed9be6ab-c7c0-46ee-b2d3-b56c09c4cd47
+ - true
+ - Plane
+ - Plane
+ - false
+ - 02e1596d-ffca-497b-b85b-2c3356fb951a
+ - 1
+
+
+
+
+ -
+ 25316
+ 10562
+ 51
+ 20
+
+ -
+ 25343
+ 10572
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 791ebe5c-87ad-403d-8ff7-ce80d4848513
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 25397
+ 10522
+ 53
+ 30
+
+ -
+ 25425
+ 10537
+
+
+
+
+
+
+
+ - Transformation data
+ - 3a723d4b-2f67-4de6-a78a-7035d42bddd0
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 25397
+ 10552
+ 53
+ 30
+
+ -
+ 25425
+ 10567
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 684dab19-ebc3-4fa2-85ae-30ba890d75cf
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 25324
+ 10457
+ 118
+ 44
+
+ -
+ 25387
+ 10479
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 87b43af7-c729-4e6a-bf68-1a4737d3f489
+ - true
+ - Curves
+ - Curves
+ - false
+ - 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
+ - 791ebe5c-87ad-403d-8ff7-ce80d4848513
+ - 2
+
+
+
+
+ -
+ 25326
+ 10459
+ 46
+ 20
+
+ -
+ 25350.5
+ 10469
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - cb3f2326-ee77-4e90-9a89-5e1313bc7210
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 25326
+ 10479
+ 46
+ 20
+
+ -
+ 25350.5
+ 10489
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 25402
+ 10459
+ 38
+ 40
+
+ -
+ 25422.5
+ 10479
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 383b2bad-9847-47e8-a0fb-694d2a476a78
+ - de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad
+ - be5f0e4e-5875-4c70-aa36-870c817df9e1
+ - a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36
+ - a17b5425-b933-4a96-b022-239c9056d234
+ - bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505
+ - 6263d839-2890-4f51-a4ca-400b76341a46
+ - 684dab19-ebc3-4fa2-85ae-30ba890d75cf
+ - 4204693a-6067-4379-a243-8448862f25b8
+ - 9
+ - 89237e9f-871d-48dd-9eab-340be1f24133
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b60b5335-5a6b-4be3-8839-241b11937a8e
+ - true
+ - Panel
+
+ - false
+ - 0
+ - d689d842-3ece-40aa-8820-e9f429d00049
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25312
+ 12615
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25312.38
+ 12615.96
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4204693a-6067-4379-a243-8448862f25b8
+ - true
+ - Curve
+ - Curve
+ - false
+ - 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8
+ - 1
+
+
+
+
+ -
+ 25360
+ 10426
+ 50
+ 24
+
+ -
+ 25385.22
+ 10438.46
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4204693a-6067-4379-a243-8448862f25b8
+ - 1
+ - 009cb74a-f9f4-4ccd-ab1c-2dd05580acb6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d461fc59-ff17-43bd-8530-b47d4e0b9d07
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0014014999884235925
+
+
+
+
+ -
+ 25165
+ 12790
+ 439
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 25165.93
+ 12790.29
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - e00c36a5-d637-4c31-9c20-859c86dbc3f4
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 25311
+ 10331
+ 144
+ 64
+
+ -
+ 25385
+ 10363
+
+
+
+
+
+ - Curve to evaluate
+ - b4782cdf-a573-4ac8-81d8-3a3c3980821b
+ - true
+ - Curve
+ - Curve
+ - false
+ - 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8
+ - 1
+
+
+
+
+ -
+ 25313
+ 10333
+ 57
+ 20
+
+ -
+ 25343
+ 10343
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a3a4657d-6639-4885-99a7-26365f8b6e4d
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 10353
+ 57
+ 20
+
+ -
+ 25343
+ 10363
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 5d422b99-77f9-44a3-979f-653b421e37ea
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 10373
+ 57
+ 20
+
+ -
+ 25343
+ 10383
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 387b7e56-7c99-49ec-b347-b7060ddde04a
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10333
+ 53
+ 20
+
+ -
+ 25428
+ 10343
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 74164024-be1f-4c52-9f08-9b067cafb8ea
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10353
+ 53
+ 20
+
+ -
+ 25428
+ 10363
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ea18cad0-f4c5-4093-bb76-2acd4555555a
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 10373
+ 53
+ 20
+
+ -
+ 25428
+ 10383
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0258f90b-2449-4f50-9f7c-8ed53b74791e
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 10109
+ 194
+ 28
+
+ -
+ 25386
+ 10123
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7e38885d-ed6b-49da-bc43-e1a84a1d2674
+ - true
+ - Variable O
+ - O
+ - true
+ - 292ef126-835c-4bf0-9893-67488a17c4d9
+ - 1
+
+
+
+
+ -
+ 25288
+ 10111
+ 14
+ 24
+
+ -
+ 25296.5
+ 10123
+
+
+
+
+
+
+
+ - Result of expression
+ - 0d6c0bfc-169e-4f72-9f23-437eb12c8214
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 10111
+ 9
+ 24
+
+ -
+ 25475
+ 10123
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 574c27c9-3452-47a9-97c9-e01fb407b925
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 25317
+ 10243
+ 132
+ 64
+
+ -
+ 25364
+ 10275
+
+
+
+
+
+ - Input point
+ - 62e95adc-4eab-40b5-a64e-95da9b371e6d
+ - true
+ - Point
+ - Point
+ - false
+ - 387b7e56-7c99-49ec-b347-b7060ddde04a
+ - 1
+
+
+
+
+ -
+ 25319
+ 10245
+ 30
+ 60
+
+ -
+ 25335.5
+ 10275
+
+
+
+
+
+
+
+ - Point {x} component
+ - 292ef126-835c-4bf0-9893-67488a17c4d9
+ - true
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 25379
+ 10245
+ 68
+ 20
+
+ -
+ 25414.5
+ 10255
+
+
+
+
+
+
+
+ - Point {y} component
+ - edc4300b-a059-41cf-9529-dd2086a225e5
+ - true
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 25379
+ 10265
+ 68
+ 20
+
+ -
+ 25414.5
+ 10275
+
+
+
+
+
+
+
+ - Point {z} component
+ - 96c2465c-22ba-4da2-90d3-72c71f8e4df3
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 25379
+ 10285
+ 68
+ 20
+
+ -
+ 25414.5
+ 10295
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 0d6c0bfc-169e-4f72-9f23-437eb12c8214
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 10082
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.72
+ 10082.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c36c8810-c429-4a65-81c2-ee9afc72aab1
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 10023
+ 194
+ 28
+
+ -
+ 25386
+ 10037
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1964230e-0424-49b8-94c3-995387b3a5c7
+ - true
+ - Variable O
+ - O
+ - true
+ - edc4300b-a059-41cf-9529-dd2086a225e5
+ - 1
+
+
+
+
+ -
+ 25288
+ 10025
+ 14
+ 24
+
+ -
+ 25296.5
+ 10037
+
+
+
+
+
+
+
+ - Result of expression
+ - 97b9357c-5971-4c4d-a02a-09aa3e756a13
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 10025
+ 9
+ 24
+
+ -
+ 25475
+ 10037
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 37daf086-17fc-4e47-ba8c-391198555b78
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 97b9357c-5971-4c4d-a02a-09aa3e756a13
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 9994
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.72
+ 9994.027
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 44fe1fbd-5b85-4a6f-b9c6-e285398e2914
+ - true
+ - Division
+ - Division
+
+
+
+
+ -
+ 25342
+ 9921
+ 82
+ 44
+
+ -
+ 25373
+ 9943
+
+
+
+
+
+ - Item to divide (dividend)
+ - 018cf40a-ffa3-4db5-8a81-3b3bb2f02f0e
+ - true
+ - A
+ - A
+ - false
+ - c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
+ - 1
+
+
+
+
+ -
+ 25344
+ 9923
+ 14
+ 20
+
+ -
+ 25352.5
+ 9933
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 331475fc-78ae-4bad-b8a5-46a25122b26a
+ - true
+ - B
+ - B
+ - false
+ - 37daf086-17fc-4e47-ba8c-391198555b78
+ - 1
+
+
+
+
+ -
+ 25344
+ 9943
+ 14
+ 20
+
+ -
+ 25352.5
+ 9953
+
+
+
+
+
+
+
+ - The result of the Division
+ - 28d39efb-0253-45f1-b5ef-6bb38788b4d7
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 25388
+ 9923
+ 34
+ 40
+
+ -
+ 25406.5
+ 9943
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a102b448-aa77-41af-b3e1-af7787a09310
+ - true
+ - Panel
+
+ - false
+ - 0
+ - d689d842-3ece-40aa-8820-e9f429d00049
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 9846
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.96
+ 9846.512
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c362505c-12b2-46bf-a82f-8c1d92073bd1
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 9874
+ 194
+ 28
+
+ -
+ 25386
+ 9888
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7759eba8-291f-45e4-b2d5-b4abec07e173
+ - true
+ - Variable O
+ - O
+ - true
+ - 28d39efb-0253-45f1-b5ef-6bb38788b4d7
+ - 1
+
+
+
+
+ -
+ 25288
+ 9876
+ 14
+ 24
+
+ -
+ 25296.5
+ 9888
+
+
+
+
+
+
+
+ - Result of expression
+ - 6de964ed-6bd8-4f74-a7c0-287c5084f789
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 9876
+ 9
+ 24
+
+ -
+ 25475
+ 9888
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d689d842-3ece-40aa-8820-e9f429d00049
+ - true
+ - Relay
+
+ - false
+ - 6de964ed-6bd8-4f74-a7c0-287c5084f789
+ - 1
+
+
+
+
+ -
+ 25363
+ 9799
+ 40
+ 16
+
+ -
+ 25383
+ 9807
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 2f9e1ab9-aab9-423a-812a-3c7da9b498b3
+ - true
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 25342
+ 9736
+ 82
+ 44
+
+ -
+ 25373
+ 9758
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - de86611c-9d46-480d-b637-8e1aefb32d8d
+ - true
+ - A
+ - A
+ - true
+ - 37daf086-17fc-4e47-ba8c-391198555b78
+ - 1
+
+
+
+
+ -
+ 25344
+ 9738
+ 14
+ 20
+
+ -
+ 25352.5
+ 9748
+
+
+
+
+
+
+
+ - Second item for addition
+ - bc9134fb-4752-4d31-a07c-5c8e2da350c8
+ - true
+ - B
+ - B
+ - true
+ - c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
+ - 1
+
+
+
+
+ -
+ 25344
+ 9758
+ 14
+ 20
+
+ -
+ 25352.5
+ 9768
+
+
+
+
+
+
+
+ - Result of addition
+ - 6b249492-ca97-4af2-a06b-2046935f0f14
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 25388
+ 9738
+ 34
+ 40
+
+ -
+ 25406.5
+ 9758
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - a8987895-1926-435c-ac30-b55cbdf38020
+ - true
+ - Division
+ - Division
+
+
+
+
+ -
+ 25342
+ 9586
+ 82
+ 44
+
+ -
+ 25373
+ 9608
+
+
+
+
+
+ - Item to divide (dividend)
+ - f775f3bd-b4f2-420e-a393-77d9dcaecbec
+ - true
+ - A
+ - A
+ - false
+ - 5d38ad1e-9c75-4669-82cd-7bb63c08c77d
+ - 1
+
+
+
+
+ -
+ 25344
+ 9588
+ 14
+ 20
+
+ -
+ 25352.5
+ 9598
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - b3b644bf-1028-4663-bb5c-035f4264887b
+ - true
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 25344
+ 9608
+ 14
+ 20
+
+ -
+ 25352.5
+ 9618
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 416e8064-9f0f-4d9b-b2db-0f65ee086b56
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 25388
+ 9588
+ 34
+ 40
+
+ -
+ 25406.5
+ 9608
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 69ffacb2-16a1-4129-973b-aa48634a37a7
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 9538
+ 194
+ 28
+
+ -
+ 25386
+ 9552
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2a552031-5f82-49f0-b2fe-d6aade26571c
+ - true
+ - Variable O
+ - O
+ - true
+ - 416e8064-9f0f-4d9b-b2db-0f65ee086b56
+ - 1
+
+
+
+
+ -
+ 25288
+ 9540
+ 14
+ 24
+
+ -
+ 25296.5
+ 9552
+
+
+
+
+
+
+
+ - Result of expression
+ - 3fad3673-2f3c-47b3-8ec5-8cc65bc73971
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 9540
+ 9
+ 24
+
+ -
+ 25475
+ 9552
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ea54cb37-f08c-491b-ac20-a65e4389cca7
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 3fad3673-2f3c-47b3-8ec5-8cc65bc73971
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 9510
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.72
+ 9510.367
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5d38ad1e-9c75-4669-82cd-7bb63c08c77d
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 38e7344e-f708-4f88-a876-2c3a66f71082
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 9662
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.72
+ 9662.277
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c531f81c-9d53-4f73-8799-3bd516a3edc6
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 9689
+ 194
+ 28
+
+ -
+ 25386
+ 9703
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0774d1fa-5f5a-41ed-85b3-b904f177db60
+ - true
+ - Variable O
+ - O
+ - true
+ - 6b249492-ca97-4af2-a06b-2046935f0f14
+ - 1
+
+
+
+
+ -
+ 25288
+ 9691
+ 14
+ 24
+
+ -
+ 25296.5
+ 9703
+
+
+
+
+
+
+
+ - Result of expression
+ - 38e7344e-f708-4f88-a876-2c3a66f71082
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 9691
+ 9
+ 24
+
+ -
+ 25475
+ 9703
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 877569dd-746a-480a-b6ae-2a0b26b46cb9
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 25306
+ 9415
+ 154
+ 64
+
+ -
+ 25390
+ 9447
+
+
+
+
+
+ - Base geometry
+ - c3599339-1fb3-49c5-a07b-4b51e97661b2
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 4204693a-6067-4379-a243-8448862f25b8
+ - 1
+
+
+
+
+ -
+ 25308
+ 9417
+ 67
+ 20
+
+ -
+ 25351
+ 9427
+
+
+
+
+
+
+
+ - Center of scaling
+ - 89aef1e9-7140-4a20-8473-07e485ac5ff4
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 25308
+ 9437
+ 67
+ 20
+
+ -
+ 25351
+ 9447
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e977af64-2c2e-4e47-b04e-5b87ea55c42f
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - ea54cb37-f08c-491b-ac20-a65e4389cca7
+ - 1
+
+
+
+
+ -
+ 25308
+ 9457
+ 67
+ 20
+
+ -
+ 25351
+ 9467
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c897da8f-2a84-406d-8949-2463bc806522
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 25405
+ 9417
+ 53
+ 30
+
+ -
+ 25433
+ 9432
+
+
+
+
+
+
+
+ - Transformation data
+ - 22292b14-ceae-42d8-99c3-9457f523f130
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 25405
+ 9447
+ 53
+ 30
+
+ -
+ 25433
+ 9462
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b0780f8b-24b8-49e3-9ca2-ead4f899b3af
+ - true
+ - Curve
+ - Curve
+ - false
+ - c897da8f-2a84-406d-8949-2463bc806522
+ - 1
+
+
+
+
+ -
+ 25359
+ 8826
+ 50
+ 24
+
+ -
+ 25384.7
+ 8838.869
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5104e935-fd94-4795-b481-644285836bda
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 10196
+ 194
+ 28
+
+ -
+ 25386
+ 10210
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e778a8c2-ce9f-4465-88e1-d6389d8f03a5
+ - true
+ - Variable O
+ - O
+ - true
+ - 96c2465c-22ba-4da2-90d3-72c71f8e4df3
+ - 1
+
+
+
+
+ -
+ 25288
+ 10198
+ 14
+ 24
+
+ -
+ 25296.5
+ 10210
+
+
+
+
+
+
+
+ - Result of expression
+ - ee5860d6-07dc-42c1-b491-a363d9b9964c
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 10198
+ 9
+ 24
+
+ -
+ 25475
+ 10210
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ba05c31e-27c7-43c9-bb03-bdcfd5e8adcf
+ - true
+ - Panel
+
+ - false
+ - 0
+ - ee5860d6-07dc-42c1-b491-a363d9b9964c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25305
+ 10168
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25305.59
+ 10168.22
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 77c1dbe1-728b-4cff-a941-f348a22d517d
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 25311
+ 9205
+ 144
+ 64
+
+ -
+ 25385
+ 9237
+
+
+
+
+
+ - Curve to evaluate
+ - b2b3693e-ae57-4dfe-a73a-7eb477a93d21
+ - true
+ - Curve
+ - Curve
+ - false
+ - c897da8f-2a84-406d-8949-2463bc806522
+ - 1
+
+
+
+
+ -
+ 25313
+ 9207
+ 57
+ 20
+
+ -
+ 25343
+ 9217
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 10824d6a-34a9-453e-a5e8-c31b5902a35f
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 9227
+ 57
+ 20
+
+ -
+ 25343
+ 9237
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6146096c-62b0-4293-9dfd-be134a2e27b3
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 25313
+ 9247
+ 57
+ 20
+
+ -
+ 25343
+ 9257
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 235df291-e3ee-43c9-b742-ae83f703f283
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 9207
+ 53
+ 20
+
+ -
+ 25428
+ 9217
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 8ea36277-2dc9-4b05-950d-eae7b4189f4a
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 9227
+ 53
+ 20
+
+ -
+ 25428
+ 9237
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2a407ca2-64bd-41e5-8f43-b86e3fdd4220
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 9247
+ 53
+ 20
+
+ -
+ 25428
+ 9257
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ed7e6822-10cf-46e3-98d5-7d186149277e
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 8988
+ 194
+ 28
+
+ -
+ 25386
+ 9002
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d3348215-b5b4-41d4-8251-f4bff26c252d
+ - true
+ - Variable O
+ - O
+ - true
+ - 63785d1f-d1ec-4b65-8ae8-4948d1b5c20d
+ - 1
+
+
+
+
+ -
+ 25288
+ 8990
+ 14
+ 24
+
+ -
+ 25296.5
+ 9002
+
+
+
+
+
+
+
+ - Result of expression
+ - 3ddf313e-e51c-42fa-b4bf-f04d5dabc4fc
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 8990
+ 9
+ 24
+
+ -
+ 25475
+ 9002
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 36704715-e6fa-4103-b9c9-63c99693e5b3
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 25317
+ 9122
+ 132
+ 64
+
+ -
+ 25364
+ 9154
+
+
+
+
+
+ - Input point
+ - 10226b8a-49ef-4762-ad62-b2105c21ad36
+ - true
+ - Point
+ - Point
+ - false
+ - 235df291-e3ee-43c9-b742-ae83f703f283
+ - 1
+
+
+
+
+ -
+ 25319
+ 9124
+ 30
+ 60
+
+ -
+ 25335.5
+ 9154
+
+
+
+
+
+
+
+ - Point {x} component
+ - 63785d1f-d1ec-4b65-8ae8-4948d1b5c20d
+ - true
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 25379
+ 9124
+ 68
+ 20
+
+ -
+ 25414.5
+ 9134
+
+
+
+
+
+
+
+ - Point {y} component
+ - d08fac8d-d0e3-4a18-b730-f48281008189
+ - true
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 25379
+ 9144
+ 68
+ 20
+
+ -
+ 25414.5
+ 9154
+
+
+
+
+
+
+
+ - Point {z} component
+ - c55eac9a-aefc-4b11-ab9a-d42b48254a80
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 25379
+ 9164
+ 68
+ 20
+
+ -
+ 25414.5
+ 9174
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3bfe6f5e-0bc5-434b-8a1f-1ea9e1325374
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 3ddf313e-e51c-42fa-b4bf-f04d5dabc4fc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 8955
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.97
+ 8955.793
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 957deaf1-c564-47c7-b565-4f0dae2b1c92
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 8902
+ 194
+ 28
+
+ -
+ 25386
+ 8916
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 88f2333b-e8d8-4330-bd82-c57ea131424f
+ - true
+ - Variable O
+ - O
+ - true
+ - d08fac8d-d0e3-4a18-b730-f48281008189
+ - 1
+
+
+
+
+ -
+ 25288
+ 8904
+ 14
+ 24
+
+ -
+ 25296.5
+ 8916
+
+
+
+
+
+
+
+ - Result of expression
+ - 9e216706-05b8-4261-8eb6-72f29a9f9034
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 8904
+ 9
+ 24
+
+ -
+ 25475
+ 8916
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6bd5e34d-dcf5-42c1-94eb-d3b84215d27e
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 9e216706-05b8-4261-8eb6-72f29a9f9034
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 8870
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.98
+ 8870.162
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ad71ca87-a761-4963-809d-57f3d493a3b4
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 9074
+ 194
+ 28
+
+ -
+ 25386
+ 9088
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 42174f80-7ee7-415a-8297-bed2120b1e47
+ - true
+ - Variable O
+ - O
+ - true
+ - c55eac9a-aefc-4b11-ab9a-d42b48254a80
+ - 1
+
+
+
+
+ -
+ 25288
+ 9076
+ 14
+ 24
+
+ -
+ 25296.5
+ 9088
+
+
+
+
+
+
+
+ - Result of expression
+ - 60d3fa91-7ed4-4789-b6de-6365743d9495
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 9076
+ 9
+ 24
+
+ -
+ 25475
+ 9088
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 247eb013-2062-40dc-bced-7540d1c2f75f
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 60d3fa91-7ed4-4789-b6de-6365743d9495
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25304
+ 9042
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25304.72
+ 9042.004
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 056f1928-832c-436e-9583-925fe9f79c8d
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 25196
+ 12913
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 25196.16
+ 12913.29
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 693be2ef-8a44-48e6-8210-de71cb311eb1
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 29f48876-ab06-4cd7-8e67-8916c7700061
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25216
+ 11128
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 25216.91
+ 11128.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2542a3f2-90db-4e1a-8579-508a04e14002
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 11419
+ 194
+ 28
+
+ -
+ 25386
+ 11433
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c727f68c-269e-4a22-b4f2-a05ce9642d1d
+ - true
+ - Variable O
+ - O
+ - true
+ - 4b2d6be0-031f-4559-89a4-0096c0e9e848
+ - 1
+
+
+
+
+ -
+ 25288
+ 11421
+ 14
+ 24
+
+ -
+ 25296.5
+ 11433
+
+
+
+
+
+
+
+ - Result of expression
+ - 29f48876-ab06-4cd7-8e67-8916c7700061
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 11421
+ 9
+ 24
+
+ -
+ 25475
+ 11433
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 64568223-14eb-4477-af37-fa9297e41d7f
+ - true
+ - Number
+ - Number
+ - false
+ - 50ab8d1b-85d8-4277-8f06-ed620cbe042a
+ - 1
+
+
+
+
+ -
+ 25360
+ 13203
+ 50
+ 24
+
+ -
+ 25385.68
+ 13215.96
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - eb97d3e3-58d2-4ca4-83ec-e802f3da77ff
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 25214
+ 11651
+ 160
+ 224
+
+ -
+ 25282
+ 11763
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 43c6df62-f227-47c7-bae2-a8726349380e
+ - true
+ - Curves
+ - Curves
+ - false
+ - 8678bd6b-c571-4190-8bed-27a19fbb5a4b
+ - 1
+
+
+
+
+ -
+ 25216
+ 11653
+ 51
+ 27
+
+ -
+ 25243
+ 11666.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 466e2f81-cf6e-439b-9ea0-e06358c16ba1
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 72f41297-9724-405c-b6f5-330141fa27a4
+ - 1
+
+
+
+
+ -
+ 25216
+ 11680
+ 51
+ 28
+
+ -
+ 25243
+ 11694.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 7c66ffeb-78a7-485d-ba20-55bb18caca75
+ - true
+ - Values
+ - Values
+ - false
+ - 49c1b877-fdb3-4465-b110-c6b10cdf2441
+ - 1
+
+
+
+
+ -
+ 25216
+ 11708
+ 51
+ 27
+
+ -
+ 25243
+ 11721.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - bbc7b1d8-5fb1-4430-b91f-ccb9e2a0858f
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 25216
+ 11735
+ 51
+ 28
+
+ -
+ 25243
+ 11749.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 73e3ae7b-74f9-466b-9745-281365fcbd28
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 25216
+ 11763
+ 51
+ 27
+
+ -
+ 25243
+ 11776.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 820ce0d6-a550-4e23-b6ed-989083eace44
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 25216
+ 11790
+ 51
+ 28
+
+ -
+ 25243
+ 11804.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 903a154f-5160-4aa0-90f4-5fbd822468c9
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 25216
+ 11818
+ 51
+ 27
+
+ -
+ 25243
+ 11831.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - ab4a7da3-5cd1-43d3-874b-df954d81a60b
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 25216
+ 11845
+ 51
+ 28
+
+ -
+ 25243
+ 11859.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 92f2fc28-d092-4a3f-8bf8-86115b5ba83f
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11653
+ 75
+ 20
+
+ -
+ 25336
+ 11663
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 971013ce-ea07-43e2-bc26-b371ca9c2fc8
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11673
+ 75
+ 20
+
+ -
+ 25336
+ 11683
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - db2d1cf5-1f4e-489b-8481-39ad3e40f432
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11693
+ 75
+ 20
+
+ -
+ 25336
+ 11703
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 87269a2d-866b-45e1-9061-e409b53a7bde
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11713
+ 75
+ 20
+
+ -
+ 25336
+ 11723
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - aa4ad1d4-fc02-483d-806d-9df1b1a990c8
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11733
+ 75
+ 20
+
+ -
+ 25336
+ 11743
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - eb3c5cf2-7c2f-4df6-8017-60abaff538a8
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11753
+ 75
+ 20
+
+ -
+ 25336
+ 11763
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - aaa1a380-78bd-44e1-9977-bf10d2e246d2
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11773
+ 75
+ 20
+
+ -
+ 25336
+ 11783
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - b58644cb-6f0f-41a2-91ad-cf54e1d2f0c0
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11793
+ 75
+ 20
+
+ -
+ 25336
+ 11803
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 42306c42-c7bb-4839-9902-2c0ef4989060
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11813
+ 75
+ 20
+
+ -
+ 25336
+ 11823
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 4fa67e71-7dfd-4806-9d0d-849ec2350573
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11833
+ 75
+ 20
+
+ -
+ 25336
+ 11843
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - fa770a37-26ec-4673-9a09-d7f411eb4f1f
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 25297
+ 11853
+ 75
+ 20
+
+ -
+ 25336
+ 11863
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - f8f514f7-3e33-426a-8203-3b6e245b29bf
+ - true
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 25335
+ 12011
+ 96
+ 44
+
+ -
+ 25385
+ 12033
+
+
+
+
+
+ - Curve to evaluate
+ - 61145917-b67f-4fae-8823-d2e3e479ce8c
+ - true
+ - Curve
+ - Curve
+ - false
+ - 8678bd6b-c571-4190-8bed-27a19fbb5a4b
+ - 1
+
+
+
+
+ -
+ 25337
+ 12013
+ 33
+ 40
+
+ -
+ 25355
+ 12033
+
+
+
+
+
+
+
+ - Curve start point
+ - 2fcb0938-f144-4f3e-a0f5-bdcf0e7f2279
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 12013
+ 29
+ 20
+
+ -
+ 25416
+ 12023
+
+
+
+
+
+
+
+ - Curve end point
+ - 2e5e190e-4665-4784-9402-c3607cf2f323
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 25400
+ 12033
+ 29
+ 20
+
+ -
+ 25416
+ 12043
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - b59b106e-8761-4626-a895-2e38e0d747eb
+ - true
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 25320
+ 11909
+ 126
+ 84
+
+ -
+ 25378
+ 11951
+
+
+
+
+
+ - Rectangle base plane
+ - 66e424e4-a438-4e92-a2cf-a5449f6582dd
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 25322
+ 11911
+ 41
+ 20
+
+ -
+ 25344
+ 11921
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 6d289dfa-d7f4-4cc5-a46c-3793c3c072ef
+ - true
+ - Point A
+ - Point A
+ - false
+ - 2fcb0938-f144-4f3e-a0f5-bdcf0e7f2279
+ - 1
+
+
+
+
+ -
+ 25322
+ 11931
+ 41
+ 20
+
+ -
+ 25344
+ 11941
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 371cfbc6-38f1-42d3-8a6f-654351f37cfd
+ - true
+ - Point B
+ - Point B
+ - false
+ - 2e5e190e-4665-4784-9402-c3607cf2f323
+ - 1
+
+
+
+
+ -
+ 25322
+ 11951
+ 41
+ 20
+
+ -
+ 25344
+ 11961
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 21c60a0e-74c2-48ad-91ec-03a9cc038298
+ - true
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 25322
+ 11971
+ 41
+ 20
+
+ -
+ 25344
+ 11981
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 72f41297-9724-405c-b6f5-330141fa27a4
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 25393
+ 11911
+ 51
+ 40
+
+ -
+ 25420
+ 11931
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - dd1480dc-b4cf-4cee-86e9-4edcb70da9c7
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 25393
+ 11951
+ 51
+ 40
+
+ -
+ 25420
+ 11971
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f
+ - true
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 25374
+ 11771
+ 126
+ 104
+
+ -
+ 25441
+ 11823
+
+
+
+
+
+ - External curve as a graph
+ - 7dfbfee0-c1ff-42ac-aee9-48a0524f7f85
+ - true
+ - Curve
+ - Curve
+ - false
+ - 8678bd6b-c571-4190-8bed-27a19fbb5a4b
+ - 1
+
+
+
+
+ -
+ 25376
+ 11773
+ 50
+ 20
+
+ -
+ 25402.5
+ 11783
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 36c7545b-437a-4166-b392-521487f8d894
+ - true
+ - Boundary
+ - Boundary
+ - true
+ - 72f41297-9724-405c-b6f5-330141fa27a4
+ - 1
+
+
+
+
+ -
+ 25376
+ 11793
+ 50
+ 20
+
+ -
+ 25402.5
+ 11803
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 187d96ee-a1c3-458f-b406-a82e523ab0b7
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - 49c1b877-fdb3-4465-b110-c6b10cdf2441
+ - 1
+
+
+
+
+ -
+ 25376
+ 11813
+ 50
+ 20
+
+ -
+ 25402.5
+ 11823
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - f1a245d5-5020-489e-980d-98da7de9977b
+ - true
+ - Input
+ - Input
+ - true
+ - ed31a0bf-60d4-48ae-ae13-7521f47ecc0f
+ - 1
+
+
+
+
+ -
+ 25376
+ 11833
+ 50
+ 20
+
+ -
+ 25402.5
+ 11843
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 483c0b1d-963a-4330-adcf-f5959840a802
+ - true
+ - Output
+ - Output
+ - true
+ - ed31a0bf-60d4-48ae-ae13-7521f47ecc0f
+ - 1
+
+
+
+
+ -
+ 25376
+ 11853
+ 50
+ 20
+
+ -
+ 25402.5
+ 11863
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 798a346b-7916-4296-831a-e40a3ce3bf54
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 25456
+ 11773
+ 42
+ 100
+
+ -
+ 25478.5
+ 11823
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 5c493b6d-4ec3-4a33-9878-718b9f7f7899
+ - true
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 25349
+ 11568
+ 89
+ 64
+
+ -
+ 25394
+ 11600
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 92f55c1a-4781-40ae-9250-bd054034bc8c
+ - true
+ - Gate
+ - Gate
+ - false
+ - f1ee4950-7f56-4f3d-8d6b-542a35f21276
+ - 1
+
+
+
+
+ -
+ 25351
+ 11570
+ 28
+ 20
+
+ -
+ 25366.5
+ 11580
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - db3a5b58-ff19-46bc-92f9-3c7e646dcb61
+ - true
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 92f2fc28-d092-4a3f-8bf8-86115b5ba83f
+ - 1
+
+
+
+
+ -
+ 25351
+ 11590
+ 28
+ 20
+
+ -
+ 25366.5
+ 11600
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - f273e874-618a-41ef-b61b-74e7edc11282
+ - true
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 798a346b-7916-4296-831a-e40a3ce3bf54
+ - 1
+
+
+
+
+ -
+ 25351
+ 11610
+ 28
+ 20
+
+ -
+ 25366.5
+ 11620
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - d5250384-0cfc-461f-8d2e-aed83cb60717
+ - true
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 25409
+ 11570
+ 27
+ 60
+
+ -
+ 25424
+ 11600
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - f1ee4950-7f56-4f3d-8d6b-542a35f21276
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25315
+ 11540
+ 150
+ 20
+
+ -
+ 25315.34
+ 11540
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 24402fa4-4cf6-4928-aa18-97b2fb379b92
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 051c3105-2889-46bf-8c55-0d9190f4ef89
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25292
+ 12176
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 25292.41
+ 12176.41
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - b53adb78-a001-472e-b4d9-21016d5a1502
+ - true
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 25322
+ 12118
+ 122
+ 28
+
+ -
+ 25386
+ 12132
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2f16c49e-8194-4760-939d-ccaea4730f53
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - 24402fa4-4cf6-4928-aa18-97b2fb379b92
+ - 1
+
+
+
+
+ -
+ 25324
+ 12120
+ 47
+ 24
+
+ -
+ 25349
+ 12132
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - ed31a0bf-60d4-48ae-ae13-7521f47ecc0f
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 25401
+ 12120
+ 41
+ 24
+
+ -
+ 25423
+ 12132
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0510202c-a370-465f-bd2a-2d6d989d6cf9
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25286
+ 12478
+ 194
+ 28
+
+ -
+ 25386
+ 12492
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d78701f3-1110-4a4f-b7bb-c2118ecedde9
+ - true
+ - Variable O
+ - O
+ - true
+ - 49c1b877-fdb3-4465-b110-c6b10cdf2441
+ - 1
+
+
+
+
+ -
+ 25288
+ 12480
+ 14
+ 24
+
+ -
+ 25296.5
+ 12492
+
+
+
+
+
+
+
+ - Result of expression
+ - 051c3105-2889-46bf-8c55-0d9190f4ef89
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25469
+ 12480
+ 9
+ 24
+
+ -
+ 25475
+ 12492
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 140588d4-2e33-43b3-9043-f29b91eda6ed
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 25200
+ 12685
+ 367
+ 28
+
+ -
+ 25386
+ 12699
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9fe8bab1-2985-4c05-a4f4-d345f17cb2dc
+ - true
+ - Variable O
+ - O
+ - true
+ - 325f27d4-a4e3-4de0-b22e-2b7e9d4d37b4
+ - 1
+
+
+
+
+ -
+ 25202
+ 12687
+ 14
+ 24
+
+ -
+ 25210.5
+ 12699
+
+
+
+
+
+
+
+ - Result of expression
+ - d2f13758-ed0b-483d-a131-96ad1e996d26
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 25556
+ 12687
+ 9
+ 24
+
+ -
+ 25562
+ 12699
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ae0232f3-71a2-4c0b-b75d-03d815a4ab4a
+ - true
+ - Panel
+
+ - false
+ - 0
+ - d2f13758-ed0b-483d-a131-96ad1e996d26
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 25295
+ 12656
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 25295.55
+ 12656.19
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b0780f8b-24b8-49e3-9ca2-ead4f899b3af
+ - 1
+ - 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 09336dd8-3c4b-476c-b62d-d3b399ef2780
+ - 1
+ - 1fcc8fff-e653-4017-bda1-1273d6df70e5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f9dd80e4-1f37-4628-bd32-7ebd0b7b38b9
+ - 1
+ - 3e8c29da-12bd-49e5-b89d-f946cd7910cc
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8dfc4bf8-bd9d-4664-8d23-8c5fa26397de
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -198
+ 9506
+ 50
+ 24
+
+ -
+ -173.4888
+ 9518.627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx5PFTh3/j/CSERsqRSaLVURCTKZYm0EEIqikpJQvZKGklJKZKt1ZIoZUtZSkYha8i+ztj3pRAK/Y56f87le38e9z+/v25/eDXPc+ZcZ45zzlxTHlHmUSiUP8TXbGe/OJmIbwcNrM7Y2mnYnTtnZ7tB1NjSwfGMne2OrZs2y22S3Sy3RZH4g4zM5g2iGs42Ts4OljtsLZ2dHCxsNojqOR+3OXNir+UFQ7uzlrY75OVlZRU3W27bemKrvLy8nMz82VGE/m580y5Lu3OWTg4XNunZ2VzQcHZwsWQhFrK5/BuMw8LhhNUZF0u5k+cW2Nlb2to6Oxx3ZDlp4WQxuxI7OzvT7H7yrKdQZIkGTi3kXMBM/IF79lvVNQqF6dcVJkrBtX+v6fcfJgo/vD5GZY3urp4K3qwOCo/XvFXDL8ckfaaI5QGwLg8L5X9+DaP/on+e9T9l/n+tI6P6r6pQbaie6uwOTov+9w4u5U04qr+wkjdr5t8O7ll2YcnsDubCujzMsOLsjjL/58f2/2dn/+u5//MrEbZFg+ZDy6CV0FpoI5QBbYW2Qzuh3dBeaD90EP2/r+E79Ad0BDoKHYP+hI5DJ6CT0F/Q39Ap6DR0BvrnP8dO9e93KpQyDx5DKUzwGEphhsdQCgs8hlLmw2MohRUeQyls8BhKYYfHUMoCeAylcMBjKGUhPIZSOOExlMIFj6GURfAYSuGGx1AKz7+qQqlQGpTCC8uhVCgNSlkMy6FUKA1K4YPlUCqUBqXww3IoFUqDUgRgOZQKpUEpgrAcSoXSoJQlsBxKhdKgFCFYDqVCaVDKUlgOpUJpUMoyWA6lQmlQynJYDqVCaVCKMCyHUqE0KGUFLIdSoTQoZSUsh1KhNChFBJZDqVAalCL6r6JQVag5lAoNh9KgDChFDJ4PVYWaQ6nQcCgNyoBSVsHzoapQcygVGg6lQRlQymp4PlQVag6lQsOhNCgDSlkDz4eqQs2hVGg4lAZlQClr4flQVag5lAoNh9KgDChlHTwfqgo1h1Kh4VAalAGlrIfnQ1Wh5lAqNBxKgzKgFHF4PlQVag6lQsOhNCgDSpGA50NVoeZQKjQcSoMyoBRJeD5UFWoOpULDoTQoA0qRgudDVaHmUCo0HEqDMqCUDfB8qCrUHEqFhkNpUAaUshGeD1WFmkOp0HAoDcqAUjbB86GqUHMoFRoOpUEZUIo0PB+qCjWHUqHhUBqUASUnLbj/Pc/AXxfGB4V04tX/a94h73gq2nG+KWr64OFpuIFtx39c8a/bIPUO3e8FWmsy/+NW1ZwfBFmckdOkwguWSvX/sb47El24iiP0rgW5PhO7+S4rL0908+GdrIPHqTv+3+14o9djtZc/3HtCrl/6LF0m95oP2r6qy/v89Q/k+gp/t38bKTbtP6jG00a6vxrfslXX76I2V/fMTc9/k97DNjtuALJ+w74s8Dq3yn+80fadZ5ZGILr4WCYjGYmQblU1uz9B6Ohdx9HCfRtI/6104ue5nGC0NDk12at/K+nRT2b3MxQ5/Vqns3yjBulPZrjPCms+QA2nO/lk7HVIrzk4u/+PkFXxmpEXlUaku0V/oBfmPkZL+datlLQ9RvpX+mLidT1FC3cOiUwuOkX628tbXm6PCkfaDhbjAtq2pJ9zPEa83ggUYlDyaI+lE+nvd/q2B56IRFWmUqK1TJdIX8tIIY5DFPqhvq5A4Ikn6Z820lf2rX6GSmzcpFXjrpPOy7mAOD7RSJJ2bkVY+W3S+3VlD6m3R6PMnUHxXSvuka734TBx3J6jqgZzHdXbwaQfYL0aGPYsBpnyWCgVfH1I+tXCGOJ4xqJ69bVLIikRpCv7FpUMn3yBviWc9N4Y8Yz0wef91sKaL9E9lfPlO+tiSVc15GDXXhuHuM9LXHJ7/5r016GrieP/Cv2Jl3hs8TqJ9M9qW9WfdrxCJTPCI6kdKaQLftUgfi6vUcvK6/xb7qXh7Z/f5f4zOh61/5HYduHjB3zciInGqusJSJOdteb8exrpJlYCDevkElGu0AGX2JOfSV9+7OqL7VGJyKfJSK3FIo/0+AUdrgZ8SUj47KZMj4wC0iXXKmtZeSWhhcnq8UUuJaQ/FL7K7zGShFiDJlhdSstIFyh51xp4Ihkt0DGdx7eygvS2l1WJLyqSkdhQZVl2XBV+vfb1Hlkab5DA6g6755drSX+gT9tX9eYNan0a1JYV2kA6LdBzWd/qFBS6JFcinYlO+oaKJd2U+ynILlSwzce8BZ8/ly69FWR5iwIyH0pRzrXh4yby7OoGp7doyfGdn/NfdJDe0n9jv3r7W3Q0zNZOaVk36R9ilgubGL5DsRqopiK7l/QbdIPucznvEPtXsV72ZwOkr5cUSfHakoru7TGKO3B8mHSGvv2VsGepyLWBN6aI7wfpuQu27EngT0MW2vGpLt0jpLNmGvHnXktDK1W6Lzu2jpEuYfCxqX40DQWuXVM/xjxB+u2eA8+HT6YjRWOb47v2/yJd48nkOdaqdHT+mU9LXt4U6X5r7m4R1sxAiZIH1vbb/CFdt2x4cvPbDGTBzJK9YtU88v5tMjWWuWvte5TkGCz4PoaJ9BvXHKhmQe/RYwf7p7HaLKQfvSWv5jj/AwrzPV6qw8pKOpsMO+Wm8wc05WBRJtXKRvrG0NcfnnR8QPq+Zyq+NS0gfUiz3SXFKBPVernbFf5aSLqU8/FNhbmZ6NUql6BMpUWkc3nXtNLlPyLTZ0FLE/bzkC74qDdwLPojOpzFn7w1iJf0TyuU1RYKZiFL1lyupsHFpO88Zdorej0LFavfiAs14yc9dKT+jsLPLCS8NWndkVYB0q9kLVuyTo6GHDUuvpH0WEL6cNVQm8xZGqrUKt/PK7uU9CTB8NfKUTSU9OthmtifZaQfEKp11GqgoZy44nbnTmHSj0xsV9Dny0a1t3ZGyPSsJN36hs3okb3ZSMt9of/2a6KkP9v06/Upr2yk+5y4rUSKkb410v74+ffZyFTqtVdl2SrSI07p8bqPZCM9ETanRdxrSGffwpNxXeoTqlnuHrX86FrSORuFTANOfEIcfFTHhI/rSN+76cvPhw8/oRNbN72lbhYn3a/j7M3nFZ+QTcblQO1UCdLVJTX5khZ+RtPcz1hL9aRIH1xyI/C9xmck+qDzVNXMBtKLpvQX5F36jM5fc9wt+WkT6Uo/khzL3nxGk8nnNCp0ZEivcAsvr+/7jPIF+1P5tDaT/vQYy6qO1TlI+6h5nNYeWdLNPV6cGDqSgy7w7IhrOyxH+oebu4ImA3OQ0ITL1eNuW0hXzXZ5y1ycg1IouwU0ouRJb1VM+8TFkotmOCQuzm9UIN2Y48z7JdtzEd+ptDWyqxVJ/1Zb+FjMKRdZCC5TNriwjfTPApOnpV7lorIwddpYsxLpHcrtS+Tbc9GoUY91iuF20le6mMWpCOehdvcraG3DDtIlP06KaBvmIWeX32UDDoj03Z7rHfVv5yG3vfalh+6o4vPnlmjk4Zw8tExpnVWAjRrpaFf1ixNTeShhq1D5RUM8v/uwgPOGzZYvaCjT9rGDlgbpq2S2KjjbfEHFoTwfGtR34vP/sNOby8++oJ3moktF92iSTuOL++Xd+AV9QQVjMaZapG/q2cN2hz8fXWXak995cRfp2iudKoP25SOHHYlIP1qb9D9cVaaPr+Wjsreig8cbd+P7DEfMg2cf8tGZ7j/LH4vuJf3r29gbcaP5aBWvjPF1h314/2P+CCdvKEAJ7htqXn/TIb3QVeZA2skCdCRhTeZLtf34vlfBterjowLk6/1cd5G5HukNqQnUz5UF6NKvKjOj9frYD+lY5nMWojPmlEfM49hvXBPNLd5ZiJoMqOJupQb4+voudr/MvRBN6SX3Lks6QPp6TYXcipRCVKmsvMzkkSG+rsVddlf3E9v55nHlRYAR6TtWn+CpXVOEMo+50vwDjPG4YdJsdaZF6GLjoOzTRwdJD16mL1R3vwg9eOrc6PrGhPSgqRzJ2uIiJJt+U6Cq+hDpl96EiFazFKOzrV+cAtmO4HGNKyu/bS9G4iid9YuWKek8zXkCX52KkcKLvKT6IDPSnd58uv/lVTFKt9YZOTt+lHQN81/Dme3F6FH40ndFyuakv824R0kSLkHNk2O9cRwWpJs9Y9sfbliCMsyWy2zrwV7IuevyrdslSLx0a29hzXHSDwYbrnXIKUHD5T8ccqtPkG53P7LlwFQJKozLc3LtPInfL7yu7ZHZ8hWtqU+tFGc7RXpXzqWfrDZfUbChwp5l206TbinpdbEm6ivyM3Zecd3dCt8f7vw5E9HwFR15MGoTUX4GH895j41P8pWizCpj68eKZ0kXNdlTJrK3FAXU/KHEJtmQnjL90LLiainKD757sW+7LempRwOiPDJK0ZbHnLfu1tvh/TSdEBD7UYriXh6xN821J/21fPDqJv4ypCJUxpH7/DzppV2ijGcyZWjLSo2vAQEO+H2qNP3a6X1lSP++8rNyb0fSLcJvVa6xKkP3HvsoBXo5kX7xldu9Rq8ylNtW1N7m60x6pW4T9c7TMrRN10mm7KELPn+0rSyU3pch2tkI+ZPvXElXWHhmjF5dhlZML5CKq3cj3UiibtrjRxlC9ywdEtgvkr5UbYvykkXlaJpXofui6iV831N2OBcrUY5OZZqPCV51x+M6eRjKapaj9UnHpm+VXCa93M0rIcW8HKnnfTNvXXWF9IHXr3ZIu5ej+Tc4PvOoUUnvG67IjAgpRx0LojfEjmHf4qY/uPBNOaq4E5WnlOBJeo/2Lr9zX8tReLx3VNG5q6Qrh701yespRymFt33NNnuRXrOUdZHg/G/o3Typ7SOT2INFp6xNRb+hAM2RH3e+XMPX0fLzG8KUv6F6SSlBuQfepHtOvucuNv6GmqeqPVrOXydduFG3fPT8N8Tp6Cv7SPcGvg+4r9jE5/cNiQsrJp2U8cHvCz/NWtfFfkO7eweCty+5SfoeCYuX0p+/IXmKs9xaZl/SZb/bq29sJta/sjlcZBT7MaFHp0QmidfFxVa/ofcWvq7zSr/N569ALvsrU3U6buP5QHqmOmNTBbK7u2D8aocf6TMpag7xuyvQt28H+Ep67+B5lNigsP3JCqRUuOjChrG7+Drd82hmzZUKxD/P4bneVX/SxXZHfSsOq0AXxQaagzgDSL/7MdbwdEoFahjfWm8Zhv1YwmLV0a8VaMxwyJsmfo901oQHeo49FYhJ3iQ+OgM751tftXbmSrRfVWK1wP5A/L6ZcOWr1spKxOL3/P6iTuzRO6eTHyhWogCqamzAlfv4+mXye0k3qESaj1xGHi8PwvfVEZq9wLlKtJNZcUo2A3vNuHC28o1KlMPOs0PvSDCeBxp6HjSIqET61Dj+sRnso32Xh0zeV6LLXoatotEhpFd1Mmvur6pEjZaLer/phJLezkzhlx+qRAPbvS05JrEvVbsixLGgCvEPFnvkPQ8jPdL13qKvq6rQTduVRqwHH5D+62pcMnV7FTKMKR/KX/AQn8+8gtlixlWIy/iFAVcW9pclGj8T7aqQZvqgwzeXR/h+OG900aabVWiJU6Tsks2PsYstyg+NrELBpudO1Q9gP3LkRPPw+yok5q3avOz1E9LZxjZwK1RVoQsJ+YY1tk9JX8fzcYnVYBUK/bFjx42l4Xg+dvzh2+ts1cjtyKkLdHfs7f6uzwNEq1F33s2Xji3YH6cpxPpsq0YZriqCGrsiSOc2GnY7a1CNVHWFpvbFY2dfNVy97Ww1+m1XEOQvGEn6mOUH6ohXNbI1GBHkomJX2s0mH/qoGi1UkYzP7sX+WWkwef1bYn+Cr3i+No4i/dCOR+kRJdVo+L5QSuln7Pkzl9hZO6tRTrTFifWyz0ivMzQ/ZjhTja5e5Yp+E4HdvlvO47ZgDYpqfXXLcXE0ng97rVkbv6kGRQybrzl1DfsunmL+dK0a1FvS5eQ7jj3Ro4br9dEa9O6uHZV+9jnpv6/YlN90qUHMnWfVT7Zgf3ehQHT/nRo02P/6zRKTGNLDBB9kTkXXIK21snkTpdjnFZefuZdZg+5vVDjNujuW9Ok/d7u4q2rQsehoKvqMXf/SqUmn/hrkf6Z8LFLlBX4flOE+ns1ci/b7isRIv8ferpPQPrqsFt3VHrNtV3yJ7wPOaTu5ZWvRoIvBaloq9p6uKk2e3bXo9ums4OytcaQ/7Fn6avxYLRrpPxjclYZd80ancq5LLVq341evjPIr0lsTGtPd/GrR01bBw48+Ylffz9LH+6wWhZYveCau8Zr0A1eS7vtn1KKU58e8K/Oxi+wLcB8tq0UaPebvnuyPJ10o/b7Vjq5a1M7N1u9dg93PnFfk7HQtsvJLrfYxTyC98cyrU5f56lBw8rbVz3uxawqfZHWSqEPMz+R2DColkl6YQs3VRXVo5nG/qoAn9tbsuLNcRnWozv3GuS9fsF8cZtASrOtQaCDXYhbuJHycHzv5yVPr0NNNGZcKjbGXpyx48CSoDlHT5H4ufYo9e0FEQu/LOqR/Y0/R9y7slHV3Q5bS6lDR980a+puTSefbT10uVVWHvAWcn229hD3yssN8kd461JK5dMuzXOw/RD+KjM3UoV2lV+SDed6Qfn6QW/41Xz1ijvHq5TTFrqJwlmeXeD2KOXo5kC0Wu++ttZc/ba9HLRq6dt6j2LfcGtIS0a9H+gE2773VUkjfuzRrm5llPdp++tkbtrvYNR4JrHK/UI/amnUCOZqwJz38VXTJrx5lbWr295N6SzpT88aR9w/q0XVZ09Jt5tizT8dlGUfUoyuHDOZFX8Tu0Xjq9Z8rTNT/PP4/9IsQ//0PH/9GgopCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA7/Z/zNMD5UFCoDVYXqQc2h9lAq1B8aDk2E0qBlUAZ0GEqRhfGholAZqCpUD2oOtYdSof7QcGgilAYtgzKgw1CKHIwPFYXKQFWhelBzqD2UCvWHhkMToTRoGZQBHYZStsD4UFGoDFQVqgc1h9pDqVB/aDg0EUqDlkEZ0GEoRR7Gh4pCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA5DKQowPlQUKgNVhepBzaH2UCrUHxoOTYTSoGVQBnQYStkK40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoRRFGB8qCpWBqkL1oOZQeygV6g8NhyZCadAyKAM6DKVsg/GholAZqCpUD2oOtYdSof7QcGgilAYtgzKgw1CKEowPFYXKQFWhelBzqD2UCvWHhkMToTRoGZQBHYZSlGF8qChUBqoK1YOaQ+2hVKg/NByaCKVBy6AM6DCUsh3Gh4pCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA5DKTtgfKgoVAaqCtWDmkPtoVSoPzQcmgilQcugDOgwlKIC40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoRQE40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoeRvbeLOzjP+t4kN9bv47e8x9ciNqi3HE4Td2SH/ofDbepR0U6CMpxC73fUNRzLz69GxGy9cuZe9I920XZBPpbEeyQQyL71ljb2+bk3AkyFi3CK19qvvsSud2/CsmakBLS88s/AnZyrpt5+LLp8RaEDbRQ58bDuK3Y3/WO6UeAOyUKFJ7U3CbsMR7lCv3ID0nNg8pVjS8Ae9O5M/gnUb0LV5Cr1eB7G3pbUKylo0oOT3MwEH4rBXe8olxDk2oOFjnyPC/mB3Nd3ox3y9ATWXXVIzMkwnXYbH8eq20AZ0f01diPcL7HEOvBY6LxvQA6+NhRJ/sJ8Pc/+t8qEB1ci7T6kaZZC+VuTJmkVfG5DUsJ5+YRx2enVOQga9AV1aM92Tw/Se9OMCb+x3fm9A16/bdUofxs6fH6ocx9SIluvpWnIkY//IKdExyNeI9jtneB3g+EC6g/AVde61jWgx32szjhPY97bISXAqNKL+vAyuTR+why8wtOvQakSLfm17nSmQSbpWjkffg4ONaHfG4IE0O+ySqzKdNlg1oqytfkIrCrE3vwtvDXNrRGvqLXn61nwkvZsiz9Xm04hoeqH7xajYw3jFS9jCGtGVg7HdHxuwJyUE/WZ70Yh6V60c+LQ1C5/PRmIObWmN6GKW+rkN97HrcAkvfJDfiC7Jf3b9NYz9TLlmhFRtI6pjkeMSXE8j/cfuPu7Qrkbk/psuwzDCPqy4VI7+sxGdO2G6oeEa9pn0bV0U1iak9LXoGmsK9kVqvgum+ZvQL7ZzHy3asA95JrtWrG5C1r/XmfUvzp7z8/rBfU22CU1N67VHq2OfYjmRtEitCRXUn672c8Aey3BUdtzfhF6PvHsbFYn93HHfO0lmxPYlQ5m7vmF30j16q+BsE7qvj9QOMn8inbcwkO/9hSaUOM02NCKHXbrffcH1G03oFvXL7Q8nsY8tLNsvGdSEkr1XP0gMws6fqlQYE9mEsqy+B5XmYb99X8xsJqEJ7ZS+MSM0gZ1RpjWwMbMJLU0VMbgt8Zl04TF3c4XCJsSmL7JI4gj2YWnFx0tqmlDXzXsJg7ex8+TF+5a3NSGjOp43jR+xX5Wr4Dk53IRyFQru/xjGHqlqIlQ61YTy673KpFfn4L9IcXrju3hBM2Lmfd4SaIT91c/lBpsEmpHRzm0aK32wb5MIO7RKrBmFpbbZfc3AnltTdXtwQzO6P76kNWoAuytfee09xWYUd8yN74loLukJZ6okuXc2I6faissfDmB/2s50/sT+ZjRvLPbBzHXsMkLxD+4ebkbxCxtaT2Rg3yHDFxpo2Ywy3eaV9g1gN4iLOWRn34xWjfypCRLLI71A6Fj5qkvNSGnjhLOFEfaRd/XfX3s3o8lVLGK6N7FL7Xobz+PfjIoNpvWOZGJ/MbNpas+DZrRhYd5ln+/YWa5sLzN91owG+DxWVq39gv+iIyhfVCu+GV0Y63ipehj7tvFLHaxpzej6+fkPCu9gdwl+K/g0uxmdeUg54fAZu9bZkteLippRon+v+9YJ7H8uLYs2qmxG6Y8Kjy7dmE86K0fEuGNTM5r/qP7KkuPYG66YRp7pbEYRl+ONN4dg19rIG6kw1IwuWaUfPlWM3YAeOlY/3owGLb8wvZtXQLrAza2PjCl01Jq6Ok9kK/Yac8uQF+x09M7ffXmUDfafybu6K3joSNnn2kUUif2Xqdq9KiE6Gjlnfni0BvuiL9Jh8aJ01F/wRTabq5D0a44zTMfE6Win0MpL0RrYrx48Wd0pTUc8sTviwi9g3+qvvVxrKx1Jce1UTk7A/lrFpd5dhY6c5+VG1XVg/x13duUtTTo6rX7cTFC4CN+Hdy0Ytd9HR6FsPozTBtg1n+ue3nSAjvhyVsSU+GB3trTy+XyIjmzS2SR3ZWEPjVl5SsacjjrzRtoqxrAbhcXxOZ+iI+H8+7qOG4rx/OFbW2SADZ24z5zvWHMC+462QonrDnS0jsNsdXcYduuaBx8N3IjjL2Ry7UMZ9htxXRfGL9NRwpPn1yLYSvD5nOLu4uRF7A/7ZHiwCnYmT46yAh864lzMfPChM/Yad8ln437Ez9Fr+dqEV9hvrj/GP3OPjvTcQm6Wt2H3O6Og3hRCR9UxOixMy7+S3lVz4EDQIzpa3L5RQNUAu+xFCbt1EXTEbC2949ZN7K82qWT5R9NRpanmTCsN+5EyG/vKF3TkHbGoQWsCu1uTwJvvr+koNb3b+J10KelRvHbp3Ul0lH3k9k+Z09ipI3lp6W/pqFbyI3r3BPvjrMq+k+l0tPRuRZpmNXaTAJU7vR/oKO8rs/MQaxnpJZ09jD00OmrW2RpPW4WdzuCQuP6Zjo7ObNYJVsF+nDKT8CiPjsTL65fYH8ZubSCVe6eAji66J1XquGDvFFyXaVpMRwsVKHul72F3EMgdYS2lIxarj+r88dgvBZ4t8iuno0/LPl2bKsDu7G8c/72Cju6/z6zv6sBe4yDIK1dNR9PJm7ir55WTHrBsmbNBLR0tSDYayFuB/aG/lLVePR2VuZiqZWzDfrXgqd/GRjqaL+Vem2CEXZdfMra3iY7qnr67EnMeO2tJoJUPnTgfSq6yRfhhb03mvM/eQkcXop7IP3qBPXab7lrrVuK6viM8FpqLfcmuScX0NjoS+BYUFNyC3U3xls1EO3G9r04Zuj+NPcalV1Kik466PR73Bi79Rnqe72qffV3EdWFX4xgoj/0Ob4n5iW46spOxcg/Ux859E9nZ9tBR4Nmv44HnsId7Uo1te+mopXtnw/2b2LfndsSc6KOjx/UnVwRHY9+oK9Ch209Ht1mG3oZkY5eh1tyQGaCjwQy7x2FN2NdTTk6xDxL3Q71DJQ8nsd+TjHxZO+tiseiJQAXpnIeTvj8doqOrfJOD4Zuxq9hGSB4bpqO92aero3SwH7XmfyH4nY6eSlC/Pz+DPaS78kMe4bsjpba/9MaeTHFIsvtBR8vcXiW/jsCuN+zzlXeEjja7BOknZWL3Fzc/+JpwzsFcgbd12N80PLytPkrcb30OT6WNYV8mPP9VOeF6ji+ZMnkr8c/FfmTo8Bhx/ZZqrsveiN11QuxeM+Eilu0nc3djP7M7Kc/0Jx0ZTFz4UGCJPckp5FMV4f51/FJfPbG/HdibunucuH5Th+K/PZ6zvrZQRRrht7bbaNWkY5/JvrVz9QRxHFYyDzdUYWcSS1S4Sbiouv5LxnfsAVod33oJ30HncurgqsLvL8N31bUn6UjXgXlfrwR2a6XzcRGE5/kv2zykib3hm4vcOOHMbntXjVpgf+cSMaP9i44yGVErJy9jz4pXkg4h/M6jnWtnwrBrnTjW1UK4nqKpPPM77LmbBXZJ/KajmR1SuuzfsP8UN7I9R/jRkmlbrkHsnKyLL8UTnkOTDlnMUU163FrpW/2E87Csz1uybo5/e5exfoqO8meMfwurY9ddc2CtOeEK57crrDqK/dkGkc4gwrmszFzWX8TuFDAgWED4aY497zcEYz9zpKd0knD2U49YZJOxywbwSopP09H6uyP6W79ifxdwa7sh4ZJt45Hbe7Efpm5e6UF4U8HBcTXWGjyPvWXXEU344ldfdHetwm4YrRVTRHhjB9OLfSrY6X/OuQ0R7pZeMN/gMPaFA2M2vDN0RPFsOXnQBfudlIjQzYSzfOfLM72H/ZFrO5ce4VXfpSWOx2PXYelrtiFcfjH7ndOF2D8XGK7wIdz2scOoTSf2Q8E69RGEa6vuNnVgqiV9Stt5XQbhj9qscl1XYl+zVnpxOeGZ8knSl5Wwb2Jce9VJuLjx/IdXjbGvtVo0/zfhvcv3sPk4YK804pNc9IeYTx477eR3B3u09ysJUcKT+rRa773Ern7qDO9mwleFVOqF5mH38YgYVCVc6vt01uNW7NeuB5TsJ9z4QbJ01Az2pazvM8wIX2ja9jR2WR3pQ/vWf7ImXMjjKk+8AvYbk7xDLoQvK/DyfGOA/ZjN/n1XCefY0vgjzRb73Uvt7bcJfxTkefKjL3YWt9ZPwYQXMZ2t/vwcu2SY+PBTwqOs/LULPmEX4ZB1iSW8368342szds7Va48mEv7hl8PGyl/Yr1qWJ6YS/rZ7dXidYD3pFw2TXD4S/kx2YjFdFnvAxsHUHML3avZ5t+tiP3zAxL2QcBW+yYkea+zzVt8qKiV8bN5Km6Hr2A9dsn1VSfiOMWP6aCT2xJd/1tYRbrUywuDXR+xZyoMqTYQfZ/+V+6ce+8ZarWnG7HZCj22bP47dYqXq6XbC87pLX3HwNZAueO/Q1S7CxS12i/JIY5farGLYS7jTvcJAgb3YX1IGWvoJ795twLb8NHbe3zdlhghndaFfFPXCPiD5YOf32fNT7vzg2qfY3aNoxEdNYn6VwXpc6j12Wwvu0lHCT1k+rZKpwT6aF6fzk/AlUUq7FUawhwvuihwnXGC65oMydyPpTW8syiYIn8/tKqMmhX3htEPDJOHWXkueae3Cfnb+vbxfhI/ypy/ZdwL7wIOY+79nz2ffI7f0r2Cv/uGvPUX48+SZGeOH2Bdb1bTPup5VpINpKvYH+vVnpwnvuKXVaVGB/VRWH33Wm5j7Dp0ewv7Clk9jZvbn++Fuic3CJtI9ppVDZj0qeouaw3rsdjfEmmdd701diqsGdodtjkv/EB7X4CF++Rj2bsrzPbPuvGTNo6uXsIsacjvOuoRFAbdPCPaBiNHAWQ9OsfXye4P9T411/KxnLeIfv1eK/Wa13edZdzmXbh3ah307T2vFrG8uPdr8mK2Z9JO1AYxZr5ZlMYhajT3QRKp31hNCXuTGIuyevbu+z7r6tO62+CPYe5zO/PzrJ0ZfvXHFHtPC8mvWLxeEiaYHYlc+4zL1d1xpdP9jAnZHNs6ZWUfB7Ww5Rdg5vzL/mfX4qZuXCrqwD5wJ+OuiJ6SHvjLT8X2pte6vBxZUHq8UwS7QMvHXWWUuVtcpY/8+NvudgS4Gi+yhH8T+4sqfv+sPTOVktjvOWX/xv/XNT1hv7r2L3XTy3/oVBdzRQ3HYXzL9W19L5q3Q2BfsC+f984zgw7d/tWG3Bk/2dqyL/Yn9LPjG6X/j/Me/hrDx/h/9RYj//oePv2GH8kCFoKJQcagMVBGqCtWG6kFNoOZQK6g91A1KhfpA/aGh0HBoLDQRmgalQfOhZdBaKAPaDR2GTvzn9av9KzuUByoEFYWKQ2WgilBVqDZUD2oCNYdaQe2hblAq1AfqDw2FhkNjoYnQNCgNmg8tg9ZCGdBu6DB0AkpR/1d2KA9UCCoKFYfKQBWhqlBtqB7UBGoOtYLaQ92gVKgP1B8aCg2HxkIToWlQGjQfWgathTKg3dBh6ASUovGv7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGXnv7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6AUzX9lh/JAhaCiUHGoDFQRqgrVhupBTaDmUCuoPdQNSoX6QP2hodBwaCw0EZoGpUHzoWXQWigD2g0dhk5AKVr/yg7lgQpBRaHiUBmoIlQVqg3Vg5pAzaFWUHuoG5QK9YH6Q0Oh4dBYaCI0DUqD5kPLoLVQBrQbOgydgFJ2/Ss7lAcqBBWFikNloIpQVag2VA9qAjWHWkHtoW5QKtQH6g8NhYZDY6GJ0DQoDZoPLYPWQhnQbugwdAJK/rdVuLPzjP9tYvMfN1TSCoxjYZBeCF6W9C2daRF2qX87gTgsox3nC2Nfz/rPNYTcNrJLYi+g/xvvctGeLg5F7PM0/q3/zmNFBJcW9vylM3/XH948fJjHEPuee8x/15fs+MTPdxw7jZfvr58IDfoqYI+drrP1rz/ea+Uj5IG9dLnHX6+eUVJffhu78J/Jv86VzDW14gF2xa8582Zd3ZLxVjQWO9O9aaZZtxV6Y7f6HXYL7SKWWb9d5C2xLgd7EJcp21/3MGkT/4b9tnEvx6wbbZZ6LMXAHiWYyj3rn9qmjTcNYk/9tUhw1u8HlfFsnsIesER75aw7aEUVynG04A90wYXis14y5nxNQQg7PWm+wqy3RmqrbFuHPdfETWvWQ/ctn1Degt2C6fXhv9v/PpCkoo5d+JSW46wfvEs7q6aHfSUa8p9179WBa3cexS7Icjxl1k1fWtK1bLB77nVpnvWplYphuy9iX7Wag2ce4SqXOA7s88HOXr94z6wrpTZy7g/GXqx732/W5xfE5+k/w259M7Vh1uujqFTDZOzH5F/JMxEupmigdJCGXZSS+mjW3zisHj30FbveNa3FzIS7KY++Nm3E3iVeGjLrL51zTh/rxe7t2riJhfDImUCx4xPYj4hI1v31uOMNJ1lb8XEzcAudP/tBaY9M0Gl+7EuSntqyEl78dErXehX2YwPJZmyEbz/xhf2cDPZ989+fZp+9XtT9P9mpYKdeXXB3AeHbao3dHfZhV+1lVHEQPvJmmYLzYeyF2ypUOAkP29cw5GqFPXrkWDEX4YXsoS8uumDPCjb15Cace7PeicvXsP9s9zHnJfz3BNMK6j3slzdSzvERPnkuofpqOHaJ3PwXAoTfuWro7x2P3ei80jIhwuWmhnf7fMAuXleRvWx2fUcv5luF2Ln62Z+tIPzGYY5Mv1rsoSYxOaKEN7R5ufh3YufXC1m/hvBv7IPSgaPY958fKFtPeOkVrZ4gpjbS86Y7c6QIV3jnGxnKg131XR+bzOz281OPPFyJvSLvzpMthOdfKuR/sgH7olw/v22EH5PNKglXwv58X22dCuHibQHXo7SxL2Z19dlJeLiQCnpujN3MtP/Jntnz+ePH8diT2AuuRK7Sn93O/kWJcQ7YA9HWpSaEMyWus4qnYg/QSPA5RngIyzzRpDvYU/bvdT1N+MOkoJo3j7Az0yT67GbfR2403nn3EnvfwZ+9brPnp06xZnoa9s9f3S5fJXzr0OGp93nYP97LfHGb8KUGl5M/VmLXsO92CSFc9/h6q+xW7AeP5vZHzh63W3tX5Axjf7G1bnEC4QvMGsrzZrCPPjb6/p5wl/g87wLOdtITqL7+BYQvHv2tWLwMO9sXrsma2fs/i1XfV3Hsd8QT5LoIj2P5+ahcAbsep/fuccJfbb+rU7kTeydTgQb7PAY6L7p8utoAu1Si6YZlhCNfj7g6c+ysO7S5NhK+Zv0jk0Zb7LHqXcOqhKsIGbLQ3bH/2pbRYkR46MJr8S2+2LcrjfeeJfyBPOvB9lDsYkYLhbwIlyhMmu58jn250k2nh4T/Gj8c2ZOC3ctmmPMt4et2l+/s/4Q93t54oJTwezkt7YNl2Klhz1b1E15w2fDq92bsFHurjAVMDLT2Ur/waD/20j8un8QJLxK2Svn5C/th2yrt3YR7CHpqT7J3kD5yxtn0LOGbjvbW/hbELquvx3mX8Pkt+pYza7C7xB23SiG8M95sgCKH/eKuBGoD4V854+2Z1bBbhe08xcLMQFJq9YPz92MPt9wlKU14YYrDaXYz7G840pqPEM66c6aO4yx2v2N+wb6E3+Ga1OS6gN3wR8zJ94SvMK15yX0De7VYhtkg4aK2M2yLg7C7NzsGrybmZ13NBab8Udh/Lzy85gjhHmI+sYJJ2C9rp6wMItzS37lXKAu72NGYR+WEs8z7LLa8BPsD1qF3PPOJ+VKhn86KBux39rD6GBCuJtBkI9KDPd9pWiKEcO/PLz3ExufsD39yejPhLWnfPFfP78THYXC/oQQrA61nXeG8lg/7a9/3Qq6E86vLH1wvht2dadf6fMJFs1+sk5DG7nsnKEKYjYHYN/S2SO7A/rzEOc6J8KPd6MaGvdjf7U2wLiPcR7iYf9Mh7KVG69lk2BnIxtHLR/o09tsD8S8DCb/VL8WQccb+iemr52/CFxodWCrrhT1Tnf/D6QXEPFZEe7NcAPasI85+tYR3XWRfu+Up9q2iXBt0ORio+a7O9y2vsc//lFWZT3imj9k9+ffYdVXM87UXEvPbL0IsCgXYF10M2/+V8LH2IjWFGuwOOwbfH+Ik5kWa/FoKHdivfvG17iM8fUcSh8II9rBTGQVeXAzk2LfWR35eF55vH/M6sZqY96/il3+7hRv7vE6TgULCl7w77y23AvvJF5NvL3EzkH2cTMdmKewGwu+KlHkY6Fmwirv0NuzxE71xHLwMpPp6jeqGXdj5V8ps6yH8ZVc2n7gRdh+l3sKaxQyUm61PX3UCu9+YQ241H/G+tsbopvB57NYFTq6d/AwUH2U1wX8F+8OMSnE2QeJ4ikQs5vTDLrRtz7JtS4j51dCTzHkPsQu7rbjuLkTcBwrCm8disR8ft4koX0qM23rlcPc77OGHrB8rLmegIZUYgboc7M+Y5sUmEZ+Xwu4vHv3yDfupexf7tq9koJnpU3UpDOx23Lfu1osQ93nj9ting9glMhhpvmLE/UfAQ9NnCjtblICvzmoGOr20KMCWo5t0gZuPVq9eS7zfOfDYGwhhZ7moHbVwPfG+3Gn6SW4d9qX8zuvYJBgo66um9eIt2GMfFHwRkCLuz4bbdw+qYb/SZx6+dSMDjUfbqn7Zj/2D5tl8G2nifXBVisxjM+ytgsbGbzcTx+1ayi+7s9i5v7Yf5d1CzAcC+z3QBey8dmVjVAViPiDy4PHCG9itc3o3smwjrnfhdIXK+9gNP/1a8lCZgV4oIsmwSOyesdk5mirE/DYj++DhROyLN3JqsKgxENWo+smSj9hFQ5LDqzUY6M/PnuayIuwKAcv6PhCfV6MyxMe967CnLb2zKXU3A01HRuUpdGGXUpB0yd1HvN8VHd7QNop9QcJwcdd+BnJayMx2i6kHv/+WFSmvPEDMPxd5yG/iwZ6cYFJsZUwct9uKwcUrsE8f/e395RAD7frdxHZKCnvthkJ7JTPic6JNjNUvRexX2nLuZZsTn+s/LAq5qYU9PePID9OTxOfByU3n+Qyx89eU3Oe0IsYNlKkKscDOV0D1KDvLQMKuihGCdth1RazexNoxUDKH7pu77thNDOkKQY4MlNhyuofJF/thicaFwa4MtLLhqJh9CHZrA50tcZeI418ruq3mGfa9Ku1JlVcYaAu36yLFZOwbAuW8F18jxl2te+VeFnZZm/H4kz4MtChK/0xnMfauT+WbiojP/zlmhi/l6rF/uyzNohXAQBuMF4he7MJeneOwsSqI2B8jndj00Tnb11n6wu0BA807lCv6Y14v6Q+2RjvJPGWgA9Xo9Gpu7NvY1P2moojrKNzjkI4wdqG0h0ONsX8/X1TZSWA/8LklpPw1A8m6maf5KmD39Or2rE9moOMX7zAea2BHx6Jjx1MZ6EIsTeqFHnbTmMVsEpkMZDv60fWVGfbzLnohtp+I96PvnpEx1tg3bNxwIP8LA50k3nIfuGJPtf4pp1BCnOdPEKf3NeyZP2Nl074R82Sl3WynA7Bf9/fYpVvLQANZRodUn2Cf0QmynmhiIB62WwyeOOzLLoQEvmsjttMhdqk2FfuIYFC6Tw8Daf+5wBaSM+d42spV2A4R5z8328l95divsP2othoj3qdebbabaMJeqf08w+U3A/W7BbM97MV+rbXCMXReC7rESl+4ZRw7/5ng8RI2whNKDn9m7iO95Gms0pJFLagmT7lCmwd7U++JzU78LejN4eWGOcLYd/lkl7Yva0H94m4f5CWwWz4wXXBGrAWd5nbreySP/a6iXTlFvAWZbj5Km1TDvjemddmrTS1oJtJr2T5d7A1TS2qt5VtQ9nLXusDD2D/eVvu9fXsL4ljxtbHs1Jz9X6HgskqDWH96BwuzI/aHDXpKy/e0oC/iidKSV7A/Lc9QXK/fggJ/LEVat7B7LtY6rmXSgtRU7y0+GIL9IFU3xu3Y7PE85Wsahd1linUi81QLis/su26cgL05e91OQdsWZKDyrnvne+y6rUqXPJ1bkPT7k/7rv2CvXnvi9h/3FvR0QcnRmW/YzU45nvK/RmynvXtLQTP2RjOOCbnbLUh35svIjV7sYsvMpHsDW9BP5TfuSj+xS0+d/5X8sAVdDmZLYszrJ13AZEjrTlQL2hF90OEiF/ZpSXkm97gWVKpoGsm2FPuCX2eXur9pQdt/9K7yWYPd4qrlhTvvW5DACGf1b2nsp2ISFr353IJ61EYeH1fGTjsfkdtT1ILkjQdNP2hhTw5X9ZWtbEFta6+OsRtgnz9jpO3X2IL6Mk32aJthl1l8qm+yvQXtf6atctEK+yMn2lG3gRZUdHhPyhNH7C7uZ/3Yf7Ygr3ifu289sBc9kTv+cqYFScgZv/l4E/tat+dfzNhakRmnLHPG/TmvK2RF7CqeVvTEhHY85il29ZHEgQmhVrSeXvX2+kvsK96pXWWItSIHF3vGwbfYr+x23V8n2Yoy9mXkLaNhz7yYp9Im14oe1LLolBZif2B4ZtvM9lbE61V20LkKe6/aKXFJrVYkHfCliJOB/eTzO6On9rei1LU0v6Be7OeVva6nmLSi6e3pV7nHsD+dTshbfLwVRS2i3734B3uYm95jz7OtyGLsxoPqBQP4uk6w+0FxbkWaYfI+q/mxKxb3vPb3aEU9n++pWKzE3hN0LlXGpxV9+OwadVcce4y/009GQCvK86U/ipfF/iTrjEHEw1akVszB+3E79ocFy5PPR7ei8b3THZla2AV8+7axvWpFKweCJ810sI/pSoYbJrSiqaSqY3F62L8rHzP/P/qLEP/9Dx9/ww7lgQpBRaHiUBmoIlQVqg3Vg5pAzaFWUHuoG5QK9YH6Q0Oh4dBYaCI0DUqD5kPLoLVQBrQbOgyd+M/r3/2v7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGXPv7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6CUvf/KDuWBCkFFoeJQGagiVBWqDdWDmkDNoVZQe6gblAr1gfpDQ6Hh0FhoIjQNSoPmQ8ugtVAGtBs6DJ2AUvb9KzuUByoEFYWKQ2WgilBVqDZUD2oCNYdaQe2hblAq1AfqDw2FhkNjoYnQNCgNmg8tg9ZCGdBu6DB0AkrR+Vd2KA9UCCoKFYfKQBWhqlBtqB7UBGoOtYLaQ92gVKgP1B8aCg2HxkIToWlQGjQfWgathTKg3dBh6ASUovuv7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGX/v7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6AUvf/q7Dzjf5vYVPKdYY1MbkWNLvx5EwewT6cwLVNPb0VGW9t17hzGnrJlbFDtcyvSVwt+ffQkdmkX0RP6Ja1op/2tBSK22JV3+Jja17QiprP3tEtdsfPsOJf9pKUVJW4RNLDzxP7udKFrY18rOqTvz/XHF/vjhW6WEj9b0T6fhOMe97Gb/RC196a0oZ3MetsGHmNnydG6PMzRhs7nul/YG4N9XwNysBZoQ+6Hzy8MS8ReZae4ZUSkDY18DKupSsc+elk61leyDWm8Cs6b9xn7OfHfyTLybWjF9W3ZwsXY96dobutAbehQqk/iuirsob53RWL3tKGMPR8vizRj7xCT3HPBqA3d49q/mK0Lu30semxi3obOnWk92DSE/c1oyZTm2Tb0yueQYuQE9q6SF/vUXNoQy/Hix0bzBvHE28DVfo9nGzp47b7D+ALsu5+/3Wtxuw1tuo0ibizGnmeamu0d0oZCB8P4WZdjl9KIeZsa2YaymV6mOqzGvqXhMsf46zbEb57lXCKFvf0lb5RGOrE/d48qCW7BLpfFefxxThs6fEjv+77t2NkWjUiwlLWhox4Prp/fib1lkUCTa0Mbest6v9NrH/b9+VFmE51tKLOqcNrLEHvbkVg/7x9t6FksT/p5U+zPrCd0RWba0E2WO/N1TmLfmLvPK3dBO7rfGVkmYIO9hkmR002gHdVEjrEVO2KvFF5SpCDWjgwf3A6zu4T95rhsxLyN7ai2/pEjxQv7L82HdrWK7ejYytxrHr7Yaz/tXvJ+ZzsqUal73xOA/bIG/4UXeu1IlmWSTT0Me/KvMOco03akS00yuRGOvZ92biDWqh2tHkx/nB6D/dGiTlq6Uztiltb8UhuP/Uzt/rIqajuavzYht/0t9vPMn35P3W5HZa0FN5s+YJdo37xaOqwdNTl+ZPn8GbtTh886m+h2lMXcvT6oEPu2o+4db5Lakc6hFR0HyrE3lEYg1o/EuPn+m/7UYC//foP/RGE72ngq6mdwM3bd2hsahdXtaLebiszyDuzXn7fHKbe1o2SBR19v9WE/oZSzIXWI2B/zg7nd37HT9GWjt0+1I+eQM+yyE9g//RIdLWLvQCwrN9w+PYPdwOfMxEmBDpScekjzJssQ6eJGX/3ZVhHrT3JJhHBg//V94uGbTR1o173iDQE8c3ze9Qkr5Q7k12Ot5SqInSLcfG29dgc6ccPKZrcw9i2/nESGDDuQe7J1ENsq7CZqL59nWXSgH3aeaUnrsbN8eTcRatuB0hccLNm1Efvu47SRi5c6UGbQguICWeztFIqLpU8H0qqoeLVVEbs1t4eZSVAH+nMzwSpgB/YGTjWfA5EdiOfQwES1OvZyE1RpnNCBpCIOH2TXxt57/bzI8Q8dqMt9icdaHezLbz7d5VzQgfh2rLTaZID9ime6pH91B9qjfZJn9UHsXuaez5PbOpD4ZKYDsyn2aUlaaONwB8rNP3yr1By7XqwSnWuG2J83ncY3LLEbxCUf1FrYibyV/b5JWmNfF/eT7i1E+NWy3+m22O9ExRkVr+1Etjs2lW9xxK55ND54qVwnErvPrv/QFXtkUxL1nGonWnOu+OLAJeyiP3y+f9HpRCyflutKUbEbi9PzxI90otbXyUWG17ArrotovmvViYaqV4+e8cEeIxIqOO1MeJxogfVt7M9/Ju2z9+pEY4yQfQf9sW/3/XK0x78TyWy94il9H7uMbamk1ZNOtEFC9uxICHZXtvI7/XGd6JrmM66oh9hv7fxu5ZLeiT4IK59TeYr9y32TkPlfOpFFhfzd3EjsAqyrJsIqO5FSBMtFxedzzmfnL2fkWjuRp16MXMiLOdv/4VlYPtSJlshsyWl5Nef8GZuacJruROv0ueWEErFvVYiuEF7YheYVVt1UeoPd4qjptgKhLuTQeb5c+x3291o17BfXdaHvth38GunYj3EIiklv6ULzz+gck/iAnR4nYdGt1oV4K0Y+/P6I/ZyWSmz0/i4UcVBFOSMbe2o+reqUWRcq3DG/+2QOduYOrQKps10oSVng2++8Oddjq+XxUbcutCBAmuNKAXYpWz5P2vUuxC67PGKwCLvS5b3z/e93IbmeFy/2fJ0zbvPe0uORXcgo4/7WwDLsZ48EZCkmdqEA/qfH8r9hD331+R3vxy50ylJBsbcSe7RsRtBAURf60edbN1E95/62PGpHcV0XYrmeajpai33gztDd111daNjlRGNjPfY/XVtsA8a60JRpr3NyI/aHfZ4ZrszdqFZTZJdz85ztxy0/aM7bjfyHnezXMrBbMYet2yvSjYLPefN/bsFeYjOwUHFjNzKenjmo24bd5ZNJ7zplwp8HHf/Sjl1VhBq9ZHc3usceeHRT55zrQvGYGMfBblRzo/WCV9ec/eS1UJ85Sexn3tuOvO4599XWowMjDt3ogKZUzUQP9nSzELY+aje6qnDLZ2kfdtT00qXtTjc6wuGnJNE/5/6A4kWbHnUjs1wBefEB7B+XqvTXvOxGpS2leYKDc46PYUNWRVo3kmMTMByb4znW2V5led3Ir233lpwh7BNGpcu+VnYjV2PWPdeGsevvvXOxuLUb1S2NWSz/HbvWQOGeomFiO+Hujxrn+E+BetfCmW60PUxTwf0H9sTPumMFnD1IX9E5iH8Eu/SHvvSCZT3I7BPvzudz3FF4y8cC8R700ftU4uZR7POVun4XKPSgy9lPt6bO8ddukecKd/agnB2qUlvHsN8+n7yoyKAH3aH/qEia41evj9cXmfeg+c98Hdb/xJ7Skvq12LYHMWf2aYTO8WOvXnWWuPegqanNHizjc653/kqRUt8eJLNY38hmjs/4ubuWhfag3he1E6VzvK1drq/8eQ+al6IXJD2BnWspza0ipQctkvU1vDXHLaoEVlZ96kHi562Pts3xParGddVlPUh2Oq126yR2o6zC2NrmHkRx3tnlM8c1frf61vf3oBW8iXHVc9xXe6NH468eFNeroyX2C3vHDiPPZvZe1OzLVG01xyX6VwUyBHsR/9tJ19dzvFjBIbl1TS9ineTZPTTHT1N2NLfL9qLLESYnNv3GznreV6BLtReJpu5tsZ7j/XTXgz26vejxSHTDsznutUohqs+0Fy0Xu32mcY7vDZw3MWDdiz42aUbyTmHXjRY3GnbrRTu4TB7unOONI6wZP673IqZwhzPOc/xk5rx1Y/d7Ud3oLrFnczx8n1/oeGQv6g1Lqyqb44i2lvdXYi8SO/U+7Pccfzyqf3fqYy9amKZ3Zc00dm+DyMV/insRp+HjkL1z/JRo/IN5Db1IJz5hxH6O74gSWM/S04tuBflG3Z/jg70eqazjxLgBkqnv5nh4e8jeBfP70Ms/Pjtq5rjWdb62hXx9yOVuiObPOR7lFXd5kVgfGrM80sQ3g71++8rlvNJ9KOfOi8Uyc3xn2qb3fDv6UP897pE9c9xhQbSZ4N4+ZJDrcuvkHFffqsu09FAf2vNytMt9jn8rmoxdfroPSeWyC9yf4xVjl/RXOvehs7maK1/O8Y09cb9FvfrQ+w9C3FlzXLv+RMzqgD506FPqj29z13f1NFz3tA/J7Y+q6JjjvxntTBKv+5DzlMKH8Tn+Mcc+Wep9H2IfufiO/Q/27KkFJzYV9KH8ar1ioTkuPh3Cv7mmD+kq/mAVn+OHuFi+yHX0oSgPZzuFOT5msO2iwkgfOmLxctHOOX782ZpN2+b1o8gv6wb05jinS0qrMnc/+hGuxGc2x1c8rQ1RWdFPfP5dctNqjhskXNVRk+pHN2zUjR3nuNziaOad2/oRVebG1ctzXCZFLkNrVz8yjFkgcGOOC11cfX63UT9SQtX8/nO8dL+1+L4T/eh6QopP6ByvmJqh657vRzHv9VzD5/gZ/boQ/SvE68rK74yZ45rJ3/cb+vWjs1fMmuLn+B4NNfaDD/tRRSSfxds5XtSdTTv0oh8JT/q4vp/jGittL5imEq83ef267LnHrVRV9lhuP1qu5OCQN8efecv3WVT0IyPF8xZFc9xfUfvZyZZ+1K7NP1E6x7fsdTY7PdSPzOYtVa6c44890wWtp/tRud9i6do5HjrBW2azcACxJ1jVNszxgBXuN+2WDqCrz02U6XO8/fmYusP6AbSQb/xI6xxv8nOfcpIfQANrN/x/7dz/a9R1HMDxmMkGR+jCLxCKxUalOdByqQ17wYpY6jItlbK2LHKaF2dGTKZuuLBrljIn5lE7Ww5N0/JibvMaMo647CTYpujIZrWjNZf3+Xzmxrkv7nbdB3/w9aG/IHg+fvs8efP+6fPD583n83k93aP6UxMnNZU+Y0jr3nBPr+pd5Sc9ZSsN6Vu8cM0/qr9/4MXZO4sNqe5I1sRU92QkohXvGjLtgdIvTdWL2k/XVm43ZOnG+vJ+1Y8Ml6zZXWXIelfdEwOqXzyTPfnjQ4bkheeGBlUvK+yJ7DlqyI9TZs2Jq/747BMf7m0wpHzHrS23VM9v9SypDhkSGHnWN6Tvz8OLhmraDPFnFh4ZVr1u/YTvD14zpLvwjf0jqg82tb3ju2FI5ylvyajqF1b7s78YMcT3x+WHb6seSXP/7k83xe3N6tA99Emer26qKelX5m0c0/uHXavqs0zxlwUN3c/u63Idm29KZLzgrYTqyyLfho+LKd7ISxd03/96RcXJQlPKPijIHld9w6KVi79bZ8r0wOatus9fmjUY2GTKlWyjUfecj+KnGkpNafktbum+JXp+Q9NuU15tqHooqXrm2s8fDB4wJTTqX6b739fcV1u+MuVs62SP7lO22pMOUt0X/FT3kUn3vxA6Z4pnbNVR3S+dsScgmJJxzBvUvaqoOfTTr6bElo9GdD/s2rM90mvKYElup+6jP7yW+0vclCd7m7t179xsT0yw5L57b/bp/s3MtBMdmZbMvF7Qr/u0dnuSgiULjk+N6/5n5dczOnMseeRm/bCj59oTFix5pWnBbd0T15dXdz1vSbM7LaH7Y7X25AVLds7LG9e9eMXAhOjblnyWnJjU/WBa+NxfqfN/d3SXo7c1Hirt3WVJe+BnR8/YZE9qsCQWizl6/owlN2J+S4rcY46+o82e4JDaf5t9dfd9f2NltGggdV6tb0k61lu59mSH1D7pzvWP9nkvDl22ZNuwc/2btfbEB0veG3f22hU5zyVSz/3tY84+/XzQ/XLq+ezOD5J3+50fJPv/02vm5FfoDyHWBvYV62vXPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf/Av
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8dfc4bf8-bd9d-4664-8d23-8c5fa26397de
+ - 1
+ - f9dd80e4-1f37-4628-bd32-7ebd0b7b38b9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 13811ab4-b356-4a2f-bf6a-563f34659a7a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4211
+ 6719
+ 194
+ 28
+
+ -
+ 4311
+ 6733
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e4363c93-3df7-4a54-a55c-fc89bea1dab9
+ - true
+ - Variable O
+ - O
+ - true
+ - 771a3c18-faa6-4281-b469-5031ab7617a5
+ - 1
+
+
+
+
+ -
+ 4213
+ 6721
+ 14
+ 24
+
+ -
+ 4221.5
+ 6733
+
+
+
+
+
+
+
+ - Result of expression
+ - b7074eb2-4309-4c42-9b54-b4b4b797222a
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4394
+ 6721
+ 9
+ 24
+
+ -
+ 4400
+ 6733
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 47d309cc-0087-490d-85c8-cf3d129b0f93
+ - Panel
+
+ - false
+ - 1
+ - b7074eb2-4309-4c42-9b54-b4b4b797222a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4215
+ 6433
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4215.832
+ 6433.893
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3f22465c-a1d8-4425-9fdc-e6135a397fbc
+ - Relay
+ -
+ - false
+ - 47d309cc-0087-490d-85c8-cf3d129b0f93
+ - 1
+
+
+
+
+ -
+ 4288
+ 6410
+ 40
+ 16
+
+ -
+ 4308
+ 6418
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 771a3c18-faa6-4281-b469-5031ab7617a5
+ - Relay
+ -
+ - false
+ - 5078cf9d-5a65-46c0-801d-34f40bee0f1b
+ - 1
+
+
+
+
+ -
+ 4288
+ 6766
+ 40
+ 16
+
+ -
+ 4308
+ 6774
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 13811ab4-b356-4a2f-bf6a-563f34659a7a
+ - 47d309cc-0087-490d-85c8-cf3d129b0f93
+ - 3f22465c-a1d8-4425-9fdc-e6135a397fbc
+ - 771a3c18-faa6-4281-b469-5031ab7617a5
+ - 4
+ - 3b43cc9f-9bf8-4ad1-96ae-3c1d8d223edd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a5de6231-a691-45d0-887d-4c677b2cd883
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4211
+ 6019
+ 194
+ 28
+
+ -
+ 4311
+ 6033
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 55c29e61-d798-4888-9ce1-744c771e1aa8
+ - true
+ - Variable O
+ - O
+ - true
+ - 256d4876-ebd8-4914-aa20-11c64a0e56d7
+ - 1
+
+
+
+
+ -
+ 4213
+ 6021
+ 14
+ 24
+
+ -
+ 4221.5
+ 6033
+
+
+
+
+
+
+
+ - Result of expression
+ - bc7499c7-4854-430a-929c-f83f0f1d3cda
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4394
+ 6021
+ 9
+ 24
+
+ -
+ 4400
+ 6033
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ec2d9eee-a658-42ed-bf34-e56a1ed0c919
+ - Panel
+
+ - false
+ - 0
+ - bc7499c7-4854-430a-929c-f83f0f1d3cda
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4208
+ 5734
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4208.899
+ 5734.656
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d473a50c-3902-4af3-ad36-6f85c9f36bc0
+ - Relay
+ -
+ - false
+ - ec2d9eee-a658-42ed-bf34-e56a1ed0c919
+ - 1
+
+
+
+
+ -
+ 4288
+ 5691
+ 40
+ 16
+
+ -
+ 4308
+ 5699
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 256d4876-ebd8-4914-aa20-11c64a0e56d7
+ - Relay
+ -
+ - false
+ - 0a516f0c-a574-4254-9e94-e7e5df613da5
+ - 1
+
+
+
+
+ -
+ 4288
+ 6066
+ 40
+ 16
+
+ -
+ 4308
+ 6074
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a5de6231-a691-45d0-887d-4c677b2cd883
+ - ec2d9eee-a658-42ed-bf34-e56a1ed0c919
+ - d473a50c-3902-4af3-ad36-6f85c9f36bc0
+ - 256d4876-ebd8-4914-aa20-11c64a0e56d7
+ - 4
+ - 52cee108-6acb-47c9-b99f-f64546acc12c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - d900ebd2-5fc1-475e-a940-194803b564d6
+ - Length
+ - Length
+
+
+
+
+ -
+ 4256
+ 7416
+ 104
+ 28
+
+ -
+ 4306
+ 7430
+
+
+
+
+
+ - Curve to measure
+ - e615bc13-f7e8-4e7a-9a09-b195b451efd2
+ - Curve
+ - Curve
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4258
+ 7418
+ 33
+ 24
+
+ -
+ 4276
+ 7430
+
+
+
+
+
+
+
+ - Curve length
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ 7418
+ 37
+ 24
+
+ -
+ 4341
+ 7430
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 6c8e0d06-15c6-49e1-9067-12321dd4ee3b
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ 5368
+ 82
+ 44
+
+ -
+ 4298
+ 5390
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 87730b00-70b5-4ec1-9f56-925eb9241e56
+ - A
+ - A
+ - true
+ - 8a2d2bc3-4a52-4743-b71a-fe728e225613
+ - 1
+
+
+
+
+ -
+ 4269
+ 5370
+ 14
+ 20
+
+ -
+ 4277.5
+ 5380
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 65069410-805b-4aff-a2bc-5302d7e92e35
+ - B
+ - B
+ - true
+ - 2f63ad6a-50d9-44f8-b78a-6d8a197ff60b
+ - 1
+
+
+
+
+ -
+ 4269
+ 5390
+ 14
+ 20
+
+ -
+ 4277.5
+ 5400
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 14bd8a6a-5af9-451e-86ed-f6bf0cd39f40
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ 5370
+ 34
+ 40
+
+ -
+ 4331.5
+ 5390
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 728569ed-5597-44af-981b-e70a8a64f2f2
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 25306
+ 9330
+ 154
+ 64
+
+ -
+ 25390
+ 9362
+
+
+
+
+
+ - Base geometry
+ - 6595957a-21b8-4b62-9a8e-e5a3980160b0
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 908290ff-2ae5-443a-8c02-efd3ed2fe118
+ - 1
+
+
+
+
+ -
+ 25308
+ 9332
+ 67
+ 20
+
+ -
+ 25351
+ 9342
+
+
+
+
+
+
+
+ - Center of scaling
+ - 3864cd4d-8c57-4aee-ab34-b4fe1108c186
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 25308
+ 9352
+ 67
+ 20
+
+ -
+ 25351
+ 9362
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 7fdd03e9-5a28-4c9d-8c2a-72657066d535
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - ea54cb37-f08c-491b-ac20-a65e4389cca7
+ - 1
+
+
+
+
+ -
+ 25308
+ 9372
+ 67
+ 20
+
+ -
+ 25351
+ 9382
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - a6c40f15-9b44-41cc-8093-43589b25d869
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 25405
+ 9332
+ 53
+ 30
+
+ -
+ 25433
+ 9347
+
+
+
+
+
+
+
+ - Transformation data
+ - 67198943-928b-4658-a6f4-0695f9ee1588
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 25405
+ 9362
+ 53
+ 30
+
+ -
+ 25433
+ 9377
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 4ccebb54-ff4f-4137-9be2-9b59e9e078ef
+ - true
+ - Point
+ - Point
+ - false
+ - a6c40f15-9b44-41cc-8093-43589b25d869
+ - 1
+
+
+
+
+ -
+ 25359
+ 9294
+ 50
+ 24
+
+ -
+ 25384.7
+ 9306.037
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cd610f91-fe93-4eaa-b6dc-0b8fadea311f
+ - Relay
+
+ - false
+ - 0a516f0c-a574-4254-9e94-e7e5df613da5
+ - 1
+
+
+
+
+ -
+ 4288
+ 4397
+ 40
+ 16
+
+ -
+ 4308
+ 4405
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 60502e3d-7b53-49fc-8044-ffd2cd121805
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2752
+ 5496
+ 82
+ 44
+
+ -
+ 2783
+ 5518
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - bc726e13-5c6a-439c-b066-0d4f281fc28f
+ - A
+ - A
+ - true
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - 1
+
+
+
+
+ -
+ 2754
+ 5498
+ 14
+ 20
+
+ -
+ 2762.5
+ 5508
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 89757b60-91ec-4c56-8d64-3546a4655221
+ - B
+ - B
+ - true
+ - 231a94e3-3b48-4943-adac-c96d778b2484
+ - 1
+
+
+
+
+ -
+ 2754
+ 5518
+ 14
+ 20
+
+ -
+ 2762.5
+ 5528
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 6cd0d5e1-a76e-4157-bcb0-cfc84b7fb662
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2798
+ 5498
+ 34
+ 40
+
+ -
+ 2816.5
+ 5518
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - de643b94-4758-4fff-9527-348baf5052a6
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2696
+ 6210
+ 194
+ 28
+
+ -
+ 2796
+ 6224
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 189b23cc-c534-4eaf-b05f-45d8bb13b838
+ - true
+ - Variable O
+ - O
+ - true
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - 1
+
+
+
+
+ -
+ 2698
+ 6212
+ 14
+ 24
+
+ -
+ 2706.5
+ 6224
+
+
+
+
+
+
+
+ - Result of expression
+ - 529e84b3-b743-41a2-bb07-7f3eae076088
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2879
+ 6212
+ 9
+ 24
+
+ -
+ 2885
+ 6224
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
+ - Panel
+
+ - false
+ - 1
+ - 529e84b3-b743-41a2-bb07-7f3eae076088
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2686
+ 5929
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2686.397
+ 5929.743
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bfe8449c-a942-4118-b8c0-f94999971aed
+ - Relay
+ -
+ - false
+ - 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
+ - 1
+
+
+
+
+ -
+ 2773
+ 5894
+ 40
+ 16
+
+ -
+ 2793
+ 5902
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - Relay
+ -
+ - false
+ - 6f661aea-4de1-4ccd-be9b-060c820f3253
+ - 1
+
+
+
+
+ -
+ 2773
+ 6257
+ 40
+ 16
+
+ -
+ 2793
+ 6265
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - de643b94-4758-4fff-9527-348baf5052a6
+ - 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
+ - bfe8449c-a942-4118-b8c0-f94999971aed
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - 4
+ - b71aae03-de35-454b-80fa-09eb419fe2bf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 3f8b08e2-012b-4117-8562-193ac6d58cd1
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 6f068628-c4b9-4434-b450-3eb18eece1e1
+ - 1
+
+
+
+
+ -
+ 2718
+ 5727
+ 150
+ 150
+
+ -
+ 2718.496
+ 5727.921
+
+ - -1
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - 03a735fb-f0b8-408e-aa2e-38f3423396cb
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ 2724
+ 7063
+ 137
+ 64
+
+ -
+ 2794
+ 7095
+
+
+
+
+
+ - Curve to evaluate
+ - ebdfab97-404e-4400-9ad6-ce97c362b1e6
+ - Curve
+ - Curve
+ - false
+ - d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
+ - 1
+
+
+
+
+ -
+ 2726
+ 7065
+ 53
+ 30
+
+ -
+ 2754
+ 7080
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - e3ba73f5-6e97-41e8-b413-d78f285ff5af
+ - Parameter
+ - Parameter
+ - false
+ - 28f77fbb-7355-4ecb-b9f0-9dc95a80eccd
+ - 1
+
+
+
+
+ -
+ 2726
+ 7095
+ 53
+ 30
+
+ -
+ 2754
+ 7110
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 47a169b5-dfa0-40c7-8ebf-fde319f791d4
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2809
+ 7065
+ 50
+ 20
+
+ -
+ 2835.5
+ 7075
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - 0ec276e2-20a9-47a4-ac50-e20d6ab1ee1e
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 2809
+ 7085
+ 50
+ 20
+
+ -
+ 2835.5
+ 7095
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - aacfbbaa-cbb2-41b5-aaff-4015453882fc
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 2809
+ 7105
+ 50
+ 20
+
+ -
+ 2835.5
+ 7115
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - d4d70d80-e818-4fef-ba8e-09da9f91679c
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 2730
+ 7146
+ 125
+ 64
+
+ -
+ 2780
+ 7178
+
+
+
+
+
+ - Curve to divide
+ - 408b244a-22a1-4b81-951c-acb668d4e260
+ - Curve
+ - Curve
+ - false
+ - d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
+ - 1
+
+
+
+
+ -
+ 2732
+ 7148
+ 33
+ 20
+
+ -
+ 2750
+ 7158
+
+
+
+
+
+
+
+ - Number of segments
+ - 0b7485c5-b465-41d0-86b4-72f23669fed5
+ - Count
+ - Count
+ - false
+ - 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
+ - 1
+
+
+
+
+ -
+ 2732
+ 7168
+ 33
+ 20
+
+ -
+ 2750
+ 7178
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 471cb14c-744e-4892-9209-47493c02fe01
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 7188
+ 33
+ 20
+
+ -
+ 2750
+ 7198
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 75ceaaaf-4b5c-4960-a81b-4117cc5d4b54
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2795
+ 7148
+ 58
+ 20
+
+ -
+ 2825.5
+ 7158
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 4aa2e999-e805-449c-b9ff-4c18b1d29197
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 2795
+ 7168
+ 58
+ 20
+
+ -
+ 2825.5
+ 7178
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 28f77fbb-7355-4ecb-b9f0-9dc95a80eccd
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 2795
+ 7188
+ 58
+ 20
+
+ -
+ 2825.5
+ 7198
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
+ - 2
+ - Curve
+ - Curve
+ - false
+ - 23098590-a917-496b-a7fa-ab7fc86169d0
+ - 1
+
+
+
+
+ -
+ 2767
+ 7282
+ 53
+ 24
+
+ -
+ 2803.437
+ 7294.059
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - 4ba46890-e14d-4ffa-988f-1dd7b7759090
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ 2736
+ 6982
+ 114
+ 64
+
+ -
+ 2776
+ 7014
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 5ef3799d-3c27-41aa-b079-76a2250a67e5
+ - Arc
+ - Arc
+ - false
+ - aacfbbaa-cbb2-41b5-aaff-4015453882fc
+ - 1
+
+
+
+
+ -
+ 2738
+ 6984
+ 23
+ 60
+
+ -
+ 2751
+ 7014
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - dae57143-ddef-46e4-99de-d144d87b1d8b
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 2791
+ 6984
+ 57
+ 20
+
+ -
+ 2821
+ 6994
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 2eb519fd-6a71-465a-9619-d9e8eb664335
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 2791
+ 7004
+ 57
+ 20
+
+ -
+ 2821
+ 7014
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - 9094aa8f-9691-4663-a757-5232472ae614
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 2791
+ 7024
+ 57
+ 20
+
+ -
+ 2821
+ 7034
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 5d0d4ef0-d8de-470e-bbae-355a6b237935
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 2743
+ 6318
+ 100
+ 28
+
+ -
+ 2792
+ 6332
+
+
+
+
+
+ - Input value
+ - 717d554b-ee89-4984-8501-fca87732899a
+ - Value
+ - Value
+ - false
+ - 9f7d1187-713e-4c8f-8c68-69b4d351ce97
+ - 1
+
+
+
+
+ -
+ 2745
+ 6320
+ 32
+ 24
+
+ -
+ 2762.5
+ 6332
+
+
+
+
+
+
+
+ - Output value
+ - 8942d533-358d-4c7c-8ea8-d0f51eda1186
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 6320
+ 34
+ 24
+
+ -
+ 2825.5
+ 6332
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6f661aea-4de1-4ccd-be9b-060c820f3253
+ - Relay
+ -
+ - false
+ - 8942d533-358d-4c7c-8ea8-d0f51eda1186
+ - 1
+
+
+
+
+ -
+ 2773
+ 6289
+ 40
+ 16
+
+ -
+ 2793
+ 6297
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9b636a61-698d-4830-96f5-74961596764f
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2696
+ 6895
+ 194
+ 28
+
+ -
+ 2796
+ 6909
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 111ad032-1d08-4851-87d8-c242727847a7
+ - true
+ - Variable O
+ - O
+ - true
+ - 9f7d1187-713e-4c8f-8c68-69b4d351ce97
+ - 1
+
+
+
+
+ -
+ 2698
+ 6897
+ 14
+ 24
+
+ -
+ 2706.5
+ 6909
+
+
+
+
+
+
+
+ - Result of expression
+ - 5e99dcb1-4f43-4cbb-9a7e-485893ea738a
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2879
+ 6897
+ 9
+ 24
+
+ -
+ 2885
+ 6909
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
+ - Panel
+
+ - false
+ - 1
+ - 5e99dcb1-4f43-4cbb-9a7e-485893ea738a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ 6605
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.033
+ 6605.335
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - false
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0e85845b-9b1b-4be3-a812-e90c459106d4
+ - Relay
+ -
+ - false
+ - 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
+ - 1
+
+
+
+
+ -
+ 2773
+ 6567
+ 40
+ 16
+
+ -
+ 2793
+ 6575
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9f7d1187-713e-4c8f-8c68-69b4d351ce97
+ - Relay
+ -
+ - false
+ - 2eb519fd-6a71-465a-9619-d9e8eb664335
+ - 1
+
+
+
+
+ -
+ 2773
+ 6949
+ 40
+ 16
+
+ -
+ 2793
+ 6957
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
+ - Number
+ - Number
+ - false
+ - 931b1327-0f41-42e6-b1eb-00468f33d6c8
+ - 1
+
+
+
+
+ -
+ 2768
+ 7238
+ 50
+ 24
+
+ -
+ 2793.937
+ 7250.646
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 14114d11-a3cb-41ea-8397-075cb5e9d027
+ - Curve
+ - Curve
+ - false
+ - 9b049f30-c8fb-42e2-8753-3a7428f5fa04
+ - 1
+
+
+
+
+ -
+ 2768
+ 5317
+ 50
+ 24
+
+ -
+ 2793.368
+ 5329.088
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 5
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 14114d11-a3cb-41ea-8397-075cb5e9d027
+ - 1
+ - 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 600b5815-4862-4828-a936-e2ea98a22934
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 4240
+ 4337
+ 136
+ 44
+
+ -
+ 4326
+ 4359
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 031d96f7-8481-4d4a-9b81-160a3396d767
+ - Items
+ - Items
+ - false
+ - cd610f91-fe93-4eaa-b6dc-0b8fadea311f
+ - 1
+
+
+
+
+ -
+ 4242
+ 4339
+ 69
+ 20
+
+ -
+ 4278
+ 4349
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - cbf1802f-d79f-4412-88e4-d0fd9c2c1fc7
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 4242
+ 4359
+ 69
+ 20
+
+ -
+ 4278
+ 4369
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 1f0b848f-eb55-4dd9-a62f-a216daed8c78
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 4341
+ 4339
+ 33
+ 20
+
+ -
+ 4359
+ 4349
+
+
+
+
+
+
+
+ - Number of items replaced
+ - a5afb553-925f-43c4-a825-447d3d7bfb65
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 4341
+ 4359
+ 33
+ 20
+
+ -
+ 4359
+ 4369
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ff2db1c1-6c13-43aa-8303-844eb49d3ae6
+ - Relay
+
+ - false
+ - 080fa6d7-bbb3-4f71-a556-fd84a9bd5303
+ - 1
+
+
+
+
+ -
+ 4288
+ 4252
+ 40
+ 16
+
+ -
+ 4308
+ 4260
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 8c08f54a-7801-4d61-a733-3a8ba0d87024
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 95874953-5edd-4e0b-9115-5fc68fd0f28d
+ - 1
+
+
+
+
+ -
+ 4233
+ 4052
+ 150
+ 150
+
+ -
+ 4233.828
+ 4052.635
+
+ - -1
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 95874953-5edd-4e0b-9115-5fc68fd0f28d
+ - Relay
+ -
+ - false
+ - ff2db1c1-6c13-43aa-8303-844eb49d3ae6
+ - 1
+
+
+
+
+ -
+ 4288
+ 4216
+ 40
+ 16
+
+ -
+ 4308
+ 4224
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5cb126fd-9c09-4d9d-9448-82cbad266c75
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4211
+ 3965
+ 194
+ 28
+
+ -
+ 4311
+ 3979
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4c58974c-b1d9-40b1-a891-5eabc20bda90
+ - true
+ - Variable O
+ - O
+ - true
+ - 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
+ - 1
+
+
+
+
+ -
+ 4213
+ 3967
+ 14
+ 24
+
+ -
+ 4221.5
+ 3979
+
+
+
+
+
+
+
+ - Result of expression
+ - e60b926d-ac8a-4eb5-9f55-3b56b430cfc3
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4394
+ 3967
+ 9
+ 24
+
+ -
+ 4400
+ 3979
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
+ - Panel
+
+ - false
+ - 0
+ - e60b926d-ac8a-4eb5-9f55-3b56b430cfc3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4208
+ 3682
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4208.241
+ 3682.615
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4d8c850a-204d-4ade-81d2-820fdd96b58a
+ - Relay
+ -
+ - false
+ - 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
+ - 1
+
+
+
+
+ -
+ 4288
+ 3664
+ 40
+ 16
+
+ -
+ 4308
+ 3672
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
+ - Relay
+ -
+ - false
+ - 95874953-5edd-4e0b-9115-5fc68fd0f28d
+ - 1
+
+
+
+
+ -
+ 4288
+ 4012
+ 40
+ 16
+
+ -
+ 4308
+ 4020
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5cb126fd-9c09-4d9d-9448-82cbad266c75
+ - 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
+ - 4d8c850a-204d-4ade-81d2-820fdd96b58a
+ - 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
+ - 8c08f54a-7801-4d61-a733-3a8ba0d87024
+ - 95874953-5edd-4e0b-9115-5fc68fd0f28d
+ - 6
+ - fa5ecd94-e7d5-46d8-825e-477b6d112c2b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e2051d40-1ccc-45fe-82e2-b1b90760ee46
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ 3396
+ 82
+ 44
+
+ -
+ 4298
+ 3418
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - d5f4a7da-4dd5-4ff9-9a1b-49fe042ec60d
+ - A
+ - A
+ - true
+ - eca5d769-7430-4ced-8208-a3645409d38b
+ - 1
+
+
+
+
+ -
+ 4269
+ 3398
+ 14
+ 20
+
+ -
+ 4277.5
+ 3408
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 9e974e1f-1e02-48b7-bfe6-7c150dd511a2
+ - B
+ - B
+ - true
+ - 76cb75e1-43cf-4e78-ae62-734915746e29
+ - 1
+
+
+
+
+ -
+ 4269
+ 3418
+ 14
+ 20
+
+ -
+ 4277.5
+ 3428
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 32f0b35d-e913-4f06-b93a-97544ad5d63d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ 3398
+ 34
+ 40
+
+ -
+ 4331.5
+ 3418
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2df1f8fc-64bf-4e4b-a60b-3fb33cc9fd01
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -13782
+ 22599
+ 106
+ 64
+
+ -
+ -13718
+ 22631
+
+
+
+
+
+ - Line start point
+ - c54d12b6-d6d2-495b-b838-07a0520624e4
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ -13780
+ 22601
+ 47
+ 20
+
+ -
+ -13755
+ 22611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - a387e6d1-42d4-4708-b061-84b25b674829
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ -13780
+ 22621
+ 47
+ 20
+
+ -
+ -13755
+ 22631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -0.5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - c36c2235-5eaf-437b-8a3d-5bd00adc44b6
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -13780
+ 22641
+ 47
+ 20
+
+ -
+ -13755
+ 22651
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 013f3902-ac62-471f-913d-6b70709a644d
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -13703
+ 22601
+ 25
+ 60
+
+ -
+ -13689
+ 22631
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 5bab25d9-56ac-4d32-844e-0ecfd01f1f9e
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -13782
+ 22743
+ 106
+ 64
+
+ -
+ -13718
+ 22775
+
+
+
+
+
+ - Line start point
+ - 0c1f3cb7-0183-4fae-af72-a660ebff7330
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ -13780
+ 22745
+ 47
+ 20
+
+ -
+ -13755
+ 22755
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - c3b760fc-685f-41be-88e6-5409041d5b92
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ -13780
+ 22765
+ 47
+ 20
+
+ -
+ -13755
+ 22775
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - b8a3bae6-0b05-4a99-8026-f223ea878881
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -13780
+ 22785
+ 47
+ 20
+
+ -
+ -13755
+ 22795
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d8f6b94f-360d-4beb-810a-57991853e22e
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -13703
+ 22745
+ 25
+ 60
+
+ -
+ -13689
+ 22775
+
+
+
+
+
+
+
+
+
+
+
+ - 22990b1f-9be6-477c-ad89-f775cd347105
+ - Flip Curve
+
+
+
+
+ - Flip a curve using an optional guide curve.
+ - true
+ - ba271c46-fe3a-48aa-b5f3-e84f4aecbca8
+ - Flip Curve
+ - Flip Curve
+
+
+
+
+ -
+ -13779
+ 22536
+ 100
+ 44
+
+ -
+ -13729
+ 22558
+
+
+
+
+
+ - Curve to flip
+ - 4de6b7a3-32b3-40e4-8769-771102e78672
+ - Curve
+ - Curve
+ - false
+ - 013f3902-ac62-471f-913d-6b70709a644d
+ - 1
+
+
+
+
+ -
+ -13777
+ 22538
+ 33
+ 20
+
+ -
+ -13759
+ 22548
+
+
+
+
+
+
+
+ - Optional guide curve
+ - c7874f1e-1178-481a-a23a-a45ddb6a935e
+ - Guide
+ - Guide
+ - true
+ - 0
+
+
+
+
+ -
+ -13777
+ 22558
+ 33
+ 20
+
+ -
+ -13759
+ 22568
+
+
+
+
+
+
+
+ - Flipped curve
+ - 6ccb97b0-1e14-49b2-a135-93dab85d9891
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -13714
+ 22538
+ 33
+ 20
+
+ -
+ -13696
+ 22548
+
+
+
+
+
+
+
+ - Flip action
+ - 76123488-8f88-4453-a792-33c39f2d9543
+ - Flag
+ - Flag
+ - false
+ - 0
+
+
+
+
+ -
+ -13714
+ 22558
+ 33
+ 20
+
+ -
+ -13696
+ 22568
+
+
+
+
+
+
+
+
+
+
+
+ - 22990b1f-9be6-477c-ad89-f775cd347105
+ - Flip Curve
+
+
+
+
+ - Flip a curve using an optional guide curve.
+ - true
+ - ac3c3e2b-cbe8-47d5-b631-479f1efb11ec
+ - Flip Curve
+ - Flip Curve
+
+
+
+
+ -
+ -13779
+ 22679
+ 100
+ 44
+
+ -
+ -13729
+ 22701
+
+
+
+
+
+ - Curve to flip
+ - 42fe7b93-aa0d-4826-afa2-cec3a5df89ee
+ - Curve
+ - Curve
+ - false
+ - d8f6b94f-360d-4beb-810a-57991853e22e
+ - 1
+
+
+
+
+ -
+ -13777
+ 22681
+ 33
+ 20
+
+ -
+ -13759
+ 22691
+
+
+
+
+
+
+
+ - Optional guide curve
+ - a74c6312-3c78-4cbc-b45f-8221f13984aa
+ - Guide
+ - Guide
+ - true
+ - 0
+
+
+
+
+ -
+ -13777
+ 22701
+ 33
+ 20
+
+ -
+ -13759
+ 22711
+
+
+
+
+
+
+
+ - Flipped curve
+ - 56c3de07-9943-4d4f-9fe5-b44ac9f9f196
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -13714
+ 22681
+ 33
+ 20
+
+ -
+ -13696
+ 22691
+
+
+
+
+
+
+
+ - Flip action
+ - 991bfe87-9d9a-4c6a-9d3a-3170f388bec9
+ - Flag
+ - Flag
+ - false
+ - 0
+
+
+
+
+ -
+ -13714
+ 22701
+ 33
+ 20
+
+ -
+ -13696
+ 22711
+
+
+
+
+
+
+
+
+
+
+
+ - 5909dbcb-4950-4ce4-9433-7cf9e62ee011
+ - Blend Curve
+
+
+
+
+ - Create a blend curve between two curves.
+ - true
+ - 1b03b2f8-0f41-4cdc-9de3-f381902f125c
+ - Blend Curve
+ - Blend Curve
+
+
+
+
+ -
+ -13787
+ 22339
+ 118
+ 104
+
+ -
+ -13718
+ 22391
+
+
+
+
+
+ - First curve for blend
+ - f784e390-a80a-4024-be92-b2cb2237accc
+ - Curve A
+ - Curve A
+ - false
+ - 6ccb97b0-1e14-49b2-a135-93dab85d9891
+ - 1
+
+
+
+
+ -
+ -13785
+ 22341
+ 52
+ 20
+
+ -
+ -13757.5
+ 22351
+
+
+
+
+
+
+
+ - Second curve for blend
+ - 068c4f67-8be1-46c3-9a72-e78b870d224a
+ - Curve B
+ - Curve B
+ - false
+ - d8f6b94f-360d-4beb-810a-57991853e22e
+ - 1
+
+
+
+
+ -
+ -13785
+ 22361
+ 52
+ 20
+
+ -
+ -13757.5
+ 22371
+
+
+
+
+
+
+
+ - Bulge factor at A
+ - 38f05c2c-1b90-495c-91bd-dc22907ae857
+ - Bulge A
+ - Bulge A
+ - false
+ - 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
+ - 1
+
+
+
+
+ -
+ -13785
+ 22381
+ 52
+ 20
+
+ -
+ -13757.5
+ 22391
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Bulge factor at B
+ - ff1c5a50-1233-4a01-a228-ef0dabd4d80b
+ - Bulge B
+ - Bulge B
+ - false
+ - 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
+ - 1
+
+
+
+
+ -
+ -13785
+ 22401
+ 52
+ 20
+
+ -
+ -13757.5
+ 22411
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Continuity of blend (0=position, 1=tangency, 2=curvature)
+ - 3815bdbb-ace0-4185-ac3a-f5c327929840
+ - Continuity
+ - Continuity
+ - false
+ - 0
+
+
+
+
+ -
+ -13785
+ 22421
+ 52
+ 20
+
+ -
+ -13757.5
+ 22431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Blend curve connecting the end of A to the start of B
+ - 153ce435-1c6f-4961-9a71-d0a0af201f65
+ - Blend
+ - Blend
+ - false
+ - 0
+
+
+
+
+ -
+ -13703
+ 22341
+ 32
+ 100
+
+ -
+ -13685.5
+ 22391
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 39c932f0-cb48-431a-af49-df26495dad11
+ - Curve
+ - Curve
+ - false
+ - 5f024167-e348-42e4-83bc-dd9abab2d75e
+ - 1
+
+
+
+
+ -
+ 4283
+ 2895
+ 50
+ 24
+
+ -
+ 4308
+ 2907.582
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - Relay
+
+ - false
+ - bb672236-a7b7-45ef-afb8-18f1a2792e58
+ - 1
+
+
+
+
+ -
+ 4288
+ 2773
+ 40
+ 16
+
+ -
+ 4308
+ 2781
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 37daf650-3934-4620-a463-416b35449969
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4211
+ 2402
+ 194
+ 28
+
+ -
+ 4311
+ 2416
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9730946c-a145-45c8-aa9e-8dba73e6cd04
+ - true
+ - Variable O
+ - O
+ - true
+ - e51056f8-3107-4b1a-8fd5-ad73176b3deb
+ - 1
+
+
+
+
+ -
+ 4213
+ 2404
+ 14
+ 24
+
+ -
+ 4221.5
+ 2416
+
+
+
+
+
+
+
+ - Result of expression
+ - d4a4ed03-0cc0-46ff-9359-035244fdd4dc
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4394
+ 2404
+ 9
+ 24
+
+ -
+ 4400
+ 2416
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
+ - Panel
+
+ - false
+ - 0
+ - d4a4ed03-0cc0-46ff-9359-035244fdd4dc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4211
+ 2119
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4211.045
+ 2119.177
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1770ef93-fafd-46b6-9880-ef4537069dfd
+ - Relay
+ -
+ - false
+ - f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
+ - 1
+
+
+
+
+ -
+ 4288
+ 2101
+ 40
+ 16
+
+ -
+ 4308
+ 2109
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e51056f8-3107-4b1a-8fd5-ad73176b3deb
+ - Relay
+ -
+ - false
+ - 5b746e58-f682-41be-a162-14fdf355725d
+ - 1
+
+
+
+
+ -
+ 4288
+ 2447
+ 40
+ 16
+
+ -
+ 4308
+ 2455
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 37daf650-3934-4620-a463-416b35449969
+ - f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
+ - 1770ef93-fafd-46b6-9880-ef4537069dfd
+ - e51056f8-3107-4b1a-8fd5-ad73176b3deb
+ - 4
+ - d8ed0680-6313-4ea3-9083-6b6ef5b3df8e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a746965c-93a8-4c42-ba22-60615b10d09a
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4353
+ -11299
+ 144
+ 104
+
+ -
+ 4437
+ -11247
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 175e106b-c54e-440f-b201-4a30b4479824
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11297
+ 67
+ 20
+
+ -
+ 4390
+ -11287
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3907fdb0-9bb6-4168-8255-33d06da4a5a4
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11277
+ 67
+ 20
+
+ -
+ 4390
+ -11267
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 4ca928fa-d51c-47ab-868b-b9cd5ad2a4a4
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11257
+ 67
+ 20
+
+ -
+ 4390
+ -11247
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 6be2492e-681d-45b2-8e54-96a122763bae
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11237
+ 67
+ 20
+
+ -
+ 4390
+ -11227
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6cba6d00-a570-441e-a794-b2bde1c8bce2
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -11217
+ 67
+ 20
+
+ -
+ 4390
+ -11207
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 61c7892c-838c-4bef-9c90-26cc90dbc3aa
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4452
+ -11297
+ 43
+ 100
+
+ -
+ 4475
+ -11247
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 1b5fbf91-fdf8-4030-a119-19e9899bcf85
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4384
+ -11362
+ 82
+ 44
+
+ -
+ 4452
+ -11340
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - e728a154-7a23-4426-8068-39ad90664828
+ - Geometry
+ - Geometry
+ - false
+ - f61f2111-5326-4648-ba8c-1d4458c660dd
+ - 1
+
+
+
+
+ -
+ 4386
+ -11360
+ 51
+ 20
+
+ -
+ 4413
+ -11350
+
+
+
+
+
+
+
+ - The material override
+ - e1bca1e3-517c-4c4a-acb8-5d0f80125eab
+ - Material
+ - Material
+ - false
+ - 61c7892c-838c-4bef-9c90-26cc90dbc3aa
+ - 1
+
+
+
+
+ -
+ 4386
+ -11340
+ 51
+ 20
+
+ -
+ 4413
+ -11330
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2df1f8fc-64bf-4e4b-a60b-3fb33cc9fd01
+ - 5bab25d9-56ac-4d32-844e-0ecfd01f1f9e
+ - ba271c46-fe3a-48aa-b5f3-e84f4aecbca8
+ - ac3c3e2b-cbe8-47d5-b631-479f1efb11ec
+ - 7c5248fa-deac-45e4-b5a1-c56612264153
+ - 1b03b2f8-0f41-4cdc-9de3-f381902f125c
+ - b61d4846-0a2c-4cb6-9506-cacc1d5d15cd
+ - 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
+ - 8
+ - 0135048a-26b4-4af1-a205-9d8732b9d6fb
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 1dd7f4ab-a114-475c-95ae-55222fa823af
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 256.0
+
+
+
+
+ -
+ 4183
+ 7075
+ 250
+ 20
+
+ -
+ 4183.743
+ 7075.877
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b61d4846-0a2c-4cb6-9506-cacc1d5d15cd
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.50000000000
+
+
+
+
+ -
+ -13855
+ 22500
+ 250
+ 20
+
+ -
+ -13854.98
+ 22500.15
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
+ - Relay
+
+ - false
+ - b61d4846-0a2c-4cb6-9506-cacc1d5d15cd
+ - 1
+
+
+
+
+ -
+ -13752
+ 22461
+ 40
+ 16
+
+ -
+ -13732
+ 22469
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 49903633-9080-429b-8a6d-d1e6ebe41d4e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - ae3a695a-cc15-499e-9427-1231fcbea6e4
+ - 1
+
+
+
+
+ -
+ 4350
+ -9703
+ 150
+ 150
+
+ -
+ 4350.622
+ -9702.309
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 0964cac6-acfd-4cc9-9eaf-953e88fd0fc0
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 60d7cf46-ac14-418d-825d-d81b9b00022b
+ - 1
+
+
+
+
+ -
+ 4350
+ -9872
+ 150
+ 150
+
+ -
+ 4350.622
+ -9871.309
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 6cb2edf8-8cdf-4c12-85d6-a8bd4ae5d89e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - bf13852d-01bb-4747-8df7-3dc60b6e7510
+ - 1
+
+
+
+
+ -
+ 4350
+ -10039
+ 150
+ 150
+
+ -
+ 4350.622
+ -10038.83
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 6a8af3f4-c4cb-42f8-8235-d36afb706fae
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 313febab-a771-45da-a567-310cd4182e68
+ - 1
+
+
+
+
+ -
+ 4350
+ -10208
+ 150
+ 150
+
+ -
+ 4350.622
+ -10207.83
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 50a35e3a-c50a-483f-ba6a-4078685fc7f5
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - b7204c31-0fde-4f40-9482-20f3fbf74e06
+ - 1
+
+
+
+
+ -
+ 4350
+ -10378
+ 150
+ 150
+
+ -
+ 4350.379
+ -10377.56
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 7d097b82-7572-4bca-82b7-1d6802a40156
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 48e9cfcc-4536-4f94-9f62-f42b525b36e5
+ - 1
+
+
+
+
+ -
+ 4350
+ -10548
+ 150
+ 150
+
+ -
+ 4350.379
+ -10547.34
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 6668afd9-5abf-4c53-9854-9dacd7e2c2c6
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 7ca4635d-ac36-43c9-b4e8-aba60332ab9f
+ - 1
+
+
+
+
+ -
+ 4350
+ -10717
+ 150
+ 150
+
+ -
+ 4350.379
+ -10716.08
+
+ - -1
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 1818d3db-972f-47b4-b0c9-65197dfe11c2
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 22921
+ 50
+ 24
+
+ -
+ -12848.95
+ 22933.84
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 9f25a355-7662-4195-8bad-1228d1b92e3a
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 22963
+ 50
+ 24
+
+ -
+ -12848.95
+ 22975.33
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.25
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - bdf07b41-b621-4b36-819a-8bd27aca0e34
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 23006
+ 50
+ 24
+
+ -
+ -12848.95
+ 23018.71
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.394775268579572
+ 0.197847617914238
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 3a8f6210-9f26-43e4-8b81-9b30c45b88b3
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 23053
+ 50
+ 24
+
+ -
+ -12848.54
+ 23065.03
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.200657721514105
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - e6c35ec2-ba17-4faf-bedc-9905f308c518
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 22715
+ 50
+ 24
+
+ -
+ -12848.09
+ 22727.27
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.5
+ 0.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 41c9204f-fb15-49e7-9e6f-1f04ee4cfc2e
+ - true
+ - Merge
+ - Merge
+
+
+
+
+ -
+ -12893
+ 22750
+ 87
+ 144
+
+ -
+ -12857
+ 22822
+
+
+
+
+
+ - 7
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 1b7d2336-0b9d-47ce-b5a1-ed7b229efeac
+ - true
+ - false
+ - Data 1
+ - D1
+ - true
+ - 1818d3db-972f-47b4-b0c9-65197dfe11c2
+ - 1
+
+
+
+
+ -
+ -12891
+ 22752
+ 19
+ 20
+
+ -
+ -12880
+ 22762
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - 7d23cc1e-b361-4ccd-82dd-cca3cfbbc15f
+ - true
+ - false
+ - Data 2
+ - D2
+ - true
+ - 9f25a355-7662-4195-8bad-1228d1b92e3a
+ - 1
+
+
+
+
+ -
+ -12891
+ 22772
+ 19
+ 20
+
+ -
+ -12880
+ 22782
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - a689816b-5ebe-4a34-91e7-e043313eb3fe
+ - true
+ - false
+ - Data 3
+ - D3
+ - true
+ - bdf07b41-b621-4b36-819a-8bd27aca0e34
+ - 1
+
+
+
+
+ -
+ -12891
+ 22792
+ 19
+ 20
+
+ -
+ -12880
+ 22802
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - 313e47fa-4c2a-4dad-a1fd-49ed9925b99f
+ - true
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ -12891
+ 22812
+ 19
+ 20
+
+ -
+ -12880
+ 22822
+
+
+
+
+
+
+
+ - 2
+ - Data stream 5
+ - ed5f14a0-0c1a-4651-8847-ba22c778fe88
+ - true
+ - false
+ - Data 5
+ - D5
+ - true
+ - 0
+
+
+
+
+ -
+ -12891
+ 22832
+ 19
+ 20
+
+ -
+ -12880
+ 22842
+
+
+
+
+
+
+
+ - 2
+ - Data stream 6
+ - c79e50a7-2e4d-4e14-ad92-8e0ba11e0b59
+ - true
+ - false
+ - Data 6
+ - D6
+ - true
+ - 0
+
+
+
+
+ -
+ -12891
+ 22852
+ 19
+ 20
+
+ -
+ -12880
+ 22862
+
+
+
+
+
+
+
+ - 2
+ - Data stream 7
+ - 64079409-bb3a-4789-b544-4ee321deb040
+ - true
+ - false
+ - Data 7
+ - D7
+ - true
+ - 0
+
+
+
+
+ -
+ -12891
+ 22872
+ 19
+ 20
+
+ -
+ -12880
+ 22882
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - a539d1e9-68b9-430e-a3d7-537c65f05f7c
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -12842
+ 22752
+ 34
+ 140
+
+ -
+ -12823.5
+ 22822
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - a51298b4-d113-4e33-b945-2f96e88302ea
+ - true
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ -12925
+ 22527
+ 154
+ 64
+
+ -
+ -12857
+ 22559
+
+
+
+
+
+ - Base geometry
+ - de05e983-9d6a-4257-995e-ef69084268dc
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - a539d1e9-68b9-430e-a3d7-537c65f05f7c
+ - 1
+
+
+
+
+ -
+ -12923
+ 22529
+ 51
+ 20
+
+ -
+ -12896
+ 22539
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - a266731d-89a1-463f-9de8-321659cbee1f
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ -12923
+ 22549
+ 51
+ 20
+
+ -
+ -12896
+ 22559
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 6d069752-8260-43f5-bcbf-a824af1e9d7f
+ - true
+ - Plane
+ - Plane
+ - false
+ - e6c35ec2-ba17-4faf-bedc-9905f308c518
+ - 1
+
+
+
+
+ -
+ -12923
+ 22569
+ 51
+ 20
+
+ -
+ -12896
+ 22579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - b0394c3c-26aa-4d54-b33f-ffd0e0c9426a
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ -12842
+ 22529
+ 69
+ 30
+
+ -
+ -12814
+ 22544
+
+
+
+
+
+
+
+ - Transformation data
+ - 16ffc00d-f46f-4cf8-b3c7-bc98f4c1e945
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ -12842
+ 22559
+ 69
+ 30
+
+ -
+ -12814
+ 22574
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 57338b09-cfcc-43c5-af5d-62540440940e
+ - true
+ - Merge
+ - Merge
+
+
+
+
+ -
+ -12893
+ 22421
+ 87
+ 84
+
+ -
+ -12857
+ 22463
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 7023e8c0-e2bd-417c-be59-7ed3d26ba6bd
+ - true
+ - false
+ - Data 1
+ - D1
+ - true
+ - a539d1e9-68b9-430e-a3d7-537c65f05f7c
+ - 1
+
+
+
+
+ -
+ -12891
+ 22423
+ 19
+ 20
+
+ -
+ -12880
+ 22433
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - 79d07e16-9e3c-42ef-9d76-41932ef42d5c
+ - true
+ - false
+ - Data 2
+ - D2
+ - true
+ - e6c35ec2-ba17-4faf-bedc-9905f308c518
+ - 1
+
+
+
+
+ -
+ -12891
+ 22443
+ 19
+ 20
+
+ -
+ -12880
+ 22453
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 33e90266-6168-4cf8-97bd-eb2c44a236d6
+ - true
+ - false
+ - Data 3
+ - D3
+ - true
+ - d8e7c413-da6d-49c8-8b76-cf94bbbde9c2
+ - 1
+
+
+
+
+ -
+ -12891
+ 22463
+ 19
+ 20
+
+ -
+ -12880
+ 22473
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - f794f028-631f-4cfe-8d4d-2183b67ea77b
+ - true
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ -12891
+ 22483
+ 19
+ 20
+
+ -
+ -12880
+ 22493
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 8d495468-0570-4f48-bb1c-5aaabfff109f
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -12842
+ 22423
+ 34
+ 80
+
+ -
+ -12823.5
+ 22463
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - dde71aef-d6ed-40a6-af98-6b0673983c82
+ - Nurbs Curve
+
+
+
+
+ - Construct a nurbs curve from control points.
+ - true
+ - fe55b884-74d2-4ace-91ec-46bb8aa6d46e
+ - true
+ - Nurbs Curve
+ - Nurbs Curve
+
+
+
+
+ -
+ -12918
+ 22244
+ 118
+ 64
+
+ -
+ -12858
+ 22276
+
+
+
+
+
+ - 1
+ - Curve control points
+ - 7fe7b8fc-fec4-4321-92c1-0e6182219a0a
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 8d495468-0570-4f48-bb1c-5aaabfff109f
+ - 1
+
+
+
+
+ -
+ -12916
+ 22246
+ 43
+ 20
+
+ -
+ -12893
+ 22256
+
+
+
+
+
+
+
+ - Curve degree
+ - c71205c6-66b5-49ac-9a49-9e7a69e35a93
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ -12916
+ 22266
+ 43
+ 20
+
+ -
+ -12893
+ 22276
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 11
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - c2998f02-a1fb-49ae-84ab-f1ad6c66b669
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ -12916
+ 22286
+ 43
+ 20
+
+ -
+ -12893
+ 22296
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - e22f8f4c-01d9-40da-84dd-7b1c9d05dc05
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -12843
+ 22246
+ 41
+ 20
+
+ -
+ -12821
+ 22256
+
+
+
+
+
+
+
+ - Curve length
+ - 9312300e-0dbd-4b1c-85ee-c473762db936
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -12843
+ 22266
+ 41
+ 20
+
+ -
+ -12821
+ 22276
+
+
+
+
+
+
+
+ - Curve domain
+ - a2c8554b-5662-4c85-aca3-96762059833a
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -12843
+ 22286
+ 41
+ 20
+
+ -
+ -12821
+ 22296
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 88d85a7a-6236-4486-80da-b121d9a65425
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 23091
+ 50
+ 24
+
+ -
+ -12848.45
+ 23103.03
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.283026022490193
+ 0.08609833667516
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - a22527ce-b848-4876-ae6c-e284f5e1a12e
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -12873
+ 23142
+ 50
+ 24
+
+ -
+ -12848.45
+ 23154.92
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.332348228366894
+ 0.163223259975457
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - fa928cff-b283-44fa-ac3e-1c442a6c1672
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ -12918
+ 22610
+ 138
+ 44
+
+ -
+ -12850
+ 22632
+
+
+
+
+
+ - Base geometry
+ - 16123eaa-bc27-4e53-b85c-4397bdf91758
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - b0394c3c-26aa-4d54-b33f-ffd0e0c9426a
+ - 1
+
+
+
+
+ -
+ -12916
+ 22612
+ 51
+ 20
+
+ -
+ -12889
+ 22622
+
+
+
+
+
+
+
+ - Mirror plane
+ - 80cf4e6c-d577-4ed1-86a6-cb94f169c26f
+ - true
+ - Plane
+ - Plane
+ - false
+ - e7375d9f-5a67-4bd3-9539-8914551d4c92
+ - 1
+
+
+
+
+ -
+ -12916
+ 22632
+ 51
+ 20
+
+ -
+ -12889
+ 22642
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - d8e7c413-da6d-49c8-8b76-cf94bbbde9c2
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ -12835
+ 22612
+ 53
+ 20
+
+ -
+ -12807
+ 22622
+
+
+
+
+
+
+
+ - Transformation data
+ - dad63748-20ec-49f8-be3a-64adc4b8f57d
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ -12835
+ 22632
+ 53
+ 20
+
+ -
+ -12807
+ 22642
+
+
+
+
+
+
+
+
+
+
+
+ - 17b7152b-d30d-4d50-b9ef-c9fe25576fc2
+ - XY Plane
+
+
+
+
+ - World XY plane.
+ - true
+ - 5419777c-8b79-4b71-8094-671e26c8e42f
+ - true
+ - XY Plane
+ - XY Plane
+
+
+
+
+ -
+ -12900
+ 22668
+ 98
+ 28
+
+ -
+ -12850
+ 22682
+
+
+
+
+
+ - Origin of plane
+ - f378614e-5fd1-4224-aa44-1c402747a088
+ - true
+ - Origin
+ - Origin
+ - false
+ - e6c35ec2-ba17-4faf-bedc-9905f308c518
+ - 1
+
+
+
+
+ -
+ -12898
+ 22670
+ 33
+ 24
+
+ -
+ -12880
+ 22682
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World XY plane
+ - e7375d9f-5a67-4bd3-9539-8914551d4c92
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ -12835
+ 22670
+ 31
+ 24
+
+ -
+ -12818
+ 22682
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 440a5d0a-f4bb-43f8-9b0b-9f129f6b6ddb
+ - true
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ -12918
+ 22321
+ 125
+ 84
+
+ -
+ -12851
+ 22363
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 93a04a85-8966-4529-bf74-64647084f7d6
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 8d495468-0570-4f48-bb1c-5aaabfff109f
+ - 1
+
+
+
+
+ -
+ -12916
+ 22323
+ 50
+ 20
+
+ -
+ -12889.5
+ 22333
+
+
+
+
+
+
+
+ - Curve degree
+ - ecc241b9-be30-434b-a539-7190153555eb
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ -12916
+ 22343
+ 50
+ 20
+
+ -
+ -12889.5
+ 22353
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 8f2f38c6-16be-4b50-a09f-4c92a6d03cee
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ -12916
+ 22363
+ 50
+ 20
+
+ -
+ -12889.5
+ 22373
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - e6abb7eb-e3f2-4fb8-a0ff-18fd1e81c3b7
+ - true
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ -12916
+ 22383
+ 50
+ 20
+
+ -
+ -12889.5
+ 22393
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 715cdc1a-d856-4941-b0ad-3b9c04d514a5
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -12836
+ 22323
+ 41
+ 26
+
+ -
+ -12814
+ 22336.33
+
+
+
+
+
+
+
+ - Curve length
+ - 794a44d9-4e35-433d-86d7-666be64886b9
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -12836
+ 22349
+ 41
+ 27
+
+ -
+ -12814
+ 22363
+
+
+
+
+
+
+
+ - Curve domain
+ - e30a2443-c95f-45fa-8e9a-c981d2b000bc
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -12836
+ 22376
+ 41
+ 27
+
+ -
+ -12814
+ 22389.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1818d3db-972f-47b4-b0c9-65197dfe11c2
+ - 9f25a355-7662-4195-8bad-1228d1b92e3a
+ - bdf07b41-b621-4b36-819a-8bd27aca0e34
+ - 3a8f6210-9f26-43e4-8b81-9b30c45b88b3
+ - e6c35ec2-ba17-4faf-bedc-9905f308c518
+ - 41c9204f-fb15-49e7-9e6f-1f04ee4cfc2e
+ - a51298b4-d113-4e33-b945-2f96e88302ea
+ - 57338b09-cfcc-43c5-af5d-62540440940e
+ - fe55b884-74d2-4ace-91ec-46bb8aa6d46e
+ - 88d85a7a-6236-4486-80da-b121d9a65425
+ - a22527ce-b848-4876-ae6c-e284f5e1a12e
+ - fa928cff-b283-44fa-ac3e-1c442a6c1672
+ - 5419777c-8b79-4b71-8094-671e26c8e42f
+ - 440a5d0a-f4bb-43f8-9b0b-9f129f6b6ddb
+ - 14
+ - a309790d-41a6-4472-877b-e83d98be0d70
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2b8982ad-31cf-4594-b562-7f255387572d
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -272
+ 12535
+ 194
+ 28
+
+ -
+ -172
+ 12549
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6263f94c-d40f-4e1a-9b62-b12a0091989f
+ - true
+ - Variable O
+ - O
+ - true
+ - 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
+ - 1
+
+
+
+
+ -
+ -270
+ 12537
+ 14
+ 24
+
+ -
+ -261.5
+ 12549
+
+
+
+
+
+
+
+ - Result of expression
+ - c4d40938-2a1a-4c0c-b929-c8188cbe547c
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -89
+ 12537
+ 9
+ 24
+
+ -
+ -83
+ 12549
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f57f0a05-8d67-4d43-83ba-1fa5cf42da0e
+ - true
+ - Panel
+
+ - false
+ - 0
+ - c4d40938-2a1a-4c0c-b929-c8188cbe547c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -272
+ 12248
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -271.1929
+ 12248.61
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 47449d6f-59a8-4e29-bbce-0d0b02c29488
+ - true
+ - Relay
+ -
+ - false
+ - f57f0a05-8d67-4d43-83ba-1fa5cf42da0e
+ - 1
+
+
+
+
+ -
+ -195
+ 12212
+ 40
+ 16
+
+ -
+ -175
+ 12220
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
+ - true
+ - Relay
+ -
+ - false
+ - 9b1cb421-16d8-4a53-b2e0-8d1623cb2148
+ - 1
+
+
+
+
+ -
+ -195
+ 12580
+ 40
+ 16
+
+ -
+ -175
+ 12588
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eaa87f52-c666-41a9-b556-acd207f0b6c7
+ - c4fa04b7-3725-4402-b9f5-638b88ba78f6
+ - b661329d-1c86-4c6d-95f9-d705a1115677
+ - e63f5e4a-94fa-4924-86f4-2933a2da291b
+ - ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
+ - c1f6941e-67c3-4804-8c8b-0274a0e48a3d
+ - c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
+ - a60d4ff8-ca3f-45c9-b2ca-62bf83022599
+ - 65b567a8-78ea-4eb1-b9ff-a6002f44885b
+ - f7402af7-b96e-4810-a00d-c27261a92d89
+ - a63c1906-6c40-43b6-bf50-e976a76ef9eb
+ - 6b414199-1a78-4066-bf90-85da6bce32c0
+ - 54b025ce-50fe-46f2-8bd2-3bb3a203f49a
+ - 5dc5632c-8c01-41c5-af25-47838fc684b2
+ - 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd
+ - fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4
+ - 45c22674-d02a-44ba-b8eb-5d5f3acf5790
+ - 0a9908b8-576f-4498-957f-369fefe28b2a
+ - 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1
+ - 9186d39b-d4cc-45e6-a786-965ed70f8528
+ - bf5cfc02-9b93-47a0-bace-8cf4f6b9f48d
+ - a8b4d7ba-71d5-4764-b276-828e069e1a14
+ - 07782138-aba3-44d1-9dec-33b387755b83
+ - 7f21031c-6647-46ce-835e-6c92a920335e
+ - 2a1012b3-1746-43f3-86ea-7f5c3c2e45f9
+ - 3fd109c6-3ae8-453e-b871-73884b2fd78d
+ - 58fbe8f8-b6cc-49b3-868f-2f5e9adf5eb4
+ - 080c45e6-3c93-4ede-8bae-6942df87d901
+ - a8a49fdf-31eb-4a9f-a98d-e15015261400
+ - 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
+ - 9cc8f06a-8751-4d91-8029-e814fe94e287
+ - 64f4c70f-d50b-4286-9b15-67fe6a6b6671
+ - a0e07e08-fe1e-408d-b57c-4a0a1c879a92
+ - 7b96ee99-1a36-400f-9885-b6de6377a16f
+ - 130ea919-f2f4-4d96-a399-8e265bf54af8
+ - c6f6074b-b03a-49dc-aac8-2e1469dc341f
+ - 04f1da23-038a-4f15-bb9e-f3ce4920ed5a
+ - 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f
+ - 9cf2d03c-25ee-4970-b1c2-03c6d2473ade
+ - fb8356cd-bc57-4212-b603-ece8bc609c2e
+ - 64c144e6-a1e8-4d25-b361-aa88bebf6277
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - f9285ab5-378d-4ddf-95cc-b5dd1c1ba77d
+ - 166e572a-6023-47d4-b8f6-57f8ebfb97da
+ - 5de4bf60-eae6-465d-b779-f5efb709b4ad
+ - f18cc5c3-73d8-4311-8236-bf6b13104193
+ - 96bb9f3d-3d8c-4d3a-859d-4a8d3f4c5d5e
+ - 4edfafd8-3b0c-4943-bb10-917abaeb9712
+ - f91bfec0-c6ad-4011-8456-67697a779eb3
+ - 91b67f5a-4dff-4683-a8db-dc90bf6de0f8
+ - d0b32d0e-885a-4c2b-b378-441bba4876b7
+ - 1498e329-39e2-490d-bf26-64cc72d5b628
+ - b59393f3-2b17-47be-bc0e-82711f27e393
+ - 942441e0-2a69-43f4-80f2-24729e38a366
+ - c2f1f615-6fd6-4da2-9d18-b2d721b79703
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 28041f4d-ea5e-40a7-8e96-c4fe6c94f571
+ - 86694246-d580-4d98-8160-6ae52ac6f1b8
+ - 7ae05443-fd59-4dfe-ba49-c100f76256e7
+ - 41402c3f-e413-42af-bec9-2fa5b5ce34fa
+ - 60
+ - bad5c919-ca65-44cf-8be2-feeef714fad2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9186d39b-d4cc-45e6-a786-965ed70f8528
+ - 1
+ - eaa87f52-c666-41a9-b556-acd207f0b6c7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b661329d-1c86-4c6d-95f9-d705a1115677
+ - e63f5e4a-94fa-4924-86f4-2933a2da291b
+ - ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
+ - c1f6941e-67c3-4804-8c8b-0274a0e48a3d
+ - c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
+ - a60d4ff8-ca3f-45c9-b2ca-62bf83022599
+ - 65b567a8-78ea-4eb1-b9ff-a6002f44885b
+ - f7402af7-b96e-4810-a00d-c27261a92d89
+ - 6b414199-1a78-4066-bf90-85da6bce32c0
+ - a63c1906-6c40-43b6-bf50-e976a76ef9eb
+ - eaa87f52-c666-41a9-b556-acd207f0b6c7
+ - 11
+ - c4fa04b7-3725-4402-b9f5-638b88ba78f6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - b661329d-1c86-4c6d-95f9-d705a1115677
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 3742
+ 11336
+ 104
+ 64
+
+ -
+ 3801
+ 11368
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - fa1ee80a-25e2-4624-99fd-12b709505b79
+ - Data
+ - Data
+ - false
+ - 3d4cd0a5-11ef-4190-a953-f2d1da8a2ad4
+ - 1
+
+
+
+
+ -
+ 3744
+ 11338
+ 42
+ 20
+
+ -
+ 3766.5
+ 11348
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 9fc44f7a-5480-4ba7-9d60-d503a9585fc4
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 3744
+ 11358
+ 42
+ 20
+
+ -
+ 3766.5
+ 11368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - ccd3258b-eccf-4f8e-99f7-68b527fee35a
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 3744
+ 11378
+ 42
+ 20
+
+ -
+ 3766.5
+ 11388
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - e074e6d9-878a-4027-857f-b9ae9b303522
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 3816
+ 11338
+ 28
+ 60
+
+ -
+ 3831.5
+ 11368
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - e63f5e4a-94fa-4924-86f4-2933a2da291b
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 3737
+ 10377
+ 116
+ 44
+
+ -
+ 3798
+ 10399
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - cb49d094-135a-4555-8461-a28402f74759
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - e074e6d9-878a-4027-857f-b9ae9b303522
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3739
+ 10379
+ 44
+ 20
+
+ -
+ 3762.5
+ 10389
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - b7ac10e4-066f-4481-9133-46686d683dea
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 41402c3f-e413-42af-bec9-2fa5b5ce34fa
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3739
+ 10399
+ 44
+ 20
+
+ -
+ 3762.5
+ 10409
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - b819959a-eb73-4527-b54f-285a2b786d1a
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 3813
+ 10379
+ 38
+ 20
+
+ -
+ 3833.5
+ 10389
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 72e2f1ea-5de4-4652-b1b6-c001429a1607
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 3813
+ 10399
+ 38
+ 20
+
+ -
+ 3833.5
+ 10409
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
+ - Point
+ - Point
+ - false
+ - 72e2f1ea-5de4-4652-b1b6-c001429a1607
+ - 1
+
+
+
+
+ -
+ 3771
+ 10182
+ 50
+ 24
+
+ -
+ 3796.124
+ 10194.12
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - c1f6941e-67c3-4804-8c8b-0274a0e48a3d
+ - Series
+ - Series
+
+
+
+
+ -
+ 3745
+ 10845
+ 101
+ 64
+
+ -
+ 3795
+ 10877
+
+
+
+
+
+ - First number in the series
+ - 0c9f6bae-0fc9-4a5c-a763-9f565f59aa5b
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3747
+ 10847
+ 33
+ 20
+
+ -
+ 3765
+ 10857
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 16734827-34c7-4da5-9bad-004561de16b2
+ - Step
+ - Step
+ - false
+ - b1464b45-8fd5-4217-9845-9c2f64eafd27
+ - 1
+
+
+
+
+ -
+ 3747
+ 10867
+ 33
+ 20
+
+ -
+ 3765
+ 10877
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 4f1fcd1a-e5fd-444e-9644-5bd99614cf11
+ - Count
+ - Count
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 3747
+ 10887
+ 33
+ 20
+
+ -
+ 3765
+ 10897
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 96634ed3-55a8-4c30-a62c-e5002f4aa576
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 3810
+ 10847
+ 34
+ 60
+
+ -
+ 3828.5
+ 10877
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3720
+ 11506
+ 150
+ 20
+
+ -
+ 3720.834
+ 11506.56
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - a60d4ff8-ca3f-45c9-b2ca-62bf83022599
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 3735
+ 10970
+ 120
+ 28
+
+ -
+ 3796
+ 10984
+
+
+
+
+
+ - Angle in degrees
+ - 366e99dd-4acc-4d1b-976c-c249abf42af3
+ - Degrees
+ - Degrees
+ - false
+ - ba1a1a80-2ca7-4a73-8c0f-0ec9ae1d1d34
+ - 1
+
+
+
+
+ -
+ 3737
+ 10972
+ 44
+ 24
+
+ -
+ 3760.5
+ 10984
+
+
+
+
+
+
+
+ - Angle in radians
+ - b1464b45-8fd5-4217-9845-9c2f64eafd27
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 3811
+ 10972
+ 42
+ 24
+
+ -
+ 3833.5
+ 10984
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 65b567a8-78ea-4eb1-b9ff-a6002f44885b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000007490
+
+
+
+
+ -
+ 3667
+ 11300
+ 250
+ 20
+
+ -
+ 3667.796
+ 11300.45
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - f7402af7-b96e-4810-a00d-c27261a92d89
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 3747
+ 11418
+ 100
+ 28
+
+ -
+ 3796
+ 11432
+
+
+
+
+
+ - Input value
+ - 47da93b8-893a-480a-9527-0d3593e614f1
+ - Value
+ - Value
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 3749
+ 11420
+ 32
+ 24
+
+ -
+ 3766.5
+ 11432
+
+
+
+
+
+
+
+ - Output value
+ - 3d4cd0a5-11ef-4190-a953-f2d1da8a2ad4
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3811
+ 11420
+ 34
+ 24
+
+ -
+ 3829.5
+ 11432
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - a63c1906-6c40-43b6-bf50-e976a76ef9eb
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 3723
+ 10074
+ 144
+ 84
+
+ -
+ 3809
+ 10116
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - e3065d9d-8f71-48ad-8734-2bceb07257e8
+ - Vertices
+ - Vertices
+ - false
+ - ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
+ - 1
+
+
+
+
+ -
+ 3725
+ 10076
+ 69
+ 20
+
+ -
+ 3761
+ 10086
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - db01c631-588e-4417-9638-ca735b8efe45
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 10096
+ 69
+ 20
+
+ -
+ 3761
+ 10106
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - fe6b8754-06e2-462e-b0b1-05b9bbaa16dd
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 10116
+ 69
+ 20
+
+ -
+ 3761
+ 10126
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 3142f1aa-090d-4ded-95bd-b2b87f5f92d5
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 10136
+ 69
+ 20
+
+ -
+ 3761
+ 10146
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 99dabb3c-3d24-49d7-986a-4aad0362e8b7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 10076
+ 41
+ 26
+
+ -
+ 3846
+ 10089.33
+
+
+
+
+
+
+
+ - Curve length
+ - bded6360-0fc6-4f89-9430-0d54011f95f2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 10102
+ 41
+ 27
+
+ -
+ 3846
+ 10116
+
+
+
+
+
+
+
+ - Curve domain
+ - d32034a8-334d-4f6f-9d00-22ab40cdaa16
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 10129
+ 41
+ 27
+
+ -
+ 3846
+ 10142.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b661329d-1c86-4c6d-95f9-d705a1115677
+ - e63f5e4a-94fa-4924-86f4-2933a2da291b
+ - ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
+ - c1f6941e-67c3-4804-8c8b-0274a0e48a3d
+ - c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
+ - a60d4ff8-ca3f-45c9-b2ca-62bf83022599
+ - 65b567a8-78ea-4eb1-b9ff-a6002f44885b
+ - f7402af7-b96e-4810-a00d-c27261a92d89
+ - 8
+ - 6b414199-1a78-4066-bf90-85da6bce32c0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 54b025ce-50fe-46f2-8bd2-3bb3a203f49a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3723
+ 9906
+ 144
+ 64
+
+ -
+ 3797
+ 9938
+
+
+
+
+
+ - Curve to evaluate
+ - 7ad96e1d-9539-4135-a0e5-0acc0dad4a6f
+ - Curve
+ - Curve
+ - false
+ - 99dabb3c-3d24-49d7-986a-4aad0362e8b7
+ - 1
+
+
+
+
+ -
+ 3725
+ 9908
+ 57
+ 20
+
+ -
+ 3755
+ 9918
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5dfc7ef1-53aa-4438-8523-7821e643bccc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 9928
+ 57
+ 20
+
+ -
+ 3755
+ 9938
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 942309c7-fbd6-494c-9b9a-a244767daef9
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 9948
+ 57
+ 20
+
+ -
+ 3755
+ 9958
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - b9e6c70d-992e-448d-ba9e-9211e8aba31b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9908
+ 53
+ 20
+
+ -
+ 3840
+ 9918
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 44a4b18d-e6f4-4180-a885-9ded5d7912cb
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9928
+ 53
+ 20
+
+ -
+ 3840
+ 9938
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2213bae4-c45e-4ed2-823f-102defe2e9d9
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9948
+ 53
+ 20
+
+ -
+ 3840
+ 9958
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 5dc5632c-8c01-41c5-af25-47838fc684b2
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3726
+ 9844
+ 138
+ 44
+
+ -
+ 3794
+ 9866
+
+
+
+
+
+ - Base geometry
+ - 641fe1aa-50be-4640-9915-ef256ac29568
+ - Geometry
+ - Geometry
+ - true
+ - 99dabb3c-3d24-49d7-986a-4aad0362e8b7
+ - 1
+
+
+
+
+ -
+ 3728
+ 9846
+ 51
+ 20
+
+ -
+ 3755
+ 9856
+
+
+
+
+
+
+
+ - Mirror plane
+ - bfd4d8f6-8141-4f64-b024-7ccbba3bd042
+ - Plane
+ - Plane
+ - false
+ - 8cbed87f-21f3-4b60-bdb9-9e4684fba899
+ - 1
+
+
+
+
+ -
+ 3728
+ 9866
+ 51
+ 20
+
+ -
+ 3755
+ 9876
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 3a7355fc-f2e2-4cce-a6d8-8c171b38786d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3809
+ 9846
+ 53
+ 20
+
+ -
+ 3837
+ 9856
+
+
+
+
+
+
+
+ - Transformation data
+ - 03f9d71a-6701-4505-b13d-db6d1ac022d8
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3809
+ 9866
+ 53
+ 20
+
+ -
+ 3837
+ 9876
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 3742
+ 9990
+ 106
+ 64
+
+ -
+ 3806
+ 10022
+
+
+
+
+
+ - Line start point
+ - e3cc991e-182d-44c5-b1c3-698d7323216f
+ - Start
+ - Start
+ - false
+ - b9e6c70d-992e-448d-ba9e-9211e8aba31b
+ - 1
+
+
+
+
+ -
+ 3744
+ 9992
+ 47
+ 20
+
+ -
+ 3769
+ 10002
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 96c03d69-7839-4e70-88cf-462580b0e92e
+ - Direction
+ - Direction
+ - false
+ - 44a4b18d-e6f4-4180-a885-9ded5d7912cb
+ - 1
+
+
+
+
+ -
+ 3744
+ 10012
+ 47
+ 20
+
+ -
+ 3769
+ 10022
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 8a6e365e-4bc3-4a99-98a9-414897a694ac
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3744
+ 10032
+ 47
+ 20
+
+ -
+ 3769
+ 10042
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 8cbed87f-21f3-4b60-bdb9-9e4684fba899
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 3821
+ 9992
+ 25
+ 60
+
+ -
+ 3835
+ 10022
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3736
+ 9782
+ 118
+ 44
+
+ -
+ 3799
+ 9804
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 9ce03d64-a788-4a93-9b5c-7f85fb5b297a
+ - Curves
+ - Curves
+ - false
+ - 99dabb3c-3d24-49d7-986a-4aad0362e8b7
+ - 3a7355fc-f2e2-4cce-a6d8-8c171b38786d
+ - 2
+
+
+
+
+ -
+ 3738
+ 9784
+ 46
+ 20
+
+ -
+ 3762.5
+ 9794
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 672f6b26-864c-424d-913d-f8c61491c982
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3738
+ 9804
+ 46
+ 20
+
+ -
+ 3762.5
+ 9814
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 9496f55c-b47f-481f-9261-b1150e0ebdfe
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3814
+ 9784
+ 38
+ 40
+
+ -
+ 3834.5
+ 9804
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 45c22674-d02a-44ba-b8eb-5d5f3acf5790
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3723
+ 9698
+ 144
+ 64
+
+ -
+ 3797
+ 9730
+
+
+
+
+
+ - Curve to evaluate
+ - ffdbc0d2-57eb-4c4b-a9f2-05dcc4049e73
+ - Curve
+ - Curve
+ - false
+ - 9496f55c-b47f-481f-9261-b1150e0ebdfe
+ - 1
+
+
+
+
+ -
+ 3725
+ 9700
+ 57
+ 20
+
+ -
+ 3755
+ 9710
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 019664fa-1094-4e09-82f9-973c5d1c29ca
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 9720
+ 57
+ 20
+
+ -
+ 3755
+ 9730
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ea653249-ae5b-4562-bb37-091a6da5efaf
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 9740
+ 57
+ 20
+
+ -
+ 3755
+ 9750
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 2d3b5427-8216-45bb-bc29-915e51ee9f0b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9700
+ 53
+ 20
+
+ -
+ 3840
+ 9710
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ecd8fc17-8b33-4220-86c0-778fb147cf39
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9720
+ 53
+ 20
+
+ -
+ 3840
+ 9730
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e4dc077c-ed39-4f6a-8a05-e5120969b59b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9740
+ 53
+ 20
+
+ -
+ 3840
+ 9750
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 0a9908b8-576f-4498-957f-369fefe28b2a
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 3726
+ 9615
+ 138
+ 64
+
+ -
+ 3794
+ 9647
+
+
+
+
+
+ - Base geometry
+ - dec6d105-bc0e-452a-8af5-75af092add00
+ - Geometry
+ - Geometry
+ - true
+ - 9496f55c-b47f-481f-9261-b1150e0ebdfe
+ - 1
+
+
+
+
+ -
+ 3728
+ 9617
+ 51
+ 20
+
+ -
+ 3755
+ 9627
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 17931a34-91d7-424a-9bcc-baf8bcb1379e
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 3728
+ 9637
+ 51
+ 20
+
+ -
+ 3755
+ 9647
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 5d19d155-cb49-42da-a415-a49caeb6ef3f
+ - Plane
+ - Plane
+ - false
+ - 2d3b5427-8216-45bb-bc29-915e51ee9f0b
+ - 1
+
+
+
+
+ -
+ 3728
+ 9657
+ 51
+ 20
+
+ -
+ 3755
+ 9667
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 40a81509-a78e-40b3-8765-9ee9b3907257
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3809
+ 9617
+ 53
+ 30
+
+ -
+ 3837
+ 9632
+
+
+
+
+
+
+
+ - Transformation data
+ - 14dcb3ef-d666-4cd5-bbcb-849a36aaa575
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3809
+ 9647
+ 53
+ 30
+
+ -
+ 3837
+ 9662
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3736
+ 9552
+ 118
+ 44
+
+ -
+ 3799
+ 9574
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 9013ad37-eb1d-483f-be30-aa1d23f2fe7e
+ - Curves
+ - Curves
+ - false
+ - 9496f55c-b47f-481f-9261-b1150e0ebdfe
+ - 40a81509-a78e-40b3-8765-9ee9b3907257
+ - 2
+
+
+
+
+ -
+ 3738
+ 9554
+ 46
+ 20
+
+ -
+ 3762.5
+ 9564
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 9ff80f65-141d-4f24-af7e-015c5d2b1d6f
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3738
+ 9574
+ 46
+ 20
+
+ -
+ 3762.5
+ 9584
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 77a3ce43-8057-49f5-89c2-e576f8185ca0
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3814
+ 9554
+ 38
+ 40
+
+ -
+ 3834.5
+ 9574
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a63c1906-6c40-43b6-bf50-e976a76ef9eb
+ - 54b025ce-50fe-46f2-8bd2-3bb3a203f49a
+ - 5dc5632c-8c01-41c5-af25-47838fc684b2
+ - 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd
+ - fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4
+ - 45c22674-d02a-44ba-b8eb-5d5f3acf5790
+ - 0a9908b8-576f-4498-957f-369fefe28b2a
+ - 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1
+ - a8b4d7ba-71d5-4764-b276-828e069e1a14
+ - 9
+ - 9186d39b-d4cc-45e6-a786-965ed70f8528
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bf5cfc02-9b93-47a0-bace-8cf4f6b9f48d
+ - Panel
+
+ - false
+ - 0
+ - 7b96ee99-1a36-400f-9885-b6de6377a16f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3723
+ 10936
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3723.18
+ 10936.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a8b4d7ba-71d5-4764-b276-828e069e1a14
+ - Curve
+ - Curve
+ - false
+ - 77a3ce43-8057-49f5-89c2-e576f8185ca0
+ - 1
+
+
+
+
+ -
+ 3771
+ 9516
+ 50
+ 24
+
+ -
+ 3796
+ 9528.229
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a8b4d7ba-71d5-4764-b276-828e069e1a14
+ - 1
+ - 07782138-aba3-44d1-9dec-33b387755b83
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7f21031c-6647-46ce-835e-6c92a920335e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695*4*4
+
+
+
+
+ -
+ 3667
+ 11017
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3667.602
+ 11017.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2a1012b3-1746-43f3-86ea-7f5c3c2e45f9
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3723
+ 9426
+ 144
+ 64
+
+ -
+ 3797
+ 9458
+
+
+
+
+
+ - Curve to evaluate
+ - 5b68b4fb-21fa-478e-b2b4-b7a5b8956d27
+ - Curve
+ - Curve
+ - false
+ - 77a3ce43-8057-49f5-89c2-e576f8185ca0
+ - 1
+
+
+
+
+ -
+ 3725
+ 9428
+ 57
+ 20
+
+ -
+ 3755
+ 9438
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d4d2450a-d244-4b39-9363-a79325d76ef5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 9448
+ 57
+ 20
+
+ -
+ 3755
+ 9458
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a602434f-88e6-44fc-8420-a75fad704911
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 9468
+ 57
+ 20
+
+ -
+ 3755
+ 9478
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 2e1363a0-d01d-4fec-9718-b5cfd286f332
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9428
+ 53
+ 20
+
+ -
+ 3840
+ 9438
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c28f84ad-a06e-4383-bf93-524e5f7ad2ef
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9448
+ 53
+ 20
+
+ -
+ 3840
+ 9458
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 53df6d40-a16c-489c-826a-72a348f7c973
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 9468
+ 53
+ 20
+
+ -
+ 3840
+ 9478
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3fd109c6-3ae8-453e-b871-73884b2fd78d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 9204
+ 194
+ 28
+
+ -
+ 3798
+ 9218
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 51b39648-a335-4baf-919c-4e28aaced3a7
+ - Variable O
+ - O
+ - true
+ - a8af648d-a529-4226-844e-f5e69e490c76
+ - 1
+
+
+
+
+ -
+ 3700
+ 9206
+ 14
+ 24
+
+ -
+ 3708.5
+ 9218
+
+
+
+
+
+
+
+ - Result of expression
+ - f652f373-453b-4ac3-a6bf-c966beff5ae9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 9206
+ 9
+ 24
+
+ -
+ 3887
+ 9218
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 58fbe8f8-b6cc-49b3-868f-2f5e9adf5eb4
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 3729
+ 9338
+ 132
+ 64
+
+ -
+ 3776
+ 9370
+
+
+
+
+
+ - Input point
+ - 26df8ffd-d7d3-41c4-b462-393891888fab
+ - Point
+ - Point
+ - false
+ - 2e1363a0-d01d-4fec-9718-b5cfd286f332
+ - 1
+
+
+
+
+ -
+ 3731
+ 9340
+ 30
+ 60
+
+ -
+ 3747.5
+ 9370
+
+
+
+
+
+
+
+ - Point {x} component
+ - a8af648d-a529-4226-844e-f5e69e490c76
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ 9340
+ 68
+ 20
+
+ -
+ 3826.5
+ 9350
+
+
+
+
+
+
+
+ - Point {y} component
+ - 04a6236c-0529-4b05-b53e-6fa4a6f56ac2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ 9360
+ 68
+ 20
+
+ -
+ 3826.5
+ 9370
+
+
+
+
+
+
+
+ - Point {z} component
+ - ddad9d4b-4540-4db5-abac-979b7741b090
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ 9380
+ 68
+ 20
+
+ -
+ 3826.5
+ 9390
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 080c45e6-3c93-4ede-8bae-6942df87d901
+ - Panel
+
+ - false
+ - 0
+ - f652f373-453b-4ac3-a6bf-c966beff5ae9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3716
+ 9172
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3716.494
+ 9172.221
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a8a49fdf-31eb-4a9f-a98d-e15015261400
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 9118
+ 194
+ 28
+
+ -
+ 3798
+ 9132
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 49cce6d3-764c-43f0-b964-90db538179a2
+ - Variable O
+ - O
+ - true
+ - 04a6236c-0529-4b05-b53e-6fa4a6f56ac2
+ - 1
+
+
+
+
+ -
+ 3700
+ 9120
+ 14
+ 24
+
+ -
+ 3708.5
+ 9132
+
+
+
+
+
+
+
+ - Result of expression
+ - 2f3ca44d-569c-425e-aadc-f845e807a4ad
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 9120
+ 9
+ 24
+
+ -
+ 3887
+ 9132
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
+ - Panel
+
+ - false
+ - 0
+ - 2f3ca44d-569c-425e-aadc-f845e807a4ad
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3716
+ 9083
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3716.494
+ 9083.797
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 9cc8f06a-8751-4d91-8029-e814fe94e287
+ - Division
+ - Division
+
+
+
+
+ -
+ 3754
+ 9016
+ 82
+ 44
+
+ -
+ 3785
+ 9038
+
+
+
+
+
+ - Item to divide (dividend)
+ - 147147c2-a2a7-4448-b13c-09dabd84758f
+ - A
+ - A
+ - false
+ - 080c45e6-3c93-4ede-8bae-6942df87d901
+ - 1
+
+
+
+
+ -
+ 3756
+ 9018
+ 14
+ 20
+
+ -
+ 3764.5
+ 9028
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 8926f2a0-bc0c-4640-97f1-57559a99e3cd
+ - B
+ - B
+ - false
+ - 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
+ - 1
+
+
+
+
+ -
+ 3756
+ 9038
+ 14
+ 20
+
+ -
+ 3764.5
+ 9048
+
+
+
+
+
+
+
+ - The result of the Division
+ - 4168a486-0edf-4466-8b21-791b9740d2e7
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3800
+ 9018
+ 34
+ 40
+
+ -
+ 3818.5
+ 9038
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 64f4c70f-d50b-4286-9b15-67fe6a6b6671
+ - Panel
+
+ - false
+ - 0
+ - 7b96ee99-1a36-400f-9885-b6de6377a16f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3715
+ 8936
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3715.742
+ 8936.281
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a0e07e08-fe1e-408d-b57c-4a0a1c879a92
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 8969
+ 194
+ 28
+
+ -
+ 3798
+ 8983
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 19731689-10c1-4f5c-94e5-b161105ed2e4
+ - Variable O
+ - O
+ - true
+ - 4168a486-0edf-4466-8b21-791b9740d2e7
+ - 1
+
+
+
+
+ -
+ 3700
+ 8971
+ 14
+ 24
+
+ -
+ 3708.5
+ 8983
+
+
+
+
+
+
+
+ - Result of expression
+ - 34c452a1-e376-4945-8193-4fe30398e5d7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 8971
+ 9
+ 24
+
+ -
+ 3887
+ 8983
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7b96ee99-1a36-400f-9885-b6de6377a16f
+ - Relay
+
+ - false
+ - 34c452a1-e376-4945-8193-4fe30398e5d7
+ - 1
+
+
+
+
+ -
+ 3775
+ 8894
+ 40
+ 16
+
+ -
+ 3795
+ 8902
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 130ea919-f2f4-4d96-a399-8e265bf54af8
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 3754
+ 8831
+ 82
+ 44
+
+ -
+ 3785
+ 8853
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 354b657d-eed4-4c62-b565-91035253b8e0
+ - A
+ - A
+ - true
+ - 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
+ - 1
+
+
+
+
+ -
+ 3756
+ 8833
+ 14
+ 20
+
+ -
+ 3764.5
+ 8843
+
+
+
+
+
+
+
+ - Second item for addition
+ - 5dde32a7-d278-417e-bb8e-717be2dd2194
+ - B
+ - B
+ - true
+ - 080c45e6-3c93-4ede-8bae-6942df87d901
+ - 1
+
+
+
+
+ -
+ 3756
+ 8853
+ 14
+ 20
+
+ -
+ 3764.5
+ 8863
+
+
+
+
+
+
+
+ - Result of addition
+ - da5e9210-aa07-4405-b4ff-7f40e685264d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3800
+ 8833
+ 34
+ 40
+
+ -
+ 3818.5
+ 8853
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c6f6074b-b03a-49dc-aac8-2e1469dc341f
+ - Division
+ - Division
+
+
+
+
+ -
+ 3754
+ 8681
+ 82
+ 44
+
+ -
+ 3785
+ 8703
+
+
+
+
+
+ - Item to divide (dividend)
+ - 10c78b2c-0453-4b6d-93f5-98c0372221af
+ - A
+ - A
+ - false
+ - 9cf2d03c-25ee-4970-b1c2-03c6d2473ade
+ - 1
+
+
+
+
+ -
+ 3756
+ 8683
+ 14
+ 20
+
+ -
+ 3764.5
+ 8693
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 0ab7e06f-8504-4e2a-8bc5-dccbd09e3d3a
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 3756
+ 8703
+ 14
+ 20
+
+ -
+ 3764.5
+ 8713
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 49550776-6b67-4836-a8f1-f1bb92a2284c
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3800
+ 8683
+ 34
+ 40
+
+ -
+ 3818.5
+ 8703
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 04f1da23-038a-4f15-bb9e-f3ce4920ed5a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 8633
+ 194
+ 28
+
+ -
+ 3798
+ 8647
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2e540c81-fbe7-4c94-ba2f-0dabfe2462fd
+ - Variable O
+ - O
+ - true
+ - 49550776-6b67-4836-a8f1-f1bb92a2284c
+ - 1
+
+
+
+
+ -
+ 3700
+ 8635
+ 14
+ 24
+
+ -
+ 3708.5
+ 8647
+
+
+
+
+
+
+
+ - Result of expression
+ - 6fd448b9-6239-4db9-9b3c-4a6570895a70
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 8635
+ 9
+ 24
+
+ -
+ 3887
+ 8647
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f
+ - Panel
+
+ - false
+ - 0
+ - 6fd448b9-6239-4db9-9b3c-4a6570895a70
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3716
+ 8600
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3716.494
+ 8600.139
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9cf2d03c-25ee-4970-b1c2-03c6d2473ade
+ - Panel
+
+ - false
+ - 0
+ - c7e172fc-45a1-403a-bc75-d970e3632366
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3716
+ 8752
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3716.494
+ 8752.049
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - fb8356cd-bc57-4212-b603-ece8bc609c2e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 8784
+ 194
+ 28
+
+ -
+ 3798
+ 8798
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3ee4e4f4-83f3-4907-bb38-5542571f95e9
+ - Variable O
+ - O
+ - true
+ - da5e9210-aa07-4405-b4ff-7f40e685264d
+ - 1
+
+
+
+
+ -
+ 3700
+ 8786
+ 14
+ 24
+
+ -
+ 3708.5
+ 8798
+
+
+
+
+
+
+
+ - Result of expression
+ - c7e172fc-45a1-403a-bc75-d970e3632366
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 8786
+ 9
+ 24
+
+ -
+ 3887
+ 8798
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 64c144e6-a1e8-4d25-b361-aa88bebf6277
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3718
+ 8510
+ 154
+ 64
+
+ -
+ 3802
+ 8542
+
+
+
+
+
+ - Base geometry
+ - f0b390b0-07dc-4059-8798-0ac921130986
+ - Geometry
+ - Geometry
+ - true
+ - a8b4d7ba-71d5-4764-b276-828e069e1a14
+ - 1
+
+
+
+
+ -
+ 3720
+ 8512
+ 67
+ 20
+
+ -
+ 3763
+ 8522
+
+
+
+
+
+
+
+ - Center of scaling
+ - c8c7700e-cf80-4e83-837b-450195f8b9de
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3720
+ 8532
+ 67
+ 20
+
+ -
+ 3763
+ 8542
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e400d07b-1e9f-47d1-9d83-0b54fa7a6706
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f
+ - 1
+
+
+
+
+ -
+ 3720
+ 8552
+ 67
+ 20
+
+ -
+ 3763
+ 8562
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - dcee2938-844f-4bbc-a8c0-59aecd955ae6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3817
+ 8512
+ 53
+ 30
+
+ -
+ 3845
+ 8527
+
+
+
+
+
+
+
+ - Transformation data
+ - e163d462-6338-4f09-b200-a47004968f54
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3817
+ 8542
+ 53
+ 30
+
+ -
+ 3845
+ 8557
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - Curve
+ - Curve
+ - false
+ - dcee2938-844f-4bbc-a8c0-59aecd955ae6
+ - 1
+
+
+
+
+ -
+ 3771
+ 8048
+ 50
+ 24
+
+ -
+ 3796.467
+ 8060.496
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f9285ab5-378d-4ddf-95cc-b5dd1c1ba77d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 9291
+ 194
+ 28
+
+ -
+ 3798
+ 9305
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - af8e9ca5-8825-464b-8fc7-23d2e2ff17a1
+ - Variable O
+ - O
+ - true
+ - ddad9d4b-4540-4db5-abac-979b7741b090
+ - 1
+
+
+
+
+ -
+ 3700
+ 9293
+ 14
+ 24
+
+ -
+ 3708.5
+ 9305
+
+
+
+
+
+
+
+ - Result of expression
+ - 4747135b-03a4-4b6e-8cc1-4c83c5d147b6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 9293
+ 9
+ 24
+
+ -
+ 3887
+ 9305
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 166e572a-6023-47d4-b8f6-57f8ebfb97da
+ - Panel
+
+ - false
+ - 0
+ - 4747135b-03a4-4b6e-8cc1-4c83c5d147b6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3716
+ 9257
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3716.366
+ 9257.994
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5de4bf60-eae6-465d-b779-f5efb709b4ad
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3723
+ 8427
+ 144
+ 64
+
+ -
+ 3797
+ 8459
+
+
+
+
+
+ - Curve to evaluate
+ - 92f23770-fc31-4292-ad84-8ff452db746b
+ - Curve
+ - Curve
+ - false
+ - dcee2938-844f-4bbc-a8c0-59aecd955ae6
+ - 1
+
+
+
+
+ -
+ 3725
+ 8429
+ 57
+ 20
+
+ -
+ 3755
+ 8439
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4e7f439d-cfdd-4831-8a20-c0497ab47502
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 8449
+ 57
+ 20
+
+ -
+ 3755
+ 8459
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - d486d9e7-3ffb-49d9-bad8-788d26e5110e
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3725
+ 8469
+ 57
+ 20
+
+ -
+ 3755
+ 8479
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c0e204f4-d005-41a4-973a-7b57e9be9ab7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 8429
+ 53
+ 20
+
+ -
+ 3840
+ 8439
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 8cc84fda-289c-4c87-87c8-9466f1666b37
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 8449
+ 53
+ 20
+
+ -
+ 3840
+ 8459
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 252d752d-ef2f-4a27-a121-4ed9454a7846
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3812
+ 8469
+ 53
+ 20
+
+ -
+ 3840
+ 8479
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f18cc5c3-73d8-4311-8236-bf6b13104193
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 8210
+ 194
+ 28
+
+ -
+ 3798
+ 8224
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6bf7b93e-bd0f-49e9-ba67-ba5da4f1868b
+ - Variable O
+ - O
+ - true
+ - 1102b695-a324-462f-8810-6fa53b966ad9
+ - 1
+
+
+
+
+ -
+ 3700
+ 8212
+ 14
+ 24
+
+ -
+ 3708.5
+ 8224
+
+
+
+
+
+
+
+ - Result of expression
+ - 1e77ca74-cf7b-4321-b38c-a3163c909fa0
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 8212
+ 9
+ 24
+
+ -
+ 3887
+ 8224
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 96bb9f3d-3d8c-4d3a-859d-4a8d3f4c5d5e
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 3729
+ 8344
+ 132
+ 64
+
+ -
+ 3776
+ 8376
+
+
+
+
+
+ - Input point
+ - 5c957068-4a85-43a9-8c44-355e78fd0d6b
+ - Point
+ - Point
+ - false
+ - c0e204f4-d005-41a4-973a-7b57e9be9ab7
+ - 1
+
+
+
+
+ -
+ 3731
+ 8346
+ 30
+ 60
+
+ -
+ 3747.5
+ 8376
+
+
+
+
+
+
+
+ - Point {x} component
+ - 1102b695-a324-462f-8810-6fa53b966ad9
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ 8346
+ 68
+ 20
+
+ -
+ 3826.5
+ 8356
+
+
+
+
+
+
+
+ - Point {y} component
+ - 74738e6c-77cc-4f85-b1dc-0465dc04801f
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ 8366
+ 68
+ 20
+
+ -
+ 3826.5
+ 8376
+
+
+
+
+
+
+
+ - Point {z} component
+ - 7377a684-0c05-416e-8fec-f9f6068f4477
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ 8386
+ 68
+ 20
+
+ -
+ 3826.5
+ 8396
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4edfafd8-3b0c-4943-bb10-917abaeb9712
+ - Panel
+
+ - false
+ - 0
+ - 1e77ca74-cf7b-4321-b38c-a3163c909fa0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3715
+ 8178
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3715.749
+ 8178.498
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f91bfec0-c6ad-4011-8456-67697a779eb3
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 8124
+ 194
+ 28
+
+ -
+ 3798
+ 8138
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - df784300-8909-47e0-843d-e71310e7b206
+ - Variable O
+ - O
+ - true
+ - 74738e6c-77cc-4f85-b1dc-0465dc04801f
+ - 1
+
+
+
+
+ -
+ 3700
+ 8126
+ 14
+ 24
+
+ -
+ 3708.5
+ 8138
+
+
+
+
+
+
+
+ - Result of expression
+ - 0cd35029-1027-442c-b2a4-26e1dfbfdec1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 8126
+ 9
+ 24
+
+ -
+ 3887
+ 8138
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 91b67f5a-4dff-4683-a8db-dc90bf6de0f8
+ - Panel
+
+ - false
+ - 0
+ - 0cd35029-1027-442c-b2a4-26e1dfbfdec1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3715
+ 8091
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3715.749
+ 8091.789
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d0b32d0e-885a-4c2b-b378-441bba4876b7
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 8296
+ 194
+ 28
+
+ -
+ 3798
+ 8310
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e36616dd-0650-4dfa-9af9-67b25ec8d729
+ - Variable O
+ - O
+ - true
+ - 7377a684-0c05-416e-8fec-f9f6068f4477
+ - 1
+
+
+
+
+ -
+ 3700
+ 8298
+ 14
+ 24
+
+ -
+ 3708.5
+ 8310
+
+
+
+
+
+
+
+ - Result of expression
+ - 8fb3798e-f6dd-4399-99bf-e1fd2621633d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 8298
+ 9
+ 24
+
+ -
+ 3887
+ 8310
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1498e329-39e2-490d-bf26-64cc72d5b628
+ - Panel
+
+ - false
+ - 0
+ - 8fb3798e-f6dd-4399-99bf-e1fd2621633d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3716
+ 8264
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3716.494
+ 8264.711
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b59393f3-2b17-47be-bc0e-82711f27e393
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0 256 0.0013733120705119695
+0 4096 0.0000053644183496292
+
+
+
+
+ -
+ 3614
+ 11057
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 3614.538
+ 11057.74
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 942441e0-2a69-43f4-80f2-24729e38a366
+ - Panel
+
+ - false
+ - 1
+ - 9693cd0c-6060-4d7f-a338-911dba0b51e3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3618
+ 10223
+ 355
+ 100
+
+ - 0
+ - 0
+ - 0
+ -
+ 3618.117
+ 10223.72
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c2f1f615-6fd6-4da2-9d18-b2d721b79703
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 10330
+ 194
+ 28
+
+ -
+ 3798
+ 10344
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4141f7a5-69d9-475a-944b-26346500ac07
+ - Variable O
+ - O
+ - true
+ - 72e2f1ea-5de4-4652-b1b6-c001429a1607
+ - 1
+
+
+
+
+ -
+ 3700
+ 10332
+ 14
+ 24
+
+ -
+ 3708.5
+ 10344
+
+
+
+
+
+
+
+ - Result of expression
+ - 9693cd0c-6060-4d7f-a338-911dba0b51e3
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 10332
+ 9
+ 24
+
+ -
+ 3887
+ 10344
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - Number
+ - Number
+ - false
+ - c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
+ - 1
+
+
+
+
+ -
+ 3771
+ 11464
+ 50
+ 24
+
+ -
+ 3796
+ 11476.4
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+ - a735dbd6-46f1-4990-9841-38358cb90a79
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 28041f4d-ea5e-40a7-8e96-c4fe6c94f571
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3698
+ 10765
+ 194
+ 28
+
+ -
+ 3798
+ 10779
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6c1574ce-673c-4f5a-b977-9343ac291640
+ - Variable O
+ - O
+ - true
+ - 41402c3f-e413-42af-bec9-2fa5b5ce34fa
+ - 1
+
+
+
+
+ -
+ 3700
+ 10767
+ 14
+ 24
+
+ -
+ 3708.5
+ 10779
+
+
+
+
+
+
+
+ - Result of expression
+ - fa389df7-74ab-4f83-8e43-bc53ee77a82e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ 10767
+ 9
+ 24
+
+ -
+ 3887
+ 10779
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 86694246-d580-4d98-8160-6ae52ac6f1b8
+ - Panel
+
+ - false
+ - 0
+ - fa389df7-74ab-4f83-8e43-bc53ee77a82e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3698
+ 10478
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 3698.807
+ 10478.61
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7ae05443-fd59-4dfe-ba49-c100f76256e7
+ - Relay
+ -
+ - false
+ - 86694246-d580-4d98-8160-6ae52ac6f1b8
+ - 1
+
+
+
+
+ -
+ 3775
+ 10442
+ 40
+ 16
+
+ -
+ 3795
+ 10450
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 41402c3f-e413-42af-bec9-2fa5b5ce34fa
+ - Relay
+ -
+ - false
+ - 96634ed3-55a8-4c30-a62c-e5002f4aa576
+ - 1
+
+
+
+
+ -
+ 3775
+ 10810
+ 40
+ 16
+
+ -
+ 3795
+ 10818
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fd81a449-0a91-4607-9bf8-8553b274feb2
+ - 94a40cb3-66ae-46f0-a709-a15fd0efaa35
+ - 3d5e8a20-18e8-45b9-b26a-582f2e4def01
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 427f90f8-2e34-4bbf-9f6a-7042a4e2cbb3
+ - 2dd4ffd3-b670-4952-a635-b12de6c47de8
+ - 18973c30-d366-4c25-962b-bab8e0067332
+ - 946c5917-e45e-4f46-905c-dea49915e158
+ - bdcc331f-b637-41f0-94e2-4f12b70251cc
+ - 49d4be71-1a77-4646-88b4-190a19e18789
+ - ff1b7a95-2a0a-42c3-a277-bcfafc77f2ba
+ - 8620a36d-f016-4257-ae95-972461b8dea7
+ - aa914107-1d65-4d2d-ba79-c1fe9df58f85
+ - e3f73a96-c462-4252-bea1-843d1db7b994
+ - b431e33f-493c-4f69-961a-2bdd27b0b423
+ - 52963e78-1b77-4ee7-b1e9-bd9b9a36e644
+ - 6b38181f-5f9b-41b0-81b3-51717e81ed43
+ - 71ce374d-fb88-4062-b84e-1df6fe4abc69
+ - 9871b117-ed76-48da-9b9d-4641dc5a56f4
+ - 8be4afd4-1678-4052-90ca-124a199935e6
+ - 52a7c8f5-ebf3-465f-b047-5cc9b0649c43
+ - 6d988f5a-f9eb-4e9a-94c8-3b505d7ad973
+ - 27e211c0-ef2f-49d5-8971-f2ca9ad49e6b
+ - 6e364311-c38b-465c-854a-669474a20531
+ - 5944e598-cecb-4095-b35b-48ac8e442e2a
+ - debc3215-bf33-4546-8691-0ad7cf85840f
+ - 5290c9e3-8c45-4f35-9fba-63bacb0a972f
+ - 556ab023-c3f5-41a4-ae19-cec03405eccc
+ - c4e43f61-126f-4987-98f6-f61ae9e11743
+ - 669601ad-c306-4479-af1b-f98d37928ede
+ - fd036caf-aeec-48d3-a62f-73710312680c
+ - 837b272a-eec1-486b-b98f-cda424c584f2
+ - 98b146e4-5b50-43f4-b589-1f02b86a6917
+ - ae045a03-6354-4728-a5cb-98c8c4c05fbb
+ - 26b9a1e8-931e-4308-b076-5dbc987ab5ea
+ - 4d4328e7-ddb3-4302-97e1-7b7af024dfeb
+ - 3500ade5-7819-4191-bfb0-e582092db080
+ - 93c8ebc7-1fd8-4b43-8114-e5c8b2e204c4
+ - a2a94db7-6ca0-4a5f-9135-86ab8db24e51
+ - 4fbed52a-0ae4-49f5-9d06-f4eb03d35034
+ - 9004ba57-a8e9-4d21-929c-ae939b9af8df
+ - ec452d8d-f33b-477b-bdba-3dbfef9b7561
+ - 0ac1b008-6cb1-4730-9f53-d5be7f8edb47
+ - 5666caf3-3e8d-4f54-8575-3129d5b2372b
+ - ad959b91-bde6-46f4-a065-a06124974ebf
+ - e927f1f1-025a-4d72-874f-d7cadc4d07db
+ - 03c079d1-214a-4367-8a79-014e07a300ec
+ - bb4c2afb-4bca-4df7-8dc6-3ce78e75888b
+ - ea3c720c-0f74-4866-b9d7-3cc115570ea1
+ - 633ce0ae-bb91-4421-9202-19d3ab9df774
+ - bb8833cc-0755-4539-bf0e-40e6fb53efe2
+ - c042fb9d-002c-456b-ace2-4265be68d648
+ - ad6201fb-63c1-4a0f-8015-2d21f5cb9555
+ - dd437aea-2710-413b-928a-0863c45ceacc
+ - 4c28dc57-c974-4062-8a1c-2d65d0f1cc9c
+ - f031001d-2a39-489f-8101-d849af796a93
+ - dcde6481-a8c5-4eaa-b1f0-fbbb49b24675
+ - 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca
+ - 3a6719a1-945e-415e-984c-488a86c00cf4
+ - 8e346cb9-87c1-4e10-ab8e-798cf64471cb
+ - 4ae83b19-8812-4c53-9790-87c6cc59246b
+ - 2a2a7f3e-94c5-4192-b444-f05866d8c054
+ - 8c0ee1df-15d2-4d4b-824d-4f852fe37c47
+ - 013bc8b0-e297-49d9-947e-acd8090d019b
+ - 5ecee3d4-17a6-4ec2-b746-1150c99f835b
+ - bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909
+ - c344e708-6261-40b6-9c1b-511e7f599e65
+ - f5c80cb3-2331-4236-a4e9-29f011aa2408
+ - cba31048-121f-4809-a1ca-b361c15f7c76
+ - 2aee8a4d-7144-4a3d-b986-47d52cbe1c41
+ - a265c7f4-5a15-4b8e-8333-ea56d088de18
+ - 767263a1-1b23-48dd-a005-17d0f2ae92c6
+ - 2f47d230-2571-418d-80cf-6e8e5d31cb9e
+ - 16209b7e-55fa-4b5c-92ba-5c1d1bd41dec
+ - 819a2a51-f04e-4192-8c95-3fa161e7540c
+ - 1538eb2e-e611-4f4c-b500-1df33502eff4
+ - dfe1b26e-b4a6-4bce-9c77-643d58fbc36d
+ - 85605b21-aef8-4f87-a515-10b78df9f610
+ - 20f05475-7967-45b4-a63c-62a20fa8690b
+ - 8435fa98-38c7-45cb-8f29-4044d9a40f9c
+ - 99f0b699-2a90-441f-b737-27aea108d33f
+ - 9c3ae34b-8ebd-4141-9330-6abe5cacb47e
+ - dedce1f8-5c0b-4ad6-99a0-98dfdf02d373
+ - 462c2450-1262-4529-888f-d92602268217
+ - 256f333c-199f-4c9d-b6cd-360ee8130e4f
+ - eddced5d-470a-4523-8c85-9ce09e106bd4
+ - 45c4a4df-7a0e-4c17-b315-c34cbb7fd959
+ - 2b4023ed-6e0a-4afe-bb9f-ecbb8113662b
+ - 825638de-2ab4-4773-89a4-115a142aa39f
+ - 6ea1cc49-480d-44f3-bdb9-b3d927b1fe3d
+ - ea922329-8796-47c0-8451-a5fd2cfbccad
+ - c3ad1e45-4f5f-4553-acdd-858c3a4e0f41
+ - f9b56b83-0126-4319-84c8-15c7ed86f831
+ - 6d63313d-1e96-406b-8a05-33d5bb3f5c37
+ - 191575b6-d18b-4bc4-a751-a71c3b22572c
+ - 7ed372a1-ff72-4050-8dd8-49ddee401c65
+ - d7cb1ca0-8832-4010-880c-2d2f4b9341bd
+ - 629a4827-371f-4b44-b590-45c23fc93574
+ - 9b66414e-8eef-4712-bc33-6df624d3786e
+ - 99
+ - 8d7ede46-a94d-4f4a-97fd-51d73c459ac3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1c661983-65cd-4dd3-8a9d-2fde71bd76fd
+ - 93ab0a8f-aee3-4747-910f-6806f1daee3d
+ - 99b8e4f4-ef55-452f-9b1e-6ec52d78cb44
+ - c6837ab8-492f-4d65-bbf8-6543cded1f15
+ - 4c639447-1097-40fd-aaf4-5f66d6735968
+ - 19e4d4f5-b4c6-47ac-b2de-2dc048d892ae
+ - 0cf1fffb-593e-4a7c-8010-e3d13314dcba
+ - ac1918ea-52ea-4b61-8cf0-6af20695bb26
+ - 60389f86-e487-48bb-87ab-a0952ba905c1
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - 3ec709d0-dd1a-40ac-8f1e-e9cc9451e984
+ - e1a1a5d7-0656-4bdd-b6cc-e4dfdf98c291
+ - 6ca5822e-4069-49d7-aa8b-eef76e54ce95
+ - 015ffee2-3b22-47cb-a911-fccec397f86f
+ - 992b7fbd-ed14-4b15-b66a-137b35a55879
+ - d478e4fa-fa9f-4892-a286-2ea4285b715c
+ - 25f8ef07-5890-4a6e-93df-c40fa14cb9a7
+ - f90295eb-99e8-4a80-a13c-999e99532b9e
+ - b9f31a57-9540-4917-a8e6-18eaa5a83db2
+ - 284b7739-106a-47b8-9c88-030d60937329
+ - 21551a57-e773-47f0-8220-7a72f7a746fa
+ - caa84d96-f583-479a-81ee-60953020e5a6
+ - 6b922c6a-cc70-4092-ae71-ade7d284d862
+ - 4387f3a9-9141-47dd-995a-483dc9b6b025
+ - 58a42877-bb06-47a3-a4f1-d98c96f28c1e
+ - 25
+ - 59db8d3f-46a9-4ec8-b13e-3ec43b7a2169
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 93ab0a8f-aee3-4747-910f-6806f1daee3d
+ - 99b8e4f4-ef55-452f-9b1e-6ec52d78cb44
+ - c6837ab8-492f-4d65-bbf8-6543cded1f15
+ - 4c639447-1097-40fd-aaf4-5f66d6735968
+ - 19e4d4f5-b4c6-47ac-b2de-2dc048d892ae
+ - 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2
+ - 91acf8ab-b95d-4cf9-9042-41f5397d7e87
+ - 0cf1fffb-593e-4a7c-8010-e3d13314dcba
+ - ac1918ea-52ea-4b61-8cf0-6af20695bb26
+ - 60389f86-e487-48bb-87ab-a0952ba905c1
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - 3ec709d0-dd1a-40ac-8f1e-e9cc9451e984
+ - e1a1a5d7-0656-4bdd-b6cc-e4dfdf98c291
+ - 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc
+ - 58a42877-bb06-47a3-a4f1-d98c96f28c1e
+ - 15
+ - 1c661983-65cd-4dd3-8a9d-2fde71bd76fd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - fd81a449-0a91-4607-9bf8-8553b274feb2
+ - true
+ - Number
+ - Number
+ - false
+ - cbcfa187-ddf9-492d-89f7-d6ae71b5a4f0
+ - 1
+
+
+
+
+ -
+ -9286
+ 25970
+ 50
+ 24
+
+ -
+ -9261.215
+ 25982.83
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - 94a40cb3-66ae-46f0-a709-a15fd0efaa35
+ - true
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ -9331
+ 25800
+ 137
+ 64
+
+ -
+ -9261
+ 25832
+
+
+
+
+
+ - Curve to evaluate
+ - b5366ae1-9969-43e0-9d79-28600bb960e2
+ - true
+ - Curve
+ - Curve
+ - false
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 1
+
+
+
+
+ -
+ -9329
+ 25802
+ 53
+ 30
+
+ -
+ -9301
+ 25817
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 5514044d-3457-4bca-9fe9-b9657fc69b73
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 35c11e73-023d-4ab3-8c15-e16ba789d504
+ - 1
+
+
+
+
+ -
+ -9329
+ 25832
+ 53
+ 30
+
+ -
+ -9301
+ 25847
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 590db2af-0bde-4699-8b52-40835db3bb9e
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 25802
+ 50
+ 20
+
+ -
+ -9219.5
+ 25812
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - ea3589ee-11f4-41cf-9fde-8cbc58c2937c
+ - true
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 25822
+ 50
+ 20
+
+ -
+ -9219.5
+ 25832
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - 3d335e02-e502-4f9d-9184-53d513f2e177
+ - true
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 25842
+ 50
+ 20
+
+ -
+ -9219.5
+ 25852
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 3d5e8a20-18e8-45b9-b26a-582f2e4def01
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ -9325
+ 25883
+ 125
+ 64
+
+ -
+ -9275
+ 25915
+
+
+
+
+
+ - Curve to divide
+ - f3733026-6ea6-4eb2-ad9c-7d432f2a097b
+ - true
+ - Curve
+ - Curve
+ - false
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 1
+
+
+
+
+ -
+ -9323
+ 25885
+ 33
+ 20
+
+ -
+ -9305
+ 25895
+
+
+
+
+
+
+
+ - Number of segments
+ - 6d61becd-353f-4ad5-9bc3-4f6a34fade16
+ - true
+ - Count
+ - Count
+ - false
+ - fd81a449-0a91-4607-9bf8-8553b274feb2
+ - 1
+
+
+
+
+ -
+ -9323
+ 25905
+ 33
+ 20
+
+ -
+ -9305
+ 25915
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 25795ab8-0014-47eb-940b-d403f2be6d1e
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 25925
+ 33
+ 20
+
+ -
+ -9305
+ 25935
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - aa6b87c9-dd77-470d-8d5d-e8d2db9b5640
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ -9260
+ 25885
+ 58
+ 20
+
+ -
+ -9229.5
+ 25895
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 026cba8a-c152-4e67-bc04-a1a58e4c5b58
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ -9260
+ 25905
+ 58
+ 20
+
+ -
+ -9229.5
+ 25915
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 35c11e73-023d-4ab3-8c15-e16ba789d504
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ -9260
+ 25925
+ 58
+ 20
+
+ -
+ -9229.5
+ 25935
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - true
+ - 2
+ - Curve
+ - Curve
+ - false
+ - cdd90f4c-6009-4e4b-b819-b49fd5b7e2d2
+ - 1
+
+
+
+
+ -
+ -9288
+ 26362
+ 53
+ 24
+
+ -
+ -9252.303
+ 26374.66
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - 427f90f8-2e34-4bbf-9f6a-7042a4e2cbb3
+ - true
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ -9319
+ 25719
+ 114
+ 64
+
+ -
+ -9279
+ 25751
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 447b210e-b829-403f-81af-d5f722a05636
+ - true
+ - Arc
+ - Arc
+ - false
+ - 3d335e02-e502-4f9d-9184-53d513f2e177
+ - 1
+
+
+
+
+ -
+ -9317
+ 25721
+ 23
+ 60
+
+ -
+ -9304
+ 25751
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - 4b2a4668-d28e-4375-be15-c164f7559fe8
+ - true
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ -9264
+ 25721
+ 57
+ 20
+
+ -
+ -9234
+ 25731
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - b713a28b-9c99-4284-b4f0-6985cf828693
+ - true
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ -9264
+ 25741
+ 57
+ 20
+
+ -
+ -9234
+ 25751
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - a77e3fdd-d47a-433c-9fb6-a49dd0782527
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ -9264
+ 25761
+ 57
+ 20
+
+ -
+ -9234
+ 25771
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 2dd4ffd3-b670-4952-a635-b12de6c47de8
+ - true
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ -9312
+ 25223
+ 100
+ 28
+
+ -
+ -9263
+ 25237
+
+
+
+
+
+ - Input value
+ - af1bb7a9-4438-44b0-aa70-40ef2a9fd7c4
+ - true
+ - Value
+ - Value
+ - false
+ - 013bc8b0-e297-49d9-947e-acd8090d019b
+ - 1
+
+
+
+
+ -
+ -9310
+ 25225
+ 32
+ 24
+
+ -
+ -9292.5
+ 25237
+
+
+
+
+
+
+
+ - Output value
+ - 4a062c8a-ea9d-451a-abb9-92de136371dd
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -9248
+ 25225
+ 34
+ 24
+
+ -
+ -9229.5
+ 25237
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 18973c30-d366-4c25-962b-bab8e0067332
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 52a7c8f5-ebf3-465f-b047-5cc9b0649c43
+ - 1
+
+
+
+
+ -
+ -9337
+ 25042
+ 150
+ 150
+
+ -
+ -9336.514
+ 25042.48
+
+ - -1
+
+
+
+
+
+
+
+
+ - 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
+ - Line
+
+
+
+
+ - Create a line between two points.
+ - true
+ - 946c5917-e45e-4f46-905c-dea49915e158
+ - true
+ - Line
+ - Line
+
+
+
+
+ -
+ -9319
+ 25273
+ 114
+ 44
+
+ -
+ -9247
+ 25295
+
+
+
+
+
+ - Line start point
+ - 0f946c86-f0ad-4f5b-a540-409fa8d4efa2
+ - true
+ - Start Point
+ - Start Point
+ - false
+ - 590db2af-0bde-4699-8b52-40835db3bb9e
+ - 1
+
+
+
+
+ -
+ -9317
+ 25275
+ 55
+ 20
+
+ -
+ -9288
+ 25285
+
+
+
+
+
+
+
+ - Line end point
+ - a2bf1a47-689b-486a-828f-ab6c2a323bc7
+ - true
+ - End Point
+ - End Point
+ - false
+ - 4b2a4668-d28e-4375-be15-c164f7559fe8
+ - 1
+
+
+
+
+ -
+ -9317
+ 25295
+ 55
+ 20
+
+ -
+ -9288
+ 25305
+
+
+
+
+
+
+
+ - Line segment
+ - 8dc86efd-1160-4e38-823d-bceac100c097
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -9232
+ 25275
+ 25
+ 40
+
+ -
+ -9218
+ 25295
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - bdcc331f-b637-41f0-94e2-4f12b70251cc
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -9337
+ 24207
+ 150
+ 20
+
+ -
+ -9336.764
+ 24207.04
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 2
+ - 0
+ - 0
+ - 0.0625
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 49d4be71-1a77-4646-88b4-190a19e18789
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -9323
+ 24087
+ 122
+ 64
+
+ -
+ -9243
+ 24119
+
+
+
+
+
+ - Line start point
+ - c38f5fb0-065a-4c59-8e8e-967e82755228
+ - true
+ - Start
+ - Start
+ - false
+ - 590db2af-0bde-4699-8b52-40835db3bb9e
+ - 1
+
+
+
+
+ -
+ -9321
+ 24089
+ 63
+ 20
+
+ -
+ -9280
+ 24099
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 87868348-29be-4270-b74b-281568d312be
+ - true
+ - Direction
+ - Direction
+ - false
+ - 8dc86efd-1160-4e38-823d-bceac100c097
+ - 1
+
+
+
+
+ -
+ -9321
+ 24109
+ 63
+ 20
+
+ -
+ -9280
+ 24119
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e6d04158-1afa-4034-876d-cc8e9dc4a3bc
+ - -ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - c042fb9d-002c-456b-ace2-4265be68d648
+ - 1
+
+
+
+
+ -
+ -9321
+ 24129
+ 63
+ 20
+
+ -
+ -9280
+ 24139
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - f7ba28da-fefa-419b-a7b2-18d8b67d29e2
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -9228
+ 24089
+ 25
+ 60
+
+ -
+ -9214
+ 24119
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ff1b7a95-2a0a-42c3-a277-bcfafc77f2ba
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -9334
+ 23823
+ 144
+ 64
+
+ -
+ -9260
+ 23855
+
+
+
+
+
+ - Curve to evaluate
+ - f81328a8-875f-4be5-9e9d-1ed2861a6a4e
+ - true
+ - Curve
+ - Curve
+ - false
+ - f7ba28da-fefa-419b-a7b2-18d8b67d29e2
+ - 1
+
+
+
+
+ -
+ -9332
+ 23825
+ 57
+ 20
+
+ -
+ -9302
+ 23835
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d8156b44-c391-4304-9b16-ad23948d540b
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23845
+ 57
+ 20
+
+ -
+ -9302
+ 23855
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b10a9501-ed3b-43ee-9721-a28c78641862
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23865
+ 57
+ 20
+
+ -
+ -9302
+ 23875
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ca1aff94-019e-4a46-97b1-33342bd83e90
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 23825
+ 53
+ 20
+
+ -
+ -9217
+ 23835
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - dbb9fcc5-dbb3-4370-843b-27a9afa23b08
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 23845
+ 53
+ 20
+
+ -
+ -9217
+ 23855
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8820e060-c309-4b9a-bc04-fb04d2243d5b
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 23865
+ 53
+ 20
+
+ -
+ -9217
+ 23875
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 8620a36d-f016-4257-ae95-972461b8dea7
+ - true
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ -9325
+ 23721
+ 125
+ 84
+
+ -
+ -9258
+ 23763
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 2d168944-454e-4b1f-964c-d3348d405137
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - ca1aff94-019e-4a46-97b1-33342bd83e90
+ - 1
+
+
+
+
+ -
+ -9323
+ 23723
+ 50
+ 20
+
+ -
+ -9296.5
+ 23733
+
+
+
+
+
+
+
+ - Curve degree
+ - cf89848e-34b5-4363-b93a-0c77b3786bec
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 23743
+ 50
+ 20
+
+ -
+ -9296.5
+ 23753
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - b28dd793-8451-45dc-a0a8-513562e53b01
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 23763
+ 50
+ 20
+
+ -
+ -9296.5
+ 23773
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - cc46eeca-00b7-4394-a599-fb645fdf7cab
+ - true
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 23783
+ 50
+ 20
+
+ -
+ -9296.5
+ 23793
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - c0e1e2e4-2938-4a4b-bc4d-60ad57a289bb
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 23723
+ 41
+ 26
+
+ -
+ -9221
+ 23736.33
+
+
+
+
+
+
+
+ - Curve length
+ - 7fc31018-195c-4bcb-85e8-d53258d591ca
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 23749
+ 41
+ 27
+
+ -
+ -9221
+ 23763
+
+
+
+
+
+
+
+ - Curve domain
+ - 12b3e518-c845-4f87-82d3-3bb86ed365a8
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 23776
+ 41
+ 27
+
+ -
+ -9221
+ 23789.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fd81a449-0a91-4607-9bf8-8553b274feb2
+ - 94a40cb3-66ae-46f0-a709-a15fd0efaa35
+ - 3d5e8a20-18e8-45b9-b26a-582f2e4def01
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 427f90f8-2e34-4bbf-9f6a-7042a4e2cbb3
+ - 2dd4ffd3-b670-4952-a635-b12de6c47de8
+ - 18973c30-d366-4c25-962b-bab8e0067332
+ - 42201d77-7bc4-437d-baaf-c8290f91a477
+ - 946c5917-e45e-4f46-905c-dea49915e158
+ - dc8b9948-0b61-495f-bb5c-30271010864e
+ - bdcc331f-b637-41f0-94e2-4f12b70251cc
+ - 49d4be71-1a77-4646-88b4-190a19e18789
+ - 90f74d47-d623-4b80-a1f4-bde635cc690f
+ - ff1b7a95-2a0a-42c3-a277-bcfafc77f2ba
+ - 8620a36d-f016-4257-ae95-972461b8dea7
+ - 5944e598-cecb-4095-b35b-48ac8e442e2a
+ - debc3215-bf33-4546-8691-0ad7cf85840f
+ - 27e211c0-ef2f-49d5-8971-f2ca9ad49e6b
+ - 6e364311-c38b-465c-854a-669474a20531
+ - 5290c9e3-8c45-4f35-9fba-63bacb0a972f
+ - 556ab023-c3f5-41a4-ae19-cec03405eccc
+ - ad959b91-bde6-46f4-a065-a06124974ebf
+ - e927f1f1-025a-4d72-874f-d7cadc4d07db
+ - bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909
+ - c344e708-6261-40b6-9c1b-511e7f599e65
+ - f5c80cb3-2331-4236-a4e9-29f011aa2408
+ - cba31048-121f-4809-a1ca-b361c15f7c76
+ - 2aee8a4d-7144-4a3d-b986-47d52cbe1c41
+ - e3f73a96-c462-4252-bea1-843d1db7b994
+ - b431e33f-493c-4f69-961a-2bdd27b0b423
+ - 8be4afd4-1678-4052-90ca-124a199935e6
+ - 2f47d230-2571-418d-80cf-6e8e5d31cb9e
+ - 16209b7e-55fa-4b5c-92ba-5c1d1bd41dec
+ - 819a2a51-f04e-4192-8c95-3fa161e7540c
+ - 1538eb2e-e611-4f4c-b500-1df33502eff4
+ - dfe1b26e-b4a6-4bce-9c77-643d58fbc36d
+ - 85605b21-aef8-4f87-a515-10b78df9f610
+ - 20f05475-7967-45b4-a63c-62a20fa8690b
+ - 8435fa98-38c7-45cb-8f29-4044d9a40f9c
+ - 99f0b699-2a90-441f-b737-27aea108d33f
+ - 9c3ae34b-8ebd-4141-9330-6abe5cacb47e
+ - cbcfa187-ddf9-492d-89f7-d6ae71b5a4f0
+ - 42
+ - aa914107-1d65-4d2d-ba79-c1fe9df58f85
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - e3f73a96-c462-4252-bea1-843d1db7b994
+ - true
+ - Number
+ - Number
+ - false
+ - fd81a449-0a91-4607-9bf8-8553b274feb2
+ - 1
+
+
+
+
+ -
+ -9287
+ 23373
+ 50
+ 24
+
+ -
+ -9262
+ 23385.78
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b431e33f-493c-4f69-961a-2bdd27b0b423
+ - true
+ - Curve
+ - Curve
+ - false
+ - c0e1e2e4-2938-4a4b-bc4d-60ad57a289bb
+ - 1
+
+
+
+
+ -
+ -9287
+ 23416
+ 50
+ 24
+
+ -
+ -9262
+ 23428.71
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 52963e78-1b77-4ee7-b1e9-bd9b9a36e644
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -9323
+ 22103
+ 122
+ 64
+
+ -
+ -9243
+ 22135
+
+
+
+
+
+ - Line start point
+ - 627c9c66-c2b8-41f1-8066-a75eb943e379
+ - true
+ - Start
+ - Start
+ - false
+ - ca1aff94-019e-4a46-97b1-33342bd83e90
+ - 1
+
+
+
+
+ -
+ -9321
+ 22105
+ 63
+ 20
+
+ -
+ -9280
+ 22115
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 98a4099e-6804-46bb-9349-464c9ce61d0e
+ - true
+ - Direction
+ - Direction
+ - false
+ - 03c079d1-214a-4367-8a79-014e07a300ec
+ - 1
+
+
+
+
+ -
+ -9321
+ 22125
+ 63
+ 20
+
+ -
+ -9280
+ 22135
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 843fcf5d-ea0c-4f44-8d5a-ee5f9d800942
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - 3a6719a1-945e-415e-984c-488a86c00cf4
+ - 1
+
+
+
+
+ -
+ -9321
+ 22145
+ 63
+ 20
+
+ -
+ -9280
+ 22155
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 816b0be2-357e-40d1-b261-7bcf4333e662
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -9228
+ 22105
+ 25
+ 60
+
+ -
+ -9214
+ 22135
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 6b38181f-5f9b-41b0-81b3-51717e81ed43
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -9334
+ 21780
+ 144
+ 64
+
+ -
+ -9260
+ 21812
+
+
+
+
+
+ - Curve to evaluate
+ - ec3d516b-d9c0-4d9d-9b1d-985e28c7b783
+ - true
+ - Curve
+ - Curve
+ - false
+ - 462c2450-1262-4529-888f-d92602268217
+ - 1
+
+
+
+
+ -
+ -9332
+ 21782
+ 57
+ 20
+
+ -
+ -9302
+ 21792
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 02d374a3-21bd-44b1-8a07-87df41ce60df
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 21802
+ 57
+ 20
+
+ -
+ -9302
+ 21812
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 16761ddf-fcd9-4e3f-808f-bf894e2083f9
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 21822
+ 57
+ 20
+
+ -
+ -9302
+ 21832
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f3cab11a-e97b-45af-bb37-68a6b816c734
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 21782
+ 53
+ 20
+
+ -
+ -9217
+ 21792
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - bee9d5a5-ec7c-4669-8f1b-e6647f2a687d
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 21802
+ 53
+ 20
+
+ -
+ -9217
+ 21812
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e2fb0072-88b1-49dd-9c1e-0503d1b99d38
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 21822
+ 53
+ 20
+
+ -
+ -9217
+ 21832
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 71ce374d-fb88-4062-b84e-1df6fe4abc69
+ - true
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ -9325
+ 20777
+ 125
+ 84
+
+ -
+ -9258
+ 20819
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 9eaf1bd7-324b-457d-8dcf-a0b63c44d9cd
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 256f333c-199f-4c9d-b6cd-360ee8130e4f
+ - 1
+
+
+
+
+ -
+ -9323
+ 20779
+ 50
+ 20
+
+ -
+ -9296.5
+ 20789
+
+
+
+
+
+
+
+ - Curve degree
+ - 3575bcd1-e419-44af-ac17-63054f1c52f3
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 20799
+ 50
+ 20
+
+ -
+ -9296.5
+ 20809
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 805d7e81-9bf8-4c47-a814-99424b44e128
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 20819
+ 50
+ 20
+
+ -
+ -9296.5
+ 20829
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 6feac273-1827-49ac-b5ea-f0bd511f8583
+ - true
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 20839
+ 50
+ 20
+
+ -
+ -9296.5
+ 20849
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - e17fafe9-9d26-4bfc-b017-176aac88278e
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 20779
+ 41
+ 26
+
+ -
+ -9221
+ 20792.33
+
+
+
+
+
+
+
+ - Curve length
+ - 3cb4f7e6-90c7-45d5-b9d5-d29635f9a164
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 20805
+ 41
+ 27
+
+ -
+ -9221
+ 20819
+
+
+
+
+
+
+
+ - Curve domain
+ - 8a48503b-1321-4340-a935-7e1a373719c7
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 20832
+ 41
+ 27
+
+ -
+ -9221
+ 20845.67
+
+
+
+
+
+
+
+
+
+
+
+ - dde71aef-d6ed-40a6-af98-6b0673983c82
+ - Nurbs Curve
+
+
+
+
+ - Construct a nurbs curve from control points.
+ - true
+ - 9871b117-ed76-48da-9b9d-4641dc5a56f4
+ - true
+ - Nurbs Curve
+ - Nurbs Curve
+
+
+
+
+ -
+ -9321
+ 23639
+ 118
+ 64
+
+ -
+ -9261
+ 23671
+
+
+
+
+
+ - 1
+ - Curve control points
+ - bf32989c-5bd6-4b69-8718-e7c3126a3559
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - ca1aff94-019e-4a46-97b1-33342bd83e90
+ - 1
+
+
+
+
+ -
+ -9319
+ 23641
+ 43
+ 20
+
+ -
+ -9296
+ 23651
+
+
+
+
+
+
+
+ - Curve degree
+ - 6a581f97-c7f0-4bb9-8023-61bc21f253f4
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ -9319
+ 23661
+ 43
+ 20
+
+ -
+ -9296
+ 23671
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 6b4b65a2-9e7b-4def-8245-2f5842f69b39
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ -9319
+ 23681
+ 43
+ 20
+
+ -
+ -9296
+ 23691
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6d2f72e1-001f-46bf-bd8a-d288f09e6e75
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 23641
+ 41
+ 20
+
+ -
+ -9224
+ 23651
+
+
+
+
+
+
+
+ - Curve length
+ - 2d9c012b-d4f8-49de-ba62-d0e77fa24415
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 23661
+ 41
+ 20
+
+ -
+ -9224
+ 23671
+
+
+
+
+
+
+
+ - Curve domain
+ - 5409afb1-504d-4804-939c-76d0edb50fd6
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 23681
+ 41
+ 20
+
+ -
+ -9224
+ 23691
+
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 8be4afd4-1678-4052-90ca-124a199935e6
+ - true
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ -9326
+ 23226
+ 128
+ 28
+
+ -
+ -9273
+ 23240
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 59aa34dd-b023-48df-b638-4f6e4a629151
+ - true
+ - Values
+ - Values
+ - false
+ - 09ead44e-3fee-4284-b1f9-0b3fc0c0b2dd
+ - 1
+
+
+
+
+ -
+ -9324
+ 23228
+ 36
+ 24
+
+ -
+ -9304.5
+ 23240
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 1f0b4fda-010b-4918-919d-181f286a2fc8
+ - true
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ -9258
+ 23228
+ 58
+ 24
+
+ -
+ -9227.5
+ 23240
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 52a7c8f5-ebf3-465f-b047-5cc9b0649c43
+ - true
+ - Relay
+ -
+ - false
+ - 4a062c8a-ea9d-451a-abb9-92de136371dd
+ - 1
+
+
+
+
+ -
+ -9282
+ 25207
+ 40
+ 16
+
+ -
+ -9262
+ 25215
+
+
+
+
+
+
+
+
+
+ - ab14760f-87a6-462e-b481-4a2c26a9a0d7
+ - Derivatives
+
+
+
+
+ - Evaluate the derivatives of a curve at a specified parameter.
+ - true
+ - 6d988f5a-f9eb-4e9a-94c8-3b505d7ad973
+ - true
+ - Derivatives
+ - Derivatives
+
+
+
+
+ -
+ -9321
+ 20430
+ 117
+ 144
+
+ -
+ -9251
+ 20502
+
+
+
+
+
+ - 2
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 7
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+
+
+
+
+ - Curve to evaluate
+ - fcabeaa1-6ec3-4a73-ba7a-eae2a2b90599
+ - true
+ - Curve
+ - Curve
+ - false
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 1
+
+
+
+
+ -
+ -9319
+ 20432
+ 53
+ 70
+
+ -
+ -9291
+ 20467
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 6707f57b-6ee9-48a2-8272-8ceb7a7ff539
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 35c11e73-023d-4ab3-8c15-e16ba789d504
+ - 1
+
+
+
+
+ -
+ -9319
+ 20502
+ 53
+ 70
+
+ -
+ -9291
+ 20537
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - a0e42231-baad-49ec-8d9d-db63cae0997a
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20432
+ 30
+ 20
+
+ -
+ -9219.5
+ 20442
+
+
+
+
+
+
+
+ - First curve derivative at t (Velocity)
+ - 5b8ecad7-0817-49e5-a03b-180d457fcf0e
+ - true
+ - false
+ - First derivative
+ - 1
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20452
+ 30
+ 20
+
+ -
+ -9219.5
+ 20462
+
+
+
+
+
+
+
+ - Second curve derivative at t (Acceleration)
+ - 78bccc4f-3dcd-4487-90dc-8628c3281cac
+ - true
+ - false
+ - Second derivative
+ - 2
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20472
+ 30
+ 20
+
+ -
+ -9219.5
+ 20482
+
+
+
+
+
+
+
+ - Third curve derivative at t (Jolt)
+ - 8441d80e-f14e-491c-b590-87e03b599ef3
+ - true
+ - false
+ - Third derivative
+ - 3
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20492
+ 30
+ 20
+
+ -
+ -9219.5
+ 20502
+
+
+
+
+
+
+
+ - Fourth curve derivative at t (Jounce)
+ - 74acaba9-e83d-432c-8e4e-866392c3d1e5
+ - true
+ - false
+ - Fourth derivative
+ - 4
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20512
+ 30
+ 20
+
+ -
+ -9219.5
+ 20522
+
+
+
+
+
+
+
+ - Fifth curve derivative at t
+ - 619c36d7-96b7-4633-b71d-7acbefc65eab
+ - true
+ - false
+ - Fifth derivative
+ - 5
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20532
+ 30
+ 20
+
+ -
+ -9219.5
+ 20542
+
+
+
+
+
+
+
+ - Sixth curve derivative at t
+ - 55aea648-06bd-4947-b96a-51225473ea2f
+ - true
+ - false
+ - Sixth derivative
+ - 6
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20552
+ 30
+ 20
+
+ -
+ -9219.5
+ 20562
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 27e211c0-ef2f-49d5-8971-f2ca9ad49e6b
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 23967
+ 144
+ 104
+
+ -
+ -9250
+ 24019
+
+
+
+
+
+ - Colour of the diffuse channel
+ - fc54bdbe-2a8b-41c8-8858-452a76e2ccf7
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23969
+ 67
+ 20
+
+ -
+ -9297
+ 23979
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 930a46ef-f98e-4c08-bbca-19db08804069
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23989
+ 67
+ 20
+
+ -
+ -9297
+ 23999
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 2cc56b8e-3652-4c16-b48b-74674b00afd8
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 24009
+ 67
+ 20
+
+ -
+ -9297
+ 24019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - b316cf66-48e4-41eb-b2de-bb23d9cec10a
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 24029
+ 67
+ 20
+
+ -
+ -9297
+ 24039
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - ae959438-259f-41c8-a2e9-d76510ed6da3
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 24049
+ 67
+ 20
+
+ -
+ -9297
+ 24059
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f88ece74-f9b2-4981-a565-6a02f27e09af
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 23969
+ 43
+ 100
+
+ -
+ -9212
+ 24019
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 6e364311-c38b-465c-854a-669474a20531
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 23905
+ 82
+ 44
+
+ -
+ -9235
+ 23927
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 966cdb5d-7cc5-44ae-8091-d2827d8f989e
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - f7ba28da-fefa-419b-a7b2-18d8b67d29e2
+ - 1
+
+
+
+
+ -
+ -9301
+ 23907
+ 51
+ 20
+
+ -
+ -9274
+ 23917
+
+
+
+
+
+
+
+ - The material override
+ - 8d9d4073-ae49-42ad-ab0e-4e71c55021fa
+ - true
+ - Material
+ - Material
+ - false
+ - f88ece74-f9b2-4981-a565-6a02f27e09af
+ - 1
+
+
+
+
+ -
+ -9301
+ 23927
+ 51
+ 20
+
+ -
+ -9274
+ 23937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 5944e598-cecb-4095-b35b-48ac8e442e2a
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 26230
+ 144
+ 104
+
+ -
+ -9250
+ 26282
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 636882c6-76e9-4a5f-b067-17d2ec7d9400
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 26232
+ 67
+ 20
+
+ -
+ -9297
+ 26242
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3ecb36f5-f4fb-4776-a16e-3442037cc155
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 26252
+ 67
+ 20
+
+ -
+ -9297
+ 26262
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - c09130c0-8773-4791-9389-bb3e5cc7e767
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 26272
+ 67
+ 20
+
+ -
+ -9297
+ 26282
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 266ac31e-f081-43a3-a1b8-ebbe9f1da188
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 26292
+ 67
+ 20
+
+ -
+ -9297
+ 26302
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8ad1ce49-cf05-4415-92f8-fc1aec783bae
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 26312
+ 67
+ 20
+
+ -
+ -9297
+ 26322
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ea1197fe-9fda-4a17-88d1-da430b63856d
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 26232
+ 43
+ 100
+
+ -
+ -9212
+ 26282
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - debc3215-bf33-4546-8691-0ad7cf85840f
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 26169
+ 82
+ 44
+
+ -
+ -9235
+ 26191
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 887c9ac7-efda-4f94-814c-30bd85c5d8fd
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 1
+
+
+
+
+ -
+ -9301
+ 26171
+ 51
+ 20
+
+ -
+ -9274
+ 26181
+
+
+
+
+
+
+
+ - The material override
+ - f62775ef-20dc-42bf-bbb6-001dd028efe0
+ - true
+ - Material
+ - Material
+ - false
+ - ea1197fe-9fda-4a17-88d1-da430b63856d
+ - 1
+
+
+
+
+ -
+ -9301
+ 26191
+ 51
+ 20
+
+ -
+ -9274
+ 26201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 5290c9e3-8c45-4f35-9fba-63bacb0a972f
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 23517
+ 144
+ 104
+
+ -
+ -9250
+ 23569
+
+
+
+
+
+ - Colour of the diffuse channel
+ - a152bdcc-8fd6-439d-a385-a52468ce9c83
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23519
+ 67
+ 20
+
+ -
+ -9297
+ 23529
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3b5f3096-bcca-4a63-b22c-03a278a82ce1
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23539
+ 67
+ 20
+
+ -
+ -9297
+ 23549
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 98a98ff1-b2b0-4361-b74c-d1383b56c3b6
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23559
+ 67
+ 20
+
+ -
+ -9297
+ 23569
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c88190ea-c9dd-4b37-b4ae-247e4ca281ce
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23579
+ 67
+ 20
+
+ -
+ -9297
+ 23589
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8c9f8bd1-c50a-4adf-bc97-f8eabc6f7dcd
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 23599
+ 67
+ 20
+
+ -
+ -9297
+ 23609
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 302cf7df-7b48-4ff3-bd5f-7f17fbb14626
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 23519
+ 43
+ 100
+
+ -
+ -9212
+ 23569
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 556ab023-c3f5-41a4-ae19-cec03405eccc
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 23455
+ 82
+ 44
+
+ -
+ -9235
+ 23477
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 60e62c4b-34bc-43d6-93db-19f3a6140229
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - b431e33f-493c-4f69-961a-2bdd27b0b423
+ - 1
+
+
+
+
+ -
+ -9301
+ 23457
+ 51
+ 20
+
+ -
+ -9274
+ 23467
+
+
+
+
+
+
+
+ - The material override
+ - f5d33227-40e4-478f-9297-1b460076d980
+ - true
+ - Material
+ - Material
+ - false
+ - 302cf7df-7b48-4ff3-bd5f-7f17fbb14626
+ - 1
+
+
+
+
+ -
+ -9301
+ 23477
+ 51
+ 20
+
+ -
+ -9274
+ 23487
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c4e43f61-126f-4987-98f6-f61ae9e11743
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 21978
+ 144
+ 104
+
+ -
+ -9250
+ 22030
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 406a7fee-676e-426c-8920-c04cb4ff6f73
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 21980
+ 67
+ 20
+
+ -
+ -9297
+ 21990
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 8646b4b9-cac5-4336-ad61-85ac3bea7ff7
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 22000
+ 67
+ 20
+
+ -
+ -9297
+ 22010
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - bc30b50e-6df3-4650-95d4-d0d1903f690b
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 22020
+ 67
+ 20
+
+ -
+ -9297
+ 22030
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 54e1fe2f-a7e8-41b2-aed8-6dc98a894ae6
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 22040
+ 67
+ 20
+
+ -
+ -9297
+ 22050
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - f2163080-a3e0-4773-8715-4b90ec03bd20
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 22060
+ 67
+ 20
+
+ -
+ -9297
+ 22070
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 505b6445-8613-41a9-b24b-75c2f16a3339
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 21980
+ 43
+ 100
+
+ -
+ -9212
+ 22030
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 669601ad-c306-4479-af1b-f98d37928ede
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 21916
+ 82
+ 44
+
+ -
+ -9235
+ 21938
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7bcae449-9f77-426e-9b98-7c9747fc0df3
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 816b0be2-357e-40d1-b261-7bcf4333e662
+ - 1
+
+
+
+
+ -
+ -9301
+ 21918
+ 51
+ 20
+
+ -
+ -9274
+ 21928
+
+
+
+
+
+
+
+ - The material override
+ - 7ea2a72b-4a4e-4aaf-b307-ee364bcefa69
+ - true
+ - Material
+ - Material
+ - false
+ - 505b6445-8613-41a9-b24b-75c2f16a3339
+ - 1
+
+
+
+
+ -
+ -9301
+ 21938
+ 51
+ 20
+
+ -
+ -9274
+ 21948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - fd036caf-aeec-48d3-a62f-73710312680c
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 20653
+ 144
+ 104
+
+ -
+ -9250
+ 20705
+
+
+
+
+
+ - Colour of the diffuse channel
+ - d96f02a5-596d-4c3c-8fb3-6846c0a50fa4
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 20655
+ 67
+ 20
+
+ -
+ -9297
+ 20665
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 5c6168ee-0653-4844-9138-d20640fd3dc3
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 20675
+ 67
+ 20
+
+ -
+ -9297
+ 20685
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 9fa89004-eb60-4e29-9f67-f90e59b2a0d7
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 20695
+ 67
+ 20
+
+ -
+ -9297
+ 20705
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - bf05fb02-2c0e-4be3-8903-65d40e2be818
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 20715
+ 67
+ 20
+
+ -
+ -9297
+ 20725
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 7f55bb9a-55d5-4706-a263-02a2f94d926e
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 20735
+ 67
+ 20
+
+ -
+ -9297
+ 20745
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - fc253baf-edd0-4707-8f66-d1f8f87895d3
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 20655
+ 43
+ 100
+
+ -
+ -9212
+ 20705
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 837b272a-eec1-486b-b98f-cda424c584f2
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 20593
+ 82
+ 44
+
+ -
+ -9235
+ 20615
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - dd5af49b-5904-4091-a731-06c9e4243943
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - e17fafe9-9d26-4bfc-b017-176aac88278e
+ - 1
+
+
+
+
+ -
+ -9301
+ 20595
+ 51
+ 20
+
+ -
+ -9274
+ 20605
+
+
+
+
+
+
+
+ - The material override
+ - 6e2ba1b7-e406-4009-8236-ba5b35ffe945
+ - true
+ - Material
+ - Material
+ - false
+ - fc253baf-edd0-4707-8f66-d1f8f87895d3
+ - 1
+
+
+
+
+ -
+ -9301
+ 20615
+ 51
+ 20
+
+ -
+ -9274
+ 20625
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 98b146e4-5b50-43f4-b589-1f02b86a6917
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -9323
+ 19167
+ 122
+ 64
+
+ -
+ -9243
+ 19199
+
+
+
+
+
+ - Line start point
+ - 758ec686-b6d1-4ba7-a49e-c857af4ef76c
+ - true
+ - Start
+ - Start
+ - false
+ - 256f333c-199f-4c9d-b6cd-360ee8130e4f
+ - 1
+
+
+
+
+ -
+ -9321
+ 19169
+ 63
+ 20
+
+ -
+ -9280
+ 19179
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 793656a1-b2f4-4fc9-bda6-7bf523676410
+ - true
+ - Direction
+ - Direction
+ - false
+ - 8441d80e-f14e-491c-b590-87e03b599ef3
+ - 1
+
+
+
+
+ -
+ -9321
+ 19189
+ 63
+ 20
+
+ -
+ -9280
+ 19199
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 75e3792b-4db8-4fd8-87b2-e810a1ecb011
+ - -X
+ - true
+ - Length
+ - Length
+ - false
+ - 3a6719a1-945e-415e-984c-488a86c00cf4
+ - 1
+
+
+
+
+ -
+ -9321
+ 19209
+ 63
+ 20
+
+ -
+ -9280
+ 19219
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 516291c1-7aa1-4f2d-8e3c-3eabd37ebe81
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -9228
+ 19169
+ 25
+ 60
+
+ -
+ -9214
+ 19199
+
+
+
+
+
+
+
+
+
+
+
+ - 71b5b089-500a-4ea6-81c5-2f960441a0e8
+ - PolyLine
+
+
+
+
+ - Create a polyline connecting a number of points.
+ - true
+ - ae045a03-6354-4728-a5cb-98c8c4c05fbb
+ - true
+ - PolyLine
+ - PolyLine
+
+
+
+
+ -
+ -9321
+ 21677
+ 118
+ 44
+
+ -
+ -9261
+ 21699
+
+
+
+
+
+ - 1
+ - Polyline vertex points
+ - ef4a60e9-ac8b-4930-a115-7f909acaf86e
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 256f333c-199f-4c9d-b6cd-360ee8130e4f
+ - 1
+
+
+
+
+ -
+ -9319
+ 21679
+ 43
+ 20
+
+ -
+ -9296
+ 21689
+
+
+
+
+
+
+
+ - Close polyline
+ - 4b9d9d45-e313-4c02-a075-0f16a23317f8
+ - true
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ -9319
+ 21699
+ 43
+ 20
+
+ -
+ -9296
+ 21709
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting polyline
+ - 3f9ccfee-62d3-4c55-8287-3567fff2c6cb
+ - true
+ - Polyline
+ - Polyline
+ - false
+ - 0
+
+
+
+
+ -
+ -9246
+ 21679
+ 41
+ 40
+
+ -
+ -9224
+ 21699
+
+
+
+
+
+
+
+
+
+
+
+ - afb96615-c59a-45c9-9cac-e27acb1c7ca0
+ - Explode
+
+
+
+
+ - Explode a curve into smaller segments.
+ - true
+ - 26b9a1e8-931e-4308-b076-5dbc987ab5ea
+ - true
+ - Explode
+ - Explode
+
+
+
+
+ -
+ -9330
+ 21614
+ 136
+ 44
+
+ -
+ -9263
+ 21636
+
+
+
+
+
+ - Curve to explode
+ - 8082237a-1d85-4343-b2fe-7365cc8ed248
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3f9ccfee-62d3-4c55-8287-3567fff2c6cb
+ - 1
+
+
+
+
+ -
+ -9328
+ 21616
+ 50
+ 20
+
+ -
+ -9301.5
+ 21626
+
+
+
+
+
+
+
+ - Recursive decomposition until all segments are atomic
+ - 8d771a8f-5917-4ab6-999d-27e12eff9ef5
+ - true
+ - Recursive
+ - Recursive
+ - false
+ - 0
+
+
+
+
+ -
+ -9328
+ 21636
+ 50
+ 20
+
+ -
+ -9301.5
+ 21646
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Exploded segments that make up the base curve
+ - a4a0de16-757d-4ded-9f33-bd7de93b41aa
+ - true
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ -9248
+ 21616
+ 52
+ 20
+
+ -
+ -9220.5
+ 21626
+
+
+
+
+
+
+
+ - 1
+ - Vertices of the exploded segments
+ - e0c3b1ad-2723-4376-a30c-fbd578c9649c
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ -9248
+ 21636
+ 52
+ 20
+
+ -
+ -9220.5
+ 21646
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4d4328e7-ddb3-4302-97e1-7b7af024dfeb
+ - true
+ - 1
+ - Curve
+ - Curve
+ - false
+ - a4a0de16-757d-4ded-9f33-bd7de93b41aa
+ - 1
+
+
+
+
+ -
+ -9288
+ 21570
+ 53
+ 24
+
+ -
+ -9252.5
+ 21582.95
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 3500ade5-7819-4191-bfb0-e582092db080
+ - true
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ -9327
+ 21456
+ 130
+ 44
+
+ -
+ -9262
+ 21478
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 1198b878-cfd2-47e5-8dca-39ddf0d70e6d
+ - true
+ - Keys
+ - Keys
+ - false
+ - 98f4df2d-9e69-4cb4-af1c-6444dfcdf787
+ - 1
+
+
+
+
+ -
+ -9325
+ 21458
+ 48
+ 20
+
+ -
+ -9299.5
+ 21468
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - 67426194-aa9f-45f1-b3fc-bdfffc3bf85b
+ - true
+ - Values Values A
+ - Values A
+ - true
+ - 4d4328e7-ddb3-4302-97e1-7b7af024dfeb
+ - 1
+
+
+
+
+ -
+ -9325
+ 21478
+ 48
+ 20
+
+ -
+ -9299.5
+ 21488
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 9c31c3ff-030e-4897-be1c-7b749e625208
+ - true
+ - Keys
+ - Keys
+ - false
+ - 0
+
+
+
+
+ -
+ -9247
+ 21458
+ 48
+ 20
+
+ -
+ -9221.5
+ 21468
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in Values A
+ - e7c4b320-14db-4e5e-8012-973177569083
+ - true
+ - Values Values A
+ - Values A
+ - false
+ - 0
+
+
+
+
+ -
+ -9247
+ 21478
+ 48
+ 20
+
+ -
+ -9221.5
+ 21488
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 93c8ebc7-1fd8-4b43-8114-e5c8b2e204c4
+ - true
+ - Length
+ - Length
+
+
+
+
+ -
+ -9314
+ 21520
+ 104
+ 28
+
+ -
+ -9264
+ 21534
+
+
+
+
+
+ - Curve to measure
+ - 9650e786-1eda-474c-bc71-27c2d58790d4
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4d4328e7-ddb3-4302-97e1-7b7af024dfeb
+ - 1
+
+
+
+
+ -
+ -9312
+ 21522
+ 33
+ 24
+
+ -
+ -9294
+ 21534
+
+
+
+
+
+
+
+ - Curve length
+ - 98f4df2d-9e69-4cb4-af1c-6444dfcdf787
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9249
+ 21522
+ 37
+ 24
+
+ -
+ -9229
+ 21534
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - a2a94db7-6ca0-4a5f-9135-86ab8db24e51
+ - true
+ - List Item
+ - List Item
+
+
+
+
+ -
+ -9299
+ 20979
+ 74
+ 64
+
+ -
+ -9251
+ 21011
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 59ce7648-20c5-4bfd-83b0-4acdf5d098bf
+ - true
+ - List
+ - List
+ - false
+ - 9c31c3ff-030e-4897-be1c-7b749e625208
+ - 1
+
+
+
+
+ -
+ -9297
+ 20981
+ 31
+ 20
+
+ -
+ -9280
+ 20991
+
+
+
+
+
+
+
+ - Item index
+ - 72276524-dbcd-4d81-834f-6113a72fa64c
+ - true
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ -9297
+ 21001
+ 31
+ 20
+
+ -
+ -9280
+ 21011
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - ebe8bedb-19ce-4917-9c51-0c51eddb484d
+ - true
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ -9297
+ 21021
+ 31
+ 20
+
+ -
+ -9280
+ 21031
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - e6a9b95b-b222-4b1a-9106-e38ce0a60ef3
+ - true
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ -9236
+ 20981
+ 9
+ 60
+
+ -
+ -9230
+ 21011
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
+ - Dot Display
+
+
+
+
+ - Draw a collection of coloured dots
+ - true
+ - false
+ - 4fbed52a-0ae4-49f5-9d06-f4eb03d35034
+ - true
+ - Dot Display
+ - Dot Display
+
+
+
+
+ -
+ -9304
+ 20880
+ 83
+ 64
+
+ -
+ -9235
+ 20912
+
+
+
+
+
+ - Dot location
+ - true
+ - 25b83050-e263-4c58-99a0-c96e4512e112
+ - true
+ - Point
+ - Point
+ - false
+ - 256f333c-199f-4c9d-b6cd-360ee8130e4f
+ - 1
+
+
+
+
+ -
+ -9302
+ 20882
+ 52
+ 20
+
+ -
+ -9266.5
+ 20892
+
+
+
+
+
+
+
+ - Dot colour
+ - 11f7bb21-4b0d-4389-8a20-836b6e25d67c
+ - true
+ - Colour
+ - Colour
+ - false
+ - 0
+
+
+
+
+ -
+ -9302
+ 20902
+ 52
+ 20
+
+ -
+ -9266.5
+ 20912
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Dot size
+ - b368810b-3bbe-424b-85da-d8848a3eb9c0
+ - X/2
+ - true
+ - Size
+ - Size
+ - false
+ - e6a9b95b-b222-4b1a-9106-e38ce0a60ef3
+ - 1
+
+
+
+
+ -
+ -9302
+ 20922
+ 52
+ 20
+
+ -
+ -9266.5
+ 20932
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 9004ba57-a8e9-4d21-929c-ae939b9af8df
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 19043
+ 144
+ 104
+
+ -
+ -9250
+ 19095
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 49365762-437f-4c9c-a9db-d1d04144c3f0
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 19045
+ 67
+ 20
+
+ -
+ -9297
+ 19055
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3c1c1a65-8e2f-40b4-b64a-b583dd44d987
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 19065
+ 67
+ 20
+
+ -
+ -9297
+ 19075
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - cdfae7c3-13df-45eb-bec2-9fb33d857435
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 19085
+ 67
+ 20
+
+ -
+ -9297
+ 19095
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7a87b593-09c5-4edf-b92b-3b8adaade17c
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 19105
+ 67
+ 20
+
+ -
+ -9297
+ 19115
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 7639dac2-9da2-4257-8f30-47b6ead7794c
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 19125
+ 67
+ 20
+
+ -
+ -9297
+ 19135
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6c4dd769-982d-48db-9737-cc4e67e265fd
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 19045
+ 43
+ 100
+
+ -
+ -9212
+ 19095
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - ec452d8d-f33b-477b-bdba-3dbfef9b7561
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 18980
+ 82
+ 44
+
+ -
+ -9235
+ 19002
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 4e3671ba-b435-4ec5-b5f4-9f45c74ba8f1
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 516291c1-7aa1-4f2d-8e3c-3eabd37ebe81
+ - 1
+
+
+
+
+ -
+ -9301
+ 18982
+ 51
+ 20
+
+ -
+ -9274
+ 18992
+
+
+
+
+
+
+
+ - The material override
+ - e9961fc0-e956-43cf-b6b0-558698384f4e
+ - true
+ - Material
+ - Material
+ - false
+ - 6c4dd769-982d-48db-9737-cc4e67e265fd
+ - 1
+
+
+
+
+ -
+ -9301
+ 19002
+ 51
+ 20
+
+ -
+ -9274
+ 19012
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0ac1b008-6cb1-4730-9f53-d5be7f8edb47
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ -9334
+ 18896
+ 144
+ 64
+
+ -
+ -9260
+ 18928
+
+
+
+
+
+ - Curve to evaluate
+ - e16c6742-fa46-42fc-b79f-9180d246fa51
+ - true
+ - Curve
+ - Curve
+ - false
+ - 516291c1-7aa1-4f2d-8e3c-3eabd37ebe81
+ - 1
+
+
+
+
+ -
+ -9332
+ 18898
+ 57
+ 20
+
+ -
+ -9302
+ 18908
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 33e5cbf5-a111-413b-aeee-29152a062f2c
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18918
+ 57
+ 20
+
+ -
+ -9302
+ 18928
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2d5adcb2-acc2-40a4-94c6-4c88ed344864
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18938
+ 57
+ 20
+
+ -
+ -9302
+ 18948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e711d67a-f652-4919-ab0b-c31432c9fbb9
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 18898
+ 53
+ 20
+
+ -
+ -9217
+ 18908
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 5c0d9cd2-5b57-4ea1-b524-2be5cda52800
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 18918
+ 53
+ 20
+
+ -
+ -9217
+ 18928
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 220b3ba4-4013-4cef-b85b-0ac056dabbb2
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ -9245
+ 18938
+ 53
+ 20
+
+ -
+ -9217
+ 18948
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 5666caf3-3e8d-4f54-8575-3129d5b2372b
+ - true
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ -9325
+ 18792
+ 125
+ 84
+
+ -
+ -9258
+ 18834
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 20463074-6551-4dfd-acec-b8a4d028cf3e
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - e711d67a-f652-4919-ab0b-c31432c9fbb9
+ - 1
+
+
+
+
+ -
+ -9323
+ 18794
+ 50
+ 20
+
+ -
+ -9296.5
+ 18804
+
+
+
+
+
+
+
+ - Curve degree
+ - 86b3bdad-c824-4179-b453-7abe9fc8db2b
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 18814
+ 50
+ 20
+
+ -
+ -9296.5
+ 18824
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - ac098bc1-6582-413a-ab0c-7d1650953f0b
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 18834
+ 50
+ 20
+
+ -
+ -9296.5
+ 18844
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 8ee4836b-5dc7-4643-89c5-40a92f8e429e
+ - true
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ -9323
+ 18854
+ 50
+ 20
+
+ -
+ -9296.5
+ 18864
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - c53594c6-7765-4edd-9143-ad1c5bb118d4
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 18794
+ 41
+ 26
+
+ -
+ -9221
+ 18807.33
+
+
+
+
+
+
+
+ - Curve length
+ - d2a4e044-7960-4920-80bd-ee2260249749
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 18820
+ 41
+ 27
+
+ -
+ -9221
+ 18834
+
+
+
+
+
+
+
+ - Curve domain
+ - c8f1cdba-cf7e-4cf9-bd97-5c6445bc6763
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -9243
+ 18847
+ 41
+ 27
+
+ -
+ -9221
+ 18860.67
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 93ab0a8f-aee3-4747-910f-6806f1daee3d
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ -10231
+ 24715
+ 125
+ 64
+
+ -
+ -10181
+ 24747
+
+
+
+
+
+ - Curve to divide
+ - 19b3d1a7-bf1b-4aac-b0f1-04623c237e08
+ - true
+ - Curve
+ - Curve
+ - false
+ - 7fdc9300-6cbf-4a29-a03a-92e9a40941ca
+ - 1
+
+
+
+
+ -
+ -10229
+ 24717
+ 33
+ 20
+
+ -
+ -10211
+ 24727
+
+
+
+
+
+
+
+ - Number of segments
+ - 6065d60d-9338-4ebe-8ab8-04eba8b6030c
+ - true
+ - Count
+ - Count
+ - false
+ - 6b922c6a-cc70-4092-ae71-ade7d284d862
+ - 1
+
+
+
+
+ -
+ -10229
+ 24737
+ 33
+ 20
+
+ -
+ -10211
+ 24747
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 9441cda5-f331-4d5a-9664-ad5973c619f3
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ -10229
+ 24757
+ 33
+ 20
+
+ -
+ -10211
+ 24767
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - c174415d-9265-49de-a761-e110e24288d1
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ -10166
+ 24717
+ 58
+ 20
+
+ -
+ -10135.5
+ 24727
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 15e3ceaf-f017-40c8-b24f-89f0cbc46951
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ -10166
+ 24737
+ 58
+ 20
+
+ -
+ -10135.5
+ 24747
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 1bf7cef9-feb2-44d9-9ec1-054d3042a64e
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ -10166
+ 24757
+ 58
+ 20
+
+ -
+ -10135.5
+ 24767
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 99b8e4f4-ef55-452f-9b1e-6ec52d78cb44
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -10222
+ 24798
+ 106
+ 64
+
+ -
+ -10158
+ 24830
+
+
+
+
+
+ - Line start point
+ - 70241e77-2779-4773-aa93-c113b1533cf0
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ -10220
+ 24800
+ 47
+ 20
+
+ -
+ -10195
+ 24810
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 5dab8a28-4a4d-4273-a21c-23f90eb5ee31
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ -10220
+ 24820
+ 47
+ 20
+
+ -
+ -10195
+ 24830
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 55edd0d9-dc5c-4def-9e48-0e04f108835a
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -10220
+ 24840
+ 47
+ 20
+
+ -
+ -10195
+ 24850
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 7fdc9300-6cbf-4a29-a03a-92e9a40941ca
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -10143
+ 24800
+ 25
+ 60
+
+ -
+ -10129
+ 24830
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - c6837ab8-492f-4d65-bbf8-6543cded1f15
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ -10222
+ 24547
+ 106
+ 64
+
+ -
+ -10158
+ 24579
+
+
+
+
+
+ - Line start point
+ - eef2b1cf-cbc2-4962-aae7-d207a5067da1
+ - true
+ - Start
+ - Start
+ - false
+ - c174415d-9265-49de-a761-e110e24288d1
+ - 1
+
+
+
+
+ -
+ -10220
+ 24549
+ 47
+ 20
+
+ -
+ -10195
+ 24559
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - dd3a41cb-9036-407e-9a91-b00fe2f2e0eb
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ -10220
+ 24569
+ 47
+ 20
+
+ -
+ -10195
+ 24579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - be7475b9-0745-4a7a-9066-2cb6bbb15571
+ - true
+ - Length
+ - Length
+ - false
+ - 202652b1-b262-48b4-9c0a-8bfef6b70c4f
+ - 1
+
+
+
+
+ -
+ -10220
+ 24589
+ 47
+ 20
+
+ -
+ -10195
+ 24599
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 3cc701d3-0f0b-42c8-8f89-b9159cf05c65
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ -10143
+ 24549
+ 25
+ 60
+
+ -
+ -10129
+ 24579
+
+
+
+
+
+
+
+
+
+
+
+ - 7376fe41-74ec-497e-b367-1ffe5072608b
+ - Curvature Graph
+
+
+
+
+ - Draws Rhino Curvature Graphs.
+ - true
+ - ad959b91-bde6-46f4-a065-a06124974ebf
+ - true
+ - Curvature Graph
+ - Curvature Graph
+
+
+
+
+ -
+ -9298
+ 26048
+ 71
+ 64
+
+ -
+ -9241
+ 26080
+
+
+
+
+
+ - Curve for Curvature graph display
+ - true
+ - e1fd64bc-7e8f-40cd-8156-a9c2f868ddf7
+ - true
+ - Curve
+ - Curve
+ - false
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 1
+
+
+
+
+ -
+ -9296
+ 26050
+ 40
+ 20
+
+ -
+ -9274.5
+ 26060
+
+
+
+
+
+
+
+ - Sampling density of the Graph
+ - ce8b21ce-edf4-4e27-896c-399b8d718478
+ - true
+ - Density
+ - Density
+ - false
+ - 0
+
+
+
+
+ -
+ -9296
+ 26070
+ 40
+ 20
+
+ -
+ -9274.5
+ 26080
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scale of graph
+ - 9af9ce91-dead-4a37-a3be-e4851c89ac1c
+ - true
+ - Scale
+ - Scale
+ - false
+ - e927f1f1-025a-4d72-874f-d7cadc4d07db
+ - 1
+
+
+
+
+ -
+ -9296
+ 26090
+ 40
+ 20
+
+ -
+ -9274.5
+ 26100
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 105
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e927f1f1-025a-4d72-874f-d7cadc4d07db
+ - true
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 90.0
+
+
+
+
+ -
+ -9387
+ 26139
+ 250
+ 20
+
+ -
+ -9386.257
+ 26139.68
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 03c079d1-214a-4367-8a79-014e07a300ec
+ - true
+ - Relay
+
+ - false
+ - f7ba28da-fefa-419b-a7b2-18d8b67d29e2
+ - 1
+
+
+
+
+ -
+ -9282
+ 22185
+ 40
+ 16
+
+ -
+ -9262
+ 22193
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - bb4c2afb-4bca-4df7-8dc6-3ce78e75888b
+ - true
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ -9320
+ 24414
+ 115
+ 64
+
+ -
+ -9265
+ 24446
+
+
+
+
+
+ - Value to remap
+ - 191af6e0-b924-4ebd-b87e-0352744cdc1a
+ - true
+ - Value
+ - Value
+ - false
+ - bb8833cc-0755-4539-bf0e-40e6fb53efe2
+ - 1
+
+
+
+
+ -
+ -9318
+ 24416
+ 38
+ 20
+
+ -
+ -9297.5
+ 24426
+
+
+
+
+
+
+
+ - Source domain
+ - c98c8896-2656-4e65-b252-66c1e819c19f
+ - true
+ - Source
+ - Source
+ - false
+ - c06501dc-bbcf-4267-a26f-10c83fa4679f
+ - 1
+
+
+
+
+ -
+ -9318
+ 24436
+ 38
+ 20
+
+ -
+ -9297.5
+ 24446
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 95f4febe-997b-4d1e-81af-6d7c1ee8781c
+ - true
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ -9318
+ 24456
+ 38
+ 20
+
+ -
+ -9297.5
+ 24466
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 4123e666-aaea-4abb-a2dc-959403a78040
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ -9250
+ 24416
+ 43
+ 30
+
+ -
+ -9227
+ 24431
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - d2dafdbc-c4ab-4f53-83eb-46286aa70347
+ - true
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ -9250
+ 24446
+ 43
+ 30
+
+ -
+ -9227
+ 24461
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - ea3c720c-0f74-4866-b9d7-3cc115570ea1
+ - true
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ -9323
+ 24497
+ 122
+ 28
+
+ -
+ -9259
+ 24511
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - db26e314-e939-46e4-b1fe-a7b8127f8003
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - bb8833cc-0755-4539-bf0e-40e6fb53efe2
+ - 1
+
+
+
+
+ -
+ -9321
+ 24499
+ 47
+ 24
+
+ -
+ -9296
+ 24511
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - c06501dc-bbcf-4267-a26f-10c83fa4679f
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -9244
+ 24499
+ 41
+ 24
+
+ -
+ -9222
+ 24511
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - bb4c2afb-4bca-4df7-8dc6-3ce78e75888b
+ - ea3c720c-0f74-4866-b9d7-3cc115570ea1
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - c042fb9d-002c-456b-ace2-4265be68d648
+ - bb8833cc-0755-4539-bf0e-40e6fb53efe2
+ - bdcc331f-b637-41f0-94e2-4f12b70251cc
+ - ad6201fb-63c1-4a0f-8015-2d21f5cb9555
+ - 14
+ - 633ce0ae-bb91-4421-9202-19d3ab9df774
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bb8833cc-0755-4539-bf0e-40e6fb53efe2
+ - true
+ - Relay
+ -
+ - false
+ - 52a7c8f5-ebf3-465f-b047-5cc9b0649c43
+ - 1
+
+
+
+
+ -
+ -9282
+ 24543
+ 40
+ 16
+
+ -
+ -9262
+ 24551
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c042fb9d-002c-456b-ace2-4265be68d648
+ - true
+ - Relay
+ -
+ - false
+ - 68995b86-f06d-4501-aafb-7f4e7f7a7ae0
+ - 1
+
+
+
+
+ -
+ -9282
+ 24170
+ 40
+ 16
+
+ -
+ -9262
+ 24178
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - ad6201fb-63c1-4a0f-8015-2d21f5cb9555
+ - true
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ -9303
+ 24242
+ 82
+ 44
+
+ -
+ -9272
+ 24264
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - cb6efc08-c9d8-4524-970e-8d5275571316
+ - true
+ - A
+ - A
+ - true
+ - 8ec909b8-ac70-40f2-985c-aa362547ce12
+ - 1
+
+
+
+
+ -
+ -9301
+ 24244
+ 14
+ 20
+
+ -
+ -9292.5
+ 24254
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - f698477a-a835-46ea-bcac-49c1f2c0470c
+ - true
+ - B
+ - B
+ - true
+ - bdcc331f-b637-41f0-94e2-4f12b70251cc
+ - 1
+
+
+
+
+ -
+ -9301
+ 24264
+ 14
+ 20
+
+ -
+ -9292.5
+ 24274
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 68995b86-f06d-4501-aafb-7f4e7f7a7ae0
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -9257
+ 24244
+ 34
+ 40
+
+ -
+ -9238.5
+ 24264
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - dd437aea-2710-413b-928a-0863c45ceacc
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -9337
+ 22332
+ 150
+ 20
+
+ -
+ -9337
+ 22332.82
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0.452284
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 4c28dc57-c974-4062-8a1c-2d65d0f1cc9c
+ - true
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ -9320
+ 22432
+ 115
+ 64
+
+ -
+ -9265
+ 22464
+
+
+
+
+
+ - Value to remap
+ - 18ee36a0-d7a0-494e-96ff-6db5efd91200
+ - true
+ - Value
+ - Value
+ - false
+ - 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca
+ - 1
+
+
+
+
+ -
+ -9318
+ 22434
+ 38
+ 20
+
+ -
+ -9297.5
+ 22444
+
+
+
+
+
+
+
+ - Source domain
+ - 04e361f5-41db-4bc5-a487-dcfcbd2d0a29
+ - true
+ - Source
+ - Source
+ - false
+ - 0f81169b-eadf-4918-84c1-d0ef59981182
+ - 1
+
+
+
+
+ -
+ -9318
+ 22454
+ 38
+ 20
+
+ -
+ -9297.5
+ 22464
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 9b027bcc-e232-4939-a61a-c398464e899a
+ - true
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ -9318
+ 22474
+ 38
+ 20
+
+ -
+ -9297.5
+ 22484
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 173a0b59-1c04-43db-a331-89a053d6fb16
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ -9250
+ 22434
+ 43
+ 30
+
+ -
+ -9227
+ 22449
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 74f1eabd-7a8f-441f-80c6-1d0e75a512ff
+ - true
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ -9250
+ 22464
+ 43
+ 30
+
+ -
+ -9227
+ 22479
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - f031001d-2a39-489f-8101-d849af796a93
+ - true
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ -9323
+ 22515
+ 122
+ 28
+
+ -
+ -9259
+ 22529
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2e52074a-de4b-4fdb-90bd-d5826a0e6222
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca
+ - 1
+
+
+
+
+ -
+ -9321
+ 22517
+ 47
+ 24
+
+ -
+ -9296
+ 22529
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 0f81169b-eadf-4918-84c1-d0ef59981182
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ -9244
+ 22517
+ 41
+ 24
+
+ -
+ -9222
+ 22529
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 4c28dc57-c974-4062-8a1c-2d65d0f1cc9c
+ - f031001d-2a39-489f-8101-d849af796a93
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 3a6719a1-945e-415e-984c-488a86c00cf4
+ - 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca
+ - dd437aea-2710-413b-928a-0863c45ceacc
+ - 8e346cb9-87c1-4e10-ab8e-798cf64471cb
+ - 14
+ - dcde6481-a8c5-4eaa-b1f0-fbbb49b24675
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1ea70de6-eb5f-4c57-a884-6f4fedf1a3ca
+ - true
+ - Relay
+ -
+ - false
+ - 819a2a51-f04e-4192-8c95-3fa161e7540c
+ - 1
+
+
+
+
+ -
+ -9282
+ 22560
+ 40
+ 16
+
+ -
+ -9262
+ 22568
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3a6719a1-945e-415e-984c-488a86c00cf4
+ - true
+ - Relay
+ -
+ - false
+ - 39e593b4-f0b7-409b-85a0-21dd96be2dca
+ - 1
+
+
+
+
+ -
+ -9282
+ 22228
+ 40
+ 16
+
+ -
+ -9262
+ 22236
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 8e346cb9-87c1-4e10-ab8e-798cf64471cb
+ - true
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ -9303
+ 22267
+ 82
+ 44
+
+ -
+ -9272
+ 22289
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - b94bae4b-57cf-47b0-8aca-757f98292e6f
+ - true
+ - A
+ - A
+ - true
+ - 8810b4a0-9f31-4eff-9363-f5750e8310f7
+ - 1
+
+
+
+
+ -
+ -9301
+ 22269
+ 14
+ 20
+
+ -
+ -9292.5
+ 22279
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - f12f1aed-05d1-4ab0-9c96-dfe03691f68b
+ - true
+ - B
+ - B
+ - true
+ - dd437aea-2710-413b-928a-0863c45ceacc
+ - 1
+
+
+
+
+ -
+ -9301
+ 22289
+ 14
+ 20
+
+ -
+ -9292.5
+ 22299
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 39e593b4-f0b7-409b-85a0-21dd96be2dca
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -9257
+ 22269
+ 34
+ 40
+
+ -
+ -9238.5
+ 22289
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4ae83b19-8812-4c53-9790-87c6cc59246b
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -9359
+ 25656
+ 194
+ 28
+
+ -
+ -9259
+ 25670
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - adb863e8-6dcd-4041-8304-c5da7028f8bd
+ - true
+ - Variable O
+ - O
+ - true
+ - 013bc8b0-e297-49d9-947e-acd8090d019b
+ - 1
+
+
+
+
+ -
+ -9357
+ 25658
+ 14
+ 24
+
+ -
+ -9348.5
+ 25670
+
+
+
+
+
+
+
+ - Result of expression
+ - d0227405-e7b3-47fc-b363-1d8ea8130e46
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -9176
+ 25658
+ 9
+ 24
+
+ -
+ -9170
+ 25670
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2a2a7f3e-94c5-4192-b444-f05866d8c054
+ - true
+ - Panel
+
+ - false
+ - 1
+ - d0227405-e7b3-47fc-b363-1d8ea8130e46
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -9354
+ 25371
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -9353.668
+ 25371.7
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8c0ee1df-15d2-4d4b-824d-4f852fe37c47
+ - true
+ - Relay
+ -
+ - false
+ - 2a2a7f3e-94c5-4192-b444-f05866d8c054
+ - 1
+
+
+
+
+ -
+ -9282
+ 25347
+ 40
+ 16
+
+ -
+ -9262
+ 25355
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 013bc8b0-e297-49d9-947e-acd8090d019b
+ - true
+ - Relay
+ -
+ - false
+ - b713a28b-9c99-4284-b4f0-6985cf828693
+ - 1
+
+
+
+
+ -
+ -9282
+ 25703
+ 40
+ 16
+
+ -
+ -9262
+ 25711
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4ae83b19-8812-4c53-9790-87c6cc59246b
+ - 2a2a7f3e-94c5-4192-b444-f05866d8c054
+ - 8c0ee1df-15d2-4d4b-824d-4f852fe37c47
+ - 013bc8b0-e297-49d9-947e-acd8090d019b
+ - 4
+ - 5ecee3d4-17a6-4ec2-b746-1150c99f835b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -9359
+ 24956
+ 194
+ 28
+
+ -
+ -9259
+ 24970
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - de3b134c-c21f-450c-a662-2a225c9cab92
+ - true
+ - Variable O
+ - O
+ - true
+ - cba31048-121f-4809-a1ca-b361c15f7c76
+ - 1
+
+
+
+
+ -
+ -9357
+ 24958
+ 14
+ 24
+
+ -
+ -9348.5
+ 24970
+
+
+
+
+
+
+
+ - Result of expression
+ - 6ca6859a-c41e-4d8b-a20d-078ce04bdcc4
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -9176
+ 24958
+ 9
+ 24
+
+ -
+ -9170
+ 24970
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c344e708-6261-40b6-9c1b-511e7f599e65
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 6ca6859a-c41e-4d8b-a20d-078ce04bdcc4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -9362
+ 24672
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -9361.102
+ 24672.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f5c80cb3-2331-4236-a4e9-29f011aa2408
+ - true
+ - Relay
+ -
+ - false
+ - c344e708-6261-40b6-9c1b-511e7f599e65
+ - 1
+
+
+
+
+ -
+ -9282
+ 24628
+ 40
+ 16
+
+ -
+ -9262
+ 24636
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cba31048-121f-4809-a1ca-b361c15f7c76
+ - true
+ - Relay
+ -
+ - false
+ - 52a7c8f5-ebf3-465f-b047-5cc9b0649c43
+ - 1
+
+
+
+
+ -
+ -9282
+ 25003
+ 40
+ 16
+
+ -
+ -9262
+ 25011
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bfb0ca9a-3809-4c3f-bc7b-e5a4ed892909
+ - c344e708-6261-40b6-9c1b-511e7f599e65
+ - f5c80cb3-2331-4236-a4e9-29f011aa2408
+ - cba31048-121f-4809-a1ca-b361c15f7c76
+ - 4
+ - 2aee8a4d-7144-4a3d-b986-47d52cbe1c41
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - a265c7f4-5a15-4b8e-8333-ea56d088de18
+ - true
+ - Length
+ - Length
+
+
+
+
+ -
+ -9314
+ 24367
+ 104
+ 28
+
+ -
+ -9264
+ 24381
+
+
+
+
+
+ - Curve to measure
+ - 771d51ca-8415-440b-8bcc-8f76ff84cfe9
+ - true
+ - Curve
+ - Curve
+ - false
+ - f74c430d-ed74-462d-8f45-a21df852c02c
+ - 1
+
+
+
+
+ -
+ -9312
+ 24369
+ 33
+ 24
+
+ -
+ -9294
+ 24381
+
+
+
+
+
+
+
+ - Curve length
+ - 3f2dee01-ebed-4ecc-8d9a-cf8c8f386f33
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ -9249
+ 24369
+ 37
+ 24
+
+ -
+ -9229
+ 24381
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 767263a1-1b23-48dd-a005-17d0f2ae92c6
+ - true
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ -9303
+ 24305
+ 82
+ 44
+
+ -
+ -9272
+ 24327
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - c330e492-6830-4e5d-8e81-4e8d87e22ee8
+ - true
+ - A
+ - A
+ - true
+ - 3f2dee01-ebed-4ecc-8d9a-cf8c8f386f33
+ - 1
+
+
+
+
+ -
+ -9301
+ 24307
+ 14
+ 20
+
+ -
+ -9292.5
+ 24317
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 6d1ae28b-1ba1-44c1-a954-292ed5e1bcda
+ - true
+ - B
+ - B
+ - true
+ - 4123e666-aaea-4abb-a2dc-959403a78040
+ - 1
+
+
+
+
+ -
+ -9301
+ 24327
+ 14
+ 20
+
+ -
+ -9292.5
+ 24337
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 8ec909b8-ac70-40f2-985c-aa362547ce12
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -9257
+ 24307
+ 34
+ 40
+
+ -
+ -9238.5
+ 24327
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2f47d230-2571-418d-80cf-6e8e5d31cb9e
+ - true
+ - Relay
+
+ - false
+ - 52a7c8f5-ebf3-465f-b047-5cc9b0649c43
+ - 1
+
+
+
+
+ -
+ -9282
+ 23334
+ 40
+ 16
+
+ -
+ -9262
+ 23342
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 4c639447-1097-40fd-aaf4-5f66d6735968
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -10254
+ 24637
+ 150
+ 20
+
+ -
+ -10253.15
+ 24637.28
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 256
+ - 0
+ - 0
+ - 13.114764
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 19e4d4f5-b4c6-47ac-b2de-2dc048d892ae
+ - true
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ -10212
+ 24652
+ 82
+ 44
+
+ -
+ -10181
+ 24674
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - feeb2a07-7824-41c9-9439-185415dbd07e
+ - true
+ - A
+ - A
+ - true
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - 1
+
+
+
+
+ -
+ -10210
+ 24654
+ 14
+ 20
+
+ -
+ -10201.5
+ 24664
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 0fbc25ab-85f6-4691-b919-d59b83eebf41
+ - true
+ - B
+ - B
+ - true
+ - 4c639447-1097-40fd-aaf4-5f66d6735968
+ - 1
+
+
+
+
+ -
+ -10210
+ 24674
+ 14
+ 20
+
+ -
+ -10201.5
+ 24684
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 202652b1-b262-48b4-9c0a-8bfef6b70c4f
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -10166
+ 24654
+ 34
+ 40
+
+ -
+ -10147.5
+ 24674
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0cf1fffb-593e-4a7c-8010-e3d13314dcba
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -10268
+ 25366
+ 194
+ 28
+
+ -
+ -10168
+ 25380
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7deb7413-fafe-4104-bde2-aec3a80af375
+ - true
+ - Variable O
+ - O
+ - true
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - 1
+
+
+
+
+ -
+ -10266
+ 25368
+ 14
+ 24
+
+ -
+ -10257.5
+ 25380
+
+
+
+
+
+
+
+ - Result of expression
+ - 4148a129-2c01-4f55-8939-e310a77ca08c
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -10085
+ 25368
+ 9
+ 24
+
+ -
+ -10079
+ 25380
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ac1918ea-52ea-4b61-8cf0-6af20695bb26
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 4148a129-2c01-4f55-8939-e310a77ca08c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -10263
+ 25084
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -10262.73
+ 25084.72
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 60389f86-e487-48bb-87ab-a0952ba905c1
+ - true
+ - Relay
+ -
+ - false
+ - ac1918ea-52ea-4b61-8cf0-6af20695bb26
+ - 1
+
+
+
+
+ -
+ -10191
+ 25046
+ 40
+ 16
+
+ -
+ -10171
+ 25054
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - true
+ - Relay
+ -
+ - false
+ - f90295eb-99e8-4a80-a13c-999e99532b9e
+ - 1
+
+
+
+
+ -
+ -10191
+ 25413
+ 40
+ 16
+
+ -
+ -10171
+ 25421
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0cf1fffb-593e-4a7c-8010-e3d13314dcba
+ - ac1918ea-52ea-4b61-8cf0-6af20695bb26
+ - 60389f86-e487-48bb-87ab-a0952ba905c1
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - 4
+ - 3ec709d0-dd1a-40ac-8f1e-e9cc9451e984
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - e1a1a5d7-0656-4bdd-b6cc-e4dfdf98c291
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - f109cbbc-8240-46dd-b41c-e591ae1f4961
+ - 1
+
+
+
+
+ -
+ -10240
+ 24882
+ 150
+ 150
+
+ -
+ -10239.63
+ 24882.9
+
+ - -1
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - 6ca5822e-4069-49d7-aa8b-eef76e54ce95
+ - true
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ -10227
+ 26041
+ 137
+ 64
+
+ -
+ -10157
+ 26073
+
+
+
+
+
+ - Curve to evaluate
+ - a0558302-ff30-4030-a81f-0fc30cffd69e
+ - true
+ - Curve
+ - Curve
+ - false
+ - 992b7fbd-ed14-4b15-b66a-137b35a55879
+ - 1
+
+
+
+
+ -
+ -10225
+ 26043
+ 53
+ 30
+
+ -
+ -10197
+ 26058
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 41013118-0d72-4cd7-a08e-9ffe749e399d
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 05618346-2792-4b1f-ba4e-3bbaa12dde3f
+ - 1
+
+
+
+
+ -
+ -10225
+ 26073
+ 53
+ 30
+
+ -
+ -10197
+ 26088
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - ba67eeec-9f79-49eb-bed3-091051cee62d
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ -10142
+ 26043
+ 50
+ 20
+
+ -
+ -10115.5
+ 26053
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - c8bf61be-95d1-40e4-894d-a5a202cb674c
+ - true
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ -10142
+ 26063
+ 50
+ 20
+
+ -
+ -10115.5
+ 26073
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - d5661948-a11c-4cec-9937-41f81a0320a7
+ - true
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ -10142
+ 26083
+ 50
+ 20
+
+ -
+ -10115.5
+ 26093
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 015ffee2-3b22-47cb-a911-fccec397f86f
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ -10225
+ 26124
+ 125
+ 64
+
+ -
+ -10175
+ 26156
+
+
+
+
+
+ - Curve to divide
+ - b0194119-2295-4052-98b1-a7e01ab3bb72
+ - true
+ - Curve
+ - Curve
+ - false
+ - 992b7fbd-ed14-4b15-b66a-137b35a55879
+ - 1
+
+
+
+
+ -
+ -10223
+ 26126
+ 33
+ 20
+
+ -
+ -10205
+ 26136
+
+
+
+
+
+
+
+ - Number of segments
+ - efc6b2ba-abc3-4fb3-8bb1-b7c050d1311f
+ - true
+ - Count
+ - Count
+ - false
+ - 6b922c6a-cc70-4092-ae71-ade7d284d862
+ - 1
+
+
+
+
+ -
+ -10223
+ 26146
+ 33
+ 20
+
+ -
+ -10205
+ 26156
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 029b5d81-76eb-4fc7-9741-8a1ed7c00839
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ -10223
+ 26166
+ 33
+ 20
+
+ -
+ -10205
+ 26176
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - eb1bf5c8-aa76-4a6f-b4f0-a9293e4ecf36
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ -10160
+ 26126
+ 58
+ 20
+
+ -
+ -10129.5
+ 26136
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - cbfcc2ce-e958-44ba-a909-e311f818925d
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ -10160
+ 26146
+ 58
+ 20
+
+ -
+ -10129.5
+ 26156
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 05618346-2792-4b1f-ba4e-3bbaa12dde3f
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ -10160
+ 26166
+ 58
+ 20
+
+ -
+ -10129.5
+ 26176
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 992b7fbd-ed14-4b15-b66a-137b35a55879
+ - true
+ - 2
+ - Curve
+ - Curve
+ - false
+ - cdd90f4c-6009-4e4b-b819-b49fd5b7e2d2
+ - 1
+
+
+
+
+ -
+ -10181
+ 26258
+ 53
+ 24
+
+ -
+ -10145.19
+ 26270.44
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - d478e4fa-fa9f-4892-a286-2ea4285b715c
+ - true
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ -10223
+ 25960
+ 114
+ 64
+
+ -
+ -10183
+ 25992
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 529321f5-1f11-489b-bde5-980b331ff94c
+ - true
+ - Arc
+ - Arc
+ - false
+ - d5661948-a11c-4cec-9937-41f81a0320a7
+ - 1
+
+
+
+
+ -
+ -10221
+ 25962
+ 23
+ 60
+
+ -
+ -10208
+ 25992
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - ebbcc1c9-9782-490f-b861-f72ed96729d6
+ - true
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ -10168
+ 25962
+ 57
+ 20
+
+ -
+ -10138
+ 25972
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 92506450-ea70-4a81-8ae0-f6c8094774d9
+ - true
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ -10168
+ 25982
+ 57
+ 20
+
+ -
+ -10138
+ 25992
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - dc51218e-8e72-4e12-9e5c-8aa4b1fb9298
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ -10168
+ 26002
+ 57
+ 20
+
+ -
+ -10138
+ 26012
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 25f8ef07-5890-4a6e-93df-c40fa14cb9a7
+ - true
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ -10217
+ 25472
+ 100
+ 28
+
+ -
+ -10168
+ 25486
+
+
+
+
+
+ - Input value
+ - 0907ef5d-0c17-44bf-8e8b-f104a422d4ce
+ - true
+ - Value
+ - Value
+ - false
+ - caa84d96-f583-479a-81ee-60953020e5a6
+ - 1
+
+
+
+
+ -
+ -10215
+ 25474
+ 32
+ 24
+
+ -
+ -10197.5
+ 25486
+
+
+
+
+
+
+
+ - Output value
+ - 3bdafce4-196f-4d7b-b30d-a7ce3a37fa0b
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -10153
+ 25474
+ 34
+ 24
+
+ -
+ -10134.5
+ 25486
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f90295eb-99e8-4a80-a13c-999e99532b9e
+ - true
+ - Relay
+ -
+ - false
+ - 3bdafce4-196f-4d7b-b30d-a7ce3a37fa0b
+ - 1
+
+
+
+
+ -
+ -10191
+ 25445
+ 40
+ 16
+
+ -
+ -10171
+ 25453
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b9f31a57-9540-4917-a8e6-18eaa5a83db2
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -10268
+ 25838
+ 194
+ 28
+
+ -
+ -10168
+ 25852
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 693d53c7-17ed-4ad9-bc1a-b646dfb1a469
+ - true
+ - Variable O
+ - O
+ - true
+ - caa84d96-f583-479a-81ee-60953020e5a6
+ - 1
+
+
+
+
+ -
+ -10266
+ 25840
+ 14
+ 24
+
+ -
+ -10257.5
+ 25852
+
+
+
+
+
+
+
+ - Result of expression
+ - 0f9473f9-3907-4069-90d8-80c33e68e5da
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -10085
+ 25840
+ 9
+ 24
+
+ -
+ -10079
+ 25852
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 284b7739-106a-47b8-9c88-030d60937329
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 0f9473f9-3907-4069-90d8-80c33e68e5da
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -10261
+ 25560
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -10260.59
+ 25560.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 21551a57-e773-47f0-8220-7a72f7a746fa
+ - true
+ - Relay
+ -
+ - false
+ - 284b7739-106a-47b8-9c88-030d60937329
+ - 1
+
+
+
+
+ -
+ -10189
+ 25518
+ 40
+ 16
+
+ -
+ -10169
+ 25526
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - caa84d96-f583-479a-81ee-60953020e5a6
+ - true
+ - Relay
+ -
+ - false
+ - 92506450-ea70-4a81-8ae0-f6c8094774d9
+ - 1
+
+
+
+
+ -
+ -10188
+ 25885
+ 40
+ 16
+
+ -
+ -10168
+ 25893
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 6b922c6a-cc70-4092-ae71-ade7d284d862
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ -10178
+ 26215
+ 50
+ 24
+
+ -
+ -10153.19
+ 26227.02
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4387f3a9-9141-47dd-995a-483dc9b6b025
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3cc701d3-0f0b-42c8-8f89-b9159cf05c65
+ - 1
+
+
+
+
+ -
+ -10189
+ 24492
+ 50
+ 24
+
+ -
+ -10164.91
+ 24504.47
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 5
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4387f3a9-9141-47dd-995a-483dc9b6b025
+ - 1
+ - 58a42877-bb06-47a3-a4f1-d98c96f28c1e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 16209b7e-55fa-4b5c-92ba-5c1d1bd41dec
+ - true
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ -9330
+ 23274
+ 136
+ 44
+
+ -
+ -9244
+ 23296
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 27556072-7810-4253-95ac-a0ba6246d89a
+ - true
+ - Items
+ - Items
+ - false
+ - 2f47d230-2571-418d-80cf-6e8e5d31cb9e
+ - 1
+
+
+
+
+ -
+ -9328
+ 23276
+ 69
+ 20
+
+ -
+ -9292
+ 23286
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - c09fe23f-1639-4f4d-8b43-a225c92e5359
+ - true
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ -9328
+ 23296
+ 69
+ 20
+
+ -
+ -9292
+ 23306
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 09ead44e-3fee-4284-b1f9-0b3fc0c0b2dd
+ - true
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ -9229
+ 23276
+ 33
+ 20
+
+ -
+ -9211
+ 23286
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 2f9274a6-5855-4a80-97e5-8fc8c21c15bd
+ - true
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ -9229
+ 23296
+ 33
+ 20
+
+ -
+ -9211
+ 23306
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 819a2a51-f04e-4192-8c95-3fa161e7540c
+ - true
+ - Relay
+
+ - false
+ - 1f0b4fda-010b-4918-919d-181f286a2fc8
+ - 1
+
+
+
+
+ -
+ -9282
+ 23190
+ 40
+ 16
+
+ -
+ -9262
+ 23198
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 1538eb2e-e611-4f4c-b500-1df33502eff4
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - dfe1b26e-b4a6-4bce-9c77-643d58fbc36d
+ - 1
+
+
+
+
+ -
+ -9337
+ 22990
+ 150
+ 150
+
+ -
+ -9336.172
+ 22990.44
+
+ - -1
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - dfe1b26e-b4a6-4bce-9c77-643d58fbc36d
+ - true
+ - Relay
+ -
+ - false
+ - 819a2a51-f04e-4192-8c95-3fa161e7540c
+ - 1
+
+
+
+
+ -
+ -9282
+ 23153
+ 40
+ 16
+
+ -
+ -9262
+ 23161
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 85605b21-aef8-4f87-a515-10b78df9f610
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -9359
+ 22902
+ 194
+ 28
+
+ -
+ -9259
+ 22916
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - eac606dc-e7ae-44c7-8698-c340e65fc3d4
+ - true
+ - Variable O
+ - O
+ - true
+ - 99f0b699-2a90-441f-b737-27aea108d33f
+ - 1
+
+
+
+
+ -
+ -9357
+ 22904
+ 14
+ 24
+
+ -
+ -9348.5
+ 22916
+
+
+
+
+
+
+
+ - Result of expression
+ - e74ff48b-f7d1-4120-8791-22e0c92d9eaa
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -9176
+ 22904
+ 9
+ 24
+
+ -
+ -9170
+ 22916
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 20f05475-7967-45b4-a63c-62a20fa8690b
+ - true
+ - Panel
+
+ - false
+ - 0
+ - e74ff48b-f7d1-4120-8791-22e0c92d9eaa
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -9362
+ 22620
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -9361.759
+ 22620.42
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8435fa98-38c7-45cb-8f29-4044d9a40f9c
+ - true
+ - Relay
+ -
+ - false
+ - 20f05475-7967-45b4-a63c-62a20fa8690b
+ - 1
+
+
+
+
+ -
+ -9282
+ 22601
+ 40
+ 16
+
+ -
+ -9262
+ 22609
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 99f0b699-2a90-441f-b737-27aea108d33f
+ - true
+ - Relay
+ -
+ - false
+ - dfe1b26e-b4a6-4bce-9c77-643d58fbc36d
+ - 1
+
+
+
+
+ -
+ -9282
+ 22949
+ 40
+ 16
+
+ -
+ -9262
+ 22957
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 85605b21-aef8-4f87-a515-10b78df9f610
+ - 20f05475-7967-45b4-a63c-62a20fa8690b
+ - 8435fa98-38c7-45cb-8f29-4044d9a40f9c
+ - 99f0b699-2a90-441f-b737-27aea108d33f
+ - 1538eb2e-e611-4f4c-b500-1df33502eff4
+ - dfe1b26e-b4a6-4bce-9c77-643d58fbc36d
+ - 6
+ - 9c3ae34b-8ebd-4141-9330-6abe5cacb47e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - dedce1f8-5c0b-4ad6-99a0-98dfdf02d373
+ - true
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ -9303
+ 22368
+ 82
+ 44
+
+ -
+ -9272
+ 22390
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - fb76361f-9802-4efe-a549-190dfc32faf7
+ - true
+ - A
+ - A
+ - true
+ - 173a0b59-1c04-43db-a331-89a053d6fb16
+ - 1
+
+
+
+
+ -
+ -9301
+ 22370
+ 14
+ 20
+
+ -
+ -9292.5
+ 22380
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 54804baa-4ab7-42ec-b403-8723283b336f
+ - true
+ - B
+ - B
+ - true
+ - 3f2dee01-ebed-4ecc-8d9a-cf8c8f386f33
+ - 1
+
+
+
+
+ -
+ -9301
+ 22390
+ 14
+ 20
+
+ -
+ -9292.5
+ 22400
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 8810b4a0-9f31-4eff-9363-f5750e8310f7
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ -9257
+ 22370
+ 34
+ 40
+
+ -
+ -9238.5
+ 22390
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 462c2450-1262-4529-888f-d92602268217
+ - true
+ - Curve
+ - Curve
+ - false
+ - 816b0be2-357e-40d1-b261-7bcf4333e662
+ - 1
+
+
+
+
+ -
+ -9287
+ 21868
+ 50
+ 24
+
+ -
+ -9262
+ 21880.39
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 256f333c-199f-4c9d-b6cd-360ee8130e4f
+ - true
+ - Relay
+
+ - false
+ - f3cab11a-e97b-45af-bb37-68a6b816c734
+ - 1
+
+
+
+
+ -
+ -9282
+ 21745
+ 40
+ 16
+
+ -
+ -9262
+ 21753
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - eddced5d-470a-4523-8c85-9ce09e106bd4
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ -9359
+ 21374
+ 194
+ 28
+
+ -
+ -9259
+ 21388
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9197b1a6-760b-4e7f-923d-eba765a405a0
+ - true
+ - Variable O
+ - O
+ - true
+ - 825638de-2ab4-4773-89a4-115a142aa39f
+ - 1
+
+
+
+
+ -
+ -9357
+ 21376
+ 14
+ 24
+
+ -
+ -9348.5
+ 21388
+
+
+
+
+
+
+
+ - Result of expression
+ - 8d0e2be3-5c98-4d4c-9625-864c4959fba8
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ -9176
+ 21376
+ 9
+ 24
+
+ -
+ -9170
+ 21388
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 45c4a4df-7a0e-4c17-b315-c34cbb7fd959
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 8d0e2be3-5c98-4d4c-9625-864c4959fba8
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ -9359
+ 21091
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ -9358.955
+ 21091.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2b4023ed-6e0a-4afe-bb9f-ecbb8113662b
+ - true
+ - Relay
+ -
+ - false
+ - 45c4a4df-7a0e-4c17-b315-c34cbb7fd959
+ - 1
+
+
+
+
+ -
+ -9282
+ 21073
+ 40
+ 16
+
+ -
+ -9262
+ 21081
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 825638de-2ab4-4773-89a4-115a142aa39f
+ - true
+ - Relay
+ -
+ - false
+ - 9c31c3ff-030e-4897-be1c-7b749e625208
+ - 1
+
+
+
+
+ -
+ -9282
+ 21419
+ 40
+ 16
+
+ -
+ -9262
+ 21427
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eddced5d-470a-4523-8c85-9ce09e106bd4
+ - 45c4a4df-7a0e-4c17-b315-c34cbb7fd959
+ - 2b4023ed-6e0a-4afe-bb9f-ecbb8113662b
+ - 825638de-2ab4-4773-89a4-115a142aa39f
+ - 4
+ - 6ea1cc49-480d-44f3-bdb9-b3d927b1fe3d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ea922329-8796-47c0-8451-a5fd2cfbccad
+ - true
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ -9334
+ 18668
+ 144
+ 104
+
+ -
+ -9250
+ 18720
+
+
+
+
+
+ - Colour of the diffuse channel
+ - ff2afb80-c055-4530-b681-e12e8104f8e8
+ - true
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18670
+ 67
+ 20
+
+ -
+ -9297
+ 18680
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - a1968900-574e-46db-8477-c8f44233d954
+ - true
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18690
+ 67
+ 20
+
+ -
+ -9297
+ 18700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - cb40aba3-d010-4685-8b1d-b02313591af0
+ - true
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18710
+ 67
+ 20
+
+ -
+ -9297
+ 18720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f77f2cea-60f1-4b6c-9be6-ac5acd2e48aa
+ - true
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18730
+ 67
+ 20
+
+ -
+ -9297
+ 18740
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 410a773b-e79d-4e73-aa7a-1bd1ff103953
+ - true
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ -9332
+ 18750
+ 67
+ 20
+
+ -
+ -9297
+ 18760
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 1882a458-7bc9-464e-ab90-6570ace22ba3
+ - true
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ -9235
+ 18670
+ 43
+ 100
+
+ -
+ -9212
+ 18720
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - c3ad1e45-4f5f-4553-acdd-858c3a4e0f41
+ - true
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ -9303
+ 18605
+ 82
+ 44
+
+ -
+ -9235
+ 18627
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 341d4481-a90d-483c-b6ad-ec07a553025e
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - c53594c6-7765-4edd-9143-ad1c5bb118d4
+ - 1
+
+
+
+
+ -
+ -9301
+ 18607
+ 51
+ 20
+
+ -
+ -9274
+ 18617
+
+
+
+
+
+
+
+ - The material override
+ - d1d50497-9e30-467c-82a8-2d37ab921c91
+ - true
+ - Material
+ - Material
+ - false
+ - 1882a458-7bc9-464e-ab90-6570ace22ba3
+ - 1
+
+
+
+
+ -
+ -9301
+ 18627
+ 51
+ 20
+
+ -
+ -9274
+ 18637
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cdd90f4c-6009-4e4b-b819-b49fd5b7e2d2
+ - true
+ - Relay
+
+ - false
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+
+
+
+
+ -
+ -9867
+ 26440
+ 40
+ 16
+
+ -
+ -9847
+ 26448
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - cbcfa187-ddf9-492d-89f7-d6ae71b5a4f0
+ - true
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 256.0
+
+
+
+
+ -
+ -9387
+ 26013
+ 250
+ 20
+
+ -
+ -9386.257
+ 26013.69
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - f9b56b83-0126-4319-84c8-15c7ed86f831
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - a0e42231-baad-49ec-8d9d-db63cae0997a
+ - 1
+
+
+
+
+ -
+ -9337
+ 20263
+ 150
+ 150
+
+ -
+ -9336.654
+ 20263.89
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 6d63313d-1e96-406b-8a05-33d5bb3f5c37
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 5b8ecad7-0817-49e5-a03b-180d457fcf0e
+ - 1
+
+
+
+
+ -
+ -9337
+ 20094
+ 150
+ 150
+
+ -
+ -9336.654
+ 20094.89
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 191575b6-d18b-4bc4-a751-a71c3b22572c
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 78bccc4f-3dcd-4487-90dc-8628c3281cac
+ - 1
+
+
+
+
+ -
+ -9337
+ 19927
+ 150
+ 150
+
+ -
+ -9336.654
+ 19927.37
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 7ed372a1-ff72-4050-8dd8-49ddee401c65
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 8441d80e-f14e-491c-b590-87e03b599ef3
+ - 1
+
+
+
+
+ -
+ -9337
+ 19758
+ 150
+ 150
+
+ -
+ -9336.654
+ 19758.37
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - d7cb1ca0-8832-4010-880c-2d2f4b9341bd
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 74acaba9-e83d-432c-8e4e-866392c3d1e5
+ - 1
+
+
+
+
+ -
+ -9337
+ 19588
+ 150
+ 150
+
+ -
+ -9336.896
+ 19588.64
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 629a4827-371f-4b44-b590-45c23fc93574
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 619c36d7-96b7-4633-b71d-7acbefc65eab
+ - 1
+
+
+
+
+ -
+ -9337
+ 19418
+ 150
+ 150
+
+ -
+ -9336.896
+ 19418.87
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 9b66414e-8eef-4712-bc33-6df624d3786e
+ - true
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 55aea648-06bd-4947-b96a-51225473ea2f
+ - 1
+
+
+
+
+ -
+ -9337
+ 19250
+ 150
+ 150
+
+ -
+ -9336.896
+ 19250.12
+
+ - -1
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 23098590-a917-496b-a7fa-ab7fc86169d0
+ - 2
+ - Curve
+ - Curve
+ - false
+ - 2c62e475-50df-4188-ac09-8024f05be84e
+ - 1
+
+
+
+
+ -
+ 3935
+ 7644
+ 53
+ 24
+
+ -
+ 3971.334
+ 7656.086
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 931b1327-0f41-42e6-b1eb-00468f33d6c8
+ - X*4
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 3926
+ 7685
+ 53
+ 24
+
+ -
+ 3962.804
+ 7697.199
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 193ea5e5-0782-4606-a720-e997392040f4
+ - 1
+ - 4da276be-89da-408b-8dc4-821f992e6a62
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1984de07-4690-4d15-83ab-ca5ac7ba39c7
+ - 1
+ - 91242ca9-e406-47a2-893f-f68e4deecb2e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 273aa071-b046-4c31-896d-6c812d648444
+ - 1
+ - 1984de07-4690-4d15-83ab-ca5ac7ba39c7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 756d8dbe-1ffd-4616-8e58-093e60e39611
+ - 1
+ - 273aa071-b046-4c31-896d-6c812d648444
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 476b90b0-0b4b-464e-94a2-2d01dbc41bf2
+ - 1
+ - 756d8dbe-1ffd-4616-8e58-093e60e39611
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9
+ - 1
+ - 476b90b0-0b4b-464e-94a2-2d01dbc41bf2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d6ce5ae8-4b3b-4dee-8441-52ee778febf0
+ - 1
+ - a42c0e6d-d4e1-4d09-ac9c-1e0bddea41b9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5286
+ 11523
+ 50
+ 24
+
+ -
+ 5311.573
+ 11535.24
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 76a0ad3e-8ee8-48f0-beef-2e1ce81228b5
+ - 1
+ - d6ce5ae8-4b3b-4dee-8441-52ee778febf0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 18152b12-b828-4c2a-b1ed-119c6a76e5c2
+ - 1
+ - 14ccdfe7-041f-4ff7-b930-7473962ac27d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7c1a2569-b9d6-4ee6-a14e-357b1b128d42
+ - 38622d6e-1a4b-49a2-ae95-c398f56cbef4
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca
+ - a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d
+ - 61a87901-43ff-4f47-aae0-451d19806d9b
+ - 51a9cb88-e33f-4a56-bc83-f540c2b28374
+ - 241405ca-83b3-4478-94fc-fcce1c927c67
+ - f7a69548-1486-4abf-af34-435335bc55eb
+ - ad832235-2f45-429e-88b4-71fdd54d3135
+ - 14ccdfe7-041f-4ff7-b930-7473962ac27d
+ - d6ce5ae8-4b3b-4dee-8441-52ee778febf0
+ - f475cbf4-4912-4270-bdd1-e0af1c26774e
+ - c771f533-a7d0-49a4-810b-6fe9255e3606
+ - a97ebc4a-f948-4909-84db-94415087a878
+ - 45abe2ff-547c-476b-b92c-442e9f8c2fd5
+ - bcb09746-9364-4bb4-bb5b-e2a04f08d1be
+ - 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26
+ - c1c641d7-d0f1-405c-b761-3ea255249986
+ - 23c5e705-57eb-4fce-8c17-2e061dc9cfe5
+ - 20
+ - 0e6380b4-7593-419b-a389-4238dbe87854
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 7c1a2569-b9d6-4ee6-a14e-357b1b128d42
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 5265
+ 12542
+ 104
+ 64
+
+ -
+ 5324
+ 12574
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - fff9df0c-7db1-4b04-9eb1-231750f60f7b
+ - Data
+ - Data
+ - false
+ - e949ef6c-d2c4-49e0-a5f8-37fe80c18e0d
+ - 1
+
+
+
+
+ -
+ 5267
+ 12544
+ 42
+ 20
+
+ -
+ 5289.5
+ 12554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 8cf64f52-7958-4603-b385-a825c3a9fecb
+ - Number
+ - Number
+ - false
+ - 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6
+ - 1
+
+
+
+
+ -
+ 5267
+ 12564
+ 42
+ 20
+
+ -
+ 5289.5
+ 12574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 80fc484f-7c2e-47b3-8811-b79bf1a5825b
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 5267
+ 12584
+ 42
+ 20
+
+ -
+ 5289.5
+ 12594
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 3f8340e1-b3b8-448e-9652-bf8fbacbec8f
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 5339
+ 12544
+ 28
+ 60
+
+ -
+ 5354.5
+ 12574
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 38622d6e-1a4b-49a2-ae95-c398f56cbef4
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 5251
+ 10881
+ 116
+ 44
+
+ -
+ 5312
+ 10903
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 4097e575-065f-4c44-a6fb-71d3f8f23f7b
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 3f8340e1-b3b8-448e-9652-bf8fbacbec8f
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5253
+ 10883
+ 44
+ 20
+
+ -
+ 5276.5
+ 10893
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - ce339337-8bf4-4cac-8461-6a6388cd026d
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 895f8826-b56c-4051-9545-303c137982a1
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5253
+ 10903
+ 44
+ 20
+
+ -
+ 5276.5
+ 10913
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - f1df2877-63c0-4dd8-b3b2-917f2ab94a89
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 5327
+ 10883
+ 38
+ 20
+
+ -
+ 5347.5
+ 10893
+
+
+
+
+
+
+
+ - Output parameter Points
+ - d76ccfee-b053-4018-805a-96fc615c3b31
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5327
+ 10903
+ 38
+ 20
+
+ -
+ 5347.5
+ 10913
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - Point
+ - Point
+ - false
+ - d76ccfee-b053-4018-805a-96fc615c3b31
+ - 1
+
+
+
+
+ -
+ 5285
+ 10499
+ 50
+ 24
+
+ -
+ 5310.434
+ 10511.72
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca
+ - Series
+ - Series
+
+
+
+
+ -
+ 5262
+ 11945
+ 101
+ 64
+
+ -
+ 5312
+ 11977
+
+
+
+
+
+ - First number in the series
+ - 5d992285-1126-40d0-a669-64b2a37cfb74
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5264
+ 11947
+ 33
+ 20
+
+ -
+ 5282
+ 11957
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - a17f7499-85a8-4f6e-abb6-80641b772d17
+ - Step
+ - Step
+ - false
+ - d60c0706-6576-4328-88c6-6acf5a73cfda
+ - 1
+
+
+
+
+ -
+ 5264
+ 11967
+ 33
+ 20
+
+ -
+ 5282
+ 11977
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 1f9ecacd-af54-46c5-87cb-f1eac63cc77e
+ - Count
+ - Count
+ - false
+ - 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6
+ - 1
+
+
+
+
+ -
+ 5264
+ 11987
+ 33
+ 20
+
+ -
+ 5282
+ 11997
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 4ab68874-69b8-4210-9a0a-3bfb3f089209
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 5327
+ 11947
+ 34
+ 60
+
+ -
+ 5345.5
+ 11977
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5244
+ 12712
+ 150
+ 20
+
+ -
+ 5244.253
+ 12712.34
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 61a87901-43ff-4f47-aae0-451d19806d9b
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 5249
+ 12147
+ 120
+ 28
+
+ -
+ 5310
+ 12161
+
+
+
+
+
+ - Angle in degrees
+ - c2a44359-b5bd-4ff5-8f94-ca15caee4048
+ - Degrees
+ - Degrees
+ - false
+ - 84953cbe-5fc1-4334-ad13-1aed4142a8d7
+ - 1
+
+
+
+
+ -
+ 5251
+ 12149
+ 44
+ 24
+
+ -
+ 5274.5
+ 12161
+
+
+
+
+
+
+
+ - Angle in radians
+ - 7767e6c0-533d-4b36-bba0-57a1f0bb96ca
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 5325
+ 12149
+ 42
+ 24
+
+ -
+ 5347.5
+ 12161
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 51a9cb88-e33f-4a56-bc83-f540c2b28374
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 5184
+ 12449
+ 251
+ 20
+
+ -
+ 5184.965
+ 12449.13
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 241405ca-83b3-4478-94fc-fcce1c927c67
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 5265
+ 12622
+ 100
+ 28
+
+ -
+ 5314
+ 12636
+
+
+
+
+
+ - Input value
+ - 6a884dc0-67f7-4605-b020-88147913f370
+ - Value
+ - Value
+ - false
+ - 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6
+ - 1
+
+
+
+
+ -
+ 5267
+ 12624
+ 32
+ 24
+
+ -
+ 5284.5
+ 12636
+
+
+
+
+
+
+
+ - Output value
+ - e949ef6c-d2c4-49e0-a5f8-37fe80c18e0d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5329
+ 12624
+ 34
+ 24
+
+ -
+ 5347.5
+ 12636
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - ad832235-2f45-429e-88b4-71fdd54d3135
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 5237
+ 10393
+ 144
+ 84
+
+ -
+ 5323
+ 10435
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 76147943-253f-46c2-904e-9a45bc7a7f3a
+ - Vertices
+ - Vertices
+ - false
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - 1
+
+
+
+
+ -
+ 5239
+ 10395
+ 69
+ 20
+
+ -
+ 5275
+ 10405
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 5079fc52-adc1-40db-8eb4-1d876df99c72
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10415
+ 69
+ 20
+
+ -
+ 5275
+ 10425
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 67b03f3f-285d-4093-a766-dbf54ad03a2e
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10435
+ 69
+ 20
+
+ -
+ 5275
+ 10445
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 792c2deb-c300-44c0-ba4a-3b6213a66eeb
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10455
+ 69
+ 20
+
+ -
+ 5275
+ 10465
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - b52e4cd9-6c86-4db6-87fa-0fd33fe04b37
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5338
+ 10395
+ 41
+ 26
+
+ -
+ 5360
+ 10408.33
+
+
+
+
+
+
+
+ - Curve length
+ - a0752a31-f8c4-4a50-8f2c-3fc388f86d8c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5338
+ 10421
+ 41
+ 27
+
+ -
+ 5360
+ 10435
+
+
+
+
+
+
+
+ - Curve domain
+ - 897dd66f-87f4-4b2e-b7e7-9590a4da7bcb
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5338
+ 10448
+ 41
+ 27
+
+ -
+ 5360
+ 10461.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7c1a2569-b9d6-4ee6-a14e-357b1b128d42
+ - 38622d6e-1a4b-49a2-ae95-c398f56cbef4
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - d6fb4439-46d5-46c4-ba9d-a5562dc2f6ca
+ - a75d9ecd-3e05-45c9-aba0-df2ef4da6b9d
+ - 61a87901-43ff-4f47-aae0-451d19806d9b
+ - 51a9cb88-e33f-4a56-bc83-f540c2b28374
+ - 241405ca-83b3-4478-94fc-fcce1c927c67
+ - 8eed39b3-b8cf-4370-bb00-d39f6814dd82
+ - d2b47dc8-db36-4d13-9e45-ddc2a7e3e223
+ - eaacf0ad-c530-4f55-9eac-32e6212af5cb
+ - 17682d40-32c3-40f2-9c75-1551cfde5a93
+ - f047974c-a1ba-466a-901b-34bae44155f3
+ - 13
+ - f7a69548-1486-4abf-af34-435335bc55eb
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b7dff3c8-6998-400a-86c1-93344a002f5b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5237
+ 10225
+ 144
+ 64
+
+ -
+ 5311
+ 10257
+
+
+
+
+
+ - Curve to evaluate
+ - 17620e95-7ed9-4444-b60f-6edd779e3693
+ - Curve
+ - Curve
+ - false
+ - b52e4cd9-6c86-4db6-87fa-0fd33fe04b37
+ - 1
+
+
+
+
+ -
+ 5239
+ 10227
+ 57
+ 20
+
+ -
+ 5269
+ 10237
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d0da99e2-f16e-4f85-9e61-5a35a639a63a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10247
+ 57
+ 20
+
+ -
+ 5269
+ 10257
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - aa9bc4d5-a582-41d8-b58e-8160d3584df7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10267
+ 57
+ 20
+
+ -
+ 5269
+ 10277
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d8917e23-b076-460f-9c72-2f6194ec485e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 10227
+ 53
+ 20
+
+ -
+ 5354
+ 10237
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - b7513de9-97d9-4344-85de-5bfde9a3e0c3
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 10247
+ 53
+ 20
+
+ -
+ 5354
+ 10257
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b640caea-ede9-418a-92e1-5e498162f5b1
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 10267
+ 53
+ 20
+
+ -
+ 5354
+ 10277
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 7fba6d47-f327-4abc-8332-cb072b40575d
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5240
+ 10163
+ 138
+ 44
+
+ -
+ 5308
+ 10185
+
+
+
+
+
+ - Base geometry
+ - 0d844b23-c00d-4bb0-b440-d430d6ce520e
+ - Geometry
+ - Geometry
+ - true
+ - b52e4cd9-6c86-4db6-87fa-0fd33fe04b37
+ - 1
+
+
+
+
+ -
+ 5242
+ 10165
+ 51
+ 20
+
+ -
+ 5269
+ 10175
+
+
+
+
+
+
+
+ - Mirror plane
+ - 824f194f-c0df-43e5-8dd9-5734f42e4188
+ - Plane
+ - Plane
+ - false
+ - 054fc075-e277-49c6-ab32-542c5f250daf
+ - 1
+
+
+
+
+ -
+ 5242
+ 10185
+ 51
+ 20
+
+ -
+ 5269
+ 10195
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 90967d42-a4d2-4321-899c-10600fd256e8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5323
+ 10165
+ 53
+ 20
+
+ -
+ 5351
+ 10175
+
+
+
+
+
+
+
+ - Transformation data
+ - 0891eb83-5feb-4452-8f86-b00dfa66a265
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5323
+ 10185
+ 53
+ 20
+
+ -
+ 5351
+ 10195
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - dd328417-f2f6-43dd-9c6a-57016cf47aa9
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 5256
+ 10309
+ 106
+ 64
+
+ -
+ 5320
+ 10341
+
+
+
+
+
+ - Line start point
+ - bac9085e-5737-4d1e-acaa-47008c652520
+ - Start
+ - Start
+ - false
+ - d8917e23-b076-460f-9c72-2f6194ec485e
+ - 1
+
+
+
+
+ -
+ 5258
+ 10311
+ 47
+ 20
+
+ -
+ 5283
+ 10321
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - eaa4b30b-96f5-4b5c-bb54-856afa48a347
+ - Direction
+ - Direction
+ - false
+ - b7513de9-97d9-4344-85de-5bfde9a3e0c3
+ - 1
+
+
+
+
+ -
+ 5258
+ 10331
+ 47
+ 20
+
+ -
+ 5283
+ 10341
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 7278caa8-d2ac-4669-81d4-550972b38702
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5258
+ 10351
+ 47
+ 20
+
+ -
+ 5283
+ 10361
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 054fc075-e277-49c6-ab32-542c5f250daf
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 5335
+ 10311
+ 25
+ 60
+
+ -
+ 5349
+ 10341
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 8415c0ad-da98-495f-a1d8-521fbb923339
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5250
+ 10101
+ 118
+ 44
+
+ -
+ 5313
+ 10123
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 59b3375e-4f37-4088-83d4-9b56a83fed78
+ - Curves
+ - Curves
+ - false
+ - b52e4cd9-6c86-4db6-87fa-0fd33fe04b37
+ - 90967d42-a4d2-4321-899c-10600fd256e8
+ - 2
+
+
+
+
+ -
+ 5252
+ 10103
+ 46
+ 20
+
+ -
+ 5276.5
+ 10113
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - dcd9ebed-0392-44ce-81e0-0ae4750068ca
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5252
+ 10123
+ 46
+ 20
+
+ -
+ 5276.5
+ 10133
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - aa6236b0-703c-4536-af36-24a0d5e6779f
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5328
+ 10103
+ 38
+ 40
+
+ -
+ 5348.5
+ 10123
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1f60e8a7-f805-4f31-bb22-c674c43c383a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5237
+ 10017
+ 144
+ 64
+
+ -
+ 5311
+ 10049
+
+
+
+
+
+ - Curve to evaluate
+ - c5b6dada-1bcd-4c82-8639-658309939f4b
+ - Curve
+ - Curve
+ - false
+ - aa6236b0-703c-4536-af36-24a0d5e6779f
+ - 1
+
+
+
+
+ -
+ 5239
+ 10019
+ 57
+ 20
+
+ -
+ 5269
+ 10029
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 25cc8cb7-16c0-461d-a151-d2e5f310d5e6
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10039
+ 57
+ 20
+
+ -
+ 5269
+ 10049
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1745f072-df68-4e4a-805a-e5c121d5b633
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 10059
+ 57
+ 20
+
+ -
+ 5269
+ 10069
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 512a8aa9-3d42-4a41-b558-a11d91f1a1f3
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 10019
+ 53
+ 20
+
+ -
+ 5354
+ 10029
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 3b6ac5d5-f035-4712-bc93-09a515da55e8
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 10039
+ 53
+ 20
+
+ -
+ 5354
+ 10049
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 83a588c3-71ae-46be-94c1-d7a785c2bfdd
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 10059
+ 53
+ 20
+
+ -
+ 5354
+ 10069
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 2c3a92e7-c8ad-4456-8ea8-baa10fb82052
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 5240
+ 9934
+ 138
+ 64
+
+ -
+ 5308
+ 9966
+
+
+
+
+
+ - Base geometry
+ - 6bf2ddf2-b162-424d-b5fc-9387f65609ac
+ - Geometry
+ - Geometry
+ - true
+ - aa6236b0-703c-4536-af36-24a0d5e6779f
+ - 1
+
+
+
+
+ -
+ 5242
+ 9936
+ 51
+ 20
+
+ -
+ 5269
+ 9946
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 5b8be62b-7bad-4135-80a1-757a1b56bf01
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 5242
+ 9956
+ 51
+ 20
+
+ -
+ 5269
+ 9966
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 16dcfec3-8c32-4a10-b77c-c39626a84122
+ - Plane
+ - Plane
+ - false
+ - 512a8aa9-3d42-4a41-b558-a11d91f1a1f3
+ - 1
+
+
+
+
+ -
+ 5242
+ 9976
+ 51
+ 20
+
+ -
+ 5269
+ 9986
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 538505bc-6ba8-4791-a902-5a5b861777c4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5323
+ 9936
+ 53
+ 30
+
+ -
+ 5351
+ 9951
+
+
+
+
+
+
+
+ - Transformation data
+ - 64b3ff33-3122-4dc2-92bd-d34dc93337ba
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5323
+ 9966
+ 53
+ 30
+
+ -
+ 5351
+ 9981
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 74acc247-99e9-4190-8610-0d03e087bd07
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5250
+ 9871
+ 118
+ 44
+
+ -
+ 5313
+ 9893
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 5d24399a-6fa0-41ce-bb56-5ac2c663a2f1
+ - Curves
+ - Curves
+ - false
+ - aa6236b0-703c-4536-af36-24a0d5e6779f
+ - 538505bc-6ba8-4791-a902-5a5b861777c4
+ - 2
+
+
+
+
+ -
+ 5252
+ 9873
+ 46
+ 20
+
+ -
+ 5276.5
+ 9883
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 224c198c-7c56-41bf-900f-510b9f139d46
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5252
+ 9893
+ 46
+ 20
+
+ -
+ 5276.5
+ 9903
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - e41d3792-a430-4a4a-a1f0-5df665a3bd54
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5328
+ 9873
+ 38
+ 40
+
+ -
+ 5348.5
+ 9893
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ad832235-2f45-429e-88b4-71fdd54d3135
+ - b7dff3c8-6998-400a-86c1-93344a002f5b
+ - 7fba6d47-f327-4abc-8332-cb072b40575d
+ - dd328417-f2f6-43dd-9c6a-57016cf47aa9
+ - 8415c0ad-da98-495f-a1d8-521fbb923339
+ - 1f60e8a7-f805-4f31-bb22-c674c43c383a
+ - 2c3a92e7-c8ad-4456-8ea8-baa10fb82052
+ - 74acc247-99e9-4190-8610-0d03e087bd07
+ - 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3
+ - 9
+ - 18152b12-b828-4c2a-b1ed-119c6a76e5c2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 78edcb05-0f20-4b9a-9e9a-568887d9bff3
+ - Panel
+
+ - false
+ - 0
+ - 75ff8eaf-db18-4de7-8968-47178e8313b3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5237
+ 12028
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5237.993
+ 12028.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3
+ - Curve
+ - Curve
+ - false
+ - e41d3792-a430-4a4a-a1f0-5df665a3bd54
+ - 1
+
+
+
+
+ -
+ 5286
+ 9829
+ 50
+ 24
+
+ -
+ 5311.573
+ 9841.791
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3
+ - 1
+ - 198e96ba-1b71-4ced-b09d-05b7949855ab
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d2b47dc8-db36-4d13-9e45-ddc2a7e3e223
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 5091
+ 12203
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5091.554
+ 12203.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - cba88513-3c9b-4cd4-adc0-c0681dfb069a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5237
+ 9745
+ 144
+ 64
+
+ -
+ 5311
+ 9777
+
+
+
+
+
+ - Curve to evaluate
+ - 4861b0dd-51ef-4afa-b22b-0cf10ccb1e35
+ - Curve
+ - Curve
+ - false
+ - e41d3792-a430-4a4a-a1f0-5df665a3bd54
+ - 1
+
+
+
+
+ -
+ 5239
+ 9747
+ 57
+ 20
+
+ -
+ 5269
+ 9757
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 13eb5a9d-5a2e-4346-9615-733b7b48be17
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 9767
+ 57
+ 20
+
+ -
+ 5269
+ 9777
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 754c2c31-1cbd-46e4-b7db-232bd3f14762
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 9787
+ 57
+ 20
+
+ -
+ 5269
+ 9797
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 476b255c-0016-4095-bc4e-2d9f36c738b9
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 9747
+ 53
+ 20
+
+ -
+ 5354
+ 9757
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - febfeeff-3efd-4fe6-8b8e-2a282b2341ff
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 9767
+ 53
+ 20
+
+ -
+ 5354
+ 9777
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 20b6cc0a-3939-4842-82ce-2e37db901f4f
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 9787
+ 53
+ 20
+
+ -
+ 5354
+ 9797
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 12a2eb83-f215-42e0-a529-0af180f3b656
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 9523
+ 194
+ 28
+
+ -
+ 5312
+ 9537
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5013553a-bc7b-4cfd-b1b8-fada60024eb4
+ - Variable O
+ - O
+ - true
+ - 53641a7c-715b-48db-883b-5a572404288d
+ - 1
+
+
+
+
+ -
+ 5214
+ 9525
+ 14
+ 24
+
+ -
+ 5222.5
+ 9537
+
+
+
+
+
+
+
+ - Result of expression
+ - 103d5571-e337-4d1e-881f-940b82c4818d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 9525
+ 9
+ 24
+
+ -
+ 5401
+ 9537
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 32ee87fd-809e-4d75-b802-d8cf14460d4a
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5243
+ 9657
+ 132
+ 64
+
+ -
+ 5290
+ 9689
+
+
+
+
+
+ - Input point
+ - dd6407ef-febb-495d-8a08-6655425f1f45
+ - Point
+ - Point
+ - false
+ - 476b255c-0016-4095-bc4e-2d9f36c738b9
+ - 1
+
+
+
+
+ -
+ 5245
+ 9659
+ 30
+ 60
+
+ -
+ 5261.5
+ 9689
+
+
+
+
+
+
+
+ - Point {x} component
+ - 53641a7c-715b-48db-883b-5a572404288d
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5305
+ 9659
+ 68
+ 20
+
+ -
+ 5340.5
+ 9669
+
+
+
+
+
+
+
+ - Point {y} component
+ - 3a5ab34b-1f33-4236-afe7-a0d2fc58dbd2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5305
+ 9679
+ 68
+ 20
+
+ -
+ 5340.5
+ 9689
+
+
+
+
+
+
+
+ - Point {z} component
+ - c3172bee-344f-41e1-b91e-559e4cd5d129
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5305
+ 9699
+ 68
+ 20
+
+ -
+ 5340.5
+ 9709
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 02e70f58-d9ac-421f-9454-279371d479d9
+ - Panel
+
+ - false
+ - 0
+ - 103d5571-e337-4d1e-881f-940b82c4818d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 9495
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.343
+ 9495.369
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ca5e1db8-8f38-4ca8-a9fd-8ae3bb30cefe
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 9437
+ 194
+ 28
+
+ -
+ 5312
+ 9451
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0374c787-e3f9-4194-a08e-f13573da09ef
+ - Variable O
+ - O
+ - true
+ - 3a5ab34b-1f33-4236-afe7-a0d2fc58dbd2
+ - 1
+
+
+
+
+ -
+ 5214
+ 9439
+ 14
+ 24
+
+ -
+ 5222.5
+ 9451
+
+
+
+
+
+
+
+ - Result of expression
+ - f668507d-d9c8-49e5-9478-17dc55320113
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 9439
+ 9
+ 24
+
+ -
+ 5401
+ 9451
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b140a825-f831-4c75-b129-fd2aacab08a2
+ - Panel
+
+ - false
+ - 0
+ - f668507d-d9c8-49e5-9478-17dc55320113
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 9406
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.343
+ 9406.947
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c4af1fb1-2376-498f-97b1-8227cff3d55b
+ - Division
+ - Division
+
+
+
+
+ -
+ 5268
+ 9335
+ 82
+ 44
+
+ -
+ 5299
+ 9357
+
+
+
+
+
+ - Item to divide (dividend)
+ - c76efc86-a2f8-4435-a17e-cd12ba7501cd
+ - A
+ - A
+ - false
+ - 02e70f58-d9ac-421f-9454-279371d479d9
+ - 1
+
+
+
+
+ -
+ 5270
+ 9337
+ 14
+ 20
+
+ -
+ 5278.5
+ 9347
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 0559d8af-8941-47d8-ada6-e6e6948a00d4
+ - B
+ - B
+ - false
+ - b140a825-f831-4c75-b129-fd2aacab08a2
+ - 1
+
+
+
+
+ -
+ 5270
+ 9357
+ 14
+ 20
+
+ -
+ 5278.5
+ 9367
+
+
+
+
+
+
+
+ - The result of the Division
+ - bf90aafe-093c-41fb-87b2-0cf1f3e35db7
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5314
+ 9337
+ 34
+ 40
+
+ -
+ 5332.5
+ 9357
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d9fdc742-0047-44b5-940d-ede4925ef952
+ - Panel
+
+ - false
+ - 0
+ - 75ff8eaf-db18-4de7-8968-47178e8313b3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 9259
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.583
+ 9259.432
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f603e053-8f5c-4e76-bd7f-e791aa0351ff
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 9288
+ 194
+ 28
+
+ -
+ 5312
+ 9302
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fc17d327-894b-4f47-aed4-6eb2707f7c41
+ - Variable O
+ - O
+ - true
+ - bf90aafe-093c-41fb-87b2-0cf1f3e35db7
+ - 1
+
+
+
+
+ -
+ 5214
+ 9290
+ 14
+ 24
+
+ -
+ 5222.5
+ 9302
+
+
+
+
+
+
+
+ - Result of expression
+ - 0310c540-2af7-4a34-a45e-24523c378a48
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 9290
+ 9
+ 24
+
+ -
+ 5401
+ 9302
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 75ff8eaf-db18-4de7-8968-47178e8313b3
+ - Relay
+
+ - false
+ - 0310c540-2af7-4a34-a45e-24523c378a48
+ - 1
+
+
+
+
+ -
+ 5289
+ 9213
+ 40
+ 16
+
+ -
+ 5309
+ 9221
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - b6174ffb-29ba-4234-a1df-b6fceaa7b08f
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 5268
+ 9150
+ 82
+ 44
+
+ -
+ 5299
+ 9172
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 59f2a389-2b18-4bde-bce8-a59fa8cbe61e
+ - A
+ - A
+ - true
+ - b140a825-f831-4c75-b129-fd2aacab08a2
+ - 1
+
+
+
+
+ -
+ 5270
+ 9152
+ 14
+ 20
+
+ -
+ 5278.5
+ 9162
+
+
+
+
+
+
+
+ - Second item for addition
+ - 4fc583ca-8e51-4577-9609-87c707761e90
+ - B
+ - B
+ - true
+ - 02e70f58-d9ac-421f-9454-279371d479d9
+ - 1
+
+
+
+
+ -
+ 5270
+ 9172
+ 14
+ 20
+
+ -
+ 5278.5
+ 9182
+
+
+
+
+
+
+
+ - Result of addition
+ - 23303965-07bd-4979-86aa-8f6ffa2ba0d0
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5314
+ 9152
+ 34
+ 40
+
+ -
+ 5332.5
+ 9172
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 2a2995c1-9fcd-4d07-93c9-6fa3fb680b84
+ - Division
+ - Division
+
+
+
+
+ -
+ 5268
+ 9000
+ 82
+ 44
+
+ -
+ 5299
+ 9022
+
+
+
+
+
+ - Item to divide (dividend)
+ - 00fa129c-a139-4887-912b-1473e1d76198
+ - A
+ - A
+ - false
+ - be07e18b-ee2b-425f-8717-647d2c0762de
+ - 1
+
+
+
+
+ -
+ 5270
+ 9002
+ 14
+ 20
+
+ -
+ 5278.5
+ 9012
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 080ffc48-4ef7-4e92-b3c0-d698d5552a96
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 5270
+ 9022
+ 14
+ 20
+
+ -
+ 5278.5
+ 9032
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 2f7596f4-7e68-4826-a9c2-388d8d15813a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5314
+ 9002
+ 34
+ 40
+
+ -
+ 5332.5
+ 9022
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ceb1084b-0f2d-45ad-bde4-528181c70e9e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 8952
+ 194
+ 28
+
+ -
+ 5312
+ 8966
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - cf01cba5-9cd6-46a6-80e0-1463b80e2781
+ - Variable O
+ - O
+ - true
+ - 2f7596f4-7e68-4826-a9c2-388d8d15813a
+ - 1
+
+
+
+
+ -
+ 5214
+ 8954
+ 14
+ 24
+
+ -
+ 5222.5
+ 8966
+
+
+
+
+
+
+
+ - Result of expression
+ - e7d8e498-8af3-404c-a575-a2ecda9aee09
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 8954
+ 9
+ 24
+
+ -
+ 5401
+ 8966
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d75407d2-1b46-4319-b031-d0e0f8889e8c
+ - Panel
+
+ - false
+ - 0
+ - e7d8e498-8af3-404c-a575-a2ecda9aee09
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 8923
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.343
+ 8923.289
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - be07e18b-ee2b-425f-8717-647d2c0762de
+ - Panel
+
+ - false
+ - 0
+ - 5566dc5a-b82a-47f9-b97f-83b6a2afee30
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 9075
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.343
+ 9075.199
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 253ffe5d-009c-4834-aad1-ffdc18d7364f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 9103
+ 194
+ 28
+
+ -
+ 5312
+ 9117
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 927c0abc-ae49-4f4e-b0ef-baecd449bf1e
+ - Variable O
+ - O
+ - true
+ - 23303965-07bd-4979-86aa-8f6ffa2ba0d0
+ - 1
+
+
+
+
+ -
+ 5214
+ 9105
+ 14
+ 24
+
+ -
+ 5222.5
+ 9117
+
+
+
+
+
+
+
+ - Result of expression
+ - 5566dc5a-b82a-47f9-b97f-83b6a2afee30
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 9105
+ 9
+ 24
+
+ -
+ 5401
+ 9117
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 910470c3-c24c-4e4c-a8a1-7ebf3ef4edb5
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5232
+ 8829
+ 154
+ 64
+
+ -
+ 5316
+ 8861
+
+
+
+
+
+ - Base geometry
+ - 7b11fa20-33d5-4dce-b35f-aa3a11c68cac
+ - Geometry
+ - Geometry
+ - true
+ - 30c9dafa-4bde-47dc-a1a3-deb5aa41fec3
+ - 1
+
+
+
+
+ -
+ 5234
+ 8831
+ 67
+ 20
+
+ -
+ 5277
+ 8841
+
+
+
+
+
+
+
+ - Center of scaling
+ - ce4c6a3a-0d63-41a3-a852-5e62e55c30e6
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5234
+ 8851
+ 67
+ 20
+
+ -
+ 5277
+ 8861
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - a47fcdb3-0e1d-4d67-9b34-8de6f991d5d0
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - d75407d2-1b46-4319-b031-d0e0f8889e8c
+ - 1
+
+
+
+
+ -
+ 5234
+ 8871
+ 67
+ 20
+
+ -
+ 5277
+ 8881
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 275433f9-6a2b-4190-9934-6142225137c7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5331
+ 8831
+ 53
+ 30
+
+ -
+ 5359
+ 8846
+
+
+
+
+
+
+
+ - Transformation data
+ - 1be6ece1-1913-42e5-aeb1-f9eafd97d3f6
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5331
+ 8861
+ 53
+ 30
+
+ -
+ 5359
+ 8876
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - Curve
+ - Curve
+ - false
+ - 275433f9-6a2b-4190-9934-6142225137c7
+ - 1
+
+
+
+
+ -
+ 5284
+ 8228
+ 50
+ 24
+
+ -
+ 5309.323
+ 8240.789
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e4e439d5-2bfe-4a7a-99d5-72e4a4d936b5
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 9610
+ 194
+ 28
+
+ -
+ 5312
+ 9624
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a00b22d7-f3bd-4512-82f8-d652239f3e0a
+ - Variable O
+ - O
+ - true
+ - c3172bee-344f-41e1-b91e-559e4cd5d129
+ - 1
+
+
+
+
+ -
+ 5214
+ 9612
+ 14
+ 24
+
+ -
+ 5222.5
+ 9624
+
+
+
+
+
+
+
+ - Result of expression
+ - 23eb2366-3f39-4c32-be3d-725aaf7a7361
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 9612
+ 9
+ 24
+
+ -
+ 5401
+ 9624
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 21745270-0d6d-4a43-af3b-acda9251102d
+ - Panel
+
+ - false
+ - 0
+ - 23eb2366-3f39-4c32-be3d-725aaf7a7361
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5231
+ 9581
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5231.213
+ 9581.145
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 33bc4610-c1e3-4eb2-b168-674aba0039e2
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5237
+ 8619
+ 144
+ 64
+
+ -
+ 5311
+ 8651
+
+
+
+
+
+ - Curve to evaluate
+ - 524a5b1c-0792-4345-ba3a-ee9896e7354e
+ - Curve
+ - Curve
+ - false
+ - 275433f9-6a2b-4190-9934-6142225137c7
+ - 1
+
+
+
+
+ -
+ 5239
+ 8621
+ 57
+ 20
+
+ -
+ 5269
+ 8631
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 0013eb0f-d06f-4bd4-8a4a-10028682c9c8
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 8641
+ 57
+ 20
+
+ -
+ 5269
+ 8651
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4fe73f91-c83b-4c34-a117-4a35be699e60
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 8661
+ 57
+ 20
+
+ -
+ 5269
+ 8671
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e6d8f13d-4b7c-451f-bbc0-0207f1c34c17
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 8621
+ 53
+ 20
+
+ -
+ 5354
+ 8631
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 64350032-f573-4806-b5bb-a4ee616996e6
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 8641
+ 53
+ 20
+
+ -
+ 5354
+ 8651
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e99b3bd5-1f0a-472e-a98c-2e0eb73d893f
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 8661
+ 53
+ 20
+
+ -
+ 5354
+ 8671
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b83103ca-a33b-468d-9406-a510d64596df
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 8402
+ 194
+ 28
+
+ -
+ 5312
+ 8416
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0c2f1e2a-e027-4ac4-af66-2111e39f6da0
+ - Variable O
+ - O
+ - true
+ - 78d30f8e-c0b2-42bc-9aeb-c5f343be8dae
+ - 1
+
+
+
+
+ -
+ 5214
+ 8404
+ 14
+ 24
+
+ -
+ 5222.5
+ 8416
+
+
+
+
+
+
+
+ - Result of expression
+ - 5a933785-66e0-44d6-a09c-7e595c2d2aa1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 8404
+ 9
+ 24
+
+ -
+ 5401
+ 8416
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - b4671e64-ccc0-47c3-b109-c46ed36fafb3
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5243
+ 8536
+ 132
+ 64
+
+ -
+ 5290
+ 8568
+
+
+
+
+
+ - Input point
+ - 97f3c419-c4a3-4577-9d24-20609e568565
+ - Point
+ - Point
+ - false
+ - e6d8f13d-4b7c-451f-bbc0-0207f1c34c17
+ - 1
+
+
+
+
+ -
+ 5245
+ 8538
+ 30
+ 60
+
+ -
+ 5261.5
+ 8568
+
+
+
+
+
+
+
+ - Point {x} component
+ - 78d30f8e-c0b2-42bc-9aeb-c5f343be8dae
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5305
+ 8538
+ 68
+ 20
+
+ -
+ 5340.5
+ 8548
+
+
+
+
+
+
+
+ - Point {y} component
+ - c3128390-7608-46b1-9517-66ca9cffe634
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5305
+ 8558
+ 68
+ 20
+
+ -
+ 5340.5
+ 8568
+
+
+
+
+
+
+
+ - Point {z} component
+ - b0d8d435-2461-4fbd-8d38-80050cdce28b
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5305
+ 8578
+ 68
+ 20
+
+ -
+ 5340.5
+ 8588
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 015d43a6-a11d-4625-9eab-b4277ad14e5d
+ - Panel
+
+ - false
+ - 0
+ - 5a933785-66e0-44d6-a09c-7e595c2d2aa1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 8368
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.593
+ 8368.713
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b3333154-b6fd-47c4-9adb-cca60594fda8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 8316
+ 194
+ 28
+
+ -
+ 5312
+ 8330
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 12ef0ab8-41a7-4bb1-8d5f-9e56152e925e
+ - Variable O
+ - O
+ - true
+ - c3128390-7608-46b1-9517-66ca9cffe634
+ - 1
+
+
+
+
+ -
+ 5214
+ 8318
+ 14
+ 24
+
+ -
+ 5222.5
+ 8330
+
+
+
+
+
+
+
+ - Result of expression
+ - 48d0679e-cf36-4b3e-8847-216ac5484c9c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 8318
+ 9
+ 24
+
+ -
+ 5401
+ 8330
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b9b4ea3a-3781-44e3-bec8-372e076bfc97
+ - Panel
+
+ - false
+ - 0
+ - 48d0679e-cf36-4b3e-8847-216ac5484c9c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 8283
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.604
+ 8283.084
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9152e93e-fc06-473a-87de-817dd123dc69
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 8488
+ 194
+ 28
+
+ -
+ 5312
+ 8502
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7303b1a0-75f7-49a7-a218-0335bb7d5799
+ - Variable O
+ - O
+ - true
+ - b0d8d435-2461-4fbd-8d38-80050cdce28b
+ - 1
+
+
+
+
+ -
+ 5214
+ 8490
+ 14
+ 24
+
+ -
+ 5222.5
+ 8502
+
+
+
+
+
+
+
+ - Result of expression
+ - db5a999f-c7f8-4ddd-8d2b-d1a6230efdca
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 8490
+ 9
+ 24
+
+ -
+ 5401
+ 8502
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bd9b3b2e-928a-4927-9e9b-f7ec41b3fa13
+ - Panel
+
+ - false
+ - 0
+ - db5a999f-c7f8-4ddd-8d2b-d1a6230efdca
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5230
+ 8454
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5230.343
+ 8454.926
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - eaacf0ad-c530-4f55-9eac-32e6212af5cb
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 5128
+ 12285
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 5128.999
+ 12285.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c1c641d7-d0f1-405c-b761-3ea255249986
+ - Panel
+
+ - false
+ - 0
+ - 978ac2a1-15af-4112-aebf-6a7013372f13
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5142
+ 10541
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 5142.533
+ 10541.32
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 23c5e705-57eb-4fce-8c17-2e061dc9cfe5
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 10833
+ 194
+ 28
+
+ -
+ 5312
+ 10847
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c88d5785-39f1-40d8-907c-cceccaa12e7d
+ - Variable O
+ - O
+ - true
+ - d76ccfee-b053-4018-805a-96fc615c3b31
+ - 1
+
+
+
+
+ -
+ 5214
+ 10835
+ 14
+ 24
+
+ -
+ 5222.5
+ 10847
+
+
+
+
+
+
+
+ - Result of expression
+ - 978ac2a1-15af-4112-aebf-6a7013372f13
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 10835
+ 9
+ 24
+
+ -
+ 5401
+ 10847
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 9c84bca9-ef0d-4bf5-b059-22ce236bc0a6
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 5294
+ 12670
+ 50
+ 24
+
+ -
+ 5319.304
+ 12682.63
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - f475cbf4-4912-4270-bdd1-e0af1c26774e
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 5140
+ 11065
+ 160
+ 224
+
+ -
+ 5208
+ 11177
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 4bbef879-5014-4917-bb12-c957ef1216e5
+ - true
+ - Curves
+ - Curves
+ - false
+ - 119cac2e-ad81-4b4f-82bf-658327a1f665
+ - 1
+
+
+
+
+ -
+ 5142
+ 11067
+ 51
+ 27
+
+ -
+ 5169
+ 11080.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 2c075fec-3c1b-45bb-a7f3-4db5ed3059dd
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - de798cf4-0469-4658-a897-ee331c0ff449
+ - 1
+
+
+
+
+ -
+ 5142
+ 11094
+ 51
+ 28
+
+ -
+ 5169
+ 11108.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - e9f8c544-3089-4e3a-a15e-f42d51af7a21
+ - true
+ - Values
+ - Values
+ - false
+ - 4ab68874-69b8-4210-9a0a-3bfb3f089209
+ - 1
+
+
+
+
+ -
+ 5142
+ 11122
+ 51
+ 27
+
+ -
+ 5169
+ 11135.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - a88114c0-20f5-456a-95ec-91c00f74018a
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5142
+ 11149
+ 51
+ 28
+
+ -
+ 5169
+ 11163.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 2d148370-d380-4fad-a69a-63288f00f142
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5142
+ 11177
+ 51
+ 27
+
+ -
+ 5169
+ 11190.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 470a10c3-e8dc-45df-8dd3-ac2dba0d0ec1
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 5142
+ 11204
+ 51
+ 28
+
+ -
+ 5169
+ 11218.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 1ea64a6f-ac09-40a6-a7cf-f952d25bbb8b
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 5142
+ 11232
+ 51
+ 27
+
+ -
+ 5169
+ 11245.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 31835ed9-8e54-421b-81d1-ac25ffcf5d04
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 5142
+ 11259
+ 51
+ 28
+
+ -
+ 5169
+ 11273.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 34f758c7-302d-4cdf-875c-cc3a4b3c5d6d
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11067
+ 75
+ 20
+
+ -
+ 5262
+ 11077
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 193adcf7-59a1-476e-a0c5-553a181cbc6b
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11087
+ 75
+ 20
+
+ -
+ 5262
+ 11097
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 88b2e482-62d9-4cef-8db8-1c227eabb7e4
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11107
+ 75
+ 20
+
+ -
+ 5262
+ 11117
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 99ca6c79-e629-407b-bfb0-5b9fcf0b06e9
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11127
+ 75
+ 20
+
+ -
+ 5262
+ 11137
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 02412fbb-cb43-4504-96bb-c8220c62e926
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11147
+ 75
+ 20
+
+ -
+ 5262
+ 11157
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 83a9a945-c7ee-4694-bf9d-ef964424b843
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11167
+ 75
+ 20
+
+ -
+ 5262
+ 11177
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - d5873f3c-3f56-44c0-8f1e-194203e1bad7
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11187
+ 75
+ 20
+
+ -
+ 5262
+ 11197
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 79e40ecd-3a86-469d-8bce-93e89f6e25c4
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11207
+ 75
+ 20
+
+ -
+ 5262
+ 11217
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 7a5e01c6-89ca-4640-972f-4f393497480a
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11227
+ 75
+ 20
+
+ -
+ 5262
+ 11237
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 8568fd35-1bdc-4eb2-ad91-3997e0dde575
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11247
+ 75
+ 20
+
+ -
+ 5262
+ 11257
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - d9fffb18-60fe-4d06-8308-92ba60902d94
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 5223
+ 11267
+ 75
+ 20
+
+ -
+ 5262
+ 11277
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - c771f533-a7d0-49a4-810b-6fe9255e3606
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5261
+ 11425
+ 96
+ 44
+
+ -
+ 5311
+ 11447
+
+
+
+
+
+ - Curve to evaluate
+ - d1940baa-c354-4d55-90fd-d6ef4ac31488
+ - Curve
+ - Curve
+ - false
+ - 119cac2e-ad81-4b4f-82bf-658327a1f665
+ - 1
+
+
+
+
+ -
+ 5263
+ 11427
+ 33
+ 40
+
+ -
+ 5281
+ 11447
+
+
+
+
+
+
+
+ - Curve start point
+ - 9f6a519f-6fb2-4ac5-baeb-cc78fbf221e6
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 11427
+ 29
+ 20
+
+ -
+ 5342
+ 11437
+
+
+
+
+
+
+
+ - Curve end point
+ - 930a0e69-3097-472a-aa3d-b8e81f21601f
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5326
+ 11447
+ 29
+ 20
+
+ -
+ 5342
+ 11457
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - a97ebc4a-f948-4909-84db-94415087a878
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 5246
+ 11323
+ 126
+ 84
+
+ -
+ 5304
+ 11365
+
+
+
+
+
+ - Rectangle base plane
+ - 3ef6c0d3-2435-4768-a399-1cc67b751e34
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5248
+ 11325
+ 41
+ 20
+
+ -
+ 5270
+ 11335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 3729b3bf-4d01-4604-a4ba-1f3a6ed38af6
+ - Point A
+ - Point A
+ - false
+ - 9f6a519f-6fb2-4ac5-baeb-cc78fbf221e6
+ - 1
+
+
+
+
+ -
+ 5248
+ 11345
+ 41
+ 20
+
+ -
+ 5270
+ 11355
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - bfd762dc-9a5c-4d14-a239-290f7604de2c
+ - Point B
+ - Point B
+ - false
+ - 930a0e69-3097-472a-aa3d-b8e81f21601f
+ - 1
+
+
+
+
+ -
+ 5248
+ 11365
+ 41
+ 20
+
+ -
+ 5270
+ 11375
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 4c04570c-c17a-40ee-aeda-04c1fa898c18
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 5248
+ 11385
+ 41
+ 20
+
+ -
+ 5270
+ 11395
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - de798cf4-0469-4658-a897-ee331c0ff449
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 5319
+ 11325
+ 51
+ 40
+
+ -
+ 5346
+ 11345
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 61c645db-11bf-4ed3-9372-bb58724c0bd3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5319
+ 11365
+ 51
+ 40
+
+ -
+ 5346
+ 11385
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 45abe2ff-547c-476b-b92c-442e9f8c2fd5
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 5300
+ 11185
+ 126
+ 104
+
+ -
+ 5367
+ 11237
+
+
+
+
+
+ - External curve as a graph
+ - 7f21ad81-7c52-4a10-9000-6dcaa25c189f
+ - Curve
+ - Curve
+ - false
+ - 119cac2e-ad81-4b4f-82bf-658327a1f665
+ - 1
+
+
+
+
+ -
+ 5302
+ 11187
+ 50
+ 20
+
+ -
+ 5328.5
+ 11197
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 8f61bd01-bdec-4c9f-b33e-5f9f205f34fa
+ - Boundary
+ - Boundary
+ - true
+ - de798cf4-0469-4658-a897-ee331c0ff449
+ - 1
+
+
+
+
+ -
+ 5302
+ 11207
+ 50
+ 20
+
+ -
+ 5328.5
+ 11217
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - b383b0ac-4d57-4a46-af82-76d905bdb973
+ - Numbers
+ - Numbers
+ - false
+ - 4ab68874-69b8-4210-9a0a-3bfb3f089209
+ - 1
+
+
+
+
+ -
+ 5302
+ 11227
+ 50
+ 20
+
+ -
+ 5328.5
+ 11237
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 278357c6-dcf9-4f6f-9a21-02fb32710529
+ - Input
+ - Input
+ - true
+ - 3f2abc03-b291-447e-9605-4d1f6f977688
+ - 1
+
+
+
+
+ -
+ 5302
+ 11247
+ 50
+ 20
+
+ -
+ 5328.5
+ 11257
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 402e1906-32cb-4776-a310-d8673e749dda
+ - Output
+ - Output
+ - true
+ - 3f2abc03-b291-447e-9605-4d1f6f977688
+ - 1
+
+
+
+
+ -
+ 5302
+ 11267
+ 50
+ 20
+
+ -
+ 5328.5
+ 11277
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - b6fb3191-c396-4624-b1d5-b0cc77ac0b42
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 5382
+ 11187
+ 42
+ 100
+
+ -
+ 5404.5
+ 11237
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - bcb09746-9364-4bb4-bb5b-e2a04f08d1be
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 5275
+ 10982
+ 89
+ 64
+
+ -
+ 5320
+ 11014
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - a88536e5-b903-488f-aedd-7f7ef14e523d
+ - Gate
+ - Gate
+ - false
+ - 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26
+ - 1
+
+
+
+
+ -
+ 5277
+ 10984
+ 28
+ 20
+
+ -
+ 5292.5
+ 10994
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 4ebd0332-74c7-4592-9393-52cf665fdb89
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 34f758c7-302d-4cdf-875c-cc3a4b3c5d6d
+ - 1
+
+
+
+
+ -
+ 5277
+ 11004
+ 28
+ 20
+
+ -
+ 5292.5
+ 11014
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 6bd60dd8-7332-4761-92dd-462b8f20ea42
+ - false
+ - Stream 1
+ - 1
+ - true
+ - b6fb3191-c396-4624-b1d5-b0cc77ac0b42
+ - 1
+
+
+
+
+ -
+ 5277
+ 11024
+ 28
+ 20
+
+ -
+ 5292.5
+ 11034
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 895f8826-b56c-4051-9545-303c137982a1
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 5335
+ 10984
+ 27
+ 60
+
+ -
+ 5350
+ 11014
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 4b2607bf-a75f-4c8b-9b95-c39f41cdbc26
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5240
+ 10952
+ 150
+ 20
+
+ -
+ 5240.963
+ 10952.92
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 17682d40-32c3-40f2-9c75-1551cfde5a93
+ - Panel
+
+ - false
+ - 1
+ - 36d62001-6c16-4062-86a1-36d069cf8ca4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5221
+ 11611
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 5221.033
+ 11611.94
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 8eed39b3-b8cf-4370-bb00-d39f6814dd82
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 5250
+ 11564
+ 122
+ 28
+
+ -
+ 5314
+ 11578
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - f2158c28-1465-4301-8e5c-e91e83bf5e50
+ - Numbers
+ - Numbers
+ - false
+ - 4ab68874-69b8-4210-9a0a-3bfb3f089209
+ - 1
+
+
+
+
+ -
+ 5252
+ 11566
+ 47
+ 24
+
+ -
+ 5277
+ 11578
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 3f2abc03-b291-447e-9605-4d1f6f977688
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5329
+ 11566
+ 41
+ 24
+
+ -
+ 5351
+ 11578
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f047974c-a1ba-466a-901b-34bae44155f3
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5212
+ 11900
+ 194
+ 28
+
+ -
+ 5312
+ 11914
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 77468d0c-8981-4e5d-87fe-f8a4d62f3de7
+ - true
+ - Variable O
+ - O
+ - true
+ - 4ab68874-69b8-4210-9a0a-3bfb3f089209
+ - 1
+
+
+
+
+ -
+ 5214
+ 11902
+ 14
+ 24
+
+ -
+ 5222.5
+ 11914
+
+
+
+
+
+
+
+ - Result of expression
+ - 36d62001-6c16-4062-86a1-36d069cf8ca4
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5395
+ 11902
+ 9
+ 24
+
+ -
+ 5401
+ 11914
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 30c4ac7c-f35d-4173-b361-906a0d951d01
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5126
+ 12099
+ 367
+ 28
+
+ -
+ 5312
+ 12113
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b69cee41-44ee-41f6-b31f-d21f21ab90ac
+ - Variable O
+ - O
+ - true
+ - 7767e6c0-533d-4b36-bba0-57a1f0bb96ca
+ - 1
+
+
+
+
+ -
+ 5128
+ 12101
+ 14
+ 24
+
+ -
+ 5136.5
+ 12113
+
+
+
+
+
+
+
+ - Result of expression
+ - 0a5477a8-2ab6-4c0d-9969-cfc36106d584
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 12101
+ 9
+ 24
+
+ -
+ 5488
+ 12113
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d60c0706-6576-4328-88c6-6acf5a73cfda
+ - Panel
+
+ - false
+ - 0
+ - 0a5477a8-2ab6-4c0d-9969-cfc36106d584
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5221
+ 12069
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5221.173
+ 12069.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+ - 193ea5e5-0782-4606-a720-e997392040f4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - eab2df7a-df01-4295-a49f-d16252df0110
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5232
+ 8744
+ 154
+ 64
+
+ -
+ 5316
+ 8776
+
+
+
+
+
+ - Base geometry
+ - f69d5c24-d16f-4b6c-8e4f-672fc093a800
+ - Geometry
+ - Geometry
+ - true
+ - b064badb-c636-4cdd-99a1-829a032c305b
+ - 1
+
+
+
+
+ -
+ 5234
+ 8746
+ 67
+ 20
+
+ -
+ 5277
+ 8756
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7467932c-074f-40ea-934d-79162167e1b0
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5234
+ 8766
+ 67
+ 20
+
+ -
+ 5277
+ 8776
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 294584e7-dd7a-4042-845d-ea793e1e21e0
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - d75407d2-1b46-4319-b031-d0e0f8889e8c
+ - 1
+
+
+
+
+ -
+ 5234
+ 8786
+ 67
+ 20
+
+ -
+ 5277
+ 8796
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c0b4014a-1c32-4f4a-a1ee-bc34da763026
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5331
+ 8746
+ 53
+ 30
+
+ -
+ 5359
+ 8761
+
+
+
+
+
+
+
+ - Transformation data
+ - ad56922f-2b56-45f9-b1b6-c57db589df33
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5331
+ 8776
+ 53
+ 30
+
+ -
+ 5359
+ 8791
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 4f9e4afc-4d5d-4f05-953b-9de13f68867e
+ - Point
+ - Point
+ - false
+ - c0b4014a-1c32-4f4a-a1ee-bc34da763026
+ - 1
+
+
+
+
+ -
+ 5285
+ 8706
+ 50
+ 24
+
+ -
+ 5310.323
+ 8718.959
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 62725a2d-d086-480b-b59c-20d70e010c2a
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5237
+ 8086
+ 138
+ 44
+
+ -
+ 5305
+ 8108
+
+
+
+
+
+ - Base geometry
+ - db6d572a-4389-4d7e-82e6-f0374d24cc57
+ - Geometry
+ - Geometry
+ - true
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+
+
+
+
+ -
+ 5239
+ 8088
+ 51
+ 20
+
+ -
+ 5266
+ 8098
+
+
+
+
+
+
+
+ - Mirror plane
+ - 33895c29-38c4-46dc-a677-477f990354c7
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 8108
+ 51
+ 20
+
+ -
+ 5266
+ 8118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 73841cb5-53f4-4bde-aaed-d9a80260eaf6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5320
+ 8088
+ 53
+ 20
+
+ -
+ 5348
+ 8098
+
+
+
+
+
+
+
+ - Transformation data
+ - 223464e5-387b-41ff-a8aa-dfc376693399
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5320
+ 8108
+ 53
+ 20
+
+ -
+ 5348
+ 8118
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c85b89ea-2c35-443e-b453-7c323d985667
+ - Curve
+ - Curve
+ - false
+ - 7beac234-bc4b-4126-b4fc-44d942a3b3f0
+ - 1
+
+
+
+
+ -
+ 5284
+ 7979
+ 50
+ 24
+
+ -
+ 5309.573
+ 7991.978
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 119cac2e-ad81-4b4f-82bf-658327a1f665
+ - Relay
+
+ - false
+ - c3dbaa5a-af2e-4cd2-834d-46ef90bfb446
+ - 1
+
+
+
+
+ -
+ 5291
+ 11492
+ 40
+ 16
+
+ -
+ 5311
+ 11500
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 5c657d50-874b-4b7c-bfa6-977edd05eb73
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 4160
+ 8576
+ 96
+ 44
+
+ -
+ 4210
+ 8598
+
+
+
+
+
+ - Curve to evaluate
+ - ce027fcd-f068-4100-b412-b43344583358
+ - Curve
+ - Curve
+ - false
+ - ee1588dc-b2af-4e66-a506-1886255dafb2
+ - 1
+
+
+
+
+ -
+ 4162
+ 8578
+ 33
+ 40
+
+ -
+ 4180
+ 8598
+
+
+
+
+
+
+
+ - Curve start point
+ - fbb9d619-814f-4d51-a686-1d03902aec60
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8578
+ 29
+ 20
+
+ -
+ 4241
+ 8588
+
+
+
+
+
+
+
+ - Curve end point
+ - 0484dc1c-e5c3-4e1c-84c0-199df4c8cae5
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8598
+ 29
+ 20
+
+ -
+ 4241
+ 8608
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 61dcab79-7c48-48f0-be5e-255a897defa7
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 4143
+ 8473
+ 126
+ 84
+
+ -
+ 4201
+ 8515
+
+
+
+
+
+ - Rectangle base plane
+ - 7b25d7a2-09c5-47ec-b6d2-cf584b999298
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4145
+ 8475
+ 41
+ 20
+
+ -
+ 4167
+ 8485
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 0b83c0d3-4571-4021-b870-b22cc3a5f312
+ - Point A
+ - Point A
+ - false
+ - fbb9d619-814f-4d51-a686-1d03902aec60
+ - 1
+
+
+
+
+ -
+ 4145
+ 8495
+ 41
+ 20
+
+ -
+ 4167
+ 8505
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - db3e7170-14e8-4c92-b7d5-343b8df03aaa
+ - Point B
+ - Point B
+ - false
+ - 0484dc1c-e5c3-4e1c-84c0-199df4c8cae5
+ - 1
+
+
+
+
+ -
+ 4145
+ 8515
+ 41
+ 20
+
+ -
+ 4167
+ 8525
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 6a763226-f5bf-4b50-b784-ecb2f913f963
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4145
+ 8535
+ 41
+ 20
+
+ -
+ 4167
+ 8545
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 54913e5c-b27b-4b2a-8224-9d03901945ac
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 4216
+ 8475
+ 51
+ 40
+
+ -
+ 4243
+ 8495
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - d1bad1e8-c34b-418b-8e10-572c6fe01fbd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4216
+ 8515
+ 51
+ 40
+
+ -
+ 4243
+ 8535
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - d000dafa-a884-41aa-84bd-f226d0fb2242
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 4135
+ 8390
+ 142
+ 64
+
+ -
+ 4203
+ 8422
+
+
+
+
+
+ - Rectangle to deconstruct
+ - 19fdbe94-8cec-4f4c-b2aa-9c211b2025e9
+ - Rectangle
+ - Rectangle
+ - false
+ - 54913e5c-b27b-4b2a-8224-9d03901945ac
+ - 1
+
+
+
+
+ -
+ 4137
+ 8392
+ 51
+ 60
+
+ -
+ 4164
+ 8422
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - e6f44af8-9aa5-4773-a41d-f7d3e56299d2
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4218
+ 8392
+ 57
+ 20
+
+ -
+ 4248
+ 8402
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - ada48293-7fe1-4243-ba73-a5e1913b61ae
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4218
+ 8412
+ 57
+ 20
+
+ -
+ 4248
+ 8422
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 11d33d32-3d1f-4224-9573-4aea87ab73a8
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4218
+ 8432
+ 57
+ 20
+
+ -
+ 4248
+ 8442
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 142cb1d0-5029-47d3-9abe-9ca2baa774ad
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4155
+ 8263
+ 104
+ 44
+
+ -
+ 4213
+ 8285
+
+
+
+
+
+ - Base domain
+ - b6a62bb3-0c1a-490e-8b7f-57434238a89c
+ - Domain
+ - Domain
+ - false
+ - 11d33d32-3d1f-4224-9573-4aea87ab73a8
+ - 1
+
+
+
+
+ -
+ 4157
+ 8265
+ 41
+ 40
+
+ -
+ 4179
+ 8285
+
+
+
+
+
+
+
+ - Start of domain
+ - feb3d1a4-1436-4b3b-a572-50404bb4f9d3
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4228
+ 8265
+ 29
+ 20
+
+ -
+ 4244
+ 8275
+
+
+
+
+
+
+
+ - End of domain
+ - 82b4448e-74b7-47e0-9587-187939136951
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4228
+ 8285
+ 29
+ 20
+
+ -
+ 4244
+ 8295
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 956f7fc4-3e83-4d8e-98bc-de840fc19dd1
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4155
+ 8325
+ 104
+ 44
+
+ -
+ 4213
+ 8347
+
+
+
+
+
+ - Base domain
+ - 834636d2-74cd-4014-bf2c-e63e0c6c75ce
+ - Domain
+ - Domain
+ - false
+ - ada48293-7fe1-4243-ba73-a5e1913b61ae
+ - 1
+
+
+
+
+ -
+ 4157
+ 8327
+ 41
+ 40
+
+ -
+ 4179
+ 8347
+
+
+
+
+
+
+
+ - Start of domain
+ - a8521fc5-d8df-4b63-9067-05b4bef00a5a
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4228
+ 8327
+ 29
+ 20
+
+ -
+ 4244
+ 8337
+
+
+
+
+
+
+
+ - End of domain
+ - a511784d-a55d-4fc7-ba41-496ff3fd5ce8
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4228
+ 8347
+ 29
+ 20
+
+ -
+ 4244
+ 8357
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 415e798a-75a5-4f4c-aafa-a1488e56b992
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 4126
+ 8140
+ 154
+ 104
+
+ -
+ 4210
+ 8192
+
+
+
+
+
+ - Base geometry
+ - 0fad42ec-939c-4eb7-b839-69c72d946aec
+ - Geometry
+ - Geometry
+ - true
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+
+
+
+
+ -
+ 4128
+ 8142
+ 67
+ 20
+
+ -
+ 4171
+ 8152
+
+
+
+
+
+
+
+ - Base plane
+ - 48bb0fe5-9324-4e46-9a4c-fb419731fa11
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4128
+ 8162
+ 67
+ 20
+
+ -
+ 4171
+ 8172
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - acd534f4-d9f1-4c8d-acc9-c03dc0df2d23
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - a511784d-a55d-4fc7-ba41-496ff3fd5ce8
+ - 1
+
+
+
+
+ -
+ 4128
+ 8182
+ 67
+ 20
+
+ -
+ 4171
+ 8192
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 3f3fede3-e52d-4191-b84f-b7321ce0ccfc
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 82b4448e-74b7-47e0-9587-187939136951
+ - 1
+
+
+
+
+ -
+ 4128
+ 8202
+ 67
+ 20
+
+ -
+ 4171
+ 8212
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 513dcf67-d2f0-4a9d-be12-73ad63c6a810
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 4128
+ 8222
+ 67
+ 20
+
+ -
+ 4171
+ 8232
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - b2ec8e4e-81a6-49df-a84d-3ab783d83c68
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8142
+ 53
+ 50
+
+ -
+ 4253
+ 8167
+
+
+
+
+
+
+
+ - Transformation data
+ - da0d7b16-ec63-485a-b633-4760f0c80f72
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8192
+ 53
+ 50
+
+ -
+ 4253
+ 8217
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5c657d50-874b-4b7c-bfa6-977edd05eb73
+ - 61dcab79-7c48-48f0-be5e-255a897defa7
+ - d000dafa-a884-41aa-84bd-f226d0fb2242
+ - 142cb1d0-5029-47d3-9abe-9ca2baa774ad
+ - 956f7fc4-3e83-4d8e-98bc-de840fc19dd1
+ - 415e798a-75a5-4f4c-aafa-a1488e56b992
+ - ee1588dc-b2af-4e66-a506-1886255dafb2
+ - a1876440-004e-43ee-9d8c-ba5831da3460
+ - 8
+ - ad86dfb9-c51a-4a53-8134-845d176844e8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ee1588dc-b2af-4e66-a506-1886255dafb2
+ - Curve
+ - Curve
+ - false
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+
+
+
+
+ -
+ 4193
+ 8645
+ 50
+ 24
+
+ -
+ 4218.758
+ 8657.02
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a1876440-004e-43ee-9d8c-ba5831da3460
+ - Curve
+ - Curve
+ - false
+ - b2ec8e4e-81a6-49df-a84d-3ab783d83c68
+ - 1
+
+
+
+
+ -
+ 4185
+ 8116
+ 50
+ 24
+
+ -
+ 4210
+ 8128.89
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 6c39495f-795f-4f71-a0a0-33936dcdd541
+ - Curve
+ - Curve
+ - false
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+
+
+
+
+ -
+ 4833
+ 11724
+ 50
+ 24
+
+ -
+ 4858.573
+ 11736.39
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c3dbaa5a-af2e-4cd2-834d-46ef90bfb446
+ - Curve
+ - Curve
+ - false
+ - 545386d9-ace5-461b-b7bf-af2d91c7c627
+ - 1
+
+
+
+
+ -
+ 4833
+ 11542
+ 50
+ 24
+
+ -
+ 4858.669
+ 11554.67
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 48ccf8eb-f98b-4b00-a1ab-4ec3179cce72
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4781
+ 11583
+ 154
+ 64
+
+ -
+ 4865
+ 11615
+
+
+
+
+
+ - Base geometry
+ - a0c722de-2a53-458e-b4a1-8cab4386fd33
+ - Geometry
+ - Geometry
+ - true
+ - 6c39495f-795f-4f71-a0a0-33936dcdd541
+ - 1
+
+
+
+
+ -
+ 4783
+ 11585
+ 67
+ 20
+
+ -
+ 4826
+ 11595
+
+
+
+
+
+
+
+ - Center of scaling
+ - b6e033f2-06f8-401e-85df-e9085a18a6d4
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4783
+ 11605
+ 67
+ 20
+
+ -
+ 4826
+ 11615
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e058e124-1e02-45ad-871b-f0a0c0ba988b
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 533dea91-bbd7-49dd-9058-482d72ea2499
+ - 1
+
+
+
+
+ -
+ 4783
+ 11625
+ 67
+ 20
+
+ -
+ 4826
+ 11635
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 545386d9-ace5-461b-b7bf-af2d91c7c627
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4880
+ 11585
+ 53
+ 30
+
+ -
+ 4908
+ 11600
+
+
+
+
+
+
+
+ - Transformation data
+ - 966e1a5b-60d7-4d1f-8d16-52a3372755d0
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4880
+ 11615
+ 53
+ 30
+
+ -
+ 4908
+ 11630
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6c39495f-795f-4f71-a0a0-33936dcdd541
+ - c3dbaa5a-af2e-4cd2-834d-46ef90bfb446
+ - 48ccf8eb-f98b-4b00-a1ab-4ec3179cce72
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 1a284eb8-9013-421a-b964-9344bb79dd7c
+ - 533dea91-bbd7-49dd-9058-482d72ea2499
+ - 9f2b8fbc-da80-49ce-be5e-1c21353c1388
+ - 7
+ - 9f1b02d7-b7b9-4414-8d5f-04f7eea4d11a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 83cd24a5-9dca-42f9-9595-2944c134e6f1
+ - Move
+ - Move
+
+
+
+
+ -
+ 5237
+ 8022
+ 138
+ 44
+
+ -
+ 5305
+ 8044
+
+
+
+
+
+ - Base geometry
+ - eec7180d-d201-4e2c-bc72-7746cbdf66ee
+ - Geometry
+ - Geometry
+ - true
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+
+
+
+
+ -
+ 5239
+ 8024
+ 51
+ 20
+
+ -
+ 5266
+ 8034
+
+
+
+
+
+
+
+ - Translation vector
+ - 4210c6ee-3dba-4e7c-9987-169a94a0dac6
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 5239
+ 8044
+ 51
+ 20
+
+ -
+ 5266
+ 8054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 7beac234-bc4b-4126-b4fc-44d942a3b3f0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5320
+ 8024
+ 53
+ 20
+
+ -
+ 5348
+ 8034
+
+
+
+
+
+
+
+ - Transformation data
+ - a9e489c0-f5eb-4770-9cb4-3a4ad7cadeda
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5320
+ 8044
+ 53
+ 20
+
+ -
+ 5348
+ 8054
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 1a284eb8-9013-421a-b964-9344bb79dd7c
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 4733
+ 11704
+ 250
+ 20
+
+ -
+ 4733.969
+ 11704.03
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 533dea91-bbd7-49dd-9058-482d72ea2499
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 4791
+ 11667
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4791.136
+ 11667.38
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ba1a1a80-2ca7-4a73-8c0f-0ec9ae1d1d34
+ - Panel
+
+ - false
+ - 0
+ - 54167f79-58a5-49d4-952d-825210755673
+ - 1
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 3667
+ 11226
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3667.602
+ 11226.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 04f6dd45-a05e-4255-b431-1cf39447f2cb
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4246
+ 1495
+ 128
+ 28
+
+ -
+ 4299
+ 1509
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 8faedc3a-55c1-4a31-a7d2-d6c458cfebec
+ - Values
+ - Values
+ - false
+ - d4204f84-391f-45d9-b27d-4db0c38c8965
+ - 1
+
+
+
+
+ -
+ 4248
+ 1497
+ 36
+ 24
+
+ -
+ 4267.5
+ 1509
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - f99ca82c-9c00-48e9-8c1a-2d37b681a8c0
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4314
+ 1497
+ 58
+ 24
+
+ -
+ 4344.5
+ 1509
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bad1c978-837c-473b-b4f0-a58dfe6f997e
+ - Relay
+
+ - false
+ - f99ca82c-9c00-48e9-8c1a-2d37b681a8c0
+ - 1
+
+
+
+
+ -
+ 4290
+ 1461
+ 40
+ 16
+
+ -
+ 4310
+ 1469
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d4204f84-391f-45d9-b27d-4db0c38c8965
+ - Relay
+
+ - false
+ - ff2db1c1-6c13-43aa-8303-844eb49d3ae6
+ - 1
+
+
+
+
+ -
+ 4290
+ 1543
+ 40
+ 16
+
+ -
+ 4310
+ 1551
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4836c153-f996-4137-982e-b59f019e6830
+ - Relay
+
+ - false
+ - c61c2f63-af12-47bf-ac8f-3ed53b4c2ca9
+ - 1
+
+
+
+
+ -
+ 4288
+ 6334
+ 40
+ 16
+
+ -
+ 4308
+ 6342
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8a2d2bc3-4a52-4743-b71a-fe728e225613
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4288
+ 5433
+ 40
+ 16
+
+ -
+ 4308
+ 5441
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 76cb75e1-43cf-4e78-ae62-734915746e29
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4288
+ 3458
+ 40
+ 16
+
+ -
+ 4308
+ 3466
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 7719845b-c4fb-40bb-aebe-71f18acb63b2
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4247
+ 785
+ 122
+ 64
+
+ -
+ 4327
+ 817
+
+
+
+
+
+ - Line start point
+ - baf5d8bf-5ab6-42c9-9a80-0a1d649ed7e1
+ - Start
+ - Start
+ - false
+ - 61036b5a-8186-48eb-b8e1-970dd55c24f4
+ - 1
+
+
+
+
+ -
+ 4249
+ 787
+ 63
+ 20
+
+ -
+ 4290
+ 797
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - d786e8b9-3e18-4971-bb0a-831bb60335d4
+ - Direction
+ - Direction
+ - false
+ - ed9b8f84-205b-4c77-9d51-bd3196eb98a9
+ - 1
+
+
+
+
+ -
+ 4249
+ 807
+ 63
+ 20
+
+ -
+ 4290
+ 817
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - ba2cdd92-54cb-442d-8f21-a8e3cf1f9fac
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 10b0d55a-a9b1-453a-bc7d-e912f93c21c3
+ - 1
+
+
+
+
+ -
+ 4249
+ 827
+ 63
+ 20
+
+ -
+ 4290
+ 837
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 576ac5dd-f1ae-451c-9e0e-3eafb1029af2
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ 787
+ 25
+ 60
+
+ -
+ 4356
+ 817
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ed9b8f84-205b-4c77-9d51-bd3196eb98a9
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4288
+ 867
+ 40
+ 16
+
+ -
+ 4308
+ 875
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 20e239d4-cb33-4204-a2c2-5343e1abd3b3
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4236
+ 1016
+ 150
+ 20
+
+ -
+ 4236.223
+ 1016.699
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0.016713
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4250
+ 1149
+ 115
+ 64
+
+ -
+ 4305
+ 1181
+
+
+
+
+
+ - Value to remap
+ - d53305ef-d0c3-4ff6-a9b4-1541859b2105
+ - Value
+ - Value
+ - false
+ - ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8
+ - 1
+
+
+
+
+ -
+ 4252
+ 1151
+ 38
+ 20
+
+ -
+ 4272.5
+ 1161
+
+
+
+
+
+
+
+ - Source domain
+ - 5b80ab5d-a5d9-4d38-8801-92352509f4a5
+ - Source
+ - Source
+ - false
+ - a8a54385-53a1-465f-a2cf-86d5a3a868d0
+ - 1
+
+
+
+
+ -
+ 4252
+ 1171
+ 38
+ 20
+
+ -
+ 4272.5
+ 1181
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - f2d143b2-dc71-48a4-8d97-529b2fc801b2
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 1191
+ 38
+ 20
+
+ -
+ 4272.5
+ 1201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 8e7542bd-201e-46d9-b49e-a6548c8510dd
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 1151
+ 43
+ 30
+
+ -
+ 4343
+ 1166
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - e52895c1-9fe6-4b5b-9452-be7674464509
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 1181
+ 43
+ 30
+
+ -
+ 4343
+ 1196
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - b6b23334-d964-49d1-8bf0-e6c862f69bf1
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4247
+ 1232
+ 122
+ 28
+
+ -
+ 4311
+ 1246
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - d9272089-f878-4ddb-8eba-593fa2aeb7d6
+ - Numbers
+ - Numbers
+ - false
+ - ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8
+ - 1
+
+
+
+
+ -
+ 4249
+ 1234
+ 47
+ 24
+
+ -
+ 4274
+ 1246
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - a8a54385-53a1-465f-a2cf-86d5a3a868d0
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ 1234
+ 41
+ 24
+
+ -
+ 4348
+ 1246
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 4e2c6cf1-0fe3-48fd-ba3e-c18ad88efb7d
+ - b6b23334-d964-49d1-8bf0-e6c862f69bf1
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 10b0d55a-a9b1-453a-bc7d-e912f93c21c3
+ - ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8
+ - 20e239d4-cb33-4204-a2c2-5343e1abd3b3
+ - e1a9b758-7cee-4396-b62f-58ea93311af9
+ - 14
+ - e0a23baf-b2b5-496b-8de7-e4c471e49cc9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ae4cbbf6-df8f-41a7-a4be-fcc0b37593f8
+ - Relay
+ -
+ - false
+ - bad1c978-837c-473b-b4f0-a58dfe6f997e
+ - 1
+
+
+
+
+ -
+ 4288
+ 1277
+ 40
+ 16
+
+ -
+ 4308
+ 1285
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 10b0d55a-a9b1-453a-bc7d-e912f93c21c3
+ - Relay
+ -
+ - false
+ - ff316368-b604-4f3b-a02f-b3c6f3b43d11
+ - 1
+
+
+
+
+ -
+ 4288
+ 910
+ 40
+ 16
+
+ -
+ 4308
+ 918
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e1a9b758-7cee-4396-b62f-58ea93311af9
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ 949
+ 82
+ 44
+
+ -
+ 4298
+ 971
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 6bb0dcbd-0c83-4582-9136-1d0384a24a55
+ - A
+ - A
+ - true
+ - 0b02aa34-a613-4cd2-a8bb-71f5fd93a9af
+ - 1
+
+
+
+
+ -
+ 4269
+ 951
+ 14
+ 20
+
+ -
+ 4277.5
+ 961
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 49c227ac-5ab2-42f0-b43e-4c0c84aec382
+ - B
+ - B
+ - true
+ - 20e239d4-cb33-4204-a2c2-5343e1abd3b3
+ - 1
+
+
+
+
+ -
+ 4269
+ 971
+ 14
+ 20
+
+ -
+ 4277.5
+ 981
+
+
+
+
+
+
+
+ - Result of multiplication
+ - ff316368-b604-4f3b-a02f-b3c6f3b43d11
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ 951
+ 34
+ 40
+
+ -
+ 4331.5
+ 971
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - d619928d-8087-4f94-9a55-02fd5b30666e
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ 1050
+ 82
+ 44
+
+ -
+ 4298
+ 1072
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - d9ed3ee2-b214-45f8-a76d-6fa18a27f6ba
+ - A
+ - A
+ - true
+ - 8e7542bd-201e-46d9-b49e-a6548c8510dd
+ - 1
+
+
+
+
+ -
+ 4269
+ 1052
+ 14
+ 20
+
+ -
+ 4277.5
+ 1062
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - f7b2679e-d671-4a3d-8263-4b5e1806103e
+ - B
+ - B
+ - true
+ - 99b73b36-7459-46d9-b1f0-3937348f98af
+ - 1
+
+
+
+
+ -
+ 4269
+ 1072
+ 14
+ 20
+
+ -
+ 4277.5
+ 1082
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 0b02aa34-a613-4cd2-a8bb-71f5fd93a9af
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ 1052
+ 34
+ 40
+
+ -
+ 4331.5
+ 1072
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 99b73b36-7459-46d9-b1f0-3937348f98af
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4288
+ 1112
+ 40
+ 16
+
+ -
+ 4308
+ 1120
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bad1c978-837c-473b-b4f0-a58dfe6f997e
+ - d4204f84-391f-45d9-b27d-4db0c38c8965
+ - 04f6dd45-a05e-4255-b431-1cf39447f2cb
+ - 3
+ - 2b983b05-b6d6-4399-9b66-2339c3acc21a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 6ef43a54-6999-4ccc-a174-6fba07e915d7
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 661
+ 144
+ 104
+
+ -
+ 4320
+ 713
+
+
+
+
+
+ - Colour of the diffuse channel
+ - b1c17811-509f-4ddf-8cb0-35a6d1f9d49f
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 663
+ 67
+ 20
+
+ -
+ 4273
+ 673
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - e57fdeec-5ed7-47d3-b3b2-e78c1a177b43
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 683
+ 67
+ 20
+
+ -
+ 4273
+ 693
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 657457b0-8b9a-4f5b-b07f-0e95a68f150d
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 703
+ 67
+ 20
+
+ -
+ 4273
+ 713
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 3c1a32ba-f06d-4784-8b39-7f2e46f78022
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 723
+ 67
+ 20
+
+ -
+ 4273
+ 733
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 9fe9e170-769d-458f-9844-b65385bfb531
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 743
+ 67
+ 20
+
+ -
+ 4273
+ 753
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 4cef9ec8-7f01-4e78-96b5-3c362434fda9
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 663
+ 43
+ 100
+
+ -
+ 4358
+ 713
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - cc8b95bb-4946-4823-ad8a-25ceaba8d32e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 599
+ 82
+ 44
+
+ -
+ 4335
+ 621
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 47bde767-2124-4f17-b40f-65df697cb09d
+ - Geometry
+ - Geometry
+ - false
+ - 576ac5dd-f1ae-451c-9e0e-3eafb1029af2
+ - 1
+
+
+
+
+ -
+ 4269
+ 601
+ 51
+ 20
+
+ -
+ 4296
+ 611
+
+
+
+
+
+
+
+ - The material override
+ - 3258c416-21bb-4414-a796-7d630ae916b5
+ - Material
+ - Material
+ - false
+ - 4cef9ec8-7f01-4e78-96b5-3c362434fda9
+ - 1
+
+
+
+
+ -
+ 4269
+ 621
+ 51
+ 20
+
+ -
+ 4296
+ 631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 70a003fd-4063-4183-a099-bb1e8ff9b09a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4236
+ 516
+ 144
+ 64
+
+ -
+ 4310
+ 548
+
+
+
+
+
+ - Curve to evaluate
+ - d1efc71a-9cab-4b6a-bb7f-768787ec79ec
+ - Curve
+ - Curve
+ - false
+ - 576ac5dd-f1ae-451c-9e0e-3eafb1029af2
+ - 1
+
+
+
+
+ -
+ 4238
+ 518
+ 57
+ 20
+
+ -
+ 4268
+ 528
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - f2264c27-31a2-45b0-8895-1821961f4553
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 538
+ 57
+ 20
+
+ -
+ 4268
+ 548
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 78b1da22-244e-4890-b961-39d4254f67db
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 558
+ 57
+ 20
+
+ -
+ 4268
+ 568
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f38aaa8d-3a3e-4388-b382-236a86074b2f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 518
+ 53
+ 20
+
+ -
+ 4353
+ 528
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c2be8aae-ea90-4cd8-9453-5558d86140a1
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 538
+ 53
+ 20
+
+ -
+ 4353
+ 548
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 195b38db-cf77-4757-a5c6-a08d7d632cbc
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 558
+ 53
+ 20
+
+ -
+ 4353
+ 568
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 784a1ba3-f468-4303-a0ee-270fe195e74f
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4245
+ 412
+ 125
+ 84
+
+ -
+ 4312
+ 454
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - bedc006b-d49e-4ddd-87b5-6cc69ec33495
+ - Vertices
+ - Vertices
+ - false
+ - f38aaa8d-3a3e-4388-b382-236a86074b2f
+ - 1
+
+
+
+
+ -
+ 4247
+ 414
+ 50
+ 20
+
+ -
+ 4273.5
+ 424
+
+
+
+
+
+
+
+ - Curve degree
+ - 24e4d63a-8ded-4206-b50a-f3ccc433c709
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 434
+ 50
+ 20
+
+ -
+ 4273.5
+ 444
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - b53194a0-5069-4c32-a7d3-55e820752a6e
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 454
+ 50
+ 20
+
+ -
+ 4273.5
+ 464
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 7eb76da1-2db0-4f86-a92b-0b474ef5f9ad
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 474
+ 50
+ 20
+
+ -
+ 4273.5
+ 484
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 0541bd04-b936-4c76-b805-13c6d5537fb7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 414
+ 41
+ 26
+
+ -
+ 4349
+ 427.3333
+
+
+
+
+
+
+
+ - Curve length
+ - 1362cf92-70b6-4707-b74d-52edc2a22b0c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 440
+ 41
+ 27
+
+ -
+ 4349
+ 454
+
+
+
+
+
+
+
+ - Curve domain
+ - 6f9bf259-863a-4c0e-a8df-c03f7630fe15
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ 467
+ 41
+ 27
+
+ -
+ 4349
+ 480.6667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 83802b83-02bd-494d-b870-ea094c68a146
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ 288
+ 144
+ 104
+
+ -
+ 4320
+ 340
+
+
+
+
+
+ - Colour of the diffuse channel
+ - a8be88a1-161d-4761-a481-b5f8849edb1c
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 290
+ 67
+ 20
+
+ -
+ 4273
+ 300
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 52178d89-ce43-4b1d-94e7-bca031b64f05
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 310
+ 67
+ 20
+
+ -
+ 4273
+ 320
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 1ea6382d-76c3-471a-9735-3ee98f2c8d02
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 330
+ 67
+ 20
+
+ -
+ 4273
+ 340
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - b413006d-c848-4dd0-a880-eac72a40dcf4
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 350
+ 67
+ 20
+
+ -
+ 4273
+ 360
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 816279be-fb43-4acf-9db7-90cac233f663
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ 370
+ 67
+ 20
+
+ -
+ 4273
+ 380
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - da86212f-b319-44cf-9778-ee120445450a
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 290
+ 43
+ 100
+
+ -
+ 4358
+ 340
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 05267ad3-2494-4a34-afff-4d362694e47c
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ 228
+ 82
+ 44
+
+ -
+ 4335
+ 250
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ca7dd5f7-9267-4317-b1e2-2130fb997d3e
+ - Geometry
+ - Geometry
+ - false
+ - 0541bd04-b936-4c76-b805-13c6d5537fb7
+ - 1
+
+
+
+
+ -
+ 4269
+ 230
+ 51
+ 20
+
+ -
+ 4296
+ 240
+
+
+
+
+
+
+
+ - The material override
+ - 08246481-c551-4286-a365-c4828efb3b2f
+ - Material
+ - Material
+ - false
+ - da86212f-b319-44cf-9778-ee120445450a
+ - 1
+
+
+
+
+ -
+ 4269
+ 250
+ 51
+ 20
+
+ -
+ 4296
+ 260
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 231a94e3-3b48-4943-adac-c96d778b2484
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 3
+
+ - 0.068900000
+
+
+
+
+ -
+ 2668
+ 5458
+ 250
+ 20
+
+ -
+ 2668.177
+ 5458.286
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - af7b7c8d-309a-4b1f-b7d3-7aea131dc644
+ - Move
+ - Move
+
+
+
+
+ -
+ 2724
+ 4890
+ 138
+ 44
+
+ -
+ 2792
+ 4912
+
+
+
+
+
+ - Base geometry
+ - a3f099d9-4f98-4da3-8fff-872d17bde375
+ - Geometry
+ - Geometry
+ - true
+ - 14114d11-a3cb-41ea-8397-075cb5e9d027
+ - 1
+
+
+
+
+ -
+ 2726
+ 4892
+ 51
+ 20
+
+ -
+ 2753
+ 4902
+
+
+
+
+
+
+
+ - Translation vector
+ - c5bd7b52-6ac3-4007-8c76-534f3ced3ffd
+ - Motion
+ - Motion
+ - false
+ - 1003c01f-26a2-48c7-b9d1-51dcc928fa75
+ - 1
+
+
+
+
+ -
+ 2726
+ 4912
+ 51
+ 20
+
+ -
+ 2753
+ 4922
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 4b682de7-9b79-46c1-8e2a-4fdbcc588751
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 4892
+ 53
+ 20
+
+ -
+ 2835
+ 4902
+
+
+
+
+
+
+
+ - Transformation data
+ - ec46117c-cf3f-4e76-ad28-6903dd1bacfa
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 4912
+ 53
+ 20
+
+ -
+ 2835
+ 4922
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - c5ec0fcd-b093-4db4-a17e-e93eede44c55
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2715
+ 4953
+ 155
+ 64
+
+ -
+ 2816
+ 4985
+
+
+
+
+
+ - Vector {x} component
+ - 563c3747-9e5e-420b-893a-31c9fd5bf3af
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2717
+ 4955
+ 84
+ 20
+
+ -
+ 2768.5
+ 4965
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 1cce6b41-b341-4719-aa54-5c481c93a088
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ 4975
+ 84
+ 20
+
+ -
+ 2768.5
+ 4985
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - b0832754-1c7d-477b-9fbe-f775f1f307e5
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ 4995
+ 84
+ 20
+
+ -
+ 2768.5
+ 5005
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 1003c01f-26a2-48c7-b9d1-51dcc928fa75
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 4955
+ 37
+ 30
+
+ -
+ 2851
+ 4970
+
+
+
+
+
+
+
+ - Vector length
+ - 5dc5c3f7-fe6a-46f8-befd-504cd419455f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 4985
+ 37
+ 30
+
+ -
+ 2851
+ 5000
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 078cfa5d-a810-4461-afe5-3c7c6eff34df
+ - Series
+ - Series
+
+
+
+
+ -
+ 2734
+ 5036
+ 117
+ 64
+
+ -
+ 2784
+ 5068
+
+
+
+
+
+ - First number in the series
+ - d0f7239d-dd0a-43f1-844c-f1801c1ecb24
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ 5038
+ 33
+ 20
+
+ -
+ 2754
+ 5048
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 0121716a-6b7a-4f84-b7da-22da86c02238
+ - Step
+ - Step
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ 5058
+ 33
+ 20
+
+ -
+ 2754
+ 5068
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - acfb728a-7c66-4470-9c7d-63290608c6fa
+ - Count
+ - Count
+ - false
+ - 56534c49-1ea7-41c6-bf7c-258cabb3efce
+ - 1
+
+
+
+
+ -
+ 2736
+ 5078
+ 33
+ 20
+
+ -
+ 2754
+ 5088
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 2
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 2799
+ 5038
+ 50
+ 60
+
+ -
+ 2817.5
+ 5068
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - a1bef049-0c2f-4984-922a-a6675bf3c7b6
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 2738
+ 5219
+ 109
+ 28
+
+ -
+ 2777
+ 5233
+
+
+
+
+
+ - 1
+ - Base list
+ - 8cb3cfa9-f186-444f-9ba1-bf4232f3ebad
+ - List
+ - List
+ - false
+ - 23098590-a917-496b-a7fa-ab7fc86169d0
+ - 1
+
+
+
+
+ -
+ 2740
+ 5221
+ 22
+ 24
+
+ -
+ 2752.5
+ 5233
+
+
+
+
+
+
+
+ - Number of items in L
+ - 69eb57b9-6dde-4931-8c8d-a8c792f76175
+ - 1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2792
+ 5221
+ 53
+ 24
+
+ -
+ 2812
+ 5233
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 56534c49-1ea7-41c6-bf7c-258cabb3efce
+ - Panel
+
+ - false
+ - 0
+ - 7415dfa4-dce2-4d2d-979a-97a046335867
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2768
+ 5120
+ 50
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2768.99
+ 5120.41
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 5b850221-b527-4bd6-8c62-e94168cd6efa
+ - Mass Addition
+
+
+
+
+ - Perform mass addition of a list of items
+ - true
+ - 08894441-b02f-4060-97bc-c16752f15988
+ - Mass Addition
+ - Mass Addition
+
+
+
+
+ -
+ 2725
+ 5157
+ 135
+ 44
+
+ -
+ 2772
+ 5179
+
+
+
+
+
+ - 1
+ - Input values for mass addition.
+ - a42b93e8-b14c-46d7-be97-2ab804cb9f5b
+ - Input
+ - Input
+ - false
+ - 69eb57b9-6dde-4931-8c8d-a8c792f76175
+ - 1
+
+
+
+
+ -
+ 2727
+ 5159
+ 30
+ 40
+
+ -
+ 2743.5
+ 5179
+
+
+
+
+
+
+
+ - Result of mass addition
+ - 7415dfa4-dce2-4d2d-979a-97a046335867
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2787
+ 5159
+ 71
+ 20
+
+ -
+ 2824
+ 5169
+
+
+
+
+
+
+
+ - 1
+ - List of partial results
+ - 98ecaad7-8af1-428b-bef2-1180160fc1f0
+ - Partial Results
+ - Partial Results
+ - false
+ - 0
+
+
+
+
+ -
+ 2787
+ 5179
+ 71
+ 20
+
+ -
+ 2824
+ 5189
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - af7b7c8d-309a-4b1f-b7d3-7aea131dc644
+ - c5ec0fcd-b093-4db4-a17e-e93eede44c55
+ - 078cfa5d-a810-4461-afe5-3c7c6eff34df
+ - a1bef049-0c2f-4984-922a-a6675bf3c7b6
+ - 56534c49-1ea7-41c6-bf7c-258cabb3efce
+ - 08894441-b02f-4060-97bc-c16752f15988
+ - d50bca7c-1830-4d3f-beea-c5f699b9cc56
+ - ba7bf764-2896-4928-aa12-7eb4384bb962
+ - 2d610791-db23-4b32-8d5f-7acab4a83c30
+ - 0af17cec-270f-4e97-b701-db34056ae4c1
+ - b268e0d3-c479-441e-9ab8-752e8081f7ee
+ - 11
+ - 37fb66b0-e790-4304-86c0-b0774e5826b8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 5d29b998-e767-4908-9bd2-1eb4bcb4b5b9
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 9f7d1187-713e-4c8f-8c68-69b4d351ce97
+ - 1
+
+
+
+
+ -
+ 2718
+ 6400
+ 150
+ 150
+
+ -
+ 2718.338
+ 6400.525
+
+ - -1
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 323d251f-6e65-42e2-a0ed-7d56aeb82679
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ 3207
+ 106
+ 64
+
+ -
+ 2804
+ 3239
+
+
+
+
+
+ - Line start point
+ - 033ba4c7-c76f-4599-9c01-19bba34df740
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2742
+ 3209
+ 47
+ 20
+
+ -
+ 2767
+ 3219
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2ff90c21-1772-4e47-aaf4-ea115254e7f0
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 3229
+ 47
+ 20
+
+ -
+ 2767
+ 3239
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 1cd86242-dbcf-4e63-8da6-4f919402f0b0
+ - Length
+ - Length
+ - false
+ - d338e5bd-772c-41f3-a5f5-7918387c1c45
+ - 1
+
+
+
+
+ -
+ 2742
+ 3249
+ 47
+ 20
+
+ -
+ 2767
+ 3259
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d3d486df-c034-40b3-92f5-d2cbc827ee61
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 3209
+ 25
+ 60
+
+ -
+ 2833
+ 3239
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a0bba763-0936-4c88-a047-e5512c2ce288
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2696
+ 3881
+ 194
+ 28
+
+ -
+ 2796
+ 3895
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f49b0f3f-1a9e-4b0a-8ba4-1972b0dd6aa0
+ - true
+ - Variable O
+ - O
+ - true
+ - b5bfeeda-dfe6-46de-93d1-b762b9bdcfef
+ - 1
+
+
+
+
+ -
+ 2698
+ 3883
+ 14
+ 24
+
+ -
+ 2706.5
+ 3895
+
+
+
+
+
+
+
+ - Result of expression
+ - 472b6d60-4ab1-4635-80d5-f82deb8b31d1
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2879
+ 3883
+ 9
+ 24
+
+ -
+ 2885
+ 3895
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - faab667e-5a31-446d-9df5-62d1fb98dd78
+ - Panel
+
+ - false
+ - 1
+ - 472b6d60-4ab1-4635-80d5-f82deb8b31d1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2686
+ 3602
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2686.37
+ 3602.744
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b96f97f9-1163-4f69-8493-078db94ec775
+ - Relay
+ -
+ - false
+ - faab667e-5a31-446d-9df5-62d1fb98dd78
+ - 1
+
+
+
+
+ -
+ 2773
+ 3565
+ 40
+ 16
+
+ -
+ 2793
+ 3573
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b5bfeeda-dfe6-46de-93d1-b762b9bdcfef
+ - Relay
+ -
+ - false
+ - 2b7eac1d-f600-4eff-90ef-3e3caed8387d
+ - 1
+
+
+
+
+ -
+ 2773
+ 3928
+ 40
+ 16
+
+ -
+ 2793
+ 3936
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 7292bcf1-8a62-4adc-8f64-9825c537d2d0
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - b5bfeeda-dfe6-46de-93d1-b762b9bdcfef
+ - 1
+
+
+
+
+ -
+ 2718
+ 3400
+ 150
+ 150
+
+ -
+ 2718.469
+ 3400.921
+
+ - -1
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2cc54b6b-6a27-4347-ba1d-ad81725a8522
+ - Relay
+ -
+ - false
+ - 8942d533-358d-4c7c-8ea8-d0f51eda1186
+ - 1
+
+
+
+
+ -
+ 2773
+ 4207
+ 40
+ 16
+
+ -
+ 2793
+ 4215
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 8aa897df-9fca-48aa-ba32-8aa452f7a4b4
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2729
+ 4041
+ 128
+ 28
+
+ -
+ 2782
+ 4055
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 38be0e9d-f309-4b8f-af3e-b9d62a343f4b
+ - Values
+ - Values
+ - false
+ - a4dfcd0b-8729-4849-848c-1fc50ac8036a
+ - 1
+
+
+
+
+ -
+ 2731
+ 4043
+ 36
+ 24
+
+ -
+ 2750.5
+ 4055
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 61488cc3-2da0-4ac7-bc7f-fa1fbe09c96f
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 4043
+ 58
+ 24
+
+ -
+ 2827.5
+ 4055
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2b7eac1d-f600-4eff-90ef-3e3caed8387d
+ - Relay
+
+ - false
+ - 61488cc3-2da0-4ac7-bc7f-fa1fbe09c96f
+ - 1
+
+
+
+
+ -
+ 2773
+ 4007
+ 40
+ 16
+
+ -
+ 2793
+ 4015
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0430ac85-9cee-45ae-b7d9-c48cee3f94fd
+ - Relay
+
+ - false
+ - 2cc54b6b-6a27-4347-ba1d-ad81725a8522
+ - 1
+
+
+
+
+ -
+ 2773
+ 4148
+ 40
+ 16
+
+ -
+ 2793
+ 4156
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2b7eac1d-f600-4eff-90ef-3e3caed8387d
+ - 0430ac85-9cee-45ae-b7d9-c48cee3f94fd
+ - 8aa897df-9fca-48aa-ba32-8aa452f7a4b4
+ - d9082955-a981-4b4e-933c-24ee73910995
+ - 4
+ - e536f346-c2a7-4f67-9e54-01f53d06d92f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - d9082955-a981-4b4e-933c-24ee73910995
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2725
+ 4086
+ 136
+ 44
+
+ -
+ 2811
+ 4108
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 2209e8f6-d29f-4898-b25f-75ad5ac6a4c1
+ - Items
+ - Items
+ - false
+ - 0430ac85-9cee-45ae-b7d9-c48cee3f94fd
+ - 1
+
+
+
+
+ -
+ 2727
+ 4088
+ 69
+ 20
+
+ -
+ 2763
+ 4098
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 7c25248e-b563-4cbc-981d-3da4c896c520
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 4108
+ 69
+ 20
+
+ -
+ 2763
+ 4118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - a4dfcd0b-8729-4849-848c-1fc50ac8036a
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ 4088
+ 33
+ 20
+
+ -
+ 2844
+ 4098
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 454d43e5-0da1-468a-8ff2-28b0c62cfef7
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ 4108
+ 33
+ 20
+
+ -
+ 2844
+ 4118
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - d0db6d1f-005c-4599-ad03-e5e1298ca9b1
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2752
+ 3337
+ 82
+ 44
+
+ -
+ 2783
+ 3359
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - a7c0f6a4-a797-4838-87e6-82c06682c945
+ - A
+ - A
+ - true
+ - b5bfeeda-dfe6-46de-93d1-b762b9bdcfef
+ - 1
+
+
+
+
+ -
+ 2754
+ 3339
+ 14
+ 20
+
+ -
+ 2762.5
+ 3349
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b8274375-19f4-463b-b6af-b790219c7aa1
+ - B
+ - B
+ - true
+ - 37850090-1f89-414f-a475-cd78f7946709
+ - 1
+
+
+
+
+ -
+ 2754
+ 3359
+ 14
+ 20
+
+ -
+ 2762.5
+ 3369
+
+
+
+
+
+
+
+ - Result of multiplication
+ - d338e5bd-772c-41f3-a5f5-7918387c1c45
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2798
+ 3339
+ 34
+ 40
+
+ -
+ 2816.5
+ 3359
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 37850090-1f89-414f-a475-cd78f7946709
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 3
+
+ - 4.392015000
+
+
+
+
+ -
+ 2668
+ 3298
+ 250
+ 20
+
+ -
+ 2668.448
+ 3298.266
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 9530229d-2340-4f06-b2eb-2a75d4bc811f
+ - Move
+ - Move
+
+
+
+
+ -
+ 2724
+ 3057
+ 138
+ 44
+
+ -
+ 2792
+ 3079
+
+
+
+
+
+ - Base geometry
+ - cbc04e82-0fa2-4edb-b00f-2e9b04180780
+ - Geometry
+ - Geometry
+ - true
+ - d3d486df-c034-40b3-92f5-d2cbc827ee61
+ - 1
+
+
+
+
+ -
+ 2726
+ 3059
+ 51
+ 20
+
+ -
+ 2753
+ 3069
+
+
+
+
+
+
+
+ - Translation vector
+ - ddb0748b-16b8-4fa9-ac0b-79f9589796f4
+ - Motion
+ - Motion
+ - false
+ - 72da8a3b-f06f-4c67-a901-f3239a42f969
+ - 1
+
+
+
+
+ -
+ 2726
+ 3079
+ 51
+ 20
+
+ -
+ 2753
+ 3089
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 4ec3c04c-6c11-40c7-b64f-2c1b38ff8091
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 3059
+ 53
+ 20
+
+ -
+ 2835
+ 3069
+
+
+
+
+
+
+
+ - Transformation data
+ - 8a18efe7-39ea-43e6-9bd4-52e7ed245761
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 3079
+ 53
+ 20
+
+ -
+ 2835
+ 3089
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - e2b00b73-8601-4e61-9b3e-f5f0b1508ee6
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2715
+ 3122
+ 155
+ 64
+
+ -
+ 2816
+ 3154
+
+
+
+
+
+ - Vector {x} component
+ - 34ca1d26-2261-4d5f-a3f5-aa565900151d
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2717
+ 3124
+ 84
+ 20
+
+ -
+ 2768.5
+ 3134
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - db75ef34-bf52-428a-9d1b-9f5ea425b556
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ 3144
+ 84
+ 20
+
+ -
+ 2768.5
+ 3154
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.25
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 21c5928d-530c-4d29-9382-27c8ff957919
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ 3164
+ 84
+ 20
+
+ -
+ 2768.5
+ 3174
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 72da8a3b-f06f-4c67-a901-f3239a42f969
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 3124
+ 37
+ 30
+
+ -
+ 2851
+ 3139
+
+
+
+
+
+
+
+ - Vector length
+ - 027fab0b-cc90-4d8c-8d34-1ee90a8bef85
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 3154
+ 37
+ 30
+
+ -
+ 2851
+ 3169
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - de44256a-dcc4-411d-ab8e-801e3e5b7f4c
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ 1314
+ 106
+ 64
+
+ -
+ 2804
+ 1346
+
+
+
+
+
+ - Line start point
+ - 312b3f1e-5fcd-4186-b03e-c5cf7832cc4c
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2742
+ 1316
+ 47
+ 20
+
+ -
+ 2767
+ 1326
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 5e632b4d-7166-4fe9-a3f8-2181df0a605f
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 1336
+ 47
+ 20
+
+ -
+ 2767
+ 1346
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 8709268a-7baf-4253-8fa7-67fdd8931a49
+ - Length
+ - Length
+ - false
+ - abec785b-b813-4eb1-9fbd-4f32d4913be4
+ - 1
+
+
+
+
+ -
+ 2742
+ 1356
+ 47
+ 20
+
+ -
+ 2767
+ 1366
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 348e952f-1088-4682-886e-5d76f22ad3e5
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 1316
+ 25
+ 60
+
+ -
+ 2833
+ 1346
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d4ed5d4a-d298-4405-a775-4521ae76a432
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2696
+ 2071
+ 194
+ 28
+
+ -
+ 2796
+ 2085
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ac0d8d5a-2964-49a0-a1af-b52396917f07
+ - true
+ - Variable O
+ - O
+ - true
+ - 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9
+ - 1
+
+
+
+
+ -
+ 2698
+ 2073
+ 14
+ 24
+
+ -
+ 2706.5
+ 2085
+
+
+
+
+
+
+
+ - Result of expression
+ - 808a3975-faae-4c1b-bdd1-f6d4d1d16c00
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2879
+ 2073
+ 9
+ 24
+
+ -
+ 2885
+ 2085
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c109ca9d-992f-4bd4-b924-0618e3965a91
+ - Panel
+
+ - false
+ - 1
+ - 808a3975-faae-4c1b-bdd1-f6d4d1d16c00
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2686
+ 1794
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2686.01
+ 1794.322
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a5f4f2f3-0128-4d1e-b977-b0ea41c165d6
+ - Relay
+ -
+ - false
+ - c109ca9d-992f-4bd4-b924-0618e3965a91
+ - 1
+
+
+
+
+ -
+ 2773
+ 1755
+ 40
+ 16
+
+ -
+ 2793
+ 1763
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9
+ - Relay
+ -
+ - false
+ - 9ee72d91-37b8-41b1-8bca-bcd9e65ac134
+ - 1
+
+
+
+
+ -
+ 2773
+ 2118
+ 40
+ 16
+
+ -
+ 2793
+ 2126
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - e44c7642-1a03-40d7-a01a-4013a3aada4f
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9
+ - 1
+
+
+
+
+ -
+ 2718
+ 1592
+ 150
+ 150
+
+ -
+ 2718.11
+ 1592.499
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 621ed192-65a5-47c2-bea7-bb49e62ca50f
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2729
+ 2231
+ 128
+ 28
+
+ -
+ 2782
+ 2245
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 0e2f12cb-ff26-486b-a009-a93a18b6d6f3
+ - Values
+ - Values
+ - false
+ - 8e13dd26-c0ca-45f7-af32-418e4c287a28
+ - 1
+
+
+
+
+ -
+ 2731
+ 2233
+ 36
+ 24
+
+ -
+ 2750.5
+ 2245
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 84ee97f9-55ff-49bd-9ea6-2bc2f204db42
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 2233
+ 58
+ 24
+
+ -
+ 2827.5
+ 2245
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9ee72d91-37b8-41b1-8bca-bcd9e65ac134
+ - Relay
+
+ - false
+ - 84ee97f9-55ff-49bd-9ea6-2bc2f204db42
+ - 1
+
+
+
+
+ -
+ 2773
+ 2197
+ 40
+ 16
+
+ -
+ 2793
+ 2205
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bbbe02a5-84ef-4034-88e4-bf73e9c3e1d2
+ - Relay
+
+ - false
+ - ab1fe5bd-0f07-4370-a4e5-ecdae8e17a33
+ - 1
+
+
+
+
+ -
+ 2773
+ 2338
+ 40
+ 16
+
+ -
+ 2793
+ 2346
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 12b2226f-d9e4-480d-9339-4149780bb2b5
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2725
+ 2276
+ 136
+ 44
+
+ -
+ 2811
+ 2298
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - f5116c1c-cf52-485e-9803-c0da8d951bab
+ - Items
+ - Items
+ - false
+ - bbbe02a5-84ef-4034-88e4-bf73e9c3e1d2
+ - 1
+
+
+
+
+ -
+ 2727
+ 2278
+ 69
+ 20
+
+ -
+ 2763
+ 2288
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 8f401a9e-65bd-4a4d-a4fd-4d2cf6f2e2a6
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 2298
+ 69
+ 20
+
+ -
+ 2763
+ 2308
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 8e13dd26-c0ca-45f7-af32-418e4c287a28
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ 2278
+ 33
+ 20
+
+ -
+ 2844
+ 2288
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 8fc680d8-2533-458d-b069-8e903a92498b
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ 2298
+ 33
+ 20
+
+ -
+ 2844
+ 2308
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - ed0c152e-5762-43e2-bcf4-88122acfd185
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2752
+ 1444
+ 82
+ 44
+
+ -
+ 2783
+ 1466
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ffe09e8a-f4df-4de1-9eca-e9fea8e86970
+ - A
+ - A
+ - true
+ - 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9
+ - 1
+
+
+
+
+ -
+ 2754
+ 1446
+ 14
+ 20
+
+ -
+ 2762.5
+ 1456
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - c96bc9a9-52f7-4c84-8216-cac380bf49ec
+ - B
+ - B
+ - true
+ - 33246638-2889-44a2-85e3-36355e49ba0b
+ - 1
+
+
+
+
+ -
+ 2754
+ 1466
+ 14
+ 20
+
+ -
+ 2762.5
+ 1476
+
+
+
+
+
+
+
+ - Result of multiplication
+ - abec785b-b813-4eb1-9fbd-4f32d4913be4
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2798
+ 1446
+ 34
+ 40
+
+ -
+ 2816.5
+ 1466
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 33246638-2889-44a2-85e3-36355e49ba0b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 4
+
+ - 281.08106675
+
+
+
+
+ -
+ 2668
+ 1407
+ 250
+ 20
+
+ -
+ 2668.09
+ 1407.532
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 4e43ee84-cfc5-44e1-81d6-6e7393094915
+ - Move
+ - Move
+
+
+
+
+ -
+ 2724
+ 1164
+ 138
+ 44
+
+ -
+ 2792
+ 1186
+
+
+
+
+
+ - Base geometry
+ - 4e658f04-09ef-435c-91dc-3fa25bb00629
+ - Geometry
+ - Geometry
+ - true
+ - 348e952f-1088-4682-886e-5d76f22ad3e5
+ - 1
+
+
+
+
+ -
+ 2726
+ 1166
+ 51
+ 20
+
+ -
+ 2753
+ 1176
+
+
+
+
+
+
+
+ - Translation vector
+ - 59f061e6-7adb-47b6-9d64-5ae80914a824
+ - Motion
+ - Motion
+ - false
+ - a2fe01bf-0dff-44d3-ac95-33827ee7c8cf
+ - 1
+
+
+
+
+ -
+ 2726
+ 1186
+ 51
+ 20
+
+ -
+ 2753
+ 1196
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - c17c1c53-7107-43f9-9a8e-a08dfe3a4373
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 1166
+ 53
+ 20
+
+ -
+ 2835
+ 1176
+
+
+
+
+
+
+
+ - Transformation data
+ - b3ffe856-107f-45ec-9f08-ce00d53ca948
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 1186
+ 53
+ 20
+
+ -
+ 2835
+ 1196
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 16778078-54b1-49d7-90a1-c6d2c85b6093
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2715
+ 1229
+ 155
+ 64
+
+ -
+ 2816
+ 1261
+
+
+
+
+
+ - Vector {x} component
+ - e71b1d29-418c-4f3f-8568-920bd20b7c2f
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2717
+ 1231
+ 84
+ 20
+
+ -
+ 2768.5
+ 1241
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - caa705d0-0011-4ad1-b68c-c7173a761c9a
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ 1251
+ 84
+ 20
+
+ -
+ 2768.5
+ 1261
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 7e4224b6-da80-4634-ba6d-5bddd0fa8dcb
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ 1271
+ 84
+ 20
+
+ -
+ 2768.5
+ 1281
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - a2fe01bf-0dff-44d3-ac95-33827ee7c8cf
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 1231
+ 37
+ 30
+
+ -
+ 2851
+ 1246
+
+
+
+
+
+
+
+ - Vector length
+ - 236f1ead-8220-4699-91a9-b2abe1591fee
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 1261
+ 37
+ 30
+
+ -
+ 2851
+ 1276
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - de44256a-dcc4-411d-ab8e-801e3e5b7f4c
+ - d4ed5d4a-d298-4405-a775-4521ae76a432
+ - c109ca9d-992f-4bd4-b924-0618e3965a91
+ - a5f4f2f3-0128-4d1e-b977-b0ea41c165d6
+ - 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9
+ - e44c7642-1a03-40d7-a01a-4013a3aada4f
+ - 621ed192-65a5-47c2-bea7-bb49e62ca50f
+ - 9ee72d91-37b8-41b1-8bca-bcd9e65ac134
+ - bbbe02a5-84ef-4034-88e4-bf73e9c3e1d2
+ - 12b2226f-d9e4-480d-9339-4149780bb2b5
+ - ed0c152e-5762-43e2-bcf4-88122acfd185
+ - 33246638-2889-44a2-85e3-36355e49ba0b
+ - 4e43ee84-cfc5-44e1-81d6-6e7393094915
+ - 16778078-54b1-49d7-90a1-c6d2c85b6093
+ - ab1fe5bd-0f07-4370-a4e5-ecdae8e17a33
+ - 4623917e-5a49-4baf-8eb9-fa37fd17663e
+ - c429e491-9b09-4e42-9cc3-89526febb81c
+ - ff0900a1-1fb0-4922-98be-668cd9586dfb
+ - 995c54b5-8333-4669-b219-8e80e6ca829d
+ - e8057930-398e-4baf-a355-345906fe0d96
+ - a2c94e7d-3876-4f54-9250-0ae4fb156f8d
+ - 0e619394-c4fb-4962-a0e0-582190fafb60
+ - 562d0609-e0b8-4f53-b04a-a535ce8448d4
+ - 1c4bd00b-f41c-4877-89ae-c2cc8ba90668
+ - 24
+ - a4496ffe-00c7-4579-8a81-071fc31557b7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ab1fe5bd-0f07-4370-a4e5-ecdae8e17a33
+ - Relay
+ -
+ - false
+ - b5bfeeda-dfe6-46de-93d1-b762b9bdcfef
+ - 1
+
+
+
+
+ -
+ 2773
+ 2372
+ 40
+ 16
+
+ -
+ 2793
+ 2380
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ea5caa74-120d-474d-aea9-fbf7579d4271
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ -447
+ 106
+ 64
+
+ -
+ 2804
+ -415
+
+
+
+
+
+ - Line start point
+ - 9e3099d4-7481-4cc0-94bd-855d77b041dd
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2742
+ -445
+ 47
+ 20
+
+ -
+ 2767
+ -435
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 4bb69cea-0cad-42d1-8134-d8929069fc11
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -425
+ 47
+ 20
+
+ -
+ 2767
+ -415
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 9ae43c44-a660-4183-9af9-23b23be088b9
+ - Length
+ - Length
+ - false
+ - 6a65bfbc-9d61-4294-afbe-2336556797d5
+ - 1
+
+
+
+
+ -
+ 2742
+ -405
+ 47
+ 20
+
+ -
+ 2767
+ -395
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6e1b434b-7cd7-40a0-bcd5-bb106afa461a
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -445
+ 25
+ 60
+
+ -
+ 2833
+ -415
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c352aeb0-72b7-44d3-9c65-d0230dde1818
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2696
+ 242
+ 194
+ 28
+
+ -
+ 2796
+ 256
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 728c3793-a1d7-4ff1-9956-ffe24a720519
+ - true
+ - Variable O
+ - O
+ - true
+ - d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10
+ - 1
+
+
+
+
+ -
+ 2698
+ 244
+ 14
+ 24
+
+ -
+ 2706.5
+ 256
+
+
+
+
+
+
+
+ - Result of expression
+ - 8687c6ac-5099-42a1-99d3-34a71276da26
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2879
+ 244
+ 9
+ 24
+
+ -
+ 2885
+ 256
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - de9ed4d4-9093-4ffd-accf-2deca7d6a2be
+ - Panel
+
+ - false
+ - 1
+ - 8687c6ac-5099-42a1-99d3-34a71276da26
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2686
+ -48
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2686.355
+ -47.07108
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 26b7312b-e23e-4e90-ba2f-dc480b730c2b
+ - Relay
+ -
+ - false
+ - de9ed4d4-9093-4ffd-accf-2deca7d6a2be
+ - 1
+
+
+
+
+ -
+ 2773
+ -83
+ 40
+ 16
+
+ -
+ 2793
+ -75
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10
+ - Relay
+ -
+ - false
+ - a9a286a1-642d-4776-af84-5b5c374605b9
+ - 1
+
+
+
+
+ -
+ 2773
+ 295
+ 40
+ 16
+
+ -
+ 2793
+ 303
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 198dcd7a-2848-4df0-8964-fef8bf203990
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10
+ - 1
+
+
+
+
+ -
+ 2718
+ -251
+ 150
+ 150
+
+ -
+ 2718.454
+ -250.0285
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - a02b12c1-3025-40de-8891-96c64383b375
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2729
+ 387
+ 128
+ 28
+
+ -
+ 2782
+ 401
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 3465ba49-181a-4337-9f56-0e6335cef2d2
+ - Values
+ - Values
+ - false
+ - a324469d-6158-4d46-bf90-c17a33c8b76e
+ - 1
+
+
+
+
+ -
+ 2731
+ 389
+ 36
+ 24
+
+ -
+ 2750.5
+ 401
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 3150bcc2-e4ad-4b93-8e8a-63d0a5041fbe
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 389
+ 58
+ 24
+
+ -
+ 2827.5
+ 401
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a9a286a1-642d-4776-af84-5b5c374605b9
+ - Relay
+
+ - false
+ - 3150bcc2-e4ad-4b93-8e8a-63d0a5041fbe
+ - 1
+
+
+
+
+ -
+ 2773
+ 353
+ 40
+ 16
+
+ -
+ 2793
+ 361
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 500bb6ff-1ced-4d7a-9a29-12a430c8c509
+ - Relay
+
+ - false
+ - 81d1191d-5fef-4d57-a6d5-c38fb31431d5
+ - 1
+
+
+
+
+ -
+ 2773
+ 494
+ 40
+ 16
+
+ -
+ 2793
+ 502
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 36dc356c-a96c-4272-a9f3-61912f8ef63d
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2725
+ 432
+ 136
+ 44
+
+ -
+ 2811
+ 454
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 5e1d97e5-c3b3-42b3-a494-b51d49310864
+ - Items
+ - Items
+ - false
+ - 500bb6ff-1ced-4d7a-9a29-12a430c8c509
+ - 1
+
+
+
+
+ -
+ 2727
+ 434
+ 69
+ 20
+
+ -
+ 2763
+ 444
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - da81e744-8ff1-43af-b6df-9a7550ba5df9
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 454
+ 69
+ 20
+
+ -
+ 2763
+ 464
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - a324469d-6158-4d46-bf90-c17a33c8b76e
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ 434
+ 33
+ 20
+
+ -
+ 2844
+ 444
+
+
+
+
+
+
+
+ - Number of items replaced
+ - b156dd6a-2a60-4811-b032-64052012b554
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ 454
+ 33
+ 20
+
+ -
+ 2844
+ 464
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 66341b02-cc62-4140-abc2-c4f684445f77
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2752
+ -317
+ 82
+ 44
+
+ -
+ 2783
+ -295
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - d62e1f93-7cd8-4a14-8998-fc59ae1ba8e6
+ - A
+ - A
+ - true
+ - d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10
+ - 1
+
+
+
+
+ -
+ 2754
+ -315
+ 14
+ 20
+
+ -
+ 2762.5
+ -305
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 3f570f87-9291-4d04-a4ca-afa74aa08ab6
+ - B
+ - B
+ - true
+ - 25766c02-a999-4133-9620-798eca7d1ccb
+ - 1
+
+
+
+
+ -
+ 2754
+ -295
+ 14
+ 20
+
+ -
+ 2762.5
+ -285
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 6a65bfbc-9d61-4294-afbe-2336556797d5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2798
+ -315
+ 34
+ 40
+
+ -
+ 2816.5
+ -295
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 25766c02-a999-4133-9620-798eca7d1ccb
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 4
+
+ - 2233.52343808
+
+
+
+
+ -
+ 2668
+ -353
+ 250
+ 20
+
+ -
+ 2668.434
+ -352.6825
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 73ca63a7-e915-43b1-ab74-fa5a54209040
+ - Move
+ - Move
+
+
+
+
+ -
+ 2724
+ -597
+ 138
+ 44
+
+ -
+ 2792
+ -575
+
+
+
+
+
+ - Base geometry
+ - 56ef4704-3753-48c5-90cc-01203b3dbdb3
+ - Geometry
+ - Geometry
+ - true
+ - 6e1b434b-7cd7-40a0-bcd5-bb106afa461a
+ - 1
+
+
+
+
+ -
+ 2726
+ -595
+ 51
+ 20
+
+ -
+ 2753
+ -585
+
+
+
+
+
+
+
+ - Translation vector
+ - 1811f9f7-70e1-4ff6-a60a-6e5e85119586
+ - Motion
+ - Motion
+ - false
+ - 439e455b-11ca-4eb1-8de9-abe23f42f048
+ - 1
+
+
+
+
+ -
+ 2726
+ -575
+ 51
+ 20
+
+ -
+ 2753
+ -565
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 4e9c218a-a4d8-4359-b2b4-e7fec76f23f3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -595
+ 53
+ 20
+
+ -
+ 2835
+ -585
+
+
+
+
+
+
+
+ - Transformation data
+ - 3751f6ce-d48d-483e-ba22-45c2fb363b7f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -575
+ 53
+ 20
+
+ -
+ 2835
+ -565
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - b4772ea8-de98-46eb-ae5e-6fa11eb91958
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2715
+ -532
+ 155
+ 64
+
+ -
+ 2816
+ -500
+
+
+
+
+
+ - Vector {x} component
+ - 6cd90cdb-1ed2-4c23-ae2f-aae4797a6aae
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2717
+ -530
+ 84
+ 20
+
+ -
+ 2768.5
+ -520
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 8f07d941-f1d5-47bf-bbd9-df33017f53a5
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ -510
+ 84
+ 20
+
+ -
+ 2768.5
+ -500
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.75
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 6a064a39-03b9-4b4f-9409-38ab4f71eb62
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ -490
+ 84
+ 20
+
+ -
+ 2768.5
+ -480
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 439e455b-11ca-4eb1-8de9-abe23f42f048
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ -530
+ 37
+ 30
+
+ -
+ 2851
+ -515
+
+
+
+
+
+
+
+ - Vector length
+ - daeb78c4-b065-45ae-a1b8-7177a6760522
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ -500
+ 37
+ 30
+
+ -
+ 2851
+ -485
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ea5caa74-120d-474d-aea9-fbf7579d4271
+ - c352aeb0-72b7-44d3-9c65-d0230dde1818
+ - de9ed4d4-9093-4ffd-accf-2deca7d6a2be
+ - 26b7312b-e23e-4e90-ba2f-dc480b730c2b
+ - d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10
+ - 198dcd7a-2848-4df0-8964-fef8bf203990
+ - a02b12c1-3025-40de-8891-96c64383b375
+ - a9a286a1-642d-4776-af84-5b5c374605b9
+ - 500bb6ff-1ced-4d7a-9a29-12a430c8c509
+ - 36dc356c-a96c-4272-a9f3-61912f8ef63d
+ - 66341b02-cc62-4140-abc2-c4f684445f77
+ - 25766c02-a999-4133-9620-798eca7d1ccb
+ - 73ca63a7-e915-43b1-ab74-fa5a54209040
+ - b4772ea8-de98-46eb-ae5e-6fa11eb91958
+ - 81d1191d-5fef-4d57-a6d5-c38fb31431d5
+ - 24508471-4615-4a82-a43c-a3fb8ff2c93b
+ - 964343c3-3dda-4f08-a87d-9fdc0bc8aa38
+ - df9156dc-99ad-49d2-9155-e2992efed591
+ - 7bf39698-e931-4e9d-b356-45343bde39ac
+ - 5e6a71c9-068b-4c80-8329-8dc78e13758c
+ - 71452f07-0445-4149-bae3-e638f6b09057
+ - bf27f44e-23ad-4bc1-b47e-9f177aee7784
+ - 270675ac-b627-4eee-8542-de839b52b43a
+ - 23
+ - 2ba2f19d-b635-428c-b738-109500b35fdd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 81d1191d-5fef-4d57-a6d5-c38fb31431d5
+ - Relay
+ -
+ - false
+ - 36ed1261-6cd4-4ab9-98e7-3351e9a6d7b9
+ - 1
+
+
+
+
+ -
+ 2773
+ 528
+ 40
+ 16
+
+ -
+ 2793
+ 536
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 69e3754f-2f0c-4466-abfb-bec612231828
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ -2253
+ 106
+ 64
+
+ -
+ 2804
+ -2221
+
+
+
+
+
+ - Line start point
+ - 0c0efbaa-5ccf-41f8-ac51-ea41dd755d93
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2742
+ -2251
+ 47
+ 20
+
+ -
+ 2767
+ -2241
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 36ebde8f-db11-47e8-a841-79022aff92ae
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2231
+ 47
+ 20
+
+ -
+ 2767
+ -2221
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e48d810d-e480-46d6-929c-6d5f72e1586f
+ - Length
+ - Length
+ - false
+ - 8164ccfe-5683-4e07-8df6-5b8d6a418819
+ - 1
+
+
+
+
+ -
+ 2742
+ -2211
+ 47
+ 20
+
+ -
+ 2767
+ -2201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 18f9f56a-0610-49d9-b046-4d3ed4efc2fd
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -2251
+ 25
+ 60
+
+ -
+ 2833
+ -2221
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 6ad2f437-19bb-474f-9dea-bf46ef546f5a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2696
+ -1560
+ 194
+ 28
+
+ -
+ 2796
+ -1546
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 183bc78a-171a-47dd-a9d5-d7d2e9caacd6
+ - true
+ - Variable O
+ - O
+ - true
+ - fd5f29c0-0d8b-438b-8946-5f1f2512c9e9
+ - 1
+
+
+
+
+ -
+ 2698
+ -1558
+ 14
+ 24
+
+ -
+ 2706.5
+ -1546
+
+
+
+
+
+
+
+ - Result of expression
+ - 25aac5e9-f562-4d58-ae2e-11e4f61149af
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2879
+ -1558
+ 9
+ 24
+
+ -
+ 2885
+ -1546
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e31dca17-1152-44b2-a6d6-ab0c5f9612ad
+ - Panel
+
+ - false
+ - 1
+ - 25aac5e9-f562-4d58-ae2e-11e4f61149af
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2686
+ -1852
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2686.486
+ -1851.444
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 14a184fd-76f9-4fe1-81bb-7b4e96bef18a
+ - Relay
+ -
+ - false
+ - e31dca17-1152-44b2-a6d6-ab0c5f9612ad
+ - 1
+
+
+
+
+ -
+ 2773
+ -1888
+ 40
+ 16
+
+ -
+ 2793
+ -1880
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fd5f29c0-0d8b-438b-8946-5f1f2512c9e9
+ - Relay
+ -
+ - false
+ - 3793a471-f616-4c63-b134-a75a817ba78b
+ - 1
+
+
+
+
+ -
+ 2773
+ -1514
+ 40
+ 16
+
+ -
+ 2793
+ -1506
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c73efde9-e927-40a1-ad03-a0504e6cc26b
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - fd5f29c0-0d8b-438b-8946-5f1f2512c9e9
+ - 1
+
+
+
+
+ -
+ 2718
+ -2054
+ 150
+ 150
+
+ -
+ 2718.585
+ -2053.267
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - d02275ae-85d6-4f5c-9eeb-9082172fbac7
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2729
+ -1419
+ 128
+ 28
+
+ -
+ 2782
+ -1405
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 8e2c117e-9667-4950-80e0-61d10dcde25c
+ - Values
+ - Values
+ - false
+ - 05620456-096f-4f4a-a0ed-0d14f3ffcc7f
+ - 1
+
+
+
+
+ -
+ 2731
+ -1417
+ 36
+ 24
+
+ -
+ 2750.5
+ -1405
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 3fb980fe-48e3-43a8-beb7-ecd7326ec261
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ -1417
+ 58
+ 24
+
+ -
+ 2827.5
+ -1405
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3793a471-f616-4c63-b134-a75a817ba78b
+ - Relay
+
+ - false
+ - 3fb980fe-48e3-43a8-beb7-ecd7326ec261
+ - 1
+
+
+
+
+ -
+ 2773
+ -1453
+ 40
+ 16
+
+ -
+ 2793
+ -1445
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7b108ae5-e1c0-4ec0-97ef-fb38689ad176
+ - Relay
+
+ - false
+ - c4ede6db-e8f3-457d-bc74-bf9c19ea9684
+ - 1
+
+
+
+
+ -
+ 2773
+ -1312
+ 40
+ 16
+
+ -
+ 2793
+ -1304
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - accbc758-db22-4a7f-8d0b-2f51ac729d98
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2725
+ -1374
+ 136
+ 44
+
+ -
+ 2811
+ -1352
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 66d94b7a-b015-4535-b344-c1a719e7e2bd
+ - Items
+ - Items
+ - false
+ - 7b108ae5-e1c0-4ec0-97ef-fb38689ad176
+ - 1
+
+
+
+
+ -
+ 2727
+ -1372
+ 69
+ 20
+
+ -
+ 2763
+ -1362
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - a0bd88c6-ce2e-4a8a-b587-3d662fca1143
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -1352
+ 69
+ 20
+
+ -
+ 2763
+ -1342
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 05620456-096f-4f4a-a0ed-0d14f3ffcc7f
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -1372
+ 33
+ 20
+
+ -
+ 2844
+ -1362
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 15bd296c-19d9-4428-ab85-cb6807164166
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -1352
+ 33
+ 20
+
+ -
+ 2844
+ -1342
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 01fce176-a5af-465a-a3a1-bd8b5669cedd
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2752
+ -2123
+ 82
+ 44
+
+ -
+ 2783
+ -2101
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - e1a4444f-ad78-487d-b643-022051c04990
+ - A
+ - A
+ - true
+ - fd5f29c0-0d8b-438b-8946-5f1f2512c9e9
+ - 1
+
+
+
+
+ -
+ 2754
+ -2121
+ 14
+ 20
+
+ -
+ 2762.5
+ -2111
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - c974df28-e4a4-4799-9a9c-41662c7997fb
+ - B
+ - B
+ - true
+ - 5baf6a8d-c926-4a1e-98f2-6d8c1d7684f4
+ - 1
+
+
+
+
+ -
+ 2754
+ -2101
+ 14
+ 20
+
+ -
+ 2762.5
+ -2091
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 8164ccfe-5683-4e07-8df6-5b8d6a418819
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2798
+ -2121
+ 34
+ 40
+
+ -
+ 2816.5
+ -2101
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 5baf6a8d-c926-4a1e-98f2-6d8c1d7684f4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 20817.0283827
+
+
+
+
+ -
+ 2668
+ -2156
+ 250
+ 20
+
+ -
+ 2668.565
+ -2155.921
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - e34b5c17-64c8-4402-bb93-4074d083a9ce
+ - Move
+ - Move
+
+
+
+
+ -
+ 2724
+ -2403
+ 138
+ 44
+
+ -
+ 2792
+ -2381
+
+
+
+
+
+ - Base geometry
+ - f1446d15-38ce-4a36-968e-3821aca1a619
+ - Geometry
+ - Geometry
+ - true
+ - 18f9f56a-0610-49d9-b046-4d3ed4efc2fd
+ - 1
+
+
+
+
+ -
+ 2726
+ -2401
+ 51
+ 20
+
+ -
+ 2753
+ -2391
+
+
+
+
+
+
+
+ - Translation vector
+ - f85f23c7-18ff-463b-8bc1-80ad8cb7fe71
+ - Motion
+ - Motion
+ - false
+ - 036265d3-49d9-4fb0-8167-6a39c2ed68bc
+ - 1
+
+
+
+
+ -
+ 2726
+ -2381
+ 51
+ 20
+
+ -
+ 2753
+ -2371
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 96991c77-8125-4887-b56d-a51f89a5adc1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -2401
+ 53
+ 20
+
+ -
+ 2835
+ -2391
+
+
+
+
+
+
+
+ - Transformation data
+ - e794370c-8cf5-47e8-be70-b43c98c359fb
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -2381
+ 53
+ 20
+
+ -
+ 2835
+ -2371
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 46d1d2b3-fbd8-4b4e-af01-a2448df76d38
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2715
+ -2338
+ 155
+ 64
+
+ -
+ 2816
+ -2306
+
+
+
+
+
+ - Vector {x} component
+ - c2e3da42-148c-4554-93cb-620f503a0de6
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2717
+ -2336
+ 84
+ 20
+
+ -
+ 2768.5
+ -2326
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 38a6dc1b-643b-4aa4-ad42-0e9dbc93f48c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ -2316
+ 84
+ 20
+
+ -
+ 2768.5
+ -2306
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 3ec97b01-da22-48ae-9a2b-5a3e6d850532
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2717
+ -2296
+ 84
+ 20
+
+ -
+ 2768.5
+ -2286
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 036265d3-49d9-4fb0-8167-6a39c2ed68bc
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ -2336
+ 37
+ 30
+
+ -
+ 2851
+ -2321
+
+
+
+
+
+
+
+ - Vector length
+ - 89a3f73c-188f-460a-bc9b-dc529f0cefa6
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ -2306
+ 37
+ 30
+
+ -
+ 2851
+ -2291
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 69e3754f-2f0c-4466-abfb-bec612231828
+ - 6ad2f437-19bb-474f-9dea-bf46ef546f5a
+ - e31dca17-1152-44b2-a6d6-ab0c5f9612ad
+ - 14a184fd-76f9-4fe1-81bb-7b4e96bef18a
+ - fd5f29c0-0d8b-438b-8946-5f1f2512c9e9
+ - c73efde9-e927-40a1-ad03-a0504e6cc26b
+ - d02275ae-85d6-4f5c-9eeb-9082172fbac7
+ - 3793a471-f616-4c63-b134-a75a817ba78b
+ - 7b108ae5-e1c0-4ec0-97ef-fb38689ad176
+ - accbc758-db22-4a7f-8d0b-2f51ac729d98
+ - 01fce176-a5af-465a-a3a1-bd8b5669cedd
+ - 5baf6a8d-c926-4a1e-98f2-6d8c1d7684f4
+ - e34b5c17-64c8-4402-bb93-4074d083a9ce
+ - 46d1d2b3-fbd8-4b4e-af01-a2448df76d38
+ - c4ede6db-e8f3-457d-bc74-bf9c19ea9684
+ - ee522ce1-b431-4566-add9-3979a9ab2672
+ - cc822037-e998-40ef-b314-cebccaa58d0f
+ - 4e55916e-6a5a-44ec-b22f-43102b734bb9
+ - fdd729ab-4118-45f2-8236-51dc69417454
+ - a0a24f49-2328-4bff-a809-2b88c32a0d50
+ - c1beb210-89f4-4872-a882-d3bea5edb540
+ - ef73682f-b60c-48ce-82de-c7de410bb746
+ - c01c4d44-05ec-478f-b965-a8feee784c17
+ - 23
+ - b9d58bb5-d1d7-4428-8150-b68e594acdc9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c4ede6db-e8f3-457d-bc74-bf9c19ea9684
+ - Relay
+ -
+ - false
+ - d66c6650-7c28-4aa2-8d0d-8e6ce1f88a10
+ - 1
+
+
+
+
+ -
+ 2773
+ -1278
+ 40
+ 16
+
+ -
+ 2793
+ -1270
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 4623917e-5a49-4baf-8eb9-fa37fd17663e
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2740
+ 1506
+ 106
+ 64
+
+ -
+ 2804
+ 1538
+
+
+
+
+
+ - Line start point
+ - 08692694-8055-49ce-b8ec-1a58833659e8
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 1508
+ 47
+ 20
+
+ -
+ 2767
+ 1518
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ -2.12109391180815
+ 1.99985794027194
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - b5dcd30e-7f5c-437c-9329-cacd8e833e04
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 1528
+ 47
+ 20
+
+ -
+ 2767
+ 1538
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0.0625
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - c0f08e8a-bf3b-46ee-85e2-042ba29a4c7b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 1548
+ 47
+ 20
+
+ -
+ 2767
+ 1558
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - e7c6e16c-7a82-45a2-88b1-613336294b93
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 1508
+ 25
+ 60
+
+ -
+ 2833
+ 1538
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 0b7569f6-6472-469c-b692-3beefb2964f0
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2749
+ -4121
+ 106
+ 64
+
+ -
+ 2813
+ -4089
+
+
+
+
+
+ - Line start point
+ - 7d260e58-958e-40bf-9918-29e621dc3053
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2751
+ -4119
+ 47
+ 20
+
+ -
+ 2776
+ -4109
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - a8a29fbd-2889-4c20-b6e0-be8f223fdc67
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2751
+ -4099
+ 47
+ 20
+
+ -
+ 2776
+ -4089
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - ff4f7c04-e104-4830-b65c-1a52970fd429
+ - Length
+ - Length
+ - false
+ - bcb80bc7-39c2-4729-a165-aa32894f4984
+ - 1
+
+
+
+
+ -
+ 2751
+ -4079
+ 47
+ 20
+
+ -
+ 2776
+ -4069
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - aa9c616b-4bcb-41cb-a3af-bff4b028aa9e
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2828
+ -4119
+ 25
+ 60
+
+ -
+ 2842
+ -4089
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8fd32b88-7efb-47fa-a8f4-a13f3b2189ac
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2705
+ -3428
+ 194
+ 28
+
+ -
+ 2805
+ -3414
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7f1b52f4-7289-41c3-abe3-f1a6a1934212
+ - true
+ - Variable O
+ - O
+ - true
+ - 69f7f917-06e5-4873-bafd-ca04a7cd4193
+ - 1
+
+
+
+
+ -
+ 2707
+ -3426
+ 14
+ 24
+
+ -
+ 2715.5
+ -3414
+
+
+
+
+
+
+
+ - Result of expression
+ - efaa5904-9182-4b75-98b4-7da29efb0601
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2888
+ -3426
+ 9
+ 24
+
+ -
+ 2894
+ -3414
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 32df0578-4700-4cac-a4cf-d3274d7d0c94
+ - Panel
+
+ - false
+ - 1
+ - efaa5904-9182-4b75-98b4-7da29efb0601
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2695
+ -3721
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2695.848
+ -3720.535
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b5c795c2-b053-494a-b661-7cd6fadd688c
+ - Relay
+ -
+ - false
+ - 32df0578-4700-4cac-a4cf-d3274d7d0c94
+ - 1
+
+
+
+
+ -
+ 2782
+ -3763
+ 40
+ 16
+
+ -
+ 2802
+ -3755
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 69f7f917-06e5-4873-bafd-ca04a7cd4193
+ - Relay
+ -
+ - false
+ - 0901752b-6236-4025-9090-370b7e8b948c
+ - 1
+
+
+
+
+ -
+ 2782
+ -3400
+ 40
+ 16
+
+ -
+ 2802
+ -3392
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 78c14f2d-a52b-46e7-be98-08a2a8589eca
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 69f7f917-06e5-4873-bafd-ca04a7cd4193
+ - 1
+
+
+
+
+ -
+ 2727
+ -3923
+ 150
+ 150
+
+ -
+ 2727.947
+ -3922.359
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 257edb63-bf2a-40b1-9768-7cc6b893b2d3
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2738
+ -3287
+ 128
+ 28
+
+ -
+ 2791
+ -3273
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - c41e244c-25c2-4031-a43c-cb89184b6920
+ - Values
+ - Values
+ - false
+ - 709189ce-92c5-40c3-8d8e-64649f3ef812
+ - 1
+
+
+
+
+ -
+ 2740
+ -3285
+ 36
+ 24
+
+ -
+ 2759.5
+ -3273
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 9a703ffe-a5ae-44e4-916f-2984dac10f0e
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2806
+ -3285
+ 58
+ 24
+
+ -
+ 2836.5
+ -3273
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0901752b-6236-4025-9090-370b7e8b948c
+ - Relay
+
+ - false
+ - 9a703ffe-a5ae-44e4-916f-2984dac10f0e
+ - 1
+
+
+
+
+ -
+ 2782
+ -3321
+ 40
+ 16
+
+ -
+ 2802
+ -3313
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 063e2f96-07ae-4f4d-828d-e224d4a7a6c5
+ - Relay
+
+ - false
+ - 2e64d0f2-e994-4fbf-9700-36f985bd6ceb
+ - 1
+
+
+
+
+ -
+ 2782
+ -3180
+ 40
+ 16
+
+ -
+ 2802
+ -3172
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 7614be02-621d-44df-bb26-739e96fe1b4e
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2734
+ -3242
+ 136
+ 44
+
+ -
+ 2820
+ -3220
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 91400251-5f94-4de5-a43d-8ae01bfb2a3d
+ - Items
+ - Items
+ - false
+ - 063e2f96-07ae-4f4d-828d-e224d4a7a6c5
+ - 1
+
+
+
+
+ -
+ 2736
+ -3240
+ 69
+ 20
+
+ -
+ 2772
+ -3230
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - e3af615b-407f-40ef-ba94-bd128a771b7c
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -3220
+ 69
+ 20
+
+ -
+ 2772
+ -3210
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 709189ce-92c5-40c3-8d8e-64649f3ef812
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -3240
+ 33
+ 20
+
+ -
+ 2853
+ -3230
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 0bb9cf33-e8c9-4f31-b1f8-96374152771c
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -3220
+ 33
+ 20
+
+ -
+ 2853
+ -3210
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 0f63c1a6-3d92-41e1-a707-b1e82dcd5a6d
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2761
+ -3991
+ 82
+ 44
+
+ -
+ 2792
+ -3969
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ba85781a-0e27-4641-8864-f90e9871a584
+ - A
+ - A
+ - true
+ - 69f7f917-06e5-4873-bafd-ca04a7cd4193
+ - 1
+
+
+
+
+ -
+ 2763
+ -3989
+ 14
+ 20
+
+ -
+ 2771.5
+ -3979
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 7b090e1a-8677-48e5-bac8-7caeb701dd33
+ - B
+ - B
+ - true
+ - 9aa7cd1c-c913-4fbc-882e-f2dd498f032e
+ - 1
+
+
+
+
+ -
+ 2763
+ -3969
+ 14
+ 20
+
+ -
+ 2771.5
+ -3959
+
+
+
+
+
+
+
+ - Result of multiplication
+ - bcb80bc7-39c2-4729-a165-aa32894f4984
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -3989
+ 34
+ 40
+
+ -
+ 2825.5
+ -3969
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 9aa7cd1c-c913-4fbc-882e-f2dd498f032e
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 56336.1968128
+
+
+
+
+ -
+ 2675
+ -4037
+ 250
+ 20
+
+ -
+ 2675.594
+ -4036.676
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 54af40f3-d3ff-4e72-99f9-e8791983ca7c
+ - Move
+ - Move
+
+
+
+
+ -
+ 2733
+ -4269
+ 138
+ 44
+
+ -
+ 2801
+ -4247
+
+
+
+
+
+ - Base geometry
+ - 0993e88e-e926-4475-99f6-8a2a5ff4a3cd
+ - Geometry
+ - Geometry
+ - true
+ - aa9c616b-4bcb-41cb-a3af-bff4b028aa9e
+ - 1
+
+
+
+
+ -
+ 2735
+ -4267
+ 51
+ 20
+
+ -
+ 2762
+ -4257
+
+
+
+
+
+
+
+ - Translation vector
+ - 34bac046-ba3e-4a26-a7b9-2eeccd59c4ca
+ - Motion
+ - Motion
+ - false
+ - d0af0b70-7a10-4efc-861e-f693970d649a
+ - 1
+
+
+
+
+ -
+ 2735
+ -4247
+ 51
+ 20
+
+ -
+ 2762
+ -4237
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 531dc426-bfb6-4210-89d1-a169cc14774b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -4267
+ 53
+ 20
+
+ -
+ 2844
+ -4257
+
+
+
+
+
+
+
+ - Transformation data
+ - bc29425a-ebb6-4b3f-a320-a069c8375dcf
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -4247
+ 53
+ 20
+
+ -
+ 2844
+ -4237
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - bb72c4af-6e6f-4387-a96f-c98c8a906b94
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2724
+ -4206
+ 155
+ 64
+
+ -
+ 2825
+ -4174
+
+
+
+
+
+ - Vector {x} component
+ - 708a922f-52df-441d-8de2-c8a563cf1e23
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2726
+ -4204
+ 84
+ 20
+
+ -
+ 2777.5
+ -4194
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 8743cdb2-1944-4150-9408-e63ee018d7e0
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2726
+ -4184
+ 84
+ 20
+
+ -
+ 2777.5
+ -4174
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.25
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 752d1367-8a57-49c2-8510-3591e2d3aa61
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2726
+ -4164
+ 84
+ 20
+
+ -
+ 2777.5
+ -4154
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - d0af0b70-7a10-4efc-861e-f693970d649a
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -4204
+ 37
+ 30
+
+ -
+ 2860
+ -4189
+
+
+
+
+
+
+
+ - Vector length
+ - b4ab877f-ff21-4e50-ad68-aa393fc59fe3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -4174
+ 37
+ 30
+
+ -
+ 2860
+ -4159
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0b7569f6-6472-469c-b692-3beefb2964f0
+ - 8fd32b88-7efb-47fa-a8f4-a13f3b2189ac
+ - 32df0578-4700-4cac-a4cf-d3274d7d0c94
+ - b5c795c2-b053-494a-b661-7cd6fadd688c
+ - 69f7f917-06e5-4873-bafd-ca04a7cd4193
+ - 78c14f2d-a52b-46e7-be98-08a2a8589eca
+ - 257edb63-bf2a-40b1-9768-7cc6b893b2d3
+ - 0901752b-6236-4025-9090-370b7e8b948c
+ - 063e2f96-07ae-4f4d-828d-e224d4a7a6c5
+ - 7614be02-621d-44df-bb26-739e96fe1b4e
+ - 0f63c1a6-3d92-41e1-a707-b1e82dcd5a6d
+ - 9aa7cd1c-c913-4fbc-882e-f2dd498f032e
+ - 54af40f3-d3ff-4e72-99f9-e8791983ca7c
+ - bb72c4af-6e6f-4387-a96f-c98c8a906b94
+ - 2e64d0f2-e994-4fbf-9700-36f985bd6ceb
+ - b5df053c-cc37-42c3-ab32-579385c79137
+ - 3488d1f0-a79b-400e-a50b-1eddfbbd2e40
+ - 04bbc5bd-f892-4d59-b824-de2d4234e6ff
+ - d92f5405-c7c9-45d0-bee1-e1d4373026b9
+ - 86039917-a2e2-470f-8e07-bc4121e5e0ef
+ - 33763df5-c277-4f3a-9004-08657d703d20
+ - 21
+ - 16d222da-07fa-4d14-b211-71581a963f8e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2e64d0f2-e994-4fbf-9700-36f985bd6ceb
+ - Relay
+ -
+ - false
+ - fd5f29c0-0d8b-438b-8946-5f1f2512c9e9
+ - 1
+
+
+
+
+ -
+ 2782
+ -3146
+ 40
+ 16
+
+ -
+ 2802
+ -3138
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2ea98e53-c291-4c32-9159-d5fb19a496f3
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2749
+ -5946
+ 106
+ 64
+
+ -
+ 2813
+ -5914
+
+
+
+
+
+ - Line start point
+ - fd927f02-6649-4143-a0a6-4cede009e506
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2751
+ -5944
+ 47
+ 20
+
+ -
+ 2776
+ -5934
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 70bfd479-ba84-4bf4-8caf-56bcd3564272
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2751
+ -5924
+ 47
+ 20
+
+ -
+ 2776
+ -5914
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 7777a8f5-9637-4868-86d2-74b674e1d008
+ - Length
+ - Length
+ - false
+ - f98e2b1a-9c52-4364-9b5f-33aca2d97c60
+ - 1
+
+
+
+
+ -
+ 2751
+ -5904
+ 47
+ 20
+
+ -
+ 2776
+ -5894
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 5387c90a-e93b-4683-85c6-110d8c0fd21c
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2828
+ -5944
+ 25
+ 60
+
+ -
+ 2842
+ -5914
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3c20f7f6-645e-4d00-a4a3-5b92d14cf4df
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2705
+ -5272
+ 194
+ 28
+
+ -
+ 2805
+ -5258
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - dbc68b9d-3df2-4ee0-9187-332c53523136
+ - true
+ - Variable O
+ - O
+ - true
+ - 46960412-a634-4758-89c5-b7aa91fe2f1f
+ - 1
+
+
+
+
+ -
+ 2707
+ -5270
+ 14
+ 24
+
+ -
+ 2715.5
+ -5258
+
+
+
+
+
+
+
+ - Result of expression
+ - beba95fe-b88b-493c-906f-926cb6bb0ebe
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2888
+ -5270
+ 9
+ 24
+
+ -
+ 2894
+ -5258
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4caaa2b5-d716-4901-a952-4099fa998e31
+ - Panel
+
+ - false
+ - 1
+ - beba95fe-b88b-493c-906f-926cb6bb0ebe
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2695
+ -5545
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2695.714
+ -5544.797
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fd0bd67e-68f9-46e9-a1b6-440c80b784a1
+ - Relay
+ -
+ - false
+ - 4caaa2b5-d716-4901-a952-4099fa998e31
+ - 1
+
+
+
+
+ -
+ 2782
+ -5588
+ 40
+ 16
+
+ -
+ 2802
+ -5580
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 46960412-a634-4758-89c5-b7aa91fe2f1f
+ - Relay
+ -
+ - false
+ - 68ecc26b-e785-469e-8f81-f893c6e34388
+ - 1
+
+
+
+
+ -
+ 2782
+ -5225
+ 40
+ 16
+
+ -
+ 2802
+ -5217
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 44ffcdf8-7e14-4b7d-8ae7-6c1792cb2d9b
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 46960412-a634-4758-89c5-b7aa91fe2f1f
+ - 1
+
+
+
+
+ -
+ 2727
+ -5747
+ 150
+ 150
+
+ -
+ 2727.813
+ -5746.62
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - db144b0d-67c2-49f2-8698-55f8c4324b2d
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2738
+ -5112
+ 128
+ 28
+
+ -
+ 2791
+ -5098
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 8555fb39-7ed6-47e1-add4-7e7238451e56
+ - Values
+ - Values
+ - false
+ - 02c9233a-7f33-41b1-ae91-57617cf359a4
+ - 1
+
+
+
+
+ -
+ 2740
+ -5110
+ 36
+ 24
+
+ -
+ 2759.5
+ -5098
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - f774ddbc-82b5-4ccd-a768-6dc238642e79
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2806
+ -5110
+ 58
+ 24
+
+ -
+ 2836.5
+ -5098
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 68ecc26b-e785-469e-8f81-f893c6e34388
+ - Relay
+
+ - false
+ - f774ddbc-82b5-4ccd-a768-6dc238642e79
+ - 1
+
+
+
+
+ -
+ 2782
+ -5146
+ 40
+ 16
+
+ -
+ 2802
+ -5138
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5be0ac6f-f9f3-4951-9a53-8e1e6c323367
+ - Relay
+
+ - false
+ - 56efe341-a041-43c7-a346-024f7fdd9345
+ - 1
+
+
+
+
+ -
+ 2782
+ -5005
+ 40
+ 16
+
+ -
+ 2802
+ -4997
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - b4441e4c-5cf2-4d1f-8249-265dd4e3c699
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2734
+ -5067
+ 136
+ 44
+
+ -
+ 2820
+ -5045
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - b6181f63-983b-4ce5-a871-2783f34487d8
+ - Items
+ - Items
+ - false
+ - 5be0ac6f-f9f3-4951-9a53-8e1e6c323367
+ - 1
+
+
+
+
+ -
+ 2736
+ -5065
+ 69
+ 20
+
+ -
+ 2772
+ -5055
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 36a778c6-6279-42a1-90b3-03616ce675ec
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -5045
+ 69
+ 20
+
+ -
+ 2772
+ -5035
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 02c9233a-7f33-41b1-ae91-57617cf359a4
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -5065
+ 33
+ 20
+
+ -
+ 2853
+ -5055
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 639ce92e-0221-46b4-8d8b-02235e648709
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -5045
+ 33
+ 20
+
+ -
+ 2853
+ -5035
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 74628273-bd20-4e69-9208-3c3d3db2410f
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2761
+ -5816
+ 82
+ 44
+
+ -
+ 2792
+ -5794
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 7f926712-7796-4427-81cd-6ac90dfcff1b
+ - A
+ - A
+ - true
+ - 46960412-a634-4758-89c5-b7aa91fe2f1f
+ - 1
+
+
+
+
+ -
+ 2763
+ -5814
+ 14
+ 20
+
+ -
+ 2771.5
+ -5804
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - e1ebd271-0fb0-42f7-b043-d8e59efe3ca1
+ - B
+ - B
+ - true
+ - db159351-ffb4-4af4-8829-3bf865b80f02
+ - 1
+
+
+
+
+ -
+ 2763
+ -5794
+ 14
+ 20
+
+ -
+ 2771.5
+ -5784
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f98e2b1a-9c52-4364-9b5f-33aca2d97c60
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -5814
+ 34
+ 40
+
+ -
+ 2825.5
+ -5794
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - db159351-ffb4-4af4-8829-3bf865b80f02
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 6
+
+ - 271915.006280
+
+
+
+
+ -
+ 2677
+ -5850
+ 250
+ 20
+
+ -
+ 2677.793
+ -5849.274
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - d8eeb538-e690-4768-97ec-ea210cded1aa
+ - Move
+ - Move
+
+
+
+
+ -
+ 2733
+ -6096
+ 138
+ 44
+
+ -
+ 2801
+ -6074
+
+
+
+
+
+ - Base geometry
+ - 11d16c71-e9d9-4f39-a044-0700f3d8be40
+ - Geometry
+ - Geometry
+ - true
+ - 5387c90a-e93b-4683-85c6-110d8c0fd21c
+ - 1
+
+
+
+
+ -
+ 2735
+ -6094
+ 51
+ 20
+
+ -
+ 2762
+ -6084
+
+
+
+
+
+
+
+ - Translation vector
+ - d9f49192-1c92-43ee-a648-d24e50903973
+ - Motion
+ - Motion
+ - false
+ - 57a53346-46e7-41eb-9a05-24c197bddbe5
+ - 1
+
+
+
+
+ -
+ 2735
+ -6074
+ 51
+ 20
+
+ -
+ 2762
+ -6064
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - d18de3da-aab3-4b7a-b9a4-52cd5cd878a4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -6094
+ 53
+ 20
+
+ -
+ 2844
+ -6084
+
+
+
+
+
+
+
+ - Transformation data
+ - 3ddf6361-880f-4bf8-a812-ead3c9640ea1
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -6074
+ 53
+ 20
+
+ -
+ 2844
+ -6064
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 3472af28-ad0d-4d8e-a0b5-0927a1bd69ed
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2724
+ -6031
+ 155
+ 64
+
+ -
+ 2825
+ -5999
+
+
+
+
+
+ - Vector {x} component
+ - 74f2d8c3-53e5-427e-b1ea-9ae639808fa6
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2726
+ -6029
+ 84
+ 20
+
+ -
+ 2777.5
+ -6019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 8e8b9f00-c65d-47c9-ba3c-380db4f7df9c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2726
+ -6009
+ 84
+ 20
+
+ -
+ 2777.5
+ -5999
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 46402e71-ad84-471b-ab62-4729e3e53879
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2726
+ -5989
+ 84
+ 20
+
+ -
+ 2777.5
+ -5979
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 57a53346-46e7-41eb-9a05-24c197bddbe5
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -6029
+ 37
+ 30
+
+ -
+ 2860
+ -6014
+
+
+
+
+
+
+
+ - Vector length
+ - 9c8b6e2f-8028-4334-a34c-db424f050998
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -5999
+ 37
+ 30
+
+ -
+ 2860
+ -5984
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2ea98e53-c291-4c32-9159-d5fb19a496f3
+ - 3c20f7f6-645e-4d00-a4a3-5b92d14cf4df
+ - 4caaa2b5-d716-4901-a952-4099fa998e31
+ - fd0bd67e-68f9-46e9-a1b6-440c80b784a1
+ - 46960412-a634-4758-89c5-b7aa91fe2f1f
+ - 44ffcdf8-7e14-4b7d-8ae7-6c1792cb2d9b
+ - db144b0d-67c2-49f2-8698-55f8c4324b2d
+ - 68ecc26b-e785-469e-8f81-f893c6e34388
+ - 5be0ac6f-f9f3-4951-9a53-8e1e6c323367
+ - b4441e4c-5cf2-4d1f-8249-265dd4e3c699
+ - 74628273-bd20-4e69-9208-3c3d3db2410f
+ - db159351-ffb4-4af4-8829-3bf865b80f02
+ - d8eeb538-e690-4768-97ec-ea210cded1aa
+ - 3472af28-ad0d-4d8e-a0b5-0927a1bd69ed
+ - 56efe341-a041-43c7-a346-024f7fdd9345
+ - 15b071bd-fb1e-4d13-9447-ea48d8b6887a
+ - dd2eae53-7800-4633-ab1e-ad9bde980f71
+ - 1f282895-fd85-45c7-b97e-5e6a11c90567
+ - 527acc98-cb13-4557-838a-b79e4839fd1b
+ - 60fd7d67-f0e4-470f-95ec-9b2b668f5b90
+ - 408d5a9f-e526-42b5-8a06-5793bb3d562b
+ - 66a85b7a-0ae9-464a-a60d-bb8056fa5d88
+ - c0fe9d62-dced-4912-b38a-a715c1f30baf
+ - 23
+ - 4467b7b9-3960-4346-952a-a40c17d19ce2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 56efe341-a041-43c7-a346-024f7fdd9345
+ - Relay
+ -
+ - false
+ - 69f7f917-06e5-4873-bafd-ca04a7cd4193
+ - 1
+
+
+
+
+ -
+ 2782
+ -4971
+ 40
+ 16
+
+ -
+ 2802
+ -4963
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ebed5b16-2091-4597-ae3a-afe73ff6f921
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2751
+ -7780
+ 106
+ 64
+
+ -
+ 2815
+ -7748
+
+
+
+
+
+ - Line start point
+ - d094dc46-8ea5-41d4-8318-2637bdbadd95
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2753
+ -7778
+ 47
+ 20
+
+ -
+ 2778
+ -7768
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 85024c7c-7f86-483c-8146-8b49c525ba2c
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2753
+ -7758
+ 47
+ 20
+
+ -
+ 2778
+ -7748
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - d89279c0-8a91-4fb8-ab91-666088e2a413
+ - Length
+ - Length
+ - false
+ - b53cd100-dbbb-47d0-8a01-fc80bd336b51
+ - 1
+
+
+
+
+ -
+ 2753
+ -7738
+ 47
+ 20
+
+ -
+ 2778
+ -7728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 0b6fba51-ac8c-414e-92ea-2477b1e909b3
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -7778
+ 25
+ 60
+
+ -
+ 2844
+ -7748
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 22aa32f8-f449-492c-af96-1dcf1faed39e
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2707
+ -7082
+ 194
+ 28
+
+ -
+ 2807
+ -7068
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a67f09a2-5294-4688-8ce3-e1e78d81444d
+ - true
+ - Variable O
+ - O
+ - true
+ - 70cb3712-339c-4b20-8d14-5e32b70dc18a
+ - 1
+
+
+
+
+ -
+ 2709
+ -7080
+ 14
+ 24
+
+ -
+ 2717.5
+ -7068
+
+
+
+
+
+
+
+ - Result of expression
+ - ab4fd991-9ff7-4187-8dc3-bc0be03c92ca
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2890
+ -7080
+ 9
+ 24
+
+ -
+ 2896
+ -7068
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e530f6c3-5898-4915-9d8b-8e3d4239da7a
+ - Panel
+
+ - false
+ - 1
+ - ab4fd991-9ff7-4187-8dc3-bc0be03c92ca
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2698
+ -7375
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2698.867
+ -7374.67
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 945d06a3-9619-48fe-b07a-8bc7d8da9cb4
+ - Relay
+ -
+ - false
+ - e530f6c3-5898-4915-9d8b-8e3d4239da7a
+ - 1
+
+
+
+
+ -
+ 2784
+ -7422
+ 40
+ 16
+
+ -
+ 2804
+ -7414
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 70cb3712-339c-4b20-8d14-5e32b70dc18a
+ - Relay
+ -
+ - false
+ - 120d4c72-3877-4bdc-af93-9b076d26afa6
+ - 1
+
+
+
+
+ -
+ 2784
+ -7035
+ 40
+ 16
+
+ -
+ 2804
+ -7027
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - f7a1c4a1-49fd-4afb-aa75-d863e30237bf
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 70cb3712-339c-4b20-8d14-5e32b70dc18a
+ - 1
+
+
+
+
+ -
+ 2729
+ -7577
+ 150
+ 150
+
+ -
+ 2729.966
+ -7576.494
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 839e2903-8eee-4f9b-84d9-3fec81c11572
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2740
+ -6946
+ 128
+ 28
+
+ -
+ 2793
+ -6932
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 74a591d4-7323-4feb-8069-283512573f7c
+ - Values
+ - Values
+ - false
+ - 447db57e-25d8-47a7-81bb-7b787a63cf1a
+ - 1
+
+
+
+
+ -
+ 2742
+ -6944
+ 36
+ 24
+
+ -
+ 2761.5
+ -6932
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - bd522d28-4c33-49af-980f-5db1bf3d52e7
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ -6944
+ 58
+ 24
+
+ -
+ 2838.5
+ -6932
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 120d4c72-3877-4bdc-af93-9b076d26afa6
+ - Relay
+
+ - false
+ - bd522d28-4c33-49af-980f-5db1bf3d52e7
+ - 1
+
+
+
+
+ -
+ 2784
+ -6980
+ 40
+ 16
+
+ -
+ 2804
+ -6972
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 06b09384-7e56-4bd1-921f-05bccd4f20b1
+ - Relay
+
+ - false
+ - 694c877b-aba0-418b-a8a5-ce7e2f02c4dc
+ - 1
+
+
+
+
+ -
+ 2784
+ -6839
+ 40
+ 16
+
+ -
+ 2804
+ -6831
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 24dbccab-9ffe-46d0-8671-9591d25252d7
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2736
+ -6901
+ 136
+ 44
+
+ -
+ 2822
+ -6879
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 307427a1-9c93-42fd-bedd-f63bc0ba08e7
+ - Items
+ - Items
+ - false
+ - 06b09384-7e56-4bd1-921f-05bccd4f20b1
+ - 1
+
+
+
+
+ -
+ 2738
+ -6899
+ 69
+ 20
+
+ -
+ 2774
+ -6889
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 00140051-0c2c-424b-8da6-c7c22bbe4a82
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6879
+ 69
+ 20
+
+ -
+ 2774
+ -6869
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 447db57e-25d8-47a7-81bb-7b787a63cf1a
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2837
+ -6899
+ 33
+ 20
+
+ -
+ 2855
+ -6889
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 9bae0836-dd4b-417e-aa8b-efa3e7bae4c4
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2837
+ -6879
+ 33
+ 20
+
+ -
+ 2855
+ -6869
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - a66dc363-9a3b-44ab-a606-2d7a9359ab87
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2763
+ -7650
+ 82
+ 44
+
+ -
+ 2794
+ -7628
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - afb195d4-b39c-4d89-a7d7-b34e58e16d0d
+ - A
+ - A
+ - true
+ - 70cb3712-339c-4b20-8d14-5e32b70dc18a
+ - 1
+
+
+
+
+ -
+ 2765
+ -7648
+ 14
+ 20
+
+ -
+ 2773.5
+ -7638
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 4d79a1ec-fc43-48d4-98b2-19e4ee1bc702
+ - B
+ - B
+ - true
+ - 38dc5cea-c3dd-4d83-8a2a-59f2cf985259
+ - 1
+
+
+
+
+ -
+ 2765
+ -7628
+ 14
+ 20
+
+ -
+ 2773.5
+ -7618
+
+
+
+
+
+
+
+ - Result of multiplication
+ - b53cd100-dbbb-47d0-8a01-fc80bd336b51
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2809
+ -7648
+ 34
+ 40
+
+ -
+ 2827.5
+ -7628
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 38dc5cea-c3dd-4d83-8a2a-59f2cf985259
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 6
+
+ - 383463.976640
+
+
+
+
+ -
+ 2679
+ -7680
+ 250
+ 20
+
+ -
+ 2679.946
+ -7679.147
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - ea87cf94-f8c6-489e-b372-2587ee849ef7
+ - Move
+ - Move
+
+
+
+
+ -
+ 2735
+ -7930
+ 138
+ 44
+
+ -
+ 2803
+ -7908
+
+
+
+
+
+ - Base geometry
+ - d71df55a-2a74-4143-86a2-4891aabbf3c9
+ - Geometry
+ - Geometry
+ - true
+ - 0b6fba51-ac8c-414e-92ea-2477b1e909b3
+ - 1
+
+
+
+
+ -
+ 2737
+ -7928
+ 51
+ 20
+
+ -
+ 2764
+ -7918
+
+
+
+
+
+
+
+ - Translation vector
+ - b471a2ef-088b-4e65-8916-4a8d1eca04c2
+ - Motion
+ - Motion
+ - false
+ - 43240380-2b4a-4e6a-b93b-14aa24a63327
+ - 1
+
+
+
+
+ -
+ 2737
+ -7908
+ 51
+ 20
+
+ -
+ 2764
+ -7898
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - b1a63964-6d3e-4377-b10a-a030fc678908
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ -7928
+ 53
+ 20
+
+ -
+ 2846
+ -7918
+
+
+
+
+
+
+
+ - Transformation data
+ - 7c5604a3-d4b8-470d-a22e-9df40b59c835
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ -7908
+ 53
+ 20
+
+ -
+ 2846
+ -7898
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - e069f32d-fd2d-4c52-bd67-36bcf98ce239
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2726
+ -7865
+ 155
+ 64
+
+ -
+ 2827
+ -7833
+
+
+
+
+
+ - Vector {x} component
+ - ebeec815-4ca9-4668-8c9d-7995b13ec465
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2728
+ -7863
+ 84
+ 20
+
+ -
+ 2779.5
+ -7853
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 834fb795-c854-475f-85a9-5d2a5ef16ebb
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2728
+ -7843
+ 84
+ 20
+
+ -
+ 2779.5
+ -7833
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.75
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - b07af9c5-51ba-458c-a254-5002b49df352
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2728
+ -7823
+ 84
+ 20
+
+ -
+ 2779.5
+ -7813
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 43240380-2b4a-4e6a-b93b-14aa24a63327
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2842
+ -7863
+ 37
+ 30
+
+ -
+ 2862
+ -7848
+
+
+
+
+
+
+
+ - Vector length
+ - 41080777-6668-4419-b8b1-c00684dca526
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2842
+ -7833
+ 37
+ 30
+
+ -
+ 2862
+ -7818
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ebed5b16-2091-4597-ae3a-afe73ff6f921
+ - 22aa32f8-f449-492c-af96-1dcf1faed39e
+ - e530f6c3-5898-4915-9d8b-8e3d4239da7a
+ - 945d06a3-9619-48fe-b07a-8bc7d8da9cb4
+ - 70cb3712-339c-4b20-8d14-5e32b70dc18a
+ - f7a1c4a1-49fd-4afb-aa75-d863e30237bf
+ - 839e2903-8eee-4f9b-84d9-3fec81c11572
+ - 120d4c72-3877-4bdc-af93-9b076d26afa6
+ - 06b09384-7e56-4bd1-921f-05bccd4f20b1
+ - 24dbccab-9ffe-46d0-8671-9591d25252d7
+ - a66dc363-9a3b-44ab-a606-2d7a9359ab87
+ - 38dc5cea-c3dd-4d83-8a2a-59f2cf985259
+ - ea87cf94-f8c6-489e-b372-2587ee849ef7
+ - e069f32d-fd2d-4c52-bd67-36bcf98ce239
+ - 694c877b-aba0-418b-a8a5-ce7e2f02c4dc
+ - 402a49d3-b2e6-40f9-82fc-422424bbff74
+ - e7fbf397-7767-41d5-9277-dd226bb201d2
+ - d0a9e18d-a88c-408e-92c5-fe91cc6dd54e
+ - ac16c2b6-dcc6-40a0-a135-c8fdab057662
+ - af940d6c-4295-4640-a34e-53f4c0fed0b4
+ - acab807e-0bd7-41ce-8d23-5f50bbcc109b
+ - ac7e4b79-a15f-4747-88fc-835181cee777
+ - 769608b0-b6df-44d2-9130-42067c104fb2
+ - 23
+ - 73f370e0-57f5-4ade-b7d4-d59e303d8ef4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 694c877b-aba0-418b-a8a5-ce7e2f02c4dc
+ - Relay
+ -
+ - false
+ - 46960412-a634-4758-89c5-b7aa91fe2f1f
+ - 1
+
+
+
+
+ -
+ 2784
+ -6805
+ 40
+ 16
+
+ -
+ 2804
+ -6797
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b531acdb-f75e-46cc-956a-e1f6d0a5196d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ 4767
+ 144
+ 104
+
+ -
+ 2805
+ 4819
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 8fbb853e-1231-4031-8eac-ee30bc342439
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4769
+ 67
+ 20
+
+ -
+ 2758
+ 4779
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 8ffa9c33-c61e-4971-80da-f51c7caee2fd
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4789
+ 67
+ 20
+
+ -
+ 2758
+ 4799
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 21c0d762-4f36-4f40-8c14-287bb33de68e
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4809
+ 67
+ 20
+
+ -
+ 2758
+ 4819
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 9fe9fcd6-7416-4b1c-bf4e-9b3772328549
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4829
+ 67
+ 20
+
+ -
+ 2758
+ 4839
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - e2bc875a-baa9-4da2-a673-740384182c11
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4849
+ 67
+ 20
+
+ -
+ 2758
+ 4859
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 7a8c3b07-ac0d-429b-8553-0de25bd00632
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4769
+ 43
+ 100
+
+ -
+ 2843
+ 4819
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - db71bc1a-ac35-4ad0-9b1d-b2f2ec7c25f1
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ 4723
+ 82
+ 44
+
+ -
+ 2820
+ 4745
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - c502cc30-5cd9-45a1-883f-8da587deeff9
+ - Geometry
+ - Geometry
+ - false
+ - 4b682de7-9b79-46c1-8e2a-4fdbcc588751
+ - 1
+
+
+
+
+ -
+ 2754
+ 4725
+ 51
+ 20
+
+ -
+ 2781
+ 4735
+
+
+
+
+
+
+
+ - The material override
+ - e7eb16b4-3f7f-4395-acbb-4ebab28159bf
+ - Material
+ - Material
+ - false
+ - 7a8c3b07-ac0d-429b-8553-0de25bd00632
+ - 1
+
+
+
+
+ -
+ 2754
+ 4745
+ 51
+ 20
+
+ -
+ 2781
+ 4755
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b531acdb-f75e-46cc-956a-e1f6d0a5196d
+ - db71bc1a-ac35-4ad0-9b1d-b2f2ec7c25f1
+ - 2
+ - d50bca7c-1830-4d3f-beea-c5f699b9cc56
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b4a4a92f-f13b-4445-b2dd-58356b29fa0e
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ 2931
+ 144
+ 104
+
+ -
+ 2805
+ 2983
+
+
+
+
+
+ - Colour of the diffuse channel
+ - d9fe9c23-639c-47ce-812f-d467743e65be
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2933
+ 67
+ 20
+
+ -
+ 2758
+ 2943
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 9957deee-7e9a-432e-95cc-774372d2ec3d
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2953
+ 67
+ 20
+
+ -
+ 2758
+ 2963
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 4482cd75-c4a0-465c-954a-2a788b1d2ef6
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2973
+ 67
+ 20
+
+ -
+ 2758
+ 2983
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a5a67ccb-e722-4de2-9890-2f1bd271d268
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2993
+ 67
+ 20
+
+ -
+ 2758
+ 3003
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 71788a95-8d9a-4226-9f31-dcc30254429b
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 3013
+ 67
+ 20
+
+ -
+ 2758
+ 3023
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 5cf6cb07-d97e-4d4e-a365-437c95f2c443
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2933
+ 43
+ 100
+
+ -
+ 2843
+ 2983
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 37878e6a-dc90-46a6-bfdd-572c29007bbc
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ 2869
+ 82
+ 44
+
+ -
+ 2820
+ 2891
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 118a7f91-e7bc-4437-9797-527444ef5745
+ - Geometry
+ - Geometry
+ - false
+ - 4ec3c04c-6c11-40c7-b64f-2c1b38ff8091
+ - 1
+
+
+
+
+ -
+ 2754
+ 2871
+ 51
+ 20
+
+ -
+ 2781
+ 2881
+
+
+
+
+
+
+
+ - The material override
+ - 96ea4c9c-7ed7-4cb9-8711-61fa37a8e3ec
+ - Material
+ - Material
+ - false
+ - 5cf6cb07-d97e-4d4e-a365-437c95f2c443
+ - 1
+
+
+
+
+ -
+ 2754
+ 2891
+ 51
+ 20
+
+ -
+ 2781
+ 2901
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b4a4a92f-f13b-4445-b2dd-58356b29fa0e
+ - 37878e6a-dc90-46a6-bfdd-572c29007bbc
+ - 2
+ - f8342b6b-15c7-478d-88c8-5933a2ef1e09
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c429e491-9b09-4e42-9cc3-89526febb81c
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ 1042
+ 144
+ 104
+
+ -
+ 2805
+ 1094
+
+
+
+
+
+ - Colour of the diffuse channel
+ - cb6e1e65-1a06-4cfc-bdcf-49c9d3828b1b
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 1044
+ 67
+ 20
+
+ -
+ 2758
+ 1054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ae15759f-7ec8-440b-9297-89f2c3207b00
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 1064
+ 67
+ 20
+
+ -
+ 2758
+ 1074
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - fe9db8f9-5aa1-4805-973a-88ad6472444e
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 1084
+ 67
+ 20
+
+ -
+ 2758
+ 1094
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f74fa70d-a6ae-4b8b-8464-21d70a7ee244
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 1104
+ 67
+ 20
+
+ -
+ 2758
+ 1114
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6c686784-f313-4ef8-a131-73305e955b02
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 1124
+ 67
+ 20
+
+ -
+ 2758
+ 1134
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0aa8117e-5500-4682-a7b2-6e69dc862bb2
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 1044
+ 43
+ 100
+
+ -
+ 2843
+ 1094
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - ff0900a1-1fb0-4922-98be-668cd9586dfb
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ 979
+ 82
+ 44
+
+ -
+ 2820
+ 1001
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ef593733-3282-471f-beb3-43d83c4ab568
+ - Geometry
+ - Geometry
+ - false
+ - c17c1c53-7107-43f9-9a8e-a08dfe3a4373
+ - 1
+
+
+
+
+ -
+ 2754
+ 981
+ 51
+ 20
+
+ -
+ 2781
+ 991
+
+
+
+
+
+
+
+ - The material override
+ - 85702ae2-025c-4873-9ca9-f835b540a36f
+ - Material
+ - Material
+ - false
+ - 0aa8117e-5500-4682-a7b2-6e69dc862bb2
+ - 1
+
+
+
+
+ -
+ 2754
+ 1001
+ 51
+ 20
+
+ -
+ 2781
+ 1011
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c429e491-9b09-4e42-9cc3-89526febb81c
+ - ff0900a1-1fb0-4922-98be-668cd9586dfb
+ - 2
+ - 995c54b5-8333-4669-b219-8e80e6ca829d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 24508471-4615-4a82-a43c-a3fb8ff2c93b
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ -721
+ 144
+ 104
+
+ -
+ 2805
+ -669
+
+
+
+
+
+ - Colour of the diffuse channel
+ - d91f31dd-ad52-4668-8af6-683641ef94e9
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -719
+ 67
+ 20
+
+ -
+ 2758
+ -709
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;224;224;224
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 7650dfc1-9e71-40a8-bed6-91d811c1e54b
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -699
+ 67
+ 20
+
+ -
+ 2758
+ -689
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 60e6f7a8-ba1a-4628-9f3e-8895020c6a17
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -679
+ 67
+ 20
+
+ -
+ 2758
+ -669
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a495f282-c09c-4b42-ad1f-0082704aeb2b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -659
+ 67
+ 20
+
+ -
+ 2758
+ -649
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 9468a937-2ae5-4c2a-96fb-bd8442f93dfa
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -639
+ 67
+ 20
+
+ -
+ 2758
+ -629
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0d1aba3d-3700-4807-bcbc-7e6c19037a4d
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -719
+ 43
+ 100
+
+ -
+ 2843
+ -669
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 964343c3-3dda-4f08-a87d-9fdc0bc8aa38
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ -785
+ 82
+ 44
+
+ -
+ 2820
+ -763
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ec9a960e-06b0-4934-8085-9893c5fae862
+ - Geometry
+ - Geometry
+ - false
+ - 4e9c218a-a4d8-4359-b2b4-e7fec76f23f3
+ - 1
+
+
+
+
+ -
+ 2754
+ -783
+ 51
+ 20
+
+ -
+ 2781
+ -773
+
+
+
+
+
+
+
+ - The material override
+ - 4feeb8f2-bec8-4523-80c2-2c52cfd67122
+ - Material
+ - Material
+ - false
+ - 0d1aba3d-3700-4807-bcbc-7e6c19037a4d
+ - 1
+
+
+
+
+ -
+ 2754
+ -763
+ 51
+ 20
+
+ -
+ 2781
+ -753
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 24508471-4615-4a82-a43c-a3fb8ff2c93b
+ - 964343c3-3dda-4f08-a87d-9fdc0bc8aa38
+ - 2
+ - df9156dc-99ad-49d2-9155-e2992efed591
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ee522ce1-b431-4566-add9-3979a9ab2672
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ -2524
+ 144
+ 104
+
+ -
+ 2805
+ -2472
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 0579e524-61b7-4321-8031-a7db94b4785d
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2522
+ 67
+ 20
+
+ -
+ 2758
+ -2512
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;217;217;217
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - fe6d704f-1c98-4116-b0e5-c26fd690f94e
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2502
+ 67
+ 20
+
+ -
+ 2758
+ -2492
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 2ae6b16e-de32-4ff2-8c0b-839f83f8bec1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2482
+ 67
+ 20
+
+ -
+ 2758
+ -2472
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f6f7c66e-d7bd-4880-9afe-7d920399185a
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2462
+ 67
+ 20
+
+ -
+ 2758
+ -2452
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8c439ec6-2d6e-4fc9-8acc-efa34c557acb
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2442
+ 67
+ 20
+
+ -
+ 2758
+ -2432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e4b503a3-ffc3-4b42-a0aa-5f5a0ce89615
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2522
+ 43
+ 100
+
+ -
+ 2843
+ -2472
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - cc822037-e998-40ef-b314-cebccaa58d0f
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ -2586
+ 82
+ 44
+
+ -
+ 2820
+ -2564
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - f774ba37-5130-42ab-bc8b-126e729e78e4
+ - Geometry
+ - Geometry
+ - false
+ - 96991c77-8125-4887-b56d-a51f89a5adc1
+ - 1
+
+
+
+
+ -
+ 2754
+ -2584
+ 51
+ 20
+
+ -
+ 2781
+ -2574
+
+
+
+
+
+
+
+ - The material override
+ - 344c0ca4-6070-4c09-8866-658ebcbbb7f3
+ - Material
+ - Material
+ - false
+ - e4b503a3-ffc3-4b42-a0aa-5f5a0ce89615
+ - 1
+
+
+
+
+ -
+ 2754
+ -2564
+ 51
+ 20
+
+ -
+ 2781
+ -2554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ee522ce1-b431-4566-add9-3979a9ab2672
+ - cc822037-e998-40ef-b314-cebccaa58d0f
+ - 2
+ - 4e55916e-6a5a-44ec-b22f-43102b734bb9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 623732df-0874-41e0-bcc5-ad204b8f8237
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2730
+ -4394
+ 144
+ 104
+
+ -
+ 2814
+ -4342
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 0bdb779a-605c-437c-99c5-a511e1a7480c
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4392
+ 67
+ 20
+
+ -
+ 2767
+ -4382
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;209;209;209
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 02fc4475-5c16-4f47-acd9-ff2b83fa7f79
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4372
+ 67
+ 20
+
+ -
+ 2767
+ -4362
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 6e04b863-e771-49ac-9de1-ccd51456f174
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4352
+ 67
+ 20
+
+ -
+ 2767
+ -4342
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c507bbc0-0144-4489-9ac7-5a5791eec69a
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4332
+ 67
+ 20
+
+ -
+ 2767
+ -4322
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - db36a45f-8cbb-4893-b269-9278fd43cdea
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4312
+ 67
+ 20
+
+ -
+ 2767
+ -4302
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d660293c-bb1b-4329-a1f9-259afd59c60c
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ -4392
+ 43
+ 100
+
+ -
+ 2852
+ -4342
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - f1933e3a-3303-485e-a878-b7fdb74f5b34
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2761
+ -4456
+ 82
+ 44
+
+ -
+ 2829
+ -4434
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 0d2ce09b-c371-4148-8b77-d47d03e0df83
+ - Geometry
+ - Geometry
+ - false
+ - 531dc426-bfb6-4210-89d1-a169cc14774b
+ - 1
+
+
+
+
+ -
+ 2763
+ -4454
+ 51
+ 20
+
+ -
+ 2790
+ -4444
+
+
+
+
+
+
+
+ - The material override
+ - d13696d0-1b3c-43f4-ae5a-628991137c7c
+ - Material
+ - Material
+ - false
+ - d660293c-bb1b-4329-a1f9-259afd59c60c
+ - 1
+
+
+
+
+ -
+ 2763
+ -4434
+ 51
+ 20
+
+ -
+ 2790
+ -4424
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 623732df-0874-41e0-bcc5-ad204b8f8237
+ - f1933e3a-3303-485e-a878-b7fdb74f5b34
+ - 2
+ - b5df053c-cc37-42c3-ab32-579385c79137
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 15b071bd-fb1e-4d13-9447-ea48d8b6887a
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2730
+ -6220
+ 144
+ 104
+
+ -
+ 2814
+ -6168
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 70323c2b-978e-46f6-94e5-1186699f32bb
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6218
+ 67
+ 20
+
+ -
+ 2767
+ -6208
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;201;201;201
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 85a159ae-5eb6-4657-848d-43d2fa82f3a5
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6198
+ 67
+ 20
+
+ -
+ 2767
+ -6188
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 09c60a3d-162e-4ae5-830d-897917636850
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6178
+ 67
+ 20
+
+ -
+ 2767
+ -6168
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d16a523d-760c-4627-8a18-62633a0dbf84
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6158
+ 67
+ 20
+
+ -
+ 2767
+ -6148
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 465c8231-c842-46d9-975d-a162ac4e2833
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6138
+ 67
+ 20
+
+ -
+ 2767
+ -6128
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0858165f-26f6-474b-9a5f-b9fe410f4982
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ -6218
+ 43
+ 100
+
+ -
+ 2852
+ -6168
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - dd2eae53-7800-4633-ab1e-ad9bde980f71
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2761
+ -6283
+ 82
+ 44
+
+ -
+ 2829
+ -6261
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 75cbbe0e-3e97-4af3-8ccc-7f753858a899
+ - Geometry
+ - Geometry
+ - false
+ - d18de3da-aab3-4b7a-b9a4-52cd5cd878a4
+ - 1
+
+
+
+
+ -
+ 2763
+ -6281
+ 51
+ 20
+
+ -
+ 2790
+ -6271
+
+
+
+
+
+
+
+ - The material override
+ - ba760006-1e3d-45d6-a729-e7274d2bc338
+ - Material
+ - Material
+ - false
+ - 0858165f-26f6-474b-9a5f-b9fe410f4982
+ - 1
+
+
+
+
+ -
+ 2763
+ -6261
+ 51
+ 20
+
+ -
+ 2790
+ -6251
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 15b071bd-fb1e-4d13-9447-ea48d8b6887a
+ - dd2eae53-7800-4633-ab1e-ad9bde980f71
+ - 2
+ - 1f282895-fd85-45c7-b97e-5e6a11c90567
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 402a49d3-b2e6-40f9-82fc-422424bbff74
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2732
+ -8089
+ 144
+ 104
+
+ -
+ 2816
+ -8037
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 3cad861e-92f2-4301-9851-693f531f1900
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8087
+ 67
+ 20
+
+ -
+ 2769
+ -8077
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - a69114ad-54a2-4783-8d6d-af31b225d1d9
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8067
+ 67
+ 20
+
+ -
+ 2769
+ -8057
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 84efb86f-0f14-48c8-9483-fcac308f6fba
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8047
+ 67
+ 20
+
+ -
+ 2769
+ -8037
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 98469eba-81de-4e63-8c28-ea5c5551b29b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8027
+ 67
+ 20
+
+ -
+ 2769
+ -8017
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - d58bf126-1f07-4cb5-8097-781a6f37211a
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8007
+ 67
+ 20
+
+ -
+ 2769
+ -7997
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 17eb8a86-85c3-4f8e-8bec-096bc1289ad6
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ -8087
+ 43
+ 100
+
+ -
+ 2854
+ -8037
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - e7fbf397-7767-41d5-9277-dd226bb201d2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2763
+ -8151
+ 82
+ 44
+
+ -
+ 2831
+ -8129
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 583763df-3559-4444-88db-18bcef58edc8
+ - Geometry
+ - Geometry
+ - false
+ - b1a63964-6d3e-4377-b10a-a030fc678908
+ - 1
+
+
+
+
+ -
+ 2765
+ -8149
+ 51
+ 20
+
+ -
+ 2792
+ -8139
+
+
+
+
+
+
+
+ - The material override
+ - 8bb0bc3c-def6-485c-aafa-f30bd73713f7
+ - Material
+ - Material
+ - false
+ - 17eb8a86-85c3-4f8e-8bec-096bc1289ad6
+ - 1
+
+
+
+
+ -
+ 2765
+ -8129
+ 51
+ 20
+
+ -
+ 2792
+ -8119
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 402a49d3-b2e6-40f9-82fc-422424bbff74
+ - e7fbf397-7767-41d5-9277-dd226bb201d2
+ - 2
+ - d0a9e18d-a88c-408e-92c5-fe91cc6dd54e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 468ae4a9-a114-4c06-bd0a-b3836112802a
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2755
+ -9631
+ 106
+ 64
+
+ -
+ 2819
+ -9599
+
+
+
+
+
+ - Line start point
+ - e172fa61-0887-4b0e-a15d-177fdd4b1e78
+ - true
+ - Start
+ - Start
+ - false
+ - a2188ea9-a064-4c1e-9cb2-1eff68e42006
+ - 1
+
+
+
+
+ -
+ 2757
+ -9629
+ 47
+ 20
+
+ -
+ 2782
+ -9619
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 37e5c981-175b-429f-8341-8117dc435086
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2757
+ -9609
+ 47
+ 20
+
+ -
+ 2782
+ -9599
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 948a685e-51da-4050-a315-c973e120bdd8
+ - true
+ - Length
+ - Length
+ - false
+ - 11c032cd-0732-49b9-9916-5fecced7fec8
+ - 1
+
+
+
+
+ -
+ 2757
+ -9589
+ 47
+ 20
+
+ -
+ 2782
+ -9579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 20c1d600-a6cb-49c9-a8cf-3e8d2e94fb00
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -9629
+ 25
+ 60
+
+ -
+ 2848
+ -9599
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e903fe97-952f-43db-8d4b-a67e4a1557e7
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2711
+ -8934
+ 194
+ 28
+
+ -
+ 2811
+ -8920
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 077bcd95-c1c5-4b9a-a788-c4fd671f2960
+ - true
+ - Variable O
+ - O
+ - true
+ - 409dbe80-676f-47ee-9518-ac4b2c883eb7
+ - 1
+
+
+
+
+ -
+ 2713
+ -8932
+ 14
+ 24
+
+ -
+ 2721.5
+ -8920
+
+
+
+
+
+
+
+ - Result of expression
+ - bf4df40d-6cc2-4e6c-9b7f-e60ed1c0d9eb
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2894
+ -8932
+ 9
+ 24
+
+ -
+ 2900
+ -8920
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8308791e-0e09-4757-83c0-95807979f31d
+ - Panel
+
+ - false
+ - 1
+ - bf4df40d-6cc2-4e6c-9b7f-e60ed1c0d9eb
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2702
+ -9227
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2702.272
+ -9226.128
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8bd3d38a-5034-43a4-a043-823b8e073d49
+ - Relay
+ -
+ - false
+ - 8308791e-0e09-4757-83c0-95807979f31d
+ - 1
+
+
+
+
+ -
+ 2788
+ -9273
+ 40
+ 16
+
+ -
+ 2808
+ -9265
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 409dbe80-676f-47ee-9518-ac4b2c883eb7
+ - Relay
+ -
+ - false
+ - c60879ce-6650-4dc9-8317-4e4f79fff49f
+ - 1
+
+
+
+
+ -
+ 2788
+ -8886
+ 40
+ 16
+
+ -
+ 2808
+ -8878
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - f543fe50-7d79-4c52-a224-c3c8f3b6102c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 409dbe80-676f-47ee-9518-ac4b2c883eb7
+ - 1
+
+
+
+
+ -
+ 2734
+ -9428
+ 150
+ 150
+
+ -
+ 2734.372
+ -9427.95
+
+ - -1
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 581cdc16-c05a-44ba-ac73-843c1af50781
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2744
+ -8797
+ 128
+ 28
+
+ -
+ 2797
+ -8783
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 7dc74a02-86a1-4453-a403-4ab25340fcac
+ - Values
+ - Values
+ - false
+ - 28b836cd-5f50-4d76-ab53-228f2bc916fa
+ - 1
+
+
+
+
+ -
+ 2746
+ -8795
+ 36
+ 24
+
+ -
+ 2765.5
+ -8783
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - ba76117c-26fa-47bb-afe0-59edfed7f1a7
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -8795
+ 58
+ 24
+
+ -
+ 2842.5
+ -8783
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c60879ce-6650-4dc9-8317-4e4f79fff49f
+ - Relay
+
+ - false
+ - ba76117c-26fa-47bb-afe0-59edfed7f1a7
+ - 1
+
+
+
+
+ -
+ 2788
+ -8831
+ 40
+ 16
+
+ -
+ 2808
+ -8823
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ac56c0a4-9746-4e0d-a1dc-227ac817d4f0
+ - Relay
+
+ - false
+ - 0be9cb07-b39d-49e7-b2c8-632937704d56
+ - 1
+
+
+
+
+ -
+ 2788
+ -8690
+ 40
+ 16
+
+ -
+ 2808
+ -8682
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 10efd27a-e9e9-4ac7-9af3-eeca56f48949
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2740
+ -8752
+ 136
+ 44
+
+ -
+ 2826
+ -8730
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 52ad152c-d17c-4f8e-9ab4-3010f6a21504
+ - Items
+ - Items
+ - false
+ - ac56c0a4-9746-4e0d-a1dc-227ac817d4f0
+ - 1
+
+
+
+
+ -
+ 2742
+ -8750
+ 69
+ 20
+
+ -
+ 2778
+ -8740
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - c86d37e4-2e94-48d9-bd42-67f79793669f
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -8730
+ 69
+ 20
+
+ -
+ 2778
+ -8720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 28b836cd-5f50-4d76-ab53-228f2bc916fa
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -8750
+ 33
+ 20
+
+ -
+ 2859
+ -8740
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 0d7d2098-1040-4b77-a486-ee1a1935f9c5
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -8730
+ 33
+ 20
+
+ -
+ 2859
+ -8720
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 8bfc7a14-3c71-455d-99df-4c73390ca167
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2767
+ -9501
+ 82
+ 44
+
+ -
+ 2798
+ -9479
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 3a0080fa-4d3f-4d56-881e-050abfb190c1
+ - A
+ - A
+ - true
+ - 409dbe80-676f-47ee-9518-ac4b2c883eb7
+ - 1
+
+
+
+
+ -
+ 2769
+ -9499
+ 14
+ 20
+
+ -
+ 2777.5
+ -9489
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - db733313-bc37-41f8-8d04-d9e47453fb1e
+ - B
+ - B
+ - true
+ - 4ea36994-cd0b-4367-b931-94b822566e1d
+ - 1
+
+
+
+
+ -
+ 2769
+ -9479
+ 14
+ 20
+
+ -
+ 2777.5
+ -9469
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 11c032cd-0732-49b9-9916-5fecced7fec8
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2813
+ -9499
+ 34
+ 40
+
+ -
+ 2831.5
+ -9479
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 4ea36994-cd0b-4367-b931-94b822566e1d
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 7
+
+ - 2183007.89888
+
+
+
+
+ -
+ 2684
+ -9531
+ 250
+ 20
+
+ -
+ 2684.352
+ -9530.604
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 73800d77-1974-4f16-8960-6a81b85f893a
+ - Move
+ - Move
+
+
+
+
+ -
+ 2739
+ -9781
+ 138
+ 44
+
+ -
+ 2807
+ -9759
+
+
+
+
+
+ - Base geometry
+ - 59d287da-879c-4352-a822-b1e5ca0c4bdb
+ - Geometry
+ - Geometry
+ - true
+ - 20c1d600-a6cb-49c9-a8cf-3e8d2e94fb00
+ - 1
+
+
+
+
+ -
+ 2741
+ -9779
+ 51
+ 20
+
+ -
+ 2768
+ -9769
+
+
+
+
+
+
+
+ - Translation vector
+ - f98f7770-1e70-4d11-ae49-167071702ed6
+ - Motion
+ - Motion
+ - false
+ - e7747a56-945b-49e0-b419-5e4f64ac1c52
+ - 1
+
+
+
+
+ -
+ 2741
+ -9759
+ 51
+ 20
+
+ -
+ 2768
+ -9749
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 9122048b-5af8-459a-a9f2-1cb38d844e1f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -9779
+ 53
+ 20
+
+ -
+ 2850
+ -9769
+
+
+
+
+
+
+
+ - Transformation data
+ - c372b3e6-8111-49c1-8420-e35202c886bd
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -9759
+ 53
+ 20
+
+ -
+ 2850
+ -9749
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 6f8a577f-6f74-440b-80a5-f11b1b43d0b7
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2730
+ -9716
+ 155
+ 64
+
+ -
+ 2831
+ -9684
+
+
+
+
+
+ - Vector {x} component
+ - 2b8d7d6e-5fcb-4c7c-a660-73550a420277
+ - -X
+ - X component
+ - X component
+ - false
+ - 088c9fc3-3d27-4e2d-9d69-b7c3e3a2f07b
+ - 1
+
+
+
+
+ -
+ 2732
+ -9714
+ 84
+ 20
+
+ -
+ 2783.5
+ -9704
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - fa9d85cd-5edf-46f2-a8f5-88387b68f613
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -9694
+ 84
+ 20
+
+ -
+ 2783.5
+ -9684
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 02b47629-8d92-41a9-9f59-ce536683f1c4
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -9674
+ 84
+ 20
+
+ -
+ 2783.5
+ -9664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - e7747a56-945b-49e0-b419-5e4f64ac1c52
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2846
+ -9714
+ 37
+ 30
+
+ -
+ 2866
+ -9699
+
+
+
+
+
+
+
+ - Vector length
+ - 5d8645b7-bebd-416e-8e28-ce6e604f57ba
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2846
+ -9684
+ 37
+ 30
+
+ -
+ 2866
+ -9669
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 468ae4a9-a114-4c06-bd0a-b3836112802a
+ - e903fe97-952f-43db-8d4b-a67e4a1557e7
+ - 8308791e-0e09-4757-83c0-95807979f31d
+ - 8bd3d38a-5034-43a4-a043-823b8e073d49
+ - 409dbe80-676f-47ee-9518-ac4b2c883eb7
+ - f543fe50-7d79-4c52-a224-c3c8f3b6102c
+ - 581cdc16-c05a-44ba-ac73-843c1af50781
+ - c60879ce-6650-4dc9-8317-4e4f79fff49f
+ - ac56c0a4-9746-4e0d-a1dc-227ac817d4f0
+ - 10efd27a-e9e9-4ac7-9af3-eeca56f48949
+ - 8bfc7a14-3c71-455d-99df-4c73390ca167
+ - 4ea36994-cd0b-4367-b931-94b822566e1d
+ - 73800d77-1974-4f16-8960-6a81b85f893a
+ - 6f8a577f-6f74-440b-80a5-f11b1b43d0b7
+ - 0be9cb07-b39d-49e7-b2c8-632937704d56
+ - e3f27dc4-e294-4f6d-8ef1-dda577ad883f
+ - 8063ee14-fb75-4d25-b951-3c9472e14358
+ - 0ac08dcb-bda1-468f-9872-9b51c8058f72
+ - 8b4070e4-7dcf-409a-8978-2d9aa65cc7e9
+ - 1eb5bbdd-80c5-402d-a116-d1477654d742
+ - 1b7ce45e-efe0-4abb-b207-d21b466ff7f3
+ - 6769cdb3-9ea7-409e-b566-b5221866f156
+ - 402b11cc-e986-4056-8676-42eec6a89ccd
+ - 23
+ - 17c4cc8d-2b20-466c-8dac-434f7f2004bc
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0be9cb07-b39d-49e7-b2c8-632937704d56
+ - Relay
+ -
+ - false
+ - 70cb3712-339c-4b20-8d14-5e32b70dc18a
+ - 1
+
+
+
+
+ -
+ 2788
+ -8656
+ 40
+ 16
+
+ -
+ 2808
+ -8648
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - e3f27dc4-e294-4f6d-8ef1-dda577ad883f
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2736
+ -9940
+ 144
+ 104
+
+ -
+ 2820
+ -9888
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 6deacaf6-f059-41f8-9c62-7ccf2f8df45f
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -9938
+ 67
+ 20
+
+ -
+ 2773
+ -9928
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;186;186;186
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - c020c05b-a564-4cb8-8e6d-9c4ce6f45a10
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -9918
+ 67
+ 20
+
+ -
+ 2773
+ -9908
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - dd7c8a17-eaef-4e0c-a7fc-631f585ecf8d
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -9898
+ 67
+ 20
+
+ -
+ 2773
+ -9888
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 65212e32-4634-4b95-8734-c728a7c0a063
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -9878
+ 67
+ 20
+
+ -
+ 2773
+ -9868
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - cb9667f9-ff64-48e6-9a27-24d8b9b420dd
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -9858
+ 67
+ 20
+
+ -
+ 2773
+ -9848
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e0d6b6f7-bd32-40d1-9a6e-ad2241b46061
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -9938
+ 43
+ 100
+
+ -
+ 2858
+ -9888
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 8063ee14-fb75-4d25-b951-3c9472e14358
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2767
+ -10002
+ 82
+ 44
+
+ -
+ 2835
+ -9980
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ce100a5d-1a83-49c5-8c75-acab3b06ab87
+ - Geometry
+ - Geometry
+ - false
+ - 9122048b-5af8-459a-a9f2-1cb38d844e1f
+ - 1
+
+
+
+
+ -
+ 2769
+ -10000
+ 51
+ 20
+
+ -
+ 2796
+ -9990
+
+
+
+
+
+
+
+ - The material override
+ - ae458828-c574-44cf-801f-ad1918b20fba
+ - Material
+ - Material
+ - false
+ - e0d6b6f7-bd32-40d1-9a6e-ad2241b46061
+ - 1
+
+
+
+
+ -
+ 2769
+ -9980
+ 51
+ 20
+
+ -
+ 2796
+ -9970
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e3f27dc4-e294-4f6d-8ef1-dda577ad883f
+ - 8063ee14-fb75-4d25-b951-3c9472e14358
+ - 2
+ - 0ac08dcb-bda1-468f-9872-9b51c8058f72
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3f532fe6-afb1-4b52-b66b-a2df9503a722
+ - 822e353b-fc97-4b6b-a360-c40fe047aba3
+ - c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6
+ - 6337fb45-9f2a-494e-8d9a-c43d901d4129
+ - d111ccf2-d6ca-47ae-ab79-0c1bc58cc261
+ - 617390cd-2791-48d5-8977-2dd3e861404b
+ - 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa
+ - 7e7dff7b-031e-4250-9fb5-7aea1a3739b6
+ - 49256aa1-f1ff-4374-8512-d443a34bed35
+ - c8c37092-da01-41e1-949e-8c86fb1078aa
+ - c0089638-9a13-4310-b39e-a8dac696daf8
+ - 04a9d7c0-d6e1-40a4-9806-5c417660d57b
+ - 68142d09-d48e-408c-bb7a-1784d9b6e17b
+ - 9124396a-6865-4877-967f-3b504dc2f8ce
+ - ecb0f980-fd26-448a-ad86-8786c6c9ed06
+ - 98273f40-7a23-4124-89b2-96776819dea1
+ - a06d28e7-54d8-416c-bf64-1663ac6c8cc4
+ - dc090530-b05e-44b1-809d-9d9622cca7b4
+ - 7a066a23-c87f-4cb6-9087-7461260a23bc
+ - 22196402-4f02-4c65-b946-79940c9ed86f
+ - 8990d9d5-32c4-4f6a-80f1-a8c19487ffab
+ - af046430-30ae-447d-a228-e389481e84e5
+ - 22
+ - 28604043-27e9-44c6-9dae-5aace902bfbe
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d111ccf2-d6ca-47ae-ab79-0c1bc58cc261
+ - 617390cd-2791-48d5-8977-2dd3e861404b
+ - 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa
+ - 7e7dff7b-031e-4250-9fb5-7aea1a3739b6
+ - 49256aa1-f1ff-4374-8512-d443a34bed35
+ - c8c37092-da01-41e1-949e-8c86fb1078aa
+ - c0089638-9a13-4310-b39e-a8dac696daf8
+ - 04a9d7c0-d6e1-40a4-9806-5c417660d57b
+ - 68142d09-d48e-408c-bb7a-1784d9b6e17b
+ - 9124396a-6865-4877-967f-3b504dc2f8ce
+ - ecb0f980-fd26-448a-ad86-8786c6c9ed06
+ - da02d1d3-6ded-4a0b-ba9f-41d51c627b77
+ - 1a0014ae-7819-4c4e-8299-9532e4fdd989
+ - 13
+ - 3f532fe6-afb1-4b52-b66b-a2df9503a722
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 822e353b-fc97-4b6b-a360-c40fe047aba3
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4247
+ 115
+ 128
+ 28
+
+ -
+ 4300
+ 129
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - a1d05e44-a43d-450e-8f36-fd12d1e53ac6
+ - Values
+ - Values
+ - false
+ - 6337fb45-9f2a-494e-8d9a-c43d901d4129
+ - 1
+
+
+
+
+ -
+ 4249
+ 117
+ 36
+ 24
+
+ -
+ 4268.5
+ 129
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - d73a85e4-607a-4ba4-81a9-f9ea19659c7a
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4315
+ 117
+ 58
+ 24
+
+ -
+ 4345.5
+ 129
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6
+ - Relay
+
+ - false
+ - d73a85e4-607a-4ba4-81a9-f9ea19659c7a
+ - 1
+
+
+
+
+ -
+ 4291
+ 81
+ 40
+ 16
+
+ -
+ 4311
+ 89
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6337fb45-9f2a-494e-8d9a-c43d901d4129
+ - Relay
+
+ - false
+ - bad1c978-837c-473b-b4f0-a58dfe6f997e
+ - 1
+
+
+
+
+ -
+ 4291
+ 163
+ 40
+ 16
+
+ -
+ 4311
+ 171
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - d111ccf2-d6ca-47ae-ab79-0c1bc58cc261
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4247
+ -612
+ 122
+ 64
+
+ -
+ 4327
+ -580
+
+
+
+
+
+ - Line start point
+ - 9cfe5b71-8f18-47ed-b0b8-dee80e19d37e
+ - Start
+ - Start
+ - false
+ - f38aaa8d-3a3e-4388-b382-236a86074b2f
+ - 1
+
+
+
+
+ -
+ 4249
+ -610
+ 63
+ 20
+
+ -
+ 4290
+ -600
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - e714ca07-3ee9-4a27-93e8-0c7fd8e39930
+ - Direction
+ - Direction
+ - false
+ - 617390cd-2791-48d5-8977-2dd3e861404b
+ - 1
+
+
+
+
+ -
+ 4249
+ -590
+ 63
+ 20
+
+ -
+ 4290
+ -580
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 3beb1df9-9cec-4833-8902-bb3582a41a09
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 04a9d7c0-d6e1-40a4-9806-5c417660d57b
+ - 1
+
+
+
+
+ -
+ 4249
+ -570
+ 63
+ 20
+
+ -
+ 4290
+ -560
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 88bd0e53-3ee3-4c67-b5a0-f736eba8ff2d
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ -610
+ 25
+ 60
+
+ -
+ 4356
+ -580
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 617390cd-2791-48d5-8977-2dd3e861404b
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4288
+ -530
+ 40
+ 16
+
+ -
+ 4308
+ -522
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4236
+ -379
+ 150
+ 20
+
+ -
+ 4236.272
+ -378.7855
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 4
+ - 0
+ - 0
+ - 0.533333
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 7e7dff7b-031e-4250-9fb5-7aea1a3739b6
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4250
+ -248
+ 115
+ 64
+
+ -
+ 4305
+ -216
+
+
+
+
+
+ - Value to remap
+ - 23b6f202-5297-4104-99cd-f8804c325e5b
+ - Value
+ - Value
+ - false
+ - c0089638-9a13-4310-b39e-a8dac696daf8
+ - 1
+
+
+
+
+ -
+ 4252
+ -246
+ 38
+ 20
+
+ -
+ 4272.5
+ -236
+
+
+
+
+
+
+
+ - Source domain
+ - 9707a747-8dec-4fd3-805f-3bf06de61a2d
+ - Source
+ - Source
+ - false
+ - 46522074-9f13-4a0b-b6e1-1172ce2cbbbd
+ - 1
+
+
+
+
+ -
+ 4252
+ -226
+ 38
+ 20
+
+ -
+ 4272.5
+ -216
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 79c7c187-e165-4951-ae16-53d86db1fe0b
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ -206
+ 38
+ 20
+
+ -
+ 4272.5
+ -196
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 94e9a756-d400-4e22-9cda-8419ca7815f5
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -246
+ 43
+ 30
+
+ -
+ 4343
+ -231
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 6160afcb-ccb5-498a-a3ff-1c72c9019242
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -216
+ 43
+ 30
+
+ -
+ 4343
+ -201
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 49256aa1-f1ff-4374-8512-d443a34bed35
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4247
+ -165
+ 122
+ 28
+
+ -
+ 4311
+ -151
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - c5fadf19-a9d3-48c3-b73e-420895589b05
+ - Numbers
+ - Numbers
+ - false
+ - c0089638-9a13-4310-b39e-a8dac696daf8
+ - 1
+
+
+
+
+ -
+ 4249
+ -163
+ 47
+ 24
+
+ -
+ 4274
+ -151
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 46522074-9f13-4a0b-b6e1-1172ce2cbbbd
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ -163
+ 41
+ 24
+
+ -
+ 4348
+ -151
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 7e7dff7b-031e-4250-9fb5-7aea1a3739b6
+ - 49256aa1-f1ff-4374-8512-d443a34bed35
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 04a9d7c0-d6e1-40a4-9806-5c417660d57b
+ - c0089638-9a13-4310-b39e-a8dac696daf8
+ - 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa
+ - 68142d09-d48e-408c-bb7a-1784d9b6e17b
+ - 14
+ - c8c37092-da01-41e1-949e-8c86fb1078aa
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c0089638-9a13-4310-b39e-a8dac696daf8
+ - Relay
+ -
+ - false
+ - c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6
+ - 1
+
+
+
+
+ -
+ 4288
+ -120
+ 40
+ 16
+
+ -
+ 4308
+ -112
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 04a9d7c0-d6e1-40a4-9806-5c417660d57b
+ - Relay
+ -
+ - false
+ - b8ec6b45-edf2-4f33-9bf1-4ca4e1c9d2e9
+ - 1
+
+
+
+
+ -
+ 4288
+ -487
+ 40
+ 16
+
+ -
+ 4308
+ -479
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 68142d09-d48e-408c-bb7a-1784d9b6e17b
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ -448
+ 82
+ 44
+
+ -
+ 4298
+ -426
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 66573326-0b0c-4738-b480-7aee48d7bed5
+ - A
+ - A
+ - true
+ - d098c900-e789-49fb-86be-64619ee14281
+ - 1
+
+
+
+
+ -
+ 4269
+ -446
+ 14
+ 20
+
+ -
+ 4277.5
+ -436
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 3da8b0a8-2cd7-4ee6-9676-c935b4ad77c5
+ - B
+ - B
+ - true
+ - 8f0cf2e8-11f5-4f6a-a3e0-f510ed7e25fa
+ - 1
+
+
+
+
+ -
+ 4269
+ -426
+ 14
+ 20
+
+ -
+ 4277.5
+ -416
+
+
+
+
+
+
+
+ - Result of multiplication
+ - b8ec6b45-edf2-4f33-9bf1-4ca4e1c9d2e9
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -446
+ 34
+ 40
+
+ -
+ 4331.5
+ -426
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 9124396a-6865-4877-967f-3b504dc2f8ce
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ -347
+ 82
+ 44
+
+ -
+ 4298
+ -325
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - e52efa0a-3998-4ddb-8034-908d71be93ef
+ - A
+ - A
+ - true
+ - 94e9a756-d400-4e22-9cda-8419ca7815f5
+ - 1
+
+
+
+
+ -
+ 4269
+ -345
+ 14
+ 20
+
+ -
+ 4277.5
+ -335
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 6c95a239-bd5e-4d1b-80de-567c740452e8
+ - B
+ - B
+ - true
+ - ecb0f980-fd26-448a-ad86-8786c6c9ed06
+ - 1
+
+
+
+
+ -
+ 4269
+ -325
+ 14
+ 20
+
+ -
+ 4277.5
+ -315
+
+
+
+
+
+
+
+ - Result of multiplication
+ - d098c900-e789-49fb-86be-64619ee14281
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -345
+ 34
+ 40
+
+ -
+ 4331.5
+ -325
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ecb0f980-fd26-448a-ad86-8786c6c9ed06
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4288
+ -285
+ 40
+ 16
+
+ -
+ 4308
+ -277
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6
+ - 6337fb45-9f2a-494e-8d9a-c43d901d4129
+ - 822e353b-fc97-4b6b-a360-c40fe047aba3
+ - 3
+ - 98273f40-7a23-4124-89b2-96776819dea1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a06d28e7-54d8-416c-bf64-1663ac6c8cc4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ -736
+ 144
+ 104
+
+ -
+ 4320
+ -684
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 260a597b-750f-48a9-a996-7ebe1d3297c2
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -734
+ 67
+ 20
+
+ -
+ 4273
+ -724
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;224;224;224
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - f33fee0d-c6a9-488b-a69f-2563a37f5202
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -714
+ 67
+ 20
+
+ -
+ 4273
+ -704
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 35e0718f-39b2-4782-8e23-d82425fcc5d9
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -694
+ 67
+ 20
+
+ -
+ 4273
+ -684
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 669b6da3-7c37-4a36-811e-cf9d92f97500
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -674
+ 67
+ 20
+
+ -
+ 4273
+ -664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 49081706-d297-4187-9eed-998028e62a07
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -654
+ 67
+ 20
+
+ -
+ 4273
+ -644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 685dd4e9-1f79-4c80-8a5d-869db39c3434
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -734
+ 43
+ 100
+
+ -
+ 4358
+ -684
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - dc090530-b05e-44b1-809d-9d9622cca7b4
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ -798
+ 82
+ 44
+
+ -
+ 4335
+ -776
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 952b2f42-9906-45ca-b6b7-0aa3ef80a01c
+ - Geometry
+ - Geometry
+ - false
+ - 88bd0e53-3ee3-4c67-b5a0-f736eba8ff2d
+ - 1
+
+
+
+
+ -
+ 4269
+ -796
+ 51
+ 20
+
+ -
+ 4296
+ -786
+
+
+
+
+
+
+
+ - The material override
+ - f33ed52b-4d5a-42ce-8b61-1a9e2f20fb62
+ - Material
+ - Material
+ - false
+ - 685dd4e9-1f79-4c80-8a5d-869db39c3434
+ - 1
+
+
+
+
+ -
+ 4269
+ -776
+ 51
+ 20
+
+ -
+ 4296
+ -766
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 7a066a23-c87f-4cb6-9087-7461260a23bc
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4236
+ -881
+ 144
+ 64
+
+ -
+ 4310
+ -849
+
+
+
+
+
+ - Curve to evaluate
+ - 58c643fe-30c7-42b3-a4fc-051675d50556
+ - Curve
+ - Curve
+ - false
+ - 88bd0e53-3ee3-4c67-b5a0-f736eba8ff2d
+ - 1
+
+
+
+
+ -
+ 4238
+ -879
+ 57
+ 20
+
+ -
+ 4268
+ -869
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 50ad2b79-9f85-4d11-92ef-fafcc6e9cc86
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -859
+ 57
+ 20
+
+ -
+ 4268
+ -849
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ffce908d-2a6d-4692-ad29-c0f949e4b68d
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -839
+ 57
+ 20
+
+ -
+ 4268
+ -829
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 070664db-079f-4d57-9c66-06f9a828502b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -879
+ 53
+ 20
+
+ -
+ 4353
+ -869
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f6ae4427-9808-457a-bea8-bb2ba3d45ca3
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -859
+ 53
+ 20
+
+ -
+ 4353
+ -849
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 5c2bb764-9644-47d4-abd6-f5d29df9926e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -839
+ 53
+ 20
+
+ -
+ 4353
+ -829
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 22196402-4f02-4c65-b946-79940c9ed86f
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4245
+ -985
+ 125
+ 84
+
+ -
+ 4312
+ -943
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 13075939-c608-495f-b245-210191903f8a
+ - Vertices
+ - Vertices
+ - false
+ - 070664db-079f-4d57-9c66-06f9a828502b
+ - 1
+
+
+
+
+ -
+ 4247
+ -983
+ 50
+ 20
+
+ -
+ 4273.5
+ -973
+
+
+
+
+
+
+
+ - Curve degree
+ - b0d1ba82-efed-4841-8e76-85e28a689321
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -963
+ 50
+ 20
+
+ -
+ 4273.5
+ -953
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - f0d639c2-55c7-44cb-be47-b1805776060a
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -943
+ 50
+ 20
+
+ -
+ 4273.5
+ -933
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 25b64c5c-a442-4dcf-9321-b72dec9066b2
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -923
+ 50
+ 20
+
+ -
+ 4273.5
+ -913
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6c228f65-d09c-466a-bb7a-3e1a228bf38f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -983
+ 41
+ 26
+
+ -
+ 4349
+ -969.6667
+
+
+
+
+
+
+
+ - Curve length
+ - 226e86f4-b238-40dd-89a3-70958162a005
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -957
+ 41
+ 27
+
+ -
+ 4349
+ -943
+
+
+
+
+
+
+
+ - Curve domain
+ - ee600a74-63c9-4e48-aa24-971bd994cca8
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -930
+ 41
+ 27
+
+ -
+ 4349
+ -916.3334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 8990d9d5-32c4-4f6a-80f1-a8c19487ffab
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ -1109
+ 144
+ 104
+
+ -
+ 4320
+ -1057
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 8a558bc9-af84-488f-b24c-8bfa6f67505e
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -1107
+ 67
+ 20
+
+ -
+ 4273
+ -1097
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;199;199;199
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - b51dac09-fb85-4a16-baae-55e111c48a14
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -1087
+ 67
+ 20
+
+ -
+ 4273
+ -1077
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - dadf41ad-84ce-4fc2-8728-ed9dc0315862
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -1067
+ 67
+ 20
+
+ -
+ 4273
+ -1057
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ae046813-eb66-441e-91e0-30d39cba1a96
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -1047
+ 67
+ 20
+
+ -
+ 4273
+ -1037
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - af37db95-6d0a-4db9-a705-6f59f9d62f63
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -1027
+ 67
+ 20
+
+ -
+ 4273
+ -1017
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0ce720bd-95db-413a-9411-322070163430
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -1107
+ 43
+ 100
+
+ -
+ 4358
+ -1057
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - af046430-30ae-447d-a228-e389481e84e5
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ -1169
+ 82
+ 44
+
+ -
+ 4335
+ -1147
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - e80e237d-e959-40d5-ae7e-9d30dca05802
+ - Geometry
+ - Geometry
+ - false
+ - 6c228f65-d09c-466a-bb7a-3e1a228bf38f
+ - 1
+
+
+
+
+ -
+ 4269
+ -1167
+ 51
+ 20
+
+ -
+ 4296
+ -1157
+
+
+
+
+
+
+
+ - The material override
+ - 2ddad691-8637-4cc2-9005-53dcb7df5869
+ - Material
+ - Material
+ - false
+ - 0ce720bd-95db-413a-9411-322070163430
+ - 1
+
+
+
+
+ -
+ 4269
+ -1147
+ 51
+ 20
+
+ -
+ 4296
+ -1137
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 79a32c99-cc85-43d8-92c6-5a6a2d4e661d
+ - 481934d5-e5b9-4163-81dc-d02287b0a16e
+ - f011379a-ace5-42cd-9bf6-03a6a430b537
+ - 2c37bcc8-1830-4dff-85f9-38b2de540fb3
+ - af4abf65-fe15-4571-bfac-a433fbc620b2
+ - adc681a9-796a-436f-8372-b9faebb29bd2
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 49820c57-6bf9-485c-ad4e-d9453a698a97
+ - 656a41d7-19de-4214-b3de-2a5b0082fe7a
+ - dc6c6011-3ef5-40b4-bb9c-f92ccc4e0a73
+ - c651fff0-37e1-49d7-b397-0b8266b5a95f
+ - d289bebe-b878-4fbb-84a8-8a519345390a
+ - 85130a20-ec2b-4b21-b962-404f2d9600ec
+ - 0e05c649-199e-4019-be99-d45cac16b337
+ - 467103cb-dcdd-45ff-a343-768a56d00580
+ - da02d1d3-6ded-4a0b-ba9f-41d51c627b77
+ - 7a68601a-91a8-4247-ad9e-5e0a983742d3
+ - 4d99301f-3934-4a25-abcd-c1e0f420df9f
+ - 2e8b22db-aadc-46e5-ad66-b72ea3883775
+ - eabb2a23-2877-4239-b7f0-861e35a9fbba
+ - 4a27400f-3607-4680-8b22-72118b31c7c1
+ - 1eb64fe7-33f0-4f11-909a-15e428a5b048
+ - 22
+ - 4cc0d15d-8183-441a-8dcd-8e6a3b583203
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - af4abf65-fe15-4571-bfac-a433fbc620b2
+ - adc681a9-796a-436f-8372-b9faebb29bd2
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 49820c57-6bf9-485c-ad4e-d9453a698a97
+ - 656a41d7-19de-4214-b3de-2a5b0082fe7a
+ - dc6c6011-3ef5-40b4-bb9c-f92ccc4e0a73
+ - c651fff0-37e1-49d7-b397-0b8266b5a95f
+ - d289bebe-b878-4fbb-84a8-8a519345390a
+ - 85130a20-ec2b-4b21-b962-404f2d9600ec
+ - 0e05c649-199e-4019-be99-d45cac16b337
+ - 467103cb-dcdd-45ff-a343-768a56d00580
+ - 23d7a889-8f34-4d35-aefb-2c83b8e62cac
+ - 12
+ - 79a32c99-cc85-43d8-92c6-5a6a2d4e661d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 481934d5-e5b9-4163-81dc-d02287b0a16e
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4245
+ -1294
+ 128
+ 28
+
+ -
+ 4298
+ -1280
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - fca83345-0ffe-472d-8a41-aa597ff75796
+ - Values
+ - Values
+ - false
+ - 2c37bcc8-1830-4dff-85f9-38b2de540fb3
+ - 1
+
+
+
+
+ -
+ 4247
+ -1292
+ 36
+ 24
+
+ -
+ 4266.5
+ -1280
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 3897efeb-1fd1-4616-a621-0f1c40968327
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -1292
+ 58
+ 24
+
+ -
+ 4343.5
+ -1280
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f011379a-ace5-42cd-9bf6-03a6a430b537
+ - Relay
+
+ - false
+ - 3897efeb-1fd1-4616-a621-0f1c40968327
+ - 1
+
+
+
+
+ -
+ 4292
+ -1328
+ 40
+ 16
+
+ -
+ 4312
+ -1320
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2c37bcc8-1830-4dff-85f9-38b2de540fb3
+ - Relay
+
+ - false
+ - c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6
+ - 1
+
+
+
+
+ -
+ 4289
+ -1246
+ 40
+ 16
+
+ -
+ 4309
+ -1238
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - af4abf65-fe15-4571-bfac-a433fbc620b2
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4250
+ -2022
+ 122
+ 64
+
+ -
+ 4330
+ -1990
+
+
+
+
+
+ - Line start point
+ - b0c96d14-fd3e-4cbd-acae-f762215f81b4
+ - Start
+ - Start
+ - false
+ - 070664db-079f-4d57-9c66-06f9a828502b
+ - 1
+
+
+
+
+ -
+ 4252
+ -2020
+ 63
+ 20
+
+ -
+ 4293
+ -2010
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8fa5abe4-d5fa-4d32-96ed-fef22da4714a
+ - Direction
+ - Direction
+ - false
+ - adc681a9-796a-436f-8372-b9faebb29bd2
+ - 1
+
+
+
+
+ -
+ 4252
+ -2000
+ 63
+ 20
+
+ -
+ 4293
+ -1990
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 2382fcd4-67cf-41c4-8c30-f96861ceb865
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - d289bebe-b878-4fbb-84a8-8a519345390a
+ - 1
+
+
+
+
+ -
+ 4252
+ -1980
+ 63
+ 20
+
+ -
+ 4293
+ -1970
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - bdedc3f7-076a-4eaf-a8f3-2ba90ab6bff1
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -2020
+ 25
+ 60
+
+ -
+ 4359
+ -1990
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - adc681a9-796a-436f-8372-b9faebb29bd2
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4288
+ -1941
+ 40
+ 16
+
+ -
+ 4308
+ -1933
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 49820c57-6bf9-485c-ad4e-d9453a698a97
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4250
+ -1659
+ 115
+ 64
+
+ -
+ 4305
+ -1627
+
+
+
+
+
+ - Value to remap
+ - 52869c96-8da8-4bc3-918e-c287d7d26a1c
+ - Value
+ - Value
+ - false
+ - c651fff0-37e1-49d7-b397-0b8266b5a95f
+ - 1
+
+
+
+
+ -
+ 4252
+ -1657
+ 38
+ 20
+
+ -
+ 4272.5
+ -1647
+
+
+
+
+
+
+
+ - Source domain
+ - 01f4f5bc-18ff-41d8-8774-f5624cba8ebb
+ - Source
+ - Source
+ - false
+ - bde223be-4434-46c9-83ad-f097db3ddb91
+ - 1
+
+
+
+
+ -
+ 4252
+ -1637
+ 38
+ 20
+
+ -
+ 4272.5
+ -1627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - cbf64630-d715-4846-b7c7-b840d96c584f
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ -1617
+ 38
+ 20
+
+ -
+ 4272.5
+ -1607
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 141fa2c9-105f-4a65-b60b-7ea21aa79f46
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -1657
+ 43
+ 30
+
+ -
+ 4343
+ -1642
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - b6dbaf2c-3396-47b7-9716-a150f1ef4bdf
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -1627
+ 43
+ 30
+
+ -
+ 4343
+ -1612
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 656a41d7-19de-4214-b3de-2a5b0082fe7a
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4247
+ -1576
+ 122
+ 28
+
+ -
+ 4311
+ -1562
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - dc006dab-0aaf-4238-aa4d-289647eeaacc
+ - Numbers
+ - Numbers
+ - false
+ - c651fff0-37e1-49d7-b397-0b8266b5a95f
+ - 1
+
+
+
+
+ -
+ 4249
+ -1574
+ 47
+ 24
+
+ -
+ 4274
+ -1562
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - bde223be-4434-46c9-83ad-f097db3ddb91
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ -1574
+ 41
+ 24
+
+ -
+ 4348
+ -1562
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 49820c57-6bf9-485c-ad4e-d9453a698a97
+ - 656a41d7-19de-4214-b3de-2a5b0082fe7a
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - d289bebe-b878-4fbb-84a8-8a519345390a
+ - c651fff0-37e1-49d7-b397-0b8266b5a95f
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 85130a20-ec2b-4b21-b962-404f2d9600ec
+ - 38af291c-fdb3-4110-91d3-58dd6b570756
+ - 15
+ - dc6c6011-3ef5-40b4-bb9c-f92ccc4e0a73
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c651fff0-37e1-49d7-b397-0b8266b5a95f
+ - Relay
+ -
+ - false
+ - f011379a-ace5-42cd-9bf6-03a6a430b537
+ - 1
+
+
+
+
+ -
+ 4292
+ -1527
+ 40
+ 16
+
+ -
+ 4312
+ -1519
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d289bebe-b878-4fbb-84a8-8a519345390a
+ - Relay
+ -
+ - false
+ - 1ffda5bd-d65f-406b-bf53-0026b4898a5e
+ - 1
+
+
+
+
+ -
+ 4291
+ -1898
+ 40
+ 16
+
+ -
+ 4311
+ -1890
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 85130a20-ec2b-4b21-b962-404f2d9600ec
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ -1861
+ 82
+ 44
+
+ -
+ 4298
+ -1839
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 29353703-ffaf-442e-b5ef-1eed79d4af2e
+ - A
+ - A
+ - true
+ - a19eae16-a754-407b-b6c0-37208376cf5c
+ - 1
+
+
+
+
+ -
+ 4269
+ -1859
+ 14
+ 20
+
+ -
+ 4277.5
+ -1849
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - fa6f8abf-cd41-4ffa-b5a0-f8de8d1df2a7
+ - B
+ - B
+ - true
+ - 38af291c-fdb3-4110-91d3-58dd6b570756
+ - 1
+
+
+
+
+ -
+ 4269
+ -1839
+ 14
+ 20
+
+ -
+ 4277.5
+ -1829
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 1ffda5bd-d65f-406b-bf53-0026b4898a5e
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -1859
+ 34
+ 40
+
+ -
+ 4331.5
+ -1839
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 0e05c649-199e-4019-be99-d45cac16b337
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ -1757
+ 82
+ 44
+
+ -
+ 4298
+ -1735
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 5a32c9bd-d5ea-42ef-9396-f26739ea17d5
+ - A
+ - A
+ - true
+ - 141fa2c9-105f-4a65-b60b-7ea21aa79f46
+ - 1
+
+
+
+
+ -
+ 4269
+ -1755
+ 14
+ 20
+
+ -
+ 4277.5
+ -1745
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 709b0cbd-8c12-451d-a368-9e21e3b5c8ab
+ - B
+ - B
+ - true
+ - 467103cb-dcdd-45ff-a343-768a56d00580
+ - 1
+
+
+
+
+ -
+ 4269
+ -1735
+ 14
+ 20
+
+ -
+ 4277.5
+ -1725
+
+
+
+
+
+
+
+ - Result of multiplication
+ - a19eae16-a754-407b-b6c0-37208376cf5c
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -1755
+ 34
+ 40
+
+ -
+ 4331.5
+ -1735
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 467103cb-dcdd-45ff-a343-768a56d00580
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4285
+ -1695
+ 40
+ 16
+
+ -
+ 4305
+ -1687
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f011379a-ace5-42cd-9bf6-03a6a430b537
+ - 2c37bcc8-1830-4dff-85f9-38b2de540fb3
+ - 481934d5-e5b9-4163-81dc-d02287b0a16e
+ - 3
+ - da02d1d3-6ded-4a0b-ba9f-41d51c627b77
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 7a68601a-91a8-4247-ad9e-5e0a983742d3
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ -2147
+ 144
+ 104
+
+ -
+ 4320
+ -2095
+
+
+
+
+
+ - Colour of the diffuse channel
+ - a601f12c-d614-4147-89ed-692e27cdc775
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2145
+ 67
+ 20
+
+ -
+ 4273
+ -2135
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;217;217;217
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3f2093e9-bb06-4416-bfaa-6e2fcd4f6609
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2125
+ 67
+ 20
+
+ -
+ 4273
+ -2115
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - c5a478f4-64e8-4451-b1ea-32abaf310ad4
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2105
+ 67
+ 20
+
+ -
+ 4273
+ -2095
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 35f7185b-e6b5-4508-9ea1-9535201c077f
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2085
+ 67
+ 20
+
+ -
+ 4273
+ -2075
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - d359583f-8960-4198-a4a2-a1fee8f2684e
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2065
+ 67
+ 20
+
+ -
+ 4273
+ -2055
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 81b24c83-c2c3-4f8a-a7db-7d0d494d32e3
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2145
+ 43
+ 100
+
+ -
+ 4358
+ -2095
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 4d99301f-3934-4a25-abcd-c1e0f420df9f
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ -2209
+ 82
+ 44
+
+ -
+ 4335
+ -2187
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 4de99eed-9d22-4880-a003-7024e676780b
+ - Geometry
+ - Geometry
+ - false
+ - bdedc3f7-076a-4eaf-a8f3-2ba90ab6bff1
+ - 1
+
+
+
+
+ -
+ 4269
+ -2207
+ 51
+ 20
+
+ -
+ 4296
+ -2197
+
+
+
+
+
+
+
+ - The material override
+ - aeb8d83c-ade0-47da-a475-acee523319eb
+ - Material
+ - Material
+ - false
+ - 81b24c83-c2c3-4f8a-a7db-7d0d494d32e3
+ - 1
+
+
+
+
+ -
+ 4269
+ -2187
+ 51
+ 20
+
+ -
+ 4296
+ -2177
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2e8b22db-aadc-46e5-ad66-b72ea3883775
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4236
+ -2292
+ 144
+ 64
+
+ -
+ 4310
+ -2260
+
+
+
+
+
+ - Curve to evaluate
+ - d8d30e09-adef-4043-b8f5-f83652e5d7a6
+ - Curve
+ - Curve
+ - false
+ - bdedc3f7-076a-4eaf-a8f3-2ba90ab6bff1
+ - 1
+
+
+
+
+ -
+ 4238
+ -2290
+ 57
+ 20
+
+ -
+ 4268
+ -2280
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 01455e05-2998-442f-8054-3c86ccfbbda6
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2270
+ 57
+ 20
+
+ -
+ 4268
+ -2260
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2ae49ff3-bf7b-47b7-854a-cc9b25030823
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2250
+ 57
+ 20
+
+ -
+ 4268
+ -2240
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 6563e8d4-1b46-407e-9fc5-2d92351f7187
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -2290
+ 53
+ 20
+
+ -
+ 4353
+ -2280
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c8fef1b9-34cb-48ca-b2c2-6893b1d35f34
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -2270
+ 53
+ 20
+
+ -
+ 4353
+ -2260
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ece9a1dc-1117-4abd-8359-53adb62b7fdc
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -2250
+ 53
+ 20
+
+ -
+ 4353
+ -2240
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - eabb2a23-2877-4239-b7f0-861e35a9fbba
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4245
+ -2396
+ 125
+ 84
+
+ -
+ 4312
+ -2354
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 3c7585e2-a47b-4e4b-9f84-9b81d1c377a5
+ - Vertices
+ - Vertices
+ - false
+ - 6563e8d4-1b46-407e-9fc5-2d92351f7187
+ - 1
+
+
+
+
+ -
+ 4247
+ -2394
+ 50
+ 20
+
+ -
+ 4273.5
+ -2384
+
+
+
+
+
+
+
+ - Curve degree
+ - 205c3340-b408-43dc-92ff-5108bfb703ee
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -2374
+ 50
+ 20
+
+ -
+ 4273.5
+ -2364
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 95af83b4-d6a4-4bda-b584-dacd84373a2b
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -2354
+ 50
+ 20
+
+ -
+ 4273.5
+ -2344
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 068001a0-3f8f-400f-bc7c-8f54481c9a68
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -2334
+ 50
+ 20
+
+ -
+ 4273.5
+ -2324
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 225650fb-215c-4398-9f6f-49f6df1d9b0f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -2394
+ 41
+ 26
+
+ -
+ 4349
+ -2380.667
+
+
+
+
+
+
+
+ - Curve length
+ - 6629412b-67a5-4861-8a2c-c2b023b0f80c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -2368
+ 41
+ 27
+
+ -
+ 4349
+ -2354
+
+
+
+
+
+
+
+ - Curve domain
+ - d0097689-83fa-4496-a4de-3a3e5275ab21
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -2341
+ 41
+ 27
+
+ -
+ 4349
+ -2327.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 4a27400f-3607-4680-8b22-72118b31c7c1
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ -2520
+ 144
+ 104
+
+ -
+ 4320
+ -2468
+
+
+
+
+
+ - Colour of the diffuse channel
+ - cc1d7e8f-c986-4125-8690-8ef36e71ae07
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2518
+ 67
+ 20
+
+ -
+ 4273
+ -2508
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;191;191;191
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 28681372-3789-4a19-b6df-3827b37b5f55
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2498
+ 67
+ 20
+
+ -
+ 4273
+ -2488
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - e0842db1-9c52-4d77-9b6f-a640a61a7255
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2478
+ 67
+ 20
+
+ -
+ 4273
+ -2468
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1a7171ad-0c94-4af5-ba94-4a6b957b73f1
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2458
+ 67
+ 20
+
+ -
+ 4273
+ -2448
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 246ca8ea-2ff2-4029-91d6-7b2261833c53
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -2438
+ 67
+ 20
+
+ -
+ 4273
+ -2428
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 5c056271-4eb9-4538-9eda-285f349a7b1c
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2518
+ 43
+ 100
+
+ -
+ 4358
+ -2468
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 1eb64fe7-33f0-4f11-909a-15e428a5b048
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ -2580
+ 82
+ 44
+
+ -
+ 4335
+ -2558
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ddd061c4-000c-496d-b505-a12a87a3da90
+ - Geometry
+ - Geometry
+ - false
+ - 225650fb-215c-4398-9f6f-49f6df1d9b0f
+ - 1
+
+
+
+
+ -
+ 4269
+ -2578
+ 51
+ 20
+
+ -
+ 4296
+ -2568
+
+
+
+
+
+
+
+ - The material override
+ - f19b55e1-0610-43b4-af33-a039c11bb9bb
+ - Material
+ - Material
+ - false
+ - 5c056271-4eb9-4538-9eda-285f349a7b1c
+ - 1
+
+
+
+
+ -
+ 4269
+ -2558
+ 51
+ 20
+
+ -
+ 4296
+ -2548
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9f2b8fbc-da80-49ce-be5e-1c21353c1388
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4833
+ 11499
+ 50
+ 24
+
+ -
+ 4858.669
+ 11511.67
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1c76bd8b-7b0d-40ae-bebf-5c90056352d4
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4833
+ 11765
+ 50
+ 24
+
+ -
+ 4858.669
+ 11777.32
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1e0236dd-831d-4c6f-851b-07eb4c0d0291
+ - 79c9977f-bedf-4d3f-a9cd-1626b6427e12
+ - 6fe36a9a-28ae-446f-a517-d7ee2b35ff87
+ - 70018804-928a-4a0a-b3a0-6cf6787cc765
+ - 4e018cf9-d01b-4143-b27e-c7c71892da73
+ - ec0c0969-25ed-4468-8b7f-97c7cfd7612e
+ - 307ecbe8-ac9f-493d-9e5e-37683ca8f186
+ - 90ea485d-5822-4301-b8d7-3837c9f71b75
+ - ba7c29f2-ada2-46da-95ea-3d209cb82cb2
+ - 244cd09e-0cea-4e71-8685-91e9e48efa68
+ - 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf
+ - cc0117fa-06c6-4ee2-ac32-215ffcc1f7c1
+ - ea9f713d-7b4a-4702-ae93-e2f26543a470
+ - 1c42ccde-b5d6-45a8-a974-714cb902e77d
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - f0dbb644-afb2-4d37-b8da-af2a320309e3
+ - 362fbf21-a639-42aa-a89e-3dc72c2ddeeb
+ - 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7
+ - f3fbce53-da50-4d10-9971-2000f45194c2
+ - a224f62f-3e78-4c89-8dc6-05859c5cb9a2
+ - a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c
+ - 1fb45101-b21f-459a-8956-9a72bc0dbf87
+ - bb44ce47-8c13-43d9-ba60-4d124b4e5ae4
+ - 36030219-d497-477c-9184-bddd915cb05a
+ - 6aa23a1f-b6fb-45ea-94fa-0374fb92263c
+ - 66e55e71-4652-406a-a923-26d98f307e97
+ - 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7
+ - 1c84b5ad-23aa-4185-a64b-d5acc7fd1568
+ - 55679b5f-d32f-4897-8d09-66821c619faa
+ - 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad
+ - da59584f-4738-4ca0-8ce9-548460a7fee9
+ - 86e3682e-ce67-42cf-911e-eeed3dfbdefd
+ - 13714ab0-7f04-4a58-ad9e-ceaca3d95e36
+ - 68ad2a0c-397b-4405-9621-0ab234f51099
+ - 28d55d12-e680-4e3e-acfd-841b2c9faf0c
+ - 2c163af6-af7f-4ed8-b4ef-e3131f6a7ca8
+ - cba42b54-7a1c-4c98-be03-e59d379a2894
+ - 6155b25a-afbd-4573-9b48-355b0a14ae8e
+ - acfa39f7-965f-4387-ab5b-b54436656577
+ - 7ee1539d-a236-4d59-9694-2c09386d9551
+ - b27973c5-f333-4dbe-8bb2-158cf4a7844d
+ - 6ac57fde-7d22-4cca-8c5a-5d0a28c884e9
+ - e5cf712a-df3f-4476-b30b-d3463accfb6a
+ - 9bba076a-7d74-4e01-a334-4d931ed033f3
+ - b0cf56cb-6cfe-4df5-b194-07f997d0bd20
+ - b72a6b06-3be2-45e2-989c-7e7a51ec35c1
+ - e3cd8122-c2ff-49a6-9ecb-b989cbee30a9
+ - 26d27076-c008-4e64-974c-ce9aac18da2e
+ - 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6
+ - 16217803-b1a6-4c82-ad92-b14787f609b6
+ - e7cf9320-68c8-4707-9aba-558332338382
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 62d2f4a5-bc18-4426-a766-5a836b470190
+ - aeed149a-1b87-40f8-a80e-0fba6229c1c5
+ - 0cb431c1-66b6-4421-91e6-f722e8290783
+ - bfb14711-271e-42bd-86cc-51360d92fafe
+ - 5a795dd5-5846-4052-8d76-f8ff84b0c76e
+ - 565c2487-e6b1-4b0d-9b60-b4ef035b1ad5
+ - 4e5e9256-4923-4d63-8f79-f0c3f0d1a7a7
+ - 8e8065a3-aa82-4a92-aa35-315c5e80cce6
+ - c6104625-7012-4837-b3d8-85aef833c461
+ - 39257d34-da6a-4970-b14d-1a29dcf9555b
+ - 8afb042b-575f-4d86-9b32-b8978003ece0
+ - d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f
+ - cb62e43a-ed84-4f5d-a866-c537c0a027d7
+ - 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a
+ - 48566625-50c4-4225-807c-177433e91f71
+ - 3bb8e3dd-969f-41ec-8805-4c84b5f09d23
+ - 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb
+ - 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d
+ - d714c48a-2a73-4d1a-a30b-d7da2b936496
+ - 07d98ecc-da14-47d2-b356-5c6e4c8c2c60
+ - a4958a9c-5813-47b6-aa2c-ab9e636f97c4
+ - fa049596-2965-4c5d-97a7-5e19cffbc796
+ - 9686459f-3b8c-4236-a424-b61a61b59f38
+ - e010c8fd-840c-4166-9529-3087fe2d17d8
+ - 246ecf84-d14b-4307-a633-35f573840f33
+ - 8d0f4434-7d6e-4068-b183-c84afb4b8204
+ - da4f27ab-934b-48b2-89e3-f39463e6853c
+ - 1d29bbdb-cefa-4e66-99ed-d43b60d5b83f
+ - b24604d6-b572-4cd1-a024-27c751a205bb
+ - 08fa1a46-6440-41a4-bbbf-53c0c4624266
+ - a28c8f0e-96c2-457b-825c-02f5a78e0a9e
+ - 83
+ - d9fcfc9c-526c-47e4-b0e4-4af2192c2cbf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 79c9977f-bedf-4d3f-a9cd-1626b6427e12
+ - 6fe36a9a-28ae-446f-a517-d7ee2b35ff87
+ - 70018804-928a-4a0a-b3a0-6cf6787cc765
+ - 4e018cf9-d01b-4143-b27e-c7c71892da73
+ - ec0c0969-25ed-4468-8b7f-97c7cfd7612e
+ - 307ecbe8-ac9f-493d-9e5e-37683ca8f186
+ - 90ea485d-5822-4301-b8d7-3837c9f71b75
+ - ba7c29f2-ada2-46da-95ea-3d209cb82cb2
+ - 244cd09e-0cea-4e71-8685-91e9e48efa68
+ - 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf
+ - cc0117fa-06c6-4ee2-ac32-215ffcc1f7c1
+ - ea9f713d-7b4a-4702-ae93-e2f26543a470
+ - 1c42ccde-b5d6-45a8-a974-714cb902e77d
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - f0dbb644-afb2-4d37-b8da-af2a320309e3
+ - 362fbf21-a639-42aa-a89e-3dc72c2ddeeb
+ - 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7
+ - f3fbce53-da50-4d10-9971-2000f45194c2
+ - a224f62f-3e78-4c89-8dc6-05859c5cb9a2
+ - a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c
+ - 1fb45101-b21f-459a-8956-9a72bc0dbf87
+ - bb44ce47-8c13-43d9-ba60-4d124b4e5ae4
+ - 36030219-d497-477c-9184-bddd915cb05a
+ - 6aa23a1f-b6fb-45ea-94fa-0374fb92263c
+ - 66e55e71-4652-406a-a923-26d98f307e97
+ - 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7
+ - 1c84b5ad-23aa-4185-a64b-d5acc7fd1568
+ - 55679b5f-d32f-4897-8d09-66821c619faa
+ - 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad
+ - da59584f-4738-4ca0-8ce9-548460a7fee9
+ - 86e3682e-ce67-42cf-911e-eeed3dfbdefd
+ - 13714ab0-7f04-4a58-ad9e-ceaca3d95e36
+ - 68ad2a0c-397b-4405-9621-0ab234f51099
+ - 28d55d12-e680-4e3e-acfd-841b2c9faf0c
+ - 2c163af6-af7f-4ed8-b4ef-e3131f6a7ca8
+ - cba42b54-7a1c-4c98-be03-e59d379a2894
+ - 6155b25a-afbd-4573-9b48-355b0a14ae8e
+ - acfa39f7-965f-4387-ab5b-b54436656577
+ - 7ee1539d-a236-4d59-9694-2c09386d9551
+ - b27973c5-f333-4dbe-8bb2-158cf4a7844d
+ - 6ac57fde-7d22-4cca-8c5a-5d0a28c884e9
+ - e5cf712a-df3f-4476-b30b-d3463accfb6a
+ - 9bba076a-7d74-4e01-a334-4d931ed033f3
+ - b0cf56cb-6cfe-4df5-b194-07f997d0bd20
+ - b72a6b06-3be2-45e2-989c-7e7a51ec35c1
+ - e3cd8122-c2ff-49a6-9ecb-b989cbee30a9
+ - 26d27076-c008-4e64-974c-ce9aac18da2e
+ - 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6
+ - 16217803-b1a6-4c82-ad92-b14787f609b6
+ - e7cf9320-68c8-4707-9aba-558332338382
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 62d2f4a5-bc18-4426-a766-5a836b470190
+ - aeed149a-1b87-40f8-a80e-0fba6229c1c5
+ - 0cb431c1-66b6-4421-91e6-f722e8290783
+ - bfb14711-271e-42bd-86cc-51360d92fafe
+ - 5a795dd5-5846-4052-8d76-f8ff84b0c76e
+ - 565c2487-e6b1-4b0d-9b60-b4ef035b1ad5
+ - 4e5e9256-4923-4d63-8f79-f0c3f0d1a7a7
+ - 8e8065a3-aa82-4a92-aa35-315c5e80cce6
+ - c6104625-7012-4837-b3d8-85aef833c461
+ - 39257d34-da6a-4970-b14d-1a29dcf9555b
+ - 8afb042b-575f-4d86-9b32-b8978003ece0
+ - d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f
+ - cb62e43a-ed84-4f5d-a866-c537c0a027d7
+ - 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a
+ - 48566625-50c4-4225-807c-177433e91f71
+ - 3bb8e3dd-969f-41ec-8805-4c84b5f09d23
+ - 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb
+ - 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d
+ - d714c48a-2a73-4d1a-a30b-d7da2b936496
+ - 07d98ecc-da14-47d2-b356-5c6e4c8c2c60
+ - a4958a9c-5813-47b6-aa2c-ab9e636f97c4
+ - fa049596-2965-4c5d-97a7-5e19cffbc796
+ - 9686459f-3b8c-4236-a424-b61a61b59f38
+ - e010c8fd-840c-4166-9529-3087fe2d17d8
+ - 246ecf84-d14b-4307-a633-35f573840f33
+ - 8d0f4434-7d6e-4068-b183-c84afb4b8204
+ - da4f27ab-934b-48b2-89e3-f39463e6853c
+ - 1d29bbdb-cefa-4e66-99ed-d43b60d5b83f
+ - 79
+ - 1e0236dd-831d-4c6f-851b-07eb4c0d0291
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8d0f4434-7d6e-4068-b183-c84afb4b8204
+ - 1
+ - 79c9977f-bedf-4d3f-a9cd-1626b6427e12
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 70018804-928a-4a0a-b3a0-6cf6787cc765
+ - 1
+ - 6fe36a9a-28ae-446f-a517-d7ee2b35ff87
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4e018cf9-d01b-4143-b27e-c7c71892da73
+ - 1
+ - 70018804-928a-4a0a-b3a0-6cf6787cc765
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ec0c0969-25ed-4468-8b7f-97c7cfd7612e
+ - 1
+ - 4e018cf9-d01b-4143-b27e-c7c71892da73
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 307ecbe8-ac9f-493d-9e5e-37683ca8f186
+ - 1
+ - ec0c0969-25ed-4468-8b7f-97c7cfd7612e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 90ea485d-5822-4301-b8d7-3837c9f71b75
+ - 1
+ - 307ecbe8-ac9f-493d-9e5e-37683ca8f186
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 244cd09e-0cea-4e71-8685-91e9e48efa68
+ - 1
+ - 90ea485d-5822-4301-b8d7-3837c9f71b75
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ba7c29f2-ada2-46da-95ea-3d209cb82cb2
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7412
+ 11447
+ 50
+ 24
+
+ -
+ 7437.876
+ 11459.63
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ba7c29f2-ada2-46da-95ea-3d209cb82cb2
+ - 1
+ - 244cd09e-0cea-4e71-8685-91e9e48efa68
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad
+ - 1
+ - 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ea9f713d-7b4a-4702-ae93-e2f26543a470
+ - 1c42ccde-b5d6-45a8-a974-714cb902e77d
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - f0dbb644-afb2-4d37-b8da-af2a320309e3
+ - 362fbf21-a639-42aa-a89e-3dc72c2ddeeb
+ - 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7
+ - f3fbce53-da50-4d10-9971-2000f45194c2
+ - a224f62f-3e78-4c89-8dc6-05859c5cb9a2
+ - 1fb45101-b21f-459a-8956-9a72bc0dbf87
+ - a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c
+ - 327b7b52-9eff-4bf2-a9c5-75cd21d64fdf
+ - 244cd09e-0cea-4e71-8685-91e9e48efa68
+ - 48566625-50c4-4225-807c-177433e91f71
+ - 3bb8e3dd-969f-41ec-8805-4c84b5f09d23
+ - 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb
+ - 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d
+ - d714c48a-2a73-4d1a-a30b-d7da2b936496
+ - 07d98ecc-da14-47d2-b356-5c6e4c8c2c60
+ - d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f
+ - cb62e43a-ed84-4f5d-a866-c537c0a027d7
+ - 20
+ - cc0117fa-06c6-4ee2-ac32-215ffcc1f7c1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - ea9f713d-7b4a-4702-ae93-e2f26543a470
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 7387
+ 12445
+ 104
+ 64
+
+ -
+ 7446
+ 12477
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 25bde98d-6e88-4a4f-8d32-6d0e0fc43bd9
+ - Data
+ - Data
+ - false
+ - c230e71e-52b1-4221-b24a-9f856bf4138a
+ - 1
+
+
+
+
+ -
+ 7389
+ 12447
+ 42
+ 20
+
+ -
+ 7411.5
+ 12457
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 69491634-13e0-4bdf-8004-1cadf50c3737
+ - Number
+ - Number
+ - false
+ - 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a
+ - 1
+
+
+
+
+ -
+ 7389
+ 12467
+ 42
+ 20
+
+ -
+ 7411.5
+ 12477
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 693f8738-7e40-4339-b7b2-c9c0566826d6
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 7389
+ 12487
+ 42
+ 20
+
+ -
+ 7411.5
+ 12497
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 7160dbc6-9a1f-44f3-bffd-d90b169afbc3
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 7461
+ 12447
+ 28
+ 60
+
+ -
+ 7476.5
+ 12477
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 1c42ccde-b5d6-45a8-a974-714cb902e77d
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 7376
+ 10804
+ 116
+ 44
+
+ -
+ 7437
+ 10826
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - a4fb5349-603c-419c-8a84-297e1c750345
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 7160dbc6-9a1f-44f3-bffd-d90b169afbc3
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7378
+ 10806
+ 44
+ 20
+
+ -
+ 7401.5
+ 10816
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - a22c4ecb-e43f-4541-8ee5-475aab61f58d
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 99d6efab-9b89-4f22-8a8d-df1094258fe6
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7378
+ 10826
+ 44
+ 20
+
+ -
+ 7401.5
+ 10836
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 7478478d-097e-4f4a-87e9-13beaa2ec019
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 7452
+ 10806
+ 38
+ 20
+
+ -
+ 7472.5
+ 10816
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 1ce1b2e3-7315-41ec-8e7d-3d48e5ae6c61
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7452
+ 10826
+ 38
+ 20
+
+ -
+ 7472.5
+ 10836
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - Point
+ - Point
+ - false
+ - 1ce1b2e3-7315-41ec-8e7d-3d48e5ae6c61
+ - 1
+
+
+
+
+ -
+ 7411
+ 10424
+ 50
+ 24
+
+ -
+ 7436.737
+ 10436.11
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - f0dbb644-afb2-4d37-b8da-af2a320309e3
+ - Series
+ - Series
+
+
+
+
+ -
+ 7387
+ 11868
+ 101
+ 64
+
+ -
+ 7437
+ 11900
+
+
+
+
+
+ - First number in the series
+ - 5d2b0328-eb43-4499-93f1-6ea47fd04264
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7389
+ 11870
+ 33
+ 20
+
+ -
+ 7407
+ 11880
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 9847c1ed-fa76-4bb6-8cb0-48ef03a53a38
+ - Step
+ - Step
+ - false
+ - 246ecf84-d14b-4307-a633-35f573840f33
+ - 1
+
+
+
+
+ -
+ 7389
+ 11890
+ 33
+ 20
+
+ -
+ 7407
+ 11900
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - c1b2876b-ec57-4900-9006-a432cd6b6242
+ - Count
+ - Count
+ - false
+ - 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a
+ - 1
+
+
+
+
+ -
+ 7389
+ 11910
+ 33
+ 20
+
+ -
+ 7407
+ 11920
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - d31ac591-fd5d-4c73-a76f-9bc43174b558
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 7452
+ 11870
+ 34
+ 60
+
+ -
+ 7470.5
+ 11900
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 362fbf21-a639-42aa-a89e-3dc72c2ddeeb
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 12612
+ 150
+ 20
+
+ -
+ 7364.227
+ 12612.21
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 7374
+ 12070
+ 120
+ 28
+
+ -
+ 7435
+ 12084
+
+
+
+
+
+ - Angle in degrees
+ - 1bff327f-f678-4200-942f-aac96923ec3b
+ - Degrees
+ - Degrees
+ - false
+ - 35081227-19ab-4cfd-befc-b733fd6a2745
+ - 1
+
+
+
+
+ -
+ 7376
+ 12072
+ 44
+ 24
+
+ -
+ 7399.5
+ 12084
+
+
+
+
+
+
+
+ - Angle in radians
+ - 9f541762-9b0d-4322-9575-67e4ca64397e
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 7450
+ 12072
+ 42
+ 24
+
+ -
+ 7472.5
+ 12084
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f3fbce53-da50-4d10-9971-2000f45194c2
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 7313
+ 12354
+ 251
+ 20
+
+ -
+ 7313.553
+ 12354.52
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - a224f62f-3e78-4c89-8dc6-05859c5cb9a2
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 7389
+ 12527
+ 100
+ 28
+
+ -
+ 7438
+ 12541
+
+
+
+
+
+ - Input value
+ - ce2fccb6-1c9e-4b06-8c33-410ad0c3aa96
+ - Value
+ - Value
+ - false
+ - 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a
+ - 1
+
+
+
+
+ -
+ 7391
+ 12529
+ 32
+ 24
+
+ -
+ 7408.5
+ 12541
+
+
+
+
+
+
+
+ - Output value
+ - c230e71e-52b1-4221-b24a-9f856bf4138a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7453
+ 12529
+ 34
+ 24
+
+ -
+ 7471.5
+ 12541
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 7362
+ 10316
+ 144
+ 84
+
+ -
+ 7448
+ 10358
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 4c454c0c-eeb8-4ab3-a1f5-f2f12b9b0ae3
+ - Vertices
+ - Vertices
+ - false
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - 1
+
+
+
+
+ -
+ 7364
+ 10318
+ 69
+ 20
+
+ -
+ 7400
+ 10328
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - e2b04cb7-00f0-4136-b9b2-5024ead32dff
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 10338
+ 69
+ 20
+
+ -
+ 7400
+ 10348
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 65a66bff-1f56-4c99-8601-fd83a5dc8c49
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 10358
+ 69
+ 20
+
+ -
+ 7400
+ 10368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - a6ce9c4a-15ad-45d0-9ac4-15a8ca13a924
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 10378
+ 69
+ 20
+
+ -
+ 7400
+ 10388
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - f63ca26d-b109-4c46-adbc-3d493af44fb8
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 10318
+ 41
+ 26
+
+ -
+ 7485
+ 10331.33
+
+
+
+
+
+
+
+ - Curve length
+ - 9f90a40c-c257-4d71-8c5b-18be41b60955
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 10344
+ 41
+ 27
+
+ -
+ 7485
+ 10358
+
+
+
+
+
+
+
+ - Curve domain
+ - 30361471-1adb-443d-9dfd-25209d4559b2
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 10371
+ 41
+ 27
+
+ -
+ 7485
+ 10384.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ea9f713d-7b4a-4702-ae93-e2f26543a470
+ - 1c42ccde-b5d6-45a8-a974-714cb902e77d
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - f0dbb644-afb2-4d37-b8da-af2a320309e3
+ - 362fbf21-a639-42aa-a89e-3dc72c2ddeeb
+ - 9a6fe024-1e92-4b5a-902b-8bba9c0ab6e7
+ - f3fbce53-da50-4d10-9971-2000f45194c2
+ - a224f62f-3e78-4c89-8dc6-05859c5cb9a2
+ - fa049596-2965-4c5d-97a7-5e19cffbc796
+ - 68ad2a0c-397b-4405-9621-0ab234f51099
+ - 8afb042b-575f-4d86-9b32-b8978003ece0
+ - a4958a9c-5813-47b6-aa2c-ab9e636f97c4
+ - 9686459f-3b8c-4236-a424-b61a61b59f38
+ - 13
+ - 1fb45101-b21f-459a-8956-9a72bc0dbf87
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - bb44ce47-8c13-43d9-ba60-4d124b4e5ae4
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7362
+ 10148
+ 144
+ 64
+
+ -
+ 7436
+ 10180
+
+
+
+
+
+ - Curve to evaluate
+ - f45d6459-7a69-4336-9a0f-f303a66e6f9b
+ - Curve
+ - Curve
+ - false
+ - f63ca26d-b109-4c46-adbc-3d493af44fb8
+ - 1
+
+
+
+
+ -
+ 7364
+ 10150
+ 57
+ 20
+
+ -
+ 7394
+ 10160
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - c32904d9-ec9d-4e35-a159-6e945fdf3573
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 10170
+ 57
+ 20
+
+ -
+ 7394
+ 10180
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - eeacbdef-a418-4bf8-8c1e-8b73574ea767
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 10190
+ 57
+ 20
+
+ -
+ 7394
+ 10200
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - acc26bb6-07d5-48b9-a41b-c12fe3f90623
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 10150
+ 53
+ 20
+
+ -
+ 7479
+ 10160
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c0a772ca-2999-43eb-aa17-f4b17c123e24
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 10170
+ 53
+ 20
+
+ -
+ 7479
+ 10180
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - d6a55696-a75c-451e-b35f-70c64fa66845
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 10190
+ 53
+ 20
+
+ -
+ 7479
+ 10200
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 36030219-d497-477c-9184-bddd915cb05a
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7365
+ 10086
+ 138
+ 44
+
+ -
+ 7433
+ 10108
+
+
+
+
+
+ - Base geometry
+ - a769b693-5049-4972-8dbd-2ec16d354de1
+ - Geometry
+ - Geometry
+ - true
+ - f63ca26d-b109-4c46-adbc-3d493af44fb8
+ - 1
+
+
+
+
+ -
+ 7367
+ 10088
+ 51
+ 20
+
+ -
+ 7394
+ 10098
+
+
+
+
+
+
+
+ - Mirror plane
+ - e084362e-735d-477a-a8b6-06064dccfe58
+ - Plane
+ - Plane
+ - false
+ - 8d49aabc-a0e1-4ac6-83ac-458984d9b471
+ - 1
+
+
+
+
+ -
+ 7367
+ 10108
+ 51
+ 20
+
+ -
+ 7394
+ 10118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 3534c2cf-99e1-4869-ad4f-524d14175343
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7448
+ 10088
+ 53
+ 20
+
+ -
+ 7476
+ 10098
+
+
+
+
+
+
+
+ - Transformation data
+ - 1325b2c8-5671-46b5-af5a-dcb1ab91054b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7448
+ 10108
+ 53
+ 20
+
+ -
+ 7476
+ 10118
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 6aa23a1f-b6fb-45ea-94fa-0374fb92263c
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 7381
+ 10232
+ 106
+ 64
+
+ -
+ 7445
+ 10264
+
+
+
+
+
+ - Line start point
+ - 724bebbb-3922-421b-ac9b-c2f86dac8ecc
+ - Start
+ - Start
+ - false
+ - acc26bb6-07d5-48b9-a41b-c12fe3f90623
+ - 1
+
+
+
+
+ -
+ 7383
+ 10234
+ 47
+ 20
+
+ -
+ 7408
+ 10244
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 9b6beccb-e661-42bc-b9af-8523c94f1c7f
+ - Direction
+ - Direction
+ - false
+ - c0a772ca-2999-43eb-aa17-f4b17c123e24
+ - 1
+
+
+
+
+ -
+ 7383
+ 10254
+ 47
+ 20
+
+ -
+ 7408
+ 10264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - fae46770-d36f-481c-b9ed-9e58cfd17656
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7383
+ 10274
+ 47
+ 20
+
+ -
+ 7408
+ 10284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 8d49aabc-a0e1-4ac6-83ac-458984d9b471
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 7460
+ 10234
+ 25
+ 60
+
+ -
+ 7474
+ 10264
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 66e55e71-4652-406a-a923-26d98f307e97
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7375
+ 10024
+ 118
+ 44
+
+ -
+ 7438
+ 10046
+
+
+
+
+
+ - 1
+ - Curves to join
+ - ec5d5c9a-98bf-4002-ab10-07e19f8b076c
+ - Curves
+ - Curves
+ - false
+ - f63ca26d-b109-4c46-adbc-3d493af44fb8
+ - 3534c2cf-99e1-4869-ad4f-524d14175343
+ - 2
+
+
+
+
+ -
+ 7377
+ 10026
+ 46
+ 20
+
+ -
+ 7401.5
+ 10036
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 431f0ff7-d5ec-46c6-8807-77d0c0c14cfc
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7377
+ 10046
+ 46
+ 20
+
+ -
+ 7401.5
+ 10056
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 269d2e6a-a947-48d9-8280-5a411d776654
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7453
+ 10026
+ 38
+ 40
+
+ -
+ 7473.5
+ 10046
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7362
+ 9940
+ 144
+ 64
+
+ -
+ 7436
+ 9972
+
+
+
+
+
+ - Curve to evaluate
+ - 96ac2f33-8537-4550-926e-6d4c232f7e3e
+ - Curve
+ - Curve
+ - false
+ - 269d2e6a-a947-48d9-8280-5a411d776654
+ - 1
+
+
+
+
+ -
+ 7364
+ 9942
+ 57
+ 20
+
+ -
+ 7394
+ 9952
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ab6faa20-eae7-4c64-9b91-fa5d3f7999e1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 9962
+ 57
+ 20
+
+ -
+ 7394
+ 9972
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ae70072f-6d8f-47b8-9945-319cbf77bb2d
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 9982
+ 57
+ 20
+
+ -
+ 7394
+ 9992
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 0b992063-da80-42db-8744-bb7339f15b5a
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 9942
+ 53
+ 20
+
+ -
+ 7479
+ 9952
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 50a23b28-6ae1-49dc-92ec-6c6effb01f31
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 9962
+ 53
+ 20
+
+ -
+ 7479
+ 9972
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 97ef9e01-07a0-4dc8-8865-ad2e08e71d35
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 9982
+ 53
+ 20
+
+ -
+ 7479
+ 9992
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 1c84b5ad-23aa-4185-a64b-d5acc7fd1568
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 7365
+ 9857
+ 138
+ 64
+
+ -
+ 7433
+ 9889
+
+
+
+
+
+ - Base geometry
+ - 1a6a4176-286e-459f-9245-5610628a54b8
+ - Geometry
+ - Geometry
+ - true
+ - 269d2e6a-a947-48d9-8280-5a411d776654
+ - 1
+
+
+
+
+ -
+ 7367
+ 9859
+ 51
+ 20
+
+ -
+ 7394
+ 9869
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - a6a11437-24b0-4c2a-9e11-5bfb58cd96ff
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 7367
+ 9879
+ 51
+ 20
+
+ -
+ 7394
+ 9889
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 8b79a124-0a88-4af6-9d49-36492585cfbb
+ - Plane
+ - Plane
+ - false
+ - 0b992063-da80-42db-8744-bb7339f15b5a
+ - 1
+
+
+
+
+ -
+ 7367
+ 9899
+ 51
+ 20
+
+ -
+ 7394
+ 9909
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 8ab60d56-fd88-4c50-be69-b0d98cc7b877
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7448
+ 9859
+ 53
+ 30
+
+ -
+ 7476
+ 9874
+
+
+
+
+
+
+
+ - Transformation data
+ - f796343e-847c-4232-baaa-15c2567e65f6
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7448
+ 9889
+ 53
+ 30
+
+ -
+ 7476
+ 9904
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 55679b5f-d32f-4897-8d09-66821c619faa
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7375
+ 9794
+ 118
+ 44
+
+ -
+ 7438
+ 9816
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 6f3d265a-f9d6-4177-8520-40e231d76a85
+ - Curves
+ - Curves
+ - false
+ - 269d2e6a-a947-48d9-8280-5a411d776654
+ - 8ab60d56-fd88-4c50-be69-b0d98cc7b877
+ - 2
+
+
+
+
+ -
+ 7377
+ 9796
+ 46
+ 20
+
+ -
+ 7401.5
+ 9806
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 11da559c-5662-48c9-bf9f-aac1dc456755
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7377
+ 9816
+ 46
+ 20
+
+ -
+ 7401.5
+ 9826
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - e86d700e-e3ce-4fd8-8b00-a47921cea996
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7453
+ 9796
+ 38
+ 40
+
+ -
+ 7473.5
+ 9816
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a53f94e7-0cbf-425b-aa63-9fd23c1bbb5c
+ - bb44ce47-8c13-43d9-ba60-4d124b4e5ae4
+ - 36030219-d497-477c-9184-bddd915cb05a
+ - 6aa23a1f-b6fb-45ea-94fa-0374fb92263c
+ - 66e55e71-4652-406a-a923-26d98f307e97
+ - 4fd5d7e5-f617-4916-93e2-3b30cb2c13c7
+ - 1c84b5ad-23aa-4185-a64b-d5acc7fd1568
+ - 55679b5f-d32f-4897-8d09-66821c619faa
+ - 86e3682e-ce67-42cf-911e-eeed3dfbdefd
+ - 9
+ - 11be1e7d-7998-4fac-a7b7-e2b0c8d10aad
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - da59584f-4738-4ca0-8ce9-548460a7fee9
+ - Panel
+
+ - false
+ - 0
+ - 9bba076a-7d74-4e01-a334-4d931ed033f3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7364
+ 11953
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7364.296
+ 11953.28
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 86e3682e-ce67-42cf-911e-eeed3dfbdefd
+ - Curve
+ - Curve
+ - false
+ - e86d700e-e3ce-4fd8-8b00-a47921cea996
+ - 1
+
+
+
+
+ -
+ 7412
+ 9754
+ 50
+ 24
+
+ -
+ 7437.876
+ 9766.178
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 86e3682e-ce67-42cf-911e-eeed3dfbdefd
+ - 1
+ - 13714ab0-7f04-4a58-ad9e-ceaca3d95e36
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 68ad2a0c-397b-4405-9621-0ab234f51099
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 7217
+ 12127
+ 439
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 7217.857
+ 12127.6
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 28d55d12-e680-4e3e-acfd-841b2c9faf0c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7362
+ 9668
+ 144
+ 64
+
+ -
+ 7436
+ 9700
+
+
+
+
+
+ - Curve to evaluate
+ - e4360e65-4310-468d-9d00-af15304d972d
+ - Curve
+ - Curve
+ - false
+ - e86d700e-e3ce-4fd8-8b00-a47921cea996
+ - 1
+
+
+
+
+ -
+ 7364
+ 9670
+ 57
+ 20
+
+ -
+ 7394
+ 9680
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4e474e29-39a4-452e-8e09-9b1750b70444
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 9690
+ 57
+ 20
+
+ -
+ 7394
+ 9700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1480cb1d-403f-4cd6-8633-840144faf64f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 9710
+ 57
+ 20
+
+ -
+ 7394
+ 9720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d9995322-bc2b-4dbf-8034-8b8ec397ecb0
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 9670
+ 53
+ 20
+
+ -
+ 7479
+ 9680
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 21d7c51c-f4e7-41fb-a7d0-c25be1206b8d
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 9690
+ 53
+ 20
+
+ -
+ 7479
+ 9700
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - a667fcc8-2269-4bc5-8ebc-aeb8a652bef7
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 9710
+ 53
+ 20
+
+ -
+ 7479
+ 9720
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2c163af6-af7f-4ed8-b4ef-e3131f6a7ca8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 9446
+ 194
+ 28
+
+ -
+ 7437
+ 9460
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d92e69fc-cd2d-478d-948d-9679244780ef
+ - Variable O
+ - O
+ - true
+ - bd22478a-070c-4698-b8ec-1ac45f61330f
+ - 1
+
+
+
+
+ -
+ 7339
+ 9448
+ 14
+ 24
+
+ -
+ 7347.5
+ 9460
+
+
+
+
+
+
+
+ - Result of expression
+ - 60e8e68d-9faa-4b17-906f-c4cf2570040c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 9448
+ 9
+ 24
+
+ -
+ 7526
+ 9460
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - cba42b54-7a1c-4c98-be03-e59d379a2894
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7368
+ 9580
+ 132
+ 64
+
+ -
+ 7415
+ 9612
+
+
+
+
+
+ - Input point
+ - 0f9297ed-1dce-4bec-be5a-5717262699dc
+ - Point
+ - Point
+ - false
+ - d9995322-bc2b-4dbf-8034-8b8ec397ecb0
+ - 1
+
+
+
+
+ -
+ 7370
+ 9582
+ 30
+ 60
+
+ -
+ 7386.5
+ 9612
+
+
+
+
+
+
+
+ - Point {x} component
+ - bd22478a-070c-4698-b8ec-1ac45f61330f
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7430
+ 9582
+ 68
+ 20
+
+ -
+ 7465.5
+ 9592
+
+
+
+
+
+
+
+ - Point {y} component
+ - c35fc7ae-a712-4019-b3c2-64ad03d94741
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7430
+ 9602
+ 68
+ 20
+
+ -
+ 7465.5
+ 9612
+
+
+
+
+
+
+
+ - Point {z} component
+ - 8bc58f3d-03b6-4e66-8ae9-eb0c56de5c85
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7430
+ 9622
+ 68
+ 20
+
+ -
+ 7465.5
+ 9632
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6155b25a-afbd-4573-9b48-355b0a14ae8e
+ - Panel
+
+ - false
+ - 0
+ - 60e8e68d-9faa-4b17-906f-c4cf2570040c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 9419
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.646
+ 9419.756
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - acfa39f7-965f-4387-ab5b-b54436656577
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 9360
+ 194
+ 28
+
+ -
+ 7437
+ 9374
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 440b494e-189f-419c-9d25-98ea3ee74b40
+ - Variable O
+ - O
+ - true
+ - c35fc7ae-a712-4019-b3c2-64ad03d94741
+ - 1
+
+
+
+
+ -
+ 7339
+ 9362
+ 14
+ 24
+
+ -
+ 7347.5
+ 9374
+
+
+
+
+
+
+
+ - Result of expression
+ - 1652b985-4977-4475-8356-b3f05380211f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 9362
+ 9
+ 24
+
+ -
+ 7526
+ 9374
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7ee1539d-a236-4d59-9694-2c09386d9551
+ - Panel
+
+ - false
+ - 0
+ - 1652b985-4977-4475-8356-b3f05380211f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 9331
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.646
+ 9331.334
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - b27973c5-f333-4dbe-8bb2-158cf4a7844d
+ - Division
+ - Division
+
+
+
+
+ -
+ 7393
+ 9258
+ 82
+ 44
+
+ -
+ 7424
+ 9280
+
+
+
+
+
+ - Item to divide (dividend)
+ - ba9f662a-2c26-435d-b557-447f27bce1bd
+ - A
+ - A
+ - false
+ - 6155b25a-afbd-4573-9b48-355b0a14ae8e
+ - 1
+
+
+
+
+ -
+ 7395
+ 9260
+ 14
+ 20
+
+ -
+ 7403.5
+ 9270
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 2c9f5b7d-fa3e-4865-a5e4-708e76439c37
+ - B
+ - B
+ - false
+ - 7ee1539d-a236-4d59-9694-2c09386d9551
+ - 1
+
+
+
+
+ -
+ 7395
+ 9280
+ 14
+ 20
+
+ -
+ 7403.5
+ 9290
+
+
+
+
+
+
+
+ - The result of the Division
+ - c9752055-9b95-4bda-afbc-27f9821e45b5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7439
+ 9260
+ 34
+ 40
+
+ -
+ 7457.5
+ 9280
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6ac57fde-7d22-4cca-8c5a-5d0a28c884e9
+ - Panel
+
+ - false
+ - 0
+ - 9bba076a-7d74-4e01-a334-4d931ed033f3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 9183
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.886
+ 9183.818
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e5cf712a-df3f-4476-b30b-d3463accfb6a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 9211
+ 194
+ 28
+
+ -
+ 7437
+ 9225
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0a427237-d801-44a4-bd15-38ae1b5291ce
+ - Variable O
+ - O
+ - true
+ - c9752055-9b95-4bda-afbc-27f9821e45b5
+ - 1
+
+
+
+
+ -
+ 7339
+ 9213
+ 14
+ 24
+
+ -
+ 7347.5
+ 9225
+
+
+
+
+
+
+
+ - Result of expression
+ - 03a7abca-faa3-4559-92f4-3eb0e2a6efd5
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 9213
+ 9
+ 24
+
+ -
+ 7526
+ 9225
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9bba076a-7d74-4e01-a334-4d931ed033f3
+ - Relay
+
+ - false
+ - 03a7abca-faa3-4559-92f4-3eb0e2a6efd5
+ - 1
+
+
+
+
+ -
+ 7414
+ 9136
+ 40
+ 16
+
+ -
+ 7434
+ 9144
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - b0cf56cb-6cfe-4df5-b194-07f997d0bd20
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 7393
+ 9073
+ 82
+ 44
+
+ -
+ 7424
+ 9095
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - fe2279c0-bb12-4688-ac72-55ac902ff85b
+ - A
+ - A
+ - true
+ - 7ee1539d-a236-4d59-9694-2c09386d9551
+ - 1
+
+
+
+
+ -
+ 7395
+ 9075
+ 14
+ 20
+
+ -
+ 7403.5
+ 9085
+
+
+
+
+
+
+
+ - Second item for addition
+ - f82d6230-b37b-47e0-baca-1643ad87b6e7
+ - B
+ - B
+ - true
+ - 6155b25a-afbd-4573-9b48-355b0a14ae8e
+ - 1
+
+
+
+
+ -
+ 7395
+ 9095
+ 14
+ 20
+
+ -
+ 7403.5
+ 9105
+
+
+
+
+
+
+
+ - Result of addition
+ - 51374bf6-d4e0-47f7-80e4-e6dcb4d27373
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7439
+ 9075
+ 34
+ 40
+
+ -
+ 7457.5
+ 9095
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - b72a6b06-3be2-45e2-989c-7e7a51ec35c1
+ - Division
+ - Division
+
+
+
+
+ -
+ 7393
+ 8923
+ 82
+ 44
+
+ -
+ 7424
+ 8945
+
+
+
+
+
+ - Item to divide (dividend)
+ - b49a5793-3e41-4d52-a9ae-aac065be056d
+ - A
+ - A
+ - false
+ - 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6
+ - 1
+
+
+
+
+ -
+ 7395
+ 8925
+ 14
+ 20
+
+ -
+ 7403.5
+ 8935
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 634dcbdd-da50-49c4-aa33-5ddf25cc7406
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 7395
+ 8945
+ 14
+ 20
+
+ -
+ 7403.5
+ 8955
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 4d1cd714-cc5e-4409-97a9-288b7ec48bad
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7439
+ 8925
+ 34
+ 40
+
+ -
+ 7457.5
+ 8945
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e3cd8122-c2ff-49a6-9ecb-b989cbee30a9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 8875
+ 194
+ 28
+
+ -
+ 7437
+ 8889
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c804277e-2152-4030-9d0e-fd03a7076117
+ - Variable O
+ - O
+ - true
+ - 4d1cd714-cc5e-4409-97a9-288b7ec48bad
+ - 1
+
+
+
+
+ -
+ 7339
+ 8877
+ 14
+ 24
+
+ -
+ 7347.5
+ 8889
+
+
+
+
+
+
+
+ - Result of expression
+ - 40024b9b-686c-4859-818b-451582e239ba
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 8877
+ 9
+ 24
+
+ -
+ 7526
+ 8889
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 26d27076-c008-4e64-974c-ce9aac18da2e
+ - Panel
+
+ - false
+ - 0
+ - 40024b9b-686c-4859-818b-451582e239ba
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 8847
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.646
+ 8847.676
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7293b84d-dfbd-4d3e-82cd-4df8f844e0e6
+ - Panel
+
+ - false
+ - 0
+ - 898c1521-d90e-4bb3-bbb1-dd4aae54e783
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 8999
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.646
+ 8999.586
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 16217803-b1a6-4c82-ad92-b14787f609b6
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 9026
+ 194
+ 28
+
+ -
+ 7437
+ 9040
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3f469995-c493-4f85-b00b-b5eb8ae54ee6
+ - Variable O
+ - O
+ - true
+ - 51374bf6-d4e0-47f7-80e4-e6dcb4d27373
+ - 1
+
+
+
+
+ -
+ 7339
+ 9028
+ 14
+ 24
+
+ -
+ 7347.5
+ 9040
+
+
+
+
+
+
+
+ - Result of expression
+ - 898c1521-d90e-4bb3-bbb1-dd4aae54e783
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 9028
+ 9
+ 24
+
+ -
+ 7526
+ 9040
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - e7cf9320-68c8-4707-9aba-558332338382
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7357
+ 8752
+ 154
+ 64
+
+ -
+ 7441
+ 8784
+
+
+
+
+
+ - Base geometry
+ - b02b0c23-5d5c-40c6-a723-626cc3303a35
+ - Geometry
+ - Geometry
+ - true
+ - 86e3682e-ce67-42cf-911e-eeed3dfbdefd
+ - 1
+
+
+
+
+ -
+ 7359
+ 8754
+ 67
+ 20
+
+ -
+ 7402
+ 8764
+
+
+
+
+
+
+
+ - Center of scaling
+ - c562a668-af86-44f5-8764-103e50f1775f
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7359
+ 8774
+ 67
+ 20
+
+ -
+ 7402
+ 8784
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - b4b22b27-82c6-49b5-a252-ce531d854511
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 26d27076-c008-4e64-974c-ce9aac18da2e
+ - 1
+
+
+
+
+ -
+ 7359
+ 8794
+ 67
+ 20
+
+ -
+ 7402
+ 8804
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 9455c6bd-f20f-429c-a40a-28d3d946b5f3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7456
+ 8754
+ 53
+ 30
+
+ -
+ 7484
+ 8769
+
+
+
+
+
+
+
+ - Transformation data
+ - d6d1df42-8dd2-48e2-acb5-0c3c2d67c3d7
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7456
+ 8784
+ 53
+ 30
+
+ -
+ 7484
+ 8799
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - Curve
+ - Curve
+ - false
+ - 9455c6bd-f20f-429c-a40a-28d3d946b5f3
+ - 1
+
+
+
+
+ -
+ 7411
+ 8164
+ 50
+ 24
+
+ -
+ 7436.626
+ 8176.176
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 62d2f4a5-bc18-4426-a766-5a836b470190
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 9533
+ 194
+ 28
+
+ -
+ 7437
+ 9547
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3b2ef984-5f7f-496d-9148-d73b41766cbf
+ - Variable O
+ - O
+ - true
+ - 8bc58f3d-03b6-4e66-8ae9-eb0c56de5c85
+ - 1
+
+
+
+
+ -
+ 7339
+ 9535
+ 14
+ 24
+
+ -
+ 7347.5
+ 9547
+
+
+
+
+
+
+
+ - Result of expression
+ - 4ff8ec27-bdc7-4441-a956-d96b47043a79
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 9535
+ 9
+ 24
+
+ -
+ 7526
+ 9547
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - aeed149a-1b87-40f8-a80e-0fba6229c1c5
+ - Panel
+
+ - false
+ - 0
+ - 4ff8ec27-bdc7-4441-a956-d96b47043a79
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7357
+ 9505
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7357.516
+ 9505.531
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0cb431c1-66b6-4421-91e6-f722e8290783
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7362
+ 8542
+ 144
+ 64
+
+ -
+ 7436
+ 8574
+
+
+
+
+
+ - Curve to evaluate
+ - 60139b50-4d59-4941-aee6-dac0019aef43
+ - Curve
+ - Curve
+ - false
+ - 9455c6bd-f20f-429c-a40a-28d3d946b5f3
+ - 1
+
+
+
+
+ -
+ 7364
+ 8544
+ 57
+ 20
+
+ -
+ 7394
+ 8554
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d9487d48-8902-4f93-89a8-3e3d4ec9db95
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 8564
+ 57
+ 20
+
+ -
+ 7394
+ 8574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - cd7139f8-b22f-4434-8ddc-1f89e519eed6
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 8584
+ 57
+ 20
+
+ -
+ 7394
+ 8594
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 60820267-ecf9-4c5c-8c67-9cc51c88dbfb
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 8544
+ 53
+ 20
+
+ -
+ 7479
+ 8554
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 04d5f013-de76-443d-92fb-6a1d7589f822
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 8564
+ 53
+ 20
+
+ -
+ 7479
+ 8574
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 28381474-d048-4a0a-9925-40bad877ff97
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 8584
+ 53
+ 20
+
+ -
+ 7479
+ 8594
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bfb14711-271e-42bd-86cc-51360d92fafe
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 8325
+ 194
+ 28
+
+ -
+ 7437
+ 8339
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d574427d-9cc1-4f86-81a0-444f0b7d6976
+ - Variable O
+ - O
+ - true
+ - 9e0dd512-e99d-4113-a6e1-011b80d097b7
+ - 1
+
+
+
+
+ -
+ 7339
+ 8327
+ 14
+ 24
+
+ -
+ 7347.5
+ 8339
+
+
+
+
+
+
+
+ - Result of expression
+ - e151f82d-a8c0-49f5-a749-270c496fb892
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 8327
+ 9
+ 24
+
+ -
+ 7526
+ 8339
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 5a795dd5-5846-4052-8d76-f8ff84b0c76e
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7368
+ 8459
+ 132
+ 64
+
+ -
+ 7415
+ 8491
+
+
+
+
+
+ - Input point
+ - 88e93d28-0d0e-43df-a990-9e3935f3608d
+ - Point
+ - Point
+ - false
+ - 60820267-ecf9-4c5c-8c67-9cc51c88dbfb
+ - 1
+
+
+
+
+ -
+ 7370
+ 8461
+ 30
+ 60
+
+ -
+ 7386.5
+ 8491
+
+
+
+
+
+
+
+ - Point {x} component
+ - 9e0dd512-e99d-4113-a6e1-011b80d097b7
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7430
+ 8461
+ 68
+ 20
+
+ -
+ 7465.5
+ 8471
+
+
+
+
+
+
+
+ - Point {y} component
+ - 67feb21d-3048-412b-980c-46061bef55b8
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7430
+ 8481
+ 68
+ 20
+
+ -
+ 7465.5
+ 8491
+
+
+
+
+
+
+
+ - Point {z} component
+ - 3d6cc2b1-8ed0-4943-8e9b-2c5b4c2fa030
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7430
+ 8501
+ 68
+ 20
+
+ -
+ 7465.5
+ 8511
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 565c2487-e6b1-4b0d-9b60-b4ef035b1ad5
+ - Panel
+
+ - false
+ - 0
+ - e151f82d-a8c0-49f5-a749-270c496fb892
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 8293
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.896
+ 8293.1
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4e5e9256-4923-4d63-8f79-f0c3f0d1a7a7
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 8239
+ 194
+ 28
+
+ -
+ 7437
+ 8253
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 07ffc84b-08d9-47df-b37d-a4b35cd31d43
+ - Variable O
+ - O
+ - true
+ - 67feb21d-3048-412b-980c-46061bef55b8
+ - 1
+
+
+
+
+ -
+ 7339
+ 8241
+ 14
+ 24
+
+ -
+ 7347.5
+ 8253
+
+
+
+
+
+
+
+ - Result of expression
+ - 3da1fac0-7665-418e-802a-18010ec60bc2
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 8241
+ 9
+ 24
+
+ -
+ 7526
+ 8253
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8e8065a3-aa82-4a92-aa35-315c5e80cce6
+ - Panel
+
+ - false
+ - 0
+ - 3da1fac0-7665-418e-802a-18010ec60bc2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 8207
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.907
+ 8207.471
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c6104625-7012-4837-b3d8-85aef833c461
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 8411
+ 194
+ 28
+
+ -
+ 7437
+ 8425
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6f39ab6d-15be-4f6f-93ef-7c8fa4ebb3e6
+ - Variable O
+ - O
+ - true
+ - 3d6cc2b1-8ed0-4943-8e9b-2c5b4c2fa030
+ - 1
+
+
+
+
+ -
+ 7339
+ 8413
+ 14
+ 24
+
+ -
+ 7347.5
+ 8425
+
+
+
+
+
+
+
+ - Result of expression
+ - 8032f945-4137-4355-86bd-d52fd398f955
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 8413
+ 9
+ 24
+
+ -
+ 7526
+ 8425
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 39257d34-da6a-4970-b14d-1a29dcf9555b
+ - Panel
+
+ - false
+ - 0
+ - 8032f945-4137-4355-86bd-d52fd398f955
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7356
+ 8379
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7356.646
+ 8379.313
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8afb042b-575f-4d86-9b32-b8978003ece0
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 7251
+ 12250
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 7251.086
+ 12250.61
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d79f9f60-4bc4-4e68-9e2c-8ae9afcc755f
+ - Panel
+
+ - false
+ - 0
+ - b94e92f9-bb56-4bc2-bda4-673f75829ae0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7268
+ 10465
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 7268.836
+ 10465.71
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - cb62e43a-ed84-4f5d-a866-c537c0a027d7
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 10756
+ 194
+ 28
+
+ -
+ 7437
+ 10770
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5c31adb9-af1b-46cb-8849-9634784dd7e3
+ - Variable O
+ - O
+ - true
+ - 1ce1b2e3-7315-41ec-8e7d-3d48e5ae6c61
+ - 1
+
+
+
+
+ -
+ 7339
+ 10758
+ 14
+ 24
+
+ -
+ 7347.5
+ 10770
+
+
+
+
+
+
+
+ - Result of expression
+ - b94e92f9-bb56-4bc2-bda4-673f75829ae0
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 10758
+ 9
+ 24
+
+ -
+ 7526
+ 10770
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 0ed6d593-dc44-48c3-a39c-00dc0f7ee04a
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 7414
+ 12570
+ 50
+ 24
+
+ -
+ 7439.276
+ 12582.5
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 48566625-50c4-4225-807c-177433e91f71
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 7265
+ 11004
+ 160
+ 224
+
+ -
+ 7333
+ 11116
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 991f3f39-5f51-4479-a612-c4a4e8021acf
+ - true
+ - Curves
+ - Curves
+ - false
+ - 4bbb5169-d548-4f2d-9dc0-0d023e3bd679
+ - 1
+
+
+
+
+ -
+ 7267
+ 11006
+ 51
+ 27
+
+ -
+ 7294
+ 11019.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 2e5b80fd-6cff-47a8-9ee2-a1ad85d8ceab
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 7607a20d-9fe0-4e7a-82cb-6531a310f70a
+ - 1
+
+
+
+
+ -
+ 7267
+ 11033
+ 51
+ 28
+
+ -
+ 7294
+ 11047.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - cac38927-ce52-47cf-bf61-8cd150bf7de5
+ - true
+ - Values
+ - Values
+ - false
+ - d31ac591-fd5d-4c73-a76f-9bc43174b558
+ - 1
+
+
+
+
+ -
+ 7267
+ 11061
+ 51
+ 27
+
+ -
+ 7294
+ 11074.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 4ba80bd4-fc21-4195-9ff5-16fa8588edb9
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 7267
+ 11088
+ 51
+ 28
+
+ -
+ 7294
+ 11102.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - e9a0c782-0ebb-4c1a-9fb4-409bf1caf305
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 7267
+ 11116
+ 51
+ 27
+
+ -
+ 7294
+ 11129.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - fba04f56-a6ec-4b52-a04b-7712b5cbecbe
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 7267
+ 11143
+ 51
+ 28
+
+ -
+ 7294
+ 11157.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 15dd574b-0701-4c13-9d1e-9bb131f271a9
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 7267
+ 11171
+ 51
+ 27
+
+ -
+ 7294
+ 11184.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 6276aa36-ee58-4a76-bda5-9c3ac3c69808
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 7267
+ 11198
+ 51
+ 28
+
+ -
+ 7294
+ 11212.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - cb558f5d-99ca-4ea7-a1ca-06a72dc5a3de
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11006
+ 75
+ 20
+
+ -
+ 7387
+ 11016
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 0f7d7316-4546-415e-b39b-e4ea785b9333
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11026
+ 75
+ 20
+
+ -
+ 7387
+ 11036
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - d7695b33-6762-475d-aa82-d84becea8067
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11046
+ 75
+ 20
+
+ -
+ 7387
+ 11056
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - ba604453-17d5-4e88-a886-67f58a075302
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11066
+ 75
+ 20
+
+ -
+ 7387
+ 11076
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 1016cfaf-6e87-4e04-aed7-bddabadf4e0e
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11086
+ 75
+ 20
+
+ -
+ 7387
+ 11096
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 59a77ac4-373d-4baf-b7b5-7eaa50ae930d
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11106
+ 75
+ 20
+
+ -
+ 7387
+ 11116
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 3e4366ac-8e4e-4ffd-8b11-58fd62429ee5
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11126
+ 75
+ 20
+
+ -
+ 7387
+ 11136
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 60aaab7e-c91b-44df-b173-e78cd27501d8
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11146
+ 75
+ 20
+
+ -
+ 7387
+ 11156
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 966e8c01-c1cf-4f95-bb55-df0a51ecdcc5
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11166
+ 75
+ 20
+
+ -
+ 7387
+ 11176
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 8a8f8401-942f-4c26-9bd9-af3e8ee47787
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11186
+ 75
+ 20
+
+ -
+ 7387
+ 11196
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - a2e1539d-eaaf-4da7-9160-b7c7f2b03d52
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 11206
+ 75
+ 20
+
+ -
+ 7387
+ 11216
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 3bb8e3dd-969f-41ec-8805-4c84b5f09d23
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 7386
+ 11348
+ 96
+ 44
+
+ -
+ 7436
+ 11370
+
+
+
+
+
+ - Curve to evaluate
+ - 35bdc6f8-03f2-43d4-a84a-c33e68be258a
+ - Curve
+ - Curve
+ - false
+ - 4bbb5169-d548-4f2d-9dc0-0d023e3bd679
+ - 1
+
+
+
+
+ -
+ 7388
+ 11350
+ 33
+ 40
+
+ -
+ 7406
+ 11370
+
+
+
+
+
+
+
+ - Curve start point
+ - e2304843-55b5-4b30-9f54-a0b003188b20
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 11350
+ 29
+ 20
+
+ -
+ 7467
+ 11360
+
+
+
+
+
+
+
+ - Curve end point
+ - e628eea1-217d-44f3-bc34-69e652fc09a4
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 11370
+ 29
+ 20
+
+ -
+ 7467
+ 11380
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 39eb9c8b-5e6b-46b6-b25d-1eeb46ffbedb
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 7371
+ 11246
+ 126
+ 84
+
+ -
+ 7429
+ 11288
+
+
+
+
+
+ - Rectangle base plane
+ - 8c316192-edcf-4a4e-b484-ade0b9371757
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7373
+ 11248
+ 41
+ 20
+
+ -
+ 7395
+ 11258
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 34774a14-b2b7-4b80-a525-9cd9782ec215
+ - Point A
+ - Point A
+ - false
+ - e2304843-55b5-4b30-9f54-a0b003188b20
+ - 1
+
+
+
+
+ -
+ 7373
+ 11268
+ 41
+ 20
+
+ -
+ 7395
+ 11278
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - a8bf6d84-bbf6-417b-b1e0-535c4450d6e6
+ - Point B
+ - Point B
+ - false
+ - e628eea1-217d-44f3-bc34-69e652fc09a4
+ - 1
+
+
+
+
+ -
+ 7373
+ 11288
+ 41
+ 20
+
+ -
+ 7395
+ 11298
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - a6a3bbc4-8700-419d-9ce8-23603023cf87
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 7373
+ 11308
+ 41
+ 20
+
+ -
+ 7395
+ 11318
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 7607a20d-9fe0-4e7a-82cb-6531a310f70a
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 7444
+ 11248
+ 51
+ 40
+
+ -
+ 7471
+ 11268
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - d0104b95-de0d-468d-ae13-acb82d42c281
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7444
+ 11288
+ 51
+ 40
+
+ -
+ 7471
+ 11308
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 3e9c3eb4-71ed-413d-bb22-ad7c3af5313d
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 7425
+ 11108
+ 126
+ 104
+
+ -
+ 7492
+ 11160
+
+
+
+
+
+ - External curve as a graph
+ - c21b41ea-0a42-4675-afbd-99e3bc1860d5
+ - Curve
+ - Curve
+ - false
+ - 4bbb5169-d548-4f2d-9dc0-0d023e3bd679
+ - 1
+
+
+
+
+ -
+ 7427
+ 11110
+ 50
+ 20
+
+ -
+ 7453.5
+ 11120
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - e7b25ada-6900-4e29-9960-0cd15d06559a
+ - Boundary
+ - Boundary
+ - true
+ - 7607a20d-9fe0-4e7a-82cb-6531a310f70a
+ - 1
+
+
+
+
+ -
+ 7427
+ 11130
+ 50
+ 20
+
+ -
+ 7453.5
+ 11140
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 8982eb96-12c9-4947-91b1-99422d9ad115
+ - Numbers
+ - Numbers
+ - false
+ - d31ac591-fd5d-4c73-a76f-9bc43174b558
+ - 1
+
+
+
+
+ -
+ 7427
+ 11150
+ 50
+ 20
+
+ -
+ 7453.5
+ 11160
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 920da66d-a2c0-452d-8275-ba47e5c0edf4
+ - Input
+ - Input
+ - true
+ - b9250ab8-e82a-49e8-b30d-35bbe735aaec
+ - 1
+
+
+
+
+ -
+ 7427
+ 11170
+ 50
+ 20
+
+ -
+ 7453.5
+ 11180
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 71cf0cbc-78fc-467d-ae1c-94b925c47308
+ - Output
+ - Output
+ - true
+ - b9250ab8-e82a-49e8-b30d-35bbe735aaec
+ - 1
+
+
+
+
+ -
+ 7427
+ 11190
+ 50
+ 20
+
+ -
+ 7453.5
+ 11200
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 73af29cd-fccc-43c7-b426-93d4192a145e
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 7507
+ 11110
+ 42
+ 100
+
+ -
+ 7529.5
+ 11160
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - d714c48a-2a73-4d1a-a30b-d7da2b936496
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 7403
+ 10916
+ 89
+ 64
+
+ -
+ 7448
+ 10948
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 47c4ed78-be55-49d4-a15d-0ce864e157a4
+ - Gate
+ - Gate
+ - false
+ - 07d98ecc-da14-47d2-b356-5c6e4c8c2c60
+ - 1
+
+
+
+
+ -
+ 7405
+ 10918
+ 28
+ 20
+
+ -
+ 7420.5
+ 10928
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 5c73ff89-0eed-4f90-b572-d321c7661338
+ - false
+ - Stream 0
+ - 0
+ - true
+ - cb558f5d-99ca-4ea7-a1ca-06a72dc5a3de
+ - 1
+
+
+
+
+ -
+ 7405
+ 10938
+ 28
+ 20
+
+ -
+ 7420.5
+ 10948
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - ac2f48dd-4e33-4d5e-b0e0-a836bc7a545f
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 73af29cd-fccc-43c7-b426-93d4192a145e
+ - 1
+
+
+
+
+ -
+ 7405
+ 10958
+ 28
+ 20
+
+ -
+ 7420.5
+ 10968
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 99d6efab-9b89-4f22-8a8d-df1094258fe6
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 10918
+ 27
+ 60
+
+ -
+ 7478
+ 10948
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 07d98ecc-da14-47d2-b356-5c6e4c8c2c60
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7367
+ 10877
+ 150
+ 20
+
+ -
+ 7367.266
+ 10877.31
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a4958a9c-5813-47b6-aa2c-ab9e636f97c4
+ - Panel
+
+ - false
+ - 1
+ - 556b5a1d-8726-40a1-99db-421437d0822e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7344
+ 11535
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 7344.336
+ 11535.73
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - fa049596-2965-4c5d-97a7-5e19cffbc796
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 7375
+ 11487
+ 122
+ 28
+
+ -
+ 7439
+ 11501
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 8e81429f-2437-493d-b2d7-f6f4e17345cb
+ - Numbers
+ - Numbers
+ - false
+ - d31ac591-fd5d-4c73-a76f-9bc43174b558
+ - 1
+
+
+
+
+ -
+ 7377
+ 11489
+ 47
+ 24
+
+ -
+ 7402
+ 11501
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - b9250ab8-e82a-49e8-b30d-35bbe735aaec
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7454
+ 11489
+ 41
+ 24
+
+ -
+ 7476
+ 11501
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9686459f-3b8c-4236-a424-b61a61b59f38
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7337
+ 11825
+ 194
+ 28
+
+ -
+ 7437
+ 11839
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7806ace1-1ef5-42e5-abb6-1b8a8a24be47
+ - true
+ - Variable O
+ - O
+ - true
+ - d31ac591-fd5d-4c73-a76f-9bc43174b558
+ - 1
+
+
+
+
+ -
+ 7339
+ 11827
+ 14
+ 24
+
+ -
+ 7347.5
+ 11839
+
+
+
+
+
+
+
+ - Result of expression
+ - 556b5a1d-8726-40a1-99db-421437d0822e
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 11827
+ 9
+ 24
+
+ -
+ 7526
+ 11839
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - e010c8fd-840c-4166-9529-3087fe2d17d8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7251
+ 12022
+ 367
+ 28
+
+ -
+ 7437
+ 12036
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a37aced0-5706-4c6b-aac6-1e6cc2d3da3e
+ - Variable O
+ - O
+ - true
+ - 9f541762-9b0d-4322-9575-67e4ca64397e
+ - 1
+
+
+
+
+ -
+ 7253
+ 12024
+ 14
+ 24
+
+ -
+ 7261.5
+ 12036
+
+
+
+
+
+
+
+ - Result of expression
+ - 60577dce-0b71-4c05-8a6b-57f0b26165db
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7607
+ 12024
+ 9
+ 24
+
+ -
+ 7613
+ 12036
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 246ecf84-d14b-4307-a633-35f573840f33
+ - Panel
+
+ - false
+ - 0
+ - 60577dce-0b71-4c05-8a6b-57f0b26165db
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7347
+ 11993
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7347.476
+ 11993.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 1
+ - 8d0f4434-7d6e-4068-b183-c84afb4b8204
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - da4f27ab-934b-48b2-89e3-f39463e6853c
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7357
+ 8667
+ 154
+ 64
+
+ -
+ 7441
+ 8699
+
+
+
+
+
+ - Base geometry
+ - 8070f65b-03d5-457d-9f4d-edd4cf35b1ae
+ - Geometry
+ - Geometry
+ - true
+ - 18385e25-6a94-455a-be4e-b27bf9f8a78b
+ - 1
+
+
+
+
+ -
+ 7359
+ 8669
+ 67
+ 20
+
+ -
+ 7402
+ 8679
+
+
+
+
+
+
+
+ - Center of scaling
+ - f4241aff-6994-4f0f-9e80-e20d6a3710c8
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7359
+ 8689
+ 67
+ 20
+
+ -
+ 7402
+ 8699
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - fc8cb567-4e08-42e1-a556-aa0895b73b46
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 26d27076-c008-4e64-974c-ce9aac18da2e
+ - 1
+
+
+
+
+ -
+ 7359
+ 8709
+ 67
+ 20
+
+ -
+ 7402
+ 8719
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ed3d47b1-03ef-4563-8bb9-aba7771522d9
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7456
+ 8669
+ 53
+ 30
+
+ -
+ 7484
+ 8684
+
+
+
+
+
+
+
+ - Transformation data
+ - be5c094e-d169-4415-93f1-bd4a51684c43
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7456
+ 8699
+ 53
+ 30
+
+ -
+ 7484
+ 8714
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 1d29bbdb-cefa-4e66-99ed-d43b60d5b83f
+ - Point
+ - Point
+ - false
+ - ed3d47b1-03ef-4563-8bb9-aba7771522d9
+ - 1
+
+
+
+
+ -
+ 7411
+ 8631
+ 50
+ 24
+
+ -
+ 7436.626
+ 8643.346
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - b24604d6-b572-4cd1-a024-27c751a205bb
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7362
+ 8009
+ 138
+ 44
+
+ -
+ 7430
+ 8031
+
+
+
+
+
+ - Base geometry
+ - 5f1908af-662b-40bb-877b-7208acaa9a63
+ - Geometry
+ - Geometry
+ - true
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 1
+
+
+
+
+ -
+ 7364
+ 8011
+ 51
+ 20
+
+ -
+ 7391
+ 8021
+
+
+
+
+
+
+
+ - Mirror plane
+ - 4e9f9000-7623-40a6-9e43-85a0fd2071d8
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 8031
+ 51
+ 20
+
+ -
+ 7391
+ 8041
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - df20d617-fa24-4d16-a080-8aff328c52fa
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7445
+ 8011
+ 53
+ 20
+
+ -
+ 7473
+ 8021
+
+
+
+
+
+
+
+ - Transformation data
+ - e484123a-f9c3-4ca9-898c-8eddecede392
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7445
+ 8031
+ 53
+ 20
+
+ -
+ 7473
+ 8041
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 08fa1a46-6440-41a4-bbbf-53c0c4624266
+ - Curve
+ - Curve
+ - false
+ - 8567a5f2-3fa6-4629-9c0e-3d232d59b359
+ - 1
+
+
+
+
+ -
+ 7410
+ 7904
+ 50
+ 24
+
+ -
+ 7435.876
+ 7916.365
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4bbb5169-d548-4f2d-9dc0-0d023e3bd679
+ - Relay
+
+ - false
+ - 8e3663a4-add2-4ebe-b7ae-f14464daabda
+ - 1
+
+
+
+
+ -
+ 7416
+ 11415
+ 40
+ 16
+
+ -
+ 7436
+ 11423
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 89dd68e3-dd85-445d-8ea6-7e9cb2ef225a
+ - Curve
+ - Curve
+ - false
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+
+
+
+
+ -
+ 6937
+ 11668
+ 50
+ 24
+
+ -
+ 6962.876
+ 11680.08
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8e3663a4-add2-4ebe-b7ae-f14464daabda
+ - Curve
+ - Curve
+ - false
+ - 6d152cb1-13d0-4666-8fae-d6707709623b
+ - 1
+
+
+
+
+ -
+ 6937
+ 11464
+ 50
+ 24
+
+ -
+ 6962.972
+ 11476.06
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 391ff5a2-0e3c-42ff-9c0a-bbe63d6c5c50
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6885
+ 11506
+ 154
+ 64
+
+ -
+ 6969
+ 11538
+
+
+
+
+
+ - Base geometry
+ - 1c04b82b-711a-4123-8582-768e5c28c86b
+ - Geometry
+ - Geometry
+ - true
+ - 89dd68e3-dd85-445d-8ea6-7e9cb2ef225a
+ - 1
+
+
+
+
+ -
+ 6887
+ 11508
+ 67
+ 20
+
+ -
+ 6930
+ 11518
+
+
+
+
+
+
+
+ - Center of scaling
+ - 10ac10bb-2e9b-412f-b5ab-ea08a4e6032c
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6887
+ 11528
+ 67
+ 20
+
+ -
+ 6930
+ 11538
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 209e3826-2f57-4b42-b6df-ff5b1e1526f2
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 5f674530-1280-4673-8eb1-6afa37fdffb3
+ - 1
+
+
+
+
+ -
+ 6887
+ 11548
+ 67
+ 20
+
+ -
+ 6930
+ 11558
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 6d152cb1-13d0-4666-8fae-d6707709623b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6984
+ 11508
+ 53
+ 30
+
+ -
+ 7012
+ 11523
+
+
+
+
+
+
+
+ - Transformation data
+ - c94a99bd-0658-4981-82d5-bd331a3b4dec
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6984
+ 11538
+ 53
+ 30
+
+ -
+ 7012
+ 11553
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 89dd68e3-dd85-445d-8ea6-7e9cb2ef225a
+ - 8e3663a4-add2-4ebe-b7ae-f14464daabda
+ - 391ff5a2-0e3c-42ff-9c0a-bbe63d6c5c50
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 96bdb03e-d8e7-4859-a629-16af01c642d6
+ - 5f674530-1280-4673-8eb1-6afa37fdffb3
+ - beb16079-3864-4233-9af9-59f099bc7bc0
+ - 7
+ - ffd279bd-b5c2-4346-96b3-be5f5da45424
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - a28c8f0e-96c2-457b-825c-02f5a78e0a9e
+ - Move
+ - Move
+
+
+
+
+ -
+ 7362
+ 7945
+ 138
+ 44
+
+ -
+ 7430
+ 7967
+
+
+
+
+
+ - Base geometry
+ - 99dd87f0-9e27-4f1b-a0fc-3ffb41110e47
+ - Geometry
+ - Geometry
+ - true
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 1
+
+
+
+
+ -
+ 7364
+ 7947
+ 51
+ 20
+
+ -
+ 7391
+ 7957
+
+
+
+
+
+
+
+ - Translation vector
+ - 7b8a8092-4788-4742-a198-58b78fbf6466
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 7364
+ 7967
+ 51
+ 20
+
+ -
+ 7391
+ 7977
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 2
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 8567a5f2-3fa6-4629-9c0e-3d232d59b359
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7445
+ 7947
+ 53
+ 20
+
+ -
+ 7473
+ 7957
+
+
+
+
+
+
+
+ - Transformation data
+ - c0cd3384-de31-4ac7-8d57-f835b8523656
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7445
+ 7967
+ 53
+ 20
+
+ -
+ 7473
+ 7977
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 96bdb03e-d8e7-4859-a629-16af01c642d6
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 20.9312132004
+
+
+
+
+ -
+ 6837
+ 11631
+ 250
+ 20
+
+ -
+ 6837.646
+ 11631.56
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5f674530-1280-4673-8eb1-6afa37fdffb3
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 6.93121320041998779
+
+
+
+
+ -
+ 6885
+ 11590
+ 154
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6885.247
+ 11590.97
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9a0c2082-f5ff-4dd4-8279-f086336e49b9
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 5091
+ 12249
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5091.554
+ 12249.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4ea9782b-b84c-454e-83f5-3a41a370b0c9
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6937
+ 11715
+ 50
+ 24
+
+ -
+ 6962.696
+ 11727.73
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zPxpPFVvG/D/b2OGTJXIXIaklCEylGMrlWYiNFOISjQoGjdS0kRJ0mQolIpKRaadKZEyD5m2eWabaeDne32Pa5397+t1P/k/uj3wbn3WWvs899rLsjZe0ThoNNrk1Mc//vMxnXPqk/VWJ+cjrqtcXVxcjyxSsHI4dtzZ9ciKZYs1tRdraWov1Zv6h4aG5iKFVe6HT7gfc1hxxMH9xDG7w4sUzNz3HXbev8HB09L1kMORFTo6Wlp6mg76y/Yv09HR0dbg+WcUyf88+OK1Dq4uDieOeS42cz3sucr92EkH7qmV007+O5iA3bH9Ts4nHbTtXfhd3RyOHHE/tu84t73dCbt/NuLj4+P8Z56i82k0rSlv/xaczs819Q+Rfz6VXaTROH9e4KR9ufjvc/o1yUmbhc+PVVqxeW1HiVh6C03Uh2Me+/mwmt/vqfWBuK0oN+3//GDD/6R/e/r/WXj+ZxsN+r/SUVPUjP7PBP8o/O8E54jF7TEXLBVLn/h3guulPCX+mWA2bivKhRv+M1Gu/75s//9M9n/2/T8/4vGxmGguWoiWopVoDcpCG9FmtBVtRzvRbrQX/n+fQz86gA6iQ+gwOoKOomPoOPoT/YX+Rv+gE+jkf48d/T+fGSiNA5dRGicuozQuXEZp3LiM0nhwGaXx4jJKm4bLKI0Pl1EaPy6jNAFcRmmCuIzSpuMyShPCZZQmjMsoTQSXUZrov9JRBspEaWK4HmWgTJQ2A9ejDJSJ0mbiepSBMlHaLFyPMlAmShPH9SgDZaK02bgeZaBMlCaB61EGykRpkrgeZaBMlDYH16MMlInSpHA9ykCZKE0a16MMlInSZHA9ykCZKE0W16MMlInS5HA9ykCZKE0e16MMlInSFP5VAaWjtigDDUOZKAulzcX9UTpqizLQMJSJslDaPNwfpaO2KAMNQ5koC6Up4v4oHbVFGWgYykRZKE0J90fpqC3KQMNQJspCacq4P0pHbVEGGoYyURZKU8H9UTpqizLQMJSJslDafNwfpaO2KAMNQ5koC6Wp4v4oHbVFGWgYykRZKG0B7o/SUVuUgYahTJSF0tRwf5SO2qIMNAxloiyUthD3R+moLcpAw1AmykJpi3B/lI7aogw0DGWiLJSmjvujdNQWZaBhKBNlobTFuD9KR21RBhqGMlEWSluC+6N01BZloGEoE2Wh1E0L8X/vM8jHxU/uO49vX/k/9x1rIjT41S/thI7z8lLTjGev+G9f959+CIRuVuu2emin/rcneDbnhD85AXJ39bPLZm39P7Y/A+p1+XZra92o7Q87pCnXaHuBxxW2wNCpm9T27/7zOBfhjdAHuQ27XlLbT1wXcDog7gdzePjq8u3zqe1N/vP4V0G1+NgLpm8/1Q+/t3o+MHIDfB8H7m2L5jP6b1f4z7iBoGh+aI6EqTTVQ4+Yjxh13wJaXG6W1RY1qguc+mc+QSBnsdvggdIyqm89d+ou9+5g0K07/nSCfxXVj174Z54hcKhPRmffp01U5z39UC+v4B7obhP232JuRfV7B/6Z/30Ye+hPC1xiS/U3kFl10+gh/Jp5NNGrxJHqt4a3TT2vRyABk6ksF1eqbzI8kfrcOgwWeSh01Gm6U32WZerU8w0HRY3HD+kzz1KdocV7Q0g0AhjbXcpVNnlTnS9189RxiICj32JFrl+6TPX5RcF73HIjQbd5beHJmutUH6fXTR2fJzBdwa04KuUW1ZcXKi0pYTyFEP3FO9+vvkv1Yo2DU8ctCgZ4nltHRTyguv/Ey0kd/Wj4s293+6FT4VTX+dh34IB4DPzcmGwwqPiU6k2ZiwtD+mNgSevAmnrHZ1TXtjw4dZyfgd7vHye3m7+i+sUT4WG/nj2HR/TkpOafr6kuPlLMp34pFviHVUTY2u+o/vXAH7c9+16Agbb9avO6RKpfFpCfel1ewqkTGWcMeFKp3pepY/xJ6hXEpHQfXfeDSbYXgWcDI6/gZ5aU/PmzmVTP7FkmplQSB0JZXgu7XXOo/tjpRspz63gY2b/HODr5C9XTsk64ZWbHQ5K583XVAwVUf31no1KN9mtYdyQ4TTW1kOpnfs2oHAp/DVqaL40+TBRTXelh1lUh0TewKV2k5sHZMqrfD9kNKuffQNup1I4jhpVUn360asCo+w2wbuVa/4Zqqmv+0oqy3vEW/mgzZmy5WUf1P2vtt7vlvoUTCgXxVhINVOe+7jj9im4CBJ96FVkg1kT1LAGt9PAnCTAx0dTXo99C9bvs1KMfZ7yD+zl1e5NutVFd0oimVMJ4B6N08edb5TupXhfeU9bV+w6qte4qTDR2U91um+dl7t3vQd0q3HZeQx/VG4aD9GTz3wPXVkmvJzf6qT68XaNDR/8DKD/Ii7y5aZDqHfv1722O/gAX7LwdDZcMU31D4X3TA+KJ8GLpbJlInVGq59CMRy/4JMK4VMNg6b5xqv/MEHka0p8IJyL9zQcSf1G9Z0a3+eu9SVAZ/11Jw2CC6npV7/98KUiCZfaRYYdO0Kjr9Oonm2IaDT+C/7k5OyOaOKj+cpe/+a9nH2HbsPDM4UNcVLceWjk+UzIZJt6Fi0QL81BdQnTd40WXkkGt212Pt4CX6uaxzqtWDyXDkmKpNYdi+Kj+8/3hlt37UqBeabJSP0KA6qcSZ/meLEyBVR5Ja1nJ06nuuF9u3k2jVDji8+JExYgw1ScW01OiX6TC5q5KM/PnolRvaV1gwZRKA7knyhEHusSovn7ZxdZKvzSQT644fBpmUp2xlO3eP5IGvpGuu3dEzyLzrOXlEHBIBznuXWM1irOpnvrA5vK8knRYlcB5seadBNXv79G9+FCBCUaLvgws2zOH6hbHWJ+eWTMh57xMQbGsNNXH6Pa/391gwsAXD+k7wzJUnyV7UjsjmwmFEm5mh1rlqG4Wk+X47TcTlm61mRPpoUD1vb5jd35ofwI58N1//epcqudMS2C2HvwEhoYGskdfzKP6jYZbrQPhn6BYja/1a7Ui1ce/LZg2WfkJvJXu7pwrpUx1TTrvPEHRDNicFi3cf0CF6tM4XulKrM2Ass6ZHszs+VQvr3tkong+A7bYfu8RX7qA6lc3bt6w5F0GjHi33fV8q0aOA/eC9YbdGSD21dvB3WQROd9ib9HXKmbCQFQ9x502dapvONiibrEjE8ZStn5xeLiE6tqBR8X2BmZCneW8vYZvNajOp3Gu82BuJoxcloAX4ZpUr3u9KvHkZCZIXNx4f3OoFtXb3Yc9vXWzQOEo/6bDD7Wp7nzgw+IbLlmQGBLSuSV2KdWXB0WU3XuSBTtuZH4yydKh+tmMTJen1VkQM7ylOLhdl9wf8UiPxM/IBt2mM7m3JPWo/nvzfZeUddkwrdRz1NdSn+pfedVKPjOywUqv2yLtgQF5XiGPlEs+ZEPAddsj/v2G5Pznzthf15sNy7nzXPQtVlB9zqnN1zqUc0Do1S9+6Qwjqu8s7H04tCsH9CXFMkGeTnVbA6O7k7dzQOPso7KdzaSXv/98UiA/B6rdN9j5xxuT60Acj6E452fwXi9vOuRD7gdZPnaN8vqfQaopLSpjzyqq68lqH1Jz+wwPrWOK5IxNqL77NLNkafRnyNY6slVr4Wqy/coVUlD3GWIODzSryK6huqBl3vJ14rnwWyr8hIrEWjJPG3d9i425sKfs+Zydc0ypbrNNT3i3Ty4kfjWa3ae4jurZy8cTHT/mgn1QVsn0Zeupfv7ilWVu/blw/744q27rBqp/SXx62VP1Cxy2ed9589RGqj+eMRzlvfcLOEiJZKx/uonqBcL8t68GfwHBqCdmBjWbqX6Bd/e6oIIvUDZdtcBE2Izqi75s+/yAOw+UfybXaL4l/ZCescBTwzzIjp3bO77LnOpdzdtEXh7LA4NIdtgbwa3kOhz3piThWR5Mr/90/2g66bn791imsPJgPMHg6kYPC6ovPL72RqZEPhRb88hv17WkemDOqvN5m/Nh28cdPC/HSfdYJzq3yDcfdC8v7N6dsY1cfy6bHa9IyQc7w0yGV4AVuc6Y3DhaO5gPb4e6XdXtrcn5Ka0v2aT2FULVgh1OrbChuj1H1P52u69g/31EyF1mO9WfqouY9YR8hR26UmLLOXZQPajtdlX/969wwbFcpLGLdB8jvd/DvAXwdVdZxNmanVTnzG9+O76iAHw+iG6fW7KL6sNHHX//PlEAksrH37d83031bwuPFE3GFkC6n6tWffEechy+ByzmbCqAae9DdRVr9lJ9VcMaEW6pbzCgGnGjyd2W6okO3Ud4zL/B/aZpkmyaHdXzE5mmvH7f4LjfmhLjm6TLOrfe5U3/BnPeO21tUthH9VqJ/da8I9/AcmyabP070kV3y3vzqH+H1Xz34mDzfnL9j2+dwW3/Heo5Ek+LdJKeaX2Am/P+d/C5eaLR5oo9+b5po2U+WfQdRIQerVBZ5ED1kg+14+e4C+F0pEiZVzHp/ZcXDf6SLwTDPb8b3c86Ur1aIyLQ07AQEgwNb01XO0D1+qcbi0esCkHP4PafLdWkR8LCN8ePFcL7fdOWrA9wIt/vshcvZl8vhMHiefI865ypnuehv+rws0LwyjVJ8Oc5SPXpyvK9bVmFIPeq+1NzNunXNZ4u3M8qBCd1Xj5Z/0NUT3vtPVb7qxB41+hordh6mOpcl23NbSSKoODwvIrNci5U9z9apVWsVQRtb3NO7ewl/aD26XsbNhfBtYkP5w9nHCGvV/wnryznInhp7A5XQ12p/mzW3PblvkXAcbDqtK2hG9U7R3/lJoQVQegBi31XY0nnuB6jsCilCJQz1KrzZI+S/s21K6KiCIo5XXcr3iLd/dV15TmDRbDKvsniHt8xqruaaebfEC4GfY2n0ppepG9Yca6SS60YHBYWc/X9Ij0t/PI6j9XFsF90yaYKj+NUP3l9h1S3bTFoSn9b0DtKur3u0Jq9Z4tBJ+pdyjLPE1R3g7X5RXeLQfHHpTmJv0n/zWkYueptMfAfUzI57u1O9R+s2LyEb8VwO2i7hovASapLBxxaodxZDBJZjE/Pgkg/csJ4NIinBFxb1fIWzT1Fntdo5yDX3BIQdswR/BlH+pdm6SXHlpcA02WNrrixB/n6/Xr+Sb311Pb0vDavUtI/2L/bsvF4Ccx6YfJi1UFPqv8aslmUeKME3ocp/tnNeZrqMek/dRSfl0Bl/Si99AHprceUnK5nl0BWsUz+M/0z5Hx7YJM2wioBAy/b6oZK0svkZi7d+7sE3r2IfXjh9FlyXY3/kpUjUQrJIs8XXJI7R/Uim+5D6tqlIPLlmPdYFumX2C1KtzeXgk+1RnCVy3ny/e6FTNeocylckP+6YtGcC1TfGjWQtNO3FH6bBy4fzCH9q3POtbSwUpCQ63scYsigevHVwT0KKaXw8/Ve16Eg0pP5SxZ6VZRCEYhsutFHut7t5F7WQCnM/Rp45MAGL/L1XsERCcJlYHs4e4IRQ/qp72OrHi4oA5mUCdkaXm9yn8w38HXcpAy2spc2ejqS7ta5Qn+bbRmsEVpsvfMz6Udoiy7GnSmDtdKx570W+FB9wFDwGd/dMjDfH2TWc430ej21SNs3ZVAcr5z8uJ/03+crXD4UlIHwPanIe9YXqR72yY5bqKMMtnz+0VSdRnqNrOQ+O+5ymNwUteXAfF+qu1it906QLwfe35/ilgeSLi28zpbXsBxmv4/M2vWb9J+TDqNWVuVQUCK3JtfpEtVDdIZWRh0thz8XApoulJNub2hqNHStHFqkp5tcXH2Z6glbE5vpMeXA9fQyb/k70pvDH2heyyyHMRm+DPf5flRX27dFobyuHDYPFvDYh5JuLaj+Qu5nOZx289oeLnyF6rrnggodxCtgfO7eFYsvkt6k0uYXq1EBHWvs1QR/kX514ZXCvg0VULv8zC294/5kXN+GCK0DFbCjO5r1vpv0l0o7fh33roDCpUs9Lx24Su6LRGzL3j6sgL3WNUnRTaT/Prt/0UBiBeja/hqXsrtG9dNdFb8Wl07N5/oHf1Y96bUGS+FgXwWEv1/8YWzvdfI6pg30RwpUwo7nEVn7G0hvNwsUqVGuBIFbTwfm2t8g1+G9gbdnGFeC1oY1Z7TbST/785Tn2l2VsCZ9+e0Ql5tU/1hbkHL6VCUU6M4+aD5EupSH/PYXtyrhbYmG+BKjAHJ/wv69ruZlJeye6Dlb7016xIKf/gJfKuGN+rff+rmk16a9kljWXAkcSxQijYQDqX6M+32X3WQlvFSefrbHkvRYWhznVakqqI94FrjmAemi9stt3uhUgXOSePe6ZtLbznO3V5hVQZbQlcDRRbeoXqH9+uWvQ1XQ0uByactJ0mXa+57IXq6CNJmTBeZM0jvcjn5ZEVEFKpteH5gQuE311RMds3elVsHP6AjLbVak07nErnhUVsEeDutbVhGk75IOl749WAXhzNOynH2kX+qxzosV/gF931z7rZcHUR2mjwRkLPgBJoz9fDb+pM8uMTpUYfIDgk7a7+SsIv2N8Zhl594fcPyCR6OV6h1yf1LSue7X6R9g7PwmaJsH6eusG1YLBP+AvB9rnSZySTdNjTGReP0DBLmit5pLBVPdoV9k5byvP2Bp2jXTzYdJr7nWpr+w7QcotEgaDaeRbsjNqarFWQ3WFh0qa2bcpbrKpCbfMtlqWMeUHqE7kq6ktaVcX68aShnZj1o+kj7WKn/DwKIahN49nblUNITc160sCdd3qIamrPe6F9eRXvVcqUjvSDVsGzEIMHUk3f3JlrzJC5yM/y7/P/SHEP/7i49/R0IVUA2UjpqhtqgbykAD0DA0HmWihSgLZf93fE0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdK0cHxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZK08bxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKG0pjo8qoBooHTVDbVE3lIEGoGFoPMpEC1EWykZpOjg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpeni+KgCqoHSUTPUFnVDGWgAGobGo0y0EGWhbJS2DMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjND0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdL0cXxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZKM8DxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKM0Qx0cVUA2UjpqhtqgbykAD0DA0HmWihSgLZaO05Tg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpa3A8VEFVAOlo2aoLeqGMtAANAyNR5loIcpC2SjNCMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjNMDxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKPVXm8R/7jP+bzc2FTNO0vROVUP6/PSO6T6k19Jcn+tcqQbjudMWf0shnX+/B6/Gk2rILTiXOGfWParvznhsqJpeDaICSj+ED5Me/OfFarkf1TBtk4HvyyzSG+acVpgxXA0Gt2ReDMuGUt0xquYzl2gNGPDTjNtOkS4j8XLZoFoNZO+I0PEuJv2yafYh1uoasM9ccSZH/T7VBc04bPNta+CC/lHOhCukd78G0YQzNZBSujB5fSvp+Zl2HqHBNTBgdzfIf9UD8safd2PQ+dc1MLmc69zxcNIrLrXutf1aA61K3+14aA+p/ni5bAW01YCanNUS+l7SVxxlDctw1sLyvVWFiumkb1ZWThyVqYWJtYc04uUfUX3J6ZY5hctqYfv+H7otDNJF5eZKRG2tBVf3B/kZjaQf/Fgb6+lSC5xBSaWmqx9Tfb7D/NL1frWQtP6D7qkY0q1niV2bE1kL2S3GnSq8YeSN9qx331tSa0HoTvxaRz3S2xk69+Mqa0F1q1Pk+EHSR9NTOk8O1kLNT6Nu1kPSBWnnPxoK18GuXeKiMkWkWyW+451QrYOAjq+/nnOHU/31wuf5qavqgMdjxf3reqQP9MTynNlTB384F1ZlHib986HZr3U862Cnu+HjTeGkz3A3y+u5PfX4nt1lauWkR375uinyVR3kmV2x3ykYQd6YxAjoWX2pg+E4Bc16OunT7YJ9eZvr4OCT0wrvT5JOa+fXTpiogyPnhWezXpBeeFhoxd459bA7c2xwVxPpVQPWYdOW1kOOcn/oIqlI8gOc7rjtLzfXQ6QvvXOzOelzK7sczJzrYdbI+/RMP9I9WQOf2D71sC8/fNSfSXrhudSDNx7Vg0Lcp8NPxki/JWW1e0FSPRQn08dENJ9Q3SmpKvhTST2sfxxztMCZ9NGHHrOse+vhYlblq5oI0uPOJHec4GZBv89vnxU1pF/PCW5PEWNB6E6vzD7xp+QNr66vL5c8C96qCxkNbiF9fqFpuukiFkReOpGx1p901a5XQdf0WdDRES/bk0X654AA7u9rWLBCpUKqaZL0JWXFQqKWLFgdL+SzwDCK6huWHojbYscCQR4fWeZJ0ml9G9qvH2FB2Az7uKg3pFs5X/uQd4YFndHFv2p6SQ+9YizDe4UFL7uqM/ctjKa6luQtcXowCwKrjuQscyLdReFthEckC5g5W5k7n5LOs7U9Iy6eBS7dsoe/NZJ+dv9F95ZUFviML/S+qRBDjo97R9KcfBbMfx6U+GgP6cLuV25urGSBpeO8zF8PSLf0aR0+18IC9VZTi6hq0v2sb3e/HGBBXrW05COpZ1TXj9I+XjPJgusxq9Mat5Ned/nsFX6hBthHm+g7fo90y7qlS3SkGuByH22beRXpsZ907PfObwBXv4u3Ts95Tt5Qfz+o6re0Afa8WLqhbzvpVSrFZ+KMG6Bdmy4fF0q6kcPZPWWbG2DbJvsXSdWkF0ZdKxzf2QCNm8auC8vGUv3ZBb1iGecG4Ns5vuvlHtIPDn/eb3SyATbMnh1/J4z0gJN3fPf4NMBvo4/SnxtJr/oupHcuoAH8N0lpGSu/IPOXjz8T+rAB9KeBD5cT6c9yhczfP28APQGxh0KxpL/em5dY+KEBlLfaC+7tJT36/v23HVkNcCSBy2ZU8yV5HPq6lRzFDfDTMkWg3J10b4GXDhL1DXBzhvOzn0mkz7/zRm5RdwPIdP35YD9B+sZV1kdgvAHuWd9OnLnqFdXXKD7fZs7bCJcfH104zY90/uL8MruZjdCsKHPTqID007t6+9wUGuFV+C7bpBlxVG+R2/b0vHojHDu0WeqUDenZEZaj/gaN4BLqrHvq0V/99Na2O2sb4bbujUVJzaRLyWaffGzZCHyxl/UficdTXTpFOzrarhHy5uwFmj7pS2R1T7860gjVD0/bee8ifd6RE/1vzzRChV+RjRKD9DTJaOFEv0ZYl/28tiWS9NKg4JKPdxqhY0tEdM5n0uP1pFemRDSC44tXLjldpPdNk92VEtcIbttUWptFXpMffDFuKyanNIKnanbO3KWkNxzwDU380gilX19nnbUh3eUWX2ZCeSPQZ/sEDZ8lXT7O+HFcUyOo7V/deTWcdCshe81n7EaYP3LBE3JIF93/+kz4n0Yw3mAwLNJF+vZAT0aIQBM8cOIQ/SPyhuo7DkitvCHRBJ/Ues7w6pAuaz+Z4a3UBHevPe1cuIP02pPhPCc1m6C084CQywXSFdMuTXcyaoKVq6bf+fKE9BurV/6w2dAEz10FtIzzSN+WcfyoqU0THNl1Iaikj/QHmz+X6jo0wWxDrcMM8bdU91cc5lU61gTe8fec1hqSbrj1k4DohSZQmWTpqdqR7nPmV+PPq02gpN5zdd5l0qMvnb/VHNIEB1T2ieq+JL3ZSkOm4GkTlP2IPrGvhHQuBodPwpsm8LLpc4weJ714vPtLaHoT6Dcuu8OtkED1J8Wjgxe+NoEEp+VLzzWk17I0uO2rmiAipHcXrwvpl47H/1nT2gQjbTfNn98mfYwjpEl1sAnUHkToOXwkPf2HWBI/rRn8CzzSdRtIVysy8+qY3gwX+c1vy/G9o3p9103IndMMtlo77WSWkF4mOGP0qUoz7OlILV9iRXpa7NxYb+1mSGi+F2ZzjnRfuujePfRm2Mshfjj4yV/dSme2/qZmyIs52NqeT/rJV70lM3Y0w4R6W8qWQdIlxMPudzk2w/nq9gd5Uu+pPmvrW7fM482QLVWvvX0l6X6Td61CGc3Az9iw5Jcz6Y3RmWZu15vhj0rq8vhA0lVY8ftWhzbDMoEGfo8k0q9G1N2cE90MLr+vmWxtIF2fr7C6+20z+DRnhBrxfyDXvQ7B9enMZmBMe/9xuSbpH71k6gIKmqEj4/vWjdtJH5a4ed/uRzMsOJQg5uJFuuujQV/NtmYolDWNevSM9FCbmjDaUDM0Bb1NZxWRPvt8bd83WgswR52EtH+SXl977eQDoRYIea4Kd+YlUn2pl5ees1QLnJLh5Zm2gfQ9my30dea3QMftwyJ+x0nXjA09S1vaAmY/FUUkH5B+Rp7Nk09vAdmobe/eZ5G+brSrMmhTC3AqBb7d30O6aIvy+O4dLcAzWZgsNzuJ6gWRSw+qHGiB1ssXGG1GpIvde7mk93gLhN4/k5B6gHThU0qb3jFaYIGzrGB4AOlhdWo5Z663wG9dQ73AJNLtOMweGYe2QNj8xezrjaTnrlKo4o1uAaOJ8rZgwY9k+3ql0/lvW+BlY0Rp7FLSJX2bLt5ktoCjcsDhr7tJj52s/b21oAUsuLQdxy6Rrlce2CL+owUeOX/0WBJPOkffqZWVrS1wMWlo59Eq0vdqcUuEDraA6zXL3FTOZHL9V3/quJPWCos8hk/OWkT6qw+ZS2WEWuFKSdhc922ka97KuFgzpxVszxR7158nfVRkYvsDlVbgCUndZhFDesuH/A87tVvh1H5zq8Ii0pM6PMOl6K0w3LfC2OoX6Y3eW6SqNrbCjb6xkmalFKo/97mqfHd7K5idzfh6ZjPp6Qn2OZaOrbC74VmnlAfpypv4aTOOtwK/w62eT+Gke4Y8Kvt2oRXyZuoFu+WT/vohff3Va62w69rSKJVh0pflcNitvdcKv79ysZrkUql+wbdThiuqFXI4+KfFmJLOzzHOSHvTCjssb9cfO0Z6WaJCgGd6KzBTGhebPCB9h8b6TUu/tsKbkkXJ0jmkt9/dmtxb2QoGUeEbxvtIv3dSsDamZepx/N1iauakkdfL0uDdvoFWCBz9Gpq9ivQzjiFrZCZboXPHYPdbF9LLlhXfLhNsg0tD6gej75I+Yn358Q3JNsiOr6p7/In0CZ71h9cqt4EzzyHJh12kN9c++j2p2Qad34+1PBJPp/of399bE43a4KxO5NS7KdL5d+cfddvQBsyLpZ5xzqRnqzrsVLVpgwZJgebU26RPZM2awbJvg5Nwan5hKun7S8RD7h6dGlf6omRrG+lih4L6Np9vA5nNzjmTfEyqP8l/IcV7tQ28QsPVheVIv8dzSDr1bht4Lv+jLqdNuv2M/MHjT9ogTmVJwhJT0tVnJT1Ve90G/pJ+L1fuJv3odTHthtQ2MJAYmmZ9jPQX98Mf3s1rA9mi0deHL5PepTm/bVNFG6zgexXq84D0hZbmYtzNbSD5O+v1/deka1swZT+y2yCz9ExbQg7pw3y8wm5/2iBdOGzR92rS3cSjmpQF2uFlm/+xTjbpPDKzw6pnt0N2vlwsL+8nqhtzpJkEKrbDeGZWrqI06dMXjBWv0WiH6mbnNGMN0te9E9v4e3k7SKadvWC7mvT0rPWvX69rh/t5nZMXdpB+5k051wGrdjBskF0a5kr6vm01JjL72+HX03HRTxdJ16KfdC9ybYf8X5VXG++RnsTxNvjS2XZIPnk1lDuO9B0Od54ZXmmH+G9btednkV70dlYc+047nN7K2ri+inT9IZmYpxHtYLFza51LL+nL1W/e2RHXDu+ZmvWBXBnk+3WUsYdISjs82Oi69r0k6WfUaOZZue0wvMROpFqd9JK11xQ8y9rB9xRzCW0V6Rm3H7apN7YDmxEVrmxDOnd3Q1RjbztIu/nv2eBCunzSnz13f03N54mR7VFv0r9oXBPdyNcBYhq9YXfvkn4kRD6FJj7VN0hJp70g/etl433v5naA7de7X5o/kf5i4XGug4s7IOPRtWjBCtLj/dTD5Aw7IGiZS7xWN+nL0xr0StZ2gKPQz/rtHJlUP7huvOCyZQdkCq/Q8ppNurhp+d7ldh0wbc7lyJiFpPcll/SyXTrAxtVFo5BO+suC1Weenu6At5qfy0a3ka4leppnx+UOECx9HiB/iPTSzA/XhYM64NKdQ3vWMkgPm0OflRnWAQmjwctd75D+4uTme6dedkCfzoDq3eekH/ogKbvoYwfEp5yam55Ousjx749ZOR0wEWap1FZKervRo7l3SjqgVqJ1iUjnX/Ppj41Yx+qAgp73K5dNkh7eJqU40d0BGyfO7tw7K4vcb5vwR74Z7wCL2NmelxeQfl0vcN4B3k74bekXGmdEuviqL+HSMzuBWTieVmFBusrJLIVC+U5Qb3zbMulE+q6Ptx5fXNQJq17JCqueJz1R1FhOX78TKld+XGZ2m3TTmqoHPas7QaxEeZ9HDOmPhR2kI7Z2QprgrOthqX/N51P7Pau9nSBusT4xt5j0lXpOkoKHO6Fn5bMmdhvpb4vag9M9OqFw0x/hOX9I3y3rLH7CtxO4TSwNjGdkk/vMcx23VW91QvvR5w7O80nPrnSeUfuoEz6W0QIDl5OecyjdcVt0J7xIvGnzYj3pSjqdAYGxneCy0DolyZz0485PeP4f/UOI//3Fx3/gQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjv33+Rv/Kx8qikqiCqgqqoHqoXTUFDVDbVBb1Al1Qz1QBuqHBqAhaBgag8ajiSgTzUUL0UqUhbajbHQMpa38Vz5UFJVEFVBVVAPVQ+moKWqG2qC2qBPqhnqgDNQPDUBD0DA0Bo1HE1EmmosWopUoC21H2egYSlv1r3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlGbyr3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlLb6X/lQUVQSVUBVUQ1UD6WjpqgZaoPaok6oG+qBMlA/NAANQcPQGDQeTUSZaC5aiFaiLLQdZaNjKG3Nv/KhoqgkqoCqohqoHkpHTVEz1Aa1RZ1QN9QDZaB+aAAagoahMWg8mogy0Vy0EK1EWWg7ykbHUNraf+VDRVFJVAFVRTVQPZSOmqJmqA1qizqhbqgHykD90AA0BA1DY9B4NBFlorloIVqJstB2lI2OodR/W0X85z7j/3Zj4zUxK7kgrhMWP5JT+GxDunfgQZE1iZ2g4PWyrcGRdKfuzus/szphoJlrpsBZ0js3HpoeV9QJ5TN2GGkFkh4U0uW/v64TBPhfO++IIp1H6zC/ZFcn9M7kueOdTLrWs67LX0c7IZvLnvm8kPRnO115vbi7QHZDaFdxC+m0Gz8v6oh1wRcfv9m/fpIesP02V6dsF3DNGqIriuZQvTvO2PuRWhfcjQk4uEGZ9HlDIhwWy7rg5Ymft44bkK49X5AxzaQLpC8lJN3fQnqy5qrJZLMuqONQqcu0Jz1DOf+82+4uuBx7d7LLk/Ro76QJpYNdcMNGU3bWTdJPeKheqDrZBULOozrLn5Buu1CXdsOnC/4Y5ZraJ5GuP8rtvTKgC2rfbbe89o30mjfJ3KMPukAtVNc6oYn0+4O+frHPuqBLIWVLzdhf8zELErJ93wUqeyWWcwt/JvOJkgmaldkFlp9WSi1SJH32jh0yX753wXdvrnYLPdJDH9yIOlfTBarKbRFnNpG+/RVNW6ujC7zb6KaR+0jXnjfxqXW4C0pWzC/LO0V6jUK1xX3ObpAwPbpm4Brpgi8G2reIdMOJdQkhcyJID2mI8uKW6Ya18sa59A+kPzCyk0tS7QbJxLlFB76SfrrxVrqLTjec9p8dd6OB9KqiBId5K7vhi2DQ7ncjpJ/XNxWr2DzVVZgV1YK5VF/wujzj6s5uUHrjKsk5l3ST8wOn6U7dwGxVlFLVJf1Sua7B8Ilu6CybVrFpA+kn5plyPPfqBqv6HtPjtqQXQGnhnhvd0KKyyTnEnfSUzFvPZt7vBiMB0Ez1J336itXXcqOn5hN89l7DY9KFT37wPJfQDZd/7QzleUf6yffpx7Q+dYMd97eFC/JI7+UGj7aCblDz27l6Yz3pN53mXn3woxsUWPPqjgyRLqG254V5WzeI7CzrDuD/QvWWWWM1vEPdUB+fcOCNHOkFH/7IptB64LF7gEmJNulXnl5xOyrUA3At02PQlPTJhIwyFakeyAjRHJ+xh3RD45rNNSo9MHnU5KPmcdJ5nWfXBmr3QMOtjrgtfqSv3JzmtZbeA+JXbxYcfkh6heVioz8be0DdVZH3yhvSze2+zXy7vQekTYU3PvlMurjELG5nxx6Q9NYKTKshXWa2j6j88R7I3NGRU9FP+m69lwZlF3rg4WZaXR9vHjk/v2ldvHqtB9J83+fwypBeUZPRa3yvB8Lgo5uMJulSVtJnx572gJmRSr7GGtKbrfkXx73pgYUaF7JW7ST9lb0zr2N6D9hJvV6/zY30yEfzp8l+7YHtKdM3OPiSrjsJWqWVU/PhW/3meCjpTcFpV6629ECL6eHDjDjS1z9NF1k10APyHwbsr2aR7mPsmvNzogcOrn92KaiKdBDij38j2AunZ2Ul3+8lfWNzxbeDkr0gk1LTE8aVT3WHazrKisq90NI7xPNEkvR19v7vqjV7QaXUo/uJOulbZ2zyDjLqBY/zxlciV5J+XIvzxqYNvXB3193Mx9akF3Atr+a16QWHZ0u97x0m/Z546GGmfS/MqF4bG+BFevxgrsnpo71wRuykkm8w6bbFXo5Lz/dCik9t8clY0nv1/Ut7/XuBo0fivgPzr/m8fhv47O7UcRhbbmdeRjo4V4fZP+mFly+a+Qw6Sc9t7uBWeN0LY2UL3OUnSRd9UsysTu2FXW4v/DhmfaV68NfbFXfzeiFWNEiZpUr6tyKdjZYVvTC88ZZ68grSFWXz54o194KVUovXra2k+71z3fmN3QsLHbdzOR4g/VGr6e+rf3rhjeSmWzpnSXdouzhtvUAfzKx/LcwRSPpNxg4Gn0QfsPaI2OQ+JX3fG76DnxX7QP6p76arH0k331H++ZJGH1T6fy9Y95108Uqxh2tW9IHanNUfuJpJv/9GtId3fR/M7qltSxwj/cDyJcmfrfogO1R7hbNQAflB3LJCgSv7+yBC9GLQrHmkrz2zq369Wx9I/nyb91GXdNGglcuFzvWB4DzzlJ0bSH94cESp8EofaJYFrR7dS/riFvaD28F9oGriuPL6CdJb/eOirSP7wKdl1w3ZK6QzVBJMZeL7ILkigzvmIeltThd9GlL6QGDVXcaiN6RHX322M/pLH+xMDqh5nkO6wWBcqUt5H6yOkB+cV036siKVgaVNfSB8xe1RUB/pZ3Ief/jd1wdtt44kTnJ9I9v7vlLN/t0H2yuypewlSb+gf0LpMzcbKrNaHn1aRPoB5QGhRYJsKPDhkpM0Jv1q/YOtgWJseLtd5uiBbaQPX6cPjUiwoXX6mFucM+n+J54N7ZJjQ5jpwpG+c6QvzYnclqnEhhscUlWqt0ifc/KXpNpCNvz8Md6/PYr0Cr6z9EBNNjhfK5X0+Uh6jwO7YGwZGwbW+is/+Ub6gmfzMm2N2LBmbmlfSiPpa4eq534xYYOj+5otBSOkP6Y3d2luYIO0hYV0mcB3qk/T5FS8b86Ge80bF5bKkV7X9DOX24YNkZUHrPK0SBfLDqw/socNaUWpxz+sIV3bzs+pyp4NuzK37Li/g3RbnUcOJofYUBbM1+B+hHSpawGVcUfZ4PElrW6NN+n31KQypT2m5tmhryYcTHpH7YCK33k2VKcbhOY/I73xynee4YtscOf05LmQSnrDrH12+66yYVF55ErVItJX791uWBjIBoa9nernZtL1l9jdMQqZ2n7flus7x0hfCvOOvnw0Nf89tCcDPIVUv/nVuFDmKRumd3hLvBEhPXutXcK1WDYIjHlMPzyH9PlL5eT/vGbDvouLjygokm73S2zGkUQ2uGkOzv++iPR3WUU36tPYYOIrreyhS3rxht5g82w2tKlxmkvTSTdMHFyYlc+Gei3+u4nrSJ/n7rxlWTEbNm2737jFgvTX/MWcsZVs+LBUXb5hF+lF/c/XytezoSTcSO+wI+n7Th2WD2phgxJr55x+V9J5r125yt/Nhiddcq9cPUnfG+l6/cLA1LjpGo1t3qSXXb+kMjLGhugH68O3XyN93ELDxmWSDeaWyyqy7pC+e8YXxRaefvC+Weq64DHpM8qj/HdP74eHUrOsL8f8ddw859won9EPiRp/POpekz7b5+ASszn9YJr78tPiZNJPcdS65sn3Qyprp6xH1l/98Euz1Sr9sKbIyuNjAekPfMRKmIumxg3hSx8uJ91jsd7Ycu1+aFIfrV3AIj1o97pPSfr9EFmc/cmqg/SeLocly+j9UOuga312gHRtr+hV79b0g16i2tXQX6Snn1CY1N7UD1sanq5/zV1E9UWvq/e9tegHseACb6YQ6V9Daly1d/SDBaNLIXc26R875eYn2PbD8btHZuTKk54dE3xF50A/SJ/uNmGqkj5zYknIB5d+WPZlXlS8JunXVL5bGJzohxGfMcV7BqTPtjZLTT3dD7/sL7zwXEX63ajLZcZe/RBLH1bfupH0T6P0hzmX++G+fXbwvG2kZzSB+MYb/aAwdqWsczfpr5+CUXFQP0zsFqp67kh6G++g5Pb7U/O8uyFgnyvp8hu5o1jh/dAfdbxTzIN0hqJ4q1NMP5wdbS9PZJB+/nZaVf+rfjjNNFltfYX0gM4ArzPv+kHgiLVyTyDpTXEz63hSpo4bv9qB06Gkfw/K7gvI6IeCsMmfExGkmx+Q+SDzpR/qE6yKTseSvoHHd+mz7/2gGt75o+ftX49jtt9Jt7wfVATe8dmkkK6rPMMiq6YfLq3v25CURfqyTU1DW5v6IaVhZrBYAek1nvKbGzv64XpTfaVtGemuBrx7j7H74YmTJW90LelmwwXzuUb7YTotUbS5hfSUhsiYoD/98HpuSKdEL+m+nC8aVLgHICM879LKEdI/zOUoSRIYgH4l18r9E3/NvyDh7CaxAWi4wy4+w1tM9c2W3+saJAZgbyjvQX9h0n9mbxk/KTcAZ4U+BN6cTbpO/8Kv05UHwPaQtdFVOdKn7TOzjlw4ALtO3rA/p0K67ZWwUAOtARiKsxh3WEz66cGRO8V6AxAt3Ntvokv6w9PK6w7BAETUDaySMiI94PTwW+41A6AabNLSspp0Ry7V8kcbB2DFC7Gv0ZtInzv9ZJy+xQDUu5T07t1Ges+TACjbPgDBxRtNhHeTLrhg7qWjtgNgaHYl84096dZuX7yFDwzA2Mvq/ZsOk+5JU9J54TIAruU1MnXHSX+yIuvB+hMDMOfZwVb7M6RPhOomdZwegPy8qMQGb9Kv5dH8r3gNgIP78FVLf9KZ3eHCan4D8HTNb5vUwL+OQ/qtNfk3BkBDOFxS5h7pYgWrNV3uDMC9UL4stzDS4+7N/ybyYAA++N6xTI4mvbbokczbiAH4Odma+esV6RtPTZexfjYAfaEVglrvSY8S+pr/K24AamacVdmTSnpejvbC8PcDcFFinjAji/QLr4L016YOwODMLal380mPLzMY6ckcgCvDaYufFpPOe87F9k7eAHAM7NsdU0W6DLieWlE0AM832pqEs0jnMzhv0FoxAElSIvU320g/olcac7NuABJ4x1VP9JLOror6pN8yAJwzK2U3D5OulDz/YnPXADzeeSdJ9jfpDQ8u9t0cmDp/yteONXKWkPPkahvn8vGp111cu/whP+nJnKdS2ycHwJIjZ8tmUdLrJazkgnkHwfDBPbuh2aRrhT5RMhEahE8prnwBsqRH61/4PjBzEITyNY3nKpG+7PmkbITUILic7eOLUSNd+PNyka1zpx7/Ru0uJU3S575bH8GpOgiNFywNgpeRrsJjWP528SDM2Pj90Z8VpHeUyjx30BkE1bmdl3eY/PV82b9lJJcPQr6k3eCL9X+Ny25Rz185CO96heuHzEiv3smqPr9uEDLed5lqWZN+JWdAWdtsENRvCS5x2E364565gu1WgzDb/uHN6/tJDyl383+4exCW+XY4xTqTXtjFirCwH4Sek2ZJaa6kl0kesxA4NAied9Zd+OxO+p+Wefc/HR0E/y92SdlnSD9ym+3h6TEI8voGjklepLtrV3RpXhiEh6OXLkZcJl0zq2ig03cQNr8Tmul1nfRnpj+uPbk2CHOPPBHddvuv49/Qkbjn9iCUSWiclbtHOmfTmPuc0KnntSXSsvYR6bv7JjJKw6bOB54/IYFPSPcXHHwUED0IVWprTQ2fkx77Kp9v06tBWLfvjt2PONLThs9P8r+bmv8lruYj70i/ZsLp/Tl5EL52Jnwb+0i6nczGm74ZgxCw+buCB5P0nhObVUy+DML2pJNV3dl/Hbf4rwGZBYMwoJfc4/flry4QvourcBCmnbXQ3pZPuqxYwbH/R/8Q4n9/8fEf+FBRVBJVQFVRDVQPpaOmqBlqg9qiTqgb6oEyUD80AA1Bw9AYNB5NRJloLlqIVqIstB1lo2P/ff7r/pUPFUUlUQVUFdVA9VA6aoqaoTaoLeqEuqEeKAP1QwPQEDQMjUHj0USUieaihWglykLbUTY6htLW/ysfKopKogqoKqqB6qF01BQ1Q21QW9QJdUM9UAbqhwagIWgYGoPGo4koE81FC9FKlIW2o2x0DKVt+Fc+VBSVRBVQVVQD1UPpqClqhtqgtqgT6oZ6oAzUDw1AQ9AwNAaNRxNRJpqLFqKVKAttR9noGErb+K98qCgqiSqgqqgGqofSUVPUDLVBbVEn1A31QBmoHxqAhqBhaAwajyaiTDQXLUQrURbajrLRMZS26V/5UFFUElVAVVENVA+lo6aoGWqD2qJOqBvqgTJQPzQADUHD0Bg0Hk1EmWguWohWoiy0HWWjYyht87/yoaKoJKqAqqIaqB5KR01RM9QGtUWdUDfUA2WgfmgAGoKGoTFoPJqIMtFctBCtRFloO8pGx1Daln/lQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjqE0s//xn/uM/9uNjYu9u+qq4qkbyPQuj7kFpDsY7uvJKB8EmUKZM+8LSb/vZCXtUzsItiUH9wmWk77zXe23Vc2D4Ow6/GJbNeniCR28PF2DoBfcvv0Oi/Ruc7eMnP5BkH7o7pTXQnqeniPtytjUje7ebxVDnaQX8zDTN0wOworkRdGz2KRvrT86Kcw7BMyXxWULhv+60WW4phVPH4Iq7un7l/4k/YPSi1/BM4fgZOSSzUsnSd/DkHq/U2oIuJrDghdwl1J91psX3Qpzh8B5sNBwFj/pGfqWj1rnD8H5xfQVQ0Kkb+rlyHuxeAj2X7gQ+mUG6RZDT48c1xkC62RNiyAJ0m+9W3LVYPkQ9NCEDljKkN5ZeV2Oc9UQ3J9dU8Y/l3RZw1fz89YNQfiXC48TlElf3H7u6S2zIdiyiZ1pqUb6QfGO4J3WQxAYarSqczHpCjLVP5X2DEHF9zuy7tqkj58wKuy1HwIIXG4xvIx0voTf4kmHhmCmc3DzweWkH/adyPM5NgTnVJWLy+ikpzxf2LvZcwhumfrL6K4mnT128LwUYwj8NvhlXV331/OyjjjdemkINOW488s3kf4+9X3Dm+tD8N6TV1NiK+m+utfeXAgaguOrU0c3WpG+tpane+P9IZg1flbBY8dfx5PFc10qYghqJz69CNnz9/xdgtpjhkBqttajV/tId1GR5fgQNwRJ7x6OJDmSvsZgqMj3/RBMHOFI/HiQ9OZtRTzbUofgkNnl5vgjpKtp3rqvlDUEb0z9zj849tdxjp15ayhvCD5fue537iTpVSWa7VlFQyDYbc5jeZp0487PD+5UDsEl88xR+fOkHzoU/8qxfgh0+bn3N3iRXi6eLaPXOgR7tA6vD/ElffNAXQt/zxB0yF99bXKF9Hu7yvlqBoegOFn1Qes10mOn+1x89XMIfDvXCJ8PIP2UQoq1F8cwrO6dN10wiPQNKjZelnzDcCNPN/T6XdLT5qvTVEWGwSXaIJXnPunK70RLfokPw/elKqePPyL9YX/F2HeZYUgR0iovDyfd77G12xPFYbguXVW+5CnpL9Tt9TzVhuHPWJXX+RjSk7OKtmzWHAbtbXq1GbGk22878U5RbxieWhn1/X5FeneUvNO40TC0/TmXtugN6fMdox2/rx4GC79i863v/vq60KmPe7pxGG4X28W7JP41z4+hK89aDANX8sOG88mki759KWuxYxi6fFb3+Kb9dV5xdIOa3TBc0zlQ7f2J9I3pC2I4nIZBgGaX4J5FupWZ4baqI8Mg9LCRsecz6e+ODa9+7T4Mrq97163II33JVnXPK2eHoVa9RnJGAemvQxN77HyG4dwb69Ga76TfvOoSYeA/DMqt9n0Pi0nnEVAMnhk4DOyfewW3lZHOmRT/ufvuMEwemNjGWUl6n1yfTs6jYVhnu+nH0x+kt+R+qH/8dBgW+8RHQi3pR1xaMj1fDMPHs6zU7/WkKwpbNli8HQanZx1LrRr/ur5JNugu/jgM8xLVxEuaSdf3PZTJ92kYejdYHFrT9te4oyW+TZ+HofPBPpP4DtJHq3+fTfs2DKmSUS9Fu/+6/nvnRd8rmzpvORMTDvSSPmCoyONeMwzvxc4feMcm3fxU322zpmEoE1MtHR/46zypnGOxqHMYSi4s5tcZ/uu6Z37TmK9/GHarmosfGCW9dznsaR4dBunsO9MCxkl3OCEdw5yYOm/vremL+0W6qYOk3EOeEeAR7a/O+UP61fnq6Z7TR6DU0r62dJL0nEALf6uZI0AbjOP6wVFGzp+Nfue1pUZgkeu8veVcpBe15IWKzh0BZuNaWh4P6XwNsnU980fgRXD7aMI00i9/ubQ2f/EI1DycZn2Xn/RIY+HyGJ0R2OfasPioIOlNYky/S8tHwIHRGbBSiHS1ZbF77FeNwPfaghuCIqSP9zVYrVw/AtnZhwy+ipLenevppmA+Ap30yqcXZ5C+Lubq8wnrEXBL3t60dBbpGZXa3LV7po7bowM8teKk759562yywwjcbo2ROydBeoLflxmhh0eggTlgLD6HdI4OWo7H8RGYIb/W+6kU6axD++5Ynx4Bsa0lA+oypA+USzN0vaaOT3hv1CtZ0r/67PEV9xuBzy2Sb+bLk27osPfJ0I0RiJEZn39PgfQXgtY1JXdGYJx7lwzXPNJ7YrwWvX0wAiMJWpEOiqTPnykfdCtyBF5rBRYylUhf8vnYjGPPR0Bl+svEWSqkS3dmRpm/HgGLvmpXu/mkL1y/20wzcQQ2r7wlEK1K+oy914XF0kfAOdnuYcsC0r3XRbHY2SOwa3x0uexC0lWL/2QXfh2Bc9KyE5sWkU5z6kmNLxkBjh1vhk+pky4gV/w54MfU4zyK17u/mHSXmOlNbg0jECU9v+bDEtJ/2XCImLePgEyb/nCBBulLpSU3aPaNwIcAhXu1mqQ/d00JFhsZgeZkpdpWLdJbHHf39/8eAdPEsPIObdIz77vsKOYahfdSE6GtS0m3UN9f9EZgFMSsEqBWh3TNxA/bbouNAu+2tT8KdEl329LeelxyFJaJrWEkLiN97IT7RUv5UXi0dN3ah3qkfxJrUtdRGYWVd/pNzuqT7ns4sVFcfRQ8jdpubDP46/VSYkSMaI+CllO5wQJD0ocX5h6uMBiF1smDe0b/6uYpc40TjUfhbaG5CHM56elr5srfMx2F2Sp6+31WkB7rtIf39JZRSGLnuxobkW5Qf3xkh9Uo3HBOXv/zr37ZY7LXcPco5Bm8538FpM8WjuiTsR+FT/zOGbvopE+emRz9c3AUjrue9uc1Jt0yKG1a/dFRsOPyPxX7V18/84oc02MUpKoWP96wkvTCW4LLwy+MAktxZHbbX13w/PBe70ujYFxoN3RuFelB3ONX9l8fhccKbRtFTUi/KpSfZBI0CorrenQe/dU91RT7lO+PwrTpX7Pmryad3z95wbSIUeCyyhN++VeP7DRzbo8ZhfofMgsWryG99lrEyy9xU+fDm2bV2L96pfKxkefvR8FiSF1RaS3p54p8Vl1LnZq/de+ie3/1GO5HQS5Zo/Arn2ungCnpxheudGzOH4Vcae2MU3/1dUZiKzWKR+GNr8qphr96hQvnI7GqUViy6/CNtetIl9y56M9A/Sg0RLjLPP+rGzva7i1tHQWvF0E6/Ov/et2Hjma96xmF7sRfPfZ/dcV9uovuDo3C+tvJ21P/6uuHLgZ7/BqFvRoZ12ZsIN0kX5drB+cYjG2sCrX/q18sVTlmyD8G7tOf/n/t2/9Xj2ccx/E2fRBjIjFis5IPUWq+bGPeiSkhUuurCYlSmy+FaDVSskpf1uRbhUQqKvKlPsI0sWaa7bOzYqNQO6EOEa7rrtU6Zzun9+fsL9g5r8dv9/OH677u67rPuX+5r91FrP9aav3ApJ+gNbszUztYT7s/0a3dWFCsxjzPYW5Xn+ww4HrNMEH20YsaElhfuT1v+mUzQYYPZyz9hfWGi/dKMi0EzfUoVA+Yx54rcd97UTaC4vzsnZ1Z/+v10ny/DwRVL/uyKZ712zHjLOxtBQ18LePNq6yX1FQdU9sLCn1ytqKN9SijI6N6OQkaEJY7ztqpq6cEbsl+7Coo3NJsni/rsz3d1De8BUWu3ftBCuvd1hvl5i8T9FTtoH+Z9eGf5YxNChC0wW3ixUbWZ7bqF65dI2hHsUWo8Xz2XaseNMFloyD/VRq7aaxbnNYWT4gQNDLqPcvlrIeaWUwzjhZUrsl13MH6kIOGV17FCfLVa8nOZT1ybZjjra8FBZplfnKddf0Tn/6s2SvoXrDK9xHrt8zzPdIOCjrqOaamx4KuviDAtzY8W9Dt9qpqU9Y98kL8ffIF2T1OWDyN9ZnXbj21PSPoxJGYCHfW/7CO2/RuqaBg15OzVrNe0Lz1df3vBDV/WnglmvUzqefi6is698vgjmo/6xNszAdeuyno7jC7QQWsNzl9n3GsSpDB9v2qMtbTHu5Rx94VlNnkekfLxw9IORVYLyjEd0duHeuf7yuaOq9RUKrSFtrCumnWi6uWzwVdWDnStZtzV7+rcnPupwjyyR9ub8i6Z+LPvzfrSXr5df6i4azXevmt0PaQdGjhzANjWE+61rf5dF9JC82VwZNYfxF8PSx1oCTLPalaW9Zb3t/bPdREkl39zmpH1geN3JDsaSqpwbubtSvrb4cuMZkyRpLR+R/qF7H+Z4Zbtom1JN/kgI7lrEdZudu0T5Y0I23w9iDWy+uXXKiZJumNUeVbg1mvPLDO4fLHkixW9Vc2sd7dO06bOVcSPfJ6+SXrdta5i6NcOsevOhkezfoQt8qHfl6SCgPrUmNZ32j0KsR+qaQjc8IcEll3+dFUb7S/pH515/eksJ711CWu12pJ2oqcnbtZX6OKMW5cL6lpcM9x+1kfkFF66MYXkrK0Xl9ksL7Pu2VswbbO+Uxv2HKI9YWPxxUnxUpaPF9DWawHqQJmrEuW9G3jgQtHWa8IPFLpskdSVZBlxzHWqxvue048IKmkrqxnHr+v04h646OSLsZuu3uc9bPrl6wRxyUdH7g0Kp/17KkHW28VSaodOri9gHX9mNrt5zWSNq6zmX+S9ZtTR/RPvywpPL5n2CnW62cvS4/4vvM9uV0WVcR6cPph9ZKfJB0e5b36NOtbRtcXTf9NUntb+kdnWI+8b06mdyQlt1k84111yf8H/TpJiXZhiWf5ep7L/eTPR5KMr1QPOse6VXlj7bVmSUvzA3bynv7AMihHSHpePvYZ75l9176K7ZCkKW+1L2bdZEZRZFB3hWZdjE/ifV/Eiz5OfRR6HBJ8g/eplybvtTJS6GnZu3olrCd222xmOFQhTUvTaN63OZYWPBuh0Et1r7m8z05p//BXtUIVBYkreXe6Y3v1jJVCzQFh4byPVG9z3j1JobZRhQm8RweX/xH6kUJBBmJ/ic48e/h7zVTowe+qo7yb93Z8PmWOQi6bN5zg3dI9PmLYQoWGjv3lFO/2hysNOjwU8tFPOMt7wJN+u2p9FPrGtk+JzjpMcXmnbEXnPHMyNbyfi9mVd/gzhWwak8/zXqOtmhQdotAqI8NS3nu+M6RsRZhCPTbN1unjgxbNc4jsXM/fvHS6Z3FG9eivFDph5abTt+rf8+2dpND9z911eu4C0yeNqQp5vKXbtWl+myvTFZozXre3NmSrCrMUMhij2wOvRiyblaP8e0Cyq/9zcPK/3aK1OJ7/COFemODDr3vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B/8DQ==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 831fb1ed-bca2-460b-9223-b0d4218a4644
+ - f5c8d8eb-f8f4-4c54-ac8c-993b13e65dfb
+ - bd41549a-5c39-43b1-a411-b1275b839e38
+ - 40eac4ad-7078-4163-b708-b36a2698768b
+ - 218991e2-0c0a-4b63-8e9d-193b4573ffc7
+ - 471cb8c6-32db-454e-864b-8adb99bbc48f
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - c42e40fb-8c64-4bda-ba32-1d4cabc706d6
+ - ba2ae3f1-8d36-439d-b50e-48c32b868a28
+ - 0e9dc657-67ca-4879-a93f-198157e47dab
+ - f84bab2a-2406-49cd-840e-c9d1d567fed4
+ - 5bebb14e-1b81-44ae-b476-74f247dcde9d
+ - 010a45aa-8a98-46cc-8544-11b7211e61f7
+ - 3636ea32-146e-4759-a9fd-af8fbb7b12e3
+ - e5ed4677-9e75-4bc2-b101-1b318d50d0b2
+ - 739e8cb3-fe77-437a-93c7-aea5934e50c0
+ - 7250e532-c3f4-4cae-b363-6ebcf7fd30fc
+ - 5ffb1801-aa82-4055-be4f-9288101423b3
+ - b0f336eb-1067-4fc5-90ac-2ded2a3006dd
+ - 10c187e1-9d92-4ae1-a4a6-8535e84ec48c
+ - 30b33e94-865e-41d8-b722-89524f727cc3
+ - de174455-c6e0-4d69-a9d6-f767a499f0f0
+ - 22
+ - 28ce963a-9220-4b87-82a4-79b43eb97fc3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 218991e2-0c0a-4b63-8e9d-193b4573ffc7
+ - 471cb8c6-32db-454e-864b-8adb99bbc48f
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - c42e40fb-8c64-4bda-ba32-1d4cabc706d6
+ - ba2ae3f1-8d36-439d-b50e-48c32b868a28
+ - 0e9dc657-67ca-4879-a93f-198157e47dab
+ - f84bab2a-2406-49cd-840e-c9d1d567fed4
+ - 5bebb14e-1b81-44ae-b476-74f247dcde9d
+ - 010a45aa-8a98-46cc-8544-11b7211e61f7
+ - 3636ea32-146e-4759-a9fd-af8fbb7b12e3
+ - e5ed4677-9e75-4bc2-b101-1b318d50d0b2
+ - 5af1d85f-5880-46e4-ab73-4082b5287d29
+ - 12
+ - 831fb1ed-bca2-460b-9223-b0d4218a4644
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - f5c8d8eb-f8f4-4c54-ac8c-993b13e65dfb
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4244
+ -2690
+ 128
+ 28
+
+ -
+ 4297
+ -2676
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - c5b891bb-ddfc-4b8a-822c-736299b76bfb
+ - Values
+ - Values
+ - false
+ - 40eac4ad-7078-4163-b708-b36a2698768b
+ - 1
+
+
+
+
+ -
+ 4246
+ -2688
+ 36
+ 24
+
+ -
+ 4265.5
+ -2676
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 03c98abb-0c2f-4d66-9a59-d81563ff7d7e
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -2688
+ 58
+ 24
+
+ -
+ 4342.5
+ -2676
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bd41549a-5c39-43b1-a411-b1275b839e38
+ - Relay
+
+ - false
+ - 03c98abb-0c2f-4d66-9a59-d81563ff7d7e
+ - 1
+
+
+
+
+ -
+ 4288
+ -2724
+ 40
+ 16
+
+ -
+ 4308
+ -2716
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 40eac4ad-7078-4163-b708-b36a2698768b
+ - Relay
+
+ - false
+ - f011379a-ace5-42cd-9bf6-03a6a430b537
+ - 1
+
+
+
+
+ -
+ 4288
+ -2642
+ 40
+ 16
+
+ -
+ 4308
+ -2634
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 218991e2-0c0a-4b63-8e9d-193b4573ffc7
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4247
+ -3420
+ 122
+ 64
+
+ -
+ 4327
+ -3388
+
+
+
+
+
+ - Line start point
+ - a7350e94-7702-449c-ae97-3b99e5a445b8
+ - Start
+ - Start
+ - false
+ - 6563e8d4-1b46-407e-9fc5-2d92351f7187
+ - 1
+
+
+
+
+ -
+ 4249
+ -3418
+ 63
+ 20
+
+ -
+ 4290
+ -3408
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 39042e5d-984e-4e69-b030-0ab575d85afa
+ - Direction
+ - Direction
+ - false
+ - 471cb8c6-32db-454e-864b-8adb99bbc48f
+ - 1
+
+
+
+
+ -
+ 4249
+ -3398
+ 63
+ 20
+
+ -
+ 4290
+ -3388
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 7116cce7-9303-45c9-8657-ba06a2511353
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 5bebb14e-1b81-44ae-b476-74f247dcde9d
+ - 1
+
+
+
+
+ -
+ 4249
+ -3378
+ 63
+ 20
+
+ -
+ 4290
+ -3368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 5ca442f3-b05e-4eef-831a-92d889443926
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ -3418
+ 25
+ 60
+
+ -
+ 4356
+ -3388
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 471cb8c6-32db-454e-864b-8adb99bbc48f
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4288
+ -3338
+ 40
+ 16
+
+ -
+ 4308
+ -3330
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - c42e40fb-8c64-4bda-ba32-1d4cabc706d6
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4250
+ -3056
+ 115
+ 64
+
+ -
+ 4305
+ -3024
+
+
+
+
+
+ - Value to remap
+ - 95b83f88-b274-434b-90d3-0be7eb7dfd56
+ - Value
+ - Value
+ - false
+ - f84bab2a-2406-49cd-840e-c9d1d567fed4
+ - 1
+
+
+
+
+ -
+ 4252
+ -3054
+ 38
+ 20
+
+ -
+ 4272.5
+ -3044
+
+
+
+
+
+
+
+ - Source domain
+ - ff7e1fd5-a53b-4276-b607-32c8cedc4e58
+ - Source
+ - Source
+ - false
+ - b7fe0666-5876-4d33-9f74-d239cc35e35a
+ - 1
+
+
+
+
+ -
+ 4252
+ -3034
+ 38
+ 20
+
+ -
+ 4272.5
+ -3024
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 3d913b0b-7288-4936-ba09-9b74c45e359c
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ -3014
+ 38
+ 20
+
+ -
+ 4272.5
+ -3004
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 4895a690-54af-49e4-83e7-c773ec123c8a
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -3054
+ 43
+ 30
+
+ -
+ 4343
+ -3039
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 1f36692a-c659-4f1d-8f0c-fd01f37505e4
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -3024
+ 43
+ 30
+
+ -
+ 4343
+ -3009
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - ba2ae3f1-8d36-439d-b50e-48c32b868a28
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4247
+ -2973
+ 122
+ 28
+
+ -
+ 4311
+ -2959
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 869d5645-836f-4dfe-9e46-62031fb05e28
+ - Numbers
+ - Numbers
+ - false
+ - f84bab2a-2406-49cd-840e-c9d1d567fed4
+ - 1
+
+
+
+
+ -
+ 4249
+ -2971
+ 47
+ 24
+
+ -
+ 4274
+ -2959
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - b7fe0666-5876-4d33-9f74-d239cc35e35a
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ -2971
+ 41
+ 24
+
+ -
+ 4348
+ -2959
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - c42e40fb-8c64-4bda-ba32-1d4cabc706d6
+ - ba2ae3f1-8d36-439d-b50e-48c32b868a28
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 5bebb14e-1b81-44ae-b476-74f247dcde9d
+ - f84bab2a-2406-49cd-840e-c9d1d567fed4
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - 010a45aa-8a98-46cc-8544-11b7211e61f7
+ - 96b01361-8424-4588-9198-af74d35bac00
+ - 15
+ - 0e9dc657-67ca-4879-a93f-198157e47dab
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f84bab2a-2406-49cd-840e-c9d1d567fed4
+ - Relay
+ -
+ - false
+ - bd41549a-5c39-43b1-a411-b1275b839e38
+ - 1
+
+
+
+
+ -
+ 4288
+ -2928
+ 40
+ 16
+
+ -
+ 4308
+ -2920
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5bebb14e-1b81-44ae-b476-74f247dcde9d
+ - Relay
+ -
+ - false
+ - 25c55284-2562-4619-9114-dd1d4ccbf631
+ - 1
+
+
+
+
+ -
+ 4288
+ -3295
+ 40
+ 16
+
+ -
+ 4308
+ -3287
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 010a45aa-8a98-46cc-8544-11b7211e61f7
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ -3256
+ 82
+ 44
+
+ -
+ 4298
+ -3234
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 8899dc6e-7565-4568-af20-7147959ab569
+ - A
+ - A
+ - true
+ - e4e6d17d-d12b-4600-bef5-e481dfb6d432
+ - 1
+
+
+
+
+ -
+ 4269
+ -3254
+ 14
+ 20
+
+ -
+ 4277.5
+ -3244
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 42a254f9-7392-4585-b408-ec34da821f92
+ - B
+ - B
+ - true
+ - 96b01361-8424-4588-9198-af74d35bac00
+ - 1
+
+
+
+
+ -
+ 4269
+ -3234
+ 14
+ 20
+
+ -
+ 4277.5
+ -3224
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 25c55284-2562-4619-9114-dd1d4ccbf631
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -3254
+ 34
+ 40
+
+ -
+ 4331.5
+ -3234
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 3636ea32-146e-4759-a9fd-af8fbb7b12e3
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4267
+ -3155
+ 82
+ 44
+
+ -
+ 4298
+ -3133
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - c69109b7-3ba9-4068-863d-7c83a4b4b4e8
+ - A
+ - A
+ - true
+ - 4895a690-54af-49e4-83e7-c773ec123c8a
+ - 1
+
+
+
+
+ -
+ 4269
+ -3153
+ 14
+ 20
+
+ -
+ 4277.5
+ -3143
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - cabff216-962d-435f-acf8-0299749575b1
+ - B
+ - B
+ - true
+ - e5ed4677-9e75-4bc2-b101-1b318d50d0b2
+ - 1
+
+
+
+
+ -
+ 4269
+ -3133
+ 14
+ 20
+
+ -
+ 4277.5
+ -3123
+
+
+
+
+
+
+
+ - Result of multiplication
+ - e4e6d17d-d12b-4600-bef5-e481dfb6d432
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -3153
+ 34
+ 40
+
+ -
+ 4331.5
+ -3133
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e5ed4677-9e75-4bc2-b101-1b318d50d0b2
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4288
+ -3093
+ 40
+ 16
+
+ -
+ 4308
+ -3085
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bd41549a-5c39-43b1-a411-b1275b839e38
+ - 40eac4ad-7078-4163-b708-b36a2698768b
+ - f5c8d8eb-f8f4-4c54-ac8c-993b13e65dfb
+ - 3
+ - 739e8cb3-fe77-437a-93c7-aea5934e50c0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 7250e532-c3f4-4cae-b363-6ebcf7fd30fc
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ -3544
+ 144
+ 104
+
+ -
+ 4320
+ -3492
+
+
+
+
+
+ - Colour of the diffuse channel
+ - ae7452b5-ecf2-4c63-b210-d4fc0ba9c40d
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3542
+ 67
+ 20
+
+ -
+ 4273
+ -3532
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;209;209;209
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 2affdddb-9368-4661-bd79-3c14b97db3b9
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3522
+ 67
+ 20
+
+ -
+ 4273
+ -3512
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 409c01da-189e-4a27-9f22-9fe40d0174d2
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3502
+ 67
+ 20
+
+ -
+ 4273
+ -3492
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c2176a11-27df-4703-aae7-86713624994d
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3482
+ 67
+ 20
+
+ -
+ 4273
+ -3472
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 32e2d235-58d8-47e5-8658-b5eb24ea2edb
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3462
+ 67
+ 20
+
+ -
+ 4273
+ -3452
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0d729313-6f8d-4ef7-b344-a8729e0e1bc4
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3542
+ 43
+ 100
+
+ -
+ 4358
+ -3492
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 5ffb1801-aa82-4055-be4f-9288101423b3
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ -3606
+ 82
+ 44
+
+ -
+ 4335
+ -3584
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 934b00bb-669b-4d5b-82e7-23dcba2305ac
+ - Geometry
+ - Geometry
+ - false
+ - 5ca442f3-b05e-4eef-831a-92d889443926
+ - 1
+
+
+
+
+ -
+ 4269
+ -3604
+ 51
+ 20
+
+ -
+ 4296
+ -3594
+
+
+
+
+
+
+
+ - The material override
+ - 9624fde8-561c-4b80-80de-a71585f42ddb
+ - Material
+ - Material
+ - false
+ - 0d729313-6f8d-4ef7-b344-a8729e0e1bc4
+ - 1
+
+
+
+
+ -
+ 4269
+ -3584
+ 51
+ 20
+
+ -
+ 4296
+ -3574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b0f336eb-1067-4fc5-90ac-2ded2a3006dd
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4236
+ -3689
+ 144
+ 64
+
+ -
+ 4310
+ -3657
+
+
+
+
+
+ - Curve to evaluate
+ - 196149cf-42f7-47da-99d3-b0dd8cb6e28a
+ - Curve
+ - Curve
+ - false
+ - 5ca442f3-b05e-4eef-831a-92d889443926
+ - 1
+
+
+
+
+ -
+ 4238
+ -3687
+ 57
+ 20
+
+ -
+ 4268
+ -3677
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 88bbc8b2-2cb0-4868-a2f0-1cca2894de2a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3667
+ 57
+ 20
+
+ -
+ 4268
+ -3657
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6c03d27d-a872-4a54-8425-13e2b12e8b9a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3647
+ 57
+ 20
+
+ -
+ 4268
+ -3637
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - eec198eb-ba36-4323-bfe5-713f7913588f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -3687
+ 53
+ 20
+
+ -
+ 4353
+ -3677
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 3e20a737-5c55-4ac1-b7a7-391af93ba700
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -3667
+ 53
+ 20
+
+ -
+ 4353
+ -3657
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - f75d93a2-1bae-4b5b-9c22-3466f60c0b8a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -3647
+ 53
+ 20
+
+ -
+ 4353
+ -3637
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 10c187e1-9d92-4ae1-a4a6-8535e84ec48c
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4245
+ -3793
+ 125
+ 84
+
+ -
+ 4312
+ -3751
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 6d4fa8df-24ca-4b31-8ece-83979648a089
+ - Vertices
+ - Vertices
+ - false
+ - eec198eb-ba36-4323-bfe5-713f7913588f
+ - 1
+
+
+
+
+ -
+ 4247
+ -3791
+ 50
+ 20
+
+ -
+ 4273.5
+ -3781
+
+
+
+
+
+
+
+ - Curve degree
+ - 4c48499b-c894-492c-af06-3023103df28b
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -3771
+ 50
+ 20
+
+ -
+ 4273.5
+ -3761
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 456fa94d-8502-49e8-8ee6-d9ca528992ed
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -3751
+ 50
+ 20
+
+ -
+ 4273.5
+ -3741
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - e0fa0643-599c-49c9-89b1-28226c7e5cac
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ -3731
+ 50
+ 20
+
+ -
+ 4273.5
+ -3721
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 2b205cc5-03e6-4c4b-af45-5b4e3f418914
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -3791
+ 41
+ 26
+
+ -
+ 4349
+ -3777.667
+
+
+
+
+
+
+
+ - Curve length
+ - 67c59508-4dfe-4a2c-9624-0e181fa1dda2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -3765
+ 41
+ 27
+
+ -
+ 4349
+ -3751
+
+
+
+
+
+
+
+ - Curve domain
+ - 891ca47e-2548-448e-8f38-93ccca22533a
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4327
+ -3738
+ 41
+ 27
+
+ -
+ 4349
+ -3724.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 30b33e94-865e-41d8-b722-89524f727cc3
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4236
+ -3917
+ 144
+ 104
+
+ -
+ 4320
+ -3865
+
+
+
+
+
+ - Colour of the diffuse channel
+ - fc41b861-80d2-467e-b164-4b6087424ab6
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3915
+ 67
+ 20
+
+ -
+ 4273
+ -3905
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;184;184;184
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 11ba94b7-ed53-4b01-b449-bddd25d9c86b
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3895
+ 67
+ 20
+
+ -
+ 4273
+ -3885
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 13edbd0a-ee43-4cc1-accb-1b7a920ea45c
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3875
+ 67
+ 20
+
+ -
+ 4273
+ -3865
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 35dbc12d-3249-471d-a08a-cfd6302f7261
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3855
+ 67
+ 20
+
+ -
+ 4273
+ -3845
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 3ce21713-e392-483b-b8ce-b2e85ddbf1fc
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -3835
+ 67
+ 20
+
+ -
+ 4273
+ -3825
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - de52d37f-0e5a-42ea-9a04-64f0327d3aa8
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3915
+ 43
+ 100
+
+ -
+ 4358
+ -3865
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - de174455-c6e0-4d69-a9d6-f767a499f0f0
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4267
+ -3977
+ 82
+ 44
+
+ -
+ 4335
+ -3955
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 31a5fb3f-de8d-42fc-9bfc-63f35458bc1e
+ - Geometry
+ - Geometry
+ - false
+ - 2b205cc5-03e6-4c4b-af45-5b4e3f418914
+ - 1
+
+
+
+
+ -
+ 4269
+ -3975
+ 51
+ 20
+
+ -
+ 4296
+ -3965
+
+
+
+
+
+
+
+ - The material override
+ - 1515cb0c-ff79-4bbc-a951-4f5f87787761
+ - Material
+ - Material
+ - false
+ - de52d37f-0e5a-42ea-9a04-64f0327d3aa8
+ - 1
+
+
+
+
+ -
+ 4269
+ -3955
+ 51
+ 20
+
+ -
+ 4296
+ -3945
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - d45392a9-2c67-49bb-9632-d7c25c34f964
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5668
+ 8664
+ 96
+ 44
+
+ -
+ 5718
+ 8686
+
+
+
+
+
+ - Curve to evaluate
+ - f8f3928b-5c19-40be-8780-5598d7519fde
+ - Curve
+ - Curve
+ - false
+ - e7fadd8c-4300-4367-8fd8-f0f55afdfb22
+ - 1
+
+
+
+
+ -
+ 5670
+ 8666
+ 33
+ 40
+
+ -
+ 5688
+ 8686
+
+
+
+
+
+
+
+ - Curve start point
+ - 52acba9d-09b0-42b9-bed9-51af2ea45c07
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5733
+ 8666
+ 29
+ 20
+
+ -
+ 5749
+ 8676
+
+
+
+
+
+
+
+ - Curve end point
+ - ef824423-d787-45f7-80e2-55bd7b0a6011
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5733
+ 8686
+ 29
+ 20
+
+ -
+ 5749
+ 8696
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 6fca89f9-08e8-4e31-ad0d-7c4a72820329
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 5653
+ 8561
+ 126
+ 84
+
+ -
+ 5711
+ 8603
+
+
+
+
+
+ - Rectangle base plane
+ - e18cd78f-5bd6-4cee-a422-95f2930444d5
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5655
+ 8563
+ 41
+ 20
+
+ -
+ 5677
+ 8573
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - fbb3ca0f-212d-49ce-9f00-06ac359501db
+ - Point A
+ - Point A
+ - false
+ - 52acba9d-09b0-42b9-bed9-51af2ea45c07
+ - 1
+
+
+
+
+ -
+ 5655
+ 8583
+ 41
+ 20
+
+ -
+ 5677
+ 8593
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 04c879c9-4917-4d17-b79a-5ca9282b32d0
+ - Point B
+ - Point B
+ - false
+ - ef824423-d787-45f7-80e2-55bd7b0a6011
+ - 1
+
+
+
+
+ -
+ 5655
+ 8603
+ 41
+ 20
+
+ -
+ 5677
+ 8613
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 2428e751-3f0c-46a2-80af-ad11ceece86c
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 5655
+ 8623
+ 41
+ 20
+
+ -
+ 5677
+ 8633
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 21c4b84f-80b5-4674-8067-643610c3746a
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 5726
+ 8563
+ 51
+ 40
+
+ -
+ 5753
+ 8583
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - eb5dc92f-3c26-47f5-a600-ae09f696724c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5726
+ 8603
+ 51
+ 40
+
+ -
+ 5753
+ 8623
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - a3dcf827-f89c-428c-a5fb-9587948ef6af
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 5645
+ 8478
+ 142
+ 64
+
+ -
+ 5713
+ 8510
+
+
+
+
+
+ - Rectangle to deconstruct
+ - f71d2a1b-f901-4a94-9043-565ed44e3aa7
+ - Rectangle
+ - Rectangle
+ - false
+ - 21c4b84f-80b5-4674-8067-643610c3746a
+ - 1
+
+
+
+
+ -
+ 5647
+ 8480
+ 51
+ 60
+
+ -
+ 5674
+ 8510
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 2992851d-ac21-492c-a421-9631a8c637aa
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5728
+ 8480
+ 57
+ 20
+
+ -
+ 5758
+ 8490
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 29fb13dc-aaeb-4e1b-9117-1a43f75d8fd1
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 5728
+ 8500
+ 57
+ 20
+
+ -
+ 5758
+ 8510
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - c8e729e4-7719-4655-b113-50959647a762
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 5728
+ 8520
+ 57
+ 20
+
+ -
+ 5758
+ 8530
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - ede39cbf-d394-4ec0-be86-dba7660963d6
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 5664
+ 8351
+ 104
+ 44
+
+ -
+ 5722
+ 8373
+
+
+
+
+
+ - Base domain
+ - afe4ac56-9c3e-49ba-83df-203b801113dd
+ - Domain
+ - Domain
+ - false
+ - c8e729e4-7719-4655-b113-50959647a762
+ - 1
+
+
+
+
+ -
+ 5666
+ 8353
+ 41
+ 40
+
+ -
+ 5688
+ 8373
+
+
+
+
+
+
+
+ - Start of domain
+ - 35b6df5d-dda7-4663-8fe2-1331c49034b9
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5737
+ 8353
+ 29
+ 20
+
+ -
+ 5753
+ 8363
+
+
+
+
+
+
+
+ - End of domain
+ - f12f0c15-aec4-44e1-a2fc-6f1e9664acee
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5737
+ 8373
+ 29
+ 20
+
+ -
+ 5753
+ 8383
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - eb20b084-5baa-48fd-b97d-c5e06ffb514d
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 5664
+ 8413
+ 104
+ 44
+
+ -
+ 5722
+ 8435
+
+
+
+
+
+ - Base domain
+ - 9e2cae52-f1f7-46ce-9dec-8092479ddb7a
+ - Domain
+ - Domain
+ - false
+ - 29fb13dc-aaeb-4e1b-9117-1a43f75d8fd1
+ - 1
+
+
+
+
+ -
+ 5666
+ 8415
+ 41
+ 40
+
+ -
+ 5688
+ 8435
+
+
+
+
+
+
+
+ - Start of domain
+ - 14781933-0399-4359-a8ee-7ac04c1751c2
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5737
+ 8415
+ 29
+ 20
+
+ -
+ 5753
+ 8425
+
+
+
+
+
+
+
+ - End of domain
+ - e1f473e7-b042-4685-a493-5d14c0a082cd
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5737
+ 8435
+ 29
+ 20
+
+ -
+ 5753
+ 8445
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 74a42586-82b3-455e-af49-d293c8c2bd8e
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 5639
+ 8228
+ 154
+ 104
+
+ -
+ 5723
+ 8280
+
+
+
+
+
+ - Base geometry
+ - a4b189cf-b3fc-4763-b74e-09e820e97398
+ - Geometry
+ - Geometry
+ - true
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+
+
+
+
+ -
+ 5641
+ 8230
+ 67
+ 20
+
+ -
+ 5684
+ 8240
+
+
+
+
+
+
+
+ - Base plane
+ - 5df548c3-ab82-4ae8-ae12-8318c3702ac7
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5641
+ 8250
+ 67
+ 20
+
+ -
+ 5684
+ 8260
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 2bfacf10-5841-44e3-91f6-6b8db0484731
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - e1f473e7-b042-4685-a493-5d14c0a082cd
+ - 1
+
+
+
+
+ -
+ 5641
+ 8270
+ 67
+ 20
+
+ -
+ 5684
+ 8280
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 7594202e-f347-41c4-8ed8-fe125dba0755
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - f12f0c15-aec4-44e1-a2fc-6f1e9664acee
+ - 1
+
+
+
+
+ -
+ 5641
+ 8290
+ 67
+ 20
+
+ -
+ 5684
+ 8300
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 1fed9d52-b39b-47f4-805a-c3545dc5589d
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 5641
+ 8310
+ 67
+ 20
+
+ -
+ 5684
+ 8320
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - d52560ad-66dd-480c-ac41-e591b6f7c8eb
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5738
+ 8230
+ 53
+ 50
+
+ -
+ 5766
+ 8255
+
+
+
+
+
+
+
+ - Transformation data
+ - c4254bf7-3ef4-4823-8705-a3cc4fdc69aa
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5738
+ 8280
+ 53
+ 50
+
+ -
+ 5766
+ 8305
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d45392a9-2c67-49bb-9632-d7c25c34f964
+ - 6fca89f9-08e8-4e31-ad0d-7c4a72820329
+ - a3dcf827-f89c-428c-a5fb-9587948ef6af
+ - ede39cbf-d394-4ec0-be86-dba7660963d6
+ - eb20b084-5baa-48fd-b97d-c5e06ffb514d
+ - 74a42586-82b3-455e-af49-d293c8c2bd8e
+ - e7fadd8c-4300-4367-8fd8-f0f55afdfb22
+ - d7fc7b4a-a6f9-46d9-9e34-5b3e2c812ef7
+ - fed621b3-d6ab-4119-a526-7e2d99a3d87d
+ - 71756bb0-5606-4694-9818-f4875b6cc3cb
+ - 10
+ - 7c45d051-b843-43fe-b1da-3ce009a295da
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e7fadd8c-4300-4367-8fd8-f0f55afdfb22
+ - Curve
+ - Curve
+ - false
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+
+
+
+
+ -
+ 5691
+ 8733
+ 50
+ 24
+
+ -
+ 5716.885
+ 8745.13
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d7fc7b4a-a6f9-46d9-9e34-5b3e2c812ef7
+ - Curve
+ - Curve
+ - false
+ - d52560ad-66dd-480c-ac41-e591b6f7c8eb
+ - 1
+
+
+
+
+ -
+ 5691
+ 8205
+ 50
+ 24
+
+ -
+ 5716.127
+ 8217
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - fed621b3-d6ab-4119-a526-7e2d99a3d87d
+ - Move
+ - Move
+
+
+
+
+ -
+ 5647
+ 8086
+ 138
+ 44
+
+ -
+ 5715
+ 8108
+
+
+
+
+
+ - Base geometry
+ - a55f87df-8ff9-4ca3-adf5-0016bae461c7
+ - Geometry
+ - Geometry
+ - true
+ - d7fc7b4a-a6f9-46d9-9e34-5b3e2c812ef7
+ - 1
+
+
+
+
+ -
+ 5649
+ 8088
+ 51
+ 20
+
+ -
+ 5676
+ 8098
+
+
+
+
+
+
+
+ - Translation vector
+ - 86fda69d-1d19-425e-bb6d-186a9bdda216
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 5649
+ 8108
+ 51
+ 20
+
+ -
+ 5676
+ 8118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - b048b7fa-6e52-4408-acc0-c1da61efe9cd
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5730
+ 8088
+ 53
+ 20
+
+ -
+ 5758
+ 8098
+
+
+
+
+
+
+
+ - Transformation data
+ - 0cfcd4c0-5d33-4cd7-89a7-878d09f4043f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5730
+ 8108
+ 53
+ 20
+
+ -
+ 5758
+ 8118
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 71756bb0-5606-4694-9818-f4875b6cc3cb
+ - Curve
+ - Curve
+ - false
+ - b048b7fa-6e52-4408-acc0-c1da61efe9cd
+ - 1
+
+
+
+
+ -
+ 5691
+ 8032
+ 50
+ 24
+
+ -
+ 5716
+ 8044
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - de550c82-0bee-4b44-952e-cde7b76dd275
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 9500
+ 7377
+ 97
+ 144
+
+ -
+ 9546
+ 7449
+
+
+
+
+
+ - 7
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 85a74a8f-421b-4483-a544-08a81ac15829
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+
+
+
+
+ -
+ 9502
+ 7379
+ 29
+ 20
+
+ -
+ 9518
+ 7389
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 0631177f-e7d0-49b4-8b85-d7867032c1b8
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - a1876440-004e-43ee-9d8c-ba5831da3460
+ - 1
+
+
+
+
+ -
+ 9502
+ 7399
+ 29
+ 20
+
+ -
+ 9518
+ 7409
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 3ba0d2aa-a377-473b-ae18-b3b2958d2ae1
+ - false
+ - Branch {2;x}
+ - {2;x}
+ - true
+ - c85b89ea-2c35-443e-b453-7c323d985667
+ - 1
+
+
+
+
+ -
+ 9502
+ 7419
+ 29
+ 20
+
+ -
+ 9518
+ 7429
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 77fbe3f6-88ca-4416-b66c-fc90c9902e61
+ - false
+ - Branch {3;x}
+ - {3;x}
+ - true
+ - 71756bb0-5606-4694-9818-f4875b6cc3cb
+ - 1
+
+
+
+
+ -
+ 9502
+ 7439
+ 29
+ 20
+
+ -
+ 9518
+ 7449
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 34c5482e-3ec7-4b30-a711-e3bfe970b21b
+ - false
+ - Branch {4;x}
+ - {4;x}
+ - true
+ - 08fa1a46-6440-41a4-bbbf-53c0c4624266
+ - 1
+
+
+
+
+ -
+ 9502
+ 7459
+ 29
+ 20
+
+ -
+ 9518
+ 7469
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 26809eb4-8f22-4492-b1e6-5eb158df93ff
+ - false
+ - Branch {5;x}
+ - {5;x}
+ - true
+ - 2c62e475-50df-4188-ac09-8024f05be84e
+ - 1
+
+
+
+
+ -
+ 9502
+ 7479
+ 29
+ 20
+
+ -
+ 9518
+ 7489
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 0078b338-4766-476a-837b-170551336aa9
+ - false
+ - Branch {6;x}
+ - {6;x}
+ - true
+ - 0
+
+
+
+
+ -
+ 9502
+ 7499
+ 29
+ 20
+
+ -
+ 9518
+ 7509
+
+
+
+
+
+
+
+ - Entwined result
+ - a287f2ea-0502-4e9a-8e7e-91409f894305
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9561
+ 7379
+ 34
+ 140
+
+ -
+ 9579.5
+ 7449
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e0426985-a777-472e-bc53-a3f4b4019958
+ - bbe94d9c-e4c6-4037-9976-a3654d010398
+ - 360c6c93-8a1a-4c1a-8ca0-14558d3886b8
+ - 3dd84939-fef0-4fe5-895d-e5d0f6b5f634
+ - 9158377e-e8df-41ed-a00e-2e20a740dfc0
+ - bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa
+ - 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa
+ - c8fc03bc-cd7b-483b-aca4-96406747e2db
+ - d67f22e1-4e07-4fc3-92d5-ef495cb60a19
+ - da24dcdf-c792-4539-a64b-bff7739e1004
+ - 406435ef-9b58-4f5e-ab07-17abf4496a82
+ - 90b98f52-1a1b-4238-8870-f354b417fc0f
+ - 87af4e66-6c0a-4b25-98cd-3ee39a1875f7
+ - da9b532f-9e04-4530-8eb5-98708e2940b2
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - 1f672548-43bc-48f6-b7b2-4c9775c63ba2
+ - 0cd6c03a-0f18-46dc-88df-de683058512a
+ - eb948ae9-6d8c-403c-97d5-61b21404b30f
+ - 7dd45ce5-fba5-4d28-8de3-bb6eb762e731
+ - 3874e512-924d-4fee-87fe-188bc3264016
+ - 875f743f-d94f-4dea-a9db-2a06e2d3b7c9
+ - ef0c7b3c-50df-483d-9cf5-b1fcdd19543a
+ - c186c036-4618-4834-bcf8-2c05e94b3f7a
+ - 17d896da-81f8-4aaa-8350-4102e0b4bb21
+ - 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d
+ - 3caea3e6-851d-40e1-a27d-9f18fc72290c
+ - f3ed8657-e13f-41b8-abe8-07ddbc156a68
+ - 3314e4e8-4ed7-4d75-993e-8d377ac71aa6
+ - 088b8295-7e61-45f6-bfc3-6300031c81d8
+ - eaa08f1a-c88d-4744-8c3d-badf7109383e
+ - 6508cd50-7fa0-4a0a-8f33-6d63a6f826f2
+ - 392db8a2-77d3-4ae9-9004-c5af94a603b3
+ - b6535c3a-913d-4b28-9211-8046f187f684
+ - fc51b201-a5a7-4ccc-b69d-90228e8fbac7
+ - 05aeb047-062c-4e1d-902c-f881bed2c33c
+ - 8b92f141-cdba-456a-b092-74a1fa769a3f
+ - 519c18b1-61ea-45fa-8f46-0c0cdea35bbb
+ - bd79bef6-8525-4a7f-9c89-fe7bb7354d65
+ - 9b404974-02c6-41f0-8def-ed8d7b180a7e
+ - 3706a4c4-bd57-42dc-b5d7-ddc151f907e5
+ - 8fb91838-0d66-409c-a635-3d531bf4fd91
+ - 7ec258a8-9a08-4c79-96b6-7275894f1a5f
+ - 03f1ad9c-8968-40c4-85a5-948230bca1c0
+ - efd39231-4327-4053-9697-9cf17d83d334
+ - 62160ebc-246f-486e-8eed-514a9af54294
+ - 705017b6-d3a3-4d54-a7f8-0cd3ad651424
+ - 98836f2d-b183-4e94-8fc8-52869d681103
+ - e2349130-aa0f-401d-b935-da39728890df
+ - 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5
+ - 4393b257-c536-4aef-874d-6bab76d9ce85
+ - 52941396-e63d-4fb3-8d85-39801e12ac6b
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 31391e3a-7904-4f5c-b1db-52b3e836ad2a
+ - 3df1b866-1b15-4218-a165-b765587088cb
+ - 64067a04-3ea5-46dd-b49a-2b2563f5e79c
+ - 0cfb72b3-43f4-40de-a786-66eaa4094193
+ - f14181d1-ed30-464f-8ae1-ed2dc450e9b4
+ - 376e0bb0-4a5d-4c78-93c9-01676bc7d38d
+ - 5a519f7d-386e-4d99-8458-36c93149b93b
+ - b7c3598c-bd9d-46e5-be6c-1208ea7a229a
+ - 4b838834-98d5-46d8-ac65-3a689ff35100
+ - de17b964-bc3d-4ec6-8ade-50a4a3428b36
+ - fb85528b-23a4-4373-a926-da03e1a3ae73
+ - d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8
+ - a4623c86-3cfa-4f1d-93e5-717436d5670e
+ - d0279667-2f4d-431e-83b5-14073b8b768f
+ - ddefeb6c-3530-47ce-8cff-6ec098f56b3e
+ - e15f93e5-d2a5-4974-b773-d890edc53168
+ - a87095d8-ee9c-4a93-a96a-3226697bb5b3
+ - cfa44e8d-871d-41ab-aee6-3ae62234dae3
+ - 7e94f1b4-ec36-40dd-8e75-57956c016ac7
+ - 49fab78e-1866-45ec-a4d2-1cc8e991dd29
+ - e8362145-cfe3-4e30-86dd-9927043c7dc3
+ - 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9
+ - 12778daf-90ca-4b93-91c2-6db757685f91
+ - cb0da986-aa09-4e79-8899-9f8593f49c79
+ - 1a233394-d800-45e3-bc4e-3e115b150a13
+ - d46a743d-5164-4b58-95b3-c812010e916d
+ - bc453bfa-c615-43b6-806b-a25b6d136fde
+ - 40d1fb3a-4c8a-4cd8-897e-f93423e452e4
+ - 6ba0ca13-3163-433b-bdcf-cbb6eb2e32a1
+ - 2c62e475-50df-4188-ac09-8024f05be84e
+ - 87a9a300-1939-4978-bea9-829655d2c198
+ - 83
+ - ac67210a-1fc9-4b2e-a45b-0d3b39abf1b0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bbe94d9c-e4c6-4037-9976-a3654d010398
+ - 360c6c93-8a1a-4c1a-8ca0-14558d3886b8
+ - 3dd84939-fef0-4fe5-895d-e5d0f6b5f634
+ - 9158377e-e8df-41ed-a00e-2e20a740dfc0
+ - bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa
+ - 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa
+ - c8fc03bc-cd7b-483b-aca4-96406747e2db
+ - d67f22e1-4e07-4fc3-92d5-ef495cb60a19
+ - da24dcdf-c792-4539-a64b-bff7739e1004
+ - 406435ef-9b58-4f5e-ab07-17abf4496a82
+ - 90b98f52-1a1b-4238-8870-f354b417fc0f
+ - 87af4e66-6c0a-4b25-98cd-3ee39a1875f7
+ - da9b532f-9e04-4530-8eb5-98708e2940b2
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - 1f672548-43bc-48f6-b7b2-4c9775c63ba2
+ - 0cd6c03a-0f18-46dc-88df-de683058512a
+ - eb948ae9-6d8c-403c-97d5-61b21404b30f
+ - 7dd45ce5-fba5-4d28-8de3-bb6eb762e731
+ - 3874e512-924d-4fee-87fe-188bc3264016
+ - 875f743f-d94f-4dea-a9db-2a06e2d3b7c9
+ - ef0c7b3c-50df-483d-9cf5-b1fcdd19543a
+ - c186c036-4618-4834-bcf8-2c05e94b3f7a
+ - 17d896da-81f8-4aaa-8350-4102e0b4bb21
+ - 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d
+ - 3caea3e6-851d-40e1-a27d-9f18fc72290c
+ - f3ed8657-e13f-41b8-abe8-07ddbc156a68
+ - 3314e4e8-4ed7-4d75-993e-8d377ac71aa6
+ - 088b8295-7e61-45f6-bfc3-6300031c81d8
+ - eaa08f1a-c88d-4744-8c3d-badf7109383e
+ - 6508cd50-7fa0-4a0a-8f33-6d63a6f826f2
+ - 392db8a2-77d3-4ae9-9004-c5af94a603b3
+ - b6535c3a-913d-4b28-9211-8046f187f684
+ - fc51b201-a5a7-4ccc-b69d-90228e8fbac7
+ - 05aeb047-062c-4e1d-902c-f881bed2c33c
+ - 8b92f141-cdba-456a-b092-74a1fa769a3f
+ - 519c18b1-61ea-45fa-8f46-0c0cdea35bbb
+ - bd79bef6-8525-4a7f-9c89-fe7bb7354d65
+ - 9b404974-02c6-41f0-8def-ed8d7b180a7e
+ - 3706a4c4-bd57-42dc-b5d7-ddc151f907e5
+ - 8fb91838-0d66-409c-a635-3d531bf4fd91
+ - 7ec258a8-9a08-4c79-96b6-7275894f1a5f
+ - 03f1ad9c-8968-40c4-85a5-948230bca1c0
+ - efd39231-4327-4053-9697-9cf17d83d334
+ - 62160ebc-246f-486e-8eed-514a9af54294
+ - 705017b6-d3a3-4d54-a7f8-0cd3ad651424
+ - 98836f2d-b183-4e94-8fc8-52869d681103
+ - e2349130-aa0f-401d-b935-da39728890df
+ - 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5
+ - 4393b257-c536-4aef-874d-6bab76d9ce85
+ - 52941396-e63d-4fb3-8d85-39801e12ac6b
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 31391e3a-7904-4f5c-b1db-52b3e836ad2a
+ - 3df1b866-1b15-4218-a165-b765587088cb
+ - 64067a04-3ea5-46dd-b49a-2b2563f5e79c
+ - 0cfb72b3-43f4-40de-a786-66eaa4094193
+ - f14181d1-ed30-464f-8ae1-ed2dc450e9b4
+ - 376e0bb0-4a5d-4c78-93c9-01676bc7d38d
+ - 5a519f7d-386e-4d99-8458-36c93149b93b
+ - b7c3598c-bd9d-46e5-be6c-1208ea7a229a
+ - 4b838834-98d5-46d8-ac65-3a689ff35100
+ - de17b964-bc3d-4ec6-8ade-50a4a3428b36
+ - fb85528b-23a4-4373-a926-da03e1a3ae73
+ - d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8
+ - a4623c86-3cfa-4f1d-93e5-717436d5670e
+ - d0279667-2f4d-431e-83b5-14073b8b768f
+ - ddefeb6c-3530-47ce-8cff-6ec098f56b3e
+ - e15f93e5-d2a5-4974-b773-d890edc53168
+ - a87095d8-ee9c-4a93-a96a-3226697bb5b3
+ - cfa44e8d-871d-41ab-aee6-3ae62234dae3
+ - 7e94f1b4-ec36-40dd-8e75-57956c016ac7
+ - 49fab78e-1866-45ec-a4d2-1cc8e991dd29
+ - e8362145-cfe3-4e30-86dd-9927043c7dc3
+ - 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9
+ - 12778daf-90ca-4b93-91c2-6db757685f91
+ - cb0da986-aa09-4e79-8899-9f8593f49c79
+ - 1a233394-d800-45e3-bc4e-3e115b150a13
+ - d46a743d-5164-4b58-95b3-c812010e916d
+ - bc453bfa-c615-43b6-806b-a25b6d136fde
+ - 40d1fb3a-4c8a-4cd8-897e-f93423e452e4
+ - a4369984-93e4-477a-9ffe-885dcfa33ab8
+ - 80
+ - e0426985-a777-472e-bc53-a3f4b4019958
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d46a743d-5164-4b58-95b3-c812010e916d
+ - 1
+ - bbe94d9c-e4c6-4037-9976-a3654d010398
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3dd84939-fef0-4fe5-895d-e5d0f6b5f634
+ - 1
+ - 360c6c93-8a1a-4c1a-8ca0-14558d3886b8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9158377e-e8df-41ed-a00e-2e20a740dfc0
+ - 1
+ - 3dd84939-fef0-4fe5-895d-e5d0f6b5f634
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa
+ - 1
+ - 9158377e-e8df-41ed-a00e-2e20a740dfc0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa
+ - 1
+ - bf4d4cd3-02fd-49ed-a2e2-2d08ddaa9baa
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c8fc03bc-cd7b-483b-aca4-96406747e2db
+ - 1
+ - 9fd3ac18-ac69-40cc-8d33-e6ac98aa72aa
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - da24dcdf-c792-4539-a64b-bff7739e1004
+ - 1
+ - c8fc03bc-cd7b-483b-aca4-96406747e2db
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d67f22e1-4e07-4fc3-92d5-ef495cb60a19
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9402
+ 11397
+ 50
+ 24
+
+ -
+ 9427.876
+ 11409.63
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d67f22e1-4e07-4fc3-92d5-ef495cb60a19
+ - 1
+ - da24dcdf-c792-4539-a64b-bff7739e1004
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eaa08f1a-c88d-4744-8c3d-badf7109383e
+ - 1
+ - 406435ef-9b58-4f5e-ab07-17abf4496a82
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 87af4e66-6c0a-4b25-98cd-3ee39a1875f7
+ - da9b532f-9e04-4530-8eb5-98708e2940b2
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - 1f672548-43bc-48f6-b7b2-4c9775c63ba2
+ - 0cd6c03a-0f18-46dc-88df-de683058512a
+ - eb948ae9-6d8c-403c-97d5-61b21404b30f
+ - 7dd45ce5-fba5-4d28-8de3-bb6eb762e731
+ - 3874e512-924d-4fee-87fe-188bc3264016
+ - ef0c7b3c-50df-483d-9cf5-b1fcdd19543a
+ - 875f743f-d94f-4dea-a9db-2a06e2d3b7c9
+ - 406435ef-9b58-4f5e-ab07-17abf4496a82
+ - da24dcdf-c792-4539-a64b-bff7739e1004
+ - ddefeb6c-3530-47ce-8cff-6ec098f56b3e
+ - e15f93e5-d2a5-4974-b773-d890edc53168
+ - a87095d8-ee9c-4a93-a96a-3226697bb5b3
+ - cfa44e8d-871d-41ab-aee6-3ae62234dae3
+ - 7e94f1b4-ec36-40dd-8e75-57956c016ac7
+ - 49fab78e-1866-45ec-a4d2-1cc8e991dd29
+ - d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8
+ - a4623c86-3cfa-4f1d-93e5-717436d5670e
+ - 20
+ - 90b98f52-1a1b-4238-8870-f354b417fc0f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 87af4e66-6c0a-4b25-98cd-3ee39a1875f7
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 9372
+ 12352
+ 104
+ 64
+
+ -
+ 9431
+ 12384
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 4522e823-a841-4906-9319-ecf36f545414
+ - Data
+ - Data
+ - false
+ - e2c42fe9-336e-438e-956d-699761ff3513
+ - 1
+
+
+
+
+ -
+ 9374
+ 12354
+ 42
+ 20
+
+ -
+ 9396.5
+ 12364
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - a43dd440-e1bd-4d4d-b53f-e864ebd6a4ff
+ - Number
+ - Number
+ - false
+ - d0279667-2f4d-431e-83b5-14073b8b768f
+ - 1
+
+
+
+
+ -
+ 9374
+ 12374
+ 42
+ 20
+
+ -
+ 9396.5
+ 12384
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - ab570a36-6ba8-4171-845b-55c298e33b64
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 9374
+ 12394
+ 42
+ 20
+
+ -
+ 9396.5
+ 12404
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 23e0ec39-8c07-4095-b306-988df4b2b689
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 9446
+ 12354
+ 28
+ 60
+
+ -
+ 9461.5
+ 12384
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - da9b532f-9e04-4530-8eb5-98708e2940b2
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 9366
+ 10754
+ 116
+ 44
+
+ -
+ 9427
+ 10776
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 1358f131-aa90-4201-b901-01a1bb231e7f
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 23e0ec39-8c07-4095-b306-988df4b2b689
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 9368
+ 10756
+ 44
+ 20
+
+ -
+ 9391.5
+ 10766
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - af0359ef-ddb8-487c-a7ba-81197387378c
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - c36571fc-6acb-4d60-b373-bd2cc71c6c16
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 9368
+ 10776
+ 44
+ 20
+
+ -
+ 9391.5
+ 10786
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 90f9d674-c6b8-438f-82aa-4ddeae7a6a6b
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 10756
+ 38
+ 20
+
+ -
+ 9462.5
+ 10766
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 511f630a-f12b-41a2-bb58-9bfcc923b89b
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 10776
+ 38
+ 20
+
+ -
+ 9462.5
+ 10786
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - Point
+ - Point
+ - false
+ - 511f630a-f12b-41a2-bb58-9bfcc923b89b
+ - 1
+
+
+
+
+ -
+ 9401
+ 10374
+ 50
+ 24
+
+ -
+ 9426.736
+ 10386.11
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 1f672548-43bc-48f6-b7b2-4c9775c63ba2
+ - Series
+ - Series
+
+
+
+
+ -
+ 9377
+ 11818
+ 101
+ 64
+
+ -
+ 9427
+ 11850
+
+
+
+
+
+ - First number in the series
+ - 794028b5-8254-448c-84c6-58c24da3fe9b
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9379
+ 11820
+ 33
+ 20
+
+ -
+ 9397
+ 11830
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 5644b944-2801-4d42-ab18-41ec14d10039
+ - Step
+ - Step
+ - false
+ - 1a233394-d800-45e3-bc4e-3e115b150a13
+ - 1
+
+
+
+
+ -
+ 9379
+ 11840
+ 33
+ 20
+
+ -
+ 9397
+ 11850
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 3386f05c-fb90-438b-a3ad-52fc8b3cdd70
+ - Count
+ - Count
+ - false
+ - d0279667-2f4d-431e-83b5-14073b8b768f
+ - 1
+
+
+
+
+ -
+ 9379
+ 11860
+ 33
+ 20
+
+ -
+ 9397
+ 11870
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 11820
+ 34
+ 60
+
+ -
+ 9460.5
+ 11850
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 0cd6c03a-0f18-46dc-88df-de683058512a
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9352
+ 12532
+ 150
+ 20
+
+ -
+ 9352.557
+ 12532.98
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - eb948ae9-6d8c-403c-97d5-61b21404b30f
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 9364
+ 12020
+ 120
+ 28
+
+ -
+ 9425
+ 12034
+
+
+
+
+
+ - Angle in degrees
+ - 22b729d0-2e16-4027-8ad9-186a8485fa33
+ - Degrees
+ - Degrees
+ - false
+ - fc51b201-a5a7-4ccc-b69d-90228e8fbac7
+ - 1
+
+
+
+
+ -
+ 9366
+ 12022
+ 44
+ 24
+
+ -
+ 9389.5
+ 12034
+
+
+
+
+
+
+
+ - Angle in radians
+ - 09c7b0c3-e11c-4173-acc1-d8323a4a5346
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 9440
+ 12022
+ 42
+ 24
+
+ -
+ 9462.5
+ 12034
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 7dd45ce5-fba5-4d28-8de3-bb6eb762e731
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00137331209
+
+
+
+
+ -
+ 9302
+ 12324
+ 251
+ 20
+
+ -
+ 9302.268
+ 12324.52
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 3874e512-924d-4fee-87fe-188bc3264016
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 9374
+ 12434
+ 100
+ 28
+
+ -
+ 9423
+ 12448
+
+
+
+
+
+ - Input value
+ - b1acf54c-efc7-42d9-abd1-0eb6ed40817e
+ - Value
+ - Value
+ - false
+ - d0279667-2f4d-431e-83b5-14073b8b768f
+ - 1
+
+
+
+
+ -
+ 9376
+ 12436
+ 32
+ 24
+
+ -
+ 9393.5
+ 12448
+
+
+
+
+
+
+
+ - Output value
+ - e2c42fe9-336e-438e-956d-699761ff3513
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9438
+ 12436
+ 34
+ 24
+
+ -
+ 9456.5
+ 12448
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 875f743f-d94f-4dea-a9db-2a06e2d3b7c9
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 9352
+ 10266
+ 144
+ 84
+
+ -
+ 9438
+ 10308
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 6ef86177-ee18-4802-8e85-efe8aa7f7ce4
+ - Vertices
+ - Vertices
+ - false
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - 1
+
+
+
+
+ -
+ 9354
+ 10268
+ 69
+ 20
+
+ -
+ 9390
+ 10278
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - f1ffee6f-9abe-4e64-a71b-fb07055e3c06
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 10288
+ 69
+ 20
+
+ -
+ 9390
+ 10298
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - b4b5fb0d-6c00-46d0-b897-d1a50fd5f3f1
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 10308
+ 69
+ 20
+
+ -
+ 9390
+ 10318
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c782a1cc-188c-4b9c-9eea-5c1ba8258b3c
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 10328
+ 69
+ 20
+
+ -
+ 9390
+ 10338
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 5e4df801-67a9-4c5d-99b6-b74cf5953f5e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9453
+ 10268
+ 41
+ 26
+
+ -
+ 9475
+ 10281.33
+
+
+
+
+
+
+
+ - Curve length
+ - c31fd0b5-f382-44ee-8f4e-dfa40ccb7258
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9453
+ 10294
+ 41
+ 27
+
+ -
+ 9475
+ 10308
+
+
+
+
+
+
+
+ - Curve domain
+ - d5049e1b-36e2-4261-b48b-102b721420d8
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9453
+ 10321
+ 41
+ 27
+
+ -
+ 9475
+ 10334.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 87af4e66-6c0a-4b25-98cd-3ee39a1875f7
+ - da9b532f-9e04-4530-8eb5-98708e2940b2
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - 1f672548-43bc-48f6-b7b2-4c9775c63ba2
+ - 0cd6c03a-0f18-46dc-88df-de683058512a
+ - eb948ae9-6d8c-403c-97d5-61b21404b30f
+ - 7dd45ce5-fba5-4d28-8de3-bb6eb762e731
+ - 3874e512-924d-4fee-87fe-188bc3264016
+ - 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9
+ - fc51b201-a5a7-4ccc-b69d-90228e8fbac7
+ - fb85528b-23a4-4373-a926-da03e1a3ae73
+ - e8362145-cfe3-4e30-86dd-9927043c7dc3
+ - 12778daf-90ca-4b93-91c2-6db757685f91
+ - 13
+ - ef0c7b3c-50df-483d-9cf5-b1fcdd19543a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - c186c036-4618-4834-bcf8-2c05e94b3f7a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9352
+ 10098
+ 144
+ 64
+
+ -
+ 9426
+ 10130
+
+
+
+
+
+ - Curve to evaluate
+ - 1efbcab2-c978-49e9-9a30-0a0b9039955f
+ - Curve
+ - Curve
+ - false
+ - 5e4df801-67a9-4c5d-99b6-b74cf5953f5e
+ - 1
+
+
+
+
+ -
+ 9354
+ 10100
+ 57
+ 20
+
+ -
+ 9384
+ 10110
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - defcebb8-e8ed-440c-90ed-68c09b4c31bf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 10120
+ 57
+ 20
+
+ -
+ 9384
+ 10130
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4ef3845f-77d8-4a9d-a24d-b252840263c6
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 10140
+ 57
+ 20
+
+ -
+ 9384
+ 10150
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8529f841-a39b-48ad-bd57-733103802a8b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 10100
+ 53
+ 20
+
+ -
+ 9469
+ 10110
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 61c4e0c1-c8a3-49a9-867c-9520c384cf19
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 10120
+ 53
+ 20
+
+ -
+ 9469
+ 10130
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 32ff5255-a166-42ba-a9fa-0404f3806bb6
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 10140
+ 53
+ 20
+
+ -
+ 9469
+ 10150
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 17d896da-81f8-4aaa-8350-4102e0b4bb21
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9355
+ 10036
+ 138
+ 44
+
+ -
+ 9423
+ 10058
+
+
+
+
+
+ - Base geometry
+ - 2ea6146a-6969-4442-b2b4-8ca4ac65de99
+ - Geometry
+ - Geometry
+ - true
+ - 5e4df801-67a9-4c5d-99b6-b74cf5953f5e
+ - 1
+
+
+
+
+ -
+ 9357
+ 10038
+ 51
+ 20
+
+ -
+ 9384
+ 10048
+
+
+
+
+
+
+
+ - Mirror plane
+ - c4f39446-27a0-45c0-99f6-481152c6ba04
+ - Plane
+ - Plane
+ - false
+ - 0a7f8983-e284-4df5-9b85-b74f0fc5e2e9
+ - 1
+
+
+
+
+ -
+ 9357
+ 10058
+ 51
+ 20
+
+ -
+ 9384
+ 10068
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 976061ec-463a-4b63-a574-be14d8892f85
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9438
+ 10038
+ 53
+ 20
+
+ -
+ 9466
+ 10048
+
+
+
+
+
+
+
+ - Transformation data
+ - 18b7406f-d419-4764-b978-b2384903ea8b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9438
+ 10058
+ 53
+ 20
+
+ -
+ 9466
+ 10068
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 9371
+ 10182
+ 106
+ 64
+
+ -
+ 9435
+ 10214
+
+
+
+
+
+ - Line start point
+ - 8cdc7a17-e85e-437a-857c-ec992f6d7ece
+ - Start
+ - Start
+ - false
+ - 8529f841-a39b-48ad-bd57-733103802a8b
+ - 1
+
+
+
+
+ -
+ 9373
+ 10184
+ 47
+ 20
+
+ -
+ 9398
+ 10194
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 712e79cb-a5fb-4400-8b6d-ff519a5100cd
+ - Direction
+ - Direction
+ - false
+ - 61c4e0c1-c8a3-49a9-867c-9520c384cf19
+ - 1
+
+
+
+
+ -
+ 9373
+ 10204
+ 47
+ 20
+
+ -
+ 9398
+ 10214
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 4c3e431b-1f25-4e76-adbf-c45846e9f163
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9373
+ 10224
+ 47
+ 20
+
+ -
+ 9398
+ 10234
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 0a7f8983-e284-4df5-9b85-b74f0fc5e2e9
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 9450
+ 10184
+ 25
+ 60
+
+ -
+ 9464
+ 10214
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 3caea3e6-851d-40e1-a27d-9f18fc72290c
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9365
+ 9974
+ 118
+ 44
+
+ -
+ 9428
+ 9996
+
+
+
+
+
+ - 1
+ - Curves to join
+ - eb48120d-4378-4a62-81f9-1bd20b56c335
+ - Curves
+ - Curves
+ - false
+ - 5e4df801-67a9-4c5d-99b6-b74cf5953f5e
+ - 976061ec-463a-4b63-a574-be14d8892f85
+ - 2
+
+
+
+
+ -
+ 9367
+ 9976
+ 46
+ 20
+
+ -
+ 9391.5
+ 9986
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 3dd97a44-6283-477e-8df3-ee323984b637
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9367
+ 9996
+ 46
+ 20
+
+ -
+ 9391.5
+ 10006
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - d535ac5d-daad-442a-bcdd-d4e9e82e9cf2
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9443
+ 9976
+ 38
+ 40
+
+ -
+ 9463.5
+ 9996
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f3ed8657-e13f-41b8-abe8-07ddbc156a68
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9352
+ 9890
+ 144
+ 64
+
+ -
+ 9426
+ 9922
+
+
+
+
+
+ - Curve to evaluate
+ - 2fbd3dfd-acfd-4c01-a176-961ac1758a5b
+ - Curve
+ - Curve
+ - false
+ - d535ac5d-daad-442a-bcdd-d4e9e82e9cf2
+ - 1
+
+
+
+
+ -
+ 9354
+ 9892
+ 57
+ 20
+
+ -
+ 9384
+ 9902
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 1d0ecd68-5afd-45b3-ae4a-5077bf54a67b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 9912
+ 57
+ 20
+
+ -
+ 9384
+ 9922
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 778775c4-2dcd-4d6a-9c0b-004dc0cdb432
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 9932
+ 57
+ 20
+
+ -
+ 9384
+ 9942
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 2f438f98-2122-484a-bc35-7d194cd8b98e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 9892
+ 53
+ 20
+
+ -
+ 9469
+ 9902
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 75a9b08b-7f00-4818-966c-a36601052a76
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 9912
+ 53
+ 20
+
+ -
+ 9469
+ 9922
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 68f3cc02-f6f4-4795-8ccd-404e018c9569
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 9932
+ 53
+ 20
+
+ -
+ 9469
+ 9942
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 3314e4e8-4ed7-4d75-993e-8d377ac71aa6
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 9355
+ 9807
+ 138
+ 64
+
+ -
+ 9423
+ 9839
+
+
+
+
+
+ - Base geometry
+ - 47ac88d6-cc73-4e67-a141-4df53abc254d
+ - Geometry
+ - Geometry
+ - true
+ - d535ac5d-daad-442a-bcdd-d4e9e82e9cf2
+ - 1
+
+
+
+
+ -
+ 9357
+ 9809
+ 51
+ 20
+
+ -
+ 9384
+ 9819
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - f4bfabb3-773b-45aa-a60b-170cb0a2fbb9
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 9357
+ 9829
+ 51
+ 20
+
+ -
+ 9384
+ 9839
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 8b9f508c-a4ca-47d9-b558-a4d940548ead
+ - Plane
+ - Plane
+ - false
+ - 2f438f98-2122-484a-bc35-7d194cd8b98e
+ - 1
+
+
+
+
+ -
+ 9357
+ 9849
+ 51
+ 20
+
+ -
+ 9384
+ 9859
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - cdedb42b-61d8-4c05-b0ee-608ef03a7477
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9438
+ 9809
+ 53
+ 30
+
+ -
+ 9466
+ 9824
+
+
+
+
+
+
+
+ - Transformation data
+ - 0d06190f-d253-47a9-b1df-bdd9f63c065e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9438
+ 9839
+ 53
+ 30
+
+ -
+ 9466
+ 9854
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 088b8295-7e61-45f6-bfc3-6300031c81d8
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9365
+ 9744
+ 118
+ 44
+
+ -
+ 9428
+ 9766
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 13ade5a8-a94f-467c-8a14-5b72899caf5c
+ - Curves
+ - Curves
+ - false
+ - d535ac5d-daad-442a-bcdd-d4e9e82e9cf2
+ - cdedb42b-61d8-4c05-b0ee-608ef03a7477
+ - 2
+
+
+
+
+ -
+ 9367
+ 9746
+ 46
+ 20
+
+ -
+ 9391.5
+ 9756
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 05c5415a-f82f-4c2d-85cd-e1b1fa5e6971
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9367
+ 9766
+ 46
+ 20
+
+ -
+ 9391.5
+ 9776
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - f368b528-5b43-45e2-bb01-3ce653ce9f99
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9443
+ 9746
+ 38
+ 40
+
+ -
+ 9463.5
+ 9766
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 875f743f-d94f-4dea-a9db-2a06e2d3b7c9
+ - c186c036-4618-4834-bcf8-2c05e94b3f7a
+ - 17d896da-81f8-4aaa-8350-4102e0b4bb21
+ - 68cb288b-0a8f-4db5-a3d9-1cb5c0c45d3d
+ - 3caea3e6-851d-40e1-a27d-9f18fc72290c
+ - f3ed8657-e13f-41b8-abe8-07ddbc156a68
+ - 3314e4e8-4ed7-4d75-993e-8d377ac71aa6
+ - 088b8295-7e61-45f6-bfc3-6300031c81d8
+ - 392db8a2-77d3-4ae9-9004-c5af94a603b3
+ - 9
+ - eaa08f1a-c88d-4744-8c3d-badf7109383e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6508cd50-7fa0-4a0a-8f33-6d63a6f826f2
+ - Panel
+
+ - false
+ - 0
+ - efd39231-4327-4053-9697-9cf17d83d334
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9354
+ 11903
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9354.296
+ 11903.28
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 392db8a2-77d3-4ae9-9004-c5af94a603b3
+ - Curve
+ - Curve
+ - false
+ - f368b528-5b43-45e2-bb01-3ce653ce9f99
+ - 1
+
+
+
+
+ -
+ 9402
+ 9704
+ 50
+ 24
+
+ -
+ 9427.876
+ 9716.178
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 392db8a2-77d3-4ae9-9004-c5af94a603b3
+ - 1
+ - b6535c3a-913d-4b28-9211-8046f187f684
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fc51b201-a5a7-4ccc-b69d-90228e8fbac7
+ - Panel
+
+ - false
+ - 0
+ - 54167f79-58a5-49d4-952d-825210755673
+ - 1
+ - 0.001373312092932693349
+
+
+
+
+ -
+ 9207
+ 12077
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9207.857
+ 12077.12
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 05aeb047-062c-4e1d-902c-f881bed2c33c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9352
+ 9618
+ 144
+ 64
+
+ -
+ 9426
+ 9650
+
+
+
+
+
+ - Curve to evaluate
+ - 4e23d158-444f-485f-bba1-636d2b917426
+ - Curve
+ - Curve
+ - false
+ - f368b528-5b43-45e2-bb01-3ce653ce9f99
+ - 1
+
+
+
+
+ -
+ 9354
+ 9620
+ 57
+ 20
+
+ -
+ 9384
+ 9630
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 7ff888fc-9cf7-4f09-85f3-295766af1547
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 9640
+ 57
+ 20
+
+ -
+ 9384
+ 9650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c8f04f7b-233c-41db-ba7b-a7c0f6b7e2b7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 9660
+ 57
+ 20
+
+ -
+ 9384
+ 9670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 0d0e9c20-fe10-4ced-ac9b-eb01438e49f2
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 9620
+ 53
+ 20
+
+ -
+ 9469
+ 9630
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 70a4aabd-7373-4179-9aac-6de8069a3bec
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 9640
+ 53
+ 20
+
+ -
+ 9469
+ 9650
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 012f49b2-35a0-4f9d-8b43-185430e6f17a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 9660
+ 53
+ 20
+
+ -
+ 9469
+ 9670
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8b92f141-cdba-456a-b092-74a1fa769a3f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 9396
+ 194
+ 28
+
+ -
+ 9427
+ 9410
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 87d62ba2-b9bf-4f46-ad96-f9b79d0e36da
+ - Variable O
+ - O
+ - true
+ - 6f8278f9-3ab7-4fa5-a71a-d58dcd403d58
+ - 1
+
+
+
+
+ -
+ 9329
+ 9398
+ 14
+ 24
+
+ -
+ 9337.5
+ 9410
+
+
+
+
+
+
+
+ - Result of expression
+ - bebaa5b7-1cfc-4292-b446-b7f61718c088
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 9398
+ 9
+ 24
+
+ -
+ 9516
+ 9410
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 519c18b1-61ea-45fa-8f46-0c0cdea35bbb
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9358
+ 9530
+ 132
+ 64
+
+ -
+ 9405
+ 9562
+
+
+
+
+
+ - Input point
+ - e4e1986a-4511-4f6e-b7fd-e792bb5b15cb
+ - Point
+ - Point
+ - false
+ - 0d0e9c20-fe10-4ced-ac9b-eb01438e49f2
+ - 1
+
+
+
+
+ -
+ 9360
+ 9532
+ 30
+ 60
+
+ -
+ 9376.5
+ 9562
+
+
+
+
+
+
+
+ - Point {x} component
+ - 6f8278f9-3ab7-4fa5-a71a-d58dcd403d58
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9420
+ 9532
+ 68
+ 20
+
+ -
+ 9455.5
+ 9542
+
+
+
+
+
+
+
+ - Point {y} component
+ - 6febb93f-bf7b-447c-b75c-b40f30d21f8b
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9420
+ 9552
+ 68
+ 20
+
+ -
+ 9455.5
+ 9562
+
+
+
+
+
+
+
+ - Point {z} component
+ - 1d6740d7-b0d9-465e-a464-f7a77cb50ad7
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9420
+ 9572
+ 68
+ 20
+
+ -
+ 9455.5
+ 9582
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bd79bef6-8525-4a7f-9c89-fe7bb7354d65
+ - Panel
+
+ - false
+ - 0
+ - bebaa5b7-1cfc-4292-b446-b7f61718c088
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9346
+ 9369
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9346.646
+ 9369.756
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9b404974-02c6-41f0-8def-ed8d7b180a7e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 9310
+ 194
+ 28
+
+ -
+ 9427
+ 9324
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 39078e96-fb4c-487b-bcf5-c7a852b2aebe
+ - Variable O
+ - O
+ - true
+ - 6febb93f-bf7b-447c-b75c-b40f30d21f8b
+ - 1
+
+
+
+
+ -
+ 9329
+ 9312
+ 14
+ 24
+
+ -
+ 9337.5
+ 9324
+
+
+
+
+
+
+
+ - Result of expression
+ - 3b9b0372-016f-4a6e-bd05-7f5673a6c6c0
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 9312
+ 9
+ 24
+
+ -
+ 9516
+ 9324
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3706a4c4-bd57-42dc-b5d7-ddc151f907e5
+ - Panel
+
+ - false
+ - 0
+ - 3b9b0372-016f-4a6e-bd05-7f5673a6c6c0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9346
+ 9281
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9346.646
+ 9281.334
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 8fb91838-0d66-409c-a635-3d531bf4fd91
+ - Division
+ - Division
+
+
+
+
+ -
+ 9383
+ 9208
+ 82
+ 44
+
+ -
+ 9414
+ 9230
+
+
+
+
+
+ - Item to divide (dividend)
+ - 01c84af9-1d51-4d09-91a0-ed7ba38f6845
+ - A
+ - A
+ - false
+ - bd79bef6-8525-4a7f-9c89-fe7bb7354d65
+ - 1
+
+
+
+
+ -
+ 9385
+ 9210
+ 14
+ 20
+
+ -
+ 9393.5
+ 9220
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 26457ab2-5a8e-41ac-a111-ecdffd8957a2
+ - B
+ - B
+ - false
+ - 3706a4c4-bd57-42dc-b5d7-ddc151f907e5
+ - 1
+
+
+
+
+ -
+ 9385
+ 9230
+ 14
+ 20
+
+ -
+ 9393.5
+ 9240
+
+
+
+
+
+
+
+ - The result of the Division
+ - 7875e435-e934-4786-8f64-6f29875a9f96
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9429
+ 9210
+ 34
+ 40
+
+ -
+ 9447.5
+ 9230
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7ec258a8-9a08-4c79-96b6-7275894f1a5f
+ - Panel
+
+ - false
+ - 0
+ - efd39231-4327-4053-9697-9cf17d83d334
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9346
+ 9133
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9346.887
+ 9133.818
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 03f1ad9c-8968-40c4-85a5-948230bca1c0
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 9161
+ 194
+ 28
+
+ -
+ 9427
+ 9175
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5c8ae456-baa8-48b2-b090-3dbc02f5d56b
+ - Variable O
+ - O
+ - true
+ - 7875e435-e934-4786-8f64-6f29875a9f96
+ - 1
+
+
+
+
+ -
+ 9329
+ 9163
+ 14
+ 24
+
+ -
+ 9337.5
+ 9175
+
+
+
+
+
+
+
+ - Result of expression
+ - d79d616f-89eb-4992-9153-cb1f57c2b279
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 9163
+ 9
+ 24
+
+ -
+ 9516
+ 9175
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - efd39231-4327-4053-9697-9cf17d83d334
+ - Relay
+
+ - false
+ - d79d616f-89eb-4992-9153-cb1f57c2b279
+ - 1
+
+
+
+
+ -
+ 9407
+ 9117
+ 40
+ 16
+
+ -
+ 9427
+ 9125
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 62160ebc-246f-486e-8eed-514a9af54294
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 9396
+ 9056
+ 82
+ 44
+
+ -
+ 9427
+ 9078
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 72751cb0-bd7f-4ac2-a720-dc94ea6b8619
+ - A
+ - A
+ - true
+ - 3706a4c4-bd57-42dc-b5d7-ddc151f907e5
+ - 1
+
+
+
+
+ -
+ 9398
+ 9058
+ 14
+ 20
+
+ -
+ 9406.5
+ 9068
+
+
+
+
+
+
+
+ - Second item for addition
+ - 97b4efa4-d9ee-4a8a-9723-f82f5dee8812
+ - B
+ - B
+ - true
+ - bd79bef6-8525-4a7f-9c89-fe7bb7354d65
+ - 1
+
+
+
+
+ -
+ 9398
+ 9078
+ 14
+ 20
+
+ -
+ 9406.5
+ 9088
+
+
+
+
+
+
+
+ - Result of addition
+ - 60689ceb-d75b-48fa-a831-0e95b46db6d7
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 9058
+ 34
+ 40
+
+ -
+ 9460.5
+ 9078
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 705017b6-d3a3-4d54-a7f8-0cd3ad651424
+ - Division
+ - Division
+
+
+
+
+ -
+ 9396
+ 8922
+ 82
+ 44
+
+ -
+ 9427
+ 8944
+
+
+
+
+
+ - Item to divide (dividend)
+ - 0484a284-41eb-4c3a-87cd-ee5e522cabdf
+ - A
+ - A
+ - false
+ - 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5
+ - 1
+
+
+
+
+ -
+ 9398
+ 8924
+ 14
+ 20
+
+ -
+ 9406.5
+ 8934
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 022d1ab7-5a0a-4583-9463-18894323b4c3
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 9398
+ 8944
+ 14
+ 20
+
+ -
+ 9406.5
+ 8954
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - f4edbb16-bb45-499b-b7f5-4c497d52e3cb
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 8924
+ 34
+ 40
+
+ -
+ 9460.5
+ 8944
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 98836f2d-b183-4e94-8fc8-52869d681103
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 8882
+ 194
+ 28
+
+ -
+ 9427
+ 8896
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9611d918-9a3e-4823-855b-d78c7970c9e0
+ - Variable O
+ - O
+ - true
+ - f4edbb16-bb45-499b-b7f5-4c497d52e3cb
+ - 1
+
+
+
+
+ -
+ 9329
+ 8884
+ 14
+ 24
+
+ -
+ 9337.5
+ 8896
+
+
+
+
+
+
+
+ - Result of expression
+ - 09762547-3e60-42b1-887c-2ed391a46974
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 8884
+ 9
+ 24
+
+ -
+ 9516
+ 8896
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e2349130-aa0f-401d-b935-da39728890df
+ - Panel
+
+ - false
+ - 0
+ - 09762547-3e60-42b1-887c-2ed391a46974
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9347
+ 8841
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9347.646
+ 8841.676
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6ccf0750-f393-44b1-bf35-bb9fd1ca54f5
+ - Panel
+
+ - false
+ - 0
+ - a00b277b-ad2e-4ce0-9fc8-647cf67d1e14
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9359
+ 8982
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9359.646
+ 8982.586
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4393b257-c536-4aef-874d-6bab76d9ce85
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9340
+ 9009
+ 194
+ 28
+
+ -
+ 9440
+ 9023
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ee00b529-05b1-45e6-a1dc-e2e882d8a9b3
+ - Variable O
+ - O
+ - true
+ - 60689ceb-d75b-48fa-a831-0e95b46db6d7
+ - 1
+
+
+
+
+ -
+ 9342
+ 9011
+ 14
+ 24
+
+ -
+ 9350.5
+ 9023
+
+
+
+
+
+
+
+ - Result of expression
+ - a00b277b-ad2e-4ce0-9fc8-647cf67d1e14
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9523
+ 9011
+ 9
+ 24
+
+ -
+ 9529
+ 9023
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 52941396-e63d-4fb3-8d85-39801e12ac6b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9346
+ 8758
+ 154
+ 64
+
+ -
+ 9430
+ 8790
+
+
+
+
+
+ - Base geometry
+ - a797d5d5-9af4-4571-9ba5-ef1f0ec10f1f
+ - Geometry
+ - Geometry
+ - true
+ - 392db8a2-77d3-4ae9-9004-c5af94a603b3
+ - 1
+
+
+
+
+ -
+ 9348
+ 8760
+ 67
+ 20
+
+ -
+ 9391
+ 8770
+
+
+
+
+
+
+
+ - Center of scaling
+ - 209585a1-09cd-4857-b09a-d91430f2ab60
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9348
+ 8780
+ 67
+ 20
+
+ -
+ 9391
+ 8790
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - f3099c28-3aec-4994-ae86-e2ac434a386e
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - e2349130-aa0f-401d-b935-da39728890df
+ - 1
+
+
+
+
+ -
+ 9348
+ 8800
+ 67
+ 20
+
+ -
+ 9391
+ 8810
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 6d882079-b357-4a45-bac6-e703795b9255
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9445
+ 8760
+ 53
+ 30
+
+ -
+ 9473
+ 8775
+
+
+
+
+
+
+
+ - Transformation data
+ - 3f1fc5a3-9990-4e80-9795-aace930b64e0
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9445
+ 8790
+ 53
+ 30
+
+ -
+ 9473
+ 8805
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - Curve
+ - Curve
+ - false
+ - 6d882079-b357-4a45-bac6-e703795b9255
+ - 1
+
+
+
+
+ -
+ 9401
+ 8114
+ 50
+ 24
+
+ -
+ 9426.626
+ 8126.176
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 31391e3a-7904-4f5c-b1db-52b3e836ad2a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 9483
+ 194
+ 28
+
+ -
+ 9427
+ 9497
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b2b045d7-f53d-4877-9b0d-e97d212f5d87
+ - Variable O
+ - O
+ - true
+ - 1d6740d7-b0d9-465e-a464-f7a77cb50ad7
+ - 1
+
+
+
+
+ -
+ 9329
+ 9485
+ 14
+ 24
+
+ -
+ 9337.5
+ 9497
+
+
+
+
+
+
+
+ - Result of expression
+ - 0ae0c192-a397-4e28-b3a6-2ddd9d8c82d5
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 9485
+ 9
+ 24
+
+ -
+ 9516
+ 9497
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3df1b866-1b15-4218-a165-b765587088cb
+ - Panel
+
+ - false
+ - 0
+ - 0ae0c192-a397-4e28-b3a6-2ddd9d8c82d5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9347
+ 9455
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9347.516
+ 9455.531
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 64067a04-3ea5-46dd-b49a-2b2563f5e79c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9352
+ 8492
+ 144
+ 64
+
+ -
+ 9426
+ 8524
+
+
+
+
+
+ - Curve to evaluate
+ - 00a76e2a-57df-4705-8425-10985235ad9d
+ - Curve
+ - Curve
+ - false
+ - 6d882079-b357-4a45-bac6-e703795b9255
+ - 1
+
+
+
+
+ -
+ 9354
+ 8494
+ 57
+ 20
+
+ -
+ 9384
+ 8504
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d1fc9e5d-1ff3-43b6-8613-72a0845b013c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 8514
+ 57
+ 20
+
+ -
+ 9384
+ 8524
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 413414dd-0b45-4018-a969-b4e76ec6a5d1
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 8534
+ 57
+ 20
+
+ -
+ 9384
+ 8544
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 7459805c-7134-4c91-b4f8-921206352ed7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 8494
+ 53
+ 20
+
+ -
+ 9469
+ 8504
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 59560f60-31d5-4749-88df-93a11889f101
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 8514
+ 53
+ 20
+
+ -
+ 9469
+ 8524
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - dcea70aa-a076-479f-a441-5700938188ca
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 8534
+ 53
+ 20
+
+ -
+ 9469
+ 8544
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0cfb72b3-43f4-40de-a786-66eaa4094193
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 8275
+ 194
+ 28
+
+ -
+ 9427
+ 8289
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7bb3e352-1abc-4da6-94de-73edf3c511f1
+ - Variable O
+ - O
+ - true
+ - 05a3bf08-48b9-495e-a5ac-4b2d1146064f
+ - 1
+
+
+
+
+ -
+ 9329
+ 8277
+ 14
+ 24
+
+ -
+ 9337.5
+ 8289
+
+
+
+
+
+
+
+ - Result of expression
+ - f39b2295-5bf0-4e67-90cc-def940a23bd7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 8277
+ 9
+ 24
+
+ -
+ 9516
+ 8289
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - f14181d1-ed30-464f-8ae1-ed2dc450e9b4
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9358
+ 8409
+ 132
+ 64
+
+ -
+ 9405
+ 8441
+
+
+
+
+
+ - Input point
+ - 7cffe4e9-361c-4cfd-b6bf-9d8419133439
+ - Point
+ - Point
+ - false
+ - 7459805c-7134-4c91-b4f8-921206352ed7
+ - 1
+
+
+
+
+ -
+ 9360
+ 8411
+ 30
+ 60
+
+ -
+ 9376.5
+ 8441
+
+
+
+
+
+
+
+ - Point {x} component
+ - 05a3bf08-48b9-495e-a5ac-4b2d1146064f
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9420
+ 8411
+ 68
+ 20
+
+ -
+ 9455.5
+ 8421
+
+
+
+
+
+
+
+ - Point {y} component
+ - c80e0c76-7a8d-4906-95e0-c99fdb5bbadd
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9420
+ 8431
+ 68
+ 20
+
+ -
+ 9455.5
+ 8441
+
+
+
+
+
+
+
+ - Point {z} component
+ - 7980f24e-f439-478d-9f8a-f226f6ccd2e0
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9420
+ 8451
+ 68
+ 20
+
+ -
+ 9455.5
+ 8461
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 376e0bb0-4a5d-4c78-93c9-01676bc7d38d
+ - Panel
+
+ - false
+ - 0
+ - f39b2295-5bf0-4e67-90cc-def940a23bd7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9346
+ 8243
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9346.896
+ 8243.1
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5a519f7d-386e-4d99-8458-36c93149b93b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 8189
+ 194
+ 28
+
+ -
+ 9427
+ 8203
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e830dbf6-4ad8-4c98-a55a-f920944107b5
+ - Variable O
+ - O
+ - true
+ - c80e0c76-7a8d-4906-95e0-c99fdb5bbadd
+ - 1
+
+
+
+
+ -
+ 9329
+ 8191
+ 14
+ 24
+
+ -
+ 9337.5
+ 8203
+
+
+
+
+
+
+
+ - Result of expression
+ - 0a425b09-4348-490f-a08b-55a914080ddd
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 8191
+ 9
+ 24
+
+ -
+ 9516
+ 8203
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b7c3598c-bd9d-46e5-be6c-1208ea7a229a
+ - Panel
+
+ - false
+ - 0
+ - 0a425b09-4348-490f-a08b-55a914080ddd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9346
+ 8157
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9346.907
+ 8157.471
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4b838834-98d5-46d8-ac65-3a689ff35100
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 8361
+ 194
+ 28
+
+ -
+ 9427
+ 8375
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8b0c44fe-b24d-4831-b8cb-7f88b380694a
+ - Variable O
+ - O
+ - true
+ - 7980f24e-f439-478d-9f8a-f226f6ccd2e0
+ - 1
+
+
+
+
+ -
+ 9329
+ 8363
+ 14
+ 24
+
+ -
+ 9337.5
+ 8375
+
+
+
+
+
+
+
+ - Result of expression
+ - 9593909d-5219-48e7-92f6-94938de106ac
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 8363
+ 9
+ 24
+
+ -
+ 9516
+ 8375
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - de17b964-bc3d-4ec6-8ade-50a4a3428b36
+ - Panel
+
+ - false
+ - 0
+ - 9593909d-5219-48e7-92f6-94938de106ac
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9346
+ 8329
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9346.646
+ 8329.313
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fb85528b-23a4-4373-a926-da03e1a3ae73
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 3 16
+3 256 0.001373312092932693349
+3 4096
+
+
+
+
+ -
+ 9241
+ 12200
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 9241.086
+ 12200.61
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d8c7b5da-d8a8-4ab5-a7af-503d84ee4cc8
+ - Panel
+
+ - false
+ - 0
+ - 0f624141-42b4-4810-82f3-62bc78bd2f13
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9258
+ 10415
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 9258.836
+ 10415.71
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a4623c86-3cfa-4f1d-93e5-717436d5670e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 10706
+ 194
+ 28
+
+ -
+ 9427
+ 10720
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - dc0f5ccc-7a56-4e24-bed6-02b3a7b2e412
+ - Variable O
+ - O
+ - true
+ - 511f630a-f12b-41a2-bb58-9bfcc923b89b
+ - 1
+
+
+
+
+ -
+ 9329
+ 10708
+ 14
+ 24
+
+ -
+ 9337.5
+ 10720
+
+
+
+
+
+
+
+ - Result of expression
+ - 0f624141-42b4-4810-82f3-62bc78bd2f13
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 10708
+ 9
+ 24
+
+ -
+ 9516
+ 10720
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - d0279667-2f4d-431e-83b5-14073b8b768f
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 9402
+ 12491
+ 50
+ 24
+
+ -
+ 9427.605
+ 12503.27
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - ddefeb6c-3530-47ce-8cff-6ec098f56b3e
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 9255
+ 10954
+ 160
+ 224
+
+ -
+ 9323
+ 11066
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 4225ec91-55f4-41b2-8874-c1e960ff891e
+ - true
+ - Curves
+ - Curves
+ - false
+ - f210c96f-2d80-44cf-9628-9361c422e064
+ - 1
+
+
+
+
+ -
+ 9257
+ 10956
+ 51
+ 27
+
+ -
+ 9284
+ 10969.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - ef5f2020-a80e-403e-94dd-c58905fc2bde
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - cdf246b3-6ac1-4fb0-8f64-58e0ca5b116d
+ - 1
+
+
+
+
+ -
+ 9257
+ 10983
+ 51
+ 28
+
+ -
+ 9284
+ 10997.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - aaf1737e-0a15-45ad-af48-92662552d453
+ - true
+ - Values
+ - Values
+ - false
+ - 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5
+ - 1
+
+
+
+
+ -
+ 9257
+ 11011
+ 51
+ 27
+
+ -
+ 9284
+ 11024.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - ffd6b3b0-20bb-4b26-8e85-92c21b3fcb31
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 9257
+ 11038
+ 51
+ 28
+
+ -
+ 9284
+ 11052.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - f3cddab3-109a-42d5-a7a5-24509bbf5cb5
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 9257
+ 11066
+ 51
+ 27
+
+ -
+ 9284
+ 11079.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - cc20a071-5121-4039-b7f2-ff5a0884976e
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 9257
+ 11093
+ 51
+ 28
+
+ -
+ 9284
+ 11107.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - a0345499-fce4-442d-8e17-53902f76db28
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 9257
+ 11121
+ 51
+ 27
+
+ -
+ 9284
+ 11134.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - bcd1bf24-1aa1-4916-9f6f-bf8add1fd5c3
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 9257
+ 11148
+ 51
+ 28
+
+ -
+ 9284
+ 11162.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - ed5584cf-af95-416f-b6f5-9a6ba0570055
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 10956
+ 75
+ 20
+
+ -
+ 9377
+ 10966
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - afad9727-ff17-449d-a0ba-552b9e52f258
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 10976
+ 75
+ 20
+
+ -
+ 9377
+ 10986
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - d5cd14a6-7317-4cd6-abf7-5fbdea12dc94
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 10996
+ 75
+ 20
+
+ -
+ 9377
+ 11006
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 698078ed-4746-4fe7-9d5a-47311fcc0029
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11016
+ 75
+ 20
+
+ -
+ 9377
+ 11026
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - f631cdb1-7d00-4240-88a2-8560ed8c7d77
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11036
+ 75
+ 20
+
+ -
+ 9377
+ 11046
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 6fd3a627-d45d-40f1-9181-1f15c0b7a194
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11056
+ 75
+ 20
+
+ -
+ 9377
+ 11066
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - f8dc3ad8-22bd-4e54-a422-570fbfb6c562
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11076
+ 75
+ 20
+
+ -
+ 9377
+ 11086
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 909a6a8e-2038-4c01-8120-dbc96c7700eb
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11096
+ 75
+ 20
+
+ -
+ 9377
+ 11106
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - b3e993dd-22c8-4b9e-a640-e041231fed21
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11116
+ 75
+ 20
+
+ -
+ 9377
+ 11126
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 7e55523f-071e-4e57-a714-1aa45c98c9cc
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11136
+ 75
+ 20
+
+ -
+ 9377
+ 11146
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 396706d2-9bfb-4cf1-a025-1e0b75fb7a1e
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 11156
+ 75
+ 20
+
+ -
+ 9377
+ 11166
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - e15f93e5-d2a5-4974-b773-d890edc53168
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 9376
+ 11298
+ 96
+ 44
+
+ -
+ 9426
+ 11320
+
+
+
+
+
+ - Curve to evaluate
+ - 6cef1f9c-d80b-44f0-bd14-51c285a7f88a
+ - Curve
+ - Curve
+ - false
+ - f210c96f-2d80-44cf-9628-9361c422e064
+ - 1
+
+
+
+
+ -
+ 9378
+ 11300
+ 33
+ 40
+
+ -
+ 9396
+ 11320
+
+
+
+
+
+
+
+ - Curve start point
+ - 2dfa1494-079f-46a4-9f91-2d317b6a306d
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 11300
+ 29
+ 20
+
+ -
+ 9457
+ 11310
+
+
+
+
+
+
+
+ - Curve end point
+ - 116ad9b9-5337-497b-8869-a7284e0b02ee
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 11320
+ 29
+ 20
+
+ -
+ 9457
+ 11330
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - a87095d8-ee9c-4a93-a96a-3226697bb5b3
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 9361
+ 11196
+ 126
+ 84
+
+ -
+ 9419
+ 11238
+
+
+
+
+
+ - Rectangle base plane
+ - 2441b92c-2092-4365-bbaa-55c30031be6c
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9363
+ 11198
+ 41
+ 20
+
+ -
+ 9385
+ 11208
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - d1f6871e-4532-48fa-b53c-a6e1c428b647
+ - Point A
+ - Point A
+ - false
+ - 2dfa1494-079f-46a4-9f91-2d317b6a306d
+ - 1
+
+
+
+
+ -
+ 9363
+ 11218
+ 41
+ 20
+
+ -
+ 9385
+ 11228
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 534fae89-eeaf-4f13-b642-26d33d584155
+ - Point B
+ - Point B
+ - false
+ - 116ad9b9-5337-497b-8869-a7284e0b02ee
+ - 1
+
+
+
+
+ -
+ 9363
+ 11238
+ 41
+ 20
+
+ -
+ 9385
+ 11248
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 0d3d6f92-6db5-4e2f-8606-adb2c675a5ae
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 9363
+ 11258
+ 41
+ 20
+
+ -
+ 9385
+ 11268
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - cdf246b3-6ac1-4fb0-8f64-58e0ca5b116d
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 9434
+ 11198
+ 51
+ 40
+
+ -
+ 9461
+ 11218
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 1982cc62-e976-4ce5-a040-76d4d99f7d89
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9434
+ 11238
+ 51
+ 40
+
+ -
+ 9461
+ 11258
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - cfa44e8d-871d-41ab-aee6-3ae62234dae3
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 9415
+ 11058
+ 126
+ 104
+
+ -
+ 9482
+ 11110
+
+
+
+
+
+ - External curve as a graph
+ - 12db67c7-57cf-447c-b6e0-9861f0b311c0
+ - Curve
+ - Curve
+ - false
+ - f210c96f-2d80-44cf-9628-9361c422e064
+ - 1
+
+
+
+
+ -
+ 9417
+ 11060
+ 50
+ 20
+
+ -
+ 9443.5
+ 11070
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - a1b59776-090d-4c75-8855-ec1a724e5f87
+ - Boundary
+ - Boundary
+ - true
+ - cdf246b3-6ac1-4fb0-8f64-58e0ca5b116d
+ - 1
+
+
+
+
+ -
+ 9417
+ 11080
+ 50
+ 20
+
+ -
+ 9443.5
+ 11090
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 28ee4971-d457-4243-9033-da28f9e037af
+ - Numbers
+ - Numbers
+ - false
+ - 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5
+ - 1
+
+
+
+
+ -
+ 9417
+ 11100
+ 50
+ 20
+
+ -
+ 9443.5
+ 11110
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 1f1ae6a9-c0bf-4d65-b5c9-3bfe4262c237
+ - Input
+ - Input
+ - true
+ - 372ad6b1-7699-4f27-b13f-c78368bcb69d
+ - 1
+
+
+
+
+ -
+ 9417
+ 11120
+ 50
+ 20
+
+ -
+ 9443.5
+ 11130
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - e36b6f7a-aef9-4a0d-a917-b565748dfbd8
+ - Output
+ - Output
+ - true
+ - 372ad6b1-7699-4f27-b13f-c78368bcb69d
+ - 1
+
+
+
+
+ -
+ 9417
+ 11140
+ 50
+ 20
+
+ -
+ 9443.5
+ 11150
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 27c846e4-0455-45cd-a3d5-042b0aff2707
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 9497
+ 11060
+ 42
+ 100
+
+ -
+ 9519.5
+ 11110
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 7e94f1b4-ec36-40dd-8e75-57956c016ac7
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 9393
+ 10866
+ 89
+ 64
+
+ -
+ 9438
+ 10898
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - d28f3372-e599-45d5-922e-404c6d2134ce
+ - Gate
+ - Gate
+ - false
+ - 49fab78e-1866-45ec-a4d2-1cc8e991dd29
+ - 1
+
+
+
+
+ -
+ 9395
+ 10868
+ 28
+ 20
+
+ -
+ 9410.5
+ 10878
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 61408404-63d7-4f68-bb4b-25acff295b4c
+ - false
+ - Stream 0
+ - 0
+ - true
+ - ed5584cf-af95-416f-b6f5-9a6ba0570055
+ - 1
+
+
+
+
+ -
+ 9395
+ 10888
+ 28
+ 20
+
+ -
+ 9410.5
+ 10898
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 6e4bfdab-5cf1-4e6a-8af8-06e342e989cf
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 27c846e4-0455-45cd-a3d5-042b0aff2707
+ - 1
+
+
+
+
+ -
+ 9395
+ 10908
+ 28
+ 20
+
+ -
+ 9410.5
+ 10918
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - c36571fc-6acb-4d60-b373-bd2cc71c6c16
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 9453
+ 10868
+ 27
+ 60
+
+ -
+ 9468
+ 10898
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 49fab78e-1866-45ec-a4d2-1cc8e991dd29
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9357
+ 10827
+ 150
+ 20
+
+ -
+ 9357.266
+ 10827.31
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e8362145-cfe3-4e30-86dd-9927043c7dc3
+ - Panel
+
+ - false
+ - 1
+ - 7bdda42d-d96c-431a-827a-b575626920d5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9334
+ 11485
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 9334.336
+ 11485.73
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 82e084bd-57e0-4bd8-b709-3fdf93bf0bb9
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 9365
+ 11437
+ 122
+ 28
+
+ -
+ 9429
+ 11451
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 780a11b3-80f4-4811-be32-fc506a27aec2
+ - Numbers
+ - Numbers
+ - false
+ - 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5
+ - 1
+
+
+
+
+ -
+ 9367
+ 11439
+ 47
+ 24
+
+ -
+ 9392
+ 11451
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 372ad6b1-7699-4f27-b13f-c78368bcb69d
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9444
+ 11439
+ 41
+ 24
+
+ -
+ 9466
+ 11451
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 12778daf-90ca-4b93-91c2-6db757685f91
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9327
+ 11775
+ 194
+ 28
+
+ -
+ 9427
+ 11789
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6247def0-a1a7-4d5b-b0d8-15481a3bf41c
+ - true
+ - Variable O
+ - O
+ - true
+ - 598f8d8f-eddd-44dd-be6b-b9cd5383c5f5
+ - 1
+
+
+
+
+ -
+ 9329
+ 11777
+ 14
+ 24
+
+ -
+ 9337.5
+ 11789
+
+
+
+
+
+
+
+ - Result of expression
+ - 7bdda42d-d96c-431a-827a-b575626920d5
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9510
+ 11777
+ 9
+ 24
+
+ -
+ 9516
+ 11789
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - cb0da986-aa09-4e79-8899-9f8593f49c79
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9241
+ 11972
+ 367
+ 28
+
+ -
+ 9427
+ 11986
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2c224d09-53fb-4dfb-aa50-c92bb3f8153d
+ - Variable O
+ - O
+ - true
+ - 09c7b0c3-e11c-4173-acc1-d8323a4a5346
+ - 1
+
+
+
+
+ -
+ 9243
+ 11974
+ 14
+ 24
+
+ -
+ 9251.5
+ 11986
+
+
+
+
+
+
+
+ - Result of expression
+ - ac68597c-b34c-47b4-8f17-a8a21b5c3bfb
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9597
+ 11974
+ 9
+ 24
+
+ -
+ 9603
+ 11986
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1a233394-d800-45e3-bc4e-3e115b150a13
+ - Panel
+
+ - false
+ - 0
+ - ac68597c-b34c-47b4-8f17-a8a21b5c3bfb
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9337
+ 11943
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9337.477
+ 11943.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+ - d46a743d-5164-4b58-95b3-c812010e916d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - bc453bfa-c615-43b6-806b-a25b6d136fde
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9347
+ 8676
+ 154
+ 64
+
+ -
+ 9431
+ 8708
+
+
+
+
+
+ - Base geometry
+ - 76dbb710-ba16-4294-91a8-7a40635a4156
+ - Geometry
+ - Geometry
+ - true
+ - 00787e40-ac00-46c8-8832-9aa703ca68f4
+ - 1
+
+
+
+
+ -
+ 9349
+ 8678
+ 67
+ 20
+
+ -
+ 9392
+ 8688
+
+
+
+
+
+
+
+ - Center of scaling
+ - 8a75b6d3-8be6-4a15-bde5-d37b6d8139e1
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 8698
+ 67
+ 20
+
+ -
+ 9392
+ 8708
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e63a5cea-837a-4466-8c03-aa983afb0616
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - e2349130-aa0f-401d-b935-da39728890df
+ - 1
+
+
+
+
+ -
+ 9349
+ 8718
+ 67
+ 20
+
+ -
+ 9392
+ 8728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 39beea24-256e-4dab-b765-3357110414ce
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9446
+ 8678
+ 53
+ 30
+
+ -
+ 9474
+ 8693
+
+
+
+
+
+
+
+ - Transformation data
+ - 496aa0d8-898b-4b92-857a-391bfa610d7b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9446
+ 8708
+ 53
+ 30
+
+ -
+ 9474
+ 8723
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 40d1fb3a-4c8a-4cd8-897e-f93423e452e4
+ - Point
+ - Point
+ - false
+ - 39beea24-256e-4dab-b765-3357110414ce
+ - 1
+
+
+
+
+ -
+ 9396
+ 8652
+ 50
+ 24
+
+ -
+ 9421
+ 8664.346
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 6ba0ca13-3163-433b-bdcf-cbb6eb2e32a1
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9352
+ 8002
+ 138
+ 44
+
+ -
+ 9420
+ 8024
+
+
+
+
+
+ - Base geometry
+ - 11d697c4-f19a-4f84-93a3-a982daf03ec6
+ - Geometry
+ - Geometry
+ - true
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+
+
+
+
+ -
+ 9354
+ 8004
+ 51
+ 20
+
+ -
+ 9381
+ 8014
+
+
+
+
+
+
+
+ - Mirror plane
+ - b16eb7a6-4cb5-45ca-bea4-26fae76bc9e0
+ - Plane
+ - Plane
+ - false
+ - bd41a999-d637-478a-99d6-7456e8136d87
+ - 1
+
+
+
+
+ -
+ 9354
+ 8024
+ 51
+ 20
+
+ -
+ 9381
+ 8034
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 8831d957-d436-43f9-a31b-730e1d909d2f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9435
+ 8004
+ 53
+ 20
+
+ -
+ 9463
+ 8014
+
+
+
+
+
+
+
+ - Transformation data
+ - 0e8720af-deb4-4c39-8129-8fd604951957
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9435
+ 8024
+ 53
+ 20
+
+ -
+ 9463
+ 8034
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2c62e475-50df-4188-ac09-8024f05be84e
+ - Curve
+ - Curve
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13427
+ 7721
+ 50
+ 24
+
+ -
+ 13452.45
+ 7733.551
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f210c96f-2d80-44cf-9628-9361c422e064
+ - Relay
+
+ - false
+ - 549d34cb-c2d5-4037-90dc-da2ba0434b4d
+ - 1
+
+
+
+
+ -
+ 9406
+ 11365
+ 40
+ 16
+
+ -
+ 9426
+ 11373
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c6eacf19-8f0e-4bb9-b4b0-cf978a21ac60
+ - Curve
+ - Curve
+ - false
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 1
+
+
+
+
+ -
+ 8927
+ 11618
+ 50
+ 24
+
+ -
+ 8952.876
+ 11630.08
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 549d34cb-c2d5-4037-90dc-da2ba0434b4d
+ - Curve
+ - Curve
+ - false
+ - e62f36d2-2c6a-4868-95b8-f39c3e5d83d0
+ - 1
+
+
+
+
+ -
+ 8927
+ 11414
+ 50
+ 24
+
+ -
+ 8952.973
+ 11426.06
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - c98f483b-84e7-4f79-ba9e-e0b4f6b43672
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 8875
+ 11456
+ 154
+ 64
+
+ -
+ 8959
+ 11488
+
+
+
+
+
+ - Base geometry
+ - 234d84c3-cb1d-4097-989c-3756d196a190
+ - Geometry
+ - Geometry
+ - true
+ - c6eacf19-8f0e-4bb9-b4b0-cf978a21ac60
+ - 1
+
+
+
+
+ -
+ 8877
+ 11458
+ 67
+ 20
+
+ -
+ 8920
+ 11468
+
+
+
+
+
+
+
+ - Center of scaling
+ - 3ea89f27-91b1-46d1-a79c-bea00b132583
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 8877
+ 11478
+ 67
+ 20
+
+ -
+ 8920
+ 11488
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 6c864e4f-9df5-4c74-bea6-ba889c4751e4
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 441d669f-89e0-4184-9e8b-861b77ffcbcf
+ - 1
+
+
+
+
+ -
+ 8877
+ 11498
+ 67
+ 20
+
+ -
+ 8920
+ 11508
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - e62f36d2-2c6a-4868-95b8-f39c3e5d83d0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8974
+ 11458
+ 53
+ 30
+
+ -
+ 9002
+ 11473
+
+
+
+
+
+
+
+ - Transformation data
+ - 57faab0e-646b-4ced-980c-d267e7034860
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8974
+ 11488
+ 53
+ 30
+
+ -
+ 9002
+ 11503
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c6eacf19-8f0e-4bb9-b4b0-cf978a21ac60
+ - 549d34cb-c2d5-4037-90dc-da2ba0434b4d
+ - c98f483b-84e7-4f79-ba9e-e0b4f6b43672
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 3d12c214-7971-4352-985a-0fd340c4b343
+ - 441d669f-89e0-4184-9e8b-861b77ffcbcf
+ - beb16079-3864-4233-9af9-59f099bc7bc0
+ - 7
+ - d0a60f2e-f49e-4d09-b4c3-1ac7d60defe7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 87a9a300-1939-4978-bea9-829655d2c198
+ - Move
+ - Move
+
+
+
+
+ -
+ 9352
+ 7895
+ 138
+ 44
+
+ -
+ 9420
+ 7917
+
+
+
+
+
+ - Base geometry
+ - d179b163-9a69-4527-a113-6e6f6cc527df
+ - Geometry
+ - Geometry
+ - true
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+
+
+
+
+ -
+ 9354
+ 7897
+ 51
+ 20
+
+ -
+ 9381
+ 7907
+
+
+
+
+
+
+
+ - Translation vector
+ - 0fc66504-c5ba-4e9d-b24e-173081ac3ba8
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 9354
+ 7917
+ 51
+ 20
+
+ -
+ 9381
+ 7927
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - e89390a3-e1dd-4269-af99-456b46abbf1b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9435
+ 7897
+ 53
+ 20
+
+ -
+ 9463
+ 7907
+
+
+
+
+
+
+
+ - Transformation data
+ - c1821fb9-4027-42d5-88e2-2cba21d526be
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9435
+ 7917
+ 53
+ 20
+
+ -
+ 9463
+ 7927
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3d12c214-7971-4352-985a-0fd340c4b343
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 27.9312132004
+
+
+
+
+ -
+ 8827
+ 11581
+ 250
+ 20
+
+ -
+ 8827.646
+ 11581.56
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 441d669f-89e0-4184-9e8b-861b77ffcbcf
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 7.93121320041998779
+
+
+
+
+ -
+ 8875
+ 11540
+ 154
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 8875.247
+ 11540.97
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4f429b08-e754-4858-8236-abf77d1883d8
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8927
+ 11665
+ 50
+ 24
+
+ -
+ 8952.695
+ 11677.73
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zPxpPFVvG/D/b2OGTJXIXIaklCEylGMrlWYiNFOISjQoGjdS0kRJ0mQolIpKRaadKZEyD5m2eWabaeDne32Pa5397+t1P/k/uj3wbn3WWvs899rLsjZe0ThoNNrk1Mc//vMxnXPqk/VWJ+cjrqtcXVxcjyxSsHI4dtzZ9ciKZYs1tRdraWov1Zv6h4aG5iKFVe6HT7gfc1hxxMH9xDG7w4sUzNz3HXbev8HB09L1kMORFTo6Wlp6mg76y/Yv09HR0dbg+WcUyf88+OK1Dq4uDieOeS42cz3sucr92EkH7qmV007+O5iA3bH9Ts4nHbTtXfhd3RyOHHE/tu84t73dCbt/NuLj4+P8Z56i82k0rSlv/xaczs819Q+Rfz6VXaTROH9e4KR9ufjvc/o1yUmbhc+PVVqxeW1HiVh6C03Uh2Me+/mwmt/vqfWBuK0oN+3//GDD/6R/e/r/WXj+ZxsN+r/SUVPUjP7PBP8o/O8E54jF7TEXLBVLn/h3guulPCX+mWA2bivKhRv+M1Gu/75s//9M9n/2/T8/4vGxmGguWoiWopVoDcpCG9FmtBVtRzvRbrQX/n+fQz86gA6iQ+gwOoKOomPoOPoT/YX+Rv+gE+jkf48d/T+fGSiNA5dRGicuozQuXEZp3LiM0nhwGaXx4jJKm4bLKI0Pl1EaPy6jNAFcRmmCuIzSpuMyShPCZZQmjMsoTQSXUZrov9JRBspEaWK4HmWgTJQ2A9ejDJSJ0mbiepSBMlHaLFyPMlAmShPH9SgDZaK02bgeZaBMlCaB61EGykRpkrgeZaBMlDYH16MMlInSpHA9ykCZKE0a16MMlInSZHA9ykCZKE0W16MMlInS5HA9ykCZKE0e16MMlInSFP5VAaWjtigDDUOZKAulzcX9UTpqizLQMJSJslDaPNwfpaO2KAMNQ5koC6Up4v4oHbVFGWgYykRZKE0J90fpqC3KQMNQJspCacq4P0pHbVEGGoYyURZKU8H9UTpqizLQMJSJslDafNwfpaO2KAMNQ5koC6Wp4v4oHbVFGWgYykRZKG0B7o/SUVuUgYahTJSF0tRwf5SO2qIMNAxloiyUthD3R+moLcpAw1AmykJpi3B/lI7aogw0DGWiLJSmjvujdNQWZaBhKBNlobTFuD9KR21RBhqGMlEWSluC+6N01BZloGEoE2Wh1E0L8X/vM8jHxU/uO49vX/k/9x1rIjT41S/thI7z8lLTjGev+G9f959+CIRuVuu2emin/rcneDbnhD85AXJ39bPLZm39P7Y/A+p1+XZra92o7Q87pCnXaHuBxxW2wNCpm9T27/7zOBfhjdAHuQ27XlLbT1wXcDog7gdzePjq8u3zqe1N/vP4V0G1+NgLpm8/1Q+/t3o+MHIDfB8H7m2L5jP6b1f4z7iBoGh+aI6EqTTVQ4+Yjxh13wJaXG6W1RY1qguc+mc+QSBnsdvggdIyqm89d+ou9+5g0K07/nSCfxXVj174Z54hcKhPRmffp01U5z39UC+v4B7obhP232JuRfV7B/6Z/30Ye+hPC1xiS/U3kFl10+gh/Jp5NNGrxJHqt4a3TT2vRyABk6ksF1eqbzI8kfrcOgwWeSh01Gm6U32WZerU8w0HRY3HD+kzz1KdocV7Q0g0AhjbXcpVNnlTnS9189RxiICj32JFrl+6TPX5RcF73HIjQbd5beHJmutUH6fXTR2fJzBdwa04KuUW1ZcXKi0pYTyFEP3FO9+vvkv1Yo2DU8ctCgZ4nltHRTyguv/Ey0kd/Wj4s293+6FT4VTX+dh34IB4DPzcmGwwqPiU6k2ZiwtD+mNgSevAmnrHZ1TXtjw4dZyfgd7vHye3m7+i+sUT4WG/nj2HR/TkpOafr6kuPlLMp34pFviHVUTY2u+o/vXAH7c9+16Agbb9avO6RKpfFpCfel1ewqkTGWcMeFKp3pepY/xJ6hXEpHQfXfeDSbYXgWcDI6/gZ5aU/PmzmVTP7FkmplQSB0JZXgu7XXOo/tjpRspz63gY2b/HODr5C9XTsk64ZWbHQ5K583XVAwVUf31no1KN9mtYdyQ4TTW1kOpnfs2oHAp/DVqaL40+TBRTXelh1lUh0TewKV2k5sHZMqrfD9kNKuffQNup1I4jhpVUn360asCo+w2wbuVa/4Zqqmv+0oqy3vEW/mgzZmy5WUf1P2vtt7vlvoUTCgXxVhINVOe+7jj9im4CBJ96FVkg1kT1LAGt9PAnCTAx0dTXo99C9bvs1KMfZ7yD+zl1e5NutVFd0oimVMJ4B6N08edb5TupXhfeU9bV+w6qte4qTDR2U91um+dl7t3vQd0q3HZeQx/VG4aD9GTz3wPXVkmvJzf6qT68XaNDR/8DKD/Ii7y5aZDqHfv1722O/gAX7LwdDZcMU31D4X3TA+KJ8GLpbJlInVGq59CMRy/4JMK4VMNg6b5xqv/MEHka0p8IJyL9zQcSf1G9Z0a3+eu9SVAZ/11Jw2CC6npV7/98KUiCZfaRYYdO0Kjr9Oonm2IaDT+C/7k5OyOaOKj+cpe/+a9nH2HbsPDM4UNcVLceWjk+UzIZJt6Fi0QL81BdQnTd40WXkkGt212Pt4CX6uaxzqtWDyXDkmKpNYdi+Kj+8/3hlt37UqBeabJSP0KA6qcSZ/meLEyBVR5Ja1nJ06nuuF9u3k2jVDji8+JExYgw1ScW01OiX6TC5q5KM/PnolRvaV1gwZRKA7knyhEHusSovn7ZxdZKvzSQT644fBpmUp2xlO3eP5IGvpGuu3dEzyLzrOXlEHBIBznuXWM1irOpnvrA5vK8knRYlcB5seadBNXv79G9+FCBCUaLvgws2zOH6hbHWJ+eWTMh57xMQbGsNNXH6Pa/391gwsAXD+k7wzJUnyV7UjsjmwmFEm5mh1rlqG4Wk+X47TcTlm61mRPpoUD1vb5jd35ofwI58N1//epcqudMS2C2HvwEhoYGskdfzKP6jYZbrQPhn6BYja/1a7Ui1ce/LZg2WfkJvJXu7pwrpUx1TTrvPEHRDNicFi3cf0CF6tM4XulKrM2Ass6ZHszs+VQvr3tkong+A7bYfu8RX7qA6lc3bt6w5F0GjHi33fV8q0aOA/eC9YbdGSD21dvB3WQROd9ib9HXKmbCQFQ9x502dapvONiibrEjE8ZStn5xeLiE6tqBR8X2BmZCneW8vYZvNajOp3Gu82BuJoxcloAX4ZpUr3u9KvHkZCZIXNx4f3OoFtXb3Yc9vXWzQOEo/6bDD7Wp7nzgw+IbLlmQGBLSuSV2KdWXB0WU3XuSBTtuZH4yydKh+tmMTJen1VkQM7ylOLhdl9wf8UiPxM/IBt2mM7m3JPWo/nvzfZeUddkwrdRz1NdSn+pfedVKPjOywUqv2yLtgQF5XiGPlEs+ZEPAddsj/v2G5Pznzthf15sNy7nzXPQtVlB9zqnN1zqUc0Do1S9+6Qwjqu8s7H04tCsH9CXFMkGeTnVbA6O7k7dzQOPso7KdzaSXv/98UiA/B6rdN9j5xxuT60Acj6E452fwXi9vOuRD7gdZPnaN8vqfQaopLSpjzyqq68lqH1Jz+wwPrWOK5IxNqL77NLNkafRnyNY6slVr4Wqy/coVUlD3GWIODzSryK6huqBl3vJ14rnwWyr8hIrEWjJPG3d9i425sKfs+Zydc0ypbrNNT3i3Ty4kfjWa3ae4jurZy8cTHT/mgn1QVsn0Zeupfv7ilWVu/blw/744q27rBqp/SXx62VP1Cxy2ed9589RGqj+eMRzlvfcLOEiJZKx/uonqBcL8t68GfwHBqCdmBjWbqX6Bd/e6oIIvUDZdtcBE2Izqi75s+/yAOw+UfybXaL4l/ZCescBTwzzIjp3bO77LnOpdzdtEXh7LA4NIdtgbwa3kOhz3piThWR5Mr/90/2g66bn791imsPJgPMHg6kYPC6ovPL72RqZEPhRb88hv17WkemDOqvN5m/Nh28cdPC/HSfdYJzq3yDcfdC8v7N6dsY1cfy6bHa9IyQc7w0yGV4AVuc6Y3DhaO5gPb4e6XdXtrcn5Ka0v2aT2FULVgh1OrbChuj1H1P52u69g/31EyF1mO9WfqouY9YR8hR26UmLLOXZQPajtdlX/969wwbFcpLGLdB8jvd/DvAXwdVdZxNmanVTnzG9+O76iAHw+iG6fW7KL6sNHHX//PlEAksrH37d83031bwuPFE3GFkC6n6tWffEechy+ByzmbCqAae9DdRVr9lJ9VcMaEW6pbzCgGnGjyd2W6okO3Ud4zL/B/aZpkmyaHdXzE5mmvH7f4LjfmhLjm6TLOrfe5U3/BnPeO21tUthH9VqJ/da8I9/AcmyabP070kV3y3vzqH+H1Xz34mDzfnL9j2+dwW3/Heo5Ek+LdJKeaX2Am/P+d/C5eaLR5oo9+b5po2U+WfQdRIQerVBZ5ED1kg+14+e4C+F0pEiZVzHp/ZcXDf6SLwTDPb8b3c86Ur1aIyLQ07AQEgwNb01XO0D1+qcbi0esCkHP4PafLdWkR8LCN8ePFcL7fdOWrA9wIt/vshcvZl8vhMHiefI865ypnuehv+rws0LwyjVJ8Oc5SPXpyvK9bVmFIPeq+1NzNunXNZ4u3M8qBCd1Xj5Z/0NUT3vtPVb7qxB41+hordh6mOpcl23NbSSKoODwvIrNci5U9z9apVWsVQRtb3NO7ewl/aD26XsbNhfBtYkP5w9nHCGvV/wnryznInhp7A5XQ12p/mzW3PblvkXAcbDqtK2hG9U7R3/lJoQVQegBi31XY0nnuB6jsCilCJQz1KrzZI+S/s21K6KiCIo5XXcr3iLd/dV15TmDRbDKvsniHt8xqruaaebfEC4GfY2n0ppepG9Yca6SS60YHBYWc/X9Ij0t/PI6j9XFsF90yaYKj+NUP3l9h1S3bTFoSn9b0DtKur3u0Jq9Z4tBJ+pdyjLPE1R3g7X5RXeLQfHHpTmJv0n/zWkYueptMfAfUzI57u1O9R+s2LyEb8VwO2i7hovASapLBxxaodxZDBJZjE/Pgkg/csJ4NIinBFxb1fIWzT1Fntdo5yDX3BIQdswR/BlH+pdm6SXHlpcA02WNrrixB/n6/Xr+Sb311Pb0vDavUtI/2L/bsvF4Ccx6YfJi1UFPqv8aslmUeKME3ocp/tnNeZrqMek/dRSfl0Bl/Si99AHprceUnK5nl0BWsUz+M/0z5Hx7YJM2wioBAy/b6oZK0svkZi7d+7sE3r2IfXjh9FlyXY3/kpUjUQrJIs8XXJI7R/Uim+5D6tqlIPLlmPdYFumX2C1KtzeXgk+1RnCVy3ny/e6FTNeocylckP+6YtGcC1TfGjWQtNO3FH6bBy4fzCH9q3POtbSwUpCQ63scYsigevHVwT0KKaXw8/Ve16Eg0pP5SxZ6VZRCEYhsutFHut7t5F7WQCnM/Rp45MAGL/L1XsERCcJlYHs4e4IRQ/qp72OrHi4oA5mUCdkaXm9yn8w38HXcpAy2spc2ejqS7ta5Qn+bbRmsEVpsvfMz6Udoiy7GnSmDtdKx570W+FB9wFDwGd/dMjDfH2TWc430ej21SNs3ZVAcr5z8uJ/03+crXD4UlIHwPanIe9YXqR72yY5bqKMMtnz+0VSdRnqNrOQ+O+5ymNwUteXAfF+qu1it906QLwfe35/ilgeSLi28zpbXsBxmv4/M2vWb9J+TDqNWVuVQUCK3JtfpEtVDdIZWRh0thz8XApoulJNub2hqNHStHFqkp5tcXH2Z6glbE5vpMeXA9fQyb/k70pvDH2heyyyHMRm+DPf5flRX27dFobyuHDYPFvDYh5JuLaj+Qu5nOZx289oeLnyF6rrnggodxCtgfO7eFYsvkt6k0uYXq1EBHWvs1QR/kX514ZXCvg0VULv8zC294/5kXN+GCK0DFbCjO5r1vpv0l0o7fh33roDCpUs9Lx24Su6LRGzL3j6sgL3WNUnRTaT/Prt/0UBiBeja/hqXsrtG9dNdFb8Wl07N5/oHf1Y96bUGS+FgXwWEv1/8YWzvdfI6pg30RwpUwo7nEVn7G0hvNwsUqVGuBIFbTwfm2t8g1+G9gbdnGFeC1oY1Z7TbST/785Tn2l2VsCZ9+e0Ql5tU/1hbkHL6VCUU6M4+aD5EupSH/PYXtyrhbYmG+BKjAHJ/wv69ruZlJeye6Dlb7016xIKf/gJfKuGN+rff+rmk16a9kljWXAkcSxQijYQDqX6M+32X3WQlvFSefrbHkvRYWhznVakqqI94FrjmAemi9stt3uhUgXOSePe6ZtLbznO3V5hVQZbQlcDRRbeoXqH9+uWvQ1XQ0uByactJ0mXa+57IXq6CNJmTBeZM0jvcjn5ZEVEFKpteH5gQuE311RMds3elVsHP6AjLbVak07nErnhUVsEeDutbVhGk75IOl749WAXhzNOynH2kX+qxzosV/gF931z7rZcHUR2mjwRkLPgBJoz9fDb+pM8uMTpUYfIDgk7a7+SsIv2N8Zhl594fcPyCR6OV6h1yf1LSue7X6R9g7PwmaJsH6eusG1YLBP+AvB9rnSZySTdNjTGReP0DBLmit5pLBVPdoV9k5byvP2Bp2jXTzYdJr7nWpr+w7QcotEgaDaeRbsjNqarFWQ3WFh0qa2bcpbrKpCbfMtlqWMeUHqE7kq6ktaVcX68aShnZj1o+kj7WKn/DwKIahN49nblUNITc160sCdd3qIamrPe6F9eRXvVcqUjvSDVsGzEIMHUk3f3JlrzJC5yM/y7/P/SHEP/7i49/R0IVUA2UjpqhtqgbykAD0DA0HmWihSgLZf93fE0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdK0cHxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZK08bxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKG0pjo8qoBooHTVDbVE3lIEGoGFoPMpEC1EWykZpOjg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpeni+KgCqoHSUTPUFnVDGWgAGobGo0y0EGWhbJS2DMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjND0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdL0cXxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZKM8DxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKM0Qx0cVUA2UjpqhtqgbykAD0DA0HmWihSgLZaO05Tg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpa3A8VEFVAOlo2aoLeqGMtAANAyNR5loIcpC2SjNCMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjNMDxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKPVXm8R/7jP+bzc2FTNO0vROVUP6/PSO6T6k19Jcn+tcqQbjudMWf0shnX+/B6/Gk2rILTiXOGfWParvznhsqJpeDaICSj+ED5Me/OfFarkf1TBtk4HvyyzSG+acVpgxXA0Gt2ReDMuGUt0xquYzl2gNGPDTjNtOkS4j8XLZoFoNZO+I0PEuJv2yafYh1uoasM9ccSZH/T7VBc04bPNta+CC/lHOhCukd78G0YQzNZBSujB5fSvp+Zl2HqHBNTBgdzfIf9UD8safd2PQ+dc1MLmc69zxcNIrLrXutf1aA61K3+14aA+p/ni5bAW01YCanNUS+l7SVxxlDctw1sLyvVWFiumkb1ZWThyVqYWJtYc04uUfUX3J6ZY5hctqYfv+H7otDNJF5eZKRG2tBVf3B/kZjaQf/Fgb6+lSC5xBSaWmqx9Tfb7D/NL1frWQtP6D7qkY0q1niV2bE1kL2S3GnSq8YeSN9qx331tSa0HoTvxaRz3S2xk69+Mqa0F1q1Pk+EHSR9NTOk8O1kLNT6Nu1kPSBWnnPxoK18GuXeKiMkWkWyW+451QrYOAjq+/nnOHU/31wuf5qavqgMdjxf3reqQP9MTynNlTB384F1ZlHib986HZr3U862Cnu+HjTeGkz3A3y+u5PfX4nt1lauWkR375uinyVR3kmV2x3ykYQd6YxAjoWX2pg+E4Bc16OunT7YJ9eZvr4OCT0wrvT5JOa+fXTpiogyPnhWezXpBeeFhoxd459bA7c2xwVxPpVQPWYdOW1kOOcn/oIqlI8gOc7rjtLzfXQ6QvvXOzOelzK7sczJzrYdbI+/RMP9I9WQOf2D71sC8/fNSfSXrhudSDNx7Vg0Lcp8NPxki/JWW1e0FSPRQn08dENJ9Q3SmpKvhTST2sfxxztMCZ9NGHHrOse+vhYlblq5oI0uPOJHec4GZBv89vnxU1pF/PCW5PEWNB6E6vzD7xp+QNr66vL5c8C96qCxkNbiF9fqFpuukiFkReOpGx1p901a5XQdf0WdDRES/bk0X654AA7u9rWLBCpUKqaZL0JWXFQqKWLFgdL+SzwDCK6huWHojbYscCQR4fWeZJ0ml9G9qvH2FB2Az7uKg3pFs5X/uQd4YFndHFv2p6SQ+9YizDe4UFL7uqM/ctjKa6luQtcXowCwKrjuQscyLdReFthEckC5g5W5k7n5LOs7U9Iy6eBS7dsoe/NZJ+dv9F95ZUFviML/S+qRBDjo97R9KcfBbMfx6U+GgP6cLuV25urGSBpeO8zF8PSLf0aR0+18IC9VZTi6hq0v2sb3e/HGBBXrW05COpZ1TXj9I+XjPJgusxq9Mat5Ned/nsFX6hBthHm+g7fo90y7qlS3SkGuByH22beRXpsZ907PfObwBXv4u3Ts95Tt5Qfz+o6re0Afa8WLqhbzvpVSrFZ+KMG6Bdmy4fF0q6kcPZPWWbG2DbJvsXSdWkF0ZdKxzf2QCNm8auC8vGUv3ZBb1iGecG4Ns5vuvlHtIPDn/eb3SyATbMnh1/J4z0gJN3fPf4NMBvo4/SnxtJr/oupHcuoAH8N0lpGSu/IPOXjz8T+rAB9KeBD5cT6c9yhczfP28APQGxh0KxpL/em5dY+KEBlLfaC+7tJT36/v23HVkNcCSBy2ZU8yV5HPq6lRzFDfDTMkWg3J10b4GXDhL1DXBzhvOzn0mkz7/zRm5RdwPIdP35YD9B+sZV1kdgvAHuWd9OnLnqFdXXKD7fZs7bCJcfH104zY90/uL8MruZjdCsKHPTqID007t6+9wUGuFV+C7bpBlxVG+R2/b0vHojHDu0WeqUDenZEZaj/gaN4BLqrHvq0V/99Na2O2sb4bbujUVJzaRLyWaffGzZCHyxl/UficdTXTpFOzrarhHy5uwFmj7pS2R1T7860gjVD0/bee8ifd6RE/1vzzRChV+RjRKD9DTJaOFEv0ZYl/28tiWS9NKg4JKPdxqhY0tEdM5n0uP1pFemRDSC44tXLjldpPdNk92VEtcIbttUWptFXpMffDFuKyanNIKnanbO3KWkNxzwDU380gilX19nnbUh3eUWX2ZCeSPQZ/sEDZ8lXT7O+HFcUyOo7V/deTWcdCshe81n7EaYP3LBE3JIF93/+kz4n0Yw3mAwLNJF+vZAT0aIQBM8cOIQ/SPyhuo7DkitvCHRBJ/Ues7w6pAuaz+Z4a3UBHevPe1cuIP02pPhPCc1m6C084CQywXSFdMuTXcyaoKVq6bf+fKE9BurV/6w2dAEz10FtIzzSN+WcfyoqU0THNl1Iaikj/QHmz+X6jo0wWxDrcMM8bdU91cc5lU61gTe8fec1hqSbrj1k4DohSZQmWTpqdqR7nPmV+PPq02gpN5zdd5l0qMvnb/VHNIEB1T2ieq+JL3ZSkOm4GkTlP2IPrGvhHQuBodPwpsm8LLpc4weJ714vPtLaHoT6Dcuu8OtkED1J8Wjgxe+NoEEp+VLzzWk17I0uO2rmiAipHcXrwvpl47H/1nT2gQjbTfNn98mfYwjpEl1sAnUHkToOXwkPf2HWBI/rRn8CzzSdRtIVysy8+qY3gwX+c1vy/G9o3p9103IndMMtlo77WSWkF4mOGP0qUoz7OlILV9iRXpa7NxYb+1mSGi+F2ZzjnRfuujePfRm2Mshfjj4yV/dSme2/qZmyIs52NqeT/rJV70lM3Y0w4R6W8qWQdIlxMPudzk2w/nq9gd5Uu+pPmvrW7fM482QLVWvvX0l6X6Td61CGc3Az9iw5Jcz6Y3RmWZu15vhj0rq8vhA0lVY8ftWhzbDMoEGfo8k0q9G1N2cE90MLr+vmWxtIF2fr7C6+20z+DRnhBrxfyDXvQ7B9enMZmBMe/9xuSbpH71k6gIKmqEj4/vWjdtJH5a4ed/uRzMsOJQg5uJFuuujQV/NtmYolDWNevSM9FCbmjDaUDM0Bb1NZxWRPvt8bd83WgswR52EtH+SXl977eQDoRYIea4Kd+YlUn2pl5ees1QLnJLh5Zm2gfQ9my30dea3QMftwyJ+x0nXjA09S1vaAmY/FUUkH5B+Rp7Nk09vAdmobe/eZ5G+brSrMmhTC3AqBb7d30O6aIvy+O4dLcAzWZgsNzuJ6gWRSw+qHGiB1ssXGG1GpIvde7mk93gLhN4/k5B6gHThU0qb3jFaYIGzrGB4AOlhdWo5Z663wG9dQ73AJNLtOMweGYe2QNj8xezrjaTnrlKo4o1uAaOJ8rZgwY9k+3ql0/lvW+BlY0Rp7FLSJX2bLt5ktoCjcsDhr7tJj52s/b21oAUsuLQdxy6Rrlce2CL+owUeOX/0WBJPOkffqZWVrS1wMWlo59Eq0vdqcUuEDraA6zXL3FTOZHL9V3/quJPWCos8hk/OWkT6qw+ZS2WEWuFKSdhc922ka97KuFgzpxVszxR7158nfVRkYvsDlVbgCUndZhFDesuH/A87tVvh1H5zq8Ii0pM6PMOl6K0w3LfC2OoX6Y3eW6SqNrbCjb6xkmalFKo/97mqfHd7K5idzfh6ZjPp6Qn2OZaOrbC74VmnlAfpypv4aTOOtwK/w62eT+Gke4Y8Kvt2oRXyZuoFu+WT/vohff3Va62w69rSKJVh0pflcNitvdcKv79ysZrkUql+wbdThiuqFXI4+KfFmJLOzzHOSHvTCjssb9cfO0Z6WaJCgGd6KzBTGhebPCB9h8b6TUu/tsKbkkXJ0jmkt9/dmtxb2QoGUeEbxvtIv3dSsDamZepx/N1iauakkdfL0uDdvoFWCBz9Gpq9ivQzjiFrZCZboXPHYPdbF9LLlhXfLhNsg0tD6gej75I+Yn358Q3JNsiOr6p7/In0CZ71h9cqt4EzzyHJh12kN9c++j2p2Qad34+1PBJPp/of399bE43a4KxO5NS7KdL5d+cfddvQBsyLpZ5xzqRnqzrsVLVpgwZJgebU26RPZM2awbJvg5Nwan5hKun7S8RD7h6dGlf6omRrG+lih4L6Np9vA5nNzjmTfEyqP8l/IcV7tQ28QsPVheVIv8dzSDr1bht4Lv+jLqdNuv2M/MHjT9ogTmVJwhJT0tVnJT1Ve90G/pJ+L1fuJv3odTHthtQ2MJAYmmZ9jPQX98Mf3s1rA9mi0deHL5PepTm/bVNFG6zgexXq84D0hZbmYtzNbSD5O+v1/deka1swZT+y2yCz9ExbQg7pw3y8wm5/2iBdOGzR92rS3cSjmpQF2uFlm/+xTjbpPDKzw6pnt0N2vlwsL+8nqhtzpJkEKrbDeGZWrqI06dMXjBWv0WiH6mbnNGMN0te9E9v4e3k7SKadvWC7mvT0rPWvX69rh/t5nZMXdpB+5k051wGrdjBskF0a5kr6vm01JjL72+HX03HRTxdJ16KfdC9ybYf8X5VXG++RnsTxNvjS2XZIPnk1lDuO9B0Od54ZXmmH+G9btednkV70dlYc+047nN7K2ri+inT9IZmYpxHtYLFza51LL+nL1W/e2RHXDu+ZmvWBXBnk+3WUsYdISjs82Oi69r0k6WfUaOZZue0wvMROpFqd9JK11xQ8y9rB9xRzCW0V6Rm3H7apN7YDmxEVrmxDOnd3Q1RjbztIu/nv2eBCunzSnz13f03N54mR7VFv0r9oXBPdyNcBYhq9YXfvkn4kRD6FJj7VN0hJp70g/etl433v5naA7de7X5o/kf5i4XGug4s7IOPRtWjBCtLj/dTD5Aw7IGiZS7xWN+nL0xr0StZ2gKPQz/rtHJlUP7huvOCyZQdkCq/Q8ppNurhp+d7ldh0wbc7lyJiFpPcll/SyXTrAxtVFo5BO+suC1Weenu6At5qfy0a3ka4leppnx+UOECx9HiB/iPTSzA/XhYM64NKdQ3vWMkgPm0OflRnWAQmjwctd75D+4uTme6dedkCfzoDq3eekH/ogKbvoYwfEp5yam55Ousjx749ZOR0wEWap1FZKervRo7l3SjqgVqJ1iUjnX/Ppj41Yx+qAgp73K5dNkh7eJqU40d0BGyfO7tw7K4vcb5vwR74Z7wCL2NmelxeQfl0vcN4B3k74bekXGmdEuviqL+HSMzuBWTieVmFBusrJLIVC+U5Qb3zbMulE+q6Ptx5fXNQJq17JCqueJz1R1FhOX78TKld+XGZ2m3TTmqoHPas7QaxEeZ9HDOmPhR2kI7Z2QprgrOthqX/N51P7Pau9nSBusT4xt5j0lXpOkoKHO6Fn5bMmdhvpb4vag9M9OqFw0x/hOX9I3y3rLH7CtxO4TSwNjGdkk/vMcx23VW91QvvR5w7O80nPrnSeUfuoEz6W0QIDl5OecyjdcVt0J7xIvGnzYj3pSjqdAYGxneCy0DolyZz0485PeP4f/UOI//3Fx3/gQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjv33+Rv/Kx8qikqiCqgqqoHqoXTUFDVDbVBb1Al1Qz1QBuqHBqAhaBgag8ajiSgTzUUL0UqUhbajbHQMpa38Vz5UFJVEFVBVVAPVQ+moKWqG2qC2qBPqhnqgDNQPDUBD0DA0Bo1HE1EmmosWopUoC21H2egYSlv1r3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlGbyr3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlLb6X/lQUVQSVUBVUQ1UD6WjpqgZaoPaok6oG+qBMlA/NAANQcPQGDQeTUSZaC5aiFaiLLQdZaNjKG3Nv/KhoqgkqoCqohqoHkpHTVEz1Aa1RZ1QN9QDZaB+aAAagoahMWg8mogy0Vy0EK1EWWg7ykbHUNraf+VDRVFJVAFVRTVQPZSOmqJmqA1qizqhbqgHykD90AA0BA1DY9B4NBFlorloIVqJstB2lI2OodR/W0X85z7j/3Zj4zUxK7kgrhMWP5JT+GxDunfgQZE1iZ2g4PWyrcGRdKfuzus/szphoJlrpsBZ0js3HpoeV9QJ5TN2GGkFkh4U0uW/v64TBPhfO++IIp1H6zC/ZFcn9M7kueOdTLrWs67LX0c7IZvLnvm8kPRnO115vbi7QHZDaFdxC+m0Gz8v6oh1wRcfv9m/fpIesP02V6dsF3DNGqIriuZQvTvO2PuRWhfcjQk4uEGZ9HlDIhwWy7rg5Ymft44bkK49X5AxzaQLpC8lJN3fQnqy5qrJZLMuqONQqcu0Jz1DOf+82+4uuBx7d7LLk/Ro76QJpYNdcMNGU3bWTdJPeKheqDrZBULOozrLn5Buu1CXdsOnC/4Y5ZraJ5GuP8rtvTKgC2rfbbe89o30mjfJ3KMPukAtVNc6oYn0+4O+frHPuqBLIWVLzdhf8zELErJ93wUqeyWWcwt/JvOJkgmaldkFlp9WSi1SJH32jh0yX753wXdvrnYLPdJDH9yIOlfTBarKbRFnNpG+/RVNW6ujC7zb6KaR+0jXnjfxqXW4C0pWzC/LO0V6jUK1xX3ObpAwPbpm4Brpgi8G2reIdMOJdQkhcyJID2mI8uKW6Ya18sa59A+kPzCyk0tS7QbJxLlFB76SfrrxVrqLTjec9p8dd6OB9KqiBId5K7vhi2DQ7ncjpJ/XNxWr2DzVVZgV1YK5VF/wujzj6s5uUHrjKsk5l3ST8wOn6U7dwGxVlFLVJf1Sua7B8Ilu6CybVrFpA+kn5plyPPfqBqv6HtPjtqQXQGnhnhvd0KKyyTnEnfSUzFvPZt7vBiMB0Ez1J336itXXcqOn5hN89l7DY9KFT37wPJfQDZd/7QzleUf6yffpx7Q+dYMd97eFC/JI7+UGj7aCblDz27l6Yz3pN53mXn3woxsUWPPqjgyRLqG254V5WzeI7CzrDuD/QvWWWWM1vEPdUB+fcOCNHOkFH/7IptB64LF7gEmJNulXnl5xOyrUA3At02PQlPTJhIwyFakeyAjRHJ+xh3RD45rNNSo9MHnU5KPmcdJ5nWfXBmr3QMOtjrgtfqSv3JzmtZbeA+JXbxYcfkh6heVioz8be0DdVZH3yhvSze2+zXy7vQekTYU3PvlMurjELG5nxx6Q9NYKTKshXWa2j6j88R7I3NGRU9FP+m69lwZlF3rg4WZaXR9vHjk/v2ldvHqtB9J83+fwypBeUZPRa3yvB8Lgo5uMJulSVtJnx572gJmRSr7GGtKbrfkXx73pgYUaF7JW7ST9lb0zr2N6D9hJvV6/zY30yEfzp8l+7YHtKdM3OPiSrjsJWqWVU/PhW/3meCjpTcFpV6629ECL6eHDjDjS1z9NF1k10APyHwbsr2aR7mPsmvNzogcOrn92KaiKdBDij38j2AunZ2Ul3+8lfWNzxbeDkr0gk1LTE8aVT3WHazrKisq90NI7xPNEkvR19v7vqjV7QaXUo/uJOulbZ2zyDjLqBY/zxlciV5J+XIvzxqYNvXB3193Mx9akF3Atr+a16QWHZ0u97x0m/Z546GGmfS/MqF4bG+BFevxgrsnpo71wRuykkm8w6bbFXo5Lz/dCik9t8clY0nv1/Ut7/XuBo0fivgPzr/m8fhv47O7UcRhbbmdeRjo4V4fZP+mFly+a+Qw6Sc9t7uBWeN0LY2UL3OUnSRd9UsysTu2FXW4v/DhmfaV68NfbFXfzeiFWNEiZpUr6tyKdjZYVvTC88ZZ68grSFWXz54o194KVUovXra2k+71z3fmN3QsLHbdzOR4g/VGr6e+rf3rhjeSmWzpnSXdouzhtvUAfzKx/LcwRSPpNxg4Gn0QfsPaI2OQ+JX3fG76DnxX7QP6p76arH0k331H++ZJGH1T6fy9Y95108Uqxh2tW9IHanNUfuJpJv/9GtId3fR/M7qltSxwj/cDyJcmfrfogO1R7hbNQAflB3LJCgSv7+yBC9GLQrHmkrz2zq369Wx9I/nyb91GXdNGglcuFzvWB4DzzlJ0bSH94cESp8EofaJYFrR7dS/riFvaD28F9oGriuPL6CdJb/eOirSP7wKdl1w3ZK6QzVBJMZeL7ILkigzvmIeltThd9GlL6QGDVXcaiN6RHX322M/pLH+xMDqh5nkO6wWBcqUt5H6yOkB+cV036siKVgaVNfSB8xe1RUB/pZ3Ief/jd1wdtt44kTnJ9I9v7vlLN/t0H2yuypewlSb+gf0LpMzcbKrNaHn1aRPoB5QGhRYJsKPDhkpM0Jv1q/YOtgWJseLtd5uiBbaQPX6cPjUiwoXX6mFucM+n+J54N7ZJjQ5jpwpG+c6QvzYnclqnEhhscUlWqt0ifc/KXpNpCNvz8Md6/PYr0Cr6z9EBNNjhfK5X0+Uh6jwO7YGwZGwbW+is/+Ub6gmfzMm2N2LBmbmlfSiPpa4eq534xYYOj+5otBSOkP6Y3d2luYIO0hYV0mcB3qk/T5FS8b86Ge80bF5bKkV7X9DOX24YNkZUHrPK0SBfLDqw/socNaUWpxz+sIV3bzs+pyp4NuzK37Li/g3RbnUcOJofYUBbM1+B+hHSpawGVcUfZ4PElrW6NN+n31KQypT2m5tmhryYcTHpH7YCK33k2VKcbhOY/I73xynee4YtscOf05LmQSnrDrH12+66yYVF55ErVItJX791uWBjIBoa9nernZtL1l9jdMQqZ2n7flus7x0hfCvOOvnw0Nf89tCcDPIVUv/nVuFDmKRumd3hLvBEhPXutXcK1WDYIjHlMPzyH9PlL5eT/vGbDvouLjygokm73S2zGkUQ2uGkOzv++iPR3WUU36tPYYOIrreyhS3rxht5g82w2tKlxmkvTSTdMHFyYlc+Gei3+u4nrSJ/n7rxlWTEbNm2737jFgvTX/MWcsZVs+LBUXb5hF+lF/c/XytezoSTcSO+wI+n7Th2WD2phgxJr55x+V9J5r125yt/Nhiddcq9cPUnfG+l6/cLA1LjpGo1t3qSXXb+kMjLGhugH68O3XyN93ELDxmWSDeaWyyqy7pC+e8YXxRaefvC+Weq64DHpM8qj/HdP74eHUrOsL8f8ddw859won9EPiRp/POpekz7b5+ASszn9YJr78tPiZNJPcdS65sn3Qyprp6xH1l/98Euz1Sr9sKbIyuNjAekPfMRKmIumxg3hSx8uJ91jsd7Ycu1+aFIfrV3AIj1o97pPSfr9EFmc/cmqg/SeLocly+j9UOuga312gHRtr+hV79b0g16i2tXQX6Snn1CY1N7UD1sanq5/zV1E9UWvq/e9tegHseACb6YQ6V9Daly1d/SDBaNLIXc26R875eYn2PbD8btHZuTKk54dE3xF50A/SJ/uNmGqkj5zYknIB5d+WPZlXlS8JunXVL5bGJzohxGfMcV7BqTPtjZLTT3dD7/sL7zwXEX63ajLZcZe/RBLH1bfupH0T6P0hzmX++G+fXbwvG2kZzSB+MYb/aAwdqWsczfpr5+CUXFQP0zsFqp67kh6G++g5Pb7U/O8uyFgnyvp8hu5o1jh/dAfdbxTzIN0hqJ4q1NMP5wdbS9PZJB+/nZaVf+rfjjNNFltfYX0gM4ArzPv+kHgiLVyTyDpTXEz63hSpo4bv9qB06Gkfw/K7gvI6IeCsMmfExGkmx+Q+SDzpR/qE6yKTseSvoHHd+mz7/2gGt75o+ftX49jtt9Jt7wfVATe8dmkkK6rPMMiq6YfLq3v25CURfqyTU1DW5v6IaVhZrBYAek1nvKbGzv64XpTfaVtGemuBrx7j7H74YmTJW90LelmwwXzuUb7YTotUbS5hfSUhsiYoD/98HpuSKdEL+m+nC8aVLgHICM879LKEdI/zOUoSRIYgH4l18r9E3/NvyDh7CaxAWi4wy4+w1tM9c2W3+saJAZgbyjvQX9h0n9mbxk/KTcAZ4U+BN6cTbpO/8Kv05UHwPaQtdFVOdKn7TOzjlw4ALtO3rA/p0K67ZWwUAOtARiKsxh3WEz66cGRO8V6AxAt3Ntvokv6w9PK6w7BAETUDaySMiI94PTwW+41A6AabNLSspp0Ry7V8kcbB2DFC7Gv0ZtInzv9ZJy+xQDUu5T07t1Ges+TACjbPgDBxRtNhHeTLrhg7qWjtgNgaHYl84096dZuX7yFDwzA2Mvq/ZsOk+5JU9J54TIAruU1MnXHSX+yIuvB+hMDMOfZwVb7M6RPhOomdZwegPy8qMQGb9Kv5dH8r3gNgIP78FVLf9KZ3eHCan4D8HTNb5vUwL+OQ/qtNfk3BkBDOFxS5h7pYgWrNV3uDMC9UL4stzDS4+7N/ybyYAA++N6xTI4mvbbokczbiAH4Odma+esV6RtPTZexfjYAfaEVglrvSY8S+pr/K24AamacVdmTSnpejvbC8PcDcFFinjAji/QLr4L016YOwODMLal380mPLzMY6ckcgCvDaYufFpPOe87F9k7eAHAM7NsdU0W6DLieWlE0AM832pqEs0jnMzhv0FoxAElSIvU320g/olcac7NuABJ4x1VP9JLOror6pN8yAJwzK2U3D5OulDz/YnPXADzeeSdJ9jfpDQ8u9t0cmDp/yteONXKWkPPkahvn8vGp111cu/whP+nJnKdS2ycHwJIjZ8tmUdLrJazkgnkHwfDBPbuh2aRrhT5RMhEahE8prnwBsqRH61/4PjBzEITyNY3nKpG+7PmkbITUILic7eOLUSNd+PNyka1zpx7/Ru0uJU3S575bH8GpOgiNFywNgpeRrsJjWP528SDM2Pj90Z8VpHeUyjx30BkE1bmdl3eY/PV82b9lJJcPQr6k3eCL9X+Ny25Rz185CO96heuHzEiv3smqPr9uEDLed5lqWZN+JWdAWdtsENRvCS5x2E364565gu1WgzDb/uHN6/tJDyl383+4exCW+XY4xTqTXtjFirCwH4Sek2ZJaa6kl0kesxA4NAied9Zd+OxO+p+Wefc/HR0E/y92SdlnSD9ym+3h6TEI8voGjklepLtrV3RpXhiEh6OXLkZcJl0zq2ig03cQNr8Tmul1nfRnpj+uPbk2CHOPPBHddvuv49/Qkbjn9iCUSWiclbtHOmfTmPuc0KnntSXSsvYR6bv7JjJKw6bOB54/IYFPSPcXHHwUED0IVWprTQ2fkx77Kp9v06tBWLfvjt2PONLThs9P8r+bmv8lruYj70i/ZsLp/Tl5EL52Jnwb+0i6nczGm74ZgxCw+buCB5P0nhObVUy+DML2pJNV3dl/Hbf4rwGZBYMwoJfc4/flry4QvourcBCmnbXQ3pZPuqxYwbH/R/8Q4n9/8fEf+FBRVBJVQFVRDVQPpaOmqBlqg9qiTqgb6oEyUD80AA1Bw9AYNB5NRJloLlqIVqIstB1lo2P/ff7r/pUPFUUlUQVUFdVA9VA6aoqaoTaoLeqEuqEeKAP1QwPQEDQMjUHj0USUieaihWglykLbUTY6htLW/ysfKopKogqoKqqB6qF01BQ1Q21QW9QJdUM9UAbqhwagIWgYGoPGo4koE81FC9FKlIW2o2x0DKVt+Fc+VBSVRBVQVVQD1UPpqClqhtqgtqgT6oZ6oAzUDw1AQ9AwNAaNRxNRJpqLFqKVKAttR9noGErb+K98qCgqiSqgqqgGqofSUVPUDLVBbVEn1A31QBmoHxqAhqBhaAwajyaiTDQXLUQrURbajrLRMZS26V/5UFFUElVAVVENVA+lo6aoGWqD2qJOqBvqgTJQPzQADUHD0Bg0Hk1EmWguWohWoiy0HWWjYyht87/yoaKoJKqAqqIaqB5KR01RM9QGtUWdUDfUA2WgfmgAGoKGoTFoPJqIMtFctBCtRFloO8pGx1Daln/lQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjqE0s//xn/uM/9uNjYu9u+qq4qkbyPQuj7kFpDsY7uvJKB8EmUKZM+8LSb/vZCXtUzsItiUH9wmWk77zXe23Vc2D4Ow6/GJbNeniCR28PF2DoBfcvv0Oi/Ruc7eMnP5BkH7o7pTXQnqeniPtytjUje7ebxVDnaQX8zDTN0wOworkRdGz2KRvrT86Kcw7BMyXxWULhv+60WW4phVPH4Iq7un7l/4k/YPSi1/BM4fgZOSSzUsnSd/DkHq/U2oIuJrDghdwl1J91psX3Qpzh8B5sNBwFj/pGfqWj1rnD8H5xfQVQ0Kkb+rlyHuxeAj2X7gQ+mUG6RZDT48c1xkC62RNiyAJ0m+9W3LVYPkQ9NCEDljKkN5ZeV2Oc9UQ3J9dU8Y/l3RZw1fz89YNQfiXC48TlElf3H7u6S2zIdiyiZ1pqUb6QfGO4J3WQxAYarSqczHpCjLVP5X2DEHF9zuy7tqkj58wKuy1HwIIXG4xvIx0voTf4kmHhmCmc3DzweWkH/adyPM5NgTnVJWLy+ikpzxf2LvZcwhumfrL6K4mnT128LwUYwj8NvhlXV331/OyjjjdemkINOW488s3kf4+9X3Dm+tD8N6TV1NiK+m+utfeXAgaguOrU0c3WpG+tpane+P9IZg1flbBY8dfx5PFc10qYghqJz69CNnz9/xdgtpjhkBqttajV/tId1GR5fgQNwRJ7x6OJDmSvsZgqMj3/RBMHOFI/HiQ9OZtRTzbUofgkNnl5vgjpKtp3rqvlDUEb0z9zj849tdxjp15ayhvCD5fue537iTpVSWa7VlFQyDYbc5jeZp0487PD+5UDsEl88xR+fOkHzoU/8qxfgh0+bn3N3iRXi6eLaPXOgR7tA6vD/ElffNAXQt/zxB0yF99bXKF9Hu7yvlqBoegOFn1Qes10mOn+1x89XMIfDvXCJ8PIP2UQoq1F8cwrO6dN10wiPQNKjZelnzDcCNPN/T6XdLT5qvTVEWGwSXaIJXnPunK70RLfokPw/elKqePPyL9YX/F2HeZYUgR0iovDyfd77G12xPFYbguXVW+5CnpL9Tt9TzVhuHPWJXX+RjSk7OKtmzWHAbtbXq1GbGk22878U5RbxieWhn1/X5FeneUvNO40TC0/TmXtugN6fMdox2/rx4GC79i863v/vq60KmPe7pxGG4X28W7JP41z4+hK89aDANX8sOG88mki759KWuxYxi6fFb3+Kb9dV5xdIOa3TBc0zlQ7f2J9I3pC2I4nIZBgGaX4J5FupWZ4baqI8Mg9LCRsecz6e+ODa9+7T4Mrq97163II33JVnXPK2eHoVa9RnJGAemvQxN77HyG4dwb69Ga76TfvOoSYeA/DMqt9n0Pi0nnEVAMnhk4DOyfewW3lZHOmRT/ufvuMEwemNjGWUl6n1yfTs6jYVhnu+nH0x+kt+R+qH/8dBgW+8RHQi3pR1xaMj1fDMPHs6zU7/WkKwpbNli8HQanZx1LrRr/ur5JNugu/jgM8xLVxEuaSdf3PZTJ92kYejdYHFrT9te4oyW+TZ+HofPBPpP4DtJHq3+fTfs2DKmSUS9Fu/+6/nvnRd8rmzpvORMTDvSSPmCoyONeMwzvxc4feMcm3fxU322zpmEoE1MtHR/46zypnGOxqHMYSi4s5tcZ/uu6Z37TmK9/GHarmosfGCW9dznsaR4dBunsO9MCxkl3OCEdw5yYOm/vremL+0W6qYOk3EOeEeAR7a/O+UP61fnq6Z7TR6DU0r62dJL0nEALf6uZI0AbjOP6wVFGzp+Nfue1pUZgkeu8veVcpBe15IWKzh0BZuNaWh4P6XwNsnU980fgRXD7aMI00i9/ubQ2f/EI1DycZn2Xn/RIY+HyGJ0R2OfasPioIOlNYky/S8tHwIHRGbBSiHS1ZbF77FeNwPfaghuCIqSP9zVYrVw/AtnZhwy+ipLenevppmA+Ap30yqcXZ5C+Lubq8wnrEXBL3t60dBbpGZXa3LV7po7bowM8teKk759562yywwjcbo2ROydBeoLflxmhh0eggTlgLD6HdI4OWo7H8RGYIb/W+6kU6axD++5Ynx4Bsa0lA+oypA+USzN0vaaOT3hv1CtZ0r/67PEV9xuBzy2Sb+bLk27osPfJ0I0RiJEZn39PgfQXgtY1JXdGYJx7lwzXPNJ7YrwWvX0wAiMJWpEOiqTPnykfdCtyBF5rBRYylUhf8vnYjGPPR0Bl+svEWSqkS3dmRpm/HgGLvmpXu/mkL1y/20wzcQQ2r7wlEK1K+oy914XF0kfAOdnuYcsC0r3XRbHY2SOwa3x0uexC0lWL/2QXfh2Bc9KyE5sWkU5z6kmNLxkBjh1vhk+pky4gV/w54MfU4zyK17u/mHSXmOlNbg0jECU9v+bDEtJ/2XCImLePgEyb/nCBBulLpSU3aPaNwIcAhXu1mqQ/d00JFhsZgeZkpdpWLdJbHHf39/8eAdPEsPIObdIz77vsKOYahfdSE6GtS0m3UN9f9EZgFMSsEqBWh3TNxA/bbouNAu+2tT8KdEl329LeelxyFJaJrWEkLiN97IT7RUv5UXi0dN3ah3qkfxJrUtdRGYWVd/pNzuqT7ns4sVFcfRQ8jdpubDP46/VSYkSMaI+CllO5wQJD0ocX5h6uMBiF1smDe0b/6uYpc40TjUfhbaG5CHM56elr5srfMx2F2Sp6+31WkB7rtIf39JZRSGLnuxobkW5Qf3xkh9Uo3HBOXv/zr37ZY7LXcPco5Bm8538FpM8WjuiTsR+FT/zOGbvopE+emRz9c3AUjrue9uc1Jt0yKG1a/dFRsOPyPxX7V18/84oc02MUpKoWP96wkvTCW4LLwy+MAktxZHbbX13w/PBe70ujYFxoN3RuFelB3ONX9l8fhccKbRtFTUi/KpSfZBI0CorrenQe/dU91RT7lO+PwrTpX7Pmryad3z95wbSIUeCyyhN++VeP7DRzbo8ZhfofMgsWryG99lrEyy9xU+fDm2bV2L96pfKxkefvR8FiSF1RaS3p54p8Vl1LnZq/de+ie3/1GO5HQS5Zo/Arn2ungCnpxheudGzOH4Vcae2MU3/1dUZiKzWKR+GNr8qphr96hQvnI7GqUViy6/CNtetIl9y56M9A/Sg0RLjLPP+rGzva7i1tHQWvF0E6/Ov/et2Hjma96xmF7sRfPfZ/dcV9uovuDo3C+tvJ21P/6uuHLgZ7/BqFvRoZ12ZsIN0kX5drB+cYjG2sCrX/q18sVTlmyD8G7tOf/n/t2/9Xj2ccx/E2fRBjIjFis5IPUWq+bGPeiSkhUuurCYlSmy+FaDVSskpf1uRbhUQqKvKlPsI0sWaa7bOzYqNQO6EOEa7rrtU6Zzun9+fsL9g5r8dv9/OH677u67rPuX+5r91FrP9aav3ApJ+gNbszUztYT7s/0a3dWFCsxjzPYW5Xn+ww4HrNMEH20YsaElhfuT1v+mUzQYYPZyz9hfWGi/dKMi0EzfUoVA+Yx54rcd97UTaC4vzsnZ1Z/+v10ny/DwRVL/uyKZ712zHjLOxtBQ18LePNq6yX1FQdU9sLCn1ytqKN9SijI6N6OQkaEJY7ztqpq6cEbsl+7Coo3NJsni/rsz3d1De8BUWu3ftBCuvd1hvl5i8T9FTtoH+Z9eGf5YxNChC0wW3ixUbWZ7bqF65dI2hHsUWo8Xz2XaseNMFloyD/VRq7aaxbnNYWT4gQNDLqPcvlrIeaWUwzjhZUrsl13MH6kIOGV17FCfLVa8nOZT1ybZjjra8FBZplfnKddf0Tn/6s2SvoXrDK9xHrt8zzPdIOCjrqOaamx4KuviDAtzY8W9Dt9qpqU9Y98kL8ffIF2T1OWDyN9ZnXbj21PSPoxJGYCHfW/7CO2/RuqaBg15OzVrNe0Lz1df3vBDV/WnglmvUzqefi6is698vgjmo/6xNszAdeuyno7jC7QQWsNzl9n3GsSpDB9v2qMtbTHu5Rx94VlNnkekfLxw9IORVYLyjEd0duHeuf7yuaOq9RUKrSFtrCumnWi6uWzwVdWDnStZtzV7+rcnPupwjyyR9ub8i6Z+LPvzfrSXr5df6i4azXevmt0PaQdGjhzANjWE+61rf5dF9JC82VwZNYfxF8PSx1oCTLPalaW9Zb3t/bPdREkl39zmpH1geN3JDsaSqpwbubtSvrb4cuMZkyRpLR+R/qF7H+Z4Zbtom1JN/kgI7lrEdZudu0T5Y0I23w9iDWy+uXXKiZJumNUeVbg1mvPLDO4fLHkixW9Vc2sd7dO06bOVcSPfJ6+SXrdta5i6NcOsevOhkezfoQt8qHfl6SCgPrUmNZ32j0KsR+qaQjc8IcEll3+dFUb7S/pH515/eksJ711CWu12pJ2oqcnbtZX6OKMW5cL6lpcM9x+1kfkFF66MYXkrK0Xl9ksL7Pu2VswbbO+Uxv2HKI9YWPxxUnxUpaPF9DWawHqQJmrEuW9G3jgQtHWa8IPFLpskdSVZBlxzHWqxvue048IKmkrqxnHr+v04h646OSLsZuu3uc9bPrl6wRxyUdH7g0Kp/17KkHW28VSaodOri9gHX9mNrt5zWSNq6zmX+S9ZtTR/RPvywpPL5n2CnW62cvS4/4vvM9uV0WVcR6cPph9ZKfJB0e5b36NOtbRtcXTf9NUntb+kdnWI+8b06mdyQlt1k84111yf8H/TpJiXZhiWf5ep7L/eTPR5KMr1QPOse6VXlj7bVmSUvzA3bynv7AMihHSHpePvYZ75l9176K7ZCkKW+1L2bdZEZRZFB3hWZdjE/ifV/Eiz5OfRR6HBJ8g/eplybvtTJS6GnZu3olrCd222xmOFQhTUvTaN63OZYWPBuh0Et1r7m8z05p//BXtUIVBYkreXe6Y3v1jJVCzQFh4byPVG9z3j1JobZRhQm8RweX/xH6kUJBBmJ/ic48e/h7zVTowe+qo7yb93Z8PmWOQi6bN5zg3dI9PmLYQoWGjv3lFO/2hysNOjwU8tFPOMt7wJN+u2p9FPrGtk+JzjpMcXmnbEXnPHMyNbyfi9mVd/gzhWwak8/zXqOtmhQdotAqI8NS3nu+M6RsRZhCPTbN1unjgxbNc4jsXM/fvHS6Z3FG9eivFDph5abTt+rf8+2dpND9z911eu4C0yeNqQp5vKXbtWl+myvTFZozXre3NmSrCrMUMhij2wOvRiyblaP8e0Cyq/9zcPK/3aK1OJ7/COFemODDr3vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B/8DQ==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ef1ae534-4ffe-47ba-93ee-e346a77185c6
+ - 0b49ec6b-d1db-40e0-af41-4db336de037b
+ - dfcb280a-2f59-4aaa-ab7d-450af4129a69
+ - b624573d-9ca3-41eb-81ff-2b404e8dcc1a
+ - ef7b2268-af5a-414f-95b9-02fae550af7f
+ - e94550ca-554f-4546-abe2-88d301199805
+ - 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7
+ - 983699a0-215c-40e0-b26d-948c1512ac26
+ - a5cc72ef-aed5-4ae6-9e2b-4189940315ef
+ - 1f6b6fe0-03e9-4c89-840d-3b8f6290e785
+ - 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3
+ - 3098d657-78ce-4006-b960-e7badca11ff1
+ - 1aee2baf-e365-4163-b2cb-49ff49fc26ee
+ - 6e4e46b3-e8c4-44de-b5c1-43708200af57
+ - 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f
+ - 4bda8a96-a835-4e3c-a535-d7498d0258cf
+ - abd647a2-ec4c-418e-bb1f-32a6b6a1a90e
+ - 13c8422e-4844-4300-8cfe-2cef76a73f85
+ - 03c64ba8-bcab-4d93-88d6-59b14530c84b
+ - ade9bcfd-b1e9-45df-8319-217a0d5fee53
+ - 529c6ff8-6d35-4137-9be7-8351a51e1942
+ - b5ce827a-f129-4300-8a93-baeb26c14cea
+ - 22
+ - 04440443-33c0-49fd-ae8c-2cb12af1e07e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ef7b2268-af5a-414f-95b9-02fae550af7f
+ - e94550ca-554f-4546-abe2-88d301199805
+ - 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7
+ - 983699a0-215c-40e0-b26d-948c1512ac26
+ - a5cc72ef-aed5-4ae6-9e2b-4189940315ef
+ - 1f6b6fe0-03e9-4c89-840d-3b8f6290e785
+ - 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3
+ - 3098d657-78ce-4006-b960-e7badca11ff1
+ - 1aee2baf-e365-4163-b2cb-49ff49fc26ee
+ - 6e4e46b3-e8c4-44de-b5c1-43708200af57
+ - 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f
+ - ce15836c-2f61-4886-a0a5-02921828a77d
+ - 12
+ - ef1ae534-4ffe-47ba-93ee-e346a77185c6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 0b49ec6b-d1db-40e0-af41-4db336de037b
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4234
+ -4107
+ 128
+ 28
+
+ -
+ 4287
+ -4093
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - c14a33b0-a7a6-41fa-a420-40ef0bb353c0
+ - Values
+ - Values
+ - false
+ - b624573d-9ca3-41eb-81ff-2b404e8dcc1a
+ - 1
+
+
+
+
+ -
+ 4236
+ -4105
+ 36
+ 24
+
+ -
+ 4255.5
+ -4093
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 7c3dcc56-ac64-420d-9c7b-f533767553f8
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -4105
+ 58
+ 24
+
+ -
+ 4332.5
+ -4093
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - dfcb280a-2f59-4aaa-ab7d-450af4129a69
+ - Relay
+
+ - false
+ - 7c3dcc56-ac64-420d-9c7b-f533767553f8
+ - 1
+
+
+
+
+ -
+ 4278
+ -4141
+ 40
+ 16
+
+ -
+ 4298
+ -4133
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b624573d-9ca3-41eb-81ff-2b404e8dcc1a
+ - Relay
+
+ - false
+ - bd41549a-5c39-43b1-a411-b1275b839e38
+ - 1
+
+
+
+
+ -
+ 4278
+ -4059
+ 40
+ 16
+
+ -
+ 4298
+ -4051
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ef7b2268-af5a-414f-95b9-02fae550af7f
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4233
+ -4836
+ 122
+ 64
+
+ -
+ 4313
+ -4804
+
+
+
+
+
+ - Line start point
+ - 9c0cadc2-c8c5-45c9-a816-b9c5295ff983
+ - Start
+ - Start
+ - false
+ - eec198eb-ba36-4323-bfe5-713f7913588f
+ - 1
+
+
+
+
+ -
+ 4235
+ -4834
+ 63
+ 20
+
+ -
+ 4276
+ -4824
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - b0d13cdc-8dc5-4f9d-a302-6abf96d5304e
+ - Direction
+ - Direction
+ - false
+ - e94550ca-554f-4546-abe2-88d301199805
+ - 1
+
+
+
+
+ -
+ 4235
+ -4814
+ 63
+ 20
+
+ -
+ 4276
+ -4804
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 80443a02-cce4-4190-bbfc-029334d26ea0
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 3098d657-78ce-4006-b960-e7badca11ff1
+ - 1
+
+
+
+
+ -
+ 4235
+ -4794
+ 63
+ 20
+
+ -
+ 4276
+ -4784
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 9d483e50-9bf1-41e8-ab8c-13b018a627ee
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4328
+ -4834
+ 25
+ 60
+
+ -
+ 4342
+ -4804
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e94550ca-554f-4546-abe2-88d301199805
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4274
+ -4754
+ 40
+ 16
+
+ -
+ 4294
+ -4746
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4220
+ -4599
+ 150
+ 20
+
+ -
+ 4220.314
+ -4598.975
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0.1
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 983699a0-215c-40e0-b26d-948c1512ac26
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4236
+ -4472
+ 115
+ 64
+
+ -
+ 4291
+ -4440
+
+
+
+
+
+ - Value to remap
+ - fb8d9f5e-32f9-4db2-b360-34bae71932b9
+ - Value
+ - Value
+ - false
+ - 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3
+ - 1
+
+
+
+
+ -
+ 4238
+ -4470
+ 38
+ 20
+
+ -
+ 4258.5
+ -4460
+
+
+
+
+
+
+
+ - Source domain
+ - 5c508ec9-4e02-49e0-b4c9-a6a40d3ff2ef
+ - Source
+ - Source
+ - false
+ - 0442551f-7f33-45c3-aac1-452de3f7b5d2
+ - 1
+
+
+
+
+ -
+ 4238
+ -4450
+ 38
+ 20
+
+ -
+ 4258.5
+ -4440
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 11aa0bca-781e-4402-a96c-331d9051a343
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4238
+ -4430
+ 38
+ 20
+
+ -
+ 4258.5
+ -4420
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - a4d87544-a355-4123-8651-a85bdd2e868a
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ -4470
+ 43
+ 30
+
+ -
+ 4329
+ -4455
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - d947a3b4-f26e-4122-8a22-91692e497026
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ -4440
+ 43
+ 30
+
+ -
+ 4329
+ -4425
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - a5cc72ef-aed5-4ae6-9e2b-4189940315ef
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4233
+ -4389
+ 122
+ 28
+
+ -
+ 4297
+ -4375
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 9a3b89db-31d4-474c-b3b7-4f68b41e6d55
+ - Numbers
+ - Numbers
+ - false
+ - 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3
+ - 1
+
+
+
+
+ -
+ 4235
+ -4387
+ 47
+ 24
+
+ -
+ 4260
+ -4375
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 0442551f-7f33-45c3-aac1-452de3f7b5d2
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -4387
+ 41
+ 24
+
+ -
+ 4334
+ -4375
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 983699a0-215c-40e0-b26d-948c1512ac26
+ - a5cc72ef-aed5-4ae6-9e2b-4189940315ef
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 3098d657-78ce-4006-b960-e7badca11ff1
+ - 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3
+ - 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7
+ - 1aee2baf-e365-4163-b2cb-49ff49fc26ee
+ - 14
+ - 1f6b6fe0-03e9-4c89-840d-3b8f6290e785
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 19ed3ae6-ff8b-4b60-afa2-110ed9eef5c3
+ - Relay
+ -
+ - false
+ - dfcb280a-2f59-4aaa-ab7d-450af4129a69
+ - 1
+
+
+
+
+ -
+ 4274
+ -4344
+ 40
+ 16
+
+ -
+ 4294
+ -4336
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3098d657-78ce-4006-b960-e7badca11ff1
+ - Relay
+ -
+ - false
+ - f047ec66-d90a-4bcc-bfb9-311207bc37ce
+ - 1
+
+
+
+
+ -
+ 4274
+ -4711
+ 40
+ 16
+
+ -
+ 4294
+ -4703
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 1aee2baf-e365-4163-b2cb-49ff49fc26ee
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4253
+ -4672
+ 82
+ 44
+
+ -
+ 4284
+ -4650
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 799f5374-eb2c-417a-8cdf-2a01fa6ea87b
+ - A
+ - A
+ - true
+ - 6da65fd3-5c6d-44c1-a7f0-8ec59707bf1e
+ - 1
+
+
+
+
+ -
+ 4255
+ -4670
+ 14
+ 20
+
+ -
+ 4263.5
+ -4660
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 9e91b11d-3467-4b14-85af-501123115dc9
+ - B
+ - B
+ - true
+ - 226d2b02-21ed-4b8d-8bf5-4ab9e27624c7
+ - 1
+
+
+
+
+ -
+ 4255
+ -4650
+ 14
+ 20
+
+ -
+ 4263.5
+ -4640
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f047ec66-d90a-4bcc-bfb9-311207bc37ce
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4299
+ -4670
+ 34
+ 40
+
+ -
+ 4317.5
+ -4650
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 6e4e46b3-e8c4-44de-b5c1-43708200af57
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4253
+ -4571
+ 82
+ 44
+
+ -
+ 4284
+ -4549
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ec014c94-82dd-451d-9aa8-cc1448ecae4e
+ - A
+ - A
+ - true
+ - a4d87544-a355-4123-8651-a85bdd2e868a
+ - 1
+
+
+
+
+ -
+ 4255
+ -4569
+ 14
+ 20
+
+ -
+ 4263.5
+ -4559
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 5f62925b-02e2-496e-ae05-bef98d16dd5e
+ - B
+ - B
+ - true
+ - 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f
+ - 1
+
+
+
+
+ -
+ 4255
+ -4549
+ 14
+ 20
+
+ -
+ 4263.5
+ -4539
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 6da65fd3-5c6d-44c1-a7f0-8ec59707bf1e
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4299
+ -4569
+ 34
+ 40
+
+ -
+ 4317.5
+ -4549
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1dd3a0a0-6bb9-4514-8a9a-cebe29e3de2f
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4274
+ -4509
+ 40
+ 16
+
+ -
+ 4294
+ -4501
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dfcb280a-2f59-4aaa-ab7d-450af4129a69
+ - b624573d-9ca3-41eb-81ff-2b404e8dcc1a
+ - 0b49ec6b-d1db-40e0-af41-4db336de037b
+ - 3
+ - 4bda8a96-a835-4e3c-a535-d7498d0258cf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - abd647a2-ec4c-418e-bb1f-32a6b6a1a90e
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4222
+ -4960
+ 144
+ 104
+
+ -
+ 4306
+ -4908
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 1d56968e-75ed-4873-822e-0a0d8308d85d
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -4958
+ 67
+ 20
+
+ -
+ 4259
+ -4948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;201;201;201
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - cb6ba0b9-4e0e-4c02-9336-ec7b2e53ac17
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -4938
+ 67
+ 20
+
+ -
+ 4259
+ -4928
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - fe4014e1-9c85-4048-a6ff-40b7bed0d24c
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -4918
+ 67
+ 20
+
+ -
+ 4259
+ -4908
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7a44b2bd-9c58-45b7-b682-207eb317c7f5
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -4898
+ 67
+ 20
+
+ -
+ 4259
+ -4888
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - c53d6825-23d8-4f3f-bfc6-95d005e14cd5
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -4878
+ 67
+ 20
+
+ -
+ 4259
+ -4868
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 818b19a3-88e1-4ef3-9e61-352731d41d82
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -4958
+ 43
+ 100
+
+ -
+ 4344
+ -4908
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 13c8422e-4844-4300-8cfe-2cef76a73f85
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4253
+ -5022
+ 82
+ 44
+
+ -
+ 4321
+ -5000
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - df22e348-bf33-43a1-99b7-1519c7ea80c4
+ - Geometry
+ - Geometry
+ - false
+ - 9d483e50-9bf1-41e8-ab8c-13b018a627ee
+ - 1
+
+
+
+
+ -
+ 4255
+ -5020
+ 51
+ 20
+
+ -
+ 4282
+ -5010
+
+
+
+
+
+
+
+ - The material override
+ - b321e0e6-c729-469e-9268-ea19e8ee2cb4
+ - Material
+ - Material
+ - false
+ - 818b19a3-88e1-4ef3-9e61-352731d41d82
+ - 1
+
+
+
+
+ -
+ 4255
+ -5000
+ 51
+ 20
+
+ -
+ 4282
+ -4990
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 03c64ba8-bcab-4d93-88d6-59b14530c84b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4222
+ -5105
+ 144
+ 64
+
+ -
+ 4296
+ -5073
+
+
+
+
+
+ - Curve to evaluate
+ - 046ad11f-70e6-4505-8193-4cfebcaf8e21
+ - Curve
+ - Curve
+ - false
+ - 9d483e50-9bf1-41e8-ab8c-13b018a627ee
+ - 1
+
+
+
+
+ -
+ 4224
+ -5103
+ 57
+ 20
+
+ -
+ 4254
+ -5093
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 50146ae9-7cd6-4607-b3b1-7ea08bbd2e70
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5083
+ 57
+ 20
+
+ -
+ 4254
+ -5073
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6d588bc5-fc41-45cb-8f38-40124817924b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5063
+ 57
+ 20
+
+ -
+ 4254
+ -5053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 74967dbc-9e6d-4593-b909-64c5a9447a6c
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -5103
+ 53
+ 20
+
+ -
+ 4339
+ -5093
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 8de75a4e-0889-4e65-ae38-cb57f2be9b47
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -5083
+ 53
+ 20
+
+ -
+ 4339
+ -5073
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ca8d6540-e850-4664-b4f4-9d5efd30c5c5
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -5063
+ 53
+ 20
+
+ -
+ 4339
+ -5053
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - ade9bcfd-b1e9-45df-8319-217a0d5fee53
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4231
+ -5209
+ 125
+ 84
+
+ -
+ 4298
+ -5167
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 29845e5d-afaf-4903-aa5c-bbfb8f7fcf23
+ - Vertices
+ - Vertices
+ - false
+ - 74967dbc-9e6d-4593-b909-64c5a9447a6c
+ - 1
+
+
+
+
+ -
+ 4233
+ -5207
+ 50
+ 20
+
+ -
+ 4259.5
+ -5197
+
+
+
+
+
+
+
+ - Curve degree
+ - 9e9dfdc4-7916-44c7-a221-0111c7479097
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4233
+ -5187
+ 50
+ 20
+
+ -
+ 4259.5
+ -5177
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - acb393bc-b4aa-45d8-848c-50a30e8c89d0
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4233
+ -5167
+ 50
+ 20
+
+ -
+ 4259.5
+ -5157
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c2a6c99b-93d4-4a85-aadb-141f09862c54
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4233
+ -5147
+ 50
+ 20
+
+ -
+ 4259.5
+ -5137
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 34897c28-2e6a-45e0-a110-8502e0d5dbd0
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -5207
+ 41
+ 26
+
+ -
+ 4335
+ -5193.667
+
+
+
+
+
+
+
+ - Curve length
+ - 69ef6226-f499-4dfb-866c-9011810ab8f7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -5181
+ 41
+ 27
+
+ -
+ 4335
+ -5167
+
+
+
+
+
+
+
+ - Curve domain
+ - 30bcd92e-aa57-44ed-805d-1e40d7835ccf
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -5154
+ 41
+ 27
+
+ -
+ 4335
+ -5140.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 529c6ff8-6d35-4137-9be7-8351a51e1942
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4222
+ -5333
+ 144
+ 104
+
+ -
+ 4306
+ -5281
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 11e02fb1-efbd-4d40-9167-f495ff4504d0
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5331
+ 67
+ 20
+
+ -
+ 4259
+ -5321
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 940b3df6-3247-4f66-b54c-8f5c6fc96ee5
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5311
+ 67
+ 20
+
+ -
+ 4259
+ -5301
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 65718b7f-1211-4e84-bd6d-a38639de6ad0
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5291
+ 67
+ 20
+
+ -
+ 4259
+ -5281
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 493a32f5-a494-4108-ad45-05bfe219b629
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5271
+ 67
+ 20
+
+ -
+ 4259
+ -5261
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - bb3e61f7-09e3-4483-8b72-8b5a6778ddd9
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -5251
+ 67
+ 20
+
+ -
+ 4259
+ -5241
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 7adc7763-c87e-4a16-a706-bfcb8d2fd03f
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5331
+ 43
+ 100
+
+ -
+ 4344
+ -5281
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - b5ce827a-f129-4300-8a93-baeb26c14cea
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4253
+ -5393
+ 82
+ 44
+
+ -
+ 4321
+ -5371
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 6e30daa4-f325-4ee6-8ebf-0b4bae61c4f0
+ - Geometry
+ - Geometry
+ - false
+ - 34897c28-2e6a-45e0-a110-8502e0d5dbd0
+ - 1
+
+
+
+
+ -
+ 4255
+ -5391
+ 51
+ 20
+
+ -
+ 4282
+ -5381
+
+
+
+
+
+
+
+ - The material override
+ - b1efbdd3-082e-41f3-8084-c81501e78309
+ - Material
+ - Material
+ - false
+ - 7adc7763-c87e-4a16-a706-bfcb8d2fd03f
+ - 1
+
+
+
+
+ -
+ 4255
+ -5371
+ 51
+ 20
+
+ -
+ 4282
+ -5361
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 09b5c871-b23d-450a-a4bb-339de659f7ed
+ - b284a812-a6b6-455a-89e6-4dc70c382dbc
+ - a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00
+ - 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951
+ - ad9c4bf0-92e9-49dc-9503-3ace8c906423
+ - 27649ea5-f5e8-489c-9e90-2987faa665f4
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - b94c2e8b-4e52-432f-876f-991c1f336f72
+ - 7e8ebc68-ea71-4f76-a02b-78749e6a58f3
+ - e792059b-819d-454c-a064-879834cb0691
+ - 61c5cb95-675b-450c-ac7c-c345b5655697
+ - 04147491-2b0f-41a4-b1f1-ce1ea788b236
+ - 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29
+ - b454a2e0-9ee4-4ced-94ca-c73953245a5d
+ - 2929195c-c84d-4065-bba0-c8eddb127ad7
+ - 1f48bc0e-0e1e-4139-b555-9a8627e52840
+ - eab79ce2-4a6f-4de4-b319-5ea88078fe90
+ - c06233c5-08d9-45bf-9909-4a2213dd6b3a
+ - 87b44b04-ba59-4b8b-9f5d-76b99ba94f34
+ - 78cfda91-3376-422e-8531-38159007754d
+ - 9a71e198-44c6-4e2e-87f3-9062069a0a3d
+ - f2a3f20c-6e65-42d7-9515-1adbe5d9a7ee
+ - 22
+ - e44ea14d-e9df-4851-acc4-e93283f615a7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ad9c4bf0-92e9-49dc-9503-3ace8c906423
+ - 27649ea5-f5e8-489c-9e90-2987faa665f4
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - b94c2e8b-4e52-432f-876f-991c1f336f72
+ - 7e8ebc68-ea71-4f76-a02b-78749e6a58f3
+ - e792059b-819d-454c-a064-879834cb0691
+ - 61c5cb95-675b-450c-ac7c-c345b5655697
+ - 04147491-2b0f-41a4-b1f1-ce1ea788b236
+ - 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29
+ - b454a2e0-9ee4-4ced-94ca-c73953245a5d
+ - 2929195c-c84d-4065-bba0-c8eddb127ad7
+ - 1787085e-7b5d-42df-bd61-b2a136b5c1f8
+ - 259087b6-0c04-4f4d-8644-7af76a1a721d
+ - 13
+ - 09b5c871-b23d-450a-a4bb-339de659f7ed
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - b284a812-a6b6-455a-89e6-4dc70c382dbc
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4229
+ -5592
+ 128
+ 28
+
+ -
+ 4282
+ -5578
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 8e3ab32b-1005-4b16-abd3-ba3b2211d05c
+ - Values
+ - Values
+ - false
+ - 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951
+ - 1
+
+
+
+
+ -
+ 4231
+ -5590
+ 36
+ 24
+
+ -
+ 4250.5
+ -5578
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 5a98769a-f261-440e-864b-0382126b5dc9
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4297
+ -5590
+ 58
+ 24
+
+ -
+ 4327.5
+ -5578
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00
+ - Relay
+
+ - false
+ - 5a98769a-f261-440e-864b-0382126b5dc9
+ - 1
+
+
+
+
+ -
+ 4273
+ -5626
+ 40
+ 16
+
+ -
+ 4293
+ -5618
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951
+ - Relay
+
+ - false
+ - dfcb280a-2f59-4aaa-ab7d-450af4129a69
+ - 1
+
+
+
+
+ -
+ 4273
+ -5544
+ 40
+ 16
+
+ -
+ 4293
+ -5536
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ad9c4bf0-92e9-49dc-9503-3ace8c906423
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4231
+ -6323
+ 122
+ 64
+
+ -
+ 4311
+ -6291
+
+
+
+
+
+ - Line start point
+ - 4724e880-2b6c-4163-b28e-5bed0a8a7d56
+ - Start
+ - Start
+ - false
+ - 74967dbc-9e6d-4593-b909-64c5a9447a6c
+ - 1
+
+
+
+
+ -
+ 4233
+ -6321
+ 63
+ 20
+
+ -
+ 4274
+ -6311
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - f3a5a56c-fe64-44e9-af5b-7f9c98bd76d6
+ - Direction
+ - Direction
+ - false
+ - 27649ea5-f5e8-489c-9e90-2987faa665f4
+ - 1
+
+
+
+
+ -
+ 4233
+ -6301
+ 63
+ 20
+
+ -
+ 4274
+ -6291
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 9ac75d8b-6a54-4ff4-a22e-64160337c330
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 04147491-2b0f-41a4-b1f1-ce1ea788b236
+ - 1
+
+
+
+
+ -
+ 4233
+ -6281
+ 63
+ 20
+
+ -
+ 4274
+ -6271
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 0ed9a5e2-e91a-4a6e-ba41-2890545351ee
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ -6321
+ 25
+ 60
+
+ -
+ 4340
+ -6291
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 27649ea5-f5e8-489c-9e90-2987faa665f4
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4272
+ -6241
+ 40
+ 16
+
+ -
+ 4292
+ -6233
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - b94c2e8b-4e52-432f-876f-991c1f336f72
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4234
+ -5959
+ 115
+ 64
+
+ -
+ 4289
+ -5927
+
+
+
+
+
+ - Value to remap
+ - d9560dca-f4eb-49ed-9757-29a5c45d27a1
+ - Value
+ - Value
+ - false
+ - 61c5cb95-675b-450c-ac7c-c345b5655697
+ - 1
+
+
+
+
+ -
+ 4236
+ -5957
+ 38
+ 20
+
+ -
+ 4256.5
+ -5947
+
+
+
+
+
+
+
+ - Source domain
+ - bc7a48a7-b2ee-4944-8461-cbf232e7777b
+ - Source
+ - Source
+ - false
+ - 3e8f5d17-7580-4562-abf4-756a8eb292c5
+ - 1
+
+
+
+
+ -
+ 4236
+ -5937
+ 38
+ 20
+
+ -
+ 4256.5
+ -5927
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - df58fa5e-6931-45b6-ab70-a1d89b383108
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4236
+ -5917
+ 38
+ 20
+
+ -
+ 4256.5
+ -5907
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 9817685a-1639-4509-8f05-6b5bc0acbab2
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -5957
+ 43
+ 30
+
+ -
+ 4327
+ -5942
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 1ccae494-0aa9-4808-af40-d9ad39bf7920
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -5927
+ 43
+ 30
+
+ -
+ 4327
+ -5912
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 7e8ebc68-ea71-4f76-a02b-78749e6a58f3
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4231
+ -5876
+ 122
+ 28
+
+ -
+ 4295
+ -5862
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2927b649-a574-48f3-8f59-f41eaaafab0d
+ - Numbers
+ - Numbers
+ - false
+ - 61c5cb95-675b-450c-ac7c-c345b5655697
+ - 1
+
+
+
+
+ -
+ 4233
+ -5874
+ 47
+ 24
+
+ -
+ 4258
+ -5862
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 3e8f5d17-7580-4562-abf4-756a8eb292c5
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ -5874
+ 41
+ 24
+
+ -
+ 4332
+ -5862
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - b94c2e8b-4e52-432f-876f-991c1f336f72
+ - 7e8ebc68-ea71-4f76-a02b-78749e6a58f3
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 04147491-2b0f-41a4-b1f1-ce1ea788b236
+ - 61c5cb95-675b-450c-ac7c-c345b5655697
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29
+ - 14
+ - e792059b-819d-454c-a064-879834cb0691
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 61c5cb95-675b-450c-ac7c-c345b5655697
+ - Relay
+ -
+ - false
+ - a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00
+ - 1
+
+
+
+
+ -
+ 4272
+ -5831
+ 40
+ 16
+
+ -
+ 4292
+ -5823
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 04147491-2b0f-41a4-b1f1-ce1ea788b236
+ - Relay
+ -
+ - false
+ - 33cece3d-a7ae-4c67-9195-b427397baa30
+ - 1
+
+
+
+
+ -
+ 4272
+ -6198
+ 40
+ 16
+
+ -
+ 4292
+ -6190
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 73f3bd4f-7585-4815-9be9-9ab8fcdfbc29
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4251
+ -6159
+ 82
+ 44
+
+ -
+ 4282
+ -6137
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - f8f68b8f-bcbb-4214-9565-0fc39e8c4be7
+ - A
+ - A
+ - true
+ - e4e15be4-8fb3-44f1-9273-7280b735771b
+ - 1
+
+
+
+
+ -
+ 4253
+ -6157
+ 14
+ 20
+
+ -
+ 4261.5
+ -6147
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 9612eff9-ea84-4928-8022-7cfaa895dda0
+ - B
+ - B
+ - true
+ - 259087b6-0c04-4f4d-8644-7af76a1a721d
+ - 1
+
+
+
+
+ -
+ 4253
+ -6137
+ 14
+ 20
+
+ -
+ 4261.5
+ -6127
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 33cece3d-a7ae-4c67-9195-b427397baa30
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4297
+ -6157
+ 34
+ 40
+
+ -
+ 4315.5
+ -6137
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - b454a2e0-9ee4-4ced-94ca-c73953245a5d
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4251
+ -6058
+ 82
+ 44
+
+ -
+ 4282
+ -6036
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - d12772fe-d7bd-4afa-b083-00663f0ff79f
+ - A
+ - A
+ - true
+ - 9817685a-1639-4509-8f05-6b5bc0acbab2
+ - 1
+
+
+
+
+ -
+ 4253
+ -6056
+ 14
+ 20
+
+ -
+ 4261.5
+ -6046
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - eecab38e-7511-43ee-ad9e-7906c039bd54
+ - B
+ - B
+ - true
+ - 2929195c-c84d-4065-bba0-c8eddb127ad7
+ - 1
+
+
+
+
+ -
+ 4253
+ -6036
+ 14
+ 20
+
+ -
+ 4261.5
+ -6026
+
+
+
+
+
+
+
+ - Result of multiplication
+ - e4e15be4-8fb3-44f1-9273-7280b735771b
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4297
+ -6056
+ 34
+ 40
+
+ -
+ 4315.5
+ -6036
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2929195c-c84d-4065-bba0-c8eddb127ad7
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4272
+ -5996
+ 40
+ 16
+
+ -
+ 4292
+ -5988
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00
+ - 7ce3d0df-421a-4ecf-b6cf-8cbe6fdc7951
+ - b284a812-a6b6-455a-89e6-4dc70c382dbc
+ - 3
+ - 1f48bc0e-0e1e-4139-b555-9a8627e52840
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - eab79ce2-4a6f-4de4-b319-5ea88078fe90
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4220
+ -6447
+ 144
+ 104
+
+ -
+ 4304
+ -6395
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 7c4a51f4-0583-4188-a10b-54dc07cabf06
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6445
+ 67
+ 20
+
+ -
+ 4257
+ -6435
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 611771b9-e351-420d-9b06-b71a8e8dd4d1
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6425
+ 67
+ 20
+
+ -
+ 4257
+ -6415
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 64490fa0-23ab-4990-8a3a-d4f544527668
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6405
+ 67
+ 20
+
+ -
+ 4257
+ -6395
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - e8b91e67-8cc3-476b-8b92-4a62d3f25066
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6385
+ 67
+ 20
+
+ -
+ 4257
+ -6375
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 683de6db-dd8c-4549-bf90-ec1d80d52966
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6365
+ 67
+ 20
+
+ -
+ 4257
+ -6355
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 13a42099-91be-4e02-9443-ec018f0493de
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6445
+ 43
+ 100
+
+ -
+ 4342
+ -6395
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - c06233c5-08d9-45bf-9909-4a2213dd6b3a
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4251
+ -6509
+ 82
+ 44
+
+ -
+ 4319
+ -6487
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 1b059b68-8bf5-4be4-8083-8d579038e428
+ - Geometry
+ - Geometry
+ - false
+ - 0ed9a5e2-e91a-4a6e-ba41-2890545351ee
+ - 1
+
+
+
+
+ -
+ 4253
+ -6507
+ 51
+ 20
+
+ -
+ 4280
+ -6497
+
+
+
+
+
+
+
+ - The material override
+ - f1ab5e4e-953a-444d-b82c-29bc75d1c69d
+ - Material
+ - Material
+ - false
+ - 13a42099-91be-4e02-9443-ec018f0493de
+ - 1
+
+
+
+
+ -
+ 4253
+ -6487
+ 51
+ 20
+
+ -
+ 4280
+ -6477
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 87b44b04-ba59-4b8b-9f5d-76b99ba94f34
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4220
+ -6592
+ 144
+ 64
+
+ -
+ 4294
+ -6560
+
+
+
+
+
+ - Curve to evaluate
+ - 00542962-eec2-46df-a544-450d778f79b8
+ - Curve
+ - Curve
+ - false
+ - 0ed9a5e2-e91a-4a6e-ba41-2890545351ee
+ - 1
+
+
+
+
+ -
+ 4222
+ -6590
+ 57
+ 20
+
+ -
+ 4252
+ -6580
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6f026c12-7a70-4bbb-9cfa-f4bcb991e9ca
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6570
+ 57
+ 20
+
+ -
+ 4252
+ -6560
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - eb809d09-c619-4d8f-8e62-67891cb2d19b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6550
+ 57
+ 20
+
+ -
+ 4252
+ -6540
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - fd3e9093-2acb-41bd-b013-4daaf75d9651
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -6590
+ 53
+ 20
+
+ -
+ 4337
+ -6580
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - b6e3eb0c-8184-4fe9-8d71-2c8e626666ac
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -6570
+ 53
+ 20
+
+ -
+ 4337
+ -6560
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 80661f8f-2864-4026-a72f-b7f14e51efff
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -6550
+ 53
+ 20
+
+ -
+ 4337
+ -6540
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 78cfda91-3376-422e-8531-38159007754d
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4229
+ -6696
+ 125
+ 84
+
+ -
+ 4296
+ -6654
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 2b517992-7deb-4b22-acdf-f7204b4cae29
+ - Vertices
+ - Vertices
+ - false
+ - fd3e9093-2acb-41bd-b013-4daaf75d9651
+ - 1
+
+
+
+
+ -
+ 4231
+ -6694
+ 50
+ 20
+
+ -
+ 4257.5
+ -6684
+
+
+
+
+
+
+
+ - Curve degree
+ - e97296ac-4c7f-4c69-a903-8a3baba9e923
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -6674
+ 50
+ 20
+
+ -
+ 4257.5
+ -6664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 01423a36-7ce9-43a9-acd1-7a163f84b5c8
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -6654
+ 50
+ 20
+
+ -
+ 4257.5
+ -6644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 8927a988-0b4d-4eb6-8477-e7a012a5bec8
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -6634
+ 50
+ 20
+
+ -
+ 4257.5
+ -6624
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 7486d2e5-004d-437e-8099-9e8c2ddcac0c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -6694
+ 41
+ 26
+
+ -
+ 4333
+ -6680.667
+
+
+
+
+
+
+
+ - Curve length
+ - 404d6128-a558-49a4-b1eb-a49b0c6909b5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -6668
+ 41
+ 27
+
+ -
+ 4333
+ -6654
+
+
+
+
+
+
+
+ - Curve domain
+ - eefb7b2a-5531-4dc0-8b13-76f7334fa105
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -6641
+ 41
+ 27
+
+ -
+ 4333
+ -6627.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 9a71e198-44c6-4e2e-87f3-9062069a0a3d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4220
+ -6820
+ 144
+ 104
+
+ -
+ 4304
+ -6768
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 5147f3a1-0406-4fbd-affd-bf242442bf11
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6818
+ 67
+ 20
+
+ -
+ 4257
+ -6808
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;168;168;168
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 76976327-c546-4c25-a643-463563ce6aac
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6798
+ 67
+ 20
+
+ -
+ 4257
+ -6788
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 8c292c6c-1696-4580-911f-ca10ec2b3df1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6778
+ 67
+ 20
+
+ -
+ 4257
+ -6768
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ccd171f6-06f7-4163-91c3-de4ff030944c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6758
+ 67
+ 20
+
+ -
+ 4257
+ -6748
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 560559b8-059f-4151-b6f9-c444df973bbc
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4222
+ -6738
+ 67
+ 20
+
+ -
+ 4257
+ -6728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 98a38c6d-1f33-4ea9-a252-49ed8bcb8a78
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6818
+ 43
+ 100
+
+ -
+ 4342
+ -6768
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - f2a3f20c-6e65-42d7-9515-1adbe5d9a7ee
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4251
+ -6880
+ 82
+ 44
+
+ -
+ 4319
+ -6858
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - bc9bafd1-6f57-4b26-b2c5-4ddb23c05dde
+ - Geometry
+ - Geometry
+ - false
+ - 7486d2e5-004d-437e-8099-9e8c2ddcac0c
+ - 1
+
+
+
+
+ -
+ 4253
+ -6878
+ 51
+ 20
+
+ -
+ 4280
+ -6868
+
+
+
+
+
+
+
+ - The material override
+ - 4a6f9897-5838-4aa5-adc3-7e44ea1a3c80
+ - Material
+ - Material
+ - false
+ - 98a38c6d-1f33-4ea9-a252-49ed8bcb8a78
+ - 1
+
+
+
+
+ -
+ 4253
+ -6858
+ 51
+ 20
+
+ -
+ 4280
+ -6848
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3c6039d9-a9b6-448e-8828-0465bc555816
+ - 2a1e862f-0a79-4019-895f-646e542ba372
+ - 1e04376c-53a0-49c5-ba39-577472064d46
+ - a122ee6e-5e1b-4896-96c5-39dd66b68eb0
+ - 0a0d1816-e06a-4d25-8197-47bc3d47d233
+ - 412d297b-113a-4074-be27-a16f9856989a
+ - ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421
+ - bb3cd280-d939-4170-95ed-1a0580c8c376
+ - 7534a00c-5bc1-4f63-bebe-573577dcb356
+ - 0eb7b3d8-d743-4861-8cc7-f446291f84f3
+ - 23262df6-ceb8-45fe-91ff-a236da1ebf6d
+ - 496a0dc5-d4d6-4733-affc-03d37a8d6672
+ - a56116bb-0c46-4e8d-bc93-60a8c6c0b32a
+ - 184fb0e3-74c7-413a-936e-174cb2181dbd
+ - 1e9bc7f5-78c4-46b6-ab48-d40cc797b498
+ - 055a231f-bf57-48cf-acaf-dbb405c87b11
+ - abd6a62c-2e0d-4044-8fd0-d8159b4c4093
+ - 4a37a2a9-ce90-4c30-a05b-f39ad076b343
+ - d0c22d51-b23d-4a8c-8cd6-6871a1ba4300
+ - c11d0521-e267-483c-a9f7-e68d5797856b
+ - da2544c0-9ab1-4296-badb-8fd58b4bd192
+ - 903725b5-424a-4fd7-9e37-c86a40e106fc
+ - 22
+ - 216781d2-a401-47f7-b904-78e23985f1bf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0a0d1816-e06a-4d25-8197-47bc3d47d233
+ - 412d297b-113a-4074-be27-a16f9856989a
+ - ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421
+ - bb3cd280-d939-4170-95ed-1a0580c8c376
+ - 7534a00c-5bc1-4f63-bebe-573577dcb356
+ - 0eb7b3d8-d743-4861-8cc7-f446291f84f3
+ - 23262df6-ceb8-45fe-91ff-a236da1ebf6d
+ - 496a0dc5-d4d6-4733-affc-03d37a8d6672
+ - a56116bb-0c46-4e8d-bc93-60a8c6c0b32a
+ - 184fb0e3-74c7-413a-936e-174cb2181dbd
+ - 1e9bc7f5-78c4-46b6-ab48-d40cc797b498
+ - 82bfe000-c430-4ae8-ae2a-7e4496c9cb6b
+ - 12
+ - 3c6039d9-a9b6-448e-8828-0465bc555816
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 2a1e862f-0a79-4019-895f-646e542ba372
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4233
+ -7078
+ 128
+ 28
+
+ -
+ 4286
+ -7064
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - b2483040-404d-4910-98d0-66122917c866
+ - Values
+ - Values
+ - false
+ - a122ee6e-5e1b-4896-96c5-39dd66b68eb0
+ - 1
+
+
+
+
+ -
+ 4235
+ -7076
+ 36
+ 24
+
+ -
+ 4254.5
+ -7064
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - c4c324ce-db80-41b8-a748-0926dd52820b
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4301
+ -7076
+ 58
+ 24
+
+ -
+ 4331.5
+ -7064
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1e04376c-53a0-49c5-ba39-577472064d46
+ - Relay
+
+ - false
+ - c4c324ce-db80-41b8-a748-0926dd52820b
+ - 1
+
+
+
+
+ -
+ 4277
+ -7112
+ 40
+ 16
+
+ -
+ 4297
+ -7104
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a122ee6e-5e1b-4896-96c5-39dd66b68eb0
+ - Relay
+
+ - false
+ - a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00
+ - 1
+
+
+
+
+ -
+ 4277
+ -7030
+ 40
+ 16
+
+ -
+ 4297
+ -7022
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 0a0d1816-e06a-4d25-8197-47bc3d47d233
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4230
+ -7809
+ 122
+ 64
+
+ -
+ 4310
+ -7777
+
+
+
+
+
+ - Line start point
+ - ab952a47-2d3d-460e-bc4d-b20cae7a4d41
+ - true
+ - Start
+ - Start
+ - false
+ - fd3e9093-2acb-41bd-b013-4daaf75d9651
+ - 1
+
+
+
+
+ -
+ 4232
+ -7807
+ 63
+ 20
+
+ -
+ 4273
+ -7797
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - fd5d607b-e5a8-41bb-9b1b-35c479b18b27
+ - true
+ - Direction
+ - Direction
+ - false
+ - 412d297b-113a-4074-be27-a16f9856989a
+ - 1
+
+
+
+
+ -
+ 4232
+ -7787
+ 63
+ 20
+
+ -
+ 4273
+ -7777
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 4fc7eee3-4e6a-457f-83a3-82bcc8ebf81e
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - 496a0dc5-d4d6-4733-affc-03d37a8d6672
+ - 1
+
+
+
+
+ -
+ 4232
+ -7767
+ 63
+ 20
+
+ -
+ 4273
+ -7757
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 0d0211dc-161c-490d-b87a-3eb2b0778605
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ -7807
+ 25
+ 60
+
+ -
+ 4339
+ -7777
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 412d297b-113a-4074-be27-a16f9856989a
+ - Relay
+
+ - false
+ - 64fde29a-f76c-4fc1-b003-229851718aab
+ - 1
+
+
+
+
+ -
+ 4271
+ -7727
+ 40
+ 16
+
+ -
+ 4291
+ -7719
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4228
+ -7582
+ 150
+ 20
+
+ -
+ 4228.33
+ -7581.998
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 4
+ - 0
+ - 0
+ - 0.25
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - bb3cd280-d939-4170-95ed-1a0580c8c376
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4233
+ -7445
+ 115
+ 64
+
+ -
+ 4288
+ -7413
+
+
+
+
+
+ - Value to remap
+ - 416b3b44-0436-4ed2-88ee-70fc9bc0e2f8
+ - Value
+ - Value
+ - false
+ - 23262df6-ceb8-45fe-91ff-a236da1ebf6d
+ - 1
+
+
+
+
+ -
+ 4235
+ -7443
+ 38
+ 20
+
+ -
+ 4255.5
+ -7433
+
+
+
+
+
+
+
+ - Source domain
+ - 1a901a09-eb7e-4e4c-aeb1-7f980579d374
+ - Source
+ - Source
+ - false
+ - b8bdcbb9-4d1e-4349-a2aa-02db78957eab
+ - 1
+
+
+
+
+ -
+ 4235
+ -7423
+ 38
+ 20
+
+ -
+ 4255.5
+ -7413
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 8b287cf5-0028-41ad-829e-d6faf4909996
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4235
+ -7403
+ 38
+ 20
+
+ -
+ 4255.5
+ -7393
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - f846b9b8-37b9-4009-a0e4-29a2b2b5bb97
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4303
+ -7443
+ 43
+ 30
+
+ -
+ 4326
+ -7428
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 3da64975-8e99-4050-aed6-f66fef8b77ab
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4303
+ -7413
+ 43
+ 30
+
+ -
+ 4326
+ -7398
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 7534a00c-5bc1-4f63-bebe-573577dcb356
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4230
+ -7362
+ 122
+ 28
+
+ -
+ 4294
+ -7348
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 0059c6e1-7939-47b5-a46a-bf590b0e365f
+ - Numbers
+ - Numbers
+ - false
+ - 23262df6-ceb8-45fe-91ff-a236da1ebf6d
+ - 1
+
+
+
+
+ -
+ 4232
+ -7360
+ 47
+ 24
+
+ -
+ 4257
+ -7348
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - b8bdcbb9-4d1e-4349-a2aa-02db78957eab
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -7360
+ 41
+ 24
+
+ -
+ 4331
+ -7348
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - bb3cd280-d939-4170-95ed-1a0580c8c376
+ - 7534a00c-5bc1-4f63-bebe-573577dcb356
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 496a0dc5-d4d6-4733-affc-03d37a8d6672
+ - 23262df6-ceb8-45fe-91ff-a236da1ebf6d
+ - ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421
+ - a56116bb-0c46-4e8d-bc93-60a8c6c0b32a
+ - 14
+ - 0eb7b3d8-d743-4861-8cc7-f446291f84f3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 23262df6-ceb8-45fe-91ff-a236da1ebf6d
+ - Relay
+ -
+ - false
+ - 1e04376c-53a0-49c5-ba39-577472064d46
+ - 1
+
+
+
+
+ -
+ 4271
+ -7317
+ 40
+ 16
+
+ -
+ 4291
+ -7309
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 496a0dc5-d4d6-4733-affc-03d37a8d6672
+ - Relay
+ -
+ - false
+ - da13ee93-0b21-4037-bf43-883cd57db9e6
+ - 1
+
+
+
+
+ -
+ 4271
+ -7684
+ 40
+ 16
+
+ -
+ 4291
+ -7676
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - a56116bb-0c46-4e8d-bc93-60a8c6c0b32a
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4250
+ -7645
+ 82
+ 44
+
+ -
+ 4281
+ -7623
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - afc40277-7f69-4625-b33d-627974ebad9b
+ - A
+ - A
+ - true
+ - 0224e863-203b-438a-b002-6a057176c6a6
+ - 1
+
+
+
+
+ -
+ 4252
+ -7643
+ 14
+ 20
+
+ -
+ 4260.5
+ -7633
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - cf39143c-24c4-4f91-a552-adbd120a73b5
+ - B
+ - B
+ - true
+ - ed0e1f07-ad3d-4b0a-9fa9-5061abfdc421
+ - 1
+
+
+
+
+ -
+ 4252
+ -7623
+ 14
+ 20
+
+ -
+ 4260.5
+ -7613
+
+
+
+
+
+
+
+ - Result of multiplication
+ - da13ee93-0b21-4037-bf43-883cd57db9e6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4296
+ -7643
+ 34
+ 40
+
+ -
+ 4314.5
+ -7623
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 184fb0e3-74c7-413a-936e-174cb2181dbd
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4250
+ -7544
+ 82
+ 44
+
+ -
+ 4281
+ -7522
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ec949d17-caf2-48c3-a0d9-7b41d58ae274
+ - A
+ - A
+ - true
+ - f846b9b8-37b9-4009-a0e4-29a2b2b5bb97
+ - 1
+
+
+
+
+ -
+ 4252
+ -7542
+ 14
+ 20
+
+ -
+ 4260.5
+ -7532
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - c158152b-5a4a-4b31-aaeb-0a4869c1b1a8
+ - B
+ - B
+ - true
+ - 1e9bc7f5-78c4-46b6-ab48-d40cc797b498
+ - 1
+
+
+
+
+ -
+ 4252
+ -7522
+ 14
+ 20
+
+ -
+ 4260.5
+ -7512
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 0224e863-203b-438a-b002-6a057176c6a6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4296
+ -7542
+ 34
+ 40
+
+ -
+ 4314.5
+ -7522
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1e9bc7f5-78c4-46b6-ab48-d40cc797b498
+ - Relay
+
+ - false
+ - b81ec812-8ec8-4429-a6a9-685744f02fd4
+ - 1
+
+
+
+
+ -
+ 4271
+ -7482
+ 40
+ 16
+
+ -
+ 4291
+ -7474
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1e04376c-53a0-49c5-ba39-577472064d46
+ - a122ee6e-5e1b-4896-96c5-39dd66b68eb0
+ - 2a1e862f-0a79-4019-895f-646e542ba372
+ - 3
+ - 055a231f-bf57-48cf-acaf-dbb405c87b11
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - abd6a62c-2e0d-4044-8fd0-d8159b4c4093
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4219
+ -7933
+ 144
+ 104
+
+ -
+ 4303
+ -7881
+
+
+
+
+
+ - Colour of the diffuse channel
+ - c5d63f14-839a-45e3-afce-4e383878eee0
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -7931
+ 67
+ 20
+
+ -
+ 4256
+ -7921
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;186;186;186
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 8201d10a-82f2-4191-96ab-5e3bef145158
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -7911
+ 67
+ 20
+
+ -
+ 4256
+ -7901
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 71fa2cc4-a69d-4e50-883a-24caafb9cd69
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -7891
+ 67
+ 20
+
+ -
+ 4256
+ -7881
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 8286cae0-537e-4efb-b539-b117603416b8
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -7871
+ 67
+ 20
+
+ -
+ 4256
+ -7861
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 99781edd-ce62-40af-b20a-c76751ab58f6
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -7851
+ 67
+ 20
+
+ -
+ 4256
+ -7841
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 74a840a4-b3d7-4986-be4e-74f6e96ddb29
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -7931
+ 43
+ 100
+
+ -
+ 4341
+ -7881
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 4a37a2a9-ce90-4c30-a05b-f39ad076b343
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4250
+ -7995
+ 82
+ 44
+
+ -
+ 4318
+ -7973
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - cf1386d0-c8e0-4d6d-a6d6-cda8bab05b37
+ - Geometry
+ - Geometry
+ - false
+ - 0d0211dc-161c-490d-b87a-3eb2b0778605
+ - 1
+
+
+
+
+ -
+ 4252
+ -7993
+ 51
+ 20
+
+ -
+ 4279
+ -7983
+
+
+
+
+
+
+
+ - The material override
+ - 5ed40b59-2add-443e-bae1-e00c21dcc7ad
+ - Material
+ - Material
+ - false
+ - 74a840a4-b3d7-4986-be4e-74f6e96ddb29
+ - 1
+
+
+
+
+ -
+ 4252
+ -7973
+ 51
+ 20
+
+ -
+ 4279
+ -7963
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d0c22d51-b23d-4a8c-8cd6-6871a1ba4300
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4219
+ -8078
+ 144
+ 64
+
+ -
+ 4293
+ -8046
+
+
+
+
+
+ - Curve to evaluate
+ - 8628b3e0-21b4-4fa7-a85c-d69b93b55a29
+ - Curve
+ - Curve
+ - false
+ - 0d0211dc-161c-490d-b87a-3eb2b0778605
+ - 1
+
+
+
+
+ -
+ 4221
+ -8076
+ 57
+ 20
+
+ -
+ 4251
+ -8066
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 814ae5f8-db79-44bc-87eb-bbdfe53387d9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8056
+ 57
+ 20
+
+ -
+ 4251
+ -8046
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - af925494-44d5-49ca-a447-bd1db4a924a2
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8036
+ 57
+ 20
+
+ -
+ 4251
+ -8026
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - cf5e2264-77c9-46a9-889a-3071f1ddc9e9
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4308
+ -8076
+ 53
+ 20
+
+ -
+ 4336
+ -8066
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e337db52-6b76-4d06-9fa0-19c756786bc0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4308
+ -8056
+ 53
+ 20
+
+ -
+ 4336
+ -8046
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - d632dec7-de3e-4e35-953c-86bae29949ae
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4308
+ -8036
+ 53
+ 20
+
+ -
+ 4336
+ -8026
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - c11d0521-e267-483c-a9f7-e68d5797856b
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4228
+ -8182
+ 125
+ 84
+
+ -
+ 4295
+ -8140
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 1f4f40aa-3e54-4891-a140-d2da1f6d7a42
+ - Vertices
+ - Vertices
+ - false
+ - cf5e2264-77c9-46a9-889a-3071f1ddc9e9
+ - 1
+
+
+
+
+ -
+ 4230
+ -8180
+ 50
+ 20
+
+ -
+ 4256.5
+ -8170
+
+
+
+
+
+
+
+ - Curve degree
+ - 60cc8e12-79fc-4a0b-9d72-ac4338dca87a
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4230
+ -8160
+ 50
+ 20
+
+ -
+ 4256.5
+ -8150
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 0247e65e-7383-4055-9ff1-034b056cb90c
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4230
+ -8140
+ 50
+ 20
+
+ -
+ 4256.5
+ -8130
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 672bcc7d-50ef-4af8-a8e8-a01c0fcbad4a
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4230
+ -8120
+ 50
+ 20
+
+ -
+ 4256.5
+ -8110
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - b5b9fd8b-d9bd-4de4-9b42-30e95a66cae2
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ -8180
+ 41
+ 26
+
+ -
+ 4332
+ -8166.667
+
+
+
+
+
+
+
+ - Curve length
+ - 098053bd-11ad-47c6-8105-ff8b7014986a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ -8154
+ 41
+ 27
+
+ -
+ 4332
+ -8140
+
+
+
+
+
+
+
+ - Curve domain
+ - 2e105d30-2a42-4528-965e-d171c063de87
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4310
+ -8127
+ 41
+ 27
+
+ -
+ 4332
+ -8113.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - da2544c0-9ab1-4296-badb-8fd58b4bd192
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4219
+ -8306
+ 144
+ 104
+
+ -
+ 4303
+ -8254
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 52b11a1c-01b1-41ac-b9b5-cf34aa7ba088
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8304
+ 67
+ 20
+
+ -
+ 4256
+ -8294
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;161;161;161
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 21147615-a005-440b-ad1d-84da794698ba
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8284
+ 67
+ 20
+
+ -
+ 4256
+ -8274
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 4938be8d-ab6e-4760-aee6-417b92f9f38b
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8264
+ 67
+ 20
+
+ -
+ 4256
+ -8254
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 87343965-3350-4f44-bc35-8fb8324a2dc4
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8244
+ 67
+ 20
+
+ -
+ 4256
+ -8234
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - dec3f57c-217a-453a-b452-93527285feb2
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4221
+ -8224
+ 67
+ 20
+
+ -
+ 4256
+ -8214
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - fb82debc-f95f-45c5-9340-58b2033c913e
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8304
+ 43
+ 100
+
+ -
+ 4341
+ -8254
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 903725b5-424a-4fd7-9e37-c86a40e106fc
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4250
+ -8366
+ 82
+ 44
+
+ -
+ 4318
+ -8344
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - a61fe3ff-beaa-433a-8d56-03df25a76fbe
+ - Geometry
+ - Geometry
+ - false
+ - b5b9fd8b-d9bd-4de4-9b42-30e95a66cae2
+ - 1
+
+
+
+
+ -
+ 4252
+ -8364
+ 51
+ 20
+
+ -
+ 4279
+ -8354
+
+
+
+
+
+
+
+ - The material override
+ - 8192af13-a257-49bb-bc59-f3f37f76822d
+ - Material
+ - Material
+ - false
+ - fb82debc-f95f-45c5-9340-58b2033c913e
+ - 1
+
+
+
+
+ -
+ 4252
+ -8344
+ 51
+ 20
+
+ -
+ 4279
+ -8334
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ba7bf764-2896-4928-aa12-7eb4384bb962
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2721
+ 4623
+ 144
+ 64
+
+ -
+ 2795
+ 4655
+
+
+
+
+
+ - Curve to evaluate
+ - 6766e885-d2cf-4cf5-9bb3-7c09c19686d2
+ - Curve
+ - Curve
+ - false
+ - 4b682de7-9b79-46c1-8e2a-4fdbcc588751
+ - 1
+
+
+
+
+ -
+ 2723
+ 4625
+ 57
+ 20
+
+ -
+ 2753
+ 4635
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ebef7165-f677-41ca-a36f-f170ed2c8eec
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4645
+ 57
+ 20
+
+ -
+ 2753
+ 4655
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 21fd8f83-3d13-43b1-95e8-8fbcdb2ff50f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4665
+ 57
+ 20
+
+ -
+ 2753
+ 4675
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - afe3f13f-865d-46d5-a989-a40e06880c47
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 4625
+ 53
+ 20
+
+ -
+ 2838
+ 4635
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9fbf8988-25cc-468d-a609-71f6d05f49f2
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 4645
+ 53
+ 20
+
+ -
+ 2838
+ 4655
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - de474ff5-22db-47d1-bedf-47a074eb3dc7
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 4665
+ 53
+ 20
+
+ -
+ 2838
+ 4675
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 2d610791-db23-4b32-8d5f-7acab4a83c30
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2730
+ 4519
+ 125
+ 84
+
+ -
+ 2797
+ 4561
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - d70c8d41-3973-4b7b-987f-44cd7d9d30e2
+ - Vertices
+ - Vertices
+ - false
+ - afe3f13f-865d-46d5-a989-a40e06880c47
+ - 1
+
+
+
+
+ -
+ 2732
+ 4521
+ 50
+ 20
+
+ -
+ 2758.5
+ 4531
+
+
+
+
+
+
+
+ - Curve degree
+ - cf9da90b-7453-4d88-be68-7f8850d81083
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 4541
+ 50
+ 20
+
+ -
+ 2758.5
+ 4551
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 482b3b5d-e29d-4f22-96db-2353206a33b7
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 4561
+ 50
+ 20
+
+ -
+ 2758.5
+ 4571
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 26eb7e3c-1ce9-48d7-a3b9-20b252a29349
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 4581
+ 50
+ 20
+
+ -
+ 2758.5
+ 4591
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 5cc66ec7-4917-435f-9bd7-7ec449c83a74
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 4521
+ 41
+ 26
+
+ -
+ 2834
+ 4534.333
+
+
+
+
+
+
+
+ - Curve length
+ - 8c6c0b35-093c-4169-bc86-41d1587ce95a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 4547
+ 41
+ 27
+
+ -
+ 2834
+ 4561
+
+
+
+
+
+
+
+ - Curve domain
+ - cadb7213-d0b1-4645-bc47-a66951122d6e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 4574
+ 41
+ 27
+
+ -
+ 2834
+ 4587.667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 0af17cec-270f-4e97-b701-db34056ae4c1
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ 4396
+ 144
+ 104
+
+ -
+ 2805
+ 4448
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 92eb1194-e2fc-4c41-a971-07fa76af8160
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4398
+ 67
+ 20
+
+ -
+ 2758
+ 4408
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 189957c0-5ad0-4ab8-ac8a-4b503045aa98
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4418
+ 67
+ 20
+
+ -
+ 2758
+ 4428
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 524c5bff-f600-4867-97aa-19441a238d44
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4438
+ 67
+ 20
+
+ -
+ 2758
+ 4448
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a3bb41fd-dc3d-45a8-a0fb-f515db11a7bd
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4458
+ 67
+ 20
+
+ -
+ 2758
+ 4468
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 3d57d483-8859-4a10-ba2f-2e6213946923
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 4478
+ 67
+ 20
+
+ -
+ 2758
+ 4488
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e87b155e-8cde-42ab-ac3f-f958ba701ace
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4398
+ 43
+ 100
+
+ -
+ 2843
+ 4448
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 353338f3-55aa-4282-961c-9ee025929d4c
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ 4334
+ 82
+ 44
+
+ -
+ 2820
+ 4356
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 16a51b16-3990-411c-9a5a-c27adecef47e
+ - Geometry
+ - Geometry
+ - false
+ - 5cc66ec7-4917-435f-9bd7-7ec449c83a74
+ - 1
+
+
+
+
+ -
+ 2754
+ 4336
+ 51
+ 20
+
+ -
+ 2781
+ 4346
+
+
+
+
+
+
+
+ - The material override
+ - 53a86410-9a02-46d4-add5-ad52294248ba
+ - Material
+ - Material
+ - false
+ - e87b155e-8cde-42ab-ac3f-f958ba701ace
+ - 1
+
+
+
+
+ -
+ 2754
+ 4356
+ 51
+ 20
+
+ -
+ 2781
+ 4366
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0af17cec-270f-4e97-b701-db34056ae4c1
+ - 353338f3-55aa-4282-961c-9ee025929d4c
+ - 2
+ - b268e0d3-c479-441e-9ab8-752e8081f7ee
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0341b73f-f7f8-4b04-9f93-e590bbc75247
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2721
+ 2786
+ 144
+ 64
+
+ -
+ 2795
+ 2818
+
+
+
+
+
+ - Curve to evaluate
+ - 8bd11dec-e992-4d21-92af-e1264ecd11b1
+ - Curve
+ - Curve
+ - false
+ - 4ec3c04c-6c11-40c7-b64f-2c1b38ff8091
+ - 1
+
+
+
+
+ -
+ 2723
+ 2788
+ 57
+ 20
+
+ -
+ 2753
+ 2798
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6785591a-b134-4c87-8bc3-8bb13b0d64cf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2808
+ 57
+ 20
+
+ -
+ 2753
+ 2818
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a1bca1f9-b694-4940-827a-e432b1219678
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2828
+ 57
+ 20
+
+ -
+ 2753
+ 2838
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ee61d580-37f3-437a-986b-f58d1757c703
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 2788
+ 53
+ 20
+
+ -
+ 2838
+ 2798
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 66b16fd0-fb50-4bf7-8f3f-d57a5784417c
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 2808
+ 53
+ 20
+
+ -
+ 2838
+ 2818
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 45231bdb-4614-4a2f-ac69-ec61fae463c4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 2828
+ 53
+ 20
+
+ -
+ 2838
+ 2838
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 34521a17-b7e4-42f7-bc4c-f5a2c804e428
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2730
+ 2682
+ 125
+ 84
+
+ -
+ 2797
+ 2724
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 8fa423ea-8250-433c-9563-655b9f30b742
+ - Vertices
+ - Vertices
+ - false
+ - ee61d580-37f3-437a-986b-f58d1757c703
+ - 1
+
+
+
+
+ -
+ 2732
+ 2684
+ 50
+ 20
+
+ -
+ 2758.5
+ 2694
+
+
+
+
+
+
+
+ - Curve degree
+ - b0475c81-f6a9-4c5c-a645-e9e48abc3c9c
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 2704
+ 50
+ 20
+
+ -
+ 2758.5
+ 2714
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 3bdcd56e-0724-4eed-8927-ac786e64176a
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 2724
+ 50
+ 20
+
+ -
+ 2758.5
+ 2734
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - cdfb1f92-29d0-462e-8b90-ad2a7b8bcf3e
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 2744
+ 50
+ 20
+
+ -
+ 2758.5
+ 2754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 75280ce7-4e63-4576-be04-d9d75e696859
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 2684
+ 41
+ 26
+
+ -
+ 2834
+ 2697.333
+
+
+
+
+
+
+
+ - Curve length
+ - 07179d32-1fef-47e8-806c-e47d63610ff5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 2710
+ 41
+ 27
+
+ -
+ 2834
+ 2724
+
+
+
+
+
+
+
+ - Curve domain
+ - 147e71bd-7114-42f9-9c2f-ba62b3025733
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 2737
+ 41
+ 27
+
+ -
+ 2834
+ 2750.667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 7fa07956-23c0-4600-9960-b23370a32f2b
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ 2559
+ 144
+ 104
+
+ -
+ 2805
+ 2611
+
+
+
+
+
+ - Colour of the diffuse channel
+ - c43cdef6-edfd-4467-b468-ff109523dc01
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2561
+ 67
+ 20
+
+ -
+ 2758
+ 2571
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4b599ab5-90f6-46f2-aeb2-bc5cb1a36e7f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2581
+ 67
+ 20
+
+ -
+ 2758
+ 2591
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 73ec4cb1-8e09-40e7-8d97-638e49dde930
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2601
+ 67
+ 20
+
+ -
+ 2758
+ 2611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c7bdcc16-ccba-494c-8043-4bdc1a080109
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2621
+ 67
+ 20
+
+ -
+ 2758
+ 2631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 17bb5682-d8db-46cd-8d24-a078c961f2bc
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 2641
+ 67
+ 20
+
+ -
+ 2758
+ 2651
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - dc2f6513-444b-4a13-b29b-e5bc289d56a9
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2561
+ 43
+ 100
+
+ -
+ 2843
+ 2611
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 1e539816-62d2-49f3-b7dc-a17e5e68207f
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ 2497
+ 82
+ 44
+
+ -
+ 2820
+ 2519
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - cb61a8b0-da79-4c69-a91c-ac946d4836f7
+ - Geometry
+ - Geometry
+ - false
+ - 75280ce7-4e63-4576-be04-d9d75e696859
+ - 1
+
+
+
+
+ -
+ 2754
+ 2499
+ 51
+ 20
+
+ -
+ 2781
+ 2509
+
+
+
+
+
+
+
+ - The material override
+ - e4008ddf-4c09-4ef9-9e30-78697849f095
+ - Material
+ - Material
+ - false
+ - dc2f6513-444b-4a13-b29b-e5bc289d56a9
+ - 1
+
+
+
+
+ -
+ 2754
+ 2519
+ 51
+ 20
+
+ -
+ 2781
+ 2529
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7fa07956-23c0-4600-9960-b23370a32f2b
+ - 1e539816-62d2-49f3-b7dc-a17e5e68207f
+ - 2
+ - a26d1668-a53e-4720-8aa2-43cf9a2c28b9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - e8057930-398e-4baf-a355-345906fe0d96
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2721
+ 895
+ 144
+ 64
+
+ -
+ 2795
+ 927
+
+
+
+
+
+ - Curve to evaluate
+ - c78a4abb-deb5-4cfe-ace8-6d2dffccd005
+ - Curve
+ - Curve
+ - false
+ - c17c1c53-7107-43f9-9a8e-a08dfe3a4373
+ - 1
+
+
+
+
+ -
+ 2723
+ 897
+ 57
+ 20
+
+ -
+ 2753
+ 907
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - be4482b5-351c-4234-af41-b9838388aac9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 917
+ 57
+ 20
+
+ -
+ 2753
+ 927
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 94f17404-396c-4433-b7f0-98513eb8a551
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 937
+ 57
+ 20
+
+ -
+ 2753
+ 947
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 61413e0e-4213-465a-adc8-fa8b5367dec3
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 897
+ 53
+ 20
+
+ -
+ 2838
+ 907
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 0be4c28a-386d-45aa-aac2-ab2934c90bfb
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 917
+ 53
+ 20
+
+ -
+ 2838
+ 927
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 0027017f-72a6-46a0-ab7c-a32bf0f37476
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ 937
+ 53
+ 20
+
+ -
+ 2838
+ 947
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - a2c94e7d-3876-4f54-9250-0ae4fb156f8d
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2730
+ 791
+ 125
+ 84
+
+ -
+ 2797
+ 833
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 3cd20117-2928-4f3b-af11-6b21f5f2a28a
+ - Vertices
+ - Vertices
+ - false
+ - 61413e0e-4213-465a-adc8-fa8b5367dec3
+ - 1
+
+
+
+
+ -
+ 2732
+ 793
+ 50
+ 20
+
+ -
+ 2758.5
+ 803
+
+
+
+
+
+
+
+ - Curve degree
+ - bda29afb-8a2f-4020-a8eb-0974f24ade3a
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 813
+ 50
+ 20
+
+ -
+ 2758.5
+ 823
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - dd2c1851-16fe-4e50-946e-47197a2b5691
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 833
+ 50
+ 20
+
+ -
+ 2758.5
+ 843
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 2d629a42-4210-4040-9449-3fd81cd92664
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ 853
+ 50
+ 20
+
+ -
+ 2758.5
+ 863
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - a4ed0af7-f4b3-4ebd-a752-519e201b8045
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 793
+ 41
+ 26
+
+ -
+ 2834
+ 806.3333
+
+
+
+
+
+
+
+ - Curve length
+ - 9442c4c1-404e-42d7-934f-e79cdd280815
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 819
+ 41
+ 27
+
+ -
+ 2834
+ 833
+
+
+
+
+
+
+
+ - Curve domain
+ - e4977ced-76d3-4b9e-a511-4a84318c01e4
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ 846
+ 41
+ 27
+
+ -
+ 2834
+ 859.6666
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 0e619394-c4fb-4962-a0e0-582190fafb60
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ 668
+ 144
+ 104
+
+ -
+ 2805
+ 720
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 033af848-67cf-4da6-b498-4f333c991180
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 670
+ 67
+ 20
+
+ -
+ 2758
+ 680
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 0c29a999-b0c3-4d63-9aff-f4081e7d99fb
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 690
+ 67
+ 20
+
+ -
+ 2758
+ 700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - ce4216e9-6c10-49c2-9aae-d1979f7a24f3
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 710
+ 67
+ 20
+
+ -
+ 2758
+ 720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 2fa1a745-061e-4763-9493-0d8b3117fb98
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 730
+ 67
+ 20
+
+ -
+ 2758
+ 740
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - c7f6b90e-711f-40b9-a744-6feaaa9dba41
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ 750
+ 67
+ 20
+
+ -
+ 2758
+ 760
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 9dd4be2b-8d83-48b6-9e3a-cb72654820b7
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 670
+ 43
+ 100
+
+ -
+ 2843
+ 720
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 562d0609-e0b8-4f53-b04a-a535ce8448d4
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ 606
+ 82
+ 44
+
+ -
+ 2820
+ 628
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 1278e734-0e5c-44b0-a3d5-0bf77739ac1e
+ - Geometry
+ - Geometry
+ - false
+ - a4ed0af7-f4b3-4ebd-a752-519e201b8045
+ - 1
+
+
+
+
+ -
+ 2754
+ 608
+ 51
+ 20
+
+ -
+ 2781
+ 618
+
+
+
+
+
+
+
+ - The material override
+ - 5fcd3d59-499d-44cf-9f73-fba1ab6db3df
+ - Material
+ - Material
+ - false
+ - 9dd4be2b-8d83-48b6-9e3a-cb72654820b7
+ - 1
+
+
+
+
+ -
+ 2754
+ 628
+ 51
+ 20
+
+ -
+ 2781
+ 638
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0e619394-c4fb-4962-a0e0-582190fafb60
+ - 562d0609-e0b8-4f53-b04a-a535ce8448d4
+ - 2
+ - 1c4bd00b-f41c-4877-89ae-c2cc8ba90668
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 7bf39698-e931-4e9d-b356-45343bde39ac
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2721
+ -868
+ 144
+ 64
+
+ -
+ 2795
+ -836
+
+
+
+
+
+ - Curve to evaluate
+ - c940d625-5c77-4efd-9449-891b2cd38924
+ - Curve
+ - Curve
+ - false
+ - 4e9c218a-a4d8-4359-b2b4-e7fec76f23f3
+ - 1
+
+
+
+
+ -
+ 2723
+ -866
+ 57
+ 20
+
+ -
+ 2753
+ -856
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3f62bbba-51cd-4e1e-9d43-ee007a859050
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -846
+ 57
+ 20
+
+ -
+ 2753
+ -836
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - e7b42cd1-69e6-4702-8c26-07f5870051dd
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -826
+ 57
+ 20
+
+ -
+ 2753
+ -816
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - fadaec37-dfbb-482d-9f47-0e3e51011424
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -866
+ 53
+ 20
+
+ -
+ 2838
+ -856
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 8a242e49-de07-4050-8cef-ad078ed8961e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -846
+ 53
+ 20
+
+ -
+ 2838
+ -836
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - f05fe9cf-f5c6-410d-97f3-145366950292
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -826
+ 53
+ 20
+
+ -
+ 2838
+ -816
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 5e6a71c9-068b-4c80-8329-8dc78e13758c
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2730
+ -972
+ 125
+ 84
+
+ -
+ 2797
+ -930
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 56906cca-774d-4ef1-931b-aff12525564c
+ - Vertices
+ - Vertices
+ - false
+ - fadaec37-dfbb-482d-9f47-0e3e51011424
+ - 1
+
+
+
+
+ -
+ 2732
+ -970
+ 50
+ 20
+
+ -
+ 2758.5
+ -960
+
+
+
+
+
+
+
+ - Curve degree
+ - 1f64f639-2eb9-4764-aea6-564cc9827f37
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -950
+ 50
+ 20
+
+ -
+ 2758.5
+ -940
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 9c1c462f-1b8a-4649-8201-2164d6547630
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -930
+ 50
+ 20
+
+ -
+ 2758.5
+ -920
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c79572bf-7153-4840-8398-c8aedaaf941e
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -910
+ 50
+ 20
+
+ -
+ 2758.5
+ -900
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 38126390-8b76-44af-8048-0b19ba6f2d1b
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -970
+ 41
+ 26
+
+ -
+ 2834
+ -956.6667
+
+
+
+
+
+
+
+ - Curve length
+ - 915514b3-a2f6-4660-9413-017a2459de5b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -944
+ 41
+ 27
+
+ -
+ 2834
+ -930
+
+
+
+
+
+
+
+ - Curve domain
+ - b9f574d7-9537-4fb7-aac4-bdab3d2faecb
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -917
+ 41
+ 27
+
+ -
+ 2834
+ -903.3334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 71452f07-0445-4149-bae3-e638f6b09057
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ -1095
+ 144
+ 104
+
+ -
+ 2805
+ -1043
+
+
+
+
+
+ - Colour of the diffuse channel
+ - de1c9476-012c-4da1-92fc-08c1e9b0fca4
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -1093
+ 67
+ 20
+
+ -
+ 2758
+ -1083
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;199;199;199
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 35acc16c-23a6-475a-82b2-32b381f7b808
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -1073
+ 67
+ 20
+
+ -
+ 2758
+ -1063
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 47b5ac7c-85cf-4266-9cfd-f02673289bc1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -1053
+ 67
+ 20
+
+ -
+ 2758
+ -1043
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7f94c3bf-7f3e-457b-9128-3fedc43684f0
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -1033
+ 67
+ 20
+
+ -
+ 2758
+ -1023
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - fe0ff523-6c2a-4449-b853-bade7c72ed3e
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -1013
+ 67
+ 20
+
+ -
+ 2758
+ -1003
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 18040f17-d978-42d5-a780-e94e311876e6
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -1093
+ 43
+ 100
+
+ -
+ 2843
+ -1043
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - bf27f44e-23ad-4bc1-b47e-9f177aee7784
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ -1157
+ 82
+ 44
+
+ -
+ 2820
+ -1135
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7c69675a-94e9-4566-a454-1688895446a5
+ - Geometry
+ - Geometry
+ - false
+ - 38126390-8b76-44af-8048-0b19ba6f2d1b
+ - 1
+
+
+
+
+ -
+ 2754
+ -1155
+ 51
+ 20
+
+ -
+ 2781
+ -1145
+
+
+
+
+
+
+
+ - The material override
+ - 4f017d08-b960-4b04-9bad-d16fbbc1eacb
+ - Material
+ - Material
+ - false
+ - 18040f17-d978-42d5-a780-e94e311876e6
+ - 1
+
+
+
+
+ -
+ 2754
+ -1135
+ 51
+ 20
+
+ -
+ 2781
+ -1125
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 71452f07-0445-4149-bae3-e638f6b09057
+ - bf27f44e-23ad-4bc1-b47e-9f177aee7784
+ - 2
+ - 270675ac-b627-4eee-8542-de839b52b43a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - fdd729ab-4118-45f2-8236-51dc69417454
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2721
+ -2666
+ 144
+ 64
+
+ -
+ 2795
+ -2634
+
+
+
+
+
+ - Curve to evaluate
+ - 4e7d4097-4afe-4fb5-83ed-beb3e77cd8a1
+ - Curve
+ - Curve
+ - false
+ - 96991c77-8125-4887-b56d-a51f89a5adc1
+ - 1
+
+
+
+
+ -
+ 2723
+ -2664
+ 57
+ 20
+
+ -
+ 2753
+ -2654
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 30472e4a-87e7-49dd-b946-3993dd93298d
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2644
+ 57
+ 20
+
+ -
+ 2753
+ -2634
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9e5200f2-9bc8-48cf-8a4b-63f210d85383
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2624
+ 57
+ 20
+
+ -
+ 2753
+ -2614
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 17645f8c-ab5a-45ae-a1cf-d05b9769d316
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -2664
+ 53
+ 20
+
+ -
+ 2838
+ -2654
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 50c59105-d966-4ec8-98eb-bb5c50858bc0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -2644
+ 53
+ 20
+
+ -
+ 2838
+ -2634
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 5f8e1317-8e2c-47c8-ad81-7b06726e35ee
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -2624
+ 53
+ 20
+
+ -
+ 2838
+ -2614
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - a0a24f49-2328-4bff-a809-2b88c32a0d50
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2730
+ -2770
+ 125
+ 84
+
+ -
+ 2797
+ -2728
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - b7f83fd2-c865-4e34-89b3-7a85d961945a
+ - Vertices
+ - Vertices
+ - false
+ - 17645f8c-ab5a-45ae-a1cf-d05b9769d316
+ - 1
+
+
+
+
+ -
+ 2732
+ -2768
+ 50
+ 20
+
+ -
+ 2758.5
+ -2758
+
+
+
+
+
+
+
+ - Curve degree
+ - cec4d6bb-950c-48cc-ae0e-bad9e2709040
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -2748
+ 50
+ 20
+
+ -
+ 2758.5
+ -2738
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - f499d3f8-a9b3-409a-bf26-d1c7090bb676
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -2728
+ 50
+ 20
+
+ -
+ 2758.5
+ -2718
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - aa20cd17-cca3-489b-a08c-b04a01f2aae8
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -2708
+ 50
+ 20
+
+ -
+ 2758.5
+ -2698
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 0a17bf02-c70d-4c2d-91b2-fa9f080746df
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -2768
+ 41
+ 26
+
+ -
+ 2834
+ -2754.667
+
+
+
+
+
+
+
+ - Curve length
+ - 1563774a-6fc3-401b-a23e-5e73bf21b65e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -2742
+ 41
+ 27
+
+ -
+ 2834
+ -2728
+
+
+
+
+
+
+
+ - Curve domain
+ - f0aeb868-3f61-4fca-bde0-c269d2fae5d8
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -2715
+ 41
+ 27
+
+ -
+ 2834
+ -2701.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c1beb210-89f4-4872-a882-d3bea5edb540
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2721
+ -2893
+ 144
+ 104
+
+ -
+ 2805
+ -2841
+
+
+
+
+
+ - Colour of the diffuse channel
+ - d85a2ec3-fc0c-4cab-9d29-1bb4ff01317f
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2891
+ 67
+ 20
+
+ -
+ 2758
+ -2881
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;191;191;191
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 0f559a94-403d-4c04-9ea2-c190de5dc216
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2871
+ 67
+ 20
+
+ -
+ 2758
+ -2861
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - fecfdd8b-ba51-45fd-a852-e1da36a06c5a
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2851
+ 67
+ 20
+
+ -
+ 2758
+ -2841
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 9ee2f992-9b6c-4d56-814b-8970273815c2
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2831
+ 67
+ 20
+
+ -
+ 2758
+ -2821
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 73392aca-6301-417b-b5cb-b8bb5ef08351
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2723
+ -2811
+ 67
+ 20
+
+ -
+ 2758
+ -2801
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 69642124-cb6b-41a2-a582-114712305f74
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2891
+ 43
+ 100
+
+ -
+ 2843
+ -2841
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - ef73682f-b60c-48ce-82de-c7de410bb746
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2752
+ -2955
+ 82
+ 44
+
+ -
+ 2820
+ -2933
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7a9a9039-2d22-43ef-8057-c6d4d89a190e
+ - Geometry
+ - Geometry
+ - false
+ - 0a17bf02-c70d-4c2d-91b2-fa9f080746df
+ - 1
+
+
+
+
+ -
+ 2754
+ -2953
+ 51
+ 20
+
+ -
+ 2781
+ -2943
+
+
+
+
+
+
+
+ - The material override
+ - 20c52469-09b1-4f94-9bbb-45be2741cef0
+ - Material
+ - Material
+ - false
+ - 69642124-cb6b-41a2-a582-114712305f74
+ - 1
+
+
+
+
+ -
+ 2754
+ -2933
+ 51
+ 20
+
+ -
+ 2781
+ -2923
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c1beb210-89f4-4872-a882-d3bea5edb540
+ - ef73682f-b60c-48ce-82de-c7de410bb746
+ - 2
+ - c01c4d44-05ec-478f-b965-a8feee784c17
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2f61758a-02e7-4f21-b8fd-f5ec5b8aa6ad
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9548
+ 8002
+ 144
+ 64
+
+ -
+ 9622
+ 8034
+
+
+
+
+
+ - Curve to evaluate
+ - 922aa04c-49c9-4821-bb04-e9558276e653
+ - Curve
+ - Curve
+ - false
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+
+
+
+
+ -
+ 9550
+ 8004
+ 57
+ 20
+
+ -
+ 9580
+ 8014
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 9b4e8d6b-6d88-41d9-8672-85668b990c8b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9550
+ 8024
+ 57
+ 20
+
+ -
+ 9580
+ 8034
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b73b8266-f105-4865-a30c-96ce04850d18
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9550
+ 8044
+ 57
+ 20
+
+ -
+ 9580
+ 8054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 7d1ed271-c056-440e-be01-f0685d6fb297
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9637
+ 8004
+ 53
+ 20
+
+ -
+ 9665
+ 8014
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f3478d1c-1a01-41fb-9868-2059c04977c5
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9637
+ 8024
+ 53
+ 20
+
+ -
+ 9665
+ 8034
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c4d04acc-2353-4b10-bd60-517e680e0acb
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9637
+ 8044
+ 53
+ 20
+
+ -
+ 9665
+ 8054
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 691fa5aa-1bb4-4b8f-9293-8d7655893ba5
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 9630
+ 8128
+ 98
+ 28
+
+ -
+ 9680
+ 8142
+
+
+
+
+
+ - Origin of plane
+ - 056716ea-1765-4246-b875-f95dc379dbfb
+ - Origin
+ - Origin
+ - false
+ - 7d1ed271-c056-440e-be01-f0685d6fb297
+ - 1
+
+
+
+
+ -
+ 9632
+ 8130
+ 33
+ 24
+
+ -
+ 9650
+ 8142
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - bd41a999-d637-478a-99d6-7456e8136d87
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9695
+ 8130
+ 31
+ 24
+
+ -
+ 9712
+ 8142
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 8db98b66-6014-4b20-a17d-cd0f82d5b85e
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9574
+ 7895
+ 118
+ 44
+
+ -
+ 9637
+ 7917
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 6b31f481-de17-4bb0-9e48-7e0c080b2591
+ - true
+ - Curves
+ - Curves
+ - false
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 8831d957-d436-43f9-a31b-730e1d909d2f
+ - 2
+
+
+
+
+ -
+ 9576
+ 7897
+ 46
+ 20
+
+ -
+ 9600.5
+ 7907
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - b9839ca3-2137-4050-a772-bb0de9ac1d86
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9576
+ 7917
+ 46
+ 20
+
+ -
+ 9600.5
+ 7927
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - e8f5a8bc-54e1-4e6b-932f-bc49a26d7f07
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9652
+ 7897
+ 38
+ 40
+
+ -
+ 9672.5
+ 7917
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 94e2a1cf-7e04-4d30-9f4f-09bcfed4b895
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - bad1c978-837c-473b-b4f0-a58dfe6f997e
+ - 1
+
+
+
+
+ -
+ 4236
+ 1293
+ 150
+ 150
+
+ -
+ 4236.364
+ 1293
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 1a0014ae-7819-4c4e-8299-9532e4fdd989
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - c17bf30a-d3fb-42bf-8a5c-8a85b4e571e6
+ - 1
+
+
+
+
+ -
+ 4236
+ -86
+ 150
+ 150
+
+ -
+ 4236.694
+ -85.37048
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 23d7a889-8f34-4d35-aefb-2c83b8e62cac
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - f011379a-ace5-42cd-9bf6-03a6a430b537
+ - 1
+
+
+
+
+ -
+ 4236
+ -1499
+ 150
+ 150
+
+ -
+ 4236
+ -1498.14
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 5af1d85f-5880-46e4-ab73-4082b5287d29
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - bd41549a-5c39-43b1-a411-b1275b839e38
+ - 1
+
+
+
+
+ -
+ 4235
+ -2893
+ 150
+ 150
+
+ -
+ 4235.352
+ -2892.188
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - ce15836c-2f61-4886-a0a5-02921828a77d
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - dfcb280a-2f59-4aaa-ab7d-450af4129a69
+ - 1
+
+
+
+
+ -
+ 4220
+ -4311
+ 150
+ 150
+
+ -
+ 4220
+ -4310.277
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 1787085e-7b5d-42df-bd61-b2a136b5c1f8
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - a238cbdd-49ea-4a2e-bc72-bd58d5cb8d00
+ - 1
+
+
+
+
+ -
+ 4222
+ -5796
+ 150
+ 150
+
+ -
+ 4222
+ -5795.794
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 82bfe000-c430-4ae8-ae2a-7e4496c9cb6b
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 1e04376c-53a0-49c5-ba39-577472064d46
+ - 1
+
+
+
+
+ -
+ 4220
+ -7282
+ 150
+ 150
+
+ -
+ 4220
+ -7281.181
+
+ - 0
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - a4369984-93e4-477a-9ffe-885dcfa33ab8
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9346
+ 8572
+ 154
+ 64
+
+ -
+ 9430
+ 8604
+
+
+
+
+
+ - Base geometry
+ - f550900a-6632-43a1-9794-a8d7765472b9
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 5e4df801-67a9-4c5d-99b6-b74cf5953f5e
+ - 1
+
+
+
+
+ -
+ 9348
+ 8574
+ 67
+ 20
+
+ -
+ 9391
+ 8584
+
+
+
+
+
+
+
+ - Center of scaling
+ - 2e05a58b-91c2-4a94-b6d4-c8ab3738c383
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9348
+ 8594
+ 67
+ 20
+
+ -
+ 9391
+ 8604
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4be42091-24c9-4003-9f59-c9f92a4689dc
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - e2349130-aa0f-401d-b935-da39728890df
+ - 1
+
+
+
+
+ -
+ 9348
+ 8614
+ 67
+ 20
+
+ -
+ 9391
+ 8624
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 190f94fc-abc4-4e1f-98b5-dede0db8ff84
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9445
+ 8574
+ 53
+ 30
+
+ -
+ 9473
+ 8589
+
+
+
+
+
+
+
+ - Transformation data
+ - 47dc683d-7096-4399-94d6-0a0a9bb6bd87
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9445
+ 8604
+ 53
+ 30
+
+ -
+ 9473
+ 8619
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - db144b0d-67c2-49f2-8698-55f8c4324b2d
+ - 68ecc26b-e785-469e-8f81-f893c6e34388
+ - 5be0ac6f-f9f3-4951-9a53-8e1e6c323367
+ - b4441e4c-5cf2-4d1f-8249-265dd4e3c699
+ - 56efe341-a041-43c7-a346-024f7fdd9345
+ - 5
+ - aca50386-5de5-4378-99a4-2ce1898a2178
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3488d1f0-a79b-400e-a50b-1eddfbbd2e40
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2730
+ -4540
+ 144
+ 64
+
+ -
+ 2804
+ -4508
+
+
+
+
+
+ - Curve to evaluate
+ - cac12fc2-31a8-40d3-b585-9b83ff632cf1
+ - Curve
+ - Curve
+ - false
+ - 531dc426-bfb6-4210-89d1-a169cc14774b
+ - 1
+
+
+
+
+ -
+ 2732
+ -4538
+ 57
+ 20
+
+ -
+ 2762
+ -4528
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - e650501c-cbbc-4847-a3b3-d6e7f56d2272
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4518
+ 57
+ 20
+
+ -
+ 2762
+ -4508
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4a92b2b6-7f6c-464a-a982-141bc95fa4ec
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4498
+ 57
+ 20
+
+ -
+ 2762
+ -4488
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 2555f212-58dd-41ce-b018-93a805640ffd
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -4538
+ 53
+ 20
+
+ -
+ 2847
+ -4528
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f828ba21-e403-456d-a4de-a9f9d959342e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -4518
+ 53
+ 20
+
+ -
+ 2847
+ -4508
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 0a3ec122-e68d-48ef-9c78-47adea00d969
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -4498
+ 53
+ 20
+
+ -
+ 2847
+ -4488
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 04bbc5bd-f892-4d59-b824-de2d4234e6ff
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2739
+ -4646
+ 125
+ 84
+
+ -
+ 2806
+ -4604
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - fec10e60-e178-4868-878f-cedb36ab764a
+ - Vertices
+ - Vertices
+ - false
+ - 2555f212-58dd-41ce-b018-93a805640ffd
+ - 1
+
+
+
+
+ -
+ 2741
+ -4644
+ 50
+ 20
+
+ -
+ 2767.5
+ -4634
+
+
+
+
+
+
+
+ - Curve degree
+ - 9165d516-9e95-4779-90a8-f2fcb2931f80
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -4624
+ 50
+ 20
+
+ -
+ 2767.5
+ -4614
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - f7f0451b-3419-4885-a7df-100196553974
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -4604
+ 50
+ 20
+
+ -
+ 2767.5
+ -4594
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - f8121b15-b6d9-420e-8732-b60383c61d7d
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -4584
+ 50
+ 20
+
+ -
+ 2767.5
+ -4574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ee30290b-dd6d-480d-af7b-a1b3cdfc86fb
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4644
+ 41
+ 26
+
+ -
+ 2843
+ -4630.667
+
+
+
+
+
+
+
+ - Curve length
+ - e0c889b8-a7fc-426d-aedb-fb9c3ab4bb96
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4618
+ 41
+ 27
+
+ -
+ 2843
+ -4604
+
+
+
+
+
+
+
+ - Curve domain
+ - a862844e-cd69-4ae2-9ce7-9d39613aeb85
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4591
+ 41
+ 27
+
+ -
+ 2843
+ -4577.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - d92f5405-c7c9-45d0-bee1-e1d4373026b9
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2730
+ -4769
+ 144
+ 104
+
+ -
+ 2814
+ -4717
+
+
+
+
+
+ - Colour of the diffuse channel
+ - c289a70f-6ade-4f16-8d4f-2d74ac055228
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4767
+ 67
+ 20
+
+ -
+ 2767
+ -4757
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;184;184;184
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 140312ca-730f-4667-9b1f-56732b45688a
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4747
+ 67
+ 20
+
+ -
+ 2767
+ -4737
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d7650f68-7c8c-491e-b380-0bfc50c7bfbb
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4727
+ 67
+ 20
+
+ -
+ 2767
+ -4717
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 651b77a2-05d2-4efb-bd74-ea38e6289d1c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4707
+ 67
+ 20
+
+ -
+ 2767
+ -4697
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 930dc256-e900-4253-b78e-daa03a82cd30
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -4687
+ 67
+ 20
+
+ -
+ 2767
+ -4677
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 3ff6a69e-40dc-45a7-a6ab-50db1d349192
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ -4767
+ 43
+ 100
+
+ -
+ 2852
+ -4717
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 86039917-a2e2-470f-8e07-bc4121e5e0ef
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2761
+ -4831
+ 82
+ 44
+
+ -
+ 2829
+ -4809
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 2bf56fb3-9423-4430-b2de-022b53ad150a
+ - Geometry
+ - Geometry
+ - false
+ - ee30290b-dd6d-480d-af7b-a1b3cdfc86fb
+ - 1
+
+
+
+
+ -
+ 2763
+ -4829
+ 51
+ 20
+
+ -
+ 2790
+ -4819
+
+
+
+
+
+
+
+ - The material override
+ - 7d7720f2-c8eb-45ee-af45-2537d6261375
+ - Material
+ - Material
+ - false
+ - 3ff6a69e-40dc-45a7-a6ab-50db1d349192
+ - 1
+
+
+
+
+ -
+ 2763
+ -4809
+ 51
+ 20
+
+ -
+ 2790
+ -4799
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d92f5405-c7c9-45d0-bee1-e1d4373026b9
+ - 86039917-a2e2-470f-8e07-bc4121e5e0ef
+ - 2
+ - 33763df5-c277-4f3a-9004-08657d703d20
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 527acc98-cb13-4557-838a-b79e4839fd1b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2730
+ -6367
+ 144
+ 64
+
+ -
+ 2804
+ -6335
+
+
+
+
+
+ - Curve to evaluate
+ - 25dc3751-703b-435e-80f3-04f19fb6d3bf
+ - Curve
+ - Curve
+ - false
+ - d18de3da-aab3-4b7a-b9a4-52cd5cd878a4
+ - 1
+
+
+
+
+ -
+ 2732
+ -6365
+ 57
+ 20
+
+ -
+ 2762
+ -6355
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5cdd8258-bb4e-42ae-ad96-d40b17967bd2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6345
+ 57
+ 20
+
+ -
+ 2762
+ -6335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 91f6b7aa-f762-4124-9439-aba4fb432200
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6325
+ 57
+ 20
+
+ -
+ 2762
+ -6315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - b9af8b04-6282-4569-ae45-2b9cd6e254d6
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -6365
+ 53
+ 20
+
+ -
+ 2847
+ -6355
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 35f55702-1955-4d54-864c-3eca0c8cc893
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -6345
+ 53
+ 20
+
+ -
+ 2847
+ -6335
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c1af9a89-2936-41af-81a5-b1756ab639ba
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ -6325
+ 53
+ 20
+
+ -
+ 2847
+ -6315
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 60fd7d67-f0e4-470f-95ec-9b2b668f5b90
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2739
+ -6473
+ 125
+ 84
+
+ -
+ 2806
+ -6431
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 0fbc3b36-c796-41db-ab7c-9dce718e481d
+ - Vertices
+ - Vertices
+ - false
+ - b9af8b04-6282-4569-ae45-2b9cd6e254d6
+ - 1
+
+
+
+
+ -
+ 2741
+ -6471
+ 50
+ 20
+
+ -
+ 2767.5
+ -6461
+
+
+
+
+
+
+
+ - Curve degree
+ - 0f15b6d2-d753-4b81-b8dd-b1834d3e0e3e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -6451
+ 50
+ 20
+
+ -
+ 2767.5
+ -6441
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 389fe97b-8272-4227-a236-e40c09568651
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -6431
+ 50
+ 20
+
+ -
+ 2767.5
+ -6421
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - f7737c52-7acc-43a6-8ae9-9aa09e961d2e
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -6411
+ 50
+ 20
+
+ -
+ 2767.5
+ -6401
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 94e70347-3432-4235-91e3-f0f9ee1f87a9
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -6471
+ 41
+ 26
+
+ -
+ 2843
+ -6457.667
+
+
+
+
+
+
+
+ - Curve length
+ - 8239adba-c94b-4357-8ad2-3f812dddb986
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -6445
+ 41
+ 27
+
+ -
+ 2843
+ -6431
+
+
+
+
+
+
+
+ - Curve domain
+ - f009de9e-d853-411f-99bf-a63e229b6da3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -6418
+ 41
+ 27
+
+ -
+ 2843
+ -6404.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 408d5a9f-e526-42b5-8a06-5793bb3d562b
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2730
+ -6596
+ 144
+ 104
+
+ -
+ 2814
+ -6544
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 634574ed-4fa6-46c7-88cc-41a189c2d8c6
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6594
+ 67
+ 20
+
+ -
+ 2767
+ -6584
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 9421a9d7-f462-4df0-a28d-16e84bde4501
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6574
+ 67
+ 20
+
+ -
+ 2767
+ -6564
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 32f2429e-f3b9-4db3-8c38-e0984c7e1141
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6554
+ 67
+ 20
+
+ -
+ 2767
+ -6544
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ce3e42e2-5e25-4b96-9181-3b14d3ccfef9
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6534
+ 67
+ 20
+
+ -
+ 2767
+ -6524
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 35a8a093-7d08-41bb-aa58-6d526cde6ee3
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -6514
+ 67
+ 20
+
+ -
+ 2767
+ -6504
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 1e325218-b187-4561-a76b-7d14013ee849
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ -6594
+ 43
+ 100
+
+ -
+ 2852
+ -6544
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 66a85b7a-0ae9-464a-a60d-bb8056fa5d88
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2761
+ -6658
+ 82
+ 44
+
+ -
+ 2829
+ -6636
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ec9ea864-9381-4479-86c4-7d8f70090072
+ - Geometry
+ - Geometry
+ - false
+ - 94e70347-3432-4235-91e3-f0f9ee1f87a9
+ - 1
+
+
+
+
+ -
+ 2763
+ -6656
+ 51
+ 20
+
+ -
+ 2790
+ -6646
+
+
+
+
+
+
+
+ - The material override
+ - ed32b0c3-a070-4528-a492-c2cc405fe4d0
+ - Material
+ - Material
+ - false
+ - 1e325218-b187-4561-a76b-7d14013ee849
+ - 1
+
+
+
+
+ -
+ 2763
+ -6636
+ 51
+ 20
+
+ -
+ 2790
+ -6626
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 408d5a9f-e526-42b5-8a06-5793bb3d562b
+ - 66a85b7a-0ae9-464a-a60d-bb8056fa5d88
+ - 2
+ - c0fe9d62-dced-4912-b38a-a715c1f30baf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ac16c2b6-dcc6-40a0-a135-c8fdab057662
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2732
+ -8233
+ 144
+ 64
+
+ -
+ 2806
+ -8201
+
+
+
+
+
+ - Curve to evaluate
+ - 1da9d75c-eee3-4235-8b84-9eeadbae8970
+ - Curve
+ - Curve
+ - false
+ - b1a63964-6d3e-4377-b10a-a030fc678908
+ - 1
+
+
+
+
+ -
+ 2734
+ -8231
+ 57
+ 20
+
+ -
+ 2764
+ -8221
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3262ee12-4d2a-43e2-8928-25a9f2ac3509
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8211
+ 57
+ 20
+
+ -
+ 2764
+ -8201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 57a59441-fe8f-423c-9ee6-acee33352bb5
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8191
+ 57
+ 20
+
+ -
+ 2764
+ -8181
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d624daa5-82e1-405a-927f-a1a18ac94b04
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -8231
+ 53
+ 20
+
+ -
+ 2849
+ -8221
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - b7717022-f735-45f9-ab8c-53e4301c6a7b
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -8211
+ 53
+ 20
+
+ -
+ 2849
+ -8201
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 6d3e0a23-9224-4b77-9ac5-33c753e15dcc
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -8191
+ 53
+ 20
+
+ -
+ 2849
+ -8181
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - af940d6c-4295-4640-a34e-53f4c0fed0b4
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2741
+ -8339
+ 125
+ 84
+
+ -
+ 2808
+ -8297
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 1f9f0b47-c663-46fb-98da-d0ad69a7e79e
+ - Vertices
+ - Vertices
+ - false
+ - d624daa5-82e1-405a-927f-a1a18ac94b04
+ - 1
+
+
+
+
+ -
+ 2743
+ -8337
+ 50
+ 20
+
+ -
+ 2769.5
+ -8327
+
+
+
+
+
+
+
+ - Curve degree
+ - b7bda953-8428-44d5-a9c6-881c2bb5bafb
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2743
+ -8317
+ 50
+ 20
+
+ -
+ 2769.5
+ -8307
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 44f5cd9b-1b58-4899-b144-9fb966f1ae4a
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2743
+ -8297
+ 50
+ 20
+
+ -
+ 2769.5
+ -8287
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 61c1244c-b6b3-48ed-af67-f3b6030346ee
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2743
+ -8277
+ 50
+ 20
+
+ -
+ 2769.5
+ -8267
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ce5865df-2f1f-461b-8703-d0cca48ff0c4
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -8337
+ 41
+ 26
+
+ -
+ 2845
+ -8323.667
+
+
+
+
+
+
+
+ - Curve length
+ - d117a34d-b3c7-4fb0-a6b7-8c9ab925b875
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -8311
+ 41
+ 27
+
+ -
+ 2845
+ -8297
+
+
+
+
+
+
+
+ - Curve domain
+ - 091cbdc9-32f7-4626-a305-fff8dd552e1e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -8284
+ 41
+ 27
+
+ -
+ 2845
+ -8270.334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - acab807e-0bd7-41ce-8d23-5f50bbcc109b
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2732
+ -8462
+ 144
+ 104
+
+ -
+ 2816
+ -8410
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e87af2c4-3cb8-4e3e-b78f-7a9626f24469
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8460
+ 67
+ 20
+
+ -
+ 2769
+ -8450
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;168;168;168
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 26ac3729-b86f-4077-ad20-142d4703ed91
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8440
+ 67
+ 20
+
+ -
+ 2769
+ -8430
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 7f618772-9dc2-45a5-90ce-c5f8b46e0493
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8420
+ 67
+ 20
+
+ -
+ 2769
+ -8410
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 408b3edf-0a38-4762-b761-ecb47610b93d
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8400
+ 67
+ 20
+
+ -
+ 2769
+ -8390
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 0a104caf-b2b8-4b96-bb72-d4da6745b45b
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2734
+ -8380
+ 67
+ 20
+
+ -
+ 2769
+ -8370
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 1d958c6c-3e16-41f4-a27a-d3be287cb8d3
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ -8460
+ 43
+ 100
+
+ -
+ 2854
+ -8410
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - ac7e4b79-a15f-4747-88fc-835181cee777
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2763
+ -8524
+ 82
+ 44
+
+ -
+ 2831
+ -8502
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 92a2a9ee-18a1-4d3d-ada7-3611e4169835
+ - Geometry
+ - Geometry
+ - false
+ - ce5865df-2f1f-461b-8703-d0cca48ff0c4
+ - 1
+
+
+
+
+ -
+ 2765
+ -8522
+ 51
+ 20
+
+ -
+ 2792
+ -8512
+
+
+
+
+
+
+
+ - The material override
+ - 377a15bd-bf90-43a1-89d0-19e8d767fb7a
+ - Material
+ - Material
+ - false
+ - 1d958c6c-3e16-41f4-a27a-d3be287cb8d3
+ - 1
+
+
+
+
+ -
+ 2765
+ -8502
+ 51
+ 20
+
+ -
+ 2792
+ -8492
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - acab807e-0bd7-41ce-8d23-5f50bbcc109b
+ - ac7e4b79-a15f-4747-88fc-835181cee777
+ - 2
+ - 769608b0-b6df-44d2-9130-42067c104fb2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8b4070e4-7dcf-409a-8978-2d9aa65cc7e9
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2736
+ -10086
+ 144
+ 64
+
+ -
+ 2810
+ -10054
+
+
+
+
+
+ - Curve to evaluate
+ - a3afa127-759b-4669-8704-4cec35a686c2
+ - Curve
+ - Curve
+ - false
+ - 9122048b-5af8-459a-a9f2-1cb38d844e1f
+ - 1
+
+
+
+
+ -
+ 2738
+ -10084
+ 57
+ 20
+
+ -
+ 2768
+ -10074
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4c8d8301-c3e7-4cd7-bc8e-1f411f8c135b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10064
+ 57
+ 20
+
+ -
+ 2768
+ -10054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 293fe742-6f99-483c-872f-224ea79f457c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10044
+ 57
+ 20
+
+ -
+ 2768
+ -10034
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 693e8242-969f-4fdb-8845-cbb05910a1fe
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10084
+ 53
+ 20
+
+ -
+ 2853
+ -10074
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7b2205dc-a074-4d7e-9b6d-dee7a4a17464
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10064
+ 53
+ 20
+
+ -
+ 2853
+ -10054
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8d92c1da-eaa1-4cf8-b57d-dbf05962a836
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10044
+ 53
+ 20
+
+ -
+ 2853
+ -10034
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 1eb5bbdd-80c5-402d-a116-d1477654d742
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2745
+ -10192
+ 125
+ 84
+
+ -
+ 2812
+ -10150
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 8e2c778b-e5bf-4b60-8c0a-a3e22c63229c
+ - Vertices
+ - Vertices
+ - false
+ - 693e8242-969f-4fdb-8845-cbb05910a1fe
+ - 1
+
+
+
+
+ -
+ 2747
+ -10190
+ 50
+ 20
+
+ -
+ 2773.5
+ -10180
+
+
+
+
+
+
+
+ - Curve degree
+ - 0d9483da-ccd5-4006-9877-ca3f728475f4
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -10170
+ 50
+ 20
+
+ -
+ 2773.5
+ -10160
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - d6f55a48-e0d2-4652-a500-6eacb975b2e0
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -10150
+ 50
+ 20
+
+ -
+ 2773.5
+ -10140
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 4ba70e61-96c9-4b68-9832-c3aa656bd50d
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -10130
+ 50
+ 20
+
+ -
+ 2773.5
+ -10120
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 3b076e99-c62b-4bc8-88c5-a63254cda76a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -10190
+ 41
+ 26
+
+ -
+ 2849
+ -10176.67
+
+
+
+
+
+
+
+ - Curve length
+ - d9b4b6be-1349-4ac7-87ba-4057f2f8ad2f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -10164
+ 41
+ 27
+
+ -
+ 2849
+ -10150
+
+
+
+
+
+
+
+ - Curve domain
+ - 84f05e8f-85a8-4579-8004-499993fea21d
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -10137
+ 41
+ 27
+
+ -
+ 2849
+ -10123.33
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 1b7ce45e-efe0-4abb-b207-d21b466ff7f3
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2736
+ -10315
+ 144
+ 104
+
+ -
+ 2820
+ -10263
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 25a0de77-3764-484b-a26d-4902fa8fa4ce
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10313
+ 67
+ 20
+
+ -
+ 2773
+ -10303
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;161;161;161
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - bc623c4d-bb30-4ec3-84f0-01d01819e892
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10293
+ 67
+ 20
+
+ -
+ 2773
+ -10283
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 851b3a69-b51f-4987-8951-94817991114c
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10273
+ 67
+ 20
+
+ -
+ 2773
+ -10263
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 257f886f-a17e-4acd-b78a-db2beed62bc9
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10253
+ 67
+ 20
+
+ -
+ 2773
+ -10243
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1d3716b5-c753-4c63-8b7b-e86c81ab72a2
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -10233
+ 67
+ 20
+
+ -
+ 2773
+ -10223
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - dec36279-f586-4541-80a1-49a48a5526f2
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -10313
+ 43
+ 100
+
+ -
+ 2858
+ -10263
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 6769cdb3-9ea7-409e-b566-b5221866f156
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2767
+ -10377
+ 82
+ 44
+
+ -
+ 2835
+ -10355
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - f1577d20-42de-4929-9dd8-f0e3ebe34ab6
+ - Geometry
+ - Geometry
+ - false
+ - 3b076e99-c62b-4bc8-88c5-a63254cda76a
+ - 1
+
+
+
+
+ -
+ 2769
+ -10375
+ 51
+ 20
+
+ -
+ 2796
+ -10365
+
+
+
+
+
+
+
+ - The material override
+ - 72d4b777-760a-477f-9f72-94af0fb8e4b7
+ - Material
+ - Material
+ - false
+ - dec36279-f586-4541-80a1-49a48a5526f2
+ - 1
+
+
+
+
+ -
+ 2769
+ -10355
+ 51
+ 20
+
+ -
+ 2796
+ -10345
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1b7ce45e-efe0-4abb-b207-d21b466ff7f3
+ - 6769cdb3-9ea7-409e-b566-b5221866f156
+ - 2
+ - 402b11cc-e986-4056-8676-42eec6a89ccd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 38af291c-fdb3-4110-91d3-58dd6b570756
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.09572649568
+
+
+
+
+ -
+ 4180
+ -1796
+ 250
+ 20
+
+ -
+ 4180.949
+ -1795.593
+
+
+
+
+
+
+
+
+
+ - 0bb3d234-9097-45db-9998-621639c87d3b
+ - Bounding Box
+
+
+
+
+ - Solve oriented geometry bounding boxes.
+ - true
+ - d84a0127-8eb7-4720-a062-ad61e0e7cc5d
+ - Bounding Box
+ - Bounding Box
+
+
+
+
+ - true
+
+
+
+
+ -
+ 9089
+ 7558
+ 100
+ 44
+
+ -
+ 9148
+ 7580
+
+
+
+
+
+ - 1
+ - Geometry to contain
+ - 5c925c57-f0d9-435e-b548-645c6fba82a7
+ - Content
+ - Content
+ - false
+ - ac1a8ab1-bd3f-4678-aa93-a7f3196bd24f
+ - 1
+
+
+
+
+ -
+ 9091
+ 7560
+ 42
+ 20
+
+ -
+ 9113.5
+ 7570
+
+
+
+
+
+
+
+ - BoundingBox orientation plane
+ - true
+ - 8af7144d-0fdf-4f74-a9a3-b4448abe51ca
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9091
+ 7580
+ 42
+ 20
+
+ -
+ 9113.5
+ 7590
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Aligned bounding box in world coordinates
+ - 4752baa9-276c-473e-9411-f42747d16825
+ - Box
+ - Box
+ - false
+ - 0
+
+
+
+
+ -
+ 9163
+ 7560
+ 24
+ 20
+
+ -
+ 9176.5
+ 7570
+
+
+
+
+
+
+
+ - Bounding box in orientation plane coordinates
+ - true
+ - cf035c8c-c992-41c0-af32-707fe77bd1fd
+ - Box
+ - Box
+ - false
+ - 0
+
+
+
+
+ -
+ 9163
+ 7580
+ 24
+ 20
+
+ -
+ 9176.5
+ 7590
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - db08f3e8-3645-4ecd-a731-da94d628dda2
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 9102
+ 7627
+ 87
+ 144
+
+ -
+ 9138
+ 7699
+
+
+
+
+
+ - 7
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 90dbe640-5f1f-43c2-8d6b-1702c5d0ce17
+ - false
+ - Data 1
+ - D1
+ - true
+ - 225650fb-215c-4398-9f6f-49f6df1d9b0f
+ - 1
+
+
+
+
+ -
+ 9104
+ 7629
+ 19
+ 20
+
+ -
+ 9115
+ 7639
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - ab101310-b4f8-4536-932d-0d74c240f23d
+ - false
+ - Data 2
+ - D2
+ - true
+ - 5cc66ec7-4917-435f-9bd7-7ec449c83a74
+ - 1
+
+
+
+
+ -
+ 9104
+ 7649
+ 19
+ 20
+
+ -
+ 9115
+ 7659
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 38f5e480-e3ce-4671-b1c6-9571e4a2432f
+ - false
+ - Data 3
+ - D3
+ - true
+ - 75280ce7-4e63-4576-be04-d9d75e696859
+ - 1
+
+
+
+
+ -
+ 9104
+ 7669
+ 19
+ 20
+
+ -
+ 9115
+ 7679
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - 3ab5ca44-a235-43dd-a3eb-397b5ff0ea92
+ - false
+ - Data 4
+ - D4
+ - true
+ - a4ed0af7-f4b3-4ebd-a752-519e201b8045
+ - 1
+
+
+
+
+ -
+ 9104
+ 7689
+ 19
+ 20
+
+ -
+ 9115
+ 7699
+
+
+
+
+
+
+
+ - 2
+ - Data stream 5
+ - 54b92901-03d4-4637-b966-ebcccbbbdd2c
+ - false
+ - Data 5
+ - D5
+ - true
+ - 38126390-8b76-44af-8048-0b19ba6f2d1b
+ - 1
+
+
+
+
+ -
+ 9104
+ 7709
+ 19
+ 20
+
+ -
+ 9115
+ 7719
+
+
+
+
+
+
+
+ - 2
+ - Data stream 6
+ - b8dea9d8-913f-4c06-878f-b1d7e56b5310
+ - false
+ - Data 6
+ - D6
+ - true
+ - 0a17bf02-c70d-4c2d-91b2-fa9f080746df
+ - 1
+
+
+
+
+ -
+ 9104
+ 7729
+ 19
+ 20
+
+ -
+ 9115
+ 7739
+
+
+
+
+
+
+
+ - 2
+ - Data stream 7
+ - 323936a2-f0df-48d3-b580-bf44e73a8b50
+ - false
+ - Data 7
+ - D7
+ - true
+ - 0
+
+
+
+
+ -
+ 9104
+ 7749
+ 19
+ 20
+
+ -
+ 9115
+ 7759
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - ac1a8ab1-bd3f-4678-aa93-a7f3196bd24f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9153
+ 7629
+ 34
+ 140
+
+ -
+ 9171.5
+ 7699
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d84a0127-8eb7-4720-a062-ad61e0e7cc5d
+ - db08f3e8-3645-4ecd-a731-da94d628dda2
+ - 2
+ - 16eb7a98-97a9-4d71-85f5-09c122d3e6e0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 151a1c00-467b-42e6-b067-7ad0c34fb422
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 5091
+ 12410
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 5091.86
+ 12410
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 34719ada-9420-4764-b8d1-3b2b3a5dfbcd
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0000710748925500000001421
+
+
+
+
+ -
+ 3667
+ 11185
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3667.602
+ 11185.35
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e98d90c2-696a-41df-a026-7e0b926bb809
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 5202
+ 12522
+ 251
+ 20
+
+ -
+ 5202.465
+ 12522.88
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3910b3a6-f1ce-483a-a2a7-531847b3a29e
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00004700000
+
+
+
+
+ -
+ 7313
+ 12374
+ 251
+ 20
+
+ -
+ 7313.553
+ 12374.46
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - 2caa6ba2-76dc-4a4c-83bb-61d4832f3c7f
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 10812
+ 7838
+ 97
+ 104
+
+ -
+ 10858
+ 7890
+
+
+
+
+
+ - 5
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 054a750e-baa5-44aa-8aff-b7ea83cebfe1
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - 86fc2dd8-2814-43bc-8aa6-998446a8e239
+ - 1
+
+
+
+
+ -
+ 10814
+ 7840
+ 29
+ 20
+
+ -
+ 10830
+ 7850
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 3428ac04-4835-4cbf-80a6-75a9280e3ac3
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - 9d3e2fa0-f2f8-499c-b0d6-aea998d09756
+ - 1
+
+
+
+
+ -
+ 10814
+ 7860
+ 29
+ 20
+
+ -
+ 10830
+ 7870
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - bbe19425-726c-4ed9-bffa-d3cb37d05ce7
+ - false
+ - Branch {2;x}
+ - {2;x}
+ - true
+ - 39a4ff0f-6c72-4497-8065-1a6228469a0b
+ - 1
+
+
+
+
+ -
+ 10814
+ 7880
+ 29
+ 20
+
+ -
+ 10830
+ 7890
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 115eb2a7-ece1-4c2c-a0b6-b7350e6ff78f
+ - false
+ - Branch {3;x}
+ - {3;x}
+ - true
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+
+
+
+
+ -
+ 10814
+ 7900
+ 29
+ 20
+
+ -
+ 10830
+ 7910
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 2ab39111-9cc2-45fa-9bb9-2d6e126cef1e
+ - false
+ - Branch {4;x}
+ - {4;x}
+ - true
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 1
+
+
+
+
+ -
+ 10814
+ 7920
+ 29
+ 20
+
+ -
+ 10830
+ 7930
+
+
+
+
+
+
+
+ - Entwined result
+ - f7d7b0b0-b1f2-4025-a697-aff51a6ff66d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 10873
+ 7840
+ 34
+ 100
+
+ -
+ 10891.5
+ 7890
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2b31b7f2-f5bb-43d9-a76a-cb0a3e339648
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 3667
+ 11259
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3667.602
+ 11259.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ce992570-fa4a-497d-a5ef-756e1adfc0ff
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00008581120
+
+
+
+
+ -
+ 11360
+ 14046
+ 250
+ 20
+
+ -
+ 11360.79
+ 14046.02
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 84953cbe-5fc1-4334-ad13-1aed4142a8d7
+ - Panel
+
+ - false
+ - 0
+ - 54167f79-58a5-49d4-952d-825210755673
+ - 1
+ - 0.00137956207
+
+
+
+
+ -
+ 5091
+ 12487
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5091.304
+ 12487.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 35081227-19ab-4cfd-befc-b733fd6a2745
+ - Panel
+
+ - false
+ - 0
+ - 54167f79-58a5-49d4-952d-825210755673
+ - 1
+ - 0.00140149998
+
+
+
+
+ -
+ 7210
+ 12409
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7210.887
+ 12409.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 54167f79-58a5-49d4-952d-825210755673
+ - Panel
+
+ - false
+ - 0
+ - ce992570-fa4a-497d-a5ef-756e1adfc0ff
+ - 1
+ - 0.0000710748925500000001421
+
+
+
+
+ -
+ 11349
+ 14005
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11349.54
+ 14005.86
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ce992570-fa4a-497d-a5ef-756e1adfc0ff
+ - 54167f79-58a5-49d4-952d-825210755673
+ - 2
+ - 235e8cd6-0f0c-4e5f-88be-c04099fed18b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 96b01361-8424-4588-9198-af74d35bac00
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 151.7037036
+
+
+
+
+ -
+ 4201
+ -3190
+ 250
+ 20
+
+ -
+ 4201.862
+ -3189.823
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 14108701-7994-41b7-8b02-99aa90cebe85
+ - 71627f46-1b0b-441d-b6a1-91ba68b7f149
+ - 386f950f-c970-426c-88d5-b67a48462d21
+ - 2c947271-dcaf-4653-b6ba-29fa05dcfc2c
+ - 05d7f470-71a7-4578-b609-7b72e9f15854
+ - 9d33e047-2989-4289-9e82-3abcbee2b8f1
+ - 04211da9-e18d-49e9-9768-7f1fb5ee6d67
+ - f587a3b0-9601-4598-9153-5b88786031e4
+ - cf4dfcab-a233-4896-8ff2-16519b4f2a39
+ - 07f729a5-43ef-4d50-b2aa-7f20103f72e4
+ - 277fd3a1-06d7-46fc-8d41-321daa3b6de3
+ - aa6dc8de-4682-45e0-a7c1-dacc835bf76b
+ - 11e48022-adb0-4fd9-ac54-10d4c2416dd0
+ - 2328bf34-8f57-40bb-ab3c-473512e410f4
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - 995fca2a-62f1-4462-bf45-92daeb3e407d
+ - f187a796-42bf-4fda-8cdd-e27a6c91c738
+ - 0a6c9349-1da1-4c58-a008-82d92ca938cc
+ - 65a4de96-7633-48a2-a02d-f7e41adf369b
+ - 19b6fffd-7afa-4b5a-bed7-08a4581cddcc
+ - 53266107-d584-4177-bbcc-23e0b7565043
+ - e0307854-dfe1-4487-b24f-7031d4e9b80b
+ - 15dd9792-9754-4eaa-81c0-e80a24cdb6b1
+ - 5628b312-a6cf-4221-a36e-6282c823b3dc
+ - d78bad6c-a2a4-4361-93bc-04b085c5fe91
+ - eb3c63b8-decc-40a6-8e01-6a7b4bd21fb7
+ - b0f71a74-8714-4a7a-9444-b2ddd0bd254b
+ - 371bed3f-2dc6-44ef-a60b-a29a18eadfdf
+ - f3303dbe-5c49-4ed8-a2f1-d32d0fd72e74
+ - 105da778-9577-4424-91b1-526dba52bf19
+ - 6363a3f6-3f80-4baa-980b-c38ccc11f85a
+ - a36a4438-2e7c-466a-b922-b6a89efbe770
+ - 3b78fb2f-742f-404f-a900-93bf9382292c
+ - f54e2aab-781a-4bc0-b131-cd9db1492b77
+ - 17d31577-561b-4470-9e47-4162eb1f42b5
+ - 979358d7-2546-4e1e-bfb2-686ca2bdfdc7
+ - 85b6b1b2-6771-468e-85fa-0ee8105cb0aa
+ - 1777c21d-956b-40f1-bc5c-892de6649cad
+ - 85e6b76e-40eb-4b80-a3a3-2e568d0cd982
+ - 4e21cb34-562e-4332-944e-f412853b6a70
+ - 6f35ba29-f62a-4b01-83f0-70c9edb4aa72
+ - 196d75b7-f3e4-4f90-b6d8-24c7131a5cfb
+ - 73f83752-f052-446e-95d2-f78da9ca9049
+ - 422d1a51-1794-4d65-8477-c50a38ef7c1e
+ - da42e63b-f360-4bdd-91a0-88be1ce7fd46
+ - a10ebeb4-c3ed-4205-bdc4-29b2a9c22e71
+ - f76391c1-925a-4ec2-afbd-4b24eb0b3332
+ - 724184df-15e4-4293-89aa-303827706eba
+ - 306f64dd-2419-46c0-961c-c72e0a933ba9
+ - 87a67213-4a0a-4a72-b851-92b452170264
+ - 129ebb1e-15f6-4323-9dc1-c6c34158a612
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 82c53ab6-a011-49be-b6c4-b8b93228dc48
+ - 05143bda-e521-42d0-8788-de8c08b331a8
+ - 3b2d34b3-fb95-4d3e-ac60-3527c7b09691
+ - e4eb06ed-93b1-4169-8e76-0ec1ed383cfa
+ - bdf7de43-b038-413f-85e4-ff4acb2e52e2
+ - 577b20e1-a7ce-4b69-836d-cbf3a2dd6cbf
+ - 0f67835d-9430-4054-86b4-7a8895190c93
+ - fb76db94-8298-4d45-ab65-a875f09b9366
+ - 07a1f37d-aec2-49dd-8250-913d7a1f8225
+ - 7665f455-2dfa-437c-aa1b-91bb077651f0
+ - 72422a30-dc71-4e97-bce0-09d6ad4a72f2
+ - 436eea78-cf0e-4c35-b8d1-b652a5cbc7e1
+ - b9965101-0ded-421e-baaa-1fe4215ae59d
+ - 94af549b-2c0b-4bdf-b6f5-02f9b4ab11f5
+ - 74b21bf1-be3e-4175-add9-eb4483aaf1a8
+ - 62773edb-46a1-49a0-a388-f56bafedcf7d
+ - 7d352a34-c1a8-438f-a73d-398e16bce26a
+ - 3c5e8987-4367-4b96-abc7-d9950c787a5b
+ - 273cdda9-433c-4813-8ab6-151b5dc27262
+ - c9ad8ba2-8311-4b9f-8661-c724bbb1bd13
+ - 4cc48639-01ca-491e-96f2-953404e9c90b
+ - b8cbc295-7efe-44e3-b110-1dcb32c8eb70
+ - a502bd36-3f92-4597-8529-8b12a037a679
+ - a31d6d4a-fcb3-4a47-87cb-ff7b84e6658a
+ - 5d482aa6-89b9-45e9-869e-ac438fa04aba
+ - a053dc41-201d-493a-ada0-b538db32a63a
+ - 77dd9549-353d-481e-b7ba-7e13c837610a
+ - 992e5323-9c5a-4dc4-b881-6cf0dcb48bbd
+ - cab7477d-413f-4890-892a-b0ccc8baf584
+ - 2c62e475-50df-4188-ac09-8024f05be84e
+ - baf8b528-285a-4a8a-afb5-5d635f28ad9d
+ - 83
+ - 68589e9c-11f7-4c4e-9894-699b58ac4464
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 71627f46-1b0b-441d-b6a1-91ba68b7f149
+ - 386f950f-c970-426c-88d5-b67a48462d21
+ - 2c947271-dcaf-4653-b6ba-29fa05dcfc2c
+ - 05d7f470-71a7-4578-b609-7b72e9f15854
+ - 9d33e047-2989-4289-9e82-3abcbee2b8f1
+ - 04211da9-e18d-49e9-9768-7f1fb5ee6d67
+ - f587a3b0-9601-4598-9153-5b88786031e4
+ - cf4dfcab-a233-4896-8ff2-16519b4f2a39
+ - 07f729a5-43ef-4d50-b2aa-7f20103f72e4
+ - 277fd3a1-06d7-46fc-8d41-321daa3b6de3
+ - aa6dc8de-4682-45e0-a7c1-dacc835bf76b
+ - 11e48022-adb0-4fd9-ac54-10d4c2416dd0
+ - 2328bf34-8f57-40bb-ab3c-473512e410f4
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - 995fca2a-62f1-4462-bf45-92daeb3e407d
+ - f187a796-42bf-4fda-8cdd-e27a6c91c738
+ - 0a6c9349-1da1-4c58-a008-82d92ca938cc
+ - 65a4de96-7633-48a2-a02d-f7e41adf369b
+ - 19b6fffd-7afa-4b5a-bed7-08a4581cddcc
+ - 53266107-d584-4177-bbcc-23e0b7565043
+ - e0307854-dfe1-4487-b24f-7031d4e9b80b
+ - 15dd9792-9754-4eaa-81c0-e80a24cdb6b1
+ - 5628b312-a6cf-4221-a36e-6282c823b3dc
+ - d78bad6c-a2a4-4361-93bc-04b085c5fe91
+ - eb3c63b8-decc-40a6-8e01-6a7b4bd21fb7
+ - b0f71a74-8714-4a7a-9444-b2ddd0bd254b
+ - 371bed3f-2dc6-44ef-a60b-a29a18eadfdf
+ - f3303dbe-5c49-4ed8-a2f1-d32d0fd72e74
+ - 105da778-9577-4424-91b1-526dba52bf19
+ - 6363a3f6-3f80-4baa-980b-c38ccc11f85a
+ - a36a4438-2e7c-466a-b922-b6a89efbe770
+ - 3b78fb2f-742f-404f-a900-93bf9382292c
+ - f54e2aab-781a-4bc0-b131-cd9db1492b77
+ - 17d31577-561b-4470-9e47-4162eb1f42b5
+ - 979358d7-2546-4e1e-bfb2-686ca2bdfdc7
+ - 85b6b1b2-6771-468e-85fa-0ee8105cb0aa
+ - 1777c21d-956b-40f1-bc5c-892de6649cad
+ - 85e6b76e-40eb-4b80-a3a3-2e568d0cd982
+ - 4e21cb34-562e-4332-944e-f412853b6a70
+ - 6f35ba29-f62a-4b01-83f0-70c9edb4aa72
+ - 196d75b7-f3e4-4f90-b6d8-24c7131a5cfb
+ - 73f83752-f052-446e-95d2-f78da9ca9049
+ - 422d1a51-1794-4d65-8477-c50a38ef7c1e
+ - da42e63b-f360-4bdd-91a0-88be1ce7fd46
+ - a10ebeb4-c3ed-4205-bdc4-29b2a9c22e71
+ - f76391c1-925a-4ec2-afbd-4b24eb0b3332
+ - 724184df-15e4-4293-89aa-303827706eba
+ - 306f64dd-2419-46c0-961c-c72e0a933ba9
+ - 87a67213-4a0a-4a72-b851-92b452170264
+ - 129ebb1e-15f6-4323-9dc1-c6c34158a612
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 82c53ab6-a011-49be-b6c4-b8b93228dc48
+ - 05143bda-e521-42d0-8788-de8c08b331a8
+ - 3b2d34b3-fb95-4d3e-ac60-3527c7b09691
+ - e4eb06ed-93b1-4169-8e76-0ec1ed383cfa
+ - bdf7de43-b038-413f-85e4-ff4acb2e52e2
+ - 577b20e1-a7ce-4b69-836d-cbf3a2dd6cbf
+ - 0f67835d-9430-4054-86b4-7a8895190c93
+ - fb76db94-8298-4d45-ab65-a875f09b9366
+ - 07a1f37d-aec2-49dd-8250-913d7a1f8225
+ - 7665f455-2dfa-437c-aa1b-91bb077651f0
+ - 72422a30-dc71-4e97-bce0-09d6ad4a72f2
+ - 436eea78-cf0e-4c35-b8d1-b652a5cbc7e1
+ - b9965101-0ded-421e-baaa-1fe4215ae59d
+ - 94af549b-2c0b-4bdf-b6f5-02f9b4ab11f5
+ - 74b21bf1-be3e-4175-add9-eb4483aaf1a8
+ - 62773edb-46a1-49a0-a388-f56bafedcf7d
+ - 7d352a34-c1a8-438f-a73d-398e16bce26a
+ - 3c5e8987-4367-4b96-abc7-d9950c787a5b
+ - 273cdda9-433c-4813-8ab6-151b5dc27262
+ - c9ad8ba2-8311-4b9f-8661-c724bbb1bd13
+ - 4cc48639-01ca-491e-96f2-953404e9c90b
+ - b8cbc295-7efe-44e3-b110-1dcb32c8eb70
+ - a502bd36-3f92-4597-8529-8b12a037a679
+ - a31d6d4a-fcb3-4a47-87cb-ff7b84e6658a
+ - 5d482aa6-89b9-45e9-869e-ac438fa04aba
+ - a053dc41-201d-493a-ada0-b538db32a63a
+ - 77dd9549-353d-481e-b7ba-7e13c837610a
+ - 992e5323-9c5a-4dc4-b881-6cf0dcb48bbd
+ - e68bd5dd-684e-44ea-a5b2-706a24f88ac6
+ - 80
+ - 14108701-7994-41b7-8b02-99aa90cebe85
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a053dc41-201d-493a-ada0-b538db32a63a
+ - 1
+ - 71627f46-1b0b-441d-b6a1-91ba68b7f149
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2c947271-dcaf-4653-b6ba-29fa05dcfc2c
+ - 1
+ - 386f950f-c970-426c-88d5-b67a48462d21
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 05d7f470-71a7-4578-b609-7b72e9f15854
+ - 1
+ - 2c947271-dcaf-4653-b6ba-29fa05dcfc2c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9d33e047-2989-4289-9e82-3abcbee2b8f1
+ - 1
+ - 05d7f470-71a7-4578-b609-7b72e9f15854
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 04211da9-e18d-49e9-9768-7f1fb5ee6d67
+ - 1
+ - 9d33e047-2989-4289-9e82-3abcbee2b8f1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f587a3b0-9601-4598-9153-5b88786031e4
+ - 1
+ - 04211da9-e18d-49e9-9768-7f1fb5ee6d67
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 07f729a5-43ef-4d50-b2aa-7f20103f72e4
+ - 1
+ - f587a3b0-9601-4598-9153-5b88786031e4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - cf4dfcab-a233-4896-8ff2-16519b4f2a39
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 11504
+ 11588
+ 50
+ 24
+
+ -
+ 11529.35
+ 11600.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cf4dfcab-a233-4896-8ff2-16519b4f2a39
+ - 1
+ - 07f729a5-43ef-4d50-b2aa-7f20103f72e4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 105da778-9577-4424-91b1-526dba52bf19
+ - 1
+ - 277fd3a1-06d7-46fc-8d41-321daa3b6de3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 11e48022-adb0-4fd9-ac54-10d4c2416dd0
+ - 2328bf34-8f57-40bb-ab3c-473512e410f4
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - 995fca2a-62f1-4462-bf45-92daeb3e407d
+ - f187a796-42bf-4fda-8cdd-e27a6c91c738
+ - 0a6c9349-1da1-4c58-a008-82d92ca938cc
+ - 65a4de96-7633-48a2-a02d-f7e41adf369b
+ - 19b6fffd-7afa-4b5a-bed7-08a4581cddcc
+ - e0307854-dfe1-4487-b24f-7031d4e9b80b
+ - 53266107-d584-4177-bbcc-23e0b7565043
+ - 277fd3a1-06d7-46fc-8d41-321daa3b6de3
+ - 07f729a5-43ef-4d50-b2aa-7f20103f72e4
+ - 74b21bf1-be3e-4175-add9-eb4483aaf1a8
+ - 62773edb-46a1-49a0-a388-f56bafedcf7d
+ - 7d352a34-c1a8-438f-a73d-398e16bce26a
+ - 3c5e8987-4367-4b96-abc7-d9950c787a5b
+ - 273cdda9-433c-4813-8ab6-151b5dc27262
+ - c9ad8ba2-8311-4b9f-8661-c724bbb1bd13
+ - 436eea78-cf0e-4c35-b8d1-b652a5cbc7e1
+ - b9965101-0ded-421e-baaa-1fe4215ae59d
+ - 20
+ - aa6dc8de-4682-45e0-a7c1-dacc835bf76b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 11e48022-adb0-4fd9-ac54-10d4c2416dd0
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 11472
+ 12543
+ 104
+ 64
+
+ -
+ 11531
+ 12575
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 94df5c1a-9a82-4876-9379-b3e8f74dc086
+ - Data
+ - Data
+ - false
+ - 766b4ddf-d612-4dd5-8b5d-2edc4f2cb9f5
+ - 1
+
+
+
+
+ -
+ 11474
+ 12545
+ 42
+ 20
+
+ -
+ 11496.5
+ 12555
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 4d922d74-6940-4a1c-9a65-b87082f6e569
+ - Number
+ - Number
+ - false
+ - 94af549b-2c0b-4bdf-b6f5-02f9b4ab11f5
+ - 1
+
+
+
+
+ -
+ 11474
+ 12565
+ 42
+ 20
+
+ -
+ 11496.5
+ 12575
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 21f8a300-9bf0-459e-b827-b2a75600bf23
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 11474
+ 12585
+ 42
+ 20
+
+ -
+ 11496.5
+ 12595
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 97ab2589-a9a5-4202-a131-dec51e2b77f7
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 11546
+ 12545
+ 28
+ 60
+
+ -
+ 11561.5
+ 12575
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 2328bf34-8f57-40bb-ab3c-473512e410f4
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 11466
+ 10945
+ 116
+ 44
+
+ -
+ 11527
+ 10967
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 0b0d4fd2-5b20-452c-a91a-e759beded294
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 97ab2589-a9a5-4202-a131-dec51e2b77f7
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 11468
+ 10947
+ 44
+ 20
+
+ -
+ 11491.5
+ 10957
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - a0ccdc5e-cf90-4b9a-a4e2-a7842cfe23f1
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - e355e4c3-2db6-46df-861d-eb1eae020f32
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 11468
+ 10967
+ 44
+ 20
+
+ -
+ 11491.5
+ 10977
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 5f74f9f3-a8da-4b6b-a206-e101df8934bc
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 11542
+ 10947
+ 38
+ 20
+
+ -
+ 11562.5
+ 10957
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 3f469df5-588b-4502-b274-1d572f3391ad
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11542
+ 10967
+ 38
+ 20
+
+ -
+ 11562.5
+ 10977
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - Point
+ - Point
+ - false
+ - 3f469df5-588b-4502-b274-1d572f3391ad
+ - 1
+
+
+
+
+ -
+ 11503
+ 10565
+ 50
+ 24
+
+ -
+ 11528.21
+ 10577.23
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 995fca2a-62f1-4462-bf45-92daeb3e407d
+ - Series
+ - Series
+
+
+
+
+ -
+ 11477
+ 12009
+ 101
+ 64
+
+ -
+ 11527
+ 12041
+
+
+
+
+
+ - First number in the series
+ - 16cbb81f-ce32-4347-8849-a0415df52154
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11479
+ 12011
+ 33
+ 20
+
+ -
+ 11497
+ 12021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - c8fc7edd-8828-4184-b243-dd75bc28f90f
+ - Step
+ - Step
+ - false
+ - 5d482aa6-89b9-45e9-869e-ac438fa04aba
+ - 1
+
+
+
+
+ -
+ 11479
+ 12031
+ 33
+ 20
+
+ -
+ 11497
+ 12041
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 79d8a618-bcfc-48a2-9177-fb8eb852d439
+ - Count
+ - Count
+ - false
+ - 94af549b-2c0b-4bdf-b6f5-02f9b4ab11f5
+ - 1
+
+
+
+
+ -
+ 11479
+ 12051
+ 33
+ 20
+
+ -
+ 11497
+ 12061
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - cfae3613-4a0c-48f3-b460-dfb899c0f233
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 11542
+ 12011
+ 34
+ 60
+
+ -
+ 11560.5
+ 12041
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - f187a796-42bf-4fda-8cdd-e27a6c91c738
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 12724
+ 150
+ 20
+
+ -
+ 11454.03
+ 12724.1
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 0a6c9349-1da1-4c58-a008-82d92ca938cc
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 11464
+ 12211
+ 120
+ 28
+
+ -
+ 11525
+ 12225
+
+
+
+
+
+ - Angle in degrees
+ - 1a2dc6a9-879a-4954-bdc5-60f6b9f13dee
+ - Degrees
+ - Degrees
+ - false
+ - f54e2aab-781a-4bc0-b131-cd9db1492b77
+ - 1
+
+
+
+
+ -
+ 11466
+ 12213
+ 44
+ 24
+
+ -
+ 11489.5
+ 12225
+
+
+
+
+
+
+
+ - Angle in radians
+ - 4a99cbaf-f84f-46e8-9a56-267f2338a5ea
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 11540
+ 12213
+ 42
+ 24
+
+ -
+ 11562.5
+ 12225
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 65a4de96-7633-48a2-a02d-f7e41adf369b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00137331209
+
+
+
+
+ -
+ 11403
+ 12515
+ 251
+ 20
+
+ -
+ 11403.74
+ 12515.64
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 19b6fffd-7afa-4b5a-bed7-08a4581cddcc
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 11474
+ 12625
+ 100
+ 28
+
+ -
+ 11523
+ 12639
+
+
+
+
+
+ - Input value
+ - e26fb096-c787-4b29-b972-7d5f2253e146
+ - Value
+ - Value
+ - false
+ - 94af549b-2c0b-4bdf-b6f5-02f9b4ab11f5
+ - 1
+
+
+
+
+ -
+ 11476
+ 12627
+ 32
+ 24
+
+ -
+ 11493.5
+ 12639
+
+
+
+
+
+
+
+ - Output value
+ - 766b4ddf-d612-4dd5-8b5d-2edc4f2cb9f5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11538
+ 12627
+ 34
+ 24
+
+ -
+ 11556.5
+ 12639
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 53266107-d584-4177-bbcc-23e0b7565043
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 11452
+ 10457
+ 144
+ 84
+
+ -
+ 11538
+ 10499
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - f5e17c48-7ff1-4e54-b662-260a42ed919b
+ - Vertices
+ - Vertices
+ - false
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - 1
+
+
+
+
+ -
+ 11454
+ 10459
+ 69
+ 20
+
+ -
+ 11490
+ 10469
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - c7607451-5eb0-4ee7-beed-3f1e43295ce5
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10479
+ 69
+ 20
+
+ -
+ 11490
+ 10489
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 72f98502-ab05-4533-856e-a71bb0442234
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10499
+ 69
+ 20
+
+ -
+ 11490
+ 10509
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 57a7ea83-291e-4a3e-a618-da4c8fd4f99f
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10519
+ 69
+ 20
+
+ -
+ 11490
+ 10529
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - bd60b5fa-83f6-4e9a-a9b2-73f625215e9a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 11553
+ 10459
+ 41
+ 26
+
+ -
+ 11575
+ 10472.33
+
+
+
+
+
+
+
+ - Curve length
+ - 5182620c-95b2-486a-b2f8-a9554a802d0f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11553
+ 10485
+ 41
+ 27
+
+ -
+ 11575
+ 10499
+
+
+
+
+
+
+
+ - Curve domain
+ - 0eeb7ee8-27ea-4ed6-b2a0-85d58686f59f
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 11553
+ 10512
+ 41
+ 27
+
+ -
+ 11575
+ 10525.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 11e48022-adb0-4fd9-ac54-10d4c2416dd0
+ - 2328bf34-8f57-40bb-ab3c-473512e410f4
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - 995fca2a-62f1-4462-bf45-92daeb3e407d
+ - f187a796-42bf-4fda-8cdd-e27a6c91c738
+ - 0a6c9349-1da1-4c58-a008-82d92ca938cc
+ - 65a4de96-7633-48a2-a02d-f7e41adf369b
+ - 19b6fffd-7afa-4b5a-bed7-08a4581cddcc
+ - b8cbc295-7efe-44e3-b110-1dcb32c8eb70
+ - f54e2aab-781a-4bc0-b131-cd9db1492b77
+ - 72422a30-dc71-4e97-bce0-09d6ad4a72f2
+ - 4cc48639-01ca-491e-96f2-953404e9c90b
+ - a502bd36-3f92-4597-8529-8b12a037a679
+ - 13
+ - e0307854-dfe1-4487-b24f-7031d4e9b80b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 15dd9792-9754-4eaa-81c0-e80a24cdb6b1
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11452
+ 10289
+ 144
+ 64
+
+ -
+ 11526
+ 10321
+
+
+
+
+
+ - Curve to evaluate
+ - 8eef2bd2-3158-4f76-b71e-80a40f190dcd
+ - Curve
+ - Curve
+ - false
+ - bd60b5fa-83f6-4e9a-a9b2-73f625215e9a
+ - 1
+
+
+
+
+ -
+ 11454
+ 10291
+ 57
+ 20
+
+ -
+ 11484
+ 10301
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a80ec4b7-2510-4f66-84bf-1b96def93516
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10311
+ 57
+ 20
+
+ -
+ 11484
+ 10321
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a586d460-9fca-4785-a856-64b0755e6319
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10331
+ 57
+ 20
+
+ -
+ 11484
+ 10341
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ee027999-66c1-4272-b3b5-264032b27532
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 10291
+ 53
+ 20
+
+ -
+ 11569
+ 10301
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 00cc4d9e-a541-4b98-95d7-972e98d4b53c
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 10311
+ 53
+ 20
+
+ -
+ 11569
+ 10321
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 7eca60ee-ff4b-4986-8893-138da6c2400a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 10331
+ 53
+ 20
+
+ -
+ 11569
+ 10341
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 5628b312-a6cf-4221-a36e-6282c823b3dc
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 11455
+ 10227
+ 138
+ 44
+
+ -
+ 11523
+ 10249
+
+
+
+
+
+ - Base geometry
+ - 77daefd0-51c0-4cdf-9347-3274e1e0fa0b
+ - Geometry
+ - Geometry
+ - true
+ - bd60b5fa-83f6-4e9a-a9b2-73f625215e9a
+ - 1
+
+
+
+
+ -
+ 11457
+ 10229
+ 51
+ 20
+
+ -
+ 11484
+ 10239
+
+
+
+
+
+
+
+ - Mirror plane
+ - 5607f6b8-5a8a-4df3-b8fe-22cfb13d1d0c
+ - Plane
+ - Plane
+ - false
+ - 93874cfc-477d-4076-848d-704ff7923199
+ - 1
+
+
+
+
+ -
+ 11457
+ 10249
+ 51
+ 20
+
+ -
+ 11484
+ 10259
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - f8c48e2b-5fb1-43ac-8ca8-3079422622da
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11538
+ 10229
+ 53
+ 20
+
+ -
+ 11566
+ 10239
+
+
+
+
+
+
+
+ - Transformation data
+ - 6f78746d-de6f-480d-8fdb-8e63e093dc37
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11538
+ 10249
+ 53
+ 20
+
+ -
+ 11566
+ 10259
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - d78bad6c-a2a4-4361-93bc-04b085c5fe91
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 11471
+ 10373
+ 106
+ 64
+
+ -
+ 11535
+ 10405
+
+
+
+
+
+ - Line start point
+ - 6c802ac4-7cff-4e35-aa4a-ad1da3b7dec9
+ - Start
+ - Start
+ - false
+ - ee027999-66c1-4272-b3b5-264032b27532
+ - 1
+
+
+
+
+ -
+ 11473
+ 10375
+ 47
+ 20
+
+ -
+ 11498
+ 10385
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - d2512a8b-4e33-4fff-b702-f8abf34e62d2
+ - Direction
+ - Direction
+ - false
+ - 00cc4d9e-a541-4b98-95d7-972e98d4b53c
+ - 1
+
+
+
+
+ -
+ 11473
+ 10395
+ 47
+ 20
+
+ -
+ 11498
+ 10405
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 5e80f6ee-38df-404d-9e96-26a04b1ee13c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11473
+ 10415
+ 47
+ 20
+
+ -
+ 11498
+ 10425
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 93874cfc-477d-4076-848d-704ff7923199
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 11550
+ 10375
+ 25
+ 60
+
+ -
+ 11564
+ 10405
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - eb3c63b8-decc-40a6-8e01-6a7b4bd21fb7
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 11465
+ 10165
+ 118
+ 44
+
+ -
+ 11528
+ 10187
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 057999ab-0780-45ca-992e-c24518fc7ba2
+ - Curves
+ - Curves
+ - false
+ - bd60b5fa-83f6-4e9a-a9b2-73f625215e9a
+ - f8c48e2b-5fb1-43ac-8ca8-3079422622da
+ - 2
+
+
+
+
+ -
+ 11467
+ 10167
+ 46
+ 20
+
+ -
+ 11491.5
+ 10177
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - f7377d32-8b02-4ee6-b5cd-e69eb88ddf19
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 11467
+ 10187
+ 46
+ 20
+
+ -
+ 11491.5
+ 10197
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 10df05ff-8bee-4066-8fe3-3dab301bcc65
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11543
+ 10167
+ 38
+ 40
+
+ -
+ 11563.5
+ 10187
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b0f71a74-8714-4a7a-9444-b2ddd0bd254b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11452
+ 10081
+ 144
+ 64
+
+ -
+ 11526
+ 10113
+
+
+
+
+
+ - Curve to evaluate
+ - 9e79be10-a814-4d6d-9285-c22e80c5a9c9
+ - Curve
+ - Curve
+ - false
+ - 10df05ff-8bee-4066-8fe3-3dab301bcc65
+ - 1
+
+
+
+
+ -
+ 11454
+ 10083
+ 57
+ 20
+
+ -
+ 11484
+ 10093
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 022c115c-0d53-4e4b-a4eb-d8f19f6064aa
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10103
+ 57
+ 20
+
+ -
+ 11484
+ 10113
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - dcfd0a27-9df5-490d-bc5c-a8ff9cca644b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 10123
+ 57
+ 20
+
+ -
+ 11484
+ 10133
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5e3d9f3c-cd4f-4bb3-ace9-0e37497f4908
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 10083
+ 53
+ 20
+
+ -
+ 11569
+ 10093
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7d393165-63ad-4035-a022-603e56ad6800
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 10103
+ 53
+ 20
+
+ -
+ 11569
+ 10113
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 46f4d17f-eea7-4a39-84da-4ff2b42112f7
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 10123
+ 53
+ 20
+
+ -
+ 11569
+ 10133
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 371bed3f-2dc6-44ef-a60b-a29a18eadfdf
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 11455
+ 9998
+ 138
+ 64
+
+ -
+ 11523
+ 10030
+
+
+
+
+
+ - Base geometry
+ - 57f3beee-caf1-4965-be58-cb9ceabbdd75
+ - Geometry
+ - Geometry
+ - true
+ - 10df05ff-8bee-4066-8fe3-3dab301bcc65
+ - 1
+
+
+
+
+ -
+ 11457
+ 10000
+ 51
+ 20
+
+ -
+ 11484
+ 10010
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - f2acab50-a554-4c45-affc-7215579de5f3
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 11457
+ 10020
+ 51
+ 20
+
+ -
+ 11484
+ 10030
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - ecce8dca-882e-448a-bd98-251d06a898ea
+ - Plane
+ - Plane
+ - false
+ - 5e3d9f3c-cd4f-4bb3-ace9-0e37497f4908
+ - 1
+
+
+
+
+ -
+ 11457
+ 10040
+ 51
+ 20
+
+ -
+ 11484
+ 10050
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 079e8e0e-4fbc-47d9-9164-e82eab354680
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11538
+ 10000
+ 53
+ 30
+
+ -
+ 11566
+ 10015
+
+
+
+
+
+
+
+ - Transformation data
+ - 3d1b17b9-cad1-43ff-90aa-9b5ae65ee60d
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11538
+ 10030
+ 53
+ 30
+
+ -
+ 11566
+ 10045
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - f3303dbe-5c49-4ed8-a2f1-d32d0fd72e74
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 11465
+ 9935
+ 118
+ 44
+
+ -
+ 11528
+ 9957
+
+
+
+
+
+ - 1
+ - Curves to join
+ - db381e24-3fbc-4c89-a9ac-1c670490e9a2
+ - Curves
+ - Curves
+ - false
+ - 10df05ff-8bee-4066-8fe3-3dab301bcc65
+ - 079e8e0e-4fbc-47d9-9164-e82eab354680
+ - 2
+
+
+
+
+ -
+ 11467
+ 9937
+ 46
+ 20
+
+ -
+ 11491.5
+ 9947
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 8ceeb401-054d-4080-8d94-d18f8ea3533a
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 11467
+ 9957
+ 46
+ 20
+
+ -
+ 11491.5
+ 9967
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - dd39b71a-3a2b-4f5d-9c38-f210319a6b92
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11543
+ 9937
+ 38
+ 40
+
+ -
+ 11563.5
+ 9957
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 53266107-d584-4177-bbcc-23e0b7565043
+ - 15dd9792-9754-4eaa-81c0-e80a24cdb6b1
+ - 5628b312-a6cf-4221-a36e-6282c823b3dc
+ - d78bad6c-a2a4-4361-93bc-04b085c5fe91
+ - eb3c63b8-decc-40a6-8e01-6a7b4bd21fb7
+ - b0f71a74-8714-4a7a-9444-b2ddd0bd254b
+ - 371bed3f-2dc6-44ef-a60b-a29a18eadfdf
+ - f3303dbe-5c49-4ed8-a2f1-d32d0fd72e74
+ - a36a4438-2e7c-466a-b922-b6a89efbe770
+ - 9
+ - 105da778-9577-4424-91b1-526dba52bf19
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6363a3f6-3f80-4baa-980b-c38ccc11f85a
+ - Panel
+
+ - false
+ - 0
+ - 422d1a51-1794-4d65-8477-c50a38ef7c1e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11455
+ 12094
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11455.77
+ 12094.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a36a4438-2e7c-466a-b922-b6a89efbe770
+ - Curve
+ - Curve
+ - false
+ - dd39b71a-3a2b-4f5d-9c38-f210319a6b92
+ - 1
+
+
+
+
+ -
+ 11504
+ 9895
+ 50
+ 24
+
+ -
+ 11529.35
+ 9907.294
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a36a4438-2e7c-466a-b922-b6a89efbe770
+ - 1
+ - 3b78fb2f-742f-404f-a900-93bf9382292c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f54e2aab-781a-4bc0-b131-cd9db1492b77
+ - Panel
+
+ - false
+ - 0
+ - 54167f79-58a5-49d4-952d-825210755673
+ - 1
+ - 0.001373312092932693349
+
+
+
+
+ -
+ 11309
+ 12268
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11309.33
+ 12268.18
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 17d31577-561b-4470-9e47-4162eb1f42b5
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11452
+ 9809
+ 144
+ 64
+
+ -
+ 11526
+ 9841
+
+
+
+
+
+ - Curve to evaluate
+ - 6c9187bd-13fe-4bc2-bf6b-93c59c085778
+ - Curve
+ - Curve
+ - false
+ - dd39b71a-3a2b-4f5d-9c38-f210319a6b92
+ - 1
+
+
+
+
+ -
+ 11454
+ 9811
+ 57
+ 20
+
+ -
+ 11484
+ 9821
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b58585d0-da33-487f-9ced-2392e4e95cd7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 9831
+ 57
+ 20
+
+ -
+ 11484
+ 9841
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 5ec646e5-95b4-4f4d-8d6c-e1026a16972e
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 9851
+ 57
+ 20
+
+ -
+ 11484
+ 9861
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5ce09514-5cb8-432d-a7c8-9fca0ce376d9
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 9811
+ 53
+ 20
+
+ -
+ 11569
+ 9821
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 744aaf62-cb11-4b28-891b-102935c0f3f6
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 9831
+ 53
+ 20
+
+ -
+ 11569
+ 9841
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - f54ab64b-f4c7-47d5-8e65-ae42c52ecb0d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 9851
+ 53
+ 20
+
+ -
+ 11569
+ 9861
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 979358d7-2546-4e1e-bfb2-686ca2bdfdc7
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 9587
+ 194
+ 28
+
+ -
+ 11527
+ 9601
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0d87f90b-2ace-4641-8c85-8a27a0b8cf43
+ - Variable O
+ - O
+ - true
+ - d97438db-16ef-4731-af2b-b30886bd5161
+ - 1
+
+
+
+
+ -
+ 11429
+ 9589
+ 14
+ 24
+
+ -
+ 11437.5
+ 9601
+
+
+
+
+
+
+
+ - Result of expression
+ - bfb9fc50-dab7-4e85-a301-965e39529c64
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 9589
+ 9
+ 24
+
+ -
+ 11616
+ 9601
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 85b6b1b2-6771-468e-85fa-0ee8105cb0aa
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 11458
+ 9721
+ 132
+ 64
+
+ -
+ 11505
+ 9753
+
+
+
+
+
+ - Input point
+ - aac60624-20e8-405b-9faa-8f6f510968b7
+ - Point
+ - Point
+ - false
+ - 5ce09514-5cb8-432d-a7c8-9fca0ce376d9
+ - 1
+
+
+
+
+ -
+ 11460
+ 9723
+ 30
+ 60
+
+ -
+ 11476.5
+ 9753
+
+
+
+
+
+
+
+ - Point {x} component
+ - d97438db-16ef-4731-af2b-b30886bd5161
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 11520
+ 9723
+ 68
+ 20
+
+ -
+ 11555.5
+ 9733
+
+
+
+
+
+
+
+ - Point {y} component
+ - 9b10c7a2-ef42-4f3b-8963-5e5d0ceb988c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 11520
+ 9743
+ 68
+ 20
+
+ -
+ 11555.5
+ 9753
+
+
+
+
+
+
+
+ - Point {z} component
+ - de732faf-9823-48ae-9d10-9b97003c75bc
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 11520
+ 9763
+ 68
+ 20
+
+ -
+ 11555.5
+ 9773
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1777c21d-956b-40f1-bc5c-892de6649cad
+ - Panel
+
+ - false
+ - 0
+ - bfb9fc50-dab7-4e85-a301-965e39529c64
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 9560
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.12
+ 9560.872
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 85e6b76e-40eb-4b80-a3a3-2e568d0cd982
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 9501
+ 194
+ 28
+
+ -
+ 11527
+ 9515
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 47ffe7a2-56d3-49aa-9413-e98c994eeb9e
+ - Variable O
+ - O
+ - true
+ - 9b10c7a2-ef42-4f3b-8963-5e5d0ceb988c
+ - 1
+
+
+
+
+ -
+ 11429
+ 9503
+ 14
+ 24
+
+ -
+ 11437.5
+ 9515
+
+
+
+
+
+
+
+ - Result of expression
+ - 21d01952-387d-49dd-9eab-a981d7b859aa
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 9503
+ 9
+ 24
+
+ -
+ 11616
+ 9515
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4e21cb34-562e-4332-944e-f412853b6a70
+ - Panel
+
+ - false
+ - 0
+ - 21d01952-387d-49dd-9eab-a981d7b859aa
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 9472
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.12
+ 9472.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 6f35ba29-f62a-4b01-83f0-70c9edb4aa72
+ - Division
+ - Division
+
+
+
+
+ -
+ 11483
+ 9399
+ 82
+ 44
+
+ -
+ 11514
+ 9421
+
+
+
+
+
+ - Item to divide (dividend)
+ - 7c3becf4-bd31-4562-bb09-e5f3f94b27c4
+ - A
+ - A
+ - false
+ - 1777c21d-956b-40f1-bc5c-892de6649cad
+ - 1
+
+
+
+
+ -
+ 11485
+ 9401
+ 14
+ 20
+
+ -
+ 11493.5
+ 9411
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 09c0eace-1823-45db-8b96-a0ae6bec666a
+ - B
+ - B
+ - false
+ - 4e21cb34-562e-4332-944e-f412853b6a70
+ - 1
+
+
+
+
+ -
+ 11485
+ 9421
+ 14
+ 20
+
+ -
+ 11493.5
+ 9431
+
+
+
+
+
+
+
+ - The result of the Division
+ - 79a8f23f-c055-49b2-a52a-2eaf1d8e9965
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11529
+ 9401
+ 34
+ 40
+
+ -
+ 11547.5
+ 9421
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 196d75b7-f3e4-4f90-b6d8-24c7131a5cfb
+ - Panel
+
+ - false
+ - 0
+ - 422d1a51-1794-4d65-8477-c50a38ef7c1e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 9324
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.36
+ 9324.935
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 73f83752-f052-446e-95d2-f78da9ca9049
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 9352
+ 194
+ 28
+
+ -
+ 11527
+ 9366
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 186f2e46-fb77-41f7-8818-312c86c92d9a
+ - Variable O
+ - O
+ - true
+ - 79a8f23f-c055-49b2-a52a-2eaf1d8e9965
+ - 1
+
+
+
+
+ -
+ 11429
+ 9354
+ 14
+ 24
+
+ -
+ 11437.5
+ 9366
+
+
+
+
+
+
+
+ - Result of expression
+ - d5c93bf4-d602-4cc8-a33d-2325eb7df776
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 9354
+ 9
+ 24
+
+ -
+ 11616
+ 9366
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 422d1a51-1794-4d65-8477-c50a38ef7c1e
+ - Relay
+
+ - false
+ - d5c93bf4-d602-4cc8-a33d-2325eb7df776
+ - 1
+
+
+
+
+ -
+ 11507
+ 9308
+ 40
+ 16
+
+ -
+ 11527
+ 9316
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - da42e63b-f360-4bdd-91a0-88be1ce7fd46
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 11496
+ 9247
+ 82
+ 44
+
+ -
+ 11527
+ 9269
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 951647a8-9971-4d75-9fc3-f0a0a88e7053
+ - A
+ - A
+ - true
+ - 4e21cb34-562e-4332-944e-f412853b6a70
+ - 1
+
+
+
+
+ -
+ 11498
+ 9249
+ 14
+ 20
+
+ -
+ 11506.5
+ 9259
+
+
+
+
+
+
+
+ - Second item for addition
+ - b0283344-2cb2-405b-93cd-1b7e04290f12
+ - B
+ - B
+ - true
+ - 1777c21d-956b-40f1-bc5c-892de6649cad
+ - 1
+
+
+
+
+ -
+ 11498
+ 9269
+ 14
+ 20
+
+ -
+ 11506.5
+ 9279
+
+
+
+
+
+
+
+ - Result of addition
+ - d5fe5cf2-1ec1-418a-978f-9d9b35852f9e
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11542
+ 9249
+ 34
+ 40
+
+ -
+ 11560.5
+ 9269
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - a10ebeb4-c3ed-4205-bdc4-29b2a9c22e71
+ - Division
+ - Division
+
+
+
+
+ -
+ 11496
+ 9113
+ 82
+ 44
+
+ -
+ 11527
+ 9135
+
+
+
+
+
+ - Item to divide (dividend)
+ - 81ac1a14-003f-4177-ae86-1b04308e865f
+ - A
+ - A
+ - false
+ - 306f64dd-2419-46c0-961c-c72e0a933ba9
+ - 1
+
+
+
+
+ -
+ 11498
+ 9115
+ 14
+ 20
+
+ -
+ 11506.5
+ 9125
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 8f31e3b5-9710-4caf-aef8-22513060fd59
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 11498
+ 9135
+ 14
+ 20
+
+ -
+ 11506.5
+ 9145
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 33615d42-997b-4186-8bf9-e2929e8aa81f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11542
+ 9115
+ 34
+ 40
+
+ -
+ 11560.5
+ 9135
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f76391c1-925a-4ec2-afbd-4b24eb0b3332
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 9073
+ 194
+ 28
+
+ -
+ 11527
+ 9087
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c903e630-afef-4259-9d77-1dcfd1ecc89a
+ - Variable O
+ - O
+ - true
+ - 33615d42-997b-4186-8bf9-e2929e8aa81f
+ - 1
+
+
+
+
+ -
+ 11429
+ 9075
+ 14
+ 24
+
+ -
+ 11437.5
+ 9087
+
+
+
+
+
+
+
+ - Result of expression
+ - 4a95bd2b-004b-41a6-9725-8eef26954845
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 9075
+ 9
+ 24
+
+ -
+ 11616
+ 9087
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 724184df-15e4-4293-89aa-303827706eba
+ - Panel
+
+ - false
+ - 0
+ - 4a95bd2b-004b-41a6-9725-8eef26954845
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11449
+ 9032
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11449.12
+ 9032.792
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 306f64dd-2419-46c0-961c-c72e0a933ba9
+ - Panel
+
+ - false
+ - 0
+ - 7fc2afe7-f18c-429c-bb23-3fabe16cbe72
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11461
+ 9173
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11461.12
+ 9173.702
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 87a67213-4a0a-4a72-b851-92b452170264
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11440
+ 9200
+ 194
+ 28
+
+ -
+ 11540
+ 9214
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c6361f25-9862-40e5-9bf9-037f05cbedd7
+ - Variable O
+ - O
+ - true
+ - d5fe5cf2-1ec1-418a-978f-9d9b35852f9e
+ - 1
+
+
+
+
+ -
+ 11442
+ 9202
+ 14
+ 24
+
+ -
+ 11450.5
+ 9214
+
+
+
+
+
+
+
+ - Result of expression
+ - 7fc2afe7-f18c-429c-bb23-3fabe16cbe72
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11623
+ 9202
+ 9
+ 24
+
+ -
+ 11629
+ 9214
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 129ebb1e-15f6-4323-9dc1-c6c34158a612
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 11446
+ 8949
+ 154
+ 64
+
+ -
+ 11530
+ 8981
+
+
+
+
+
+ - Base geometry
+ - 73c59210-2c73-433e-8db7-a79ef07de764
+ - Geometry
+ - Geometry
+ - true
+ - a36a4438-2e7c-466a-b922-b6a89efbe770
+ - 1
+
+
+
+
+ -
+ 11448
+ 8951
+ 67
+ 20
+
+ -
+ 11491
+ 8961
+
+
+
+
+
+
+
+ - Center of scaling
+ - 42f0e005-12a6-43fb-be96-f7cd177acff8
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 11448
+ 8971
+ 67
+ 20
+
+ -
+ 11491
+ 8981
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 65a20675-8ced-44e1-9bd7-64c0ec80e9da
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 724184df-15e4-4293-89aa-303827706eba
+ - 1
+
+
+
+
+ -
+ 11448
+ 8991
+ 67
+ 20
+
+ -
+ 11491
+ 9001
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - a135585c-d3bf-4a35-a423-bc1ab6e424ec
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11545
+ 8951
+ 53
+ 30
+
+ -
+ 11573
+ 8966
+
+
+
+
+
+
+
+ - Transformation data
+ - a662ad6d-1694-4577-a3cd-1d967ee7c68b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11545
+ 8981
+ 53
+ 30
+
+ -
+ 11573
+ 8996
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - Curve
+ - Curve
+ - false
+ - a135585c-d3bf-4a35-a423-bc1ab6e424ec
+ - 1
+
+
+
+
+ -
+ 11503
+ 8305
+ 50
+ 24
+
+ -
+ 11528.1
+ 8317.292
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 82c53ab6-a011-49be-b6c4-b8b93228dc48
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 9674
+ 194
+ 28
+
+ -
+ 11527
+ 9688
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a30233d6-580b-4b18-a41c-6861a15d86ab
+ - Variable O
+ - O
+ - true
+ - de732faf-9823-48ae-9d10-9b97003c75bc
+ - 1
+
+
+
+
+ -
+ 11429
+ 9676
+ 14
+ 24
+
+ -
+ 11437.5
+ 9688
+
+
+
+
+
+
+
+ - Result of expression
+ - abcd64d0-f47b-4a4a-8c47-94ea854314d4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 9676
+ 9
+ 24
+
+ -
+ 11616
+ 9688
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 05143bda-e521-42d0-8788-de8c08b331a8
+ - Panel
+
+ - false
+ - 0
+ - abcd64d0-f47b-4a4a-8c47-94ea854314d4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 9646
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.99
+ 9646.647
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3b2d34b3-fb95-4d3e-ac60-3527c7b09691
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11452
+ 8683
+ 144
+ 64
+
+ -
+ 11526
+ 8715
+
+
+
+
+
+ - Curve to evaluate
+ - 8ebb4702-dd44-4e75-9c07-84a949ec2de0
+ - Curve
+ - Curve
+ - false
+ - a135585c-d3bf-4a35-a423-bc1ab6e424ec
+ - 1
+
+
+
+
+ -
+ 11454
+ 8685
+ 57
+ 20
+
+ -
+ 11484
+ 8695
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2b2fe7e2-06d1-4d43-8cbf-b0ba58df61db
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 8705
+ 57
+ 20
+
+ -
+ 11484
+ 8715
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9e10cd7f-4f95-43c0-bd24-9bb7a6fb5b65
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 8725
+ 57
+ 20
+
+ -
+ 11484
+ 8735
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - bccd7cdf-0b45-4ced-9d9c-bdc497df14be
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 8685
+ 53
+ 20
+
+ -
+ 11569
+ 8695
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 2fed7e27-e776-4277-939f-e1ebf0454f4c
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 8705
+ 53
+ 20
+
+ -
+ 11569
+ 8715
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c0630c09-58f7-4acc-997c-e4cce944c57c
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 8725
+ 53
+ 20
+
+ -
+ 11569
+ 8735
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e4eb06ed-93b1-4169-8e76-0ec1ed383cfa
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 8466
+ 194
+ 28
+
+ -
+ 11527
+ 8480
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3d558328-241b-47c6-ac83-10e430e87af2
+ - Variable O
+ - O
+ - true
+ - d0e57e88-4c0e-4ac9-8a7a-22305a18e466
+ - 1
+
+
+
+
+ -
+ 11429
+ 8468
+ 14
+ 24
+
+ -
+ 11437.5
+ 8480
+
+
+
+
+
+
+
+ - Result of expression
+ - d4d66a0a-5310-4814-9763-3fd97684d1b0
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 8468
+ 9
+ 24
+
+ -
+ 11616
+ 8480
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - bdf7de43-b038-413f-85e4-ff4acb2e52e2
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 11458
+ 8600
+ 132
+ 64
+
+ -
+ 11505
+ 8632
+
+
+
+
+
+ - Input point
+ - 6fb94815-d4e7-4a49-b85b-494d00fa79c0
+ - Point
+ - Point
+ - false
+ - bccd7cdf-0b45-4ced-9d9c-bdc497df14be
+ - 1
+
+
+
+
+ -
+ 11460
+ 8602
+ 30
+ 60
+
+ -
+ 11476.5
+ 8632
+
+
+
+
+
+
+
+ - Point {x} component
+ - d0e57e88-4c0e-4ac9-8a7a-22305a18e466
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 11520
+ 8602
+ 68
+ 20
+
+ -
+ 11555.5
+ 8612
+
+
+
+
+
+
+
+ - Point {y} component
+ - 1e06d8e5-2523-45cf-a508-cef9159f00e1
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 11520
+ 8622
+ 68
+ 20
+
+ -
+ 11555.5
+ 8632
+
+
+
+
+
+
+
+ - Point {z} component
+ - 8ca03561-b073-414b-8172-b7879fae718f
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 11520
+ 8642
+ 68
+ 20
+
+ -
+ 11555.5
+ 8652
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 577b20e1-a7ce-4b69-836d-cbf3a2dd6cbf
+ - Panel
+
+ - false
+ - 0
+ - d4d66a0a-5310-4814-9763-3fd97684d1b0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 8434
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.37
+ 8434.216
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0f67835d-9430-4054-86b4-7a8895190c93
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 8380
+ 194
+ 28
+
+ -
+ 11527
+ 8394
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c4c8d028-629e-45cd-bd6b-2d6826ba74a0
+ - Variable O
+ - O
+ - true
+ - 1e06d8e5-2523-45cf-a508-cef9159f00e1
+ - 1
+
+
+
+
+ -
+ 11429
+ 8382
+ 14
+ 24
+
+ -
+ 11437.5
+ 8394
+
+
+
+
+
+
+
+ - Result of expression
+ - 3066d703-cae6-4446-ade3-375206264756
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 8382
+ 9
+ 24
+
+ -
+ 11616
+ 8394
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fb76db94-8298-4d45-ab65-a875f09b9366
+ - Panel
+
+ - false
+ - 0
+ - 3066d703-cae6-4446-ade3-375206264756
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 8348
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.38
+ 8348.587
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 07a1f37d-aec2-49dd-8250-913d7a1f8225
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 8552
+ 194
+ 28
+
+ -
+ 11527
+ 8566
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 12d00e70-64e2-474d-bb6e-ea149da76949
+ - Variable O
+ - O
+ - true
+ - 8ca03561-b073-414b-8172-b7879fae718f
+ - 1
+
+
+
+
+ -
+ 11429
+ 8554
+ 14
+ 24
+
+ -
+ 11437.5
+ 8566
+
+
+
+
+
+
+
+ - Result of expression
+ - 1a3d798d-1d0b-421e-accd-dabe7b470d7f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 8554
+ 9
+ 24
+
+ -
+ 11616
+ 8566
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7665f455-2dfa-437c-aa1b-91bb077651f0
+ - Panel
+
+ - false
+ - 0
+ - 1a3d798d-1d0b-421e-accd-dabe7b470d7f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11448
+ 8520
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11448.12
+ 8520.43
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 72422a30-dc71-4e97-bce0-09d6ad4a72f2
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 3 16
+3 256 0.001373312092932693349
+3 4096
+
+
+
+
+ -
+ 11342
+ 12391
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 11342.56
+ 12391.73
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 436eea78-cf0e-4c35-b8d1-b652a5cbc7e1
+ - Panel
+
+ - false
+ - 0
+ - a6bd0730-df84-41bd-8fdc-b80a59c38cb7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11360
+ 10606
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 11360.31
+ 10606.83
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b9965101-0ded-421e-baaa-1fe4215ae59d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 10897
+ 194
+ 28
+
+ -
+ 11527
+ 10911
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f9e4f68a-1878-4be4-bd5a-90df75ca0b55
+ - Variable O
+ - O
+ - true
+ - 3f469df5-588b-4502-b274-1d572f3391ad
+ - 1
+
+
+
+
+ -
+ 11429
+ 10899
+ 14
+ 24
+
+ -
+ 11437.5
+ 10911
+
+
+
+
+
+
+
+ - Result of expression
+ - a6bd0730-df84-41bd-8fdc-b80a59c38cb7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 10899
+ 9
+ 24
+
+ -
+ 11616
+ 10911
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 94af549b-2c0b-4bdf-b6f5-02f9b4ab11f5
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 11504
+ 12682
+ 50
+ 24
+
+ -
+ 11529.08
+ 12694.39
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 74b21bf1-be3e-4175-add9-eb4483aaf1a8
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 11355
+ 11145
+ 160
+ 224
+
+ -
+ 11423
+ 11257
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 51d6ac17-417b-46c1-9b2c-ad0529bdadcd
+ - true
+ - Curves
+ - Curves
+ - false
+ - 8ac7b0b6-f82d-4bfd-a061-b5490e1e67ff
+ - 1
+
+
+
+
+ -
+ 11357
+ 11147
+ 51
+ 27
+
+ -
+ 11384
+ 11160.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 7b304304-f59c-4c6a-b7bd-28372d0356e3
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - f3a37099-ca1f-4685-8142-fe2cb36f2d6a
+ - 1
+
+
+
+
+ -
+ 11357
+ 11174
+ 51
+ 28
+
+ -
+ 11384
+ 11188.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 93546ec4-9bb0-4936-b64f-acada56cc852
+ - true
+ - Values
+ - Values
+ - false
+ - cfae3613-4a0c-48f3-b460-dfb899c0f233
+ - 1
+
+
+
+
+ -
+ 11357
+ 11202
+ 51
+ 27
+
+ -
+ 11384
+ 11215.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 985a4b5c-06e1-4965-aaf0-a9d84a47fc4a
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 11357
+ 11229
+ 51
+ 28
+
+ -
+ 11384
+ 11243.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - e732d4b5-63aa-49d2-becb-cb9d710d86ca
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 11357
+ 11257
+ 51
+ 27
+
+ -
+ 11384
+ 11270.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - b0099aa1-3513-42d1-83a6-f147f481d4f3
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 11357
+ 11284
+ 51
+ 28
+
+ -
+ 11384
+ 11298.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 6b1bb44e-93e0-4881-9ae6-fd3fd5efdef5
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 11357
+ 11312
+ 51
+ 27
+
+ -
+ 11384
+ 11325.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 441cc1dd-6fee-423b-a49e-e8d5ffe56204
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 11357
+ 11339
+ 51
+ 28
+
+ -
+ 11384
+ 11353.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 9646254a-4c15-4757-9338-8ea1be0a43cc
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11147
+ 75
+ 20
+
+ -
+ 11477
+ 11157
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - a33aa52d-f819-45ff-917a-7883c6127a72
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11167
+ 75
+ 20
+
+ -
+ 11477
+ 11177
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 3e6d1150-4b85-4da6-a7b0-462bba2f8382
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11187
+ 75
+ 20
+
+ -
+ 11477
+ 11197
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 68d7d04e-fd33-4aa5-a045-c8f65f23aece
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11207
+ 75
+ 20
+
+ -
+ 11477
+ 11217
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 605da671-fc99-46dd-b24f-f4b15cc215d8
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11227
+ 75
+ 20
+
+ -
+ 11477
+ 11237
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 153d9453-577a-4c0b-88a4-142e37fa15fd
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11247
+ 75
+ 20
+
+ -
+ 11477
+ 11257
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 8e286217-10a3-4622-bc6d-d6789a90b1b6
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11267
+ 75
+ 20
+
+ -
+ 11477
+ 11277
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 3d94d535-5fd5-4619-ac6e-01f972da0b95
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11287
+ 75
+ 20
+
+ -
+ 11477
+ 11297
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 41637fcf-888b-4a4d-ba04-ebcfa7d7f1ea
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11307
+ 75
+ 20
+
+ -
+ 11477
+ 11317
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 121a9d64-a729-4d5c-b085-bd195ed1dd2a
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11327
+ 75
+ 20
+
+ -
+ 11477
+ 11337
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - e77ef13a-95a7-4719-9547-02a29e451e68
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 11438
+ 11347
+ 75
+ 20
+
+ -
+ 11477
+ 11357
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 62773edb-46a1-49a0-a388-f56bafedcf7d
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 11476
+ 11489
+ 96
+ 44
+
+ -
+ 11526
+ 11511
+
+
+
+
+
+ - Curve to evaluate
+ - 03e6626d-e3e9-42db-8e38-ed7cd6b61e12
+ - Curve
+ - Curve
+ - false
+ - 8ac7b0b6-f82d-4bfd-a061-b5490e1e67ff
+ - 1
+
+
+
+
+ -
+ 11478
+ 11491
+ 33
+ 40
+
+ -
+ 11496
+ 11511
+
+
+
+
+
+
+
+ - Curve start point
+ - 184f2d09-90bb-40fb-a76d-d5682c4b3c18
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 11491
+ 29
+ 20
+
+ -
+ 11557
+ 11501
+
+
+
+
+
+
+
+ - Curve end point
+ - 1c302b78-4f0a-4008-aa4c-5a5e12978a1c
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 11541
+ 11511
+ 29
+ 20
+
+ -
+ 11557
+ 11521
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 7d352a34-c1a8-438f-a73d-398e16bce26a
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 11461
+ 11387
+ 126
+ 84
+
+ -
+ 11519
+ 11429
+
+
+
+
+
+ - Rectangle base plane
+ - 296eaec9-ac71-4478-b3da-a4b29fd6cfc5
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11463
+ 11389
+ 41
+ 20
+
+ -
+ 11485
+ 11399
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 0da75ec2-602a-4c08-805e-8c7487864a75
+ - Point A
+ - Point A
+ - false
+ - 184f2d09-90bb-40fb-a76d-d5682c4b3c18
+ - 1
+
+
+
+
+ -
+ 11463
+ 11409
+ 41
+ 20
+
+ -
+ 11485
+ 11419
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 26bade3b-3cb1-4440-82f2-80b6cbf92cc0
+ - Point B
+ - Point B
+ - false
+ - 1c302b78-4f0a-4008-aa4c-5a5e12978a1c
+ - 1
+
+
+
+
+ -
+ 11463
+ 11429
+ 41
+ 20
+
+ -
+ 11485
+ 11439
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 2d4d6013-0f5b-4eec-a9b8-fb14ce73a575
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 11463
+ 11449
+ 41
+ 20
+
+ -
+ 11485
+ 11459
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - f3a37099-ca1f-4685-8142-fe2cb36f2d6a
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 11534
+ 11389
+ 51
+ 40
+
+ -
+ 11561
+ 11409
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - b6aca571-a05e-4f3b-93d1-5cf57a4b394a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11534
+ 11429
+ 51
+ 40
+
+ -
+ 11561
+ 11449
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 3c5e8987-4367-4b96-abc7-d9950c787a5b
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 11515
+ 11249
+ 126
+ 104
+
+ -
+ 11582
+ 11301
+
+
+
+
+
+ - External curve as a graph
+ - 3b138486-50da-4433-b49d-09d1e33eccae
+ - Curve
+ - Curve
+ - false
+ - 8ac7b0b6-f82d-4bfd-a061-b5490e1e67ff
+ - 1
+
+
+
+
+ -
+ 11517
+ 11251
+ 50
+ 20
+
+ -
+ 11543.5
+ 11261
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 5b510a7b-b5e3-4c93-aae2-255f4fb87e4d
+ - Boundary
+ - Boundary
+ - true
+ - f3a37099-ca1f-4685-8142-fe2cb36f2d6a
+ - 1
+
+
+
+
+ -
+ 11517
+ 11271
+ 50
+ 20
+
+ -
+ 11543.5
+ 11281
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - d67c45fa-caef-45eb-8c46-28cf9010a6ef
+ - Numbers
+ - Numbers
+ - false
+ - cfae3613-4a0c-48f3-b460-dfb899c0f233
+ - 1
+
+
+
+
+ -
+ 11517
+ 11291
+ 50
+ 20
+
+ -
+ 11543.5
+ 11301
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - e2b576bb-06e8-404d-879f-a9f6559bdb78
+ - Input
+ - Input
+ - true
+ - 3b403a16-71f2-4fe6-85f1-f3dcf845c943
+ - 1
+
+
+
+
+ -
+ 11517
+ 11311
+ 50
+ 20
+
+ -
+ 11543.5
+ 11321
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - d961aeee-fc6a-4820-ba5a-e998b4cdcc0b
+ - Output
+ - Output
+ - true
+ - 3b403a16-71f2-4fe6-85f1-f3dcf845c943
+ - 1
+
+
+
+
+ -
+ 11517
+ 11331
+ 50
+ 20
+
+ -
+ 11543.5
+ 11341
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 751714b3-d833-415c-963c-0f1e1d90d0c3
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 11597
+ 11251
+ 42
+ 100
+
+ -
+ 11619.5
+ 11301
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 273cdda9-433c-4813-8ab6-151b5dc27262
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 11493
+ 11057
+ 89
+ 64
+
+ -
+ 11538
+ 11089
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - c2023961-955f-49fe-adfe-bf109fd587a8
+ - Gate
+ - Gate
+ - false
+ - c9ad8ba2-8311-4b9f-8661-c724bbb1bd13
+ - 1
+
+
+
+
+ -
+ 11495
+ 11059
+ 28
+ 20
+
+ -
+ 11510.5
+ 11069
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - ae37aa15-fa68-40b0-a29e-cccd62c6779d
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 9646254a-4c15-4757-9338-8ea1be0a43cc
+ - 1
+
+
+
+
+ -
+ 11495
+ 11079
+ 28
+ 20
+
+ -
+ 11510.5
+ 11089
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - d9fe6824-8436-410d-93af-81a3ae05a324
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 751714b3-d833-415c-963c-0f1e1d90d0c3
+ - 1
+
+
+
+
+ -
+ 11495
+ 11099
+ 28
+ 20
+
+ -
+ 11510.5
+ 11109
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - e355e4c3-2db6-46df-861d-eb1eae020f32
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 11553
+ 11059
+ 27
+ 60
+
+ -
+ 11568
+ 11089
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - c9ad8ba2-8311-4b9f-8661-c724bbb1bd13
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11458
+ 11018
+ 150
+ 20
+
+ -
+ 11458.74
+ 11018.43
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4cc48639-01ca-491e-96f2-953404e9c90b
+ - Panel
+
+ - false
+ - 1
+ - b64d7c9c-6ec1-4f24-ae71-05dc4e3398f1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11435
+ 11676
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 11435.81
+ 11676.85
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - b8cbc295-7efe-44e3-b110-1dcb32c8eb70
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 11465
+ 11628
+ 122
+ 28
+
+ -
+ 11529
+ 11642
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 49f0e4af-71a1-4e54-9902-4dfce574bcab
+ - Numbers
+ - Numbers
+ - false
+ - cfae3613-4a0c-48f3-b460-dfb899c0f233
+ - 1
+
+
+
+
+ -
+ 11467
+ 11630
+ 47
+ 24
+
+ -
+ 11492
+ 11642
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 3b403a16-71f2-4fe6-85f1-f3dcf845c943
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 11544
+ 11630
+ 41
+ 24
+
+ -
+ 11566
+ 11642
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a502bd36-3f92-4597-8529-8b12a037a679
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11427
+ 11966
+ 194
+ 28
+
+ -
+ 11527
+ 11980
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0b07bd3d-5888-450e-9961-d89ae084d50e
+ - true
+ - Variable O
+ - O
+ - true
+ - cfae3613-4a0c-48f3-b460-dfb899c0f233
+ - 1
+
+
+
+
+ -
+ 11429
+ 11968
+ 14
+ 24
+
+ -
+ 11437.5
+ 11980
+
+
+
+
+
+
+
+ - Result of expression
+ - b64d7c9c-6ec1-4f24-ae71-05dc4e3398f1
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11610
+ 11968
+ 9
+ 24
+
+ -
+ 11616
+ 11980
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - a31d6d4a-fcb3-4a47-87cb-ff7b84e6658a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11341
+ 12163
+ 367
+ 28
+
+ -
+ 11527
+ 12177
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b4a5fb93-d008-4dce-9add-0a8b1cfccfc3
+ - Variable O
+ - O
+ - true
+ - 4a99cbaf-f84f-46e8-9a56-267f2338a5ea
+ - 1
+
+
+
+
+ -
+ 11343
+ 12165
+ 14
+ 24
+
+ -
+ 11351.5
+ 12177
+
+
+
+
+
+
+
+ - Result of expression
+ - 52ce151f-62f3-47c4-babc-9228ed8100cf
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11697
+ 12165
+ 9
+ 24
+
+ -
+ 11703
+ 12177
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5d482aa6-89b9-45e9-869e-ac438fa04aba
+ - Panel
+
+ - false
+ - 0
+ - 52ce151f-62f3-47c4-babc-9228ed8100cf
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11438
+ 12134
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11438.95
+ 12134.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 1
+ - a053dc41-201d-493a-ada0-b538db32a63a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 77dd9549-353d-481e-b7ba-7e13c837610a
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 11447
+ 8867
+ 154
+ 64
+
+ -
+ 11531
+ 8899
+
+
+
+
+
+ - Base geometry
+ - 5a25ce98-cd52-4e18-bd81-8ef8de66b0de
+ - Geometry
+ - Geometry
+ - true
+ - 26f1b5fe-4a27-434d-8be9-19332d18ac35
+ - 1
+
+
+
+
+ -
+ 11449
+ 8869
+ 67
+ 20
+
+ -
+ 11492
+ 8879
+
+
+
+
+
+
+
+ - Center of scaling
+ - 74860878-540e-4054-9435-365908f6ce22
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 11449
+ 8889
+ 67
+ 20
+
+ -
+ 11492
+ 8899
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 0c3a5f92-93b5-419f-8ed1-23ffbf85bef8
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 724184df-15e4-4293-89aa-303827706eba
+ - 1
+
+
+
+
+ -
+ 11449
+ 8909
+ 67
+ 20
+
+ -
+ 11492
+ 8919
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - e8e63429-c176-409d-8d43-6a03bb3aa208
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11546
+ 8869
+ 53
+ 30
+
+ -
+ 11574
+ 8884
+
+
+
+
+
+
+
+ - Transformation data
+ - 1e426061-9bcb-4edc-b90c-867e581371fa
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11546
+ 8899
+ 53
+ 30
+
+ -
+ 11574
+ 8914
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 992e5323-9c5a-4dc4-b881-6cf0dcb48bbd
+ - Point
+ - Point
+ - false
+ - e8e63429-c176-409d-8d43-6a03bb3aa208
+ - 1
+
+
+
+
+ -
+ 11497
+ 8843
+ 50
+ 24
+
+ -
+ 11522.47
+ 8855.462
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - cab7477d-413f-4890-892a-b0ccc8baf584
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 11452
+ 8193
+ 138
+ 44
+
+ -
+ 11520
+ 8215
+
+
+
+
+
+ - Base geometry
+ - 78e1bc17-05bd-4a72-bf37-1c6b38bdccd0
+ - Geometry
+ - Geometry
+ - true
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 1
+
+
+
+
+ -
+ 11454
+ 8195
+ 51
+ 20
+
+ -
+ 11481
+ 8205
+
+
+
+
+
+
+
+ - Mirror plane
+ - 37d70e76-4c65-47a8-96ea-ab8105357524
+ - Plane
+ - Plane
+ - false
+ - 5657a29d-2ed8-4219-836d-9c29cf62c4ae
+ - 1
+
+
+
+
+ -
+ 11454
+ 8215
+ 51
+ 20
+
+ -
+ 11481
+ 8225
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 55ced412-92d7-4339-a478-51146c0bd882
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11535
+ 8195
+ 53
+ 20
+
+ -
+ 11563
+ 8205
+
+
+
+
+
+
+
+ - Transformation data
+ - 5b1d7ddd-01dd-4ed6-91da-250f929307dc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11535
+ 8215
+ 53
+ 20
+
+ -
+ 11563
+ 8225
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8ac7b0b6-f82d-4bfd-a061-b5490e1e67ff
+ - Relay
+
+ - false
+ - 8721a6d6-dffc-4e1e-a5c8-c9e04677f0af
+ - 1
+
+
+
+
+ -
+ 11506
+ 11556
+ 40
+ 16
+
+ -
+ 11526
+ 11564
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4909ad32-0930-4883-af89-f3fdc636da23
+ - Curve
+ - Curve
+ - false
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+
+
+
+
+ -
+ 11029
+ 11809
+ 50
+ 24
+
+ -
+ 11054.35
+ 11821.2
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8721a6d6-dffc-4e1e-a5c8-c9e04677f0af
+ - Curve
+ - Curve
+ - false
+ - 27a84b54-648e-4ae0-868b-6d083e41dc2c
+ - 1
+
+
+
+
+ -
+ 11029
+ 11605
+ 50
+ 24
+
+ -
+ 11054.44
+ 11617.18
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 1532ebaa-a4e9-4d05-8491-8c367745d21f
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 10975
+ 11647
+ 154
+ 64
+
+ -
+ 11059
+ 11679
+
+
+
+
+
+ - Base geometry
+ - 4180ff22-84d0-4408-80e0-0a238999e916
+ - Geometry
+ - Geometry
+ - true
+ - 4909ad32-0930-4883-af89-f3fdc636da23
+ - 1
+
+
+
+
+ -
+ 10977
+ 11649
+ 67
+ 20
+
+ -
+ 11020
+ 11659
+
+
+
+
+
+
+
+ - Center of scaling
+ - 4b26f59d-44d6-4914-adb0-fade22df26fb
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 10977
+ 11669
+ 67
+ 20
+
+ -
+ 11020
+ 11679
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4f781f79-5d80-4b48-86e5-54e5905dee1f
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - e3ac766d-8d04-4d99-94d6-2878a6f94511
+ - 1
+
+
+
+
+ -
+ 10977
+ 11689
+ 67
+ 20
+
+ -
+ 11020
+ 11699
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 27a84b54-648e-4ae0-868b-6d083e41dc2c
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11074
+ 11649
+ 53
+ 30
+
+ -
+ 11102
+ 11664
+
+
+
+
+
+
+
+ - Transformation data
+ - dc46e503-f99d-4264-b5ef-40ea4f3819a4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11074
+ 11679
+ 53
+ 30
+
+ -
+ 11102
+ 11694
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4909ad32-0930-4883-af89-f3fdc636da23
+ - 8721a6d6-dffc-4e1e-a5c8-c9e04677f0af
+ - 1532ebaa-a4e9-4d05-8491-8c367745d21f
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - b2e536ae-a7b4-4dff-b81c-6a81f6372367
+ - e3ac766d-8d04-4d99-94d6-2878a6f94511
+ - beb16079-3864-4233-9af9-59f099bc7bc0
+ - 7
+ - ddaa9034-9733-4c55-8447-873880f469ea
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - baf8b528-285a-4a8a-afb5-5d635f28ad9d
+ - Move
+ - Move
+
+
+
+
+ -
+ 11452
+ 8086
+ 138
+ 44
+
+ -
+ 11520
+ 8108
+
+
+
+
+
+ - Base geometry
+ - e246eed2-84ad-496d-b475-04ccef3692d7
+ - Geometry
+ - Geometry
+ - true
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 1
+
+
+
+
+ -
+ 11454
+ 8088
+ 51
+ 20
+
+ -
+ 11481
+ 8098
+
+
+
+
+
+
+
+ - Translation vector
+ - ada6d50f-3bac-4119-81ce-6c00a612af35
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 11454
+ 8108
+ 51
+ 20
+
+ -
+ 11481
+ 8118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - e3dbd379-bdac-443d-b690-bde1285bcfc2
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11535
+ 8088
+ 53
+ 20
+
+ -
+ 11563
+ 8098
+
+
+
+
+
+
+
+ - Transformation data
+ - 26fe9fa4-0cab-431b-b4af-144242129666
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11535
+ 8108
+ 53
+ 20
+
+ -
+ 11563
+ 8118
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b2e536ae-a7b4-4dff-b81c-6a81f6372367
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 27.9312132004
+
+
+
+
+ -
+ 10929
+ 11772
+ 250
+ 20
+
+ -
+ 10929.12
+ 11772.68
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e3ac766d-8d04-4d99-94d6-2878a6f94511
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 7.93121320041998779
+
+
+
+
+ -
+ 10976
+ 11732
+ 154
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 10976.72
+ 11732.09
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8ac687ae-91e0-4260-80f5-932c0b4ee33d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 11029
+ 11856
+ 50
+ 24
+
+ -
+ 11054.17
+ 11868.85
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zPxpPFVvG/D/b2OGTJXIXIaklCEylGMrlWYiNFOISjQoGjdS0kRJ0mQolIpKRaadKZEyD5m2eWabaeDne32Pa5397+t1P/k/uj3wbn3WWvs899rLsjZe0ThoNNrk1Mc//vMxnXPqk/VWJ+cjrqtcXVxcjyxSsHI4dtzZ9ciKZYs1tRdraWov1Zv6h4aG5iKFVe6HT7gfc1hxxMH9xDG7w4sUzNz3HXbev8HB09L1kMORFTo6Wlp6mg76y/Yv09HR0dbg+WcUyf88+OK1Dq4uDieOeS42cz3sucr92EkH7qmV007+O5iA3bH9Ts4nHbTtXfhd3RyOHHE/tu84t73dCbt/NuLj4+P8Z56i82k0rSlv/xaczs819Q+Rfz6VXaTROH9e4KR9ufjvc/o1yUmbhc+PVVqxeW1HiVh6C03Uh2Me+/mwmt/vqfWBuK0oN+3//GDD/6R/e/r/WXj+ZxsN+r/SUVPUjP7PBP8o/O8E54jF7TEXLBVLn/h3guulPCX+mWA2bivKhRv+M1Gu/75s//9M9n/2/T8/4vGxmGguWoiWopVoDcpCG9FmtBVtRzvRbrQX/n+fQz86gA6iQ+gwOoKOomPoOPoT/YX+Rv+gE+jkf48d/T+fGSiNA5dRGicuozQuXEZp3LiM0nhwGaXx4jJKm4bLKI0Pl1EaPy6jNAFcRmmCuIzSpuMyShPCZZQmjMsoTQSXUZrov9JRBspEaWK4HmWgTJQ2A9ejDJSJ0mbiepSBMlHaLFyPMlAmShPH9SgDZaK02bgeZaBMlCaB61EGykRpkrgeZaBMlDYH16MMlInSpHA9ykCZKE0a16MMlInSZHA9ykCZKE0W16MMlInS5HA9ykCZKE0e16MMlInSFP5VAaWjtigDDUOZKAulzcX9UTpqizLQMJSJslDaPNwfpaO2KAMNQ5koC6Up4v4oHbVFGWgYykRZKE0J90fpqC3KQMNQJspCacq4P0pHbVEGGoYyURZKU8H9UTpqizLQMJSJslDafNwfpaO2KAMNQ5koC6Wp4v4oHbVFGWgYykRZKG0B7o/SUVuUgYahTJSF0tRwf5SO2qIMNAxloiyUthD3R+moLcpAw1AmykJpi3B/lI7aogw0DGWiLJSmjvujdNQWZaBhKBNlobTFuD9KR21RBhqGMlEWSluC+6N01BZloGEoE2Wh1E0L8X/vM8jHxU/uO49vX/k/9x1rIjT41S/thI7z8lLTjGev+G9f959+CIRuVuu2emin/rcneDbnhD85AXJ39bPLZm39P7Y/A+p1+XZra92o7Q87pCnXaHuBxxW2wNCpm9T27/7zOBfhjdAHuQ27XlLbT1wXcDog7gdzePjq8u3zqe1N/vP4V0G1+NgLpm8/1Q+/t3o+MHIDfB8H7m2L5jP6b1f4z7iBoGh+aI6EqTTVQ4+Yjxh13wJaXG6W1RY1qguc+mc+QSBnsdvggdIyqm89d+ou9+5g0K07/nSCfxXVj174Z54hcKhPRmffp01U5z39UC+v4B7obhP232JuRfV7B/6Z/30Ye+hPC1xiS/U3kFl10+gh/Jp5NNGrxJHqt4a3TT2vRyABk6ksF1eqbzI8kfrcOgwWeSh01Gm6U32WZerU8w0HRY3HD+kzz1KdocV7Q0g0AhjbXcpVNnlTnS9189RxiICj32JFrl+6TPX5RcF73HIjQbd5beHJmutUH6fXTR2fJzBdwa04KuUW1ZcXKi0pYTyFEP3FO9+vvkv1Yo2DU8ctCgZ4nltHRTyguv/Ey0kd/Wj4s293+6FT4VTX+dh34IB4DPzcmGwwqPiU6k2ZiwtD+mNgSevAmnrHZ1TXtjw4dZyfgd7vHye3m7+i+sUT4WG/nj2HR/TkpOafr6kuPlLMp34pFviHVUTY2u+o/vXAH7c9+16Agbb9avO6RKpfFpCfel1ewqkTGWcMeFKp3pepY/xJ6hXEpHQfXfeDSbYXgWcDI6/gZ5aU/PmzmVTP7FkmplQSB0JZXgu7XXOo/tjpRspz63gY2b/HODr5C9XTsk64ZWbHQ5K583XVAwVUf31no1KN9mtYdyQ4TTW1kOpnfs2oHAp/DVqaL40+TBRTXelh1lUh0TewKV2k5sHZMqrfD9kNKuffQNup1I4jhpVUn360asCo+w2wbuVa/4Zqqmv+0oqy3vEW/mgzZmy5WUf1P2vtt7vlvoUTCgXxVhINVOe+7jj9im4CBJ96FVkg1kT1LAGt9PAnCTAx0dTXo99C9bvs1KMfZ7yD+zl1e5NutVFd0oimVMJ4B6N08edb5TupXhfeU9bV+w6qte4qTDR2U91um+dl7t3vQd0q3HZeQx/VG4aD9GTz3wPXVkmvJzf6qT68XaNDR/8DKD/Ii7y5aZDqHfv1722O/gAX7LwdDZcMU31D4X3TA+KJ8GLpbJlInVGq59CMRy/4JMK4VMNg6b5xqv/MEHka0p8IJyL9zQcSf1G9Z0a3+eu9SVAZ/11Jw2CC6npV7/98KUiCZfaRYYdO0Kjr9Oonm2IaDT+C/7k5OyOaOKj+cpe/+a9nH2HbsPDM4UNcVLceWjk+UzIZJt6Fi0QL81BdQnTd40WXkkGt212Pt4CX6uaxzqtWDyXDkmKpNYdi+Kj+8/3hlt37UqBeabJSP0KA6qcSZ/meLEyBVR5Ja1nJ06nuuF9u3k2jVDji8+JExYgw1ScW01OiX6TC5q5KM/PnolRvaV1gwZRKA7knyhEHusSovn7ZxdZKvzSQT644fBpmUp2xlO3eP5IGvpGuu3dEzyLzrOXlEHBIBznuXWM1irOpnvrA5vK8knRYlcB5seadBNXv79G9+FCBCUaLvgws2zOH6hbHWJ+eWTMh57xMQbGsNNXH6Pa/391gwsAXD+k7wzJUnyV7UjsjmwmFEm5mh1rlqG4Wk+X47TcTlm61mRPpoUD1vb5jd35ofwI58N1//epcqudMS2C2HvwEhoYGskdfzKP6jYZbrQPhn6BYja/1a7Ui1ce/LZg2WfkJvJXu7pwrpUx1TTrvPEHRDNicFi3cf0CF6tM4XulKrM2Ass6ZHszs+VQvr3tkong+A7bYfu8RX7qA6lc3bt6w5F0GjHi33fV8q0aOA/eC9YbdGSD21dvB3WQROd9ib9HXKmbCQFQ9x502dapvONiibrEjE8ZStn5xeLiE6tqBR8X2BmZCneW8vYZvNajOp3Gu82BuJoxcloAX4ZpUr3u9KvHkZCZIXNx4f3OoFtXb3Yc9vXWzQOEo/6bDD7Wp7nzgw+IbLlmQGBLSuSV2KdWXB0WU3XuSBTtuZH4yydKh+tmMTJen1VkQM7ylOLhdl9wf8UiPxM/IBt2mM7m3JPWo/nvzfZeUddkwrdRz1NdSn+pfedVKPjOywUqv2yLtgQF5XiGPlEs+ZEPAddsj/v2G5Pznzthf15sNy7nzXPQtVlB9zqnN1zqUc0Do1S9+6Qwjqu8s7H04tCsH9CXFMkGeTnVbA6O7k7dzQOPso7KdzaSXv/98UiA/B6rdN9j5xxuT60Acj6E452fwXi9vOuRD7gdZPnaN8vqfQaopLSpjzyqq68lqH1Jz+wwPrWOK5IxNqL77NLNkafRnyNY6slVr4Wqy/coVUlD3GWIODzSryK6huqBl3vJ14rnwWyr8hIrEWjJPG3d9i425sKfs+Zydc0ypbrNNT3i3Ty4kfjWa3ae4jurZy8cTHT/mgn1QVsn0Zeupfv7ilWVu/blw/744q27rBqp/SXx62VP1Cxy2ed9589RGqj+eMRzlvfcLOEiJZKx/uonqBcL8t68GfwHBqCdmBjWbqX6Bd/e6oIIvUDZdtcBE2Izqi75s+/yAOw+UfybXaL4l/ZCescBTwzzIjp3bO77LnOpdzdtEXh7LA4NIdtgbwa3kOhz3piThWR5Mr/90/2g66bn791imsPJgPMHg6kYPC6ovPL72RqZEPhRb88hv17WkemDOqvN5m/Nh28cdPC/HSfdYJzq3yDcfdC8v7N6dsY1cfy6bHa9IyQc7w0yGV4AVuc6Y3DhaO5gPb4e6XdXtrcn5Ka0v2aT2FULVgh1OrbChuj1H1P52u69g/31EyF1mO9WfqouY9YR8hR26UmLLOXZQPajtdlX/969wwbFcpLGLdB8jvd/DvAXwdVdZxNmanVTnzG9+O76iAHw+iG6fW7KL6sNHHX//PlEAksrH37d83031bwuPFE3GFkC6n6tWffEechy+ByzmbCqAae9DdRVr9lJ9VcMaEW6pbzCgGnGjyd2W6okO3Ud4zL/B/aZpkmyaHdXzE5mmvH7f4LjfmhLjm6TLOrfe5U3/BnPeO21tUthH9VqJ/da8I9/AcmyabP070kV3y3vzqH+H1Xz34mDzfnL9j2+dwW3/Heo5Ek+LdJKeaX2Am/P+d/C5eaLR5oo9+b5po2U+WfQdRIQerVBZ5ED1kg+14+e4C+F0pEiZVzHp/ZcXDf6SLwTDPb8b3c86Ur1aIyLQ07AQEgwNb01XO0D1+qcbi0esCkHP4PafLdWkR8LCN8ePFcL7fdOWrA9wIt/vshcvZl8vhMHiefI865ypnuehv+rws0LwyjVJ8Oc5SPXpyvK9bVmFIPeq+1NzNunXNZ4u3M8qBCd1Xj5Z/0NUT3vtPVb7qxB41+hordh6mOpcl23NbSSKoODwvIrNci5U9z9apVWsVQRtb3NO7ewl/aD26XsbNhfBtYkP5w9nHCGvV/wnryznInhp7A5XQ12p/mzW3PblvkXAcbDqtK2hG9U7R3/lJoQVQegBi31XY0nnuB6jsCilCJQz1KrzZI+S/s21K6KiCIo5XXcr3iLd/dV15TmDRbDKvsniHt8xqruaaebfEC4GfY2n0ppepG9Yca6SS60YHBYWc/X9Ij0t/PI6j9XFsF90yaYKj+NUP3l9h1S3bTFoSn9b0DtKur3u0Jq9Z4tBJ+pdyjLPE1R3g7X5RXeLQfHHpTmJv0n/zWkYueptMfAfUzI57u1O9R+s2LyEb8VwO2i7hovASapLBxxaodxZDBJZjE/Pgkg/csJ4NIinBFxb1fIWzT1Fntdo5yDX3BIQdswR/BlH+pdm6SXHlpcA02WNrrixB/n6/Xr+Sb311Pb0vDavUtI/2L/bsvF4Ccx6YfJi1UFPqv8aslmUeKME3ocp/tnNeZrqMek/dRSfl0Bl/Si99AHprceUnK5nl0BWsUz+M/0z5Hx7YJM2wioBAy/b6oZK0svkZi7d+7sE3r2IfXjh9FlyXY3/kpUjUQrJIs8XXJI7R/Uim+5D6tqlIPLlmPdYFumX2C1KtzeXgk+1RnCVy3ny/e6FTNeocylckP+6YtGcC1TfGjWQtNO3FH6bBy4fzCH9q3POtbSwUpCQ63scYsigevHVwT0KKaXw8/Ve16Eg0pP5SxZ6VZRCEYhsutFHut7t5F7WQCnM/Rp45MAGL/L1XsERCcJlYHs4e4IRQ/qp72OrHi4oA5mUCdkaXm9yn8w38HXcpAy2spc2ejqS7ta5Qn+bbRmsEVpsvfMz6Udoiy7GnSmDtdKx570W+FB9wFDwGd/dMjDfH2TWc430ej21SNs3ZVAcr5z8uJ/03+crXD4UlIHwPanIe9YXqR72yY5bqKMMtnz+0VSdRnqNrOQ+O+5ymNwUteXAfF+qu1it906QLwfe35/ilgeSLi28zpbXsBxmv4/M2vWb9J+TDqNWVuVQUCK3JtfpEtVDdIZWRh0thz8XApoulJNub2hqNHStHFqkp5tcXH2Z6glbE5vpMeXA9fQyb/k70pvDH2heyyyHMRm+DPf5flRX27dFobyuHDYPFvDYh5JuLaj+Qu5nOZx289oeLnyF6rrnggodxCtgfO7eFYsvkt6k0uYXq1EBHWvs1QR/kX514ZXCvg0VULv8zC294/5kXN+GCK0DFbCjO5r1vpv0l0o7fh33roDCpUs9Lx24Su6LRGzL3j6sgL3WNUnRTaT/Prt/0UBiBeja/hqXsrtG9dNdFb8Wl07N5/oHf1Y96bUGS+FgXwWEv1/8YWzvdfI6pg30RwpUwo7nEVn7G0hvNwsUqVGuBIFbTwfm2t8g1+G9gbdnGFeC1oY1Z7TbST/785Tn2l2VsCZ9+e0Ql5tU/1hbkHL6VCUU6M4+aD5EupSH/PYXtyrhbYmG+BKjAHJ/wv69ruZlJeye6Dlb7016xIKf/gJfKuGN+rff+rmk16a9kljWXAkcSxQijYQDqX6M+32X3WQlvFSefrbHkvRYWhznVakqqI94FrjmAemi9stt3uhUgXOSePe6ZtLbznO3V5hVQZbQlcDRRbeoXqH9+uWvQ1XQ0uByactJ0mXa+57IXq6CNJmTBeZM0jvcjn5ZEVEFKpteH5gQuE311RMds3elVsHP6AjLbVak07nErnhUVsEeDutbVhGk75IOl749WAXhzNOynH2kX+qxzosV/gF931z7rZcHUR2mjwRkLPgBJoz9fDb+pM8uMTpUYfIDgk7a7+SsIv2N8Zhl594fcPyCR6OV6h1yf1LSue7X6R9g7PwmaJsH6eusG1YLBP+AvB9rnSZySTdNjTGReP0DBLmit5pLBVPdoV9k5byvP2Bp2jXTzYdJr7nWpr+w7QcotEgaDaeRbsjNqarFWQ3WFh0qa2bcpbrKpCbfMtlqWMeUHqE7kq6ktaVcX68aShnZj1o+kj7WKn/DwKIahN49nblUNITc160sCdd3qIamrPe6F9eRXvVcqUjvSDVsGzEIMHUk3f3JlrzJC5yM/y7/P/SHEP/7i49/R0IVUA2UjpqhtqgbykAD0DA0HmWihSgLZf93fE0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdK0cHxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZK08bxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKG0pjo8qoBooHTVDbVE3lIEGoGFoPMpEC1EWykZpOjg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpeni+KgCqoHSUTPUFnVDGWgAGobGo0y0EGWhbJS2DMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjND0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdL0cXxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZKM8DxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKM0Qx0cVUA2UjpqhtqgbykAD0DA0HmWihSgLZaO05Tg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpa3A8VEFVAOlo2aoLeqGMtAANAyNR5loIcpC2SjNCMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjNMDxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKPVXm8R/7jP+bzc2FTNO0vROVUP6/PSO6T6k19Jcn+tcqQbjudMWf0shnX+/B6/Gk2rILTiXOGfWParvznhsqJpeDaICSj+ED5Me/OfFarkf1TBtk4HvyyzSG+acVpgxXA0Gt2ReDMuGUt0xquYzl2gNGPDTjNtOkS4j8XLZoFoNZO+I0PEuJv2yafYh1uoasM9ccSZH/T7VBc04bPNta+CC/lHOhCukd78G0YQzNZBSujB5fSvp+Zl2HqHBNTBgdzfIf9UD8safd2PQ+dc1MLmc69zxcNIrLrXutf1aA61K3+14aA+p/ni5bAW01YCanNUS+l7SVxxlDctw1sLyvVWFiumkb1ZWThyVqYWJtYc04uUfUX3J6ZY5hctqYfv+H7otDNJF5eZKRG2tBVf3B/kZjaQf/Fgb6+lSC5xBSaWmqx9Tfb7D/NL1frWQtP6D7qkY0q1niV2bE1kL2S3GnSq8YeSN9qx331tSa0HoTvxaRz3S2xk69+Mqa0F1q1Pk+EHSR9NTOk8O1kLNT6Nu1kPSBWnnPxoK18GuXeKiMkWkWyW+451QrYOAjq+/nnOHU/31wuf5qavqgMdjxf3reqQP9MTynNlTB384F1ZlHib986HZr3U862Cnu+HjTeGkz3A3y+u5PfX4nt1lauWkR375uinyVR3kmV2x3ykYQd6YxAjoWX2pg+E4Bc16OunT7YJ9eZvr4OCT0wrvT5JOa+fXTpiogyPnhWezXpBeeFhoxd459bA7c2xwVxPpVQPWYdOW1kOOcn/oIqlI8gOc7rjtLzfXQ6QvvXOzOelzK7sczJzrYdbI+/RMP9I9WQOf2D71sC8/fNSfSXrhudSDNx7Vg0Lcp8NPxki/JWW1e0FSPRQn08dENJ9Q3SmpKvhTST2sfxxztMCZ9NGHHrOse+vhYlblq5oI0uPOJHec4GZBv89vnxU1pF/PCW5PEWNB6E6vzD7xp+QNr66vL5c8C96qCxkNbiF9fqFpuukiFkReOpGx1p901a5XQdf0WdDRES/bk0X654AA7u9rWLBCpUKqaZL0JWXFQqKWLFgdL+SzwDCK6huWHojbYscCQR4fWeZJ0ml9G9qvH2FB2Az7uKg3pFs5X/uQd4YFndHFv2p6SQ+9YizDe4UFL7uqM/ctjKa6luQtcXowCwKrjuQscyLdReFthEckC5g5W5k7n5LOs7U9Iy6eBS7dsoe/NZJ+dv9F95ZUFviML/S+qRBDjo97R9KcfBbMfx6U+GgP6cLuV25urGSBpeO8zF8PSLf0aR0+18IC9VZTi6hq0v2sb3e/HGBBXrW05COpZ1TXj9I+XjPJgusxq9Mat5Ned/nsFX6hBthHm+g7fo90y7qlS3SkGuByH22beRXpsZ907PfObwBXv4u3Ts95Tt5Qfz+o6re0Afa8WLqhbzvpVSrFZ+KMG6Bdmy4fF0q6kcPZPWWbG2DbJvsXSdWkF0ZdKxzf2QCNm8auC8vGUv3ZBb1iGecG4Ns5vuvlHtIPDn/eb3SyATbMnh1/J4z0gJN3fPf4NMBvo4/SnxtJr/oupHcuoAH8N0lpGSu/IPOXjz8T+rAB9KeBD5cT6c9yhczfP28APQGxh0KxpL/em5dY+KEBlLfaC+7tJT36/v23HVkNcCSBy2ZU8yV5HPq6lRzFDfDTMkWg3J10b4GXDhL1DXBzhvOzn0mkz7/zRm5RdwPIdP35YD9B+sZV1kdgvAHuWd9OnLnqFdXXKD7fZs7bCJcfH104zY90/uL8MruZjdCsKHPTqID007t6+9wUGuFV+C7bpBlxVG+R2/b0vHojHDu0WeqUDenZEZaj/gaN4BLqrHvq0V/99Na2O2sb4bbujUVJzaRLyWaffGzZCHyxl/UficdTXTpFOzrarhHy5uwFmj7pS2R1T7860gjVD0/bee8ifd6RE/1vzzRChV+RjRKD9DTJaOFEv0ZYl/28tiWS9NKg4JKPdxqhY0tEdM5n0uP1pFemRDSC44tXLjldpPdNk92VEtcIbttUWptFXpMffDFuKyanNIKnanbO3KWkNxzwDU380gilX19nnbUh3eUWX2ZCeSPQZ/sEDZ8lXT7O+HFcUyOo7V/deTWcdCshe81n7EaYP3LBE3JIF93/+kz4n0Yw3mAwLNJF+vZAT0aIQBM8cOIQ/SPyhuo7DkitvCHRBJ/Ues7w6pAuaz+Z4a3UBHevPe1cuIP02pPhPCc1m6C084CQywXSFdMuTXcyaoKVq6bf+fKE9BurV/6w2dAEz10FtIzzSN+WcfyoqU0THNl1Iaikj/QHmz+X6jo0wWxDrcMM8bdU91cc5lU61gTe8fec1hqSbrj1k4DohSZQmWTpqdqR7nPmV+PPq02gpN5zdd5l0qMvnb/VHNIEB1T2ieq+JL3ZSkOm4GkTlP2IPrGvhHQuBodPwpsm8LLpc4weJ714vPtLaHoT6Dcuu8OtkED1J8Wjgxe+NoEEp+VLzzWk17I0uO2rmiAipHcXrwvpl47H/1nT2gQjbTfNn98mfYwjpEl1sAnUHkToOXwkPf2HWBI/rRn8CzzSdRtIVysy8+qY3gwX+c1vy/G9o3p9103IndMMtlo77WSWkF4mOGP0qUoz7OlILV9iRXpa7NxYb+1mSGi+F2ZzjnRfuujePfRm2Mshfjj4yV/dSme2/qZmyIs52NqeT/rJV70lM3Y0w4R6W8qWQdIlxMPudzk2w/nq9gd5Uu+pPmvrW7fM482QLVWvvX0l6X6Td61CGc3Az9iw5Jcz6Y3RmWZu15vhj0rq8vhA0lVY8ftWhzbDMoEGfo8k0q9G1N2cE90MLr+vmWxtIF2fr7C6+20z+DRnhBrxfyDXvQ7B9enMZmBMe/9xuSbpH71k6gIKmqEj4/vWjdtJH5a4ed/uRzMsOJQg5uJFuuujQV/NtmYolDWNevSM9FCbmjDaUDM0Bb1NZxWRPvt8bd83WgswR52EtH+SXl977eQDoRYIea4Kd+YlUn2pl5ees1QLnJLh5Zm2gfQ9my30dea3QMftwyJ+x0nXjA09S1vaAmY/FUUkH5B+Rp7Nk09vAdmobe/eZ5G+brSrMmhTC3AqBb7d30O6aIvy+O4dLcAzWZgsNzuJ6gWRSw+qHGiB1ssXGG1GpIvde7mk93gLhN4/k5B6gHThU0qb3jFaYIGzrGB4AOlhdWo5Z663wG9dQ73AJNLtOMweGYe2QNj8xezrjaTnrlKo4o1uAaOJ8rZgwY9k+3ql0/lvW+BlY0Rp7FLSJX2bLt5ktoCjcsDhr7tJj52s/b21oAUsuLQdxy6Rrlce2CL+owUeOX/0WBJPOkffqZWVrS1wMWlo59Eq0vdqcUuEDraA6zXL3FTOZHL9V3/quJPWCos8hk/OWkT6qw+ZS2WEWuFKSdhc922ka97KuFgzpxVszxR7158nfVRkYvsDlVbgCUndZhFDesuH/A87tVvh1H5zq8Ii0pM6PMOl6K0w3LfC2OoX6Y3eW6SqNrbCjb6xkmalFKo/97mqfHd7K5idzfh6ZjPp6Qn2OZaOrbC74VmnlAfpypv4aTOOtwK/w62eT+Gke4Y8Kvt2oRXyZuoFu+WT/vohff3Va62w69rSKJVh0pflcNitvdcKv79ysZrkUql+wbdThiuqFXI4+KfFmJLOzzHOSHvTCjssb9cfO0Z6WaJCgGd6KzBTGhebPCB9h8b6TUu/tsKbkkXJ0jmkt9/dmtxb2QoGUeEbxvtIv3dSsDamZepx/N1iauakkdfL0uDdvoFWCBz9Gpq9ivQzjiFrZCZboXPHYPdbF9LLlhXfLhNsg0tD6gej75I+Yn358Q3JNsiOr6p7/In0CZ71h9cqt4EzzyHJh12kN9c++j2p2Qad34+1PBJPp/of399bE43a4KxO5NS7KdL5d+cfddvQBsyLpZ5xzqRnqzrsVLVpgwZJgebU26RPZM2awbJvg5Nwan5hKun7S8RD7h6dGlf6omRrG+lih4L6Np9vA5nNzjmTfEyqP8l/IcV7tQ28QsPVheVIv8dzSDr1bht4Lv+jLqdNuv2M/MHjT9ogTmVJwhJT0tVnJT1Ve90G/pJ+L1fuJv3odTHthtQ2MJAYmmZ9jPQX98Mf3s1rA9mi0deHL5PepTm/bVNFG6zgexXq84D0hZbmYtzNbSD5O+v1/deka1swZT+y2yCz9ExbQg7pw3y8wm5/2iBdOGzR92rS3cSjmpQF2uFlm/+xTjbpPDKzw6pnt0N2vlwsL+8nqhtzpJkEKrbDeGZWrqI06dMXjBWv0WiH6mbnNGMN0te9E9v4e3k7SKadvWC7mvT0rPWvX69rh/t5nZMXdpB+5k051wGrdjBskF0a5kr6vm01JjL72+HX03HRTxdJ16KfdC9ybYf8X5VXG++RnsTxNvjS2XZIPnk1lDuO9B0Od54ZXmmH+G9btednkV70dlYc+047nN7K2ri+inT9IZmYpxHtYLFza51LL+nL1W/e2RHXDu+ZmvWBXBnk+3WUsYdISjs82Oi69r0k6WfUaOZZue0wvMROpFqd9JK11xQ8y9rB9xRzCW0V6Rm3H7apN7YDmxEVrmxDOnd3Q1RjbztIu/nv2eBCunzSnz13f03N54mR7VFv0r9oXBPdyNcBYhq9YXfvkn4kRD6FJj7VN0hJp70g/etl433v5naA7de7X5o/kf5i4XGug4s7IOPRtWjBCtLj/dTD5Aw7IGiZS7xWN+nL0xr0StZ2gKPQz/rtHJlUP7huvOCyZQdkCq/Q8ppNurhp+d7ldh0wbc7lyJiFpPcll/SyXTrAxtVFo5BO+suC1Weenu6At5qfy0a3ka4leppnx+UOECx9HiB/iPTSzA/XhYM64NKdQ3vWMkgPm0OflRnWAQmjwctd75D+4uTme6dedkCfzoDq3eekH/ogKbvoYwfEp5yam55Ousjx749ZOR0wEWap1FZKervRo7l3SjqgVqJ1iUjnX/Ppj41Yx+qAgp73K5dNkh7eJqU40d0BGyfO7tw7K4vcb5vwR74Z7wCL2NmelxeQfl0vcN4B3k74bekXGmdEuviqL+HSMzuBWTieVmFBusrJLIVC+U5Qb3zbMulE+q6Ptx5fXNQJq17JCqueJz1R1FhOX78TKld+XGZ2m3TTmqoHPas7QaxEeZ9HDOmPhR2kI7Z2QprgrOthqX/N51P7Pau9nSBusT4xt5j0lXpOkoKHO6Fn5bMmdhvpb4vag9M9OqFw0x/hOX9I3y3rLH7CtxO4TSwNjGdkk/vMcx23VW91QvvR5w7O80nPrnSeUfuoEz6W0QIDl5OecyjdcVt0J7xIvGnzYj3pSjqdAYGxneCy0DolyZz0485PeP4f/UOI//3Fx3/gQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjv33+Rv/Kx8qikqiCqgqqoHqoXTUFDVDbVBb1Al1Qz1QBuqHBqAhaBgag8ajiSgTzUUL0UqUhbajbHQMpa38Vz5UFJVEFVBVVAPVQ+moKWqG2qC2qBPqhnqgDNQPDUBD0DA0Bo1HE1EmmosWopUoC21H2egYSlv1r3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlGbyr3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlLb6X/lQUVQSVUBVUQ1UD6WjpqgZaoPaok6oG+qBMlA/NAANQcPQGDQeTUSZaC5aiFaiLLQdZaNjKG3Nv/KhoqgkqoCqohqoHkpHTVEz1Aa1RZ1QN9QDZaB+aAAagoahMWg8mogy0Vy0EK1EWWg7ykbHUNraf+VDRVFJVAFVRTVQPZSOmqJmqA1qizqhbqgHykD90AA0BA1DY9B4NBFlorloIVqJstB2lI2OodR/W0X85z7j/3Zj4zUxK7kgrhMWP5JT+GxDunfgQZE1iZ2g4PWyrcGRdKfuzus/szphoJlrpsBZ0js3HpoeV9QJ5TN2GGkFkh4U0uW/v64TBPhfO++IIp1H6zC/ZFcn9M7kueOdTLrWs67LX0c7IZvLnvm8kPRnO115vbi7QHZDaFdxC+m0Gz8v6oh1wRcfv9m/fpIesP02V6dsF3DNGqIriuZQvTvO2PuRWhfcjQk4uEGZ9HlDIhwWy7rg5Ymft44bkK49X5AxzaQLpC8lJN3fQnqy5qrJZLMuqONQqcu0Jz1DOf+82+4uuBx7d7LLk/Ro76QJpYNdcMNGU3bWTdJPeKheqDrZBULOozrLn5Buu1CXdsOnC/4Y5ZraJ5GuP8rtvTKgC2rfbbe89o30mjfJ3KMPukAtVNc6oYn0+4O+frHPuqBLIWVLzdhf8zELErJ93wUqeyWWcwt/JvOJkgmaldkFlp9WSi1SJH32jh0yX753wXdvrnYLPdJDH9yIOlfTBarKbRFnNpG+/RVNW6ujC7zb6KaR+0jXnjfxqXW4C0pWzC/LO0V6jUK1xX3ObpAwPbpm4Brpgi8G2reIdMOJdQkhcyJID2mI8uKW6Ya18sa59A+kPzCyk0tS7QbJxLlFB76SfrrxVrqLTjec9p8dd6OB9KqiBId5K7vhi2DQ7ncjpJ/XNxWr2DzVVZgV1YK5VF/wujzj6s5uUHrjKsk5l3ST8wOn6U7dwGxVlFLVJf1Sua7B8Ilu6CybVrFpA+kn5plyPPfqBqv6HtPjtqQXQGnhnhvd0KKyyTnEnfSUzFvPZt7vBiMB0Ez1J336itXXcqOn5hN89l7DY9KFT37wPJfQDZd/7QzleUf6yffpx7Q+dYMd97eFC/JI7+UGj7aCblDz27l6Yz3pN53mXn3woxsUWPPqjgyRLqG254V5WzeI7CzrDuD/QvWWWWM1vEPdUB+fcOCNHOkFH/7IptB64LF7gEmJNulXnl5xOyrUA3At02PQlPTJhIwyFakeyAjRHJ+xh3RD45rNNSo9MHnU5KPmcdJ5nWfXBmr3QMOtjrgtfqSv3JzmtZbeA+JXbxYcfkh6heVioz8be0DdVZH3yhvSze2+zXy7vQekTYU3PvlMurjELG5nxx6Q9NYKTKshXWa2j6j88R7I3NGRU9FP+m69lwZlF3rg4WZaXR9vHjk/v2ldvHqtB9J83+fwypBeUZPRa3yvB8Lgo5uMJulSVtJnx572gJmRSr7GGtKbrfkXx73pgYUaF7JW7ST9lb0zr2N6D9hJvV6/zY30yEfzp8l+7YHtKdM3OPiSrjsJWqWVU/PhW/3meCjpTcFpV6629ECL6eHDjDjS1z9NF1k10APyHwbsr2aR7mPsmvNzogcOrn92KaiKdBDij38j2AunZ2Ul3+8lfWNzxbeDkr0gk1LTE8aVT3WHazrKisq90NI7xPNEkvR19v7vqjV7QaXUo/uJOulbZ2zyDjLqBY/zxlciV5J+XIvzxqYNvXB3193Mx9akF3Atr+a16QWHZ0u97x0m/Z546GGmfS/MqF4bG+BFevxgrsnpo71wRuykkm8w6bbFXo5Lz/dCik9t8clY0nv1/Ut7/XuBo0fivgPzr/m8fhv47O7UcRhbbmdeRjo4V4fZP+mFly+a+Qw6Sc9t7uBWeN0LY2UL3OUnSRd9UsysTu2FXW4v/DhmfaV68NfbFXfzeiFWNEiZpUr6tyKdjZYVvTC88ZZ68grSFWXz54o194KVUovXra2k+71z3fmN3QsLHbdzOR4g/VGr6e+rf3rhjeSmWzpnSXdouzhtvUAfzKx/LcwRSPpNxg4Gn0QfsPaI2OQ+JX3fG76DnxX7QP6p76arH0k331H++ZJGH1T6fy9Y95108Uqxh2tW9IHanNUfuJpJv/9GtId3fR/M7qltSxwj/cDyJcmfrfogO1R7hbNQAflB3LJCgSv7+yBC9GLQrHmkrz2zq369Wx9I/nyb91GXdNGglcuFzvWB4DzzlJ0bSH94cESp8EofaJYFrR7dS/riFvaD28F9oGriuPL6CdJb/eOirSP7wKdl1w3ZK6QzVBJMZeL7ILkigzvmIeltThd9GlL6QGDVXcaiN6RHX322M/pLH+xMDqh5nkO6wWBcqUt5H6yOkB+cV036siKVgaVNfSB8xe1RUB/pZ3Ief/jd1wdtt44kTnJ9I9v7vlLN/t0H2yuypewlSb+gf0LpMzcbKrNaHn1aRPoB5QGhRYJsKPDhkpM0Jv1q/YOtgWJseLtd5uiBbaQPX6cPjUiwoXX6mFucM+n+J54N7ZJjQ5jpwpG+c6QvzYnclqnEhhscUlWqt0ifc/KXpNpCNvz8Md6/PYr0Cr6z9EBNNjhfK5X0+Uh6jwO7YGwZGwbW+is/+Ub6gmfzMm2N2LBmbmlfSiPpa4eq534xYYOj+5otBSOkP6Y3d2luYIO0hYV0mcB3qk/T5FS8b86Ge80bF5bKkV7X9DOX24YNkZUHrPK0SBfLDqw/socNaUWpxz+sIV3bzs+pyp4NuzK37Li/g3RbnUcOJofYUBbM1+B+hHSpawGVcUfZ4PElrW6NN+n31KQypT2m5tmhryYcTHpH7YCK33k2VKcbhOY/I73xynee4YtscOf05LmQSnrDrH12+66yYVF55ErVItJX791uWBjIBoa9nernZtL1l9jdMQqZ2n7flus7x0hfCvOOvnw0Nf89tCcDPIVUv/nVuFDmKRumd3hLvBEhPXutXcK1WDYIjHlMPzyH9PlL5eT/vGbDvouLjygokm73S2zGkUQ2uGkOzv++iPR3WUU36tPYYOIrreyhS3rxht5g82w2tKlxmkvTSTdMHFyYlc+Gei3+u4nrSJ/n7rxlWTEbNm2737jFgvTX/MWcsZVs+LBUXb5hF+lF/c/XytezoSTcSO+wI+n7Th2WD2phgxJr55x+V9J5r125yt/Nhiddcq9cPUnfG+l6/cLA1LjpGo1t3qSXXb+kMjLGhugH68O3XyN93ELDxmWSDeaWyyqy7pC+e8YXxRaefvC+Weq64DHpM8qj/HdP74eHUrOsL8f8ddw859won9EPiRp/POpekz7b5+ASszn9YJr78tPiZNJPcdS65sn3Qyprp6xH1l/98Euz1Sr9sKbIyuNjAekPfMRKmIumxg3hSx8uJ91jsd7Ycu1+aFIfrV3AIj1o97pPSfr9EFmc/cmqg/SeLocly+j9UOuga312gHRtr+hV79b0g16i2tXQX6Snn1CY1N7UD1sanq5/zV1E9UWvq/e9tegHseACb6YQ6V9Daly1d/SDBaNLIXc26R875eYn2PbD8btHZuTKk54dE3xF50A/SJ/uNmGqkj5zYknIB5d+WPZlXlS8JunXVL5bGJzohxGfMcV7BqTPtjZLTT3dD7/sL7zwXEX63ajLZcZe/RBLH1bfupH0T6P0hzmX++G+fXbwvG2kZzSB+MYb/aAwdqWsczfpr5+CUXFQP0zsFqp67kh6G++g5Pb7U/O8uyFgnyvp8hu5o1jh/dAfdbxTzIN0hqJ4q1NMP5wdbS9PZJB+/nZaVf+rfjjNNFltfYX0gM4ArzPv+kHgiLVyTyDpTXEz63hSpo4bv9qB06Gkfw/K7gvI6IeCsMmfExGkmx+Q+SDzpR/qE6yKTseSvoHHd+mz7/2gGt75o+ftX49jtt9Jt7wfVATe8dmkkK6rPMMiq6YfLq3v25CURfqyTU1DW5v6IaVhZrBYAek1nvKbGzv64XpTfaVtGemuBrx7j7H74YmTJW90LelmwwXzuUb7YTotUbS5hfSUhsiYoD/98HpuSKdEL+m+nC8aVLgHICM879LKEdI/zOUoSRIYgH4l18r9E3/NvyDh7CaxAWi4wy4+w1tM9c2W3+saJAZgbyjvQX9h0n9mbxk/KTcAZ4U+BN6cTbpO/8Kv05UHwPaQtdFVOdKn7TOzjlw4ALtO3rA/p0K67ZWwUAOtARiKsxh3WEz66cGRO8V6AxAt3Ntvokv6w9PK6w7BAETUDaySMiI94PTwW+41A6AabNLSspp0Ry7V8kcbB2DFC7Gv0ZtInzv9ZJy+xQDUu5T07t1Ges+TACjbPgDBxRtNhHeTLrhg7qWjtgNgaHYl84096dZuX7yFDwzA2Mvq/ZsOk+5JU9J54TIAruU1MnXHSX+yIuvB+hMDMOfZwVb7M6RPhOomdZwegPy8qMQGb9Kv5dH8r3gNgIP78FVLf9KZ3eHCan4D8HTNb5vUwL+OQ/qtNfk3BkBDOFxS5h7pYgWrNV3uDMC9UL4stzDS4+7N/ybyYAA++N6xTI4mvbbokczbiAH4Odma+esV6RtPTZexfjYAfaEVglrvSY8S+pr/K24AamacVdmTSnpejvbC8PcDcFFinjAji/QLr4L016YOwODMLal380mPLzMY6ckcgCvDaYufFpPOe87F9k7eAHAM7NsdU0W6DLieWlE0AM832pqEs0jnMzhv0FoxAElSIvU320g/olcac7NuABJ4x1VP9JLOror6pN8yAJwzK2U3D5OulDz/YnPXADzeeSdJ9jfpDQ8u9t0cmDp/yteONXKWkPPkahvn8vGp111cu/whP+nJnKdS2ycHwJIjZ8tmUdLrJazkgnkHwfDBPbuh2aRrhT5RMhEahE8prnwBsqRH61/4PjBzEITyNY3nKpG+7PmkbITUILic7eOLUSNd+PNyka1zpx7/Ru0uJU3S575bH8GpOgiNFywNgpeRrsJjWP528SDM2Pj90Z8VpHeUyjx30BkE1bmdl3eY/PV82b9lJJcPQr6k3eCL9X+Ny25Rz185CO96heuHzEiv3smqPr9uEDLed5lqWZN+JWdAWdtsENRvCS5x2E364565gu1WgzDb/uHN6/tJDyl383+4exCW+XY4xTqTXtjFirCwH4Sek2ZJaa6kl0kesxA4NAied9Zd+OxO+p+Wefc/HR0E/y92SdlnSD9ym+3h6TEI8voGjklepLtrV3RpXhiEh6OXLkZcJl0zq2ig03cQNr8Tmul1nfRnpj+uPbk2CHOPPBHddvuv49/Qkbjn9iCUSWiclbtHOmfTmPuc0KnntSXSsvYR6bv7JjJKw6bOB54/IYFPSPcXHHwUED0IVWprTQ2fkx77Kp9v06tBWLfvjt2PONLThs9P8r+bmv8lruYj70i/ZsLp/Tl5EL52Jnwb+0i6nczGm74ZgxCw+buCB5P0nhObVUy+DML2pJNV3dl/Hbf4rwGZBYMwoJfc4/flry4QvourcBCmnbXQ3pZPuqxYwbH/R/8Q4n9/8fEf+FBRVBJVQFVRDVQPpaOmqBlqg9qiTqgb6oEyUD80AA1Bw9AYNB5NRJloLlqIVqIstB1lo2P/ff7r/pUPFUUlUQVUFdVA9VA6aoqaoTaoLeqEuqEeKAP1QwPQEDQMjUHj0USUieaihWglykLbUTY6htLW/ysfKopKogqoKqqB6qF01BQ1Q21QW9QJdUM9UAbqhwagIWgYGoPGo4koE81FC9FKlIW2o2x0DKVt+Fc+VBSVRBVQVVQD1UPpqClqhtqgtqgT6oZ6oAzUDw1AQ9AwNAaNRxNRJpqLFqKVKAttR9noGErb+K98qCgqiSqgqqgGqofSUVPUDLVBbVEn1A31QBmoHxqAhqBhaAwajyaiTDQXLUQrURbajrLRMZS26V/5UFFUElVAVVENVA+lo6aoGWqD2qJOqBvqgTJQPzQADUHD0Bg0Hk1EmWguWohWoiy0HWWjYyht87/yoaKoJKqAqqIaqB5KR01RM9QGtUWdUDfUA2WgfmgAGoKGoTFoPJqIMtFctBCtRFloO8pGx1Daln/lQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjqE0s//xn/uM/9uNjYu9u+qq4qkbyPQuj7kFpDsY7uvJKB8EmUKZM+8LSb/vZCXtUzsItiUH9wmWk77zXe23Vc2D4Ow6/GJbNeniCR28PF2DoBfcvv0Oi/Ruc7eMnP5BkH7o7pTXQnqeniPtytjUje7ebxVDnaQX8zDTN0wOworkRdGz2KRvrT86Kcw7BMyXxWULhv+60WW4phVPH4Iq7un7l/4k/YPSi1/BM4fgZOSSzUsnSd/DkHq/U2oIuJrDghdwl1J91psX3Qpzh8B5sNBwFj/pGfqWj1rnD8H5xfQVQ0Kkb+rlyHuxeAj2X7gQ+mUG6RZDT48c1xkC62RNiyAJ0m+9W3LVYPkQ9NCEDljKkN5ZeV2Oc9UQ3J9dU8Y/l3RZw1fz89YNQfiXC48TlElf3H7u6S2zIdiyiZ1pqUb6QfGO4J3WQxAYarSqczHpCjLVP5X2DEHF9zuy7tqkj58wKuy1HwIIXG4xvIx0voTf4kmHhmCmc3DzweWkH/adyPM5NgTnVJWLy+ikpzxf2LvZcwhumfrL6K4mnT128LwUYwj8NvhlXV331/OyjjjdemkINOW488s3kf4+9X3Dm+tD8N6TV1NiK+m+utfeXAgaguOrU0c3WpG+tpane+P9IZg1flbBY8dfx5PFc10qYghqJz69CNnz9/xdgtpjhkBqttajV/tId1GR5fgQNwRJ7x6OJDmSvsZgqMj3/RBMHOFI/HiQ9OZtRTzbUofgkNnl5vgjpKtp3rqvlDUEb0z9zj849tdxjp15ayhvCD5fue537iTpVSWa7VlFQyDYbc5jeZp0487PD+5UDsEl88xR+fOkHzoU/8qxfgh0+bn3N3iRXi6eLaPXOgR7tA6vD/ElffNAXQt/zxB0yF99bXKF9Hu7yvlqBoegOFn1Qes10mOn+1x89XMIfDvXCJ8PIP2UQoq1F8cwrO6dN10wiPQNKjZelnzDcCNPN/T6XdLT5qvTVEWGwSXaIJXnPunK70RLfokPw/elKqePPyL9YX/F2HeZYUgR0iovDyfd77G12xPFYbguXVW+5CnpL9Tt9TzVhuHPWJXX+RjSk7OKtmzWHAbtbXq1GbGk22878U5RbxieWhn1/X5FeneUvNO40TC0/TmXtugN6fMdox2/rx4GC79i863v/vq60KmPe7pxGG4X28W7JP41z4+hK89aDANX8sOG88mki759KWuxYxi6fFb3+Kb9dV5xdIOa3TBc0zlQ7f2J9I3pC2I4nIZBgGaX4J5FupWZ4baqI8Mg9LCRsecz6e+ODa9+7T4Mrq97163II33JVnXPK2eHoVa9RnJGAemvQxN77HyG4dwb69Ga76TfvOoSYeA/DMqt9n0Pi0nnEVAMnhk4DOyfewW3lZHOmRT/ufvuMEwemNjGWUl6n1yfTs6jYVhnu+nH0x+kt+R+qH/8dBgW+8RHQi3pR1xaMj1fDMPHs6zU7/WkKwpbNli8HQanZx1LrRr/ur5JNugu/jgM8xLVxEuaSdf3PZTJ92kYejdYHFrT9te4oyW+TZ+HofPBPpP4DtJHq3+fTfs2DKmSUS9Fu/+6/nvnRd8rmzpvORMTDvSSPmCoyONeMwzvxc4feMcm3fxU322zpmEoE1MtHR/46zypnGOxqHMYSi4s5tcZ/uu6Z37TmK9/GHarmosfGCW9dznsaR4dBunsO9MCxkl3OCEdw5yYOm/vremL+0W6qYOk3EOeEeAR7a/O+UP61fnq6Z7TR6DU0r62dJL0nEALf6uZI0AbjOP6wVFGzp+Nfue1pUZgkeu8veVcpBe15IWKzh0BZuNaWh4P6XwNsnU980fgRXD7aMI00i9/ubQ2f/EI1DycZn2Xn/RIY+HyGJ0R2OfasPioIOlNYky/S8tHwIHRGbBSiHS1ZbF77FeNwPfaghuCIqSP9zVYrVw/AtnZhwy+ipLenevppmA+Ap30yqcXZ5C+Lubq8wnrEXBL3t60dBbpGZXa3LV7po7bowM8teKk759562yywwjcbo2ROydBeoLflxmhh0eggTlgLD6HdI4OWo7H8RGYIb/W+6kU6axD++5Ynx4Bsa0lA+oypA+USzN0vaaOT3hv1CtZ0r/67PEV9xuBzy2Sb+bLk27osPfJ0I0RiJEZn39PgfQXgtY1JXdGYJx7lwzXPNJ7YrwWvX0wAiMJWpEOiqTPnykfdCtyBF5rBRYylUhf8vnYjGPPR0Bl+svEWSqkS3dmRpm/HgGLvmpXu/mkL1y/20wzcQQ2r7wlEK1K+oy914XF0kfAOdnuYcsC0r3XRbHY2SOwa3x0uexC0lWL/2QXfh2Bc9KyE5sWkU5z6kmNLxkBjh1vhk+pky4gV/w54MfU4zyK17u/mHSXmOlNbg0jECU9v+bDEtJ/2XCImLePgEyb/nCBBulLpSU3aPaNwIcAhXu1mqQ/d00JFhsZgeZkpdpWLdJbHHf39/8eAdPEsPIObdIz77vsKOYahfdSE6GtS0m3UN9f9EZgFMSsEqBWh3TNxA/bbouNAu+2tT8KdEl329LeelxyFJaJrWEkLiN97IT7RUv5UXi0dN3ah3qkfxJrUtdRGYWVd/pNzuqT7ns4sVFcfRQ8jdpubDP46/VSYkSMaI+CllO5wQJD0ocX5h6uMBiF1smDe0b/6uYpc40TjUfhbaG5CHM56elr5srfMx2F2Sp6+31WkB7rtIf39JZRSGLnuxobkW5Qf3xkh9Uo3HBOXv/zr37ZY7LXcPco5Bm8538FpM8WjuiTsR+FT/zOGbvopE+emRz9c3AUjrue9uc1Jt0yKG1a/dFRsOPyPxX7V18/84oc02MUpKoWP96wkvTCW4LLwy+MAktxZHbbX13w/PBe70ujYFxoN3RuFelB3ONX9l8fhccKbRtFTUi/KpSfZBI0CorrenQe/dU91RT7lO+PwrTpX7Pmryad3z95wbSIUeCyyhN++VeP7DRzbo8ZhfofMgsWryG99lrEyy9xU+fDm2bV2L96pfKxkefvR8FiSF1RaS3p54p8Vl1LnZq/de+ie3/1GO5HQS5Zo/Arn2ungCnpxheudGzOH4Vcae2MU3/1dUZiKzWKR+GNr8qphr96hQvnI7GqUViy6/CNtetIl9y56M9A/Sg0RLjLPP+rGzva7i1tHQWvF0E6/Ov/et2Hjma96xmF7sRfPfZ/dcV9uovuDo3C+tvJ21P/6uuHLgZ7/BqFvRoZ12ZsIN0kX5drB+cYjG2sCrX/q18sVTlmyD8G7tOf/n/t2/9Xj2ccx/E2fRBjIjFis5IPUWq+bGPeiSkhUuurCYlSmy+FaDVSskpf1uRbhUQqKvKlPsI0sWaa7bOzYqNQO6EOEa7rrtU6Zzun9+fsL9g5r8dv9/OH677u67rPuX+5r91FrP9aav3ApJ+gNbszUztYT7s/0a3dWFCsxjzPYW5Xn+ww4HrNMEH20YsaElhfuT1v+mUzQYYPZyz9hfWGi/dKMi0EzfUoVA+Yx54rcd97UTaC4vzsnZ1Z/+v10ny/DwRVL/uyKZ712zHjLOxtBQ18LePNq6yX1FQdU9sLCn1ytqKN9SijI6N6OQkaEJY7ztqpq6cEbsl+7Coo3NJsni/rsz3d1De8BUWu3ftBCuvd1hvl5i8T9FTtoH+Z9eGf5YxNChC0wW3ixUbWZ7bqF65dI2hHsUWo8Xz2XaseNMFloyD/VRq7aaxbnNYWT4gQNDLqPcvlrIeaWUwzjhZUrsl13MH6kIOGV17FCfLVa8nOZT1ybZjjra8FBZplfnKddf0Tn/6s2SvoXrDK9xHrt8zzPdIOCjrqOaamx4KuviDAtzY8W9Dt9qpqU9Y98kL8ffIF2T1OWDyN9ZnXbj21PSPoxJGYCHfW/7CO2/RuqaBg15OzVrNe0Lz1df3vBDV/WnglmvUzqefi6is698vgjmo/6xNszAdeuyno7jC7QQWsNzl9n3GsSpDB9v2qMtbTHu5Rx94VlNnkekfLxw9IORVYLyjEd0duHeuf7yuaOq9RUKrSFtrCumnWi6uWzwVdWDnStZtzV7+rcnPupwjyyR9ub8i6Z+LPvzfrSXr5df6i4azXevmt0PaQdGjhzANjWE+61rf5dF9JC82VwZNYfxF8PSx1oCTLPalaW9Zb3t/bPdREkl39zmpH1geN3JDsaSqpwbubtSvrb4cuMZkyRpLR+R/qF7H+Z4Zbtom1JN/kgI7lrEdZudu0T5Y0I23w9iDWy+uXXKiZJumNUeVbg1mvPLDO4fLHkixW9Vc2sd7dO06bOVcSPfJ6+SXrdta5i6NcOsevOhkezfoQt8qHfl6SCgPrUmNZ32j0KsR+qaQjc8IcEll3+dFUb7S/pH515/eksJ711CWu12pJ2oqcnbtZX6OKMW5cL6lpcM9x+1kfkFF66MYXkrK0Xl9ksL7Pu2VswbbO+Uxv2HKI9YWPxxUnxUpaPF9DWawHqQJmrEuW9G3jgQtHWa8IPFLpskdSVZBlxzHWqxvue048IKmkrqxnHr+v04h646OSLsZuu3uc9bPrl6wRxyUdH7g0Kp/17KkHW28VSaodOri9gHX9mNrt5zWSNq6zmX+S9ZtTR/RPvywpPL5n2CnW62cvS4/4vvM9uV0WVcR6cPph9ZKfJB0e5b36NOtbRtcXTf9NUntb+kdnWI+8b06mdyQlt1k84111yf8H/TpJiXZhiWf5ep7L/eTPR5KMr1QPOse6VXlj7bVmSUvzA3bynv7AMihHSHpePvYZ75l9176K7ZCkKW+1L2bdZEZRZFB3hWZdjE/ifV/Eiz5OfRR6HBJ8g/eplybvtTJS6GnZu3olrCd222xmOFQhTUvTaN63OZYWPBuh0Et1r7m8z05p//BXtUIVBYkreXe6Y3v1jJVCzQFh4byPVG9z3j1JobZRhQm8RweX/xH6kUJBBmJ/ic48e/h7zVTowe+qo7yb93Z8PmWOQi6bN5zg3dI9PmLYQoWGjv3lFO/2hysNOjwU8tFPOMt7wJN+u2p9FPrGtk+JzjpMcXmnbEXnPHMyNbyfi9mVd/gzhWwak8/zXqOtmhQdotAqI8NS3nu+M6RsRZhCPTbN1unjgxbNc4jsXM/fvHS6Z3FG9eivFDph5abTt+rf8+2dpND9z911eu4C0yeNqQp5vKXbtWl+myvTFZozXre3NmSrCrMUMhij2wOvRiyblaP8e0Cyq/9zcPK/3aK1OJ7/COFemODDr3vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B/8DQ==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - fb17f2c2-bed7-4376-99c5-2791bbc192b4
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11648
+ 8193
+ 144
+ 64
+
+ -
+ 11722
+ 8225
+
+
+
+
+
+ - Curve to evaluate
+ - cfdfa8e0-79dd-407c-b9a2-be270d1b640c
+ - Curve
+ - Curve
+ - false
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 1
+
+
+
+
+ -
+ 11650
+ 8195
+ 57
+ 20
+
+ -
+ 11680
+ 8205
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 0c786d5e-ae48-49ab-a1f9-db6de3a232cc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11650
+ 8215
+ 57
+ 20
+
+ -
+ 11680
+ 8225
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ae36c9eb-edcf-4f55-b105-968b51a1dbb2
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11650
+ 8235
+ 57
+ 20
+
+ -
+ 11680
+ 8245
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8702f29b-a2dd-45e3-b1f2-681be96a43b7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11737
+ 8195
+ 53
+ 20
+
+ -
+ 11765
+ 8205
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 19e915bb-cebc-4c5d-919b-34e570eace0e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11737
+ 8215
+ 53
+ 20
+
+ -
+ 11765
+ 8225
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 64cc7469-d608-4587-baff-fd9e2eca3836
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11737
+ 8235
+ 53
+ 20
+
+ -
+ 11765
+ 8245
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 29dc14e8-d75d-4f70-bb6d-888a67f1219b
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 11730
+ 8319
+ 98
+ 28
+
+ -
+ 11780
+ 8333
+
+
+
+
+
+ - Origin of plane
+ - e9683252-3b32-40b8-a933-b421207ca179
+ - Origin
+ - Origin
+ - false
+ - 8702f29b-a2dd-45e3-b1f2-681be96a43b7
+ - 1
+
+
+
+
+ -
+ 11732
+ 8321
+ 33
+ 24
+
+ -
+ 11750
+ 8333
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - 5657a29d-2ed8-4219-836d-9c29cf62c4ae
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11795
+ 8321
+ 31
+ 24
+
+ -
+ 11812
+ 8333
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 2c861dd8-f2d8-4ae1-8c8a-cae1ce1740ff
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 11674
+ 8086
+ 118
+ 44
+
+ -
+ 11737
+ 8108
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 930f0d29-15ca-4399-9e24-591cf2c9fbe4
+ - true
+ - Curves
+ - Curves
+ - false
+ - 9f54647f-ca9b-454c-8ae8-ab3a27e2e372
+ - 55ced412-92d7-4339-a478-51146c0bd882
+ - 2
+
+
+
+
+ -
+ 11676
+ 8088
+ 46
+ 20
+
+ -
+ 11700.5
+ 8098
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - a0a61e55-b210-4907-853c-27e99658d8a7
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 11676
+ 8108
+ 46
+ 20
+
+ -
+ 11700.5
+ 8118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 721ada8a-863f-4614-8918-d9579046aa95
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11752
+ 8088
+ 38
+ 40
+
+ -
+ 11772.5
+ 8108
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - e68bd5dd-684e-44ea-a5b2-706a24f88ac6
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 11446
+ 8763
+ 154
+ 64
+
+ -
+ 11530
+ 8795
+
+
+
+
+
+ - Base geometry
+ - de43466b-2e4e-4ad2-950b-30faf76badd0
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - bd60b5fa-83f6-4e9a-a9b2-73f625215e9a
+ - 1
+
+
+
+
+ -
+ 11448
+ 8765
+ 67
+ 20
+
+ -
+ 11491
+ 8775
+
+
+
+
+
+
+
+ - Center of scaling
+ - c8108e7b-b9eb-4c28-825f-294043ef51f0
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 11448
+ 8785
+ 67
+ 20
+
+ -
+ 11491
+ 8795
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - bd1aeaa6-e789-4324-8229-4452d0068e22
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - 724184df-15e4-4293-89aa-303827706eba
+ - 1
+
+
+
+
+ -
+ 11448
+ 8805
+ 67
+ 20
+
+ -
+ 11491
+ 8815
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 94f5ee95-beb8-4c95-a968-453a6314238c
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11545
+ 8765
+ 53
+ 30
+
+ -
+ 11573
+ 8780
+
+
+
+
+
+
+
+ - Transformation data
+ - d8a3d287-2798-458b-ab3e-40affcecef1b
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11545
+ 8795
+ 53
+ 30
+
+ -
+ 11573
+ 8810
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 98b14ae2-e162-459b-83d7-607d5b7f4ceb
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.001373312092932693349
+
+
+
+
+ -
+ 9207
+ 12149
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9207.857
+ 12149.24
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 259087b6-0c04-4f4d-8644-7af76a1a721d
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 5
+
+ - 4096.0000000
+
+
+
+
+ -
+ 4159
+ -6097
+ 250
+ 20
+
+ -
+ 4159.419
+ -6096.237
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 53b2359e-cbf3-4fa5-9f10-29c4273772fc
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.001373312092932693349
+
+
+
+
+ -
+ 11309
+ 12310
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11309.33
+ 12310.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a384102c-e424-4e3b-a151-fe253744f1e3
+ - 2a178766-f227-4e40-80eb-a6f73b8e70df
+ - 0e12ef5a-db90-4a80-9d2b-d46e1c16bb84
+ - dbfd7481-2cc8-4ad3-a78d-2dcd2c3b98d4
+ - 7a69325a-b9af-4573-86e4-52ffbffa048a
+ - 1c78c69c-a267-4afe-be26-8796615ddce7
+ - 70574b12-b514-477e-8970-f01d5c211666
+ - 2e74e525-8503-4a6a-953d-df31de91538a
+ - 63dd507f-3301-44e4-8ec0-a766dd1412fd
+ - f8ab1de3-845e-4ff0-ad2e-46606ddbf9dc
+ - 2cc8c122-e626-45d0-aa3a-7f8ead2b5467
+ - 83b68502-277a-4ba5-ad0e-a94a79ab7ad0
+ - fd773d9d-901a-4e69-9ac9-b612abc1757c
+ - 630eaaa4-4172-4a56-be57-a6e3b585cda6
+ - 93940261-1236-479c-8316-a872c2cbae15
+ - 8406482c-f6bf-4c9a-9dc7-b1290e76cb9f
+ - f393a3ae-6417-44fa-a6dc-37e565a64d91
+ - 8b802b59-144c-4677-bbde-306f1d0113bc
+ - f669722b-00a9-4e3e-a88a-91e1789095a9
+ - a1532edd-bc94-4ec5-b290-5c2380871db9
+ - f332d407-5f7b-43d3-8ca3-c1e1637c9855
+ - fc9c595b-36b8-464d-a5e4-b98431bd550b
+ - d8e84a93-434a-431b-a1fc-600790b55ad5
+ - 3c28b75d-c499-4958-ac90-33ab50a81513
+ - 33d34a2d-929a-434a-a743-ecb6477f5097
+ - bc46ac13-4851-4bf1-89fc-b8b9a671c5ea
+ - 87390be8-41ae-421a-a8c4-4d42c8196d95
+ - 25eec93a-6cde-4e43-830b-f0179b92dd50
+ - b288466e-2cd5-4131-90ce-4497998de7fd
+ - 00604a82-273d-4f97-84a3-410e1e18c09a
+ - 46d73235-dc06-46eb-bf0f-cd33ec28d4ef
+ - 4c0f7de6-eed0-4c85-aefe-7fc1aecde228
+ - 785c63aa-db33-4e88-9501-39841d2d427e
+ - 283a6573-e52a-40c8-86dc-3ffe9a741fc0
+ - 1541c639-e7e9-44bf-a5d0-2f0914744894
+ - 7a898192-674d-4e97-bcf6-56a1ddeb2f57
+ - 16a84562-9448-4672-aa4c-a87eb1e418ab
+ - be299fee-829e-4c7c-8eb3-8c32f752fb52
+ - de4e98b3-5364-4873-b361-5d32b57ac87d
+ - 287847a5-0097-4b56-b61f-0568a50af206
+ - 7a771bdb-6c67-4ee1-846e-ef35e9456cde
+ - 24418f1a-4667-408b-87ce-17a0701514ef
+ - bd5b2635-9436-4e00-adb8-e64927b5a576
+ - 5fe06244-b1e3-4946-adc9-f8c3a742f320
+ - f477eeee-122f-4f16-aed3-7d8e0ccaeec9
+ - f8d29174-6eea-4290-8cb2-d395a111612c
+ - a1160e3d-92b4-4103-8e86-69fa4fef1a92
+ - 489642d4-2166-4be9-88d8-874168a38977
+ - 20b4f532-c319-460a-b3c0-656ea615e3d3
+ - 13c904ec-5557-475b-aaea-b768bf5bb666
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 95f28635-5809-425c-83ae-4e5f8ebc4ed1
+ - 8a737511-7996-423d-a235-9195a4c95500
+ - 2b01be3f-3b3d-4cc6-bc8b-7aa09bf98116
+ - 04a46e92-5e3e-4987-80b7-45d227bf9c7d
+ - 44a1113d-ea0e-4d63-a0f7-d18bacbd4347
+ - 21f6c2a9-4cb9-4fac-9ac1-5cfbab72d4cf
+ - 7431e743-82d8-4334-ba19-431fc59e9eea
+ - 19976e83-8807-4ae2-a49f-195040b6ce87
+ - 94a71fe1-86b0-4584-a8ef-81533ac1a510
+ - 4ad747ce-384e-443b-992b-2279e9315407
+ - b605f252-8ec2-4711-97e9-bb7a7f3930ae
+ - 31702cd3-8e8c-41ca-9825-26430177d5d7
+ - ae2d0cc6-080e-45c6-94f1-1fda5cbe2a86
+ - 3c322a73-a965-4884-ad00-1921bfe71148
+ - ba972450-6db3-435d-92c8-f40d12f95ed0
+ - 46596c98-da19-476d-8ea7-6522989ca34d
+ - 3c4e2847-3bf9-45a5-9f43-1469b577d53e
+ - ff328a2f-b53b-4c5f-b600-6912e4040d68
+ - f822760c-37f0-4d6f-803d-52bc9f07faff
+ - f7cce374-37bf-43f6-83c3-c75777ff53e3
+ - ede21c19-8370-436f-ad7d-3f06ac13f73b
+ - f24527a9-c40b-435c-96ac-35ad54bd99e1
+ - 530af738-b9be-4ce5-a2e7-ac2b854f9dcc
+ - 290fd24f-404d-4eba-8bcb-6b884f548121
+ - 7f8b1b6d-700e-4e97-835c-d1b2f1e1730c
+ - 449eca10-6c8c-44ed-8518-33d05cfdcf05
+ - 36ba2c14-847e-4c6a-9a54-5d2a81d9918d
+ - a8308e88-b4f6-4f9b-ac84-2e18c3ab1e84
+ - e48e0e77-43cd-4a76-be51-359805d73035
+ - 80
+ - 78a4d01d-6355-489c-8e25-62684d5362b9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 449eca10-6c8c-44ed-8518-33d05cfdcf05
+ - 1
+ - a384102c-e424-4e3b-a151-fe253744f1e3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0e12ef5a-db90-4a80-9d2b-d46e1c16bb84
+ - 1
+ - 2a178766-f227-4e40-80eb-a6f73b8e70df
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dbfd7481-2cc8-4ad3-a78d-2dcd2c3b98d4
+ - 1
+ - 0e12ef5a-db90-4a80-9d2b-d46e1c16bb84
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7a69325a-b9af-4573-86e4-52ffbffa048a
+ - 1
+ - dbfd7481-2cc8-4ad3-a78d-2dcd2c3b98d4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1c78c69c-a267-4afe-be26-8796615ddce7
+ - 1
+ - 7a69325a-b9af-4573-86e4-52ffbffa048a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 70574b12-b514-477e-8970-f01d5c211666
+ - 1
+ - 1c78c69c-a267-4afe-be26-8796615ddce7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 63dd507f-3301-44e4-8ec0-a766dd1412fd
+ - 1
+ - 70574b12-b514-477e-8970-f01d5c211666
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2e74e525-8503-4a6a-953d-df31de91538a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 13189
+ 11572
+ 50
+ 24
+
+ -
+ 13214.48
+ 11584.9
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2e74e525-8503-4a6a-953d-df31de91538a
+ - 1
+ - 63dd507f-3301-44e4-8ec0-a766dd1412fd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b288466e-2cd5-4131-90ce-4497998de7fd
+ - 1
+ - f8ab1de3-845e-4ff0-ad2e-46606ddbf9dc
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 83b68502-277a-4ba5-ad0e-a94a79ab7ad0
+ - fd773d9d-901a-4e69-9ac9-b612abc1757c
+ - 630eaaa4-4172-4a56-be57-a6e3b585cda6
+ - 93940261-1236-479c-8316-a872c2cbae15
+ - 8406482c-f6bf-4c9a-9dc7-b1290e76cb9f
+ - f393a3ae-6417-44fa-a6dc-37e565a64d91
+ - 8b802b59-144c-4677-bbde-306f1d0113bc
+ - f669722b-00a9-4e3e-a88a-91e1789095a9
+ - f332d407-5f7b-43d3-8ca3-c1e1637c9855
+ - a1532edd-bc94-4ec5-b290-5c2380871db9
+ - f8ab1de3-845e-4ff0-ad2e-46606ddbf9dc
+ - 63dd507f-3301-44e4-8ec0-a766dd1412fd
+ - ba972450-6db3-435d-92c8-f40d12f95ed0
+ - 46596c98-da19-476d-8ea7-6522989ca34d
+ - 3c4e2847-3bf9-45a5-9f43-1469b577d53e
+ - ff328a2f-b53b-4c5f-b600-6912e4040d68
+ - f822760c-37f0-4d6f-803d-52bc9f07faff
+ - f7cce374-37bf-43f6-83c3-c75777ff53e3
+ - 31702cd3-8e8c-41ca-9825-26430177d5d7
+ - ae2d0cc6-080e-45c6-94f1-1fda5cbe2a86
+ - 20
+ - 2cc8c122-e626-45d0-aa3a-7f8ead2b5467
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 83b68502-277a-4ba5-ad0e-a94a79ab7ad0
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 13157
+ 12527
+ 104
+ 64
+
+ -
+ 13216
+ 12559
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 794a1806-0a5b-460e-bb96-a93f02d63946
+ - Data
+ - Data
+ - false
+ - ac367107-c414-4156-8fbb-130270a6f0bc
+ - 1
+
+
+
+
+ -
+ 13159
+ 12529
+ 42
+ 20
+
+ -
+ 13181.5
+ 12539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 5c4ab9c8-d670-4918-93b9-6468aecba1aa
+ - Number
+ - Number
+ - false
+ - 3c322a73-a965-4884-ad00-1921bfe71148
+ - 1
+
+
+
+
+ -
+ 13159
+ 12549
+ 42
+ 20
+
+ -
+ 13181.5
+ 12559
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 222afd64-a3da-4e0c-b0d5-f17ad04a29d0
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 13159
+ 12569
+ 42
+ 20
+
+ -
+ 13181.5
+ 12579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - c36a06b1-eae2-47c6-94b0-8f5e2aaaf32a
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 13231
+ 12529
+ 28
+ 60
+
+ -
+ 13246.5
+ 12559
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - fd773d9d-901a-4e69-9ac9-b612abc1757c
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 13151
+ 10929
+ 116
+ 44
+
+ -
+ 13212
+ 10951
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 509f17ad-269c-4fed-bf3a-cec6c40ea421
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - c36a06b1-eae2-47c6-94b0-8f5e2aaaf32a
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 13153
+ 10931
+ 44
+ 20
+
+ -
+ 13176.5
+ 10941
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 8c1ecfa2-1321-4780-9971-706cf2b8c31c
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 1b5ac039-bf7b-4d43-b783-dd4890ab2408
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 13153
+ 10951
+ 44
+ 20
+
+ -
+ 13176.5
+ 10961
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 14b88fdc-5146-4cee-ab7c-8f7d65e07d02
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 13227
+ 10931
+ 38
+ 20
+
+ -
+ 13247.5
+ 10941
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 7dde94e0-d5f7-4971-bce2-62dec7432799
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 13227
+ 10951
+ 38
+ 20
+
+ -
+ 13247.5
+ 10961
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 630eaaa4-4172-4a56-be57-a6e3b585cda6
+ - Point
+ - Point
+ - false
+ - 7dde94e0-d5f7-4971-bce2-62dec7432799
+ - 1
+
+
+
+
+ -
+ 13188
+ 10549
+ 50
+ 24
+
+ -
+ 13213.34
+ 10561.38
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 93940261-1236-479c-8316-a872c2cbae15
+ - Series
+ - Series
+
+
+
+
+ -
+ 13162
+ 11993
+ 101
+ 64
+
+ -
+ 13212
+ 12025
+
+
+
+
+
+ - First number in the series
+ - b226d2a0-d8e0-43ef-b78d-39b670b795b4
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13164
+ 11995
+ 33
+ 20
+
+ -
+ 13182
+ 12005
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - a4968723-7471-4362-b224-81f454c6b6eb
+ - Step
+ - Step
+ - false
+ - 7f8b1b6d-700e-4e97-835c-d1b2f1e1730c
+ - 1
+
+
+
+
+ -
+ 13164
+ 12015
+ 33
+ 20
+
+ -
+ 13182
+ 12025
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - bad3bdfa-0757-40ba-9c82-298ac6d7408c
+ - Count
+ - Count
+ - false
+ - 3c322a73-a965-4884-ad00-1921bfe71148
+ - 1
+
+
+
+
+ -
+ 13164
+ 12035
+ 33
+ 20
+
+ -
+ 13182
+ 12045
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 09318e5c-8353-43a4-a05f-ae387129eb99
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 13227
+ 11995
+ 34
+ 60
+
+ -
+ 13245.5
+ 12025
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 8406482c-f6bf-4c9a-9dc7-b1290e76cb9f
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 12708
+ 150
+ 20
+
+ -
+ 13139.16
+ 12708.25
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - f393a3ae-6417-44fa-a6dc-37e565a64d91
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 13149
+ 12195
+ 120
+ 28
+
+ -
+ 13210
+ 12209
+
+
+
+
+
+ - Angle in degrees
+ - 10d6279b-7414-4b48-a5e8-5b817332a79f
+ - Degrees
+ - Degrees
+ - false
+ - 785c63aa-db33-4e88-9501-39841d2d427e
+ - 1
+
+
+
+
+ -
+ 13151
+ 12197
+ 44
+ 24
+
+ -
+ 13174.5
+ 12209
+
+
+
+
+
+
+
+ - Angle in radians
+ - 5fcbd4df-cb6c-4897-9d68-bb1ba9c5e4ce
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 13225
+ 12197
+ 42
+ 24
+
+ -
+ 13247.5
+ 12209
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 8b802b59-144c-4677-bbde-306f1d0113bc
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00137331209
+
+
+
+
+ -
+ 13088
+ 12499
+ 251
+ 20
+
+ -
+ 13088.87
+ 12499.79
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - f669722b-00a9-4e3e-a88a-91e1789095a9
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 13159
+ 12609
+ 100
+ 28
+
+ -
+ 13208
+ 12623
+
+
+
+
+
+ - Input value
+ - a00ac31a-166a-47b9-ad04-28525a538a95
+ - Value
+ - Value
+ - false
+ - 3c322a73-a965-4884-ad00-1921bfe71148
+ - 1
+
+
+
+
+ -
+ 13161
+ 12611
+ 32
+ 24
+
+ -
+ 13178.5
+ 12623
+
+
+
+
+
+
+
+ - Output value
+ - ac367107-c414-4156-8fbb-130270a6f0bc
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13223
+ 12611
+ 34
+ 24
+
+ -
+ 13241.5
+ 12623
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - a1532edd-bc94-4ec5-b290-5c2380871db9
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 13137
+ 10441
+ 144
+ 84
+
+ -
+ 13223
+ 10483
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - bea46150-e3d1-447f-b212-dfecd9339278
+ - Vertices
+ - Vertices
+ - false
+ - 630eaaa4-4172-4a56-be57-a6e3b585cda6
+ - 1
+
+
+
+
+ -
+ 13139
+ 10443
+ 69
+ 20
+
+ -
+ 13175
+ 10453
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - fcfdf1ce-db1c-4aac-8e5e-5295850fdfd1
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10463
+ 69
+ 20
+
+ -
+ 13175
+ 10473
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 0753bd5e-fd7d-494b-8c67-48521199cb00
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10483
+ 69
+ 20
+
+ -
+ 13175
+ 10493
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 51960b6c-0683-4359-a711-806b1eca21c9
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10503
+ 69
+ 20
+
+ -
+ 13175
+ 10513
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - b0c60439-dde5-4a43-9cb1-586752e814ff
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 13238
+ 10443
+ 41
+ 26
+
+ -
+ 13260
+ 10456.33
+
+
+
+
+
+
+
+ - Curve length
+ - 4d2341f7-e41b-466f-b38d-aa4bc9b55658
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13238
+ 10469
+ 41
+ 27
+
+ -
+ 13260
+ 10483
+
+
+
+
+
+
+
+ - Curve domain
+ - 9ed2f838-b979-4010-ad7c-0113ceaf0cec
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 13238
+ 10496
+ 41
+ 27
+
+ -
+ 13260
+ 10509.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 83b68502-277a-4ba5-ad0e-a94a79ab7ad0
+ - fd773d9d-901a-4e69-9ac9-b612abc1757c
+ - 630eaaa4-4172-4a56-be57-a6e3b585cda6
+ - 93940261-1236-479c-8316-a872c2cbae15
+ - 8406482c-f6bf-4c9a-9dc7-b1290e76cb9f
+ - f393a3ae-6417-44fa-a6dc-37e565a64d91
+ - 8b802b59-144c-4677-bbde-306f1d0113bc
+ - f669722b-00a9-4e3e-a88a-91e1789095a9
+ - f24527a9-c40b-435c-96ac-35ad54bd99e1
+ - 785c63aa-db33-4e88-9501-39841d2d427e
+ - b605f252-8ec2-4711-97e9-bb7a7f3930ae
+ - ede21c19-8370-436f-ad7d-3f06ac13f73b
+ - 530af738-b9be-4ce5-a2e7-ac2b854f9dcc
+ - 13
+ - f332d407-5f7b-43d3-8ca3-c1e1637c9855
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - fc9c595b-36b8-464d-a5e4-b98431bd550b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13137
+ 10273
+ 144
+ 64
+
+ -
+ 13211
+ 10305
+
+
+
+
+
+ - Curve to evaluate
+ - b80b387e-f38d-4449-82af-c2f08a28bcc8
+ - Curve
+ - Curve
+ - false
+ - b0c60439-dde5-4a43-9cb1-586752e814ff
+ - 1
+
+
+
+
+ -
+ 13139
+ 10275
+ 57
+ 20
+
+ -
+ 13169
+ 10285
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d2d75336-3047-4a98-820a-662db465e374
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10295
+ 57
+ 20
+
+ -
+ 13169
+ 10305
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9eceba84-7e2f-443a-ad74-28c298338bc1
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10315
+ 57
+ 20
+
+ -
+ 13169
+ 10325
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 49ef4a9b-54f8-4833-af60-f6a4cf8462b0
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 10275
+ 53
+ 20
+
+ -
+ 13254
+ 10285
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 4116dfb7-2b01-4490-92f7-94d765f2e4a0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 10295
+ 53
+ 20
+
+ -
+ 13254
+ 10305
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 12c946f5-8f0f-4b4f-b269-9189b0892108
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 10315
+ 53
+ 20
+
+ -
+ 13254
+ 10325
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - d8e84a93-434a-431b-a1fc-600790b55ad5
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 13140
+ 10211
+ 138
+ 44
+
+ -
+ 13208
+ 10233
+
+
+
+
+
+ - Base geometry
+ - 4ccb79a1-91b9-4ca0-8120-6b5fa875a5f3
+ - Geometry
+ - Geometry
+ - true
+ - b0c60439-dde5-4a43-9cb1-586752e814ff
+ - 1
+
+
+
+
+ -
+ 13142
+ 10213
+ 51
+ 20
+
+ -
+ 13169
+ 10223
+
+
+
+
+
+
+
+ - Mirror plane
+ - fe1ec913-7ed9-49d3-8bde-bdec1e16dc19
+ - Plane
+ - Plane
+ - false
+ - e6a64233-0cfb-4b7d-8a66-545f967544e6
+ - 1
+
+
+
+
+ -
+ 13142
+ 10233
+ 51
+ 20
+
+ -
+ 13169
+ 10243
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 1c45125c-19a3-4bfb-b96d-fc9201220016
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13223
+ 10213
+ 53
+ 20
+
+ -
+ 13251
+ 10223
+
+
+
+
+
+
+
+ - Transformation data
+ - a7c71391-59cd-4d61-9db1-fe2cf32a4020
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13223
+ 10233
+ 53
+ 20
+
+ -
+ 13251
+ 10243
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 3c28b75d-c499-4958-ac90-33ab50a81513
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 13156
+ 10357
+ 106
+ 64
+
+ -
+ 13220
+ 10389
+
+
+
+
+
+ - Line start point
+ - 45254d12-72a9-4e50-9ce8-8e34370eaa8c
+ - Start
+ - Start
+ - false
+ - 49ef4a9b-54f8-4833-af60-f6a4cf8462b0
+ - 1
+
+
+
+
+ -
+ 13158
+ 10359
+ 47
+ 20
+
+ -
+ 13183
+ 10369
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 9cae336f-4b39-4efc-8729-170aeefa3692
+ - Direction
+ - Direction
+ - false
+ - 4116dfb7-2b01-4490-92f7-94d765f2e4a0
+ - 1
+
+
+
+
+ -
+ 13158
+ 10379
+ 47
+ 20
+
+ -
+ 13183
+ 10389
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 86b280f5-61a2-4338-a8a3-3688becbd329
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13158
+ 10399
+ 47
+ 20
+
+ -
+ 13183
+ 10409
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - e6a64233-0cfb-4b7d-8a66-545f967544e6
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 13235
+ 10359
+ 25
+ 60
+
+ -
+ 13249
+ 10389
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 33d34a2d-929a-434a-a743-ecb6477f5097
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 13150
+ 10149
+ 118
+ 44
+
+ -
+ 13213
+ 10171
+
+
+
+
+
+ - 1
+ - Curves to join
+ - ae2d2ff4-bee8-40cc-8555-40744e70932d
+ - Curves
+ - Curves
+ - false
+ - b0c60439-dde5-4a43-9cb1-586752e814ff
+ - 1c45125c-19a3-4bfb-b96d-fc9201220016
+ - 2
+
+
+
+
+ -
+ 13152
+ 10151
+ 46
+ 20
+
+ -
+ 13176.5
+ 10161
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 2b6cf664-2ee1-4e93-9b9a-7fa40af2217f
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 13152
+ 10171
+ 46
+ 20
+
+ -
+ 13176.5
+ 10181
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - def8b07b-7cd7-4ae1-9086-2cb1519588f1
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13228
+ 10151
+ 38
+ 40
+
+ -
+ 13248.5
+ 10171
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - bc46ac13-4851-4bf1-89fc-b8b9a671c5ea
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13137
+ 10065
+ 144
+ 64
+
+ -
+ 13211
+ 10097
+
+
+
+
+
+ - Curve to evaluate
+ - ce25c9f4-cad5-4ce0-bb63-c3fde24850be
+ - Curve
+ - Curve
+ - false
+ - def8b07b-7cd7-4ae1-9086-2cb1519588f1
+ - 1
+
+
+
+
+ -
+ 13139
+ 10067
+ 57
+ 20
+
+ -
+ 13169
+ 10077
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - c303c549-7670-4028-983c-580a1cca68ef
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10087
+ 57
+ 20
+
+ -
+ 13169
+ 10097
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 79ee99f1-1cdf-44e4-832e-742dffad08a0
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 10107
+ 57
+ 20
+
+ -
+ 13169
+ 10117
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8da96a59-f39a-46d9-bba4-a68db04bf1a5
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 10067
+ 53
+ 20
+
+ -
+ 13254
+ 10077
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 4e925b15-b202-4dc7-85fe-cd620a41d410
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 10087
+ 53
+ 20
+
+ -
+ 13254
+ 10097
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 599f1c3a-d93d-4b2b-ab3b-274ebf56e53e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 10107
+ 53
+ 20
+
+ -
+ 13254
+ 10117
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 87390be8-41ae-421a-a8c4-4d42c8196d95
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 13140
+ 9982
+ 138
+ 64
+
+ -
+ 13208
+ 10014
+
+
+
+
+
+ - Base geometry
+ - 98049fc0-c51c-40b7-b1ba-8dc938c20351
+ - Geometry
+ - Geometry
+ - true
+ - def8b07b-7cd7-4ae1-9086-2cb1519588f1
+ - 1
+
+
+
+
+ -
+ 13142
+ 9984
+ 51
+ 20
+
+ -
+ 13169
+ 9994
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 7fb70a07-36dc-4ae7-aa55-c2a37bbabb4c
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 13142
+ 10004
+ 51
+ 20
+
+ -
+ 13169
+ 10014
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - d4b59708-b797-4e0e-a4bb-c76005dc2b68
+ - Plane
+ - Plane
+ - false
+ - 8da96a59-f39a-46d9-bba4-a68db04bf1a5
+ - 1
+
+
+
+
+ -
+ 13142
+ 10024
+ 51
+ 20
+
+ -
+ 13169
+ 10034
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - ba2639df-8ad6-42dd-a337-aa1b469bff7f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13223
+ 9984
+ 53
+ 30
+
+ -
+ 13251
+ 9999
+
+
+
+
+
+
+
+ - Transformation data
+ - f8bc8bda-9d4e-47ae-a0bc-afddb5048d56
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13223
+ 10014
+ 53
+ 30
+
+ -
+ 13251
+ 10029
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 25eec93a-6cde-4e43-830b-f0179b92dd50
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 13150
+ 9919
+ 118
+ 44
+
+ -
+ 13213
+ 9941
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 9c4b7f74-fded-4803-81e1-bd774318130a
+ - Curves
+ - Curves
+ - false
+ - def8b07b-7cd7-4ae1-9086-2cb1519588f1
+ - ba2639df-8ad6-42dd-a337-aa1b469bff7f
+ - 2
+
+
+
+
+ -
+ 13152
+ 9921
+ 46
+ 20
+
+ -
+ 13176.5
+ 9931
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 2e4fa8d7-7828-4765-a2a7-3e83e48d31ad
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 13152
+ 9941
+ 46
+ 20
+
+ -
+ 13176.5
+ 9951
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 1dce76cc-09cb-4600-9ce8-16c1a520c08b
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13228
+ 9921
+ 38
+ 40
+
+ -
+ 13248.5
+ 9941
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a1532edd-bc94-4ec5-b290-5c2380871db9
+ - fc9c595b-36b8-464d-a5e4-b98431bd550b
+ - d8e84a93-434a-431b-a1fc-600790b55ad5
+ - 3c28b75d-c499-4958-ac90-33ab50a81513
+ - 33d34a2d-929a-434a-a743-ecb6477f5097
+ - bc46ac13-4851-4bf1-89fc-b8b9a671c5ea
+ - 87390be8-41ae-421a-a8c4-4d42c8196d95
+ - 25eec93a-6cde-4e43-830b-f0179b92dd50
+ - 46d73235-dc06-46eb-bf0f-cd33ec28d4ef
+ - 9
+ - b288466e-2cd5-4131-90ce-4497998de7fd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 00604a82-273d-4f97-84a3-410e1e18c09a
+ - Panel
+
+ - false
+ - 0
+ - bd5b2635-9436-4e00-adb8-e64927b5a576
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13140
+ 12078
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13140.9
+ 12078.55
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 46d73235-dc06-46eb-bf0f-cd33ec28d4ef
+ - Curve
+ - Curve
+ - false
+ - 1dce76cc-09cb-4600-9ce8-16c1a520c08b
+ - 1
+
+
+
+
+ -
+ 13189
+ 9879
+ 50
+ 24
+
+ -
+ 13214.48
+ 9891.448
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 46d73235-dc06-46eb-bf0f-cd33ec28d4ef
+ - 1
+ - 4c0f7de6-eed0-4c85-aefe-7fc1aecde228
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 785c63aa-db33-4e88-9501-39841d2d427e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.001373312092932693349
+
+
+
+
+ -
+ 12994
+ 12252
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12994.46
+ 12252.34
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 283a6573-e52a-40c8-86dc-3ffe9a741fc0
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13137
+ 9793
+ 144
+ 64
+
+ -
+ 13211
+ 9825
+
+
+
+
+
+ - Curve to evaluate
+ - 07a8f681-6e07-4cbd-af58-22e9917dbbf0
+ - Curve
+ - Curve
+ - false
+ - 1dce76cc-09cb-4600-9ce8-16c1a520c08b
+ - 1
+
+
+
+
+ -
+ 13139
+ 9795
+ 57
+ 20
+
+ -
+ 13169
+ 9805
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 9df02622-fab6-49ba-9f27-02a56bf1cf9d
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 9815
+ 57
+ 20
+
+ -
+ 13169
+ 9825
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 23d5c97d-7ff9-4f17-aa32-0f9f14b93b9e
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 9835
+ 57
+ 20
+
+ -
+ 13169
+ 9845
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - a29d9c17-7ccf-4a10-be79-6147beb3dcbc
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 9795
+ 53
+ 20
+
+ -
+ 13254
+ 9805
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 470cee8d-461b-4e99-9b9a-9d22cafac7e6
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 9815
+ 53
+ 20
+
+ -
+ 13254
+ 9825
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 9055c418-0587-4fe3-9935-3d470f3d5136
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 9835
+ 53
+ 20
+
+ -
+ 13254
+ 9845
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1541c639-e7e9-44bf-a5d0-2f0914744894
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 9571
+ 194
+ 28
+
+ -
+ 13212
+ 9585
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b3d7e230-79fa-4295-9fe9-05833b77cd4d
+ - Variable O
+ - O
+ - true
+ - 77fdfc55-ce7b-41b1-9e9f-90cc871946c6
+ - 1
+
+
+
+
+ -
+ 13114
+ 9573
+ 14
+ 24
+
+ -
+ 13122.5
+ 9585
+
+
+
+
+
+
+
+ - Result of expression
+ - ae1fbe50-7f71-464f-8190-8f2fcce9cde8
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 9573
+ 9
+ 24
+
+ -
+ 13301
+ 9585
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 7a898192-674d-4e97-bcf6-56a1ddeb2f57
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 13143
+ 9705
+ 132
+ 64
+
+ -
+ 13190
+ 9737
+
+
+
+
+
+ - Input point
+ - b1f3665a-c7b4-495a-99f6-3150677af81e
+ - Point
+ - Point
+ - false
+ - a29d9c17-7ccf-4a10-be79-6147beb3dcbc
+ - 1
+
+
+
+
+ -
+ 13145
+ 9707
+ 30
+ 60
+
+ -
+ 13161.5
+ 9737
+
+
+
+
+
+
+
+ - Point {x} component
+ - 77fdfc55-ce7b-41b1-9e9f-90cc871946c6
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 13205
+ 9707
+ 68
+ 20
+
+ -
+ 13240.5
+ 9717
+
+
+
+
+
+
+
+ - Point {y} component
+ - 4462f078-dbe9-4538-82a2-200d8a4e2400
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 13205
+ 9727
+ 68
+ 20
+
+ -
+ 13240.5
+ 9737
+
+
+
+
+
+
+
+ - Point {z} component
+ - 614f4040-5e83-42b6-b1e6-3a5be9ee6f92
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 13205
+ 9747
+ 68
+ 20
+
+ -
+ 13240.5
+ 9757
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 16a84562-9448-4672-aa4c-a87eb1e418ab
+ - Panel
+
+ - false
+ - 0
+ - ae1fbe50-7f71-464f-8190-8f2fcce9cde8
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13133
+ 9545
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13133.25
+ 9545.026
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - be299fee-829e-4c7c-8eb3-8c32f752fb52
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 9485
+ 194
+ 28
+
+ -
+ 13212
+ 9499
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 25f8e090-891a-41fd-b62c-ad5162d9c1b4
+ - Variable O
+ - O
+ - true
+ - 4462f078-dbe9-4538-82a2-200d8a4e2400
+ - 1
+
+
+
+
+ -
+ 13114
+ 9487
+ 14
+ 24
+
+ -
+ 13122.5
+ 9499
+
+
+
+
+
+
+
+ - Result of expression
+ - ef7434f4-5524-457d-adb0-ac06f4dbe1cc
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 9487
+ 9
+ 24
+
+ -
+ 13301
+ 9499
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - de4e98b3-5364-4873-b361-5d32b57ac87d
+ - Panel
+
+ - false
+ - 0
+ - ef7434f4-5524-457d-adb0-ac06f4dbe1cc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13133
+ 9456
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13133.25
+ 9456.604
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 287847a5-0097-4b56-b61f-0568a50af206
+ - Division
+ - Division
+
+
+
+
+ -
+ 13168
+ 9383
+ 82
+ 44
+
+ -
+ 13199
+ 9405
+
+
+
+
+
+ - Item to divide (dividend)
+ - 1ebec628-405f-48c9-9fd0-0bf09c23bab3
+ - A
+ - A
+ - false
+ - 16a84562-9448-4672-aa4c-a87eb1e418ab
+ - 1
+
+
+
+
+ -
+ 13170
+ 9385
+ 14
+ 20
+
+ -
+ 13178.5
+ 9395
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 6a4c5e87-8ee2-4299-b649-4814da9baa88
+ - B
+ - B
+ - false
+ - de4e98b3-5364-4873-b361-5d32b57ac87d
+ - 1
+
+
+
+
+ -
+ 13170
+ 9405
+ 14
+ 20
+
+ -
+ 13178.5
+ 9415
+
+
+
+
+
+
+
+ - The result of the Division
+ - 01e52c65-eb50-44dd-8686-6a423d1ff2d6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13214
+ 9385
+ 34
+ 40
+
+ -
+ 13232.5
+ 9405
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7a771bdb-6c67-4ee1-846e-ef35e9456cde
+ - Panel
+
+ - false
+ - 0
+ - bd5b2635-9436-4e00-adb8-e64927b5a576
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13133
+ 9309
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13133.49
+ 9309.089
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 24418f1a-4667-408b-87ce-17a0701514ef
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 9336
+ 194
+ 28
+
+ -
+ 13212
+ 9350
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 904bd1ee-0717-4bfd-9a2e-1bcd15ce46c8
+ - Variable O
+ - O
+ - true
+ - 01e52c65-eb50-44dd-8686-6a423d1ff2d6
+ - 1
+
+
+
+
+ -
+ 13114
+ 9338
+ 14
+ 24
+
+ -
+ 13122.5
+ 9350
+
+
+
+
+
+
+
+ - Result of expression
+ - 98de488d-d7f0-499d-88b2-056c8ac0cfb1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 9338
+ 9
+ 24
+
+ -
+ 13301
+ 9350
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bd5b2635-9436-4e00-adb8-e64927b5a576
+ - Relay
+
+ - false
+ - 98de488d-d7f0-499d-88b2-056c8ac0cfb1
+ - 1
+
+
+
+
+ -
+ 13192
+ 9292
+ 40
+ 16
+
+ -
+ 13212
+ 9300
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 5fe06244-b1e3-4946-adc9-f8c3a742f320
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 13181
+ 9231
+ 82
+ 44
+
+ -
+ 13212
+ 9253
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 60ca554b-8caa-40a7-83f2-4439775d7879
+ - A
+ - A
+ - true
+ - de4e98b3-5364-4873-b361-5d32b57ac87d
+ - 1
+
+
+
+
+ -
+ 13183
+ 9233
+ 14
+ 20
+
+ -
+ 13191.5
+ 9243
+
+
+
+
+
+
+
+ - Second item for addition
+ - 4f965683-d915-4a83-8233-97e3605b3d11
+ - B
+ - B
+ - true
+ - 16a84562-9448-4672-aa4c-a87eb1e418ab
+ - 1
+
+
+
+
+ -
+ 13183
+ 9253
+ 14
+ 20
+
+ -
+ 13191.5
+ 9263
+
+
+
+
+
+
+
+ - Result of addition
+ - 9815204b-f664-4413-b0c0-ee7ef674a440
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13227
+ 9233
+ 34
+ 40
+
+ -
+ 13245.5
+ 9253
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - f477eeee-122f-4f16-aed3-7d8e0ccaeec9
+ - Division
+ - Division
+
+
+
+
+ -
+ 13181
+ 9097
+ 82
+ 44
+
+ -
+ 13212
+ 9119
+
+
+
+
+
+ - Item to divide (dividend)
+ - e6ec3b0c-785d-4b5f-bf18-c63a91b05572
+ - A
+ - A
+ - false
+ - 489642d4-2166-4be9-88d8-874168a38977
+ - 1
+
+
+
+
+ -
+ 13183
+ 9099
+ 14
+ 20
+
+ -
+ 13191.5
+ 9109
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - cc81ea97-1603-4ec4-8366-f21bd94fdfca
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 13183
+ 9119
+ 14
+ 20
+
+ -
+ 13191.5
+ 9129
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 66191e75-e120-4b18-bd0f-5736e2900b36
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13227
+ 9099
+ 34
+ 40
+
+ -
+ 13245.5
+ 9119
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f8d29174-6eea-4290-8cb2-d395a111612c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 9057
+ 194
+ 28
+
+ -
+ 13212
+ 9071
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - abe90ec5-d9b2-4193-b30c-7444471f8b94
+ - Variable O
+ - O
+ - true
+ - 66191e75-e120-4b18-bd0f-5736e2900b36
+ - 1
+
+
+
+
+ -
+ 13114
+ 9059
+ 14
+ 24
+
+ -
+ 13122.5
+ 9071
+
+
+
+
+
+
+
+ - Result of expression
+ - 4232c65c-c906-4de0-88f1-901a05e772d8
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 9059
+ 9
+ 24
+
+ -
+ 13301
+ 9071
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a1160e3d-92b4-4103-8e86-69fa4fef1a92
+ - Panel
+
+ - false
+ - 0
+ - 4232c65c-c906-4de0-88f1-901a05e772d8
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13134
+ 9016
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13134.25
+ 9016.946
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 489642d4-2166-4be9-88d8-874168a38977
+ - Panel
+
+ - false
+ - 0
+ - 1c79e94c-08bb-4dfb-a7c6-9ea70427b937
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13146
+ 9157
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13146.25
+ 9157.856
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 20b4f532-c319-460a-b3c0-656ea615e3d3
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13125
+ 9184
+ 194
+ 28
+
+ -
+ 13225
+ 9198
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 84fd2108-0ed5-4a91-a1cd-f24d8358400a
+ - Variable O
+ - O
+ - true
+ - 9815204b-f664-4413-b0c0-ee7ef674a440
+ - 1
+
+
+
+
+ -
+ 13127
+ 9186
+ 14
+ 24
+
+ -
+ 13135.5
+ 9198
+
+
+
+
+
+
+
+ - Result of expression
+ - 1c79e94c-08bb-4dfb-a7c6-9ea70427b937
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13308
+ 9186
+ 9
+ 24
+
+ -
+ 13314
+ 9198
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 13c904ec-5557-475b-aaea-b768bf5bb666
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 13131
+ 8933
+ 154
+ 64
+
+ -
+ 13215
+ 8965
+
+
+
+
+
+ - Base geometry
+ - 06855ab4-1802-44e1-a823-141277c4932c
+ - Geometry
+ - Geometry
+ - true
+ - 46d73235-dc06-46eb-bf0f-cd33ec28d4ef
+ - 1
+
+
+
+
+ -
+ 13133
+ 8935
+ 67
+ 20
+
+ -
+ 13176
+ 8945
+
+
+
+
+
+
+
+ - Center of scaling
+ - 92b76397-af68-4535-88c4-58ae00401e55
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 13133
+ 8955
+ 67
+ 20
+
+ -
+ 13176
+ 8965
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4f94b2f6-9d2c-45c2-9586-82a7bfc4996a
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - a1160e3d-92b4-4103-8e86-69fa4fef1a92
+ - 1
+
+
+
+
+ -
+ 13133
+ 8975
+ 67
+ 20
+
+ -
+ 13176
+ 8985
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 5f8ed2fa-3c67-42b2-add4-a9aabd714e6f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13230
+ 8935
+ 53
+ 30
+
+ -
+ 13258
+ 8950
+
+
+
+
+
+
+
+ - Transformation data
+ - d64bdbf5-8925-493f-9ac9-f3dd0ed2deb9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13230
+ 8965
+ 53
+ 30
+
+ -
+ 13258
+ 8980
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - Curve
+ - Curve
+ - false
+ - 5f8ed2fa-3c67-42b2-add4-a9aabd714e6f
+ - 1
+
+
+
+
+ -
+ 13188
+ 8289
+ 50
+ 24
+
+ -
+ 13213.23
+ 8301.446
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 95f28635-5809-425c-83ae-4e5f8ebc4ed1
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 9658
+ 194
+ 28
+
+ -
+ 13212
+ 9672
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e4dba5db-dfb3-48e6-a2f2-a3121647e725
+ - Variable O
+ - O
+ - true
+ - 614f4040-5e83-42b6-b1e6-3a5be9ee6f92
+ - 1
+
+
+
+
+ -
+ 13114
+ 9660
+ 14
+ 24
+
+ -
+ 13122.5
+ 9672
+
+
+
+
+
+
+
+ - Result of expression
+ - b3cffdb2-c82b-4dbf-88dc-ac6b32f0b81a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 9660
+ 9
+ 24
+
+ -
+ 13301
+ 9672
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8a737511-7996-423d-a235-9195a4c95500
+ - Panel
+
+ - false
+ - 0
+ - b3cffdb2-c82b-4dbf-88dc-ac6b32f0b81a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13134
+ 9630
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13134.12
+ 9630.802
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2b01be3f-3b3d-4cc6-bc8b-7aa09bf98116
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13137
+ 8667
+ 144
+ 64
+
+ -
+ 13211
+ 8699
+
+
+
+
+
+ - Curve to evaluate
+ - dee723a5-2861-4a52-911a-3fa3f8c1fb53
+ - Curve
+ - Curve
+ - false
+ - 5f8ed2fa-3c67-42b2-add4-a9aabd714e6f
+ - 1
+
+
+
+
+ -
+ 13139
+ 8669
+ 57
+ 20
+
+ -
+ 13169
+ 8679
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - e8ad3994-09fa-4a9f-93b7-f92249ca60fc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 8689
+ 57
+ 20
+
+ -
+ 13169
+ 8699
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c0fbe606-0880-41c0-80cf-f9e67b992bb4
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 8709
+ 57
+ 20
+
+ -
+ 13169
+ 8719
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - cc524b81-5d37-4783-8c7e-cca0358fabd9
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 8669
+ 53
+ 20
+
+ -
+ 13254
+ 8679
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 027bdefd-9dbe-41df-90c7-34c1d289529a
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 8689
+ 53
+ 20
+
+ -
+ 13254
+ 8699
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 90b9713c-33b7-4a00-a245-b3ec8e734c38
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 8709
+ 53
+ 20
+
+ -
+ 13254
+ 8719
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 04a46e92-5e3e-4987-80b7-45d227bf9c7d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 8450
+ 194
+ 28
+
+ -
+ 13212
+ 8464
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6df2a858-a168-4aed-8f93-846bd2752def
+ - Variable O
+ - O
+ - true
+ - 14ba2dd9-0713-4c50-82e0-e1710ceade25
+ - 1
+
+
+
+
+ -
+ 13114
+ 8452
+ 14
+ 24
+
+ -
+ 13122.5
+ 8464
+
+
+
+
+
+
+
+ - Result of expression
+ - 69b7b939-a411-40e5-914e-949d817794ad
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 8452
+ 9
+ 24
+
+ -
+ 13301
+ 8464
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 44a1113d-ea0e-4d63-a0f7-d18bacbd4347
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 13143
+ 8584
+ 132
+ 64
+
+ -
+ 13190
+ 8616
+
+
+
+
+
+ - Input point
+ - 3a2a9c28-b785-4be1-88ec-ade0a7417066
+ - Point
+ - Point
+ - false
+ - cc524b81-5d37-4783-8c7e-cca0358fabd9
+ - 1
+
+
+
+
+ -
+ 13145
+ 8586
+ 30
+ 60
+
+ -
+ 13161.5
+ 8616
+
+
+
+
+
+
+
+ - Point {x} component
+ - 14ba2dd9-0713-4c50-82e0-e1710ceade25
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 13205
+ 8586
+ 68
+ 20
+
+ -
+ 13240.5
+ 8596
+
+
+
+
+
+
+
+ - Point {y} component
+ - cce24767-a8da-4e46-a8f9-8770a11d7a11
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 13205
+ 8606
+ 68
+ 20
+
+ -
+ 13240.5
+ 8616
+
+
+
+
+
+
+
+ - Point {z} component
+ - 96041129-e970-424b-b6cd-ce4aaa1a99a9
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 13205
+ 8626
+ 68
+ 20
+
+ -
+ 13240.5
+ 8636
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 21f6c2a9-4cb9-4fac-9ac1-5cfbab72d4cf
+ - Panel
+
+ - false
+ - 0
+ - 69b7b939-a411-40e5-914e-949d817794ad
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13133
+ 8418
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13133.5
+ 8418.37
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7431e743-82d8-4334-ba19-431fc59e9eea
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 8364
+ 194
+ 28
+
+ -
+ 13212
+ 8378
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 09834407-1a30-40b2-b24e-84a8b82fed6d
+ - Variable O
+ - O
+ - true
+ - cce24767-a8da-4e46-a8f9-8770a11d7a11
+ - 1
+
+
+
+
+ -
+ 13114
+ 8366
+ 14
+ 24
+
+ -
+ 13122.5
+ 8378
+
+
+
+
+
+
+
+ - Result of expression
+ - 30bcfb51-36a9-45a4-8ac8-09bf066d5642
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 8366
+ 9
+ 24
+
+ -
+ 13301
+ 8378
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 19976e83-8807-4ae2-a49f-195040b6ce87
+ - Panel
+
+ - false
+ - 0
+ - 30bcfb51-36a9-45a4-8ac8-09bf066d5642
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13133
+ 8332
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13133.51
+ 8332.741
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 94a71fe1-86b0-4584-a8ef-81533ac1a510
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 8536
+ 194
+ 28
+
+ -
+ 13212
+ 8550
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bb5c6c27-0d06-4020-ba22-c22077708e8b
+ - Variable O
+ - O
+ - true
+ - 96041129-e970-424b-b6cd-ce4aaa1a99a9
+ - 1
+
+
+
+
+ -
+ 13114
+ 8538
+ 14
+ 24
+
+ -
+ 13122.5
+ 8550
+
+
+
+
+
+
+
+ - Result of expression
+ - e6e4911d-379d-4291-ac39-5abd73a5ed6b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 8538
+ 9
+ 24
+
+ -
+ 13301
+ 8550
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4ad747ce-384e-443b-992b-2279e9315407
+ - Panel
+
+ - false
+ - 0
+ - e6e4911d-379d-4291-ac39-5abd73a5ed6b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13133
+ 8504
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13133.25
+ 8504.584
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b605f252-8ec2-4711-97e9-bb7a7f3930ae
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 3 16
+3 256 0.001373312092932693349
+3 4096
+
+
+
+
+ -
+ 13027
+ 12375
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 13027.69
+ 12375.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 31702cd3-8e8c-41ca-9825-26430177d5d7
+ - Panel
+
+ - false
+ - 0
+ - e1bfbe7c-df52-4b6b-bc22-ba919f675c7e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13045
+ 10590
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 13045.44
+ 10590.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ae2d0cc6-080e-45c6-94f1-1fda5cbe2a86
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 10881
+ 194
+ 28
+
+ -
+ 13212
+ 10895
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 381bf852-06a9-47ea-8446-b3e062f6d11c
+ - Variable O
+ - O
+ - true
+ - 7dde94e0-d5f7-4971-bce2-62dec7432799
+ - 1
+
+
+
+
+ -
+ 13114
+ 10883
+ 14
+ 24
+
+ -
+ 13122.5
+ 10895
+
+
+
+
+
+
+
+ - Result of expression
+ - e1bfbe7c-df52-4b6b-bc22-ba919f675c7e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 10883
+ 9
+ 24
+
+ -
+ 13301
+ 10895
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 3c322a73-a965-4884-ad00-1921bfe71148
+ - Number
+ - Number
+ - false
+ - 11a52911-ee4b-4695-868f-5bf4c41520d5
+ - 1
+
+
+
+
+ -
+ 13189
+ 12666
+ 50
+ 24
+
+ -
+ 13214.21
+ 12678.54
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - ba972450-6db3-435d-92c8-f40d12f95ed0
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 13040
+ 11129
+ 160
+ 224
+
+ -
+ 13108
+ 11241
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - c9440d18-68cf-4441-8ea2-aa85f8741f2c
+ - true
+ - Curves
+ - Curves
+ - false
+ - a3550327-9868-4693-a2b6-4cd4adcfc5c6
+ - 1
+
+
+
+
+ -
+ 13042
+ 11131
+ 51
+ 27
+
+ -
+ 13069
+ 11144.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 18047297-5b7a-4ab7-b328-2a0f8b3a244c
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 26742a6f-e988-4b90-9d11-a1794287adf9
+ - 1
+
+
+
+
+ -
+ 13042
+ 11158
+ 51
+ 28
+
+ -
+ 13069
+ 11172.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 94cbd90d-2be5-4a20-a973-1f90628df51d
+ - true
+ - Values
+ - Values
+ - false
+ - 09318e5c-8353-43a4-a05f-ae387129eb99
+ - 1
+
+
+
+
+ -
+ 13042
+ 11186
+ 51
+ 27
+
+ -
+ 13069
+ 11199.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 50bddda8-dbea-45dd-bc7e-34a297d6fd28
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 13042
+ 11213
+ 51
+ 28
+
+ -
+ 13069
+ 11227.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 283596eb-61b5-4397-a7f5-3e359649bfd2
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 13042
+ 11241
+ 51
+ 27
+
+ -
+ 13069
+ 11254.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 2dd7bd6e-4539-4a08-8f12-ab9354068f61
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11268
+ 51
+ 28
+
+ -
+ 13069
+ 11282.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 8ac6d8db-3441-47d2-85e5-5364944e2309
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11296
+ 51
+ 27
+
+ -
+ 13069
+ 11309.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - f61211ac-49c2-4cd3-b5d4-e7f93a5e15ce
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11323
+ 51
+ 28
+
+ -
+ 13069
+ 11337.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 4c4c70e9-fb44-4069-a1d6-21c0f5bd3f0e
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11131
+ 75
+ 20
+
+ -
+ 13162
+ 11141
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - aa9109aa-04ec-4ac9-837f-f40e9aa73caa
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11151
+ 75
+ 20
+
+ -
+ 13162
+ 11161
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 51b2f90a-87f9-4410-95d1-1c9edd1556c2
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11171
+ 75
+ 20
+
+ -
+ 13162
+ 11181
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - e220d6ad-9eb1-41e5-a86d-28349c3224e7
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11191
+ 75
+ 20
+
+ -
+ 13162
+ 11201
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 44088766-d2cd-4c04-a0a3-2003ae351387
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11211
+ 75
+ 20
+
+ -
+ 13162
+ 11221
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - a92eec30-de0b-438b-8493-b33e6c1500bb
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11231
+ 75
+ 20
+
+ -
+ 13162
+ 11241
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 8d14505d-adc2-4cf3-81fa-ab846a8fbc01
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11251
+ 75
+ 20
+
+ -
+ 13162
+ 11261
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - cacf8448-5055-485a-8480-0ea99b9d05c3
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11271
+ 75
+ 20
+
+ -
+ 13162
+ 11281
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - f71eb570-e6da-4552-8e55-e1f3a36128d2
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11291
+ 75
+ 20
+
+ -
+ 13162
+ 11301
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 26c56055-118a-4f36-a429-cbb49ab4c97b
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11311
+ 75
+ 20
+
+ -
+ 13162
+ 11321
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - c4cfe5e8-da0b-4867-85ca-5760537552c4
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 13123
+ 11331
+ 75
+ 20
+
+ -
+ 13162
+ 11341
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 46596c98-da19-476d-8ea7-6522989ca34d
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 13161
+ 11473
+ 96
+ 44
+
+ -
+ 13211
+ 11495
+
+
+
+
+
+ - Curve to evaluate
+ - 59898192-1155-4017-9a3a-d12b40971e54
+ - Curve
+ - Curve
+ - false
+ - a3550327-9868-4693-a2b6-4cd4adcfc5c6
+ - 1
+
+
+
+
+ -
+ 13163
+ 11475
+ 33
+ 40
+
+ -
+ 13181
+ 11495
+
+
+
+
+
+
+
+ - Curve start point
+ - 18715765-40bf-4ab2-8c47-5e5a62d0c0f0
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 11475
+ 29
+ 20
+
+ -
+ 13242
+ 11485
+
+
+
+
+
+
+
+ - Curve end point
+ - 5ace1ff0-f662-466d-a803-1b5b2125d74e
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 13226
+ 11495
+ 29
+ 20
+
+ -
+ 13242
+ 11505
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 3c4e2847-3bf9-45a5-9f43-1469b577d53e
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 13146
+ 11371
+ 126
+ 84
+
+ -
+ 13204
+ 11413
+
+
+
+
+
+ - Rectangle base plane
+ - d063b8d9-1669-426d-80a2-d6d99c1490c6
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13148
+ 11373
+ 41
+ 20
+
+ -
+ 13170
+ 11383
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - bd34d011-876c-4e02-a0db-d9598e1b7781
+ - Point A
+ - Point A
+ - false
+ - 18715765-40bf-4ab2-8c47-5e5a62d0c0f0
+ - 1
+
+
+
+
+ -
+ 13148
+ 11393
+ 41
+ 20
+
+ -
+ 13170
+ 11403
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 0164f281-08c0-4842-ba53-e8ebb2461f1f
+ - Point B
+ - Point B
+ - false
+ - 5ace1ff0-f662-466d-a803-1b5b2125d74e
+ - 1
+
+
+
+
+ -
+ 13148
+ 11413
+ 41
+ 20
+
+ -
+ 13170
+ 11423
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 43ab6c3e-3f5c-4b2c-95b5-2a1ef9584dcd
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 13148
+ 11433
+ 41
+ 20
+
+ -
+ 13170
+ 11443
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 26742a6f-e988-4b90-9d11-a1794287adf9
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 13219
+ 11373
+ 51
+ 40
+
+ -
+ 13246
+ 11393
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - a0aa1f40-1f8f-4631-a347-9750df4d748a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13219
+ 11413
+ 51
+ 40
+
+ -
+ 13246
+ 11433
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - ff328a2f-b53b-4c5f-b600-6912e4040d68
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 13200
+ 11233
+ 126
+ 104
+
+ -
+ 13267
+ 11285
+
+
+
+
+
+ - External curve as a graph
+ - 2ab6c905-8b5e-44e8-88cb-40bfa2e7cc7e
+ - Curve
+ - Curve
+ - false
+ - a3550327-9868-4693-a2b6-4cd4adcfc5c6
+ - 1
+
+
+
+
+ -
+ 13202
+ 11235
+ 50
+ 20
+
+ -
+ 13228.5
+ 11245
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 4b9d7cfd-e650-449b-a887-8743b3f4243e
+ - Boundary
+ - Boundary
+ - true
+ - 26742a6f-e988-4b90-9d11-a1794287adf9
+ - 1
+
+
+
+
+ -
+ 13202
+ 11255
+ 50
+ 20
+
+ -
+ 13228.5
+ 11265
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 2e4a9dda-b262-4a42-b75f-356b737eb01c
+ - Numbers
+ - Numbers
+ - false
+ - 09318e5c-8353-43a4-a05f-ae387129eb99
+ - 1
+
+
+
+
+ -
+ 13202
+ 11275
+ 50
+ 20
+
+ -
+ 13228.5
+ 11285
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 659d1c42-73d7-4d02-8a92-d0d1d4f24f87
+ - Input
+ - Input
+ - true
+ - cc15bac4-737a-49ae-8c6b-83ffea0a2f42
+ - 1
+
+
+
+
+ -
+ 13202
+ 11295
+ 50
+ 20
+
+ -
+ 13228.5
+ 11305
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 301bc8d1-c261-4992-8f74-647e14158198
+ - Output
+ - Output
+ - true
+ - cc15bac4-737a-49ae-8c6b-83ffea0a2f42
+ - 1
+
+
+
+
+ -
+ 13202
+ 11315
+ 50
+ 20
+
+ -
+ 13228.5
+ 11325
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - c2291590-e7d3-4207-b8dd-b04a94af39d0
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 13282
+ 11235
+ 42
+ 100
+
+ -
+ 13304.5
+ 11285
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - f822760c-37f0-4d6f-803d-52bc9f07faff
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 13178
+ 11041
+ 89
+ 64
+
+ -
+ 13223
+ 11073
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 5b8d400a-9300-4025-8afc-c978cb425bf5
+ - Gate
+ - Gate
+ - false
+ - f7cce374-37bf-43f6-83c3-c75777ff53e3
+ - 1
+
+
+
+
+ -
+ 13180
+ 11043
+ 28
+ 20
+
+ -
+ 13195.5
+ 11053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 53317a67-ba1f-4989-a7e2-ea1ba1b1aadb
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 4c4c70e9-fb44-4069-a1d6-21c0f5bd3f0e
+ - 1
+
+
+
+
+ -
+ 13180
+ 11063
+ 28
+ 20
+
+ -
+ 13195.5
+ 11073
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - f3214fc3-6225-4a30-982d-00abcb2da2d1
+ - false
+ - Stream 1
+ - 1
+ - true
+ - c2291590-e7d3-4207-b8dd-b04a94af39d0
+ - 1
+
+
+
+
+ -
+ 13180
+ 11083
+ 28
+ 20
+
+ -
+ 13195.5
+ 11093
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 1b5ac039-bf7b-4d43-b783-dd4890ab2408
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 13238
+ 11043
+ 27
+ 60
+
+ -
+ 13253
+ 11073
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - f7cce374-37bf-43f6-83c3-c75777ff53e3
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13143
+ 11002
+ 150
+ 20
+
+ -
+ 13143.87
+ 11002.58
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ede21c19-8370-436f-ad7d-3f06ac13f73b
+ - Panel
+
+ - false
+ - 1
+ - 865cf969-bdab-464b-9ec1-5f54137939dc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13120
+ 11661
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 13120.94
+ 11661
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - f24527a9-c40b-435c-96ac-35ad54bd99e1
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 13150
+ 11612
+ 122
+ 28
+
+ -
+ 13214
+ 11626
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - ac9502c5-34bb-47ff-bddc-daaef6094be0
+ - Numbers
+ - Numbers
+ - false
+ - 09318e5c-8353-43a4-a05f-ae387129eb99
+ - 1
+
+
+
+
+ -
+ 13152
+ 11614
+ 47
+ 24
+
+ -
+ 13177
+ 11626
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - cc15bac4-737a-49ae-8c6b-83ffea0a2f42
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 13229
+ 11614
+ 41
+ 24
+
+ -
+ 13251
+ 11626
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 530af738-b9be-4ce5-a2e7-ac2b854f9dcc
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13112
+ 11950
+ 194
+ 28
+
+ -
+ 13212
+ 11964
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6bd50146-7134-4b3d-8617-b2a2bc25b95f
+ - true
+ - Variable O
+ - O
+ - true
+ - 09318e5c-8353-43a4-a05f-ae387129eb99
+ - 1
+
+
+
+
+ -
+ 13114
+ 11952
+ 14
+ 24
+
+ -
+ 13122.5
+ 11964
+
+
+
+
+
+
+
+ - Result of expression
+ - 865cf969-bdab-464b-9ec1-5f54137939dc
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13295
+ 11952
+ 9
+ 24
+
+ -
+ 13301
+ 11964
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 290fd24f-404d-4eba-8bcb-6b884f548121
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 13026
+ 12147
+ 367
+ 28
+
+ -
+ 13212
+ 12161
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a9b471eb-0d75-407f-8f01-97350e1e085c
+ - Variable O
+ - O
+ - true
+ - 5fcbd4df-cb6c-4897-9d68-bb1ba9c5e4ce
+ - 1
+
+
+
+
+ -
+ 13028
+ 12149
+ 14
+ 24
+
+ -
+ 13036.5
+ 12161
+
+
+
+
+
+
+
+ - Result of expression
+ - dd51868a-ab92-4bc5-851b-8124223441e4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13382
+ 12149
+ 9
+ 24
+
+ -
+ 13388
+ 12161
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7f8b1b6d-700e-4e97-835c-d1b2f1e1730c
+ - Panel
+
+ - false
+ - 0
+ - dd51868a-ab92-4bc5-851b-8124223441e4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 13124
+ 12118
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 13124.08
+ 12118.77
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+ - 449eca10-6c8c-44ed-8518-33d05cfdcf05
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 36ba2c14-847e-4c6a-9a54-5d2a81d9918d
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 13132
+ 8851
+ 154
+ 64
+
+ -
+ 13216
+ 8883
+
+
+
+
+
+ - Base geometry
+ - 71bd9b24-ac17-4f51-bf8e-1521567be2d6
+ - Geometry
+ - Geometry
+ - true
+ - 630eaaa4-4172-4a56-be57-a6e3b585cda6
+ - 1
+
+
+
+
+ -
+ 13134
+ 8853
+ 67
+ 20
+
+ -
+ 13177
+ 8863
+
+
+
+
+
+
+
+ - Center of scaling
+ - 1d2e6088-dfb4-42c2-b795-a03ef77c6b02
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 13134
+ 8873
+ 67
+ 20
+
+ -
+ 13177
+ 8883
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 01df31a6-eda4-4aac-bae1-53f3ec75bf14
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - a1160e3d-92b4-4103-8e86-69fa4fef1a92
+ - 1
+
+
+
+
+ -
+ 13134
+ 8893
+ 67
+ 20
+
+ -
+ 13177
+ 8903
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 54972b36-6f1e-4241-aed8-ad69b627d8cb
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13231
+ 8853
+ 53
+ 30
+
+ -
+ 13259
+ 8868
+
+
+
+
+
+
+
+ - Transformation data
+ - 5c483edf-0aea-41c1-9f43-497604df5060
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13231
+ 8883
+ 53
+ 30
+
+ -
+ 13259
+ 8898
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - a8308e88-b4f6-4f9b-ac84-2e18c3ab1e84
+ - Point
+ - Point
+ - false
+ - 54972b36-6f1e-4241-aed8-ad69b627d8cb
+ - 1
+
+
+
+
+ -
+ 13182
+ 8827
+ 50
+ 24
+
+ -
+ 13207.6
+ 8839.616
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 817e4449-4854-42c0-9b84-fa0cafa47fe4
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 13137
+ 8177
+ 138
+ 44
+
+ -
+ 13205
+ 8199
+
+
+
+
+
+ - Base geometry
+ - b56a1cc6-edaf-49c9-85b1-d0ce3ba8e751
+ - Geometry
+ - Geometry
+ - true
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13139
+ 8179
+ 51
+ 20
+
+ -
+ 13166
+ 8189
+
+
+
+
+
+
+
+ - Mirror plane
+ - ebcce996-5d8a-4f04-9d89-5c827a06f8a3
+ - Plane
+ - Plane
+ - false
+ - fe67a703-3930-434c-932d-9fc54ebd122a
+ - 1
+
+
+
+
+ -
+ 13139
+ 8199
+ 51
+ 20
+
+ -
+ 13166
+ 8209
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 222d9612-bffe-47df-b96d-7c7b3e8113e4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13220
+ 8179
+ 53
+ 20
+
+ -
+ 13248
+ 8189
+
+
+
+
+
+
+
+ - Transformation data
+ - a3376276-5412-4125-b471-57b0bd0cf61f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13220
+ 8199
+ 53
+ 20
+
+ -
+ 13248
+ 8209
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a3550327-9868-4693-a2b6-4cd4adcfc5c6
+ - Relay
+
+ - false
+ - b1745932-b78b-4f26-a87b-397ff9c067c1
+ - 1
+
+
+
+
+ -
+ 13191
+ 11540
+ 40
+ 16
+
+ -
+ 13211
+ 11548
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3671dd22-8305-40db-8d22-7a4b2cb5dba4
+ - Curve
+ - Curve
+ - false
+ - 72093452-ecdf-459b-8976-35063c92dd1f
+ - 1
+
+
+
+
+ -
+ 12714
+ 11793
+ 50
+ 24
+
+ -
+ 12739.48
+ 11805.35
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b1745932-b78b-4f26-a87b-397ff9c067c1
+ - Curve
+ - Curve
+ - false
+ - 5c736842-a0e9-4635-8f51-afed8b5994e3
+ - 1
+
+
+
+
+ -
+ 12714
+ 11589
+ 50
+ 24
+
+ -
+ 12739.58
+ 11601.33
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - a1b5d158-00e2-4d16-91a9-adbf41054a6b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12660
+ 11631
+ 154
+ 64
+
+ -
+ 12744
+ 11663
+
+
+
+
+
+ - Base geometry
+ - 1912b6ed-21e6-4ef9-b53c-d1c38e947a63
+ - Geometry
+ - Geometry
+ - true
+ - 3671dd22-8305-40db-8d22-7a4b2cb5dba4
+ - 1
+
+
+
+
+ -
+ 12662
+ 11633
+ 67
+ 20
+
+ -
+ 12705
+ 11643
+
+
+
+
+
+
+
+ - Center of scaling
+ - c8933ccd-529b-4068-a475-14f9c2532c33
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12662
+ 11653
+ 67
+ 20
+
+ -
+ 12705
+ 11663
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 6ebd7af1-29ab-4050-84aa-761133ae814d
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 1fc76042-6c4f-4dd0-8fe8-a622e2f4b407
+ - 1
+
+
+
+
+ -
+ 12662
+ 11673
+ 67
+ 20
+
+ -
+ 12705
+ 11683
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 5c736842-a0e9-4635-8f51-afed8b5994e3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 12759
+ 11633
+ 53
+ 30
+
+ -
+ 12787
+ 11648
+
+
+
+
+
+
+
+ - Transformation data
+ - 7bda42d5-c091-4aed-9f18-d25db3e76263
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 12759
+ 11663
+ 53
+ 30
+
+ -
+ 12787
+ 11678
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3671dd22-8305-40db-8d22-7a4b2cb5dba4
+ - b1745932-b78b-4f26-a87b-397ff9c067c1
+ - a1b5d158-00e2-4d16-91a9-adbf41054a6b
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 42842d99-ad5a-4dcf-83b6-95761b895e33
+ - 1fc76042-6c4f-4dd0-8fe8-a622e2f4b407
+ - beb16079-3864-4233-9af9-59f099bc7bc0
+ - 7
+ - d760ad86-e629-4431-89c9-1307b14c38d2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - c62141d4-71ba-49bd-87f5-80b1bbd52e1f
+ - Move
+ - Move
+
+
+
+
+ -
+ 13137
+ 8070
+ 138
+ 44
+
+ -
+ 13205
+ 8092
+
+
+
+
+
+ - Base geometry
+ - dfb2fb39-f880-41a6-a90f-c1f47d87ba30
+ - Geometry
+ - Geometry
+ - true
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13139
+ 8072
+ 51
+ 20
+
+ -
+ 13166
+ 8082
+
+
+
+
+
+
+
+ - Translation vector
+ - 25167a91-c8d5-4cce-9f2e-5e9c23971d23
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 13139
+ 8092
+ 51
+ 20
+
+ -
+ 13166
+ 8102
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - c38c5d9a-b517-42fe-a76b-158ca93ff360
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13220
+ 8072
+ 53
+ 20
+
+ -
+ 13248
+ 8082
+
+
+
+
+
+
+
+ - Transformation data
+ - 0d9b061c-d156-4ce6-83cd-4a07a026be1a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13220
+ 8092
+ 53
+ 20
+
+ -
+ 13248
+ 8102
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 42842d99-ad5a-4dcf-83b6-95761b895e33
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 27.9312132004
+
+
+
+
+ -
+ 12614
+ 11756
+ 250
+ 20
+
+ -
+ 12614.25
+ 11756.83
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1fc76042-6c4f-4dd0-8fe8-a622e2f4b407
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 7.93121320041998779
+
+
+
+
+ -
+ 12661
+ 11716
+ 154
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12661.85
+ 11716.24
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 29cae672-5371-4567-b423-de45be29c8f5
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 12714
+ 11841
+ 50
+ 24
+
+ -
+ 12739.3
+ 11853
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zPxpPFVvG/D/b2OGTJXIXIaklCEylGMrlWYiNFOISjQoGjdS0kRJ0mQolIpKRaadKZEyD5m2eWabaeDne32Pa5397+t1P/k/uj3wbn3WWvs899rLsjZe0ThoNNrk1Mc//vMxnXPqk/VWJ+cjrqtcXVxcjyxSsHI4dtzZ9ciKZYs1tRdraWov1Zv6h4aG5iKFVe6HT7gfc1hxxMH9xDG7w4sUzNz3HXbev8HB09L1kMORFTo6Wlp6mg76y/Yv09HR0dbg+WcUyf88+OK1Dq4uDieOeS42cz3sucr92EkH7qmV007+O5iA3bH9Ts4nHbTtXfhd3RyOHHE/tu84t73dCbt/NuLj4+P8Z56i82k0rSlv/xaczs819Q+Rfz6VXaTROH9e4KR9ufjvc/o1yUmbhc+PVVqxeW1HiVh6C03Uh2Me+/mwmt/vqfWBuK0oN+3//GDD/6R/e/r/WXj+ZxsN+r/SUVPUjP7PBP8o/O8E54jF7TEXLBVLn/h3guulPCX+mWA2bivKhRv+M1Gu/75s//9M9n/2/T8/4vGxmGguWoiWopVoDcpCG9FmtBVtRzvRbrQX/n+fQz86gA6iQ+gwOoKOomPoOPoT/YX+Rv+gE+jkf48d/T+fGSiNA5dRGicuozQuXEZp3LiM0nhwGaXx4jJKm4bLKI0Pl1EaPy6jNAFcRmmCuIzSpuMyShPCZZQmjMsoTQSXUZrov9JRBspEaWK4HmWgTJQ2A9ejDJSJ0mbiepSBMlHaLFyPMlAmShPH9SgDZaK02bgeZaBMlCaB61EGykRpkrgeZaBMlDYH16MMlInSpHA9ykCZKE0a16MMlInSZHA9ykCZKE0W16MMlInS5HA9ykCZKE0e16MMlInSFP5VAaWjtigDDUOZKAulzcX9UTpqizLQMJSJslDaPNwfpaO2KAMNQ5koC6Up4v4oHbVFGWgYykRZKE0J90fpqC3KQMNQJspCacq4P0pHbVEGGoYyURZKU8H9UTpqizLQMJSJslDafNwfpaO2KAMNQ5koC6Wp4v4oHbVFGWgYykRZKG0B7o/SUVuUgYahTJSF0tRwf5SO2qIMNAxloiyUthD3R+moLcpAw1AmykJpi3B/lI7aogw0DGWiLJSmjvujdNQWZaBhKBNlobTFuD9KR21RBhqGMlEWSluC+6N01BZloGEoE2Wh1E0L8X/vM8jHxU/uO49vX/k/9x1rIjT41S/thI7z8lLTjGev+G9f959+CIRuVuu2emin/rcneDbnhD85AXJ39bPLZm39P7Y/A+p1+XZra92o7Q87pCnXaHuBxxW2wNCpm9T27/7zOBfhjdAHuQ27XlLbT1wXcDog7gdzePjq8u3zqe1N/vP4V0G1+NgLpm8/1Q+/t3o+MHIDfB8H7m2L5jP6b1f4z7iBoGh+aI6EqTTVQ4+Yjxh13wJaXG6W1RY1qguc+mc+QSBnsdvggdIyqm89d+ou9+5g0K07/nSCfxXVj174Z54hcKhPRmffp01U5z39UC+v4B7obhP232JuRfV7B/6Z/30Ye+hPC1xiS/U3kFl10+gh/Jp5NNGrxJHqt4a3TT2vRyABk6ksF1eqbzI8kfrcOgwWeSh01Gm6U32WZerU8w0HRY3HD+kzz1KdocV7Q0g0AhjbXcpVNnlTnS9189RxiICj32JFrl+6TPX5RcF73HIjQbd5beHJmutUH6fXTR2fJzBdwa04KuUW1ZcXKi0pYTyFEP3FO9+vvkv1Yo2DU8ctCgZ4nltHRTyguv/Ey0kd/Wj4s293+6FT4VTX+dh34IB4DPzcmGwwqPiU6k2ZiwtD+mNgSevAmnrHZ1TXtjw4dZyfgd7vHye3m7+i+sUT4WG/nj2HR/TkpOafr6kuPlLMp34pFviHVUTY2u+o/vXAH7c9+16Agbb9avO6RKpfFpCfel1ewqkTGWcMeFKp3pepY/xJ6hXEpHQfXfeDSbYXgWcDI6/gZ5aU/PmzmVTP7FkmplQSB0JZXgu7XXOo/tjpRspz63gY2b/HODr5C9XTsk64ZWbHQ5K583XVAwVUf31no1KN9mtYdyQ4TTW1kOpnfs2oHAp/DVqaL40+TBRTXelh1lUh0TewKV2k5sHZMqrfD9kNKuffQNup1I4jhpVUn360asCo+w2wbuVa/4Zqqmv+0oqy3vEW/mgzZmy5WUf1P2vtt7vlvoUTCgXxVhINVOe+7jj9im4CBJ96FVkg1kT1LAGt9PAnCTAx0dTXo99C9bvs1KMfZ7yD+zl1e5NutVFd0oimVMJ4B6N08edb5TupXhfeU9bV+w6qte4qTDR2U91um+dl7t3vQd0q3HZeQx/VG4aD9GTz3wPXVkmvJzf6qT68XaNDR/8DKD/Ii7y5aZDqHfv1722O/gAX7LwdDZcMU31D4X3TA+KJ8GLpbJlInVGq59CMRy/4JMK4VMNg6b5xqv/MEHka0p8IJyL9zQcSf1G9Z0a3+eu9SVAZ/11Jw2CC6npV7/98KUiCZfaRYYdO0Kjr9Oonm2IaDT+C/7k5OyOaOKj+cpe/+a9nH2HbsPDM4UNcVLceWjk+UzIZJt6Fi0QL81BdQnTd40WXkkGt212Pt4CX6uaxzqtWDyXDkmKpNYdi+Kj+8/3hlt37UqBeabJSP0KA6qcSZ/meLEyBVR5Ja1nJ06nuuF9u3k2jVDji8+JExYgw1ScW01OiX6TC5q5KM/PnolRvaV1gwZRKA7knyhEHusSovn7ZxdZKvzSQT644fBpmUp2xlO3eP5IGvpGuu3dEzyLzrOXlEHBIBznuXWM1irOpnvrA5vK8knRYlcB5seadBNXv79G9+FCBCUaLvgws2zOH6hbHWJ+eWTMh57xMQbGsNNXH6Pa/391gwsAXD+k7wzJUnyV7UjsjmwmFEm5mh1rlqG4Wk+X47TcTlm61mRPpoUD1vb5jd35ofwI58N1//epcqudMS2C2HvwEhoYGskdfzKP6jYZbrQPhn6BYja/1a7Ui1ce/LZg2WfkJvJXu7pwrpUx1TTrvPEHRDNicFi3cf0CF6tM4XulKrM2Ass6ZHszs+VQvr3tkong+A7bYfu8RX7qA6lc3bt6w5F0GjHi33fV8q0aOA/eC9YbdGSD21dvB3WQROd9ib9HXKmbCQFQ9x502dapvONiibrEjE8ZStn5xeLiE6tqBR8X2BmZCneW8vYZvNajOp3Gu82BuJoxcloAX4ZpUr3u9KvHkZCZIXNx4f3OoFtXb3Yc9vXWzQOEo/6bDD7Wp7nzgw+IbLlmQGBLSuSV2KdWXB0WU3XuSBTtuZH4yydKh+tmMTJen1VkQM7ylOLhdl9wf8UiPxM/IBt2mM7m3JPWo/nvzfZeUddkwrdRz1NdSn+pfedVKPjOywUqv2yLtgQF5XiGPlEs+ZEPAddsj/v2G5Pznzthf15sNy7nzXPQtVlB9zqnN1zqUc0Do1S9+6Qwjqu8s7H04tCsH9CXFMkGeTnVbA6O7k7dzQOPso7KdzaSXv/98UiA/B6rdN9j5xxuT60Acj6E452fwXi9vOuRD7gdZPnaN8vqfQaopLSpjzyqq68lqH1Jz+wwPrWOK5IxNqL77NLNkafRnyNY6slVr4Wqy/coVUlD3GWIODzSryK6huqBl3vJ14rnwWyr8hIrEWjJPG3d9i425sKfs+Zydc0ypbrNNT3i3Ty4kfjWa3ae4jurZy8cTHT/mgn1QVsn0Zeupfv7ilWVu/blw/744q27rBqp/SXx62VP1Cxy2ed9589RGqj+eMRzlvfcLOEiJZKx/uonqBcL8t68GfwHBqCdmBjWbqX6Bd/e6oIIvUDZdtcBE2Izqi75s+/yAOw+UfybXaL4l/ZCescBTwzzIjp3bO77LnOpdzdtEXh7LA4NIdtgbwa3kOhz3piThWR5Mr/90/2g66bn791imsPJgPMHg6kYPC6ovPL72RqZEPhRb88hv17WkemDOqvN5m/Nh28cdPC/HSfdYJzq3yDcfdC8v7N6dsY1cfy6bHa9IyQc7w0yGV4AVuc6Y3DhaO5gPb4e6XdXtrcn5Ka0v2aT2FULVgh1OrbChuj1H1P52u69g/31EyF1mO9WfqouY9YR8hR26UmLLOXZQPajtdlX/969wwbFcpLGLdB8jvd/DvAXwdVdZxNmanVTnzG9+O76iAHw+iG6fW7KL6sNHHX//PlEAksrH37d83031bwuPFE3GFkC6n6tWffEechy+ByzmbCqAae9DdRVr9lJ9VcMaEW6pbzCgGnGjyd2W6okO3Ud4zL/B/aZpkmyaHdXzE5mmvH7f4LjfmhLjm6TLOrfe5U3/BnPeO21tUthH9VqJ/da8I9/AcmyabP070kV3y3vzqH+H1Xz34mDzfnL9j2+dwW3/Heo5Ek+LdJKeaX2Am/P+d/C5eaLR5oo9+b5po2U+WfQdRIQerVBZ5ED1kg+14+e4C+F0pEiZVzHp/ZcXDf6SLwTDPb8b3c86Ur1aIyLQ07AQEgwNb01XO0D1+qcbi0esCkHP4PafLdWkR8LCN8ePFcL7fdOWrA9wIt/vshcvZl8vhMHiefI865ypnuehv+rws0LwyjVJ8Oc5SPXpyvK9bVmFIPeq+1NzNunXNZ4u3M8qBCd1Xj5Z/0NUT3vtPVb7qxB41+hordh6mOpcl23NbSSKoODwvIrNci5U9z9apVWsVQRtb3NO7ewl/aD26XsbNhfBtYkP5w9nHCGvV/wnryznInhp7A5XQ12p/mzW3PblvkXAcbDqtK2hG9U7R3/lJoQVQegBi31XY0nnuB6jsCilCJQz1KrzZI+S/s21K6KiCIo5XXcr3iLd/dV15TmDRbDKvsniHt8xqruaaebfEC4GfY2n0ppepG9Yca6SS60YHBYWc/X9Ij0t/PI6j9XFsF90yaYKj+NUP3l9h1S3bTFoSn9b0DtKur3u0Jq9Z4tBJ+pdyjLPE1R3g7X5RXeLQfHHpTmJv0n/zWkYueptMfAfUzI57u1O9R+s2LyEb8VwO2i7hovASapLBxxaodxZDBJZjE/Pgkg/csJ4NIinBFxb1fIWzT1Fntdo5yDX3BIQdswR/BlH+pdm6SXHlpcA02WNrrixB/n6/Xr+Sb311Pb0vDavUtI/2L/bsvF4Ccx6YfJi1UFPqv8aslmUeKME3ocp/tnNeZrqMek/dRSfl0Bl/Si99AHprceUnK5nl0BWsUz+M/0z5Hx7YJM2wioBAy/b6oZK0svkZi7d+7sE3r2IfXjh9FlyXY3/kpUjUQrJIs8XXJI7R/Uim+5D6tqlIPLlmPdYFumX2C1KtzeXgk+1RnCVy3ny/e6FTNeocylckP+6YtGcC1TfGjWQtNO3FH6bBy4fzCH9q3POtbSwUpCQ63scYsigevHVwT0KKaXw8/Ve16Eg0pP5SxZ6VZRCEYhsutFHut7t5F7WQCnM/Rp45MAGL/L1XsERCcJlYHs4e4IRQ/qp72OrHi4oA5mUCdkaXm9yn8w38HXcpAy2spc2ejqS7ta5Qn+bbRmsEVpsvfMz6Udoiy7GnSmDtdKx570W+FB9wFDwGd/dMjDfH2TWc430ej21SNs3ZVAcr5z8uJ/03+crXD4UlIHwPanIe9YXqR72yY5bqKMMtnz+0VSdRnqNrOQ+O+5ymNwUteXAfF+qu1it906QLwfe35/ilgeSLi28zpbXsBxmv4/M2vWb9J+TDqNWVuVQUCK3JtfpEtVDdIZWRh0thz8XApoulJNub2hqNHStHFqkp5tcXH2Z6glbE5vpMeXA9fQyb/k70pvDH2heyyyHMRm+DPf5flRX27dFobyuHDYPFvDYh5JuLaj+Qu5nOZx289oeLnyF6rrnggodxCtgfO7eFYsvkt6k0uYXq1EBHWvs1QR/kX514ZXCvg0VULv8zC294/5kXN+GCK0DFbCjO5r1vpv0l0o7fh33roDCpUs9Lx24Su6LRGzL3j6sgL3WNUnRTaT/Prt/0UBiBeja/hqXsrtG9dNdFb8Wl07N5/oHf1Y96bUGS+FgXwWEv1/8YWzvdfI6pg30RwpUwo7nEVn7G0hvNwsUqVGuBIFbTwfm2t8g1+G9gbdnGFeC1oY1Z7TbST/785Tn2l2VsCZ9+e0Ql5tU/1hbkHL6VCUU6M4+aD5EupSH/PYXtyrhbYmG+BKjAHJ/wv69ruZlJeye6Dlb7016xIKf/gJfKuGN+rff+rmk16a9kljWXAkcSxQijYQDqX6M+32X3WQlvFSefrbHkvRYWhznVakqqI94FrjmAemi9stt3uhUgXOSePe6ZtLbznO3V5hVQZbQlcDRRbeoXqH9+uWvQ1XQ0uByactJ0mXa+57IXq6CNJmTBeZM0jvcjn5ZEVEFKpteH5gQuE311RMds3elVsHP6AjLbVak07nErnhUVsEeDutbVhGk75IOl749WAXhzNOynH2kX+qxzosV/gF931z7rZcHUR2mjwRkLPgBJoz9fDb+pM8uMTpUYfIDgk7a7+SsIv2N8Zhl594fcPyCR6OV6h1yf1LSue7X6R9g7PwmaJsH6eusG1YLBP+AvB9rnSZySTdNjTGReP0DBLmit5pLBVPdoV9k5byvP2Bp2jXTzYdJr7nWpr+w7QcotEgaDaeRbsjNqarFWQ3WFh0qa2bcpbrKpCbfMtlqWMeUHqE7kq6ktaVcX68aShnZj1o+kj7WKn/DwKIahN49nblUNITc160sCdd3qIamrPe6F9eRXvVcqUjvSDVsGzEIMHUk3f3JlrzJC5yM/y7/P/SHEP/7i49/R0IVUA2UjpqhtqgbykAD0DA0HmWihSgLZf93fE0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdK0cHxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZK08bxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKG0pjo8qoBooHTVDbVE3lIEGoGFoPMpEC1EWykZpOjg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpeni+KgCqoHSUTPUFnVDGWgAGobGo0y0EGWhbJS2DMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjND0cH1VANVA6aobaom4oAw1Aw9B4lIkWoiyUjdL0cXxUAdVA6agZaou6oQw0AA1D41EmWoiyUDZKM8DxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKM0Qx0cVUA2UjpqhtqgbykAD0DA0HmWihSgLZaO05Tg+qoBqoHTUDLVF3VAGGoCGofEoEy1EWSgbpa3A8VEFVAOlo2aoLeqGMtAANAyNR5loIcpC2SjNCMdHFVANlI6aobaoG8pAA9AwNB5looUoC2WjNMDxUQVUA6WjZqgt6oYy0AA0DI1HmWghykLZKPVXm8R/7jP+bzc2FTNO0vROVUP6/PSO6T6k19Jcn+tcqQbjudMWf0shnX+/B6/Gk2rILTiXOGfWParvznhsqJpeDaICSj+ED5Me/OfFarkf1TBtk4HvyyzSG+acVpgxXA0Gt2ReDMuGUt0xquYzl2gNGPDTjNtOkS4j8XLZoFoNZO+I0PEuJv2yafYh1uoasM9ccSZH/T7VBc04bPNta+CC/lHOhCukd78G0YQzNZBSujB5fSvp+Zl2HqHBNTBgdzfIf9UD8safd2PQ+dc1MLmc69zxcNIrLrXutf1aA61K3+14aA+p/ni5bAW01YCanNUS+l7SVxxlDctw1sLyvVWFiumkb1ZWThyVqYWJtYc04uUfUX3J6ZY5hctqYfv+H7otDNJF5eZKRG2tBVf3B/kZjaQf/Fgb6+lSC5xBSaWmqx9Tfb7D/NL1frWQtP6D7qkY0q1niV2bE1kL2S3GnSq8YeSN9qx331tSa0HoTvxaRz3S2xk69+Mqa0F1q1Pk+EHSR9NTOk8O1kLNT6Nu1kPSBWnnPxoK18GuXeKiMkWkWyW+451QrYOAjq+/nnOHU/31wuf5qavqgMdjxf3reqQP9MTynNlTB384F1ZlHib986HZr3U862Cnu+HjTeGkz3A3y+u5PfX4nt1lauWkR375uinyVR3kmV2x3ykYQd6YxAjoWX2pg+E4Bc16OunT7YJ9eZvr4OCT0wrvT5JOa+fXTpiogyPnhWezXpBeeFhoxd459bA7c2xwVxPpVQPWYdOW1kOOcn/oIqlI8gOc7rjtLzfXQ6QvvXOzOelzK7sczJzrYdbI+/RMP9I9WQOf2D71sC8/fNSfSXrhudSDNx7Vg0Lcp8NPxki/JWW1e0FSPRQn08dENJ9Q3SmpKvhTST2sfxxztMCZ9NGHHrOse+vhYlblq5oI0uPOJHec4GZBv89vnxU1pF/PCW5PEWNB6E6vzD7xp+QNr66vL5c8C96qCxkNbiF9fqFpuukiFkReOpGx1p901a5XQdf0WdDRES/bk0X654AA7u9rWLBCpUKqaZL0JWXFQqKWLFgdL+SzwDCK6huWHojbYscCQR4fWeZJ0ml9G9qvH2FB2Az7uKg3pFs5X/uQd4YFndHFv2p6SQ+9YizDe4UFL7uqM/ctjKa6luQtcXowCwKrjuQscyLdReFthEckC5g5W5k7n5LOs7U9Iy6eBS7dsoe/NZJ+dv9F95ZUFviML/S+qRBDjo97R9KcfBbMfx6U+GgP6cLuV25urGSBpeO8zF8PSLf0aR0+18IC9VZTi6hq0v2sb3e/HGBBXrW05COpZ1TXj9I+XjPJgusxq9Mat5Ned/nsFX6hBthHm+g7fo90y7qlS3SkGuByH22beRXpsZ907PfObwBXv4u3Ts95Tt5Qfz+o6re0Afa8WLqhbzvpVSrFZ+KMG6Bdmy4fF0q6kcPZPWWbG2DbJvsXSdWkF0ZdKxzf2QCNm8auC8vGUv3ZBb1iGecG4Ns5vuvlHtIPDn/eb3SyATbMnh1/J4z0gJN3fPf4NMBvo4/SnxtJr/oupHcuoAH8N0lpGSu/IPOXjz8T+rAB9KeBD5cT6c9yhczfP28APQGxh0KxpL/em5dY+KEBlLfaC+7tJT36/v23HVkNcCSBy2ZU8yV5HPq6lRzFDfDTMkWg3J10b4GXDhL1DXBzhvOzn0mkz7/zRm5RdwPIdP35YD9B+sZV1kdgvAHuWd9OnLnqFdXXKD7fZs7bCJcfH104zY90/uL8MruZjdCsKHPTqID007t6+9wUGuFV+C7bpBlxVG+R2/b0vHojHDu0WeqUDenZEZaj/gaN4BLqrHvq0V/99Na2O2sb4bbujUVJzaRLyWaffGzZCHyxl/UficdTXTpFOzrarhHy5uwFmj7pS2R1T7860gjVD0/bee8ifd6RE/1vzzRChV+RjRKD9DTJaOFEv0ZYl/28tiWS9NKg4JKPdxqhY0tEdM5n0uP1pFemRDSC44tXLjldpPdNk92VEtcIbttUWptFXpMffDFuKyanNIKnanbO3KWkNxzwDU380gilX19nnbUh3eUWX2ZCeSPQZ/sEDZ8lXT7O+HFcUyOo7V/deTWcdCshe81n7EaYP3LBE3JIF93/+kz4n0Yw3mAwLNJF+vZAT0aIQBM8cOIQ/SPyhuo7DkitvCHRBJ/Ues7w6pAuaz+Z4a3UBHevPe1cuIP02pPhPCc1m6C084CQywXSFdMuTXcyaoKVq6bf+fKE9BurV/6w2dAEz10FtIzzSN+WcfyoqU0THNl1Iaikj/QHmz+X6jo0wWxDrcMM8bdU91cc5lU61gTe8fec1hqSbrj1k4DohSZQmWTpqdqR7nPmV+PPq02gpN5zdd5l0qMvnb/VHNIEB1T2ieq+JL3ZSkOm4GkTlP2IPrGvhHQuBodPwpsm8LLpc4weJ714vPtLaHoT6Dcuu8OtkED1J8Wjgxe+NoEEp+VLzzWk17I0uO2rmiAipHcXrwvpl47H/1nT2gQjbTfNn98mfYwjpEl1sAnUHkToOXwkPf2HWBI/rRn8CzzSdRtIVysy8+qY3gwX+c1vy/G9o3p9103IndMMtlo77WSWkF4mOGP0qUoz7OlILV9iRXpa7NxYb+1mSGi+F2ZzjnRfuujePfRm2Mshfjj4yV/dSme2/qZmyIs52NqeT/rJV70lM3Y0w4R6W8qWQdIlxMPudzk2w/nq9gd5Uu+pPmvrW7fM482QLVWvvX0l6X6Td61CGc3Az9iw5Jcz6Y3RmWZu15vhj0rq8vhA0lVY8ftWhzbDMoEGfo8k0q9G1N2cE90MLr+vmWxtIF2fr7C6+20z+DRnhBrxfyDXvQ7B9enMZmBMe/9xuSbpH71k6gIKmqEj4/vWjdtJH5a4ed/uRzMsOJQg5uJFuuujQV/NtmYolDWNevSM9FCbmjDaUDM0Bb1NZxWRPvt8bd83WgswR52EtH+SXl977eQDoRYIea4Kd+YlUn2pl5ees1QLnJLh5Zm2gfQ9my30dea3QMftwyJ+x0nXjA09S1vaAmY/FUUkH5B+Rp7Nk09vAdmobe/eZ5G+brSrMmhTC3AqBb7d30O6aIvy+O4dLcAzWZgsNzuJ6gWRSw+qHGiB1ssXGG1GpIvde7mk93gLhN4/k5B6gHThU0qb3jFaYIGzrGB4AOlhdWo5Z663wG9dQ73AJNLtOMweGYe2QNj8xezrjaTnrlKo4o1uAaOJ8rZgwY9k+3ql0/lvW+BlY0Rp7FLSJX2bLt5ktoCjcsDhr7tJj52s/b21oAUsuLQdxy6Rrlce2CL+owUeOX/0WBJPOkffqZWVrS1wMWlo59Eq0vdqcUuEDraA6zXL3FTOZHL9V3/quJPWCos8hk/OWkT6qw+ZS2WEWuFKSdhc922ka97KuFgzpxVszxR7158nfVRkYvsDlVbgCUndZhFDesuH/A87tVvh1H5zq8Ii0pM6PMOl6K0w3LfC2OoX6Y3eW6SqNrbCjb6xkmalFKo/97mqfHd7K5idzfh6ZjPp6Qn2OZaOrbC74VmnlAfpypv4aTOOtwK/w62eT+Gke4Y8Kvt2oRXyZuoFu+WT/vohff3Va62w69rSKJVh0pflcNitvdcKv79ysZrkUql+wbdThiuqFXI4+KfFmJLOzzHOSHvTCjssb9cfO0Z6WaJCgGd6KzBTGhebPCB9h8b6TUu/tsKbkkXJ0jmkt9/dmtxb2QoGUeEbxvtIv3dSsDamZepx/N1iauakkdfL0uDdvoFWCBz9Gpq9ivQzjiFrZCZboXPHYPdbF9LLlhXfLhNsg0tD6gej75I+Yn358Q3JNsiOr6p7/In0CZ71h9cqt4EzzyHJh12kN9c++j2p2Qad34+1PBJPp/of399bE43a4KxO5NS7KdL5d+cfddvQBsyLpZ5xzqRnqzrsVLVpgwZJgebU26RPZM2awbJvg5Nwan5hKun7S8RD7h6dGlf6omRrG+lih4L6Np9vA5nNzjmTfEyqP8l/IcV7tQ28QsPVheVIv8dzSDr1bht4Lv+jLqdNuv2M/MHjT9ogTmVJwhJT0tVnJT1Ve90G/pJ+L1fuJv3odTHthtQ2MJAYmmZ9jPQX98Mf3s1rA9mi0deHL5PepTm/bVNFG6zgexXq84D0hZbmYtzNbSD5O+v1/deka1swZT+y2yCz9ExbQg7pw3y8wm5/2iBdOGzR92rS3cSjmpQF2uFlm/+xTjbpPDKzw6pnt0N2vlwsL+8nqhtzpJkEKrbDeGZWrqI06dMXjBWv0WiH6mbnNGMN0te9E9v4e3k7SKadvWC7mvT0rPWvX69rh/t5nZMXdpB+5k051wGrdjBskF0a5kr6vm01JjL72+HX03HRTxdJ16KfdC9ybYf8X5VXG++RnsTxNvjS2XZIPnk1lDuO9B0Od54ZXmmH+G9btednkV70dlYc+047nN7K2ri+inT9IZmYpxHtYLFza51LL+nL1W/e2RHXDu+ZmvWBXBnk+3WUsYdISjs82Oi69r0k6WfUaOZZue0wvMROpFqd9JK11xQ8y9rB9xRzCW0V6Rm3H7apN7YDmxEVrmxDOnd3Q1RjbztIu/nv2eBCunzSnz13f03N54mR7VFv0r9oXBPdyNcBYhq9YXfvkn4kRD6FJj7VN0hJp70g/etl433v5naA7de7X5o/kf5i4XGug4s7IOPRtWjBCtLj/dTD5Aw7IGiZS7xWN+nL0xr0StZ2gKPQz/rtHJlUP7huvOCyZQdkCq/Q8ppNurhp+d7ldh0wbc7lyJiFpPcll/SyXTrAxtVFo5BO+suC1Weenu6At5qfy0a3ka4leppnx+UOECx9HiB/iPTSzA/XhYM64NKdQ3vWMkgPm0OflRnWAQmjwctd75D+4uTme6dedkCfzoDq3eekH/ogKbvoYwfEp5yam55Ousjx749ZOR0wEWap1FZKervRo7l3SjqgVqJ1iUjnX/Ppj41Yx+qAgp73K5dNkh7eJqU40d0BGyfO7tw7K4vcb5vwR74Z7wCL2NmelxeQfl0vcN4B3k74bekXGmdEuviqL+HSMzuBWTieVmFBusrJLIVC+U5Qb3zbMulE+q6Ptx5fXNQJq17JCqueJz1R1FhOX78TKld+XGZ2m3TTmqoHPas7QaxEeZ9HDOmPhR2kI7Z2QprgrOthqX/N51P7Pau9nSBusT4xt5j0lXpOkoKHO6Fn5bMmdhvpb4vag9M9OqFw0x/hOX9I3y3rLH7CtxO4TSwNjGdkk/vMcx23VW91QvvR5w7O80nPrnSeUfuoEz6W0QIDl5OecyjdcVt0J7xIvGnzYj3pSjqdAYGxneCy0DolyZz0485PeP4f/UOI//3Fx3/gQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjv33+Rv/Kx8qikqiCqgqqoHqoXTUFDVDbVBb1Al1Qz1QBuqHBqAhaBgag8ajiSgTzUUL0UqUhbajbHQMpa38Vz5UFJVEFVBVVAPVQ+moKWqG2qC2qBPqhnqgDNQPDUBD0DA0Bo1HE1EmmosWopUoC21H2egYSlv1r3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlGbyr3yoKCqJKqCqqAaqh9JRU9QMtUFtUSfUDfVAGagfGoCGoGFoDBqPJqJMNBctRCtRFtqOstExlLb6X/lQUVQSVUBVUQ1UD6WjpqgZaoPaok6oG+qBMlA/NAANQcPQGDQeTUSZaC5aiFaiLLQdZaNjKG3Nv/KhoqgkqoCqohqoHkpHTVEz1Aa1RZ1QN9QDZaB+aAAagoahMWg8mogy0Vy0EK1EWWg7ykbHUNraf+VDRVFJVAFVRTVQPZSOmqJmqA1qizqhbqgHykD90AA0BA1DY9B4NBFlorloIVqJstB2lI2OodR/W0X85z7j/3Zj4zUxK7kgrhMWP5JT+GxDunfgQZE1iZ2g4PWyrcGRdKfuzus/szphoJlrpsBZ0js3HpoeV9QJ5TN2GGkFkh4U0uW/v64TBPhfO++IIp1H6zC/ZFcn9M7kueOdTLrWs67LX0c7IZvLnvm8kPRnO115vbi7QHZDaFdxC+m0Gz8v6oh1wRcfv9m/fpIesP02V6dsF3DNGqIriuZQvTvO2PuRWhfcjQk4uEGZ9HlDIhwWy7rg5Ymft44bkK49X5AxzaQLpC8lJN3fQnqy5qrJZLMuqONQqcu0Jz1DOf+82+4uuBx7d7LLk/Ro76QJpYNdcMNGU3bWTdJPeKheqDrZBULOozrLn5Buu1CXdsOnC/4Y5ZraJ5GuP8rtvTKgC2rfbbe89o30mjfJ3KMPukAtVNc6oYn0+4O+frHPuqBLIWVLzdhf8zELErJ93wUqeyWWcwt/JvOJkgmaldkFlp9WSi1SJH32jh0yX753wXdvrnYLPdJDH9yIOlfTBarKbRFnNpG+/RVNW6ujC7zb6KaR+0jXnjfxqXW4C0pWzC/LO0V6jUK1xX3ObpAwPbpm4Brpgi8G2reIdMOJdQkhcyJID2mI8uKW6Ya18sa59A+kPzCyk0tS7QbJxLlFB76SfrrxVrqLTjec9p8dd6OB9KqiBId5K7vhi2DQ7ncjpJ/XNxWr2DzVVZgV1YK5VF/wujzj6s5uUHrjKsk5l3ST8wOn6U7dwGxVlFLVJf1Sua7B8Ilu6CybVrFpA+kn5plyPPfqBqv6HtPjtqQXQGnhnhvd0KKyyTnEnfSUzFvPZt7vBiMB0Ez1J336itXXcqOn5hN89l7DY9KFT37wPJfQDZd/7QzleUf6yffpx7Q+dYMd97eFC/JI7+UGj7aCblDz27l6Yz3pN53mXn3woxsUWPPqjgyRLqG254V5WzeI7CzrDuD/QvWWWWM1vEPdUB+fcOCNHOkFH/7IptB64LF7gEmJNulXnl5xOyrUA3At02PQlPTJhIwyFakeyAjRHJ+xh3RD45rNNSo9MHnU5KPmcdJ5nWfXBmr3QMOtjrgtfqSv3JzmtZbeA+JXbxYcfkh6heVioz8be0DdVZH3yhvSze2+zXy7vQekTYU3PvlMurjELG5nxx6Q9NYKTKshXWa2j6j88R7I3NGRU9FP+m69lwZlF3rg4WZaXR9vHjk/v2ldvHqtB9J83+fwypBeUZPRa3yvB8Lgo5uMJulSVtJnx572gJmRSr7GGtKbrfkXx73pgYUaF7JW7ST9lb0zr2N6D9hJvV6/zY30yEfzp8l+7YHtKdM3OPiSrjsJWqWVU/PhW/3meCjpTcFpV6629ECL6eHDjDjS1z9NF1k10APyHwbsr2aR7mPsmvNzogcOrn92KaiKdBDij38j2AunZ2Ul3+8lfWNzxbeDkr0gk1LTE8aVT3WHazrKisq90NI7xPNEkvR19v7vqjV7QaXUo/uJOulbZ2zyDjLqBY/zxlciV5J+XIvzxqYNvXB3193Mx9akF3Atr+a16QWHZ0u97x0m/Z546GGmfS/MqF4bG+BFevxgrsnpo71wRuykkm8w6bbFXo5Lz/dCik9t8clY0nv1/Ut7/XuBo0fivgPzr/m8fhv47O7UcRhbbmdeRjo4V4fZP+mFly+a+Qw6Sc9t7uBWeN0LY2UL3OUnSRd9UsysTu2FXW4v/DhmfaV68NfbFXfzeiFWNEiZpUr6tyKdjZYVvTC88ZZ68grSFWXz54o194KVUovXra2k+71z3fmN3QsLHbdzOR4g/VGr6e+rf3rhjeSmWzpnSXdouzhtvUAfzKx/LcwRSPpNxg4Gn0QfsPaI2OQ+JX3fG76DnxX7QP6p76arH0k331H++ZJGH1T6fy9Y95108Uqxh2tW9IHanNUfuJpJv/9GtId3fR/M7qltSxwj/cDyJcmfrfogO1R7hbNQAflB3LJCgSv7+yBC9GLQrHmkrz2zq369Wx9I/nyb91GXdNGglcuFzvWB4DzzlJ0bSH94cESp8EofaJYFrR7dS/riFvaD28F9oGriuPL6CdJb/eOirSP7wKdl1w3ZK6QzVBJMZeL7ILkigzvmIeltThd9GlL6QGDVXcaiN6RHX322M/pLH+xMDqh5nkO6wWBcqUt5H6yOkB+cV036siKVgaVNfSB8xe1RUB/pZ3Ief/jd1wdtt44kTnJ9I9v7vlLN/t0H2yuypewlSb+gf0LpMzcbKrNaHn1aRPoB5QGhRYJsKPDhkpM0Jv1q/YOtgWJseLtd5uiBbaQPX6cPjUiwoXX6mFucM+n+J54N7ZJjQ5jpwpG+c6QvzYnclqnEhhscUlWqt0ifc/KXpNpCNvz8Md6/PYr0Cr6z9EBNNjhfK5X0+Uh6jwO7YGwZGwbW+is/+Ub6gmfzMm2N2LBmbmlfSiPpa4eq534xYYOj+5otBSOkP6Y3d2luYIO0hYV0mcB3qk/T5FS8b86Ge80bF5bKkV7X9DOX24YNkZUHrPK0SBfLDqw/socNaUWpxz+sIV3bzs+pyp4NuzK37Li/g3RbnUcOJofYUBbM1+B+hHSpawGVcUfZ4PElrW6NN+n31KQypT2m5tmhryYcTHpH7YCK33k2VKcbhOY/I73xynee4YtscOf05LmQSnrDrH12+66yYVF55ErVItJX791uWBjIBoa9nernZtL1l9jdMQqZ2n7flus7x0hfCvOOvnw0Nf89tCcDPIVUv/nVuFDmKRumd3hLvBEhPXutXcK1WDYIjHlMPzyH9PlL5eT/vGbDvouLjygokm73S2zGkUQ2uGkOzv++iPR3WUU36tPYYOIrreyhS3rxht5g82w2tKlxmkvTSTdMHFyYlc+Gei3+u4nrSJ/n7rxlWTEbNm2737jFgvTX/MWcsZVs+LBUXb5hF+lF/c/XytezoSTcSO+wI+n7Th2WD2phgxJr55x+V9J5r125yt/Nhiddcq9cPUnfG+l6/cLA1LjpGo1t3qSXXb+kMjLGhugH68O3XyN93ELDxmWSDeaWyyqy7pC+e8YXxRaefvC+Weq64DHpM8qj/HdP74eHUrOsL8f8ddw859won9EPiRp/POpekz7b5+ASszn9YJr78tPiZNJPcdS65sn3Qyprp6xH1l/98Euz1Sr9sKbIyuNjAekPfMRKmIumxg3hSx8uJ91jsd7Ycu1+aFIfrV3AIj1o97pPSfr9EFmc/cmqg/SeLocly+j9UOuga312gHRtr+hV79b0g16i2tXQX6Snn1CY1N7UD1sanq5/zV1E9UWvq/e9tegHseACb6YQ6V9Daly1d/SDBaNLIXc26R875eYn2PbD8btHZuTKk54dE3xF50A/SJ/uNmGqkj5zYknIB5d+WPZlXlS8JunXVL5bGJzohxGfMcV7BqTPtjZLTT3dD7/sL7zwXEX63ajLZcZe/RBLH1bfupH0T6P0hzmX++G+fXbwvG2kZzSB+MYb/aAwdqWsczfpr5+CUXFQP0zsFqp67kh6G++g5Pb7U/O8uyFgnyvp8hu5o1jh/dAfdbxTzIN0hqJ4q1NMP5wdbS9PZJB+/nZaVf+rfjjNNFltfYX0gM4ArzPv+kHgiLVyTyDpTXEz63hSpo4bv9qB06Gkfw/K7gvI6IeCsMmfExGkmx+Q+SDzpR/qE6yKTseSvoHHd+mz7/2gGt75o+ftX49jtt9Jt7wfVATe8dmkkK6rPMMiq6YfLq3v25CURfqyTU1DW5v6IaVhZrBYAek1nvKbGzv64XpTfaVtGemuBrx7j7H74YmTJW90LelmwwXzuUb7YTotUbS5hfSUhsiYoD/98HpuSKdEL+m+nC8aVLgHICM879LKEdI/zOUoSRIYgH4l18r9E3/NvyDh7CaxAWi4wy4+w1tM9c2W3+saJAZgbyjvQX9h0n9mbxk/KTcAZ4U+BN6cTbpO/8Kv05UHwPaQtdFVOdKn7TOzjlw4ALtO3rA/p0K67ZWwUAOtARiKsxh3WEz66cGRO8V6AxAt3Ntvokv6w9PK6w7BAETUDaySMiI94PTwW+41A6AabNLSspp0Ry7V8kcbB2DFC7Gv0ZtInzv9ZJy+xQDUu5T07t1Ges+TACjbPgDBxRtNhHeTLrhg7qWjtgNgaHYl84096dZuX7yFDwzA2Mvq/ZsOk+5JU9J54TIAruU1MnXHSX+yIuvB+hMDMOfZwVb7M6RPhOomdZwegPy8qMQGb9Kv5dH8r3gNgIP78FVLf9KZ3eHCan4D8HTNb5vUwL+OQ/qtNfk3BkBDOFxS5h7pYgWrNV3uDMC9UL4stzDS4+7N/ybyYAA++N6xTI4mvbbokczbiAH4Odma+esV6RtPTZexfjYAfaEVglrvSY8S+pr/K24AamacVdmTSnpejvbC8PcDcFFinjAji/QLr4L016YOwODMLal380mPLzMY6ckcgCvDaYufFpPOe87F9k7eAHAM7NsdU0W6DLieWlE0AM832pqEs0jnMzhv0FoxAElSIvU320g/olcac7NuABJ4x1VP9JLOror6pN8yAJwzK2U3D5OulDz/YnPXADzeeSdJ9jfpDQ8u9t0cmDp/yteONXKWkPPkahvn8vGp111cu/whP+nJnKdS2ycHwJIjZ8tmUdLrJazkgnkHwfDBPbuh2aRrhT5RMhEahE8prnwBsqRH61/4PjBzEITyNY3nKpG+7PmkbITUILic7eOLUSNd+PNyka1zpx7/Ru0uJU3S575bH8GpOgiNFywNgpeRrsJjWP528SDM2Pj90Z8VpHeUyjx30BkE1bmdl3eY/PV82b9lJJcPQr6k3eCL9X+Ny25Rz185CO96heuHzEiv3smqPr9uEDLed5lqWZN+JWdAWdtsENRvCS5x2E364565gu1WgzDb/uHN6/tJDyl383+4exCW+XY4xTqTXtjFirCwH4Sek2ZJaa6kl0kesxA4NAied9Zd+OxO+p+Wefc/HR0E/y92SdlnSD9ym+3h6TEI8voGjklepLtrV3RpXhiEh6OXLkZcJl0zq2ig03cQNr8Tmul1nfRnpj+uPbk2CHOPPBHddvuv49/Qkbjn9iCUSWiclbtHOmfTmPuc0KnntSXSsvYR6bv7JjJKw6bOB54/IYFPSPcXHHwUED0IVWprTQ2fkx77Kp9v06tBWLfvjt2PONLThs9P8r+bmv8lruYj70i/ZsLp/Tl5EL52Jnwb+0i6nczGm74ZgxCw+buCB5P0nhObVUy+DML2pJNV3dl/Hbf4rwGZBYMwoJfc4/flry4QvourcBCmnbXQ3pZPuqxYwbH/R/8Q4n9/8fEf+FBRVBJVQFVRDVQPpaOmqBlqg9qiTqgb6oEyUD80AA1Bw9AYNB5NRJloLlqIVqIstB1lo2P/ff7r/pUPFUUlUQVUFdVA9VA6aoqaoTaoLeqEuqEeKAP1QwPQEDQMjUHj0USUieaihWglykLbUTY6htLW/ysfKopKogqoKqqB6qF01BQ1Q21QW9QJdUM9UAbqhwagIWgYGoPGo4koE81FC9FKlIW2o2x0DKVt+Fc+VBSVRBVQVVQD1UPpqClqhtqgtqgT6oZ6oAzUDw1AQ9AwNAaNRxNRJpqLFqKVKAttR9noGErb+K98qCgqiSqgqqgGqofSUVPUDLVBbVEn1A31QBmoHxqAhqBhaAwajyaiTDQXLUQrURbajrLRMZS26V/5UFFUElVAVVENVA+lo6aoGWqD2qJOqBvqgTJQPzQADUHD0Bg0Hk1EmWguWohWoiy0HWWjYyht87/yoaKoJKqAqqIaqB5KR01RM9QGtUWdUDfUA2WgfmgAGoKGoTFoPJqIMtFctBCtRFloO8pGx1Daln/lQ0VRSVQBVUU1UD2UjpqiZqgNaos6oW6oB8pA/dAANAQNQ2PQeDQRZaK5aCFaibLQdpSNjqE0s//xn/uM/9uNjYu9u+qq4qkbyPQuj7kFpDsY7uvJKB8EmUKZM+8LSb/vZCXtUzsItiUH9wmWk77zXe23Vc2D4Ow6/GJbNeniCR28PF2DoBfcvv0Oi/Ruc7eMnP5BkH7o7pTXQnqeniPtytjUje7ebxVDnaQX8zDTN0wOworkRdGz2KRvrT86Kcw7BMyXxWULhv+60WW4phVPH4Iq7un7l/4k/YPSi1/BM4fgZOSSzUsnSd/DkHq/U2oIuJrDghdwl1J91psX3Qpzh8B5sNBwFj/pGfqWj1rnD8H5xfQVQ0Kkb+rlyHuxeAj2X7gQ+mUG6RZDT48c1xkC62RNiyAJ0m+9W3LVYPkQ9NCEDljKkN5ZeV2Oc9UQ3J9dU8Y/l3RZw1fz89YNQfiXC48TlElf3H7u6S2zIdiyiZ1pqUb6QfGO4J3WQxAYarSqczHpCjLVP5X2DEHF9zuy7tqkj58wKuy1HwIIXG4xvIx0voTf4kmHhmCmc3DzweWkH/adyPM5NgTnVJWLy+ikpzxf2LvZcwhumfrL6K4mnT128LwUYwj8NvhlXV331/OyjjjdemkINOW488s3kf4+9X3Dm+tD8N6TV1NiK+m+utfeXAgaguOrU0c3WpG+tpane+P9IZg1flbBY8dfx5PFc10qYghqJz69CNnz9/xdgtpjhkBqttajV/tId1GR5fgQNwRJ7x6OJDmSvsZgqMj3/RBMHOFI/HiQ9OZtRTzbUofgkNnl5vgjpKtp3rqvlDUEb0z9zj849tdxjp15ayhvCD5fue537iTpVSWa7VlFQyDYbc5jeZp0487PD+5UDsEl88xR+fOkHzoU/8qxfgh0+bn3N3iRXi6eLaPXOgR7tA6vD/ElffNAXQt/zxB0yF99bXKF9Hu7yvlqBoegOFn1Qes10mOn+1x89XMIfDvXCJ8PIP2UQoq1F8cwrO6dN10wiPQNKjZelnzDcCNPN/T6XdLT5qvTVEWGwSXaIJXnPunK70RLfokPw/elKqePPyL9YX/F2HeZYUgR0iovDyfd77G12xPFYbguXVW+5CnpL9Tt9TzVhuHPWJXX+RjSk7OKtmzWHAbtbXq1GbGk22878U5RbxieWhn1/X5FeneUvNO40TC0/TmXtugN6fMdox2/rx4GC79i863v/vq60KmPe7pxGG4X28W7JP41z4+hK89aDANX8sOG88mki759KWuxYxi6fFb3+Kb9dV5xdIOa3TBc0zlQ7f2J9I3pC2I4nIZBgGaX4J5FupWZ4baqI8Mg9LCRsecz6e+ODa9+7T4Mrq97163II33JVnXPK2eHoVa9RnJGAemvQxN77HyG4dwb69Ga76TfvOoSYeA/DMqt9n0Pi0nnEVAMnhk4DOyfewW3lZHOmRT/ufvuMEwemNjGWUl6n1yfTs6jYVhnu+nH0x+kt+R+qH/8dBgW+8RHQi3pR1xaMj1fDMPHs6zU7/WkKwpbNli8HQanZx1LrRr/ur5JNugu/jgM8xLVxEuaSdf3PZTJ92kYejdYHFrT9te4oyW+TZ+HofPBPpP4DtJHq3+fTfs2DKmSUS9Fu/+6/nvnRd8rmzpvORMTDvSSPmCoyONeMwzvxc4feMcm3fxU322zpmEoE1MtHR/46zypnGOxqHMYSi4s5tcZ/uu6Z37TmK9/GHarmosfGCW9dznsaR4dBunsO9MCxkl3OCEdw5yYOm/vremL+0W6qYOk3EOeEeAR7a/O+UP61fnq6Z7TR6DU0r62dJL0nEALf6uZI0AbjOP6wVFGzp+Nfue1pUZgkeu8veVcpBe15IWKzh0BZuNaWh4P6XwNsnU980fgRXD7aMI00i9/ubQ2f/EI1DycZn2Xn/RIY+HyGJ0R2OfasPioIOlNYky/S8tHwIHRGbBSiHS1ZbF77FeNwPfaghuCIqSP9zVYrVw/AtnZhwy+ipLenevppmA+Ap30yqcXZ5C+Lubq8wnrEXBL3t60dBbpGZXa3LV7po7bowM8teKk759562yywwjcbo2ROydBeoLflxmhh0eggTlgLD6HdI4OWo7H8RGYIb/W+6kU6axD++5Ynx4Bsa0lA+oypA+USzN0vaaOT3hv1CtZ0r/67PEV9xuBzy2Sb+bLk27osPfJ0I0RiJEZn39PgfQXgtY1JXdGYJx7lwzXPNJ7YrwWvX0wAiMJWpEOiqTPnykfdCtyBF5rBRYylUhf8vnYjGPPR0Bl+svEWSqkS3dmRpm/HgGLvmpXu/mkL1y/20wzcQQ2r7wlEK1K+oy914XF0kfAOdnuYcsC0r3XRbHY2SOwa3x0uexC0lWL/2QXfh2Bc9KyE5sWkU5z6kmNLxkBjh1vhk+pky4gV/w54MfU4zyK17u/mHSXmOlNbg0jECU9v+bDEtJ/2XCImLePgEyb/nCBBulLpSU3aPaNwIcAhXu1mqQ/d00JFhsZgeZkpdpWLdJbHHf39/8eAdPEsPIObdIz77vsKOYahfdSE6GtS0m3UN9f9EZgFMSsEqBWh3TNxA/bbouNAu+2tT8KdEl329LeelxyFJaJrWEkLiN97IT7RUv5UXi0dN3ah3qkfxJrUtdRGYWVd/pNzuqT7ns4sVFcfRQ8jdpubDP46/VSYkSMaI+CllO5wQJD0ocX5h6uMBiF1smDe0b/6uYpc40TjUfhbaG5CHM56elr5srfMx2F2Sp6+31WkB7rtIf39JZRSGLnuxobkW5Qf3xkh9Uo3HBOXv/zr37ZY7LXcPco5Bm8538FpM8WjuiTsR+FT/zOGbvopE+emRz9c3AUjrue9uc1Jt0yKG1a/dFRsOPyPxX7V18/84oc02MUpKoWP96wkvTCW4LLwy+MAktxZHbbX13w/PBe70ujYFxoN3RuFelB3ONX9l8fhccKbRtFTUi/KpSfZBI0CorrenQe/dU91RT7lO+PwrTpX7Pmryad3z95wbSIUeCyyhN++VeP7DRzbo8ZhfofMgsWryG99lrEyy9xU+fDm2bV2L96pfKxkefvR8FiSF1RaS3p54p8Vl1LnZq/de+ie3/1GO5HQS5Zo/Arn2ungCnpxheudGzOH4Vcae2MU3/1dUZiKzWKR+GNr8qphr96hQvnI7GqUViy6/CNtetIl9y56M9A/Sg0RLjLPP+rGzva7i1tHQWvF0E6/Ov/et2Hjma96xmF7sRfPfZ/dcV9uovuDo3C+tvJ21P/6uuHLgZ7/BqFvRoZ12ZsIN0kX5drB+cYjG2sCrX/q18sVTlmyD8G7tOf/n/t2/9Xj2ccx/E2fRBjIjFis5IPUWq+bGPeiSkhUuurCYlSmy+FaDVSskpf1uRbhUQqKvKlPsI0sWaa7bOzYqNQO6EOEa7rrtU6Zzun9+fsL9g5r8dv9/OH677u67rPuX+5r91FrP9aav3ApJ+gNbszUztYT7s/0a3dWFCsxjzPYW5Xn+ww4HrNMEH20YsaElhfuT1v+mUzQYYPZyz9hfWGi/dKMi0EzfUoVA+Yx54rcd97UTaC4vzsnZ1Z/+v10ny/DwRVL/uyKZ712zHjLOxtBQ18LePNq6yX1FQdU9sLCn1ytqKN9SijI6N6OQkaEJY7ztqpq6cEbsl+7Coo3NJsni/rsz3d1De8BUWu3ftBCuvd1hvl5i8T9FTtoH+Z9eGf5YxNChC0wW3ixUbWZ7bqF65dI2hHsUWo8Xz2XaseNMFloyD/VRq7aaxbnNYWT4gQNDLqPcvlrIeaWUwzjhZUrsl13MH6kIOGV17FCfLVa8nOZT1ybZjjra8FBZplfnKddf0Tn/6s2SvoXrDK9xHrt8zzPdIOCjrqOaamx4KuviDAtzY8W9Dt9qpqU9Y98kL8ffIF2T1OWDyN9ZnXbj21PSPoxJGYCHfW/7CO2/RuqaBg15OzVrNe0Lz1df3vBDV/WnglmvUzqefi6is698vgjmo/6xNszAdeuyno7jC7QQWsNzl9n3GsSpDB9v2qMtbTHu5Rx94VlNnkekfLxw9IORVYLyjEd0duHeuf7yuaOq9RUKrSFtrCumnWi6uWzwVdWDnStZtzV7+rcnPupwjyyR9ub8i6Z+LPvzfrSXr5df6i4azXevmt0PaQdGjhzANjWE+61rf5dF9JC82VwZNYfxF8PSx1oCTLPalaW9Zb3t/bPdREkl39zmpH1geN3JDsaSqpwbubtSvrb4cuMZkyRpLR+R/qF7H+Z4Zbtom1JN/kgI7lrEdZudu0T5Y0I23w9iDWy+uXXKiZJumNUeVbg1mvPLDO4fLHkixW9Vc2sd7dO06bOVcSPfJ6+SXrdta5i6NcOsevOhkezfoQt8qHfl6SCgPrUmNZ32j0KsR+qaQjc8IcEll3+dFUb7S/pH515/eksJ711CWu12pJ2oqcnbtZX6OKMW5cL6lpcM9x+1kfkFF66MYXkrK0Xl9ksL7Pu2VswbbO+Uxv2HKI9YWPxxUnxUpaPF9DWawHqQJmrEuW9G3jgQtHWa8IPFLpskdSVZBlxzHWqxvue048IKmkrqxnHr+v04h646OSLsZuu3uc9bPrl6wRxyUdH7g0Kp/17KkHW28VSaodOri9gHX9mNrt5zWSNq6zmX+S9ZtTR/RPvywpPL5n2CnW62cvS4/4vvM9uV0WVcR6cPph9ZKfJB0e5b36NOtbRtcXTf9NUntb+kdnWI+8b06mdyQlt1k84111yf8H/TpJiXZhiWf5ep7L/eTPR5KMr1QPOse6VXlj7bVmSUvzA3bynv7AMihHSHpePvYZ75l9176K7ZCkKW+1L2bdZEZRZFB3hWZdjE/ifV/Eiz5OfRR6HBJ8g/eplybvtTJS6GnZu3olrCd222xmOFQhTUvTaN63OZYWPBuh0Et1r7m8z05p//BXtUIVBYkreXe6Y3v1jJVCzQFh4byPVG9z3j1JobZRhQm8RweX/xH6kUJBBmJ/ic48e/h7zVTowe+qo7yb93Z8PmWOQi6bN5zg3dI9PmLYQoWGjv3lFO/2hysNOjwU8tFPOMt7wJN+u2p9FPrGtk+JzjpMcXmnbEXnPHMyNbyfi9mVd/gzhWwak8/zXqOtmhQdotAqI8NS3nu+M6RsRZhCPTbN1unjgxbNc4jsXM/fvHS6Z3FG9eivFDph5abTt+rf8+2dpND9z911eu4C0yeNqQp5vKXbtWl+myvTFZozXre3NmSrCrMUMhij2wOvRiyblaP8e0Cyq/9zcPK/3aK1OJ7/COFemODDr3vrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B/8DQ==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 97a7b3e7-33ba-495e-8468-2e20d42d7c45
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13333
+ 8177
+ 144
+ 64
+
+ -
+ 13407
+ 8209
+
+
+
+
+
+ - Curve to evaluate
+ - 8c756107-baf5-4855-a71a-7deb5e1e1e58
+ - Curve
+ - Curve
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13335
+ 8179
+ 57
+ 20
+
+ -
+ 13365
+ 8189
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - efda4507-fcf5-4271-bec8-2afa1fb716c9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13335
+ 8199
+ 57
+ 20
+
+ -
+ 13365
+ 8209
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - daa52b8c-bcff-468c-a926-cc78b985ef29
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13335
+ 8219
+ 57
+ 20
+
+ -
+ 13365
+ 8229
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8f913635-452b-44a7-9bf4-3b963fad71a0
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13422
+ 8179
+ 53
+ 20
+
+ -
+ 13450
+ 8189
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f187721d-7afe-4c5a-8f71-983a7e2ff8cb
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13422
+ 8199
+ 53
+ 20
+
+ -
+ 13450
+ 8209
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 6186e193-528d-48a7-9913-64641e3598af
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13422
+ 8219
+ 53
+ 20
+
+ -
+ 13450
+ 8229
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - c6ce561b-7d40-4cb1-bf89-9c20f471f588
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 13415
+ 8303
+ 98
+ 28
+
+ -
+ 13465
+ 8317
+
+
+
+
+
+ - Origin of plane
+ - 4fe9c060-fa95-44af-a7c0-59cd27eba2b5
+ - Origin
+ - Origin
+ - false
+ - 8f913635-452b-44a7-9bf4-3b963fad71a0
+ - 1
+
+
+
+
+ -
+ 13417
+ 8305
+ 33
+ 24
+
+ -
+ 13435
+ 8317
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - fe67a703-3930-434c-932d-9fc54ebd122a
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13480
+ 8305
+ 31
+ 24
+
+ -
+ 13497
+ 8317
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 1abc6800-a806-43aa-94d9-c5d719b2f74a
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 13359
+ 8070
+ 118
+ 44
+
+ -
+ 13422
+ 8092
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 97c8f66b-5f95-4947-aabc-022da87d15d8
+ - true
+ - Curves
+ - Curves
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 222d9612-bffe-47df-b96d-7c7b3e8113e4
+ - 2
+
+
+
+
+ -
+ 13361
+ 8072
+ 46
+ 20
+
+ -
+ 13385.5
+ 8082
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 30da38a9-b255-4c6a-be32-5d26ac2fef76
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 13361
+ 8092
+ 46
+ 20
+
+ -
+ 13385.5
+ 8102
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - e07d1cc5-8a1a-45cc-914e-653169fcad93
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13437
+ 8072
+ 38
+ 40
+
+ -
+ 13457.5
+ 8092
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - e48e0e77-43cd-4a76-be51-359805d73035
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 13131
+ 8747
+ 154
+ 64
+
+ -
+ 13215
+ 8779
+
+
+
+
+
+ - Base geometry
+ - 50c843f5-7330-4cbc-89c2-17dd12a90057
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - b0c60439-dde5-4a43-9cb1-586752e814ff
+ - 1
+
+
+
+
+ -
+ 13133
+ 8749
+ 67
+ 20
+
+ -
+ 13176
+ 8759
+
+
+
+
+
+
+
+ - Center of scaling
+ - fa1db8ea-4f29-4b54-b038-55ffd010ed33
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 13133
+ 8769
+ 67
+ 20
+
+ -
+ 13176
+ 8779
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 758b9c5d-ea9b-4f54-ad60-9f2e56c8e79c
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - a1160e3d-92b4-4103-8e86-69fa4fef1a92
+ - 1
+
+
+
+
+ -
+ 13133
+ 8789
+ 67
+ 20
+
+ -
+ 13176
+ 8799
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ad105e9b-dd8a-4dba-ac81-a6cd7e9514a5
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13230
+ 8749
+ 53
+ 30
+
+ -
+ 13258
+ 8764
+
+
+
+
+
+
+
+ - Transformation data
+ - cb726440-5669-40ff-ae87-d0ebc98e7fa5
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13230
+ 8779
+ 53
+ 30
+
+ -
+ 13258
+ 8794
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f35e9b25-38b3-4df8-b87e-042a6a55fb5f
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.001373312092932693349
+
+
+
+
+ -
+ 12994
+ 12294
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12994.46
+ 12294.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 5edaea74-32cb-4586-bd72-66694eb73160
+ - Rotate Direction
+
+
+
+
+ - Rotate an object from one direction to another.
+ - true
+ - a8b63ffe-878d-4a05-9860-52ebad9b59fd
+ - Rotate Direction
+ - Rotate Direction
+
+
+
+
+ -
+ 13921
+ 8793
+ 138
+ 84
+
+ -
+ 13989
+ 8835
+
+
+
+
+
+ - Base geometry
+ - a5c3c047-5dac-49b8-82cb-58d8ab284d31
+ - Geometry
+ - Geometry
+ - true
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13923
+ 8795
+ 51
+ 20
+
+ -
+ 13950
+ 8805
+
+
+
+
+
+
+
+ - Rotation center point
+ - 1b70d248-a86d-49f6-a776-e39e2788db66
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 13923
+ 8815
+ 51
+ 20
+
+ -
+ 13950
+ 8825
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Initial direction
+ - 9eee7472-229a-43ed-ba1a-a26d643c7c6f
+ - From
+ - From
+ - false
+ - 0
+
+
+
+
+ -
+ 13923
+ 8835
+ 51
+ 20
+
+ -
+ 13950
+ 8845
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Final direction
+ - e51136a0-51dd-4b89-8364-a9758368fe2b
+ - To
+ - To
+ - false
+ - 0
+
+
+
+
+ -
+ 13923
+ 8855
+ 51
+ 20
+
+ -
+ 13950
+ 8865
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 63c0ab19-f21b-424e-8a6e-d5c59ffe73e8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14004
+ 8795
+ 53
+ 40
+
+ -
+ 14032
+ 8815
+
+
+
+
+
+
+
+ - Transformation data
+ - c59c4c03-ab25-4f47-b9e3-0230228495e9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14004
+ 8835
+ 53
+ 40
+
+ -
+ 14032
+ 8855
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 95cd1c49-a8ea-49a6-92ec-058b3c47e0fb
+ - Move
+ - Move
+
+
+
+
+ -
+ 13921
+ 8711
+ 138
+ 44
+
+ -
+ 13989
+ 8733
+
+
+
+
+
+ - Base geometry
+ - 62794554-68e2-465f-87b6-1a5ed5211bf5
+ - Geometry
+ - Geometry
+ - true
+ - 63c0ab19-f21b-424e-8a6e-d5c59ffe73e8
+ - 1
+
+
+
+
+ -
+ 13923
+ 8713
+ 51
+ 20
+
+ -
+ 13950
+ 8723
+
+
+
+
+
+
+
+ - Translation vector
+ - 227db717-e9ba-4320-aca8-abff5c9e5a46
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 13923
+ 8733
+ 51
+ 20
+
+ -
+ 13950
+ 8743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 75c10226-7642-4e4f-aff4-92ce99a28a0e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14004
+ 8713
+ 53
+ 20
+
+ -
+ 14032
+ 8723
+
+
+
+
+
+
+
+ - Transformation data
+ - 347554ef-4bd2-4309-9441-f0b65e73a113
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14004
+ 8733
+ 53
+ 20
+
+ -
+ 14032
+ 8743
+
+
+
+
+
+
+
+
+
+
+
+ - bb59bffc-f54c-4682-9778-f6c3fe74fce3
+ - Arc
+
+
+
+
+ - Create an arc defined by base plane, radius and angle domain.
+ - true
+ - 53ee069b-f1e8-444c-96ba-72a63fd8ec64
+ - Arc
+ - Arc
+
+
+
+
+ -
+ 13458
+ 8607
+ 107
+ 64
+
+ -
+ 13511
+ 8639
+
+
+
+
+
+ - Base plane of arc
+ - 9bb6c57e-139a-47db-a795-a05d16e8736e
+ - Plane
+ - Plane
+ - false
+ - c6351565-05b0-4baa-98b5-f6a4d7d94365
+ - 1
+
+
+
+
+ -
+ 13460
+ 8609
+ 36
+ 20
+
+ -
+ 13479.5
+ 8619
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Radius of arc
+ - b8b3d433-e9fd-48dc-8a6e-d5736da134c5
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 13460
+ 8629
+ 36
+ 20
+
+ -
+ 13479.5
+ 8639
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Angle domain in radians
+ - 47ce4719-2172-4a22-a496-ba28e73f06c0
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 13460
+ 8649
+ 36
+ 20
+
+ -
+ 13479.5
+ 8659
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1.5707963267949
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Resulting arc
+ - ab1f7552-68fe-4ebf-a607-ba8f8f8b66d7
+ - Arc
+ - Arc
+ - false
+ - 0
+
+
+
+
+ -
+ 13526
+ 8609
+ 37
+ 30
+
+ -
+ 13546
+ 8624
+
+
+
+
+
+
+
+ - Arc length
+ - 4ad95d0e-c2cf-444b-b910-abd0f65b5d88
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13526
+ 8639
+ 37
+ 30
+
+ -
+ 13546
+ 8654
+
+
+
+
+
+
+
+
+
+
+
+ - 8cc3a196-f6a0-49ea-9ed9-0cb343a3ae64
+ - XZ Plane
+
+
+
+
+ - World XZ plane.
+ - true
+ - f93b9a89-a920-463e-bdd6-b00668a37643
+ - XZ Plane
+ - XZ Plane
+
+
+
+
+ -
+ 13536
+ 8741
+ 98
+ 28
+
+ -
+ 13586
+ 8755
+
+
+
+
+
+ - Origin of plane
+ - cbd8cc2b-87cf-4f9b-a143-b93c26891ca4
+ - Origin
+ - Origin
+ - false
+ - c6351565-05b0-4baa-98b5-f6a4d7d94365
+ - 1
+
+
+
+
+ -
+ 13538
+ 8743
+ 33
+ 24
+
+ -
+ 13556
+ 8755
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.25
+ -0.3125
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World XZ plane
+ - 94c64e31-ab8c-4f01-a89a-ae4e5b7cb5d4
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13601
+ 8743
+ 31
+ 24
+
+ -
+ 13618
+ 8755
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - c6351565-05b0-4baa-98b5-f6a4d7d94365
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13613
+ 8859
+ 50
+ 24
+
+ -
+ 13638.97
+ 8871.041
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1054f338-744a-4516-bfa8-b27e94e4a0a5
+ - Relay
+
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13670
+ 8476
+ 40
+ 16
+
+ -
+ 13690
+ 8484
+
+
+
+
+
+
+
+
+
+ - 962034e9-cc27-4394-afc4-5c16e3447cf9
+ - Extrude
+
+
+
+
+ - Extrude curves and surfaces along a vector.
+ - true
+ - d1393f04-ad10-4f71-987a-d3fcc6d9ac7d
+ - Extrude
+ - Extrude
+
+
+
+
+ -
+ 13860
+ 8404
+ 129
+ 44
+
+ -
+ 13924
+ 8426
+
+
+
+
+
+ - Profile curve or surface
+ - 97fd7239-ab0a-4a56-ac3c-b433e277f861
+ - Base
+ - Base
+ - false
+ - 4ef07656-3815-4c3c-9bec-cbe2a01d5c6c
+ - 1
+
+
+
+
+ -
+ 13862
+ 8406
+ 47
+ 20
+
+ -
+ 13887
+ 8416
+
+
+
+
+
+
+
+ - Extrusion direction
+ - fe6cea4e-ec25-45a3-afed-120e10f0a1d7
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 13862
+ 8426
+ 47
+ 20
+
+ -
+ 13887
+ 8436
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Extrusion result
+ - 61ba41bf-c4ea-4a44-927c-c1d1487acf56
+ - Extrusion
+ - Extrusion
+ - false
+ - 0
+
+
+
+
+ -
+ 13939
+ 8406
+ 48
+ 40
+
+ -
+ 13964.5
+ 8426
+
+
+
+
+
+
+
+
+
+
+
+ - 962034e9-cc27-4394-afc4-5c16e3447cf9
+ - Extrude
+
+
+
+
+ - Extrude curves and surfaces along a vector.
+ - true
+ - fc7e7dda-161e-47e8-bf05-ef3247cf0744
+ - Extrude
+ - Extrude
+
+
+
+
+ -
+ 13875
+ 8492
+ 129
+ 44
+
+ -
+ 13939
+ 8514
+
+
+
+
+
+ - Profile curve or surface
+ - 58905260-a5d1-4c05-8665-036fe582beb3
+ - Base
+ - Base
+ - false
+ - c7f744ec-428b-4799-9ea5-243435bd5a68
+ - 1
+
+
+
+
+ -
+ 13877
+ 8494
+ 47
+ 20
+
+ -
+ 13902
+ 8504
+
+
+
+
+
+
+
+ - Extrusion direction
+ - e2d686e0-6418-48f2-8fa2-a68f235d4677
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 13877
+ 8514
+ 47
+ 20
+
+ -
+ 13902
+ 8524
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Extrusion result
+ - f57ac7e0-7363-4d7e-835e-04b299507fee
+ - Extrusion
+ - Extrusion
+ - false
+ - 0
+
+
+
+
+ -
+ 13954
+ 8494
+ 48
+ 40
+
+ -
+ 13979.5
+ 8514
+
+
+
+
+
+
+
+
+
+
+
+ - 904e4b56-484a-4814-b35f-aa4baf362117
+ - Brep | Brep
+
+
+
+
+ - Solve intersection events for two Breps.
+ - true
+ - ca7faa32-fd40-474d-895c-9962ff8d4287
+ - true
+ - Brep | Brep
+ - Brep | Brep
+
+
+
+
+ -
+ 14252
+ 8381
+ 111
+ 44
+
+ -
+ 14308
+ 8403
+
+
+
+
+
+ - First Brep
+ - e8ceb22c-8873-455e-b509-7181a6665bde
+ - true
+ - Brep A
+ - Brep A
+ - false
+ - b646408d-649c-4c80-8799-49552bb9fc8b
+ - 1
+
+
+
+
+ -
+ 14254
+ 8383
+ 39
+ 20
+
+ -
+ 14275
+ 8393
+
+
+
+
+
+
+
+ - Second Brep
+ - e3b1c715-7e3b-4496-9676-03ae5159be50
+ - true
+ - Brep B
+ - Brep B
+ - false
+ - 54bd28de-4916-40d0-b1ce-9fcfaf1b6b1e
+ - 1
+
+
+
+
+ -
+ 14254
+ 8403
+ 39
+ 20
+
+ -
+ 14275
+ 8413
+
+
+
+
+
+
+
+ - 1
+ - Intersection curves
+ - 1b1b1ae2-3f38-428c-99c7-13f9e84b0c41
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 14323
+ 8383
+ 38
+ 20
+
+ -
+ 14343.5
+ 8393
+
+
+
+
+
+
+
+ - 1
+ - Intersection points
+ - c2f2c645-340a-44e6-b25e-7080a7072006
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14323
+ 8403
+ 38
+ 20
+
+ -
+ 14343.5
+ 8413
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - Curve
+ - Curve
+ - false
+ - e732a9da-d4e9-4602-a4e4-b3b0818ddfbd
+ - 1
+
+
+
+
+ -
+ 14363
+ 8190
+ 50
+ 24
+
+ -
+ 14388.63
+ 8202.076
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 282cff69-e54b-4737-8f9a-850aa3cd8456
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 13722
+ 8583
+ 138
+ 64
+
+ -
+ 13790
+ 8615
+
+
+
+
+
+ - Base geometry
+ - d3549c62-6ae0-47f5-b1f5-4f999657a219
+ - Geometry
+ - Geometry
+ - true
+ - 4ef07656-3815-4c3c-9bec-cbe2a01d5c6c
+ - 1
+
+
+
+
+ -
+ 13724
+ 8585
+ 51
+ 20
+
+ -
+ 13751
+ 8595
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - de984d04-88ac-4a0d-b546-0dcd507fb55c
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 13724
+ 8605
+ 51
+ 20
+
+ -
+ 13751
+ 8615
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5707963267948966
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - bbdb39b1-0087-42ac-8962-18a68ec8af27
+ - Plane
+ - Plane
+ - false
+ - a572f27c-7b25-4821-8dee-9d9618374ab6
+ - 1
+
+
+
+
+ -
+ 13724
+ 8625
+ 51
+ 20
+
+ -
+ 13751
+ 8635
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - c7f744ec-428b-4799-9ea5-243435bd5a68
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13805
+ 8585
+ 53
+ 30
+
+ -
+ 13833
+ 8600
+
+
+
+
+
+
+
+ - Transformation data
+ - b85da55a-f2b3-4c69-95df-3e91cf89f978
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13805
+ 8615
+ 53
+ 30
+
+ -
+ 13833
+ 8630
+
+
+
+
+
+
+
+
+
+
+
+ - 8cc3a196-f6a0-49ea-9ed9-0cb343a3ae64
+ - XZ Plane
+
+
+
+
+ - World XZ plane.
+ - true
+ - 247a4029-384a-4dac-9fc9-6fb7217a2e8a
+ - XZ Plane
+ - XZ Plane
+
+
+
+
+ -
+ 13460
+ 8860
+ 98
+ 28
+
+ -
+ 13510
+ 8874
+
+
+
+
+
+ - Origin of plane
+ - dce3d030-fd69-4e5f-8f07-fa4bd4d31b05
+ - Origin
+ - Origin
+ - false
+ - 0
+
+
+
+
+ -
+ 13462
+ 8862
+ 33
+ 24
+
+ -
+ 13480
+ 8874
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World XZ plane
+ - 85487332-8333-4700-8e95-70f7c6d20fad
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13525
+ 8862
+ 31
+ 24
+
+ -
+ 13542
+ 8874
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - a906e50a-a66a-4631-ba65-47463c74c699
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 13697
+ 8888
+ 98
+ 28
+
+ -
+ 13747
+ 8902
+
+
+
+
+
+ - Origin of plane
+ - bf09e77e-41db-450e-8a03-03361b37c920
+ - Origin
+ - Origin
+ - false
+ - 0
+
+
+
+
+ -
+ 13699
+ 8890
+ 33
+ 24
+
+ -
+ 13717
+ 8902
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - a572f27c-7b25-4821-8dee-9d9618374ab6
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13762
+ 8890
+ 31
+ 24
+
+ -
+ 13779
+ 8902
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 139a8b65-f34d-4be3-a012-d0bb361fc856
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 13677
+ 8381
+ 138
+ 44
+
+ -
+ 13745
+ 8403
+
+
+
+
+
+ - Base geometry
+ - 2c96d184-98ca-42d3-834a-e91f766a9c76
+ - Geometry
+ - Geometry
+ - true
+ - 1054f338-744a-4516-bfa8-b27e94e4a0a5
+ - 1
+
+
+
+
+ -
+ 13679
+ 8383
+ 51
+ 20
+
+ -
+ 13706
+ 8393
+
+
+
+
+
+
+
+ - Mirror plane
+ - d6c4807d-4b44-48c4-a0b8-e5cecf810633
+ - Plane
+ - Plane
+ - false
+ - 0baa49da-a169-4871-9d86-65cc5afb5b04
+ - 1
+
+
+
+
+ -
+ 13679
+ 8403
+ 51
+ 20
+
+ -
+ 13706
+ 8413
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 88523111-6a46-41e0-a017-e45454c084f7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13760
+ 8383
+ 53
+ 20
+
+ -
+ 13788
+ 8393
+
+
+
+
+
+
+
+ - Transformation data
+ - 8af842e1-5709-4a26-ab6d-d60b40699244
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13760
+ 8403
+ 53
+ 20
+
+ -
+ 13788
+ 8413
+
+
+
+
+
+
+
+
+
+
+
+ - 8529dbdf-9b6f-42e9-8e1f-c7a2bde56a70
+ - Line
+
+
+
+
+ - Contains a collection of line segments
+ - true
+ - 0baa49da-a169-4871-9d86-65cc5afb5b04
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 13765
+ 8711
+ 50
+ 24
+
+ -
+ 13790.72
+ 8723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ -1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - dbe9fce4-b6b3-465f-9615-34833c4763bd
+ - Torsion
+
+
+
+
+ - Evaluate the torsion of a curve at a specified parameter.
+ - true
+ - 0c222484-9812-4992-aca9-55f3539a8ff4
+ - true
+ - Torsion
+ - Torsion
+
+
+
+
+ -
+ 4565
+ 7111
+ 127
+ 44
+
+ -
+ 4635
+ 7133
+
+
+
+
+
+ - Curve to evaluate
+ - 7ebf31cf-af6a-4e01-ba43-d9213531bcd3
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3174a38d-b561-4a42-8f8a-31608ef08ab4
+ - 1
+
+
+
+
+ -
+ 4567
+ 7113
+ 53
+ 20
+
+ -
+ 4595
+ 7123
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 5fbbe351-7abc-4b7b-b566-0ce07da4b4ff
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 46971004-a130-4645-b7c1-54287fdbbeac
+ - 1
+
+
+
+
+ -
+ 4567
+ 7133
+ 53
+ 20
+
+ -
+ 4595
+ 7143
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 359f0649-ab1b-411e-9f78-5c403e405455
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4650
+ 7113
+ 40
+ 20
+
+ -
+ 4671.5
+ 7123
+
+
+
+
+
+
+
+ - Curvature torsion at {t}
+ - 3ac4a7b4-d8ef-406c-9932-8d5c3d59f2fd
+ - true
+ - Torsion
+ - Torsion
+ - false
+ - 0
+
+
+
+
+ -
+ 4650
+ 7133
+ 40
+ 20
+
+ -
+ 4671.5
+ 7143
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c14b8c03-a64c-4920-a097-fea4132063d9
+ - Panel
+
+ - false
+ - 0
+ - 359f0649-ab1b-411e-9f78-5c403e405455
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4812
+ 7070
+ 391
+ 222
+
+ - 0
+ - 0
+ - 0
+ -
+ 4812.472
+ 7070.464
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - b8bbc3f1-f3ba-498e-b342-f8242c9d6112
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14039
+ 8515
+ 154
+ 64
+
+ -
+ 14123
+ 8547
+
+
+
+
+
+ - Base geometry
+ - 4fa6b96c-8de2-4a89-b43b-88946837d574
+ - Geometry
+ - Geometry
+ - true
+ - f57ac7e0-7363-4d7e-835e-04b299507fee
+ - 1
+
+
+
+
+ -
+ 14041
+ 8517
+ 67
+ 20
+
+ -
+ 14084
+ 8527
+
+
+
+
+
+
+
+ - Center of scaling
+ - 6489dbb7-3d38-49ac-87b8-78bcab14664b
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14041
+ 8537
+ 67
+ 20
+
+ -
+ 14084
+ 8547
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - f0dff64f-45ae-4368-9964-72f5826e3fba
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - a85e6e17-15ff-4d3d-a0e8-f892311b6c98
+ - 1
+
+
+
+
+ -
+ 14041
+ 8557
+ 67
+ 20
+
+ -
+ 14084
+ 8567
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 54bd28de-4916-40d0-b1ce-9fcfaf1b6b1e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14138
+ 8517
+ 53
+ 30
+
+ -
+ 14166
+ 8532
+
+
+
+
+
+
+
+ - Transformation data
+ - 2250102f-dcfd-4461-8ceb-6e1e0c113f49
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14138
+ 8547
+ 53
+ 30
+
+ -
+ 14166
+ 8562
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - a85e6e17-15ff-4d3d-a0e8-f892311b6c98
+ - Number Slider
+ - Number Slider
+ - false
+ - 0
+
+
+
+
+ -
+ 14026
+ 8639
+ 198
+ 20
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 32
+ - 0
+ - 0
+ - 0
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - cca0c12e-17dc-41d5-bfe2-e9df0520b82a
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 13872
+ 8289
+ 154
+ 64
+
+ -
+ 13956
+ 8321
+
+
+
+
+
+ - Base geometry
+ - 8ba5e841-e5ad-497a-b711-34cc9d4fa836
+ - Geometry
+ - Geometry
+ - true
+ - 61ba41bf-c4ea-4a44-927c-c1d1487acf56
+ - 1
+
+
+
+
+ -
+ 13874
+ 8291
+ 67
+ 20
+
+ -
+ 13917
+ 8301
+
+
+
+
+
+
+
+ - Center of scaling
+ - e0f76713-7720-42a7-af54-4e9db4d8f222
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 13874
+ 8311
+ 67
+ 20
+
+ -
+ 13917
+ 8321
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - b2c71738-464d-4a11-b859-011358887790
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - a85e6e17-15ff-4d3d-a0e8-f892311b6c98
+ - 1
+
+
+
+
+ -
+ 13874
+ 8331
+ 67
+ 20
+
+ -
+ 13917
+ 8341
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - b646408d-649c-4c80-8799-49552bb9fc8b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13971
+ 8291
+ 53
+ 30
+
+ -
+ 13999
+ 8306
+
+
+
+
+
+
+
+ - Transformation data
+ - 2c5c592d-9ead-47b1-b58d-22738a4821a9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13971
+ 8321
+ 53
+ 30
+
+ -
+ 13999
+ 8336
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - dc63eaba-886a-45fc-b7ca-733969d01b4e
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14059
+ 8185
+ 154
+ 64
+
+ -
+ 14143
+ 8217
+
+
+
+
+
+ - Base geometry
+ - 0b0d7401-2651-4b5f-8f0d-e650b2000fb7
+ - Geometry
+ - Geometry
+ - true
+ - 1b1b1ae2-3f38-428c-99c7-13f9e84b0c41
+ - 1
+
+
+
+
+ -
+ 14061
+ 8187
+ 67
+ 20
+
+ -
+ 14104
+ 8197
+
+
+
+
+
+
+
+ - Center of scaling
+ - 6d716081-45d6-4b27-8af3-48aad3fec2b6
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14061
+ 8207
+ 67
+ 20
+
+ -
+ 14104
+ 8217
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 9a0d7ac0-5abd-4374-ac7a-aecda08b4d10
+ - 1/2^X
+ - Factor
+ - Factor
+ - false
+ - a85e6e17-15ff-4d3d-a0e8-f892311b6c98
+ - 1
+
+
+
+
+ -
+ 14061
+ 8227
+ 67
+ 20
+
+ -
+ 14104
+ 8237
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - e732a9da-d4e9-4602-a4e4-b3b0818ddfbd
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14158
+ 8187
+ 53
+ 30
+
+ -
+ 14186
+ 8202
+
+
+
+
+
+
+
+ - Transformation data
+ - 58560329-f871-4778-9d52-566d70203dc1
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14158
+ 8217
+ 53
+ 30
+
+ -
+ 14186
+ 8232
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 72574cc5-597d-4664-a4cc-2ceab24cddef
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 14413
+ 8289
+ 125
+ 64
+
+ -
+ 14463
+ 8321
+
+
+
+
+
+ - Curve to divide
+ - f1c1ab49-244c-4d10-9ccd-3304eadacdb1
+ - Curve
+ - Curve
+ - false
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - 1
+
+
+
+
+ -
+ 14415
+ 8291
+ 33
+ 20
+
+ -
+ 14433
+ 8301
+
+
+
+
+
+
+
+ - Number of segments
+ - e4f8040f-f126-4670-a148-38748893f2e5
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 14415
+ 8311
+ 33
+ 20
+
+ -
+ 14433
+ 8321
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 2a9324a6-15f9-4cdf-8ecf-2c6e61a92cf0
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 14415
+ 8331
+ 33
+ 20
+
+ -
+ 14433
+ 8341
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - d763986d-cd77-4cc1-8f0f-0c7cd3eccc03
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14478
+ 8291
+ 58
+ 20
+
+ -
+ 14508.5
+ 8301
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 97f0adc8-bea1-402f-aa14-b91848430dff
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 14478
+ 8311
+ 58
+ 20
+
+ -
+ 14508.5
+ 8321
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - ba4af475-4e64-40c8-ab70-8d91bf3d83c8
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 14478
+ 8331
+ 58
+ 20
+
+ -
+ 14508.5
+ 8341
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1b6472a1-f524-4daa-b233-3a22f324c760
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 14781
+ 8425
+ 122
+ 64
+
+ -
+ 14861
+ 8457
+
+
+
+
+
+ - Line start point
+ - 8f13a30a-f970-4929-a934-4255ea650b2b
+ - Start
+ - Start
+ - false
+ - e12bc325-1b0b-4ff0-a5ed-ac9efc47bd2b
+ - 1
+
+
+
+
+ -
+ 14783
+ 8427
+ 63
+ 20
+
+ -
+ 14824
+ 8437
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 5ca02ff0-6d07-41c6-bff1-e749630d3063
+ - Direction
+ - Direction
+ - false
+ - ba7152e4-8f8e-4152-a6a2-0a7edd4359bd
+ - 1
+
+
+
+
+ -
+ 14783
+ 8447
+ 63
+ 20
+
+ -
+ 14824
+ 8457
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 98487045-5ad0-4acb-a5b5-3a6b64222d7a
+ - -ABS(X)/4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14783
+ 8467
+ 63
+ 20
+
+ -
+ 14824
+ 8477
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - e5e806ac-824e-4994-a998-f65d054c1bb1
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 14876
+ 8427
+ 25
+ 60
+
+ -
+ 14890
+ 8457
+
+
+
+
+
+
+
+
+
+
+
+ - ab14760f-87a6-462e-b481-4a2c26a9a0d7
+ - Derivatives
+
+
+
+
+ - Evaluate the derivatives of a curve at a specified parameter.
+ - true
+ - c94f9948-4a27-493a-9c4c-866a02e0fc5b
+ - Derivatives
+ - Derivatives
+
+
+
+
+ -
+ 14601
+ 8249
+ 117
+ 144
+
+ -
+ 14671
+ 8321
+
+
+
+
+
+ - 2
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 7
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+
+
+
+
+ - Curve to evaluate
+ - e97ee56d-5e69-4880-96d1-90688bf1f3da
+ - Curve
+ - Curve
+ - false
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - 1
+
+
+
+
+ -
+ 14603
+ 8251
+ 53
+ 70
+
+ -
+ 14631
+ 8286
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - da698850-39a6-4398-9deb-35e914b38623
+ - Parameter
+ - Parameter
+ - false
+ - ba4af475-4e64-40c8-ab70-8d91bf3d83c8
+ - 1
+
+
+
+
+ -
+ 14603
+ 8321
+ 53
+ 70
+
+ -
+ 14631
+ 8356
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - e12bc325-1b0b-4ff0-a5ed-ac9efc47bd2b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8251
+ 30
+ 20
+
+ -
+ 14702.5
+ 8261
+
+
+
+
+
+
+
+ - First curve derivative at t (Velocity)
+ - 10b0b463-13d2-4fe4-af24-89b53132f9cd
+ - false
+ - First derivative
+ - 1
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8271
+ 30
+ 20
+
+ -
+ 14702.5
+ 8281
+
+
+
+
+
+
+
+ - Second curve derivative at t (Acceleration)
+ - ba7152e4-8f8e-4152-a6a2-0a7edd4359bd
+ - false
+ - Second derivative
+ - 2
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8291
+ 30
+ 20
+
+ -
+ 14702.5
+ 8301
+
+
+
+
+
+
+
+ - Third curve derivative at t (Jolt)
+ - 254faba4-4061-42c7-9530-c18e9113d07d
+ - false
+ - Third derivative
+ - 3
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8311
+ 30
+ 20
+
+ -
+ 14702.5
+ 8321
+
+
+
+
+
+
+
+ - Fourth curve derivative at t (Jounce)
+ - cc99992d-4bdd-416f-adb8-f740a9952299
+ - false
+ - Fourth derivative
+ - 4
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8331
+ 30
+ 20
+
+ -
+ 14702.5
+ 8341
+
+
+
+
+
+
+
+ - Fifth curve derivative at t
+ - 3b7459b3-d04d-4d24-98ba-0d7fb7acda68
+ - false
+ - Fifth derivative
+ - 5
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8351
+ 30
+ 20
+
+ -
+ 14702.5
+ 8361
+
+
+
+
+
+
+
+ - Sixth curve derivative at t
+ - e57c3fb0-a772-454a-91d7-7e3de36fd544
+ - false
+ - Sixth derivative
+ - 6
+ - false
+ - 0
+
+
+
+
+ -
+ 14686
+ 8371
+ 30
+ 20
+
+ -
+ 14702.5
+ 8381
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - dbe9fce4-b6b3-465f-9615-34833c4763bd
+ - Torsion
+
+
+
+
+ - Evaluate the torsion of a curve at a specified parameter.
+ - true
+ - d54d665b-d78c-4add-849c-59d51ada112a
+ - Torsion
+ - Torsion
+
+
+
+
+ -
+ 14454
+ 8471
+ 127
+ 44
+
+ -
+ 14524
+ 8493
+
+
+
+
+
+ - Curve to evaluate
+ - ae0150e5-1725-4e5f-a608-ded4aa2daa43
+ - Curve
+ - Curve
+ - false
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - 1
+
+
+
+
+ -
+ 14456
+ 8473
+ 53
+ 20
+
+ -
+ 14484
+ 8483
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 6774b2af-5e15-41d8-a7ad-63c5429c1e2d
+ - Parameter
+ - Parameter
+ - false
+ - ba4af475-4e64-40c8-ab70-8d91bf3d83c8
+ - 1
+
+
+
+
+ -
+ 14456
+ 8493
+ 53
+ 20
+
+ -
+ 14484
+ 8503
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 2903c924-b92d-4baa-abee-6ddbcae08dcb
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14539
+ 8473
+ 40
+ 20
+
+ -
+ 14560.5
+ 8483
+
+
+
+
+
+
+
+ - Curvature torsion at {t}
+ - fcbe560a-9373-406b-af0c-bce2902b7cf3
+ - Torsion
+ - Torsion
+ - false
+ - 0
+
+
+
+
+ -
+ 14539
+ 8493
+ 40
+ 20
+
+ -
+ 14560.5
+ 8503
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 1b1f234b-9e40-4ad5-b372-3a34ebaf845e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - fcbe560a-9373-406b-af0c-bce2902b7cf3
+ - 1
+
+
+
+
+ -
+ 14732
+ 8583
+ 150
+ 150
+
+ -
+ 14732.32
+ 8583.48
+
+ - -1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 477ce899-8734-4c53-b3e7-ede7bc13c9b2
+ - Panel
+
+ - false
+ - 0.030199736356735229
+ - fcbe560a-9373-406b-af0c-bce2902b7cf3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14454
+ 8583
+ 180
+ 228
+
+ - 0
+ - 0
+ - 0
+ -
+ 14454
+ 8583.149
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ca54ce81-d8d2-4220-a568-88e825c7fd05
+ - Panel
+
+ - false
+ - 0.34491178393363953
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14634
+ 7915
+ 269
+ 181
+
+ - 0
+ - 0
+ - 0
+ -
+ 14634.85
+ 7915.973
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - c8039616-8c41-421b-a878-bcc106c79833
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 14457
+ 7947
+ 74
+ 64
+
+ -
+ 14505
+ 7979
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - af124906-a799-49cc-9a37-c9474565779d
+ - List
+ - List
+ - false
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - 1
+
+
+
+
+ -
+ 14459
+ 7949
+ 31
+ 20
+
+ -
+ 14476
+ 7959
+
+
+
+
+
+
+
+ - Item index
+ - d856bf0e-97b3-4f3d-b30d-0d588c27771c
+ - Index
+ - Index
+ - false
+ - be7a6ada-d63a-4a84-b7b9-32da56bb149d
+ - 1
+
+
+
+
+ -
+ 14459
+ 7969
+ 31
+ 20
+
+ -
+ 14476
+ 7979
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 1622ff14-d905-44fe-bd0c-b3985fa4e2c7
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 14459
+ 7989
+ 31
+ 20
+
+ -
+ 14476
+ 7999
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - d61fefcc-ccfc-4593-bba3-4fcd499d781b
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 14520
+ 7949
+ 9
+ 60
+
+ -
+ 14526
+ 7979
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - ad8ad73f-7bf1-4e84-ae5b-35d7ae55ac13
+ - Number Slider
+ - Number Slider
+ - false
+ - 0
+
+
+
+
+ -
+ 14237
+ 8102
+ 198
+ 20
+
+ -
+ 14237.44
+ 8102.395
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0.411152
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 9abd8c8b-9baf-467f-bebc-e105dcc07f34
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 14257
+ 8050
+ 109
+ 28
+
+ -
+ 14296
+ 8064
+
+
+
+
+
+ - 1
+ - Base list
+ - 681b274a-fe7d-410a-a48d-b83ce9db0cd2
+ - List
+ - List
+ - false
+ - 72acb08b-0d33-49a8-aa92-2de724542dcc
+ - 1
+
+
+
+
+ -
+ 14259
+ 8052
+ 22
+ 24
+
+ -
+ 14271.5
+ 8064
+
+
+
+
+
+
+
+ - Number of items in L
+ - 0bfad774-1c79-4581-adf3-9b3af8e0177d
+ - X-1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14311
+ 8052
+ 53
+ 24
+
+ -
+ 14331
+ 8064
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - a7bb95fd-cd3d-4b39-b762-629d8b9a94e8
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 14446
+ 8058
+ 82
+ 44
+
+ -
+ 14477
+ 8080
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - e756bd61-b297-4de8-ac26-e4f206e2ac87
+ - A
+ - A
+ - true
+ - 0bfad774-1c79-4581-adf3-9b3af8e0177d
+ - 1
+
+
+
+
+ -
+ 14448
+ 8060
+ 14
+ 20
+
+ -
+ 14456.5
+ 8070
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 203dcda4-0b0f-4f8d-b2d2-f9bb50b9bc88
+ - B
+ - B
+ - true
+ - ad8ad73f-7bf1-4e84-ae5b-35d7ae55ac13
+ - 1
+
+
+
+
+ -
+ 14448
+ 8080
+ 14
+ 20
+
+ -
+ 14456.5
+ 8090
+
+
+
+
+
+
+
+ - Result of multiplication
+ - be7a6ada-d63a-4a84-b7b9-32da56bb149d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14492
+ 8060
+ 34
+ 40
+
+ -
+ 14510.5
+ 8080
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 49aa3d4c-1482-4c8c-9415-b464a910b3db
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 13707
+ 8898
+ 98
+ 28
+
+ -
+ 13757
+ 8912
+
+
+
+
+
+ - Origin of plane
+ - 11224c03-c710-44da-96e1-5eab5bd12478
+ - Origin
+ - Origin
+ - false
+ - 0
+
+
+
+
+ -
+ 13709
+ 8900
+ 33
+ 24
+
+ -
+ 13727
+ 8912
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - 525c5437-ebb2-451f-84ce-f0287389eacf
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13772
+ 8900
+ 31
+ 24
+
+ -
+ 13789
+ 8912
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 79088ca3-0dfd-44b3-84a5-56148c22f7d6
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13643
+ 8239
+ 144
+ 64
+
+ -
+ 13717
+ 8271
+
+
+
+
+
+ - Curve to evaluate
+ - bd0ab68b-17f9-4d72-bffc-c1ec10875eb0
+ - Curve
+ - Curve
+ - false
+ - ab1f7552-68fe-4ebf-a607-ba8f8f8b66d7
+ - 1
+
+
+
+
+ -
+ 13645
+ 8241
+ 57
+ 20
+
+ -
+ 13675
+ 8251
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - da73c6be-d60d-49d2-a72c-5f7cfe727e20
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13645
+ 8261
+ 57
+ 20
+
+ -
+ 13675
+ 8271
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 55d9499a-8bf0-48bc-b5f8-545b93d67acf
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13645
+ 8281
+ 57
+ 20
+
+ -
+ 13675
+ 8291
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 9e062098-b11e-4915-92df-b0640c001069
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13732
+ 8241
+ 53
+ 20
+
+ -
+ 13760
+ 8251
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 5fccebb2-96eb-432b-9064-0be0bfeacbcb
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13732
+ 8261
+ 53
+ 20
+
+ -
+ 13760
+ 8271
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e1aa3c7b-59a2-46c9-9ba0-c5e7c4920bae
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13732
+ 8281
+ 53
+ 20
+
+ -
+ 13760
+ 8291
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 80f36bd7-5d9c-4b03-96f8-ee272dbd6bf2
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 13568
+ 8114
+ 138
+ 64
+
+ -
+ 13636
+ 8146
+
+
+
+
+
+ - Base geometry
+ - d7fe04f0-97be-4eb7-8660-8bcb7463855b
+ - Geometry
+ - Geometry
+ - true
+ - 6a1a9be3-ccce-4236-8021-995120c6a912
+ - 1
+
+
+
+
+ -
+ 13570
+ 8116
+ 51
+ 20
+
+ -
+ 13597
+ 8126
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 3d78ce17-dded-4c9f-b1cc-d69b46665dd2
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 13570
+ 8136
+ 51
+ 20
+
+ -
+ 13597
+ 8146
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - eab25968-f47f-487d-b212-05fedbdbebb6
+ - Plane
+ - Plane
+ - false
+ - 9e062098-b11e-4915-92df-b0640c001069
+ - 1
+
+
+
+
+ -
+ 13570
+ 8156
+ 51
+ 20
+
+ -
+ 13597
+ 8166
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - bd08df02-9dfc-4a84-9458-20fee8242e62
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13651
+ 8116
+ 53
+ 30
+
+ -
+ 13679
+ 8131
+
+
+
+
+
+
+
+ - Transformation data
+ - 473d73d2-ffe9-42c6-a20c-5961ba6d32d6
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13651
+ 8146
+ 53
+ 30
+
+ -
+ 13679
+ 8161
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ea91fd81-1355-436f-b5d0-e6feb53f482e
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 13556
+ 7942
+ 144
+ 64
+
+ -
+ 13630
+ 7974
+
+
+
+
+
+ - Curve to evaluate
+ - ddf1f6db-0604-4815-a01c-d36797b30f73
+ - Curve
+ - Curve
+ - false
+ - bd08df02-9dfc-4a84-9458-20fee8242e62
+ - 1
+
+
+
+
+ -
+ 13558
+ 7944
+ 57
+ 20
+
+ -
+ 13588
+ 7954
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 539a55e7-4bfc-4ea4-b5f7-cd19523f8118
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13558
+ 7964
+ 57
+ 20
+
+ -
+ 13588
+ 7974
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 81d65e87-5d37-455c-a196-1ccf90444a4f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 13558
+ 7984
+ 57
+ 20
+
+ -
+ 13588
+ 7994
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e3dd8fa2-fedb-4ef5-879b-bfdb4a57771d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13645
+ 7944
+ 53
+ 20
+
+ -
+ 13673
+ 7954
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ea5e44d9-6065-47ad-9016-08c21f36831e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13645
+ 7964
+ 53
+ 20
+
+ -
+ 13673
+ 7974
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 10eddca8-5fe9-4e26-ab8a-2dc2a15f709b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13645
+ 7984
+ 53
+ 20
+
+ -
+ 13673
+ 7994
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - b54991fc-30ac-49cc-8613-0e7a0395a31d
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 13710
+ 8006
+ 118
+ 44
+
+ -
+ 13773
+ 8028
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 2347f468-79b1-41da-897e-f7ae995da894
+ - Curves
+ - Curves
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - bd08df02-9dfc-4a84-9458-20fee8242e62
+ - 2
+
+
+
+
+ -
+ 13712
+ 8008
+ 46
+ 20
+
+ -
+ 13736.5
+ 8018
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - d42eea55-015a-419f-a1f5-02d9261c2f8e
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 13712
+ 8028
+ 46
+ 20
+
+ -
+ 13736.5
+ 8038
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 33cbeb3f-e72f-4b04-b042-2aea37591cd4
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13788
+ 8008
+ 38
+ 40
+
+ -
+ 13808.5
+ 8028
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 0f5c57f8-ce6a-48c7-a2f6-02a5d5a79256
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 13815
+ 8150
+ 154
+ 64
+
+ -
+ 13899
+ 8182
+
+
+
+
+
+ - Base geometry
+ - d81c4070-c89e-40e7-9050-639cd739e3a6
+ - Geometry
+ - Geometry
+ - true
+ - 33cbeb3f-e72f-4b04-b042-2aea37591cd4
+ - 1
+
+
+
+
+ -
+ 13817
+ 8152
+ 67
+ 20
+
+ -
+ 13860
+ 8162
+
+
+
+
+
+
+
+ - Center of scaling
+ - 4a36cf2a-cff8-4de1-a82e-b79e8c32fb2a
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 13817
+ 8172
+ 67
+ 20
+
+ -
+ 13860
+ 8182
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 089c394d-6bd8-4fad-9844-36e1581f86e3
+ - X/1.5
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 13817
+ 8192
+ 67
+ 20
+
+ -
+ 13860
+ 8202
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 4ef07656-3815-4c3c-9bec-cbe2a01d5c6c
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13914
+ 8152
+ 53
+ 30
+
+ -
+ 13942
+ 8167
+
+
+
+
+
+
+
+ - Transformation data
+ - 7f9736e1-490c-490d-8927-816a0d60cf20
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13914
+ 8182
+ 53
+ 30
+
+ -
+ 13942
+ 8197
+
+
+
+
+
+
+
+
+
+
+
+ - 429cbba9-55ee-4e84-98ea-876c44db879a
+ - Sub Curve
+
+
+
+
+ - Construct a curve from the sub-domain of a base curve.
+ - true
+ - fcb490ca-2eb1-4482-9964-87d42c763406
+ - Sub Curve
+ - Sub Curve
+
+
+
+
+ -
+ 13452
+ 8404
+ 124
+ 44
+
+ -
+ 13526
+ 8426
+
+
+
+
+
+ - Base curve
+ - fc81c492-5640-4a72-b6f2-b3e13f1c8fec
+ - Base curve
+ - Base curve
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13454
+ 8406
+ 57
+ 20
+
+ -
+ 13484
+ 8416
+
+
+
+
+
+
+
+ - Sub-domain to extract
+ - caf95579-1bf4-4ac6-94ff-d01f1703b273
+ - Domain
+ - Domain
+ - false
+ - 6ff973c6-a9b1-406c-9e93-f200f72c7d47
+ - 1
+
+
+
+
+ -
+ 13454
+ 8426
+ 57
+ 20
+
+ -
+ 13484
+ 8436
+
+
+
+
+
+
+
+ - Resulting sub curve
+ - 6a1a9be3-ccce-4236-8021-995120c6a912
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 13541
+ 8406
+ 33
+ 40
+
+ -
+ 13559
+ 8426
+
+
+
+
+
+
+
+
+
+
+
+ - ccfd6ba8-ecb1-44df-a47e-08126a653c51
+ - Curve Domain
+
+
+
+
+ - Measure and set the curve domain
+ - true
+ - 3bc6edd5-ecdd-436a-bede-5add9a75cffb
+ - Curve Domain
+ - Curve Domain
+
+
+
+
+ -
+ 13452
+ 8615
+ 116
+ 44
+
+ -
+ 13510
+ 8637
+
+
+
+
+
+ - Curve to measure/modify
+ - dc1249a1-04f3-43aa-b208-78b4bc80a0e3
+ - Curve
+ - Curve
+ - false
+ - 82d74b1c-aa1a-4d17-baaa-7d7c00cfe338
+ - 1
+
+
+
+
+ -
+ 13454
+ 8617
+ 41
+ 20
+
+ -
+ 13476
+ 8627
+
+
+
+
+
+
+
+ - Optional domain, if omitted the curve will not be modified.
+ - ba8cd935-4eb8-4cd5-b1b4-4417965c4cac
+ - Domain
+ - Domain
+ - true
+ - 0
+
+
+
+
+ -
+ 13454
+ 8637
+ 41
+ 20
+
+ -
+ 13476
+ 8647
+
+
+
+
+
+
+
+ - Curve with new domain.
+ - 0128f3bf-04ec-421a-9c02-73dfcea235d7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 13525
+ 8617
+ 41
+ 20
+
+ -
+ 13547
+ 8627
+
+
+
+
+
+
+
+ - Domain of original curve.
+ - d0d36802-3abc-4807-a8fa-c03964d14e47
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 13525
+ 8637
+ 41
+ 20
+
+ -
+ 13547
+ 8647
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 716da467-dc3a-4f09-931d-5a1e800a4e62
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 13452
+ 8551
+ 104
+ 44
+
+ -
+ 13510
+ 8573
+
+
+
+
+
+ - Base domain
+ - d39cca10-36f5-4d12-86fc-9a8e59d84af1
+ - Domain
+ - Domain
+ - false
+ - d0d36802-3abc-4807-a8fa-c03964d14e47
+ - 1
+
+
+
+
+ -
+ 13454
+ 8553
+ 41
+ 40
+
+ -
+ 13476
+ 8573
+
+
+
+
+
+
+
+ - Start of domain
+ - 662aa5b1-54ca-4d9f-8006-3ad3af577570
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13525
+ 8553
+ 29
+ 20
+
+ -
+ 13541
+ 8563
+
+
+
+
+
+
+
+ - End of domain
+ - ab027e40-6331-4346-8046-c6eefa36b80f
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 13525
+ 8573
+ 29
+ 20
+
+ -
+ 13541
+ 8583
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - 56107b72-6353-48fa-92ff-0cc698f1666f
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 13426
+ 8483
+ 156
+ 44
+
+ -
+ 13524
+ 8505
+
+
+
+
+
+ - Start value of numeric domain
+ - a5505e34-8d0d-4cd5-bdbe-9ba6e010ffe2
+ - X/2
+ - Domain start
+ - Domain start
+ - false
+ - ab027e40-6331-4346-8046-c6eefa36b80f
+ - 1
+
+
+
+
+ -
+ 13428
+ 8485
+ 81
+ 20
+
+ -
+ 13478
+ 8495
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - 1442360e-a559-482e-bb17-4c24b8201b43
+ - Domain end
+ - Domain end
+ - false
+ - ab027e40-6331-4346-8046-c6eefa36b80f
+ - 1
+
+
+
+
+ -
+ 13428
+ 8505
+ 81
+ 20
+
+ -
+ 13478
+ 8515
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - 6ff973c6-a9b1-406c-9e93-f200f72c7d47
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 13539
+ 8485
+ 41
+ 40
+
+ -
+ 13561
+ 8505
+
+
+
+
+
+
+
+
+
+
+
+ - d7ee52ff-89b8-4d1a-8662-3e0dd391d0af
+ - Project
+
+
+
+
+ - Project a curve onto a Brep.
+ - true
+ - 27ca912d-1db1-4f64-9024-6646d14808c1
+ - true
+ - Project
+ - Project
+
+
+
+
+ -
+ 14179
+ 8273
+ 114
+ 64
+
+ -
+ 14243
+ 8305
+
+
+
+
+
+ - Curve to project
+ - 93308048-ac3f-440f-91ca-66803d7266b2
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4ef07656-3815-4c3c-9bec-cbe2a01d5c6c
+ - 1
+
+
+
+
+ -
+ 14181
+ 8275
+ 47
+ 20
+
+ -
+ 14206
+ 8285
+
+
+
+
+
+
+
+ - Brep to project onto
+ - 119f1133-9d96-415c-94bc-47ce2f05217c
+ - true
+ - Brep
+ - Brep
+ - false
+ - f57ac7e0-7363-4d7e-835e-04b299507fee
+ - 1
+
+
+
+
+ -
+ 14181
+ 8295
+ 47
+ 20
+
+ -
+ 14206
+ 8305
+
+
+
+
+
+
+
+ - Projection direction
+ - 1f6ad116-2678-4de3-a05d-c6ad65d76f86
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 14181
+ 8315
+ 47
+ 20
+
+ -
+ 14206
+ 8325
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Projected curves
+ - 35491dd4-ebcd-4430-bcc4-2e0905e1d2f7
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14258
+ 8275
+ 33
+ 60
+
+ -
+ 14276
+ 8305
+
+
+
+
+
+
+
+
+
+
+
+ - 865c8275-d9db-4b9a-92d4-883ef3b00b4a
+ - Curve from 2 Views
+
+
+
+
+
+ - and3dm@gmail.com
+
+ - TheChosenOne
+ - 891f19ff-662c-4432-9c22-fdb1554a671a
+ - bf89ce76-602b-47b4-a457-8cd126afd0e3
+ - 2
+ - 6d97b70a-767e-4623-83d6-28ce2e82b3ac
+ - 1
+ - Curve from 2 Views
+ - true
+ -
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAZFJREFUSEvFVTtKBEEQ3dlBUMFPJBiIqebqCkaCocIGK3gBUVERQfCf6jU09AqGXsDEKxjIJoZqO7O+t1TDUvRuNc0ONhQ99elX1fXpqdX+edXh/zfLsoKE769hx7Oa53nZwXLOdegM1DKcrEF/GhPIEYwcHBDfOyghIz2BRgIgDch2QZOWgyYMmBJG3E2PpMiBb4uTOwUyCv4MNGWBj8PgXUAOA8Yr4vxD6ZbBMzBz7Qn4S8ByDLIH0b8p/Q74RRMdBs8CsK2MZ8G/iu4TO4vZu05i0sOWLEHsmB857VvVy1mHhUCkN5BlA29AcHZMURS+JWlfV636HQBhENdmeiId9LsBHQy+AQx6U0Sg7g1E7luVc5BcAwLuSyH7ddGj6JO7yJoD9juHUM/BEmRNsw5iQENrku8VWPQk+3Oc4sreIu+kEXhN9QDqrES/pqEOGtr/YB7oW6AD0CXoFnQh/Cb2udhihuw2IOS/gK/mDMi/+9zJ880/Bq2nOrnCwQnj8DT056kOKr8BA6u0Bqk3D577Az6vrDNUmYr4AAAAAElFTkSuQmCC
+
+ - 34057d52-cf14-4f85-840a-dc244953b80a
+ - Curve from 2 Views
+ - Curve from 2 Views
+
+
+
+
+ -
+ 1
+ 0
+ 7
+
+
+
+
+
+ - bab0af3e-222a-45af-b1d6-1b99438a80af
+ - Shaded
+ - 1
+ -
+ 100;150;0;0
+
+ -
+ 100;0;150;0
+
+
+
+
+
+ - 634539406032043303
+
+ - unnamed
+
+
+
+
+ - 0
+
+
+
+
+ -
+ -963
+ -338
+
+ - 0.640000045
+
+
+
+
+ - 0
+
+
+
+
+
+
+ - 0
+
+
+
+
+ - 34
+
+
+
+
+ - c98a6015-7a2f-423c-bc66-bdc505249b45
+ - Plane 3Pt
+
+
+
+
+ - Create a plane through three points.
+ - true
+ - 52bee750-7654-4cf7-9d69-d5586f4891f5
+ - Plane 3Pt
+ - Pl 3Pt
+
+
+
+
+ -
+ 2554
+ 980
+ 63
+ 64
+
+ -
+ 2585
+ 1012
+
+
+
+
+
+ - Origin point
+ - 78935152-5359-458c-a190-b43165a6beef
+ - Point A
+ - A
+ - false
+ - 832df3d0-893f-4561-b28a-da16652adb07
+ - 1
+
+
+
+
+ -
+ 2556
+ 982
+ 14
+ 20
+
+ -
+ 2564.5
+ 992
+
+
+
+
+
+
+
+ - X-direction point
+ - 104f4e50-e23a-4184-aca8-c17e2741d4fc
+ - Point B
+ - B
+ - false
+ - 44da625c-d88f-421e-820c-34694ccad4d8
+ - 1
+
+
+
+
+ -
+ 2556
+ 1002
+ 14
+ 20
+
+ -
+ 2564.5
+ 1012
+
+
+
+
+
+
+
+ - Orientation point
+ - 16fa923d-02f3-4164-9139-aa469756de97
+ - Point C
+ - C
+ - false
+ - 8f32867f-8f6d-4f12-a7f5-e52bfb107ed1
+ - 1
+
+
+
+
+ -
+ 2556
+ 1022
+ 14
+ 20
+
+ -
+ 2564.5
+ 1032
+
+
+
+
+
+
+
+ - Plane definition
+ - 860363f4-26f8-4d98-9342-e5df61b9cdfe
+ - Plane
+ - Pl
+ - false
+ - 0
+
+
+
+
+ -
+ 2600
+ 982
+ 15
+ 60
+
+ -
+ 2609
+ 1012
+
+
+
+
+
+
+
+
+
+
+
+ - 7f6a9d34-0470-4bb7-aadd-07496bcbe572
+ - Point On Curve
+
+
+
+
+ - Evaluates a curve at a specific location
+ - true
+ - 8f32867f-8f6d-4f12-a7f5-e52bfb107ed1
+ - Point On Curve
+ - CurvePoint
+ - false
+ - 34a75edb-2275-4ed8-8762-c184a71643bc
+ - 1
+ - 0.95
+
+
+
+
+ -
+ 2363.555
+ 1005.312
+ 80
+ 20
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 34a75edb-2275-4ed8-8762-c184a71643bc
+ - Curve
+ - Crv
+ - false
+ - 891f19ff-662c-4432-9c22-fdb1554a671a
+ - 1
+
+
+
+
+ -
+ 2253
+ 928
+ 50
+ 24
+
+ -
+ 2278.805
+ 940.3124
+
+
+
+
+
+
+
+
+
+ - c98a6015-7a2f-423c-bc66-bdc505249b45
+ - Plane 3Pt
+
+
+
+
+ - Create a plane through three points.
+ - true
+ - 6393e1b5-a32a-42f8-8af7-aae1b7bd8743
+ - Plane 3Pt
+ - Pl 3Pt
+
+
+
+
+ -
+ 2558
+ 1142
+ 63
+ 64
+
+ -
+ 2589
+ 1174
+
+
+
+
+
+ - Origin point
+ - 2ea2c148-850c-4c79-bc77-bfe6dc8364be
+ - Point A
+ - A
+ - false
+ - 3bbf0510-4e69-4aca-b71e-efe1f802cb9e
+ - 1
+
+
+
+
+ -
+ 2560
+ 1144
+ 14
+ 20
+
+ -
+ 2568.5
+ 1154
+
+
+
+
+
+
+
+ - X-direction point
+ - c7baba53-0e04-4727-b3a9-e1c95efb15f4
+ - Point B
+ - B
+ - false
+ - 200ba04b-e1c7-4837-b09a-e4720eb03f10
+ - 1
+
+
+
+
+ -
+ 2560
+ 1164
+ 14
+ 20
+
+ -
+ 2568.5
+ 1174
+
+
+
+
+
+
+
+ - Orientation point
+ - 2eb4fb84-f2af-49e6-adcf-307b7a003563
+ - Point C
+ - C
+ - false
+ - 8d2b29fa-7585-4d5b-ad5b-98983672055e
+ - 1
+
+
+
+
+ -
+ 2560
+ 1184
+ 14
+ 20
+
+ -
+ 2568.5
+ 1194
+
+
+
+
+
+
+
+ - Plane definition
+ - 8e93accf-899d-4d37-9bbe-a03e7b98ebbb
+ - Plane
+ - Pl
+ - false
+ - 0
+
+
+
+
+ -
+ 2604
+ 1144
+ 15
+ 60
+
+ -
+ 2613
+ 1174
+
+
+
+
+
+
+
+
+
+
+
+ - 7f6a9d34-0470-4bb7-aadd-07496bcbe572
+ - Point On Curve
+
+
+
+
+ - Evaluates a curve at a specific location
+ - true
+ - 3bbf0510-4e69-4aca-b71e-efe1f802cb9e
+ - Point On Curve
+ - CurvePoint
+ - false
+ - 8c7034d0-e1f6-4505-9820-7b43fcb3794c
+ - 1
+ - 0.5
+
+
+
+
+ -
+ 2371.22
+ 1105.151
+ 80
+ 20
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 8c7034d0-e1f6-4505-9820-7b43fcb3794c
+ - Curve
+ - Crv
+ - false
+ - bf89ce76-602b-47b4-a457-8cd126afd0e3
+ - 1
+
+
+
+
+ -
+ 2266
+ 1127
+ 50
+ 24
+
+ -
+ 2291.055
+ 1139.063
+
+
+
+
+
+
+
+
+
+ - d7ee52ff-89b8-4d1a-8662-3e0dd391d0af
+ - Project
+
+
+
+
+ - Project a curve onto a Brep.
+ - true
+ - 3562f762-d1a2-4dea-87b2-b20ae32fc728
+ - Project
+ - Project
+
+
+
+
+ -
+ 3455
+ 1050
+ 62
+ 64
+
+ -
+ 3486
+ 1082
+
+
+
+
+
+ - Curve to project
+ - 21e98085-ab1a-4b90-8d44-5fbb51d840be
+ - Curve
+ - C
+ - false
+ - 8c7034d0-e1f6-4505-9820-7b43fcb3794c
+ - 1
+
+
+
+
+ -
+ 3457
+ 1052
+ 14
+ 20
+
+ -
+ 3465.5
+ 1062
+
+
+
+
+
+
+
+ - Brep to project onto
+ - a2163d07-9246-4055-b5d8-bd76eddb1ef7
+ - Brep
+ - B
+ - false
+ - 4979dd0a-31b2-49ca-af49-281ddb05a97e
+ - 1
+
+
+
+
+ -
+ 3457
+ 1072
+ 14
+ 20
+
+ -
+ 3465.5
+ 1082
+
+
+
+
+
+
+
+ - Projection direction
+ - 3255d8a7-ace4-4bcf-922d-a4e697b5d321
+ - Direction
+ - D
+ - false
+ - 8e93accf-899d-4d37-9bbe-a03e7b98ebbb
+ - 1
+
+
+
+
+ -
+ 3457
+ 1092
+ 14
+ 20
+
+ -
+ 3465.5
+ 1102
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Projected curves
+ - db2062f6-4b57-4d24-a0a4-960c9c3ce00f
+ - Curve
+ - C
+ - false
+ - 0
+
+
+
+
+ -
+ 3501
+ 1052
+ 14
+ 60
+
+ -
+ 3509.5
+ 1082
+
+
+
+
+
+
+
+
+
+
+
+ - 962034e9-cc27-4394-afc4-5c16e3447cf9
+ - Extrude
+
+
+
+
+ - Extrude curves and surfaces along a vector.
+ - true
+ - 97712051-0397-4be4-af45-911776e4f69e
+ - Extrude
+ - Extr
+
+
+
+
+ -
+ 3033
+ 895
+ 61
+ 44
+
+ -
+ 3064
+ 917
+
+
+
+
+
+ - Profile curve or surface
+ - 5eb8ae59-c8d8-49e0-a774-45222a605493
+ - Base
+ - B
+ - false
+ - 7afb91d0-29c8-4672-9049-cc5b34990a86
+ - 1
+
+
+
+
+ -
+ 3035
+ 897
+ 14
+ 20
+
+ -
+ 3043.5
+ 907
+
+
+
+
+
+
+
+ - Extrusion direction
+ - 8e2fce6d-6939-4067-abfb-40cd42ec9201
+ - Direction
+ - D
+ - false
+ - 8ff56a96-dd2c-4874-9c6c-7e968310894d
+ - 1
+
+
+
+
+ -
+ 3035
+ 917
+ 14
+ 20
+
+ -
+ 3043.5
+ 927
+
+
+
+
+
+
+
+ - Extrusion result
+ - fdcfdfbd-5d9b-4413-8692-11d117b97499
+ - Extrusion
+ - E
+ - false
+ - 0
+
+
+
+
+ -
+ 3079
+ 897
+ 13
+ 40
+
+ -
+ 3087
+ 917
+
+
+
+
+
+
+
+
+
+
+
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - Vector
+
+
+
+
+ - Represents a collection of 3D Vectors
+ - 186cfef1-7f8a-414c-982e-831a2dfcee7e
+ - Vector
+ - Vec
+ - false
+ - 860363f4-26f8-4d98-9342-e5df61b9cdfe
+ - 1
+
+
+
+
+ -
+ 2714
+ 1019
+ 50
+ 24
+
+ -
+ 2739.805
+ 1031.062
+
+
+
+
+
+
+
+
+
+ - 7f6a9d34-0470-4bb7-aadd-07496bcbe572
+ - Point On Curve
+
+
+
+
+ - Evaluates a curve at a specific location
+ - true
+ - 832df3d0-893f-4561-b28a-da16652adb07
+ - Point On Curve
+ - CurvePoint
+ - false
+ - 34a75edb-2275-4ed8-8762-c184a71643bc
+ - 1
+ - 0.5
+
+
+
+
+ -
+ 2364.851
+ 960.5284
+ 80
+ 20
+
+
+
+
+
+
+
+
+
+ - 7f6a9d34-0470-4bb7-aadd-07496bcbe572
+ - Point On Curve
+
+
+
+
+ - Evaluates a curve at a specific location
+ - true
+ - 44da625c-d88f-421e-820c-34694ccad4d8
+ - Point On Curve
+ - CurvePoint
+ - false
+ - 34a75edb-2275-4ed8-8762-c184a71643bc
+ - 1
+ - 0.045
+
+
+
+
+ -
+ 2363.587
+ 983.8403
+ 80
+ 20
+
+
+
+
+
+
+
+
+
+ - 7f6a9d34-0470-4bb7-aadd-07496bcbe572
+ - Point On Curve
+
+
+
+
+ - Evaluates a curve at a specific location
+ - true
+ - 200ba04b-e1c7-4837-b09a-e4720eb03f10
+ - Point On Curve
+ - CurvePoint
+ - false
+ - 8c7034d0-e1f6-4505-9820-7b43fcb3794c
+ - 1
+ - 0.05
+
+
+
+
+ -
+ 2371.493
+ 1126.415
+ 80
+ 20
+
+
+
+
+
+
+
+
+
+ - 7f6a9d34-0470-4bb7-aadd-07496bcbe572
+ - Point On Curve
+
+
+
+
+ - Evaluates a curve at a specific location
+ - true
+ - 8d2b29fa-7585-4d5b-ad5b-98983672055e
+ - Point On Curve
+ - CurvePoint
+ - false
+ - 8c7034d0-e1f6-4505-9820-7b43fcb3794c
+ - 1
+ - 0.95
+
+
+
+
+ -
+ 2370.229
+ 1149.214
+ 80
+ 20
+
+
+
+
+
+
+
+
+
+ - db7d83b1-2898-4ef9-9be5-4e94b4e2048d
+ - Box Components
+
+
+
+
+ - Decompose a Box object into its component parts.
+ - true
+ - 0d982963-66bf-4037-b0a5-42c2a9967676
+ - Box Components
+ - Box
+
+
+
+
+ -
+ 2488
+ 1251
+ 61
+ 84
+
+ -
+ 2518
+ 1293
+
+
+
+
+
+ - Base box
+ - 70a2ccad-6a9d-4931-b3e4-7153b4d219e9
+ - Box
+ - B
+ - false
+ - 06b84357-9ff3-459c-be2b-ae49ede81c56
+ - 1
+
+
+
+
+ -
+ 2490
+ 1253
+ 13
+ 80
+
+ -
+ 2498
+ 1293
+
+
+
+
+
+
+
+ - Box plane
+ - 3b231942-a3fe-4dde-b380-03d2985cd425
+ - Plane
+ - P
+ - false
+ - 0
+
+
+
+
+ -
+ 2533
+ 1253
+ 14
+ 20
+
+ -
+ 2541.5
+ 1263
+
+
+
+
+
+
+
+ - {x} dimension of box
+ - 97356eac-4661-43cd-ad10-eedd1c421f2c
+ - X
+ - X
+ - false
+ - 0
+
+
+
+
+ -
+ 2533
+ 1273
+ 14
+ 20
+
+ -
+ 2541.5
+ 1283
+
+
+
+
+
+
+
+ - {y} dimension of box
+ - b887d2dd-e322-45c8-9f68-03c57ba0d63f
+ - Y
+ - Y
+ - false
+ - 0
+
+
+
+
+ -
+ 2533
+ 1293
+ 14
+ 20
+
+ -
+ 2541.5
+ 1303
+
+
+
+
+
+
+
+ - {z} dimension of box
+ - 2bc28418-4851-4c03-a1f4-8ab2902b913f
+ - Z
+ - Z
+ - false
+ - 0
+
+
+
+
+ -
+ 2533
+ 1313
+ 14
+ 20
+
+ -
+ 2541.5
+ 1323
+
+
+
+
+
+
+
+
+
+
+
+ - 87df35c8-6e1d-4e2a-821a-7c1066714409
+ - Bounding Box
+
+
+
+
+ - Solve oriented geometry bounding boxes.
+ - true
+ - 7252ae94-a4eb-447e-a644-402940dfff7c
+ - Bounding Box
+ - BBox
+
+
+
+
+ -
+ 2411
+ 1267
+ 61
+ 64
+
+ -
+ 2442
+ 1299
+
+
+
+
+
+ - 1
+ - Geometry to contain
+ - 5aefea45-c010-40f7-a9a1-917dd7096216
+ - Content
+ - C
+ - false
+ - 8c7034d0-e1f6-4505-9820-7b43fcb3794c
+ - 1
+
+
+
+
+ -
+ 2413
+ 1269
+ 14
+ 20
+
+ -
+ 2421.5
+ 1279
+
+
+
+
+
+
+
+ - Create a single unified box for all objects
+ - bbb9e246-b18d-451f-83dd-1f90e41d22bf
+ - Union
+ - U
+ - false
+ - 0
+
+
+
+
+ -
+ 2413
+ 1289
+ 14
+ 20
+
+ -
+ 2421.5
+ 1299
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - BoundingBox orientation plane
+ - true
+ - 69932f20-b3ae-446a-a83e-689113bd8b81
+ - Plane
+ - P
+ - false
+ - 0
+
+
+
+
+ -
+ 2413
+ 1309
+ 14
+ 20
+
+ -
+ 2421.5
+ 1319
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Aligned bounding box in world coordinates
+ - 06b84357-9ff3-459c-be2b-ae49ede81c56
+ - Box
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 2457
+ 1269
+ 13
+ 30
+
+ -
+ 2465
+ 1284
+
+
+
+
+
+
+
+ - 1
+ - Bounding box in orientation plane coordinates
+ - true
+ - a8d1aac3-4181-4b87-9ab5-2ae098013593
+ - Box
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 2457
+ 1299
+ 13
+ 30
+
+ -
+ 2465
+ 1314
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Domain Components
+
+
+
+
+ - Decompose a numeric domain into its component parts.
+ - true
+ - da936c87-8180-4749-9eff-34123a028f95
+ - Domain Components
+ - DomComp
+
+
+
+
+ -
+ 2572
+ 1231
+ 57
+ 44
+
+ -
+ 2599
+ 1253
+
+
+
+
+
+ - Base domain
+ - 12dc2561-2cc2-4aa6-9def-51629fa5cafb
+ - Domain
+ - I
+ - false
+ - 97356eac-4661-43cd-ad10-eedd1c421f2c
+ - 1
+
+
+
+
+ -
+ 2574
+ 1233
+ 10
+ 40
+
+ -
+ 2580.5
+ 1253
+
+
+
+
+
+
+
+ - Start of domain
+ - a5ee007d-7a15-4ee3-8c90-eb19d5c93ddc
+ - Start
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 2614
+ 1233
+ 13
+ 20
+
+ -
+ 2622
+ 1243
+
+
+
+
+
+
+
+ - End of domain
+ - a02c6980-0d12-49ee-a762-55ca88128eab
+ - End
+ - E
+ - false
+ - 0
+
+
+
+
+ -
+ 2614
+ 1253
+ 13
+ 20
+
+ -
+ 2622
+ 1263
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Domain Components
+
+
+
+
+ - Decompose a numeric domain into its component parts.
+ - true
+ - 959febd1-71dc-4396-9fe0-23332dd040e8
+ - Domain Components
+ - DomComp
+
+
+
+
+ -
+ 2568
+ 1275
+ 57
+ 44
+
+ -
+ 2595
+ 1297
+
+
+
+
+
+ - Base domain
+ - 447e980e-ce8d-441e-bde1-2a06c843bda3
+ - Domain
+ - I
+ - false
+ - b887d2dd-e322-45c8-9f68-03c57ba0d63f
+ - 1
+
+
+
+
+ -
+ 2570
+ 1277
+ 10
+ 40
+
+ -
+ 2576.5
+ 1297
+
+
+
+
+
+
+
+ - Start of domain
+ - 2d345bcb-e9e8-4c5a-b49c-c1adfd543fe7
+ - Start
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 2610
+ 1277
+ 13
+ 20
+
+ -
+ 2618
+ 1287
+
+
+
+
+
+
+
+ - End of domain
+ - 442ee929-8647-4030-bd29-2b73e7ebadb9
+ - End
+ - E
+ - false
+ - 0
+
+
+
+
+ -
+ 2610
+ 1297
+ 13
+ 20
+
+ -
+ 2618
+ 1307
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Domain Components
+
+
+
+
+ - Decompose a numeric domain into its component parts.
+ - true
+ - b427db44-b7e7-4259-a155-e37ae8889236
+ - Domain Components
+ - DomComp
+
+
+
+
+ -
+ 2569
+ 1324
+ 57
+ 44
+
+ -
+ 2596
+ 1346
+
+
+
+
+
+ - Base domain
+ - 59de1b9f-a9c9-4794-8115-970dabd5137e
+ - Domain
+ - I
+ - false
+ - 2bc28418-4851-4c03-a1f4-8ab2902b913f
+ - 1
+
+
+
+
+ -
+ 2571
+ 1326
+ 10
+ 40
+
+ -
+ 2577.5
+ 1346
+
+
+
+
+
+
+
+ - Start of domain
+ - 792008fd-6b12-4889-b58d-429068511f3c
+ - Start
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 2611
+ 1326
+ 13
+ 20
+
+ -
+ 2619
+ 1336
+
+
+
+
+
+
+
+ - End of domain
+ - 5b197912-a424-4836-a0d8-45e5ae5000f4
+ - End
+ - E
+ - false
+ - 0
+
+
+
+
+ -
+ 2611
+ 1346
+ 13
+ 20
+
+ -
+ 2619
+ 1356
+
+
+
+
+
+
+
+
+
+
+
+ - 481f0339-1299-43ba-b15c-c07891a8f822
+ - Merge 03
+
+
+
+
+ - Merge three streams into one.
+ - true
+ - 2c9d5dc7-3956-4a27-8d22-fc0131db0dfa
+ - Merge 03
+ - M3
+
+
+
+
+ -
+ 2655
+ 1271
+ 61
+ 64
+
+ -
+ 2686
+ 1303
+
+
+
+
+
+ - 2
+ - Input stream #1
+ - 9a235242-4613-4791-acc1-8a2bc8b2e169
+ - Stream A
+ - A
+ - true
+ - a5ee007d-7a15-4ee3-8c90-eb19d5c93ddc
+ - a02c6980-0d12-49ee-a762-55ca88128eab
+ - 2
+
+
+
+
+ -
+ 2657
+ 1273
+ 14
+ 20
+
+ -
+ 2665.5
+ 1283
+
+
+
+
+
+
+
+ - 2
+ - Input stream #2
+ - c1afbe78-138c-4c90-b1ea-6177a2929867
+ - Stream B
+ - B
+ - true
+ - 2d345bcb-e9e8-4c5a-b49c-c1adfd543fe7
+ - 442ee929-8647-4030-bd29-2b73e7ebadb9
+ - 2
+
+
+
+
+ -
+ 2657
+ 1293
+ 14
+ 20
+
+ -
+ 2665.5
+ 1303
+
+
+
+
+
+
+
+ - 2
+ - Input stream #3
+ - 42b163c1-365a-48e4-beed-1993ccf56d3d
+ - Stream C
+ - C
+ - true
+ - 792008fd-6b12-4889-b58d-429068511f3c
+ - 5b197912-a424-4836-a0d8-45e5ae5000f4
+ - 2
+
+
+
+
+ -
+ 2657
+ 1313
+ 14
+ 20
+
+ -
+ 2665.5
+ 1323
+
+
+
+
+
+
+
+ - Merged stream
+ - 4c375cb3-30ce-453b-990c-4c00f5ff4fdc
+ - Stream
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 2701
+ 1273
+ 13
+ 60
+
+ -
+ 2709
+ 1303
+
+
+
+
+
+
+
+
+
+
+
+ - cacb2c64-61b5-46db-825d-c61d5d09cc08
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 8e51a117-9def-4131-8f95-07f640230b57
+ - Sort List
+ - Sort
+
+
+
+
+ -
+ 2736
+ 1290
+ 62
+ 44
+
+ -
+ 2767
+ 1312
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - List of sortable keys
+ - Optional list of values to sort synchronously
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Keys
+ - Values A
+ - false
+ - true
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 5e85c126-e1bd-488b-9a65-70349a088417
+ - Keys
+ - K
+ - false
+ - 4c375cb3-30ce-453b-990c-4c00f5ff4fdc
+ - 1
+
+
+
+
+ -
+ 2738
+ 1292
+ 14
+ 20
+
+ -
+ 2746.5
+ 1302
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - c09f047b-2dff-461a-9553-6c047773c61f
+ - Values A
+ - A
+ - true
+ - 0
+
+
+
+
+ -
+ 2738
+ 1312
+ 14
+ 20
+
+ -
+ 2746.5
+ 1322
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 8a1f4b73-2b33-4a3f-8572-2a56e054ce0f
+ - List
+ - K
+ - false
+ - 0
+
+
+
+
+ -
+ 2782
+ 1292
+ 14
+ 20
+
+ -
+ 2790.5
+ 1302
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in A
+ - 3950a756-14f1-4eb4-ae32-14b476489176
+ - false
+ - Values A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 2782
+ 1312
+ 14
+ 20
+
+ -
+ 2790.5
+ 1322
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - ddf3257b-f787-441c-bd01-e0d2e610c495
+ - Bounds
+ - Bnd
+
+
+
+
+ -
+ 2826
+ 1293
+ 58
+ 28
+
+ -
+ 2857
+ 1307
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 75ad6598-e400-46cb-b2db-1081ba61f05b
+ - Numbers
+ - N
+ - false
+ - 8a1f4b73-2b33-4a3f-8572-2a56e054ce0f
+ - 1
+
+
+
+
+ -
+ 2828
+ 1295
+ 14
+ 24
+
+ -
+ 2836.5
+ 1307
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - a7d4d1f1-d1e3-405b-8038-6abed07adec3
+ - Domain
+ - I
+ - false
+ - 0
+
+
+
+
+ -
+ 2872
+ 1295
+ 10
+ 24
+
+ -
+ 2878.5
+ 1307
+
+
+
+
+
+
+
+
+
+
+
+ - 6ec39468-dae7-4ffa-a766-f2ab22a2c62e
+ - Amplitude
+
+
+
+
+ - Set the amplitude (length) of a vector.
+ - true
+ - 61c8c76b-5e0c-4ccf-99af-398d2f505562
+ - Amplitude
+ - Amp
+
+
+
+
+ -
+ 2935
+ 987
+ 61
+ 44
+
+ -
+ 2966
+ 1009
+
+
+
+
+
+ - Base vector
+ - 6dbca0e4-b2e0-40dd-b1c5-03dd4732a6cf
+ - Vector
+ - V
+ - false
+ - 186cfef1-7f8a-414c-982e-831a2dfcee7e
+ - 1
+
+
+
+
+ -
+ 2937
+ 989
+ 14
+ 20
+
+ -
+ 2945.5
+ 999
+
+
+
+
+
+
+
+ - Amplitude (length) value
+ - 731958b9-d233-4195-93ae-566ac8247d75
+ - Amplitude
+ - A
+ - false
+ - a7d4d1f1-d1e3-405b-8038-6abed07adec3
+ - 1
+
+
+
+
+ -
+ 2937
+ 1009
+ 14
+ 20
+
+ -
+ 2945.5
+ 1019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Resulting vector
+ - 8ff56a96-dd2c-4874-9c6c-7e968310894d
+ - Vector
+ - V
+ - false
+ - 0
+
+
+
+
+ -
+ 2981
+ 989
+ 13
+ 40
+
+ -
+ 2989
+ 1009
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 446a8312-79bc-486e-b4ee-91bf72c6f5b6
+ - Move
+ - Move
+
+
+
+
+ -
+ 3274
+ 934
+ 62
+ 44
+
+ -
+ 3305
+ 956
+
+
+
+
+
+ - Base geometry
+ - 3f45ebd5-e4d1-452d-8a25-26c1e17924df
+ - Geometry
+ - G
+ - true
+ - fdcfdfbd-5d9b-4413-8692-11d117b97499
+ - 1
+
+
+
+
+ -
+ 3276
+ 936
+ 14
+ 20
+
+ -
+ 3284.5
+ 946
+
+
+
+
+
+
+
+ - Translation vector
+ - 46d904a7-9145-40df-8d02-776516a17b48
+ - Translation
+ - T
+ - false
+ - 571f7887-a5d2-44f3-938b-ba9f0d6e29e5
+ - 1
+
+
+
+
+ -
+ 3276
+ 956
+ 14
+ 20
+
+ -
+ 3284.5
+ 966
+
+
+
+
+
+
+
+ - Translated geometry
+ - 4979dd0a-31b2-49ca-af49-281ddb05a97e
+ - Geometry
+ - G
+ - false
+ - 0
+
+
+
+
+ -
+ 3320
+ 936
+ 14
+ 20
+
+ -
+ 3328.5
+ 946
+
+
+
+
+
+
+
+ - Transformation data
+ - c727f590-3388-483c-87fa-fc1a4e9e376d
+ - Transform
+ - X
+ - false
+ - 0
+
+
+
+
+ -
+ 3320
+ 956
+ 14
+ 20
+
+ -
+ 3328.5
+ 966
+
+
+
+
+
+
+
+
+
+
+
+ - d5788074-d75d-4021-b1a3-0bf992928584
+ - Reverse
+
+
+
+
+ - Reverse a vector (multiply by -1).
+ - true
+ - 5f76ce2e-27e1-4197-83a3-a7d705571ddb
+ - Reverse
+ - Rev
+
+
+
+
+ -
+ 3030
+ 987
+ 60
+ 28
+
+ -
+ 3060
+ 1001
+
+
+
+
+
+ - Base vector
+ - 3b7cd2d2-37a3-4ed2-859c-c844d9314205
+ - Vector
+ - V
+ - false
+ - 8ff56a96-dd2c-4874-9c6c-7e968310894d
+ - 1
+
+
+
+
+ -
+ 3032
+ 989
+ 13
+ 24
+
+ -
+ 3040
+ 1001
+
+
+
+
+
+
+
+ - Reversed vector
+ - c5d81f09-d967-4a5d-8fc2-21439970e001
+ - Vector
+ - V
+ - false
+ - 0
+
+
+
+
+ -
+ 3075
+ 989
+ 13
+ 24
+
+ -
+ 3083
+ 1001
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - b48bfe15-6f66-4e35-a13e-54ca88f2a5c4
+ - Division
+ - A/B
+
+
+
+
+ -
+ 3105
+ 975
+ 61
+ 44
+
+ -
+ 3136
+ 997
+
+
+
+
+
+ - Item to divide (dividend)
+ - ede9f3b1-f205-478d-a998-f35c9abeb4a2
+ - A
+ - A
+ - false
+ - c5d81f09-d967-4a5d-8fc2-21439970e001
+ - 1
+
+
+
+
+ -
+ 3107
+ 977
+ 14
+ 20
+
+ -
+ 3115.5
+ 987
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - c9d6e711-c003-438c-aa99-2c9f8faaac7c
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 3107
+ 997
+ 14
+ 20
+
+ -
+ 3115.5
+ 1007
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 571f7887-a5d2-44f3-938b-ba9f0d6e29e5
+ - Result
+ - R
+ - false
+ - 0
+
+
+
+
+ -
+ 3151
+ 977
+ 13
+ 40
+
+ -
+ 3159
+ 997
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 7afb91d0-29c8-4672-9049-cc5b34990a86
+ - Curve
+ - Crv
+ - false
+ - 34a75edb-2275-4ed8-8762-c184a71643bc
+ - 1
+
+
+
+
+ -
+ 2700
+ 894
+ 50
+ 24
+
+ -
+ 2725.055
+ 906.0625
+
+
+
+
+
+
+
+
+
+ - 2a3f7078-2e25-4dd4-96f7-0efb491bd61c
+ - Vector Display
+
+
+
+
+ - false
+ - 0
+ - Preview vectors in the viewport
+ - 0.1
+ - 15
+ - 0d8717e7-5557-43a0-9c3b-b75a27b55724
+ - Vector Display
+ - VDis
+
+
+
+
+ - 3
+ - false
+ - false
+
+
+
+
+ -
+ 255;255;0;0
+
+ -
+ 255;255;0;0
+
+ - 0
+ - cdf12ea1-e7c9-493a-9210-31285c075647
+
+
+
+
+ -
+ 255;255;165;0
+
+ -
+ 255;255;165;0
+
+ - 0.5
+ - 3135c4d0-4c75-4814-8d79-e95366f169d7
+
+
+
+
+ -
+ 255;124;252;0
+
+ -
+ 255;124;252;0
+
+ - 1
+ - 0dc87987-28d2-4b6e-aab2-c6aeab6d37f4
+
+
+
+
+
+
+ -
+ 3344
+ 1121
+ 45
+ 44
+
+ -
+ 3375
+ 1143
+
+
+
+
+
+ - Anchor point for preview vector
+ - 524a3c41-4c1e-417b-9a1a-4ec4226c63ca
+ - Anchor
+ - A
+ - true
+ - 832df3d0-893f-4561-b28a-da16652adb07
+ - 1
+
+
+
+
+ -
+ 3346
+ 1123
+ 14
+ 20
+
+ -
+ 3354.5
+ 1133
+
+
+
+
+
+
+
+ - Vector to preview
+ - f5d78de8-c0c8-476a-a247-334e1acb0ad2
+ - Vector
+ - V
+ - true
+ - 571f7887-a5d2-44f3-938b-ba9f0d6e29e5
+ - 1
+
+
+
+
+ -
+ 3346
+ 1143
+ 14
+ 20
+
+ -
+ 3354.5
+ 1153
+
+
+
+
+
+
+
+
+
+
+
+ - 2a3f7078-2e25-4dd4-96f7-0efb491bd61c
+ - Vector Display
+
+
+
+
+ - false
+ - 0
+ - Preview vectors in the viewport
+ - 0.1
+ - 15
+ - 09cc6ba6-decb-484c-8fe0-40f3568a0dba
+ - Vector Display
+ - VDis
+
+
+
+
+ - 3
+ - false
+ - false
+
+
+
+
+ -
+ 255;255;0;0
+
+ -
+ 255;255;0;0
+
+ - 0
+ - 151b764b-438c-4c73-8385-3465d56c9b36
+
+
+
+
+ -
+ 255;255;165;0
+
+ -
+ 255;255;165;0
+
+ - 0.5
+ - ffc243d6-d8e1-47e2-8cff-cb8e74c06f0d
+
+
+
+
+ -
+ 255;124;252;0
+
+ -
+ 255;124;252;0
+
+ - 1
+ - bf32a338-02a0-4cb4-93b8-ce3de4323bbf
+
+
+
+
+
+
+ -
+ 3342
+ 1173
+ 45
+ 44
+
+ -
+ 3373
+ 1195
+
+
+
+
+
+ - Anchor point for preview vector
+ - affde45a-d284-44c3-84a9-1486b7bb6069
+ - Anchor
+ - A
+ - true
+ - 3bbf0510-4e69-4aca-b71e-efe1f802cb9e
+ - 1
+
+
+
+
+ -
+ 3344
+ 1175
+ 14
+ 20
+
+ -
+ 3352.5
+ 1185
+
+
+
+
+
+
+
+ - Vector to preview
+ - 3562a32e-fcf4-436e-80ba-79eda7cdcc22
+ - Vector
+ - V
+ - true
+ - 47e0af3f-3db3-4939-bbee-02762d07a62d
+ - 1
+
+
+
+
+ -
+ 3344
+ 1195
+ 14
+ 20
+
+ -
+ 3352.5
+ 1205
+
+
+
+
+
+
+
+
+
+
+
+ - 6ec39468-dae7-4ffa-a766-f2ab22a2c62e
+ - Amplitude
+
+
+
+
+ - Set the amplitude (length) of a vector.
+ - true
+ - 75d5628e-7ac8-4e85-bb56-2b17cbaa3f3e
+ - Amplitude
+ - Amp
+
+
+
+
+ -
+ 3031
+ 1251
+ 61
+ 44
+
+ -
+ 3062
+ 1273
+
+
+
+
+
+ - Base vector
+ - 48eb55c0-3f22-4b22-9f1a-14893ddb1ce8
+ - Vector
+ - V
+ - false
+ - 8e93accf-899d-4d37-9bbe-a03e7b98ebbb
+ - 1
+
+
+
+
+ -
+ 3033
+ 1253
+ 14
+ 20
+
+ -
+ 3041.5
+ 1263
+
+
+
+
+
+
+
+ - Amplitude (length) value
+ - 1da52f57-0558-4ce3-9c4b-16b787a7be6d
+ - Amplitude
+ - A
+ - false
+ - a7d4d1f1-d1e3-405b-8038-6abed07adec3
+ - 1
+
+
+
+
+ -
+ 3033
+ 1273
+ 14
+ 20
+
+ -
+ 3041.5
+ 1283
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Resulting vector
+ - 09ea94ff-c098-4d5e-ba4c-a16426edf2ac
+ - Vector
+ - V
+ - false
+ - 0
+
+
+
+
+ -
+ 3077
+ 1253
+ 13
+ 40
+
+ -
+ 3085
+ 1273
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 8b5329a6-c636-4fdf-8ed6-a9f39b78d834
+ - Division
+ - A/B
+
+
+
+
+ -
+ 3128
+ 1241
+ 61
+ 44
+
+ -
+ 3159
+ 1263
+
+
+
+
+
+ - Item to divide (dividend)
+ - 039698ee-9c01-4358-8d3c-d949b1151f27
+ - A
+ - A
+ - false
+ - 09ea94ff-c098-4d5e-ba4c-a16426edf2ac
+ - 1
+
+
+
+
+ -
+ 3130
+ 1243
+ 14
+ 20
+
+ -
+ 3138.5
+ 1253
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 4b810921-06ce-421c-917b-7d307d25805b
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 3130
+ 1263
+ 14
+ 20
+
+ -
+ 3138.5
+ 1273
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 47e0af3f-3db3-4939-bbee-02762d07a62d
+ - Result
+ - R
+ - false
+ - 0
+
+
+
+
+ -
+ 3174
+ 1243
+ 13
+ 40
+
+ -
+ 3182
+ 1263
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Represents a collection of 3D Curves
+ - 81aec23b-4239-4d23-9e5c-fdf909c61ae2
+ - Curve
+ - Crv
+ - false
+ - db2062f6-4b57-4d24-a0a4-960c9c3ce00f
+ - 1
+
+
+
+
+ -
+ 3546
+ 1071
+ 50
+ 24
+
+ -
+ 3571.055
+ 1083.063
+
+
+
+
+
+
+
+
+
+ - 448de216-3a12-43cf-a135-e3bfafc87744
+ - Curve
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - 891f19ff-662c-4432-9c22-fdb1554a671a
+ - Curve
+ - Crv
+ - false
+ - 0
+
+
+
+
+ -
+ 2169
+ 939
+ 60
+ 24
+
+
+
+
+
+
+
+
+
+ - 448de216-3a12-43cf-a135-e3bfafc87744
+ - Curve
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - bf89ce76-602b-47b4-a457-8cd126afd0e3
+ - Curve
+ - Crv
+ - false
+ - 0
+
+
+
+
+ -
+ 2152
+ 1148
+ 60
+ 24
+
+
+
+
+
+
+
+
+
+ - a4b285fe-2e13-4204-b65c-189aa6704da5
+ - Curve
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - 6d97b70a-767e-4623-83d6-28ce2e82b3ac
+ - Curve
+ - Crv
+ - false
+ - 81aec23b-4239-4d23-9e5c-fdf909c61ae2
+ - 1
+
+
+
+
+ -
+ 3701
+ 1090
+ 60
+ 24
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 1
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 58371dca-4d5e-4e26-a3a9-43418bff8012
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14243
+ 8462
+ 33
+ 20
+
+ -
+ 14261
+ 8472
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 33099b4b-0355-4c89-9a2b-796638496da3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14243
+ 8482
+ 33
+ 20
+
+ -
+ 14261
+ 8492
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - b525cf12-6939-4d91-ad85-9b0bf2a1ebb3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14306
+ 8462
+ 33
+ 40
+
+ -
+ 14324
+ 8482
+
+
+
+
+
+
+
+
+
+ -
+ 14241
+ 8460
+ 100
+ 44
+
+ -
+ 14291
+ 8482
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 58371dca-4d5e-4e26-a3a9-43418bff8012
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14243
+ 8462
+ 33
+ 20
+
+ -
+ 14261
+ 8472
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 33099b4b-0355-4c89-9a2b-796638496da3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14243
+ 8482
+ 33
+ 20
+
+ -
+ 14261
+ 8492
+
+
+
+
+
+
+
+ - Represents a collection of 3D Curves
+ - b525cf12-6939-4d91-ad85-9b0bf2a1ebb3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14306
+ 8462
+ 33
+ 40
+
+ -
+ 14324
+ 8482
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 8a2c0ef1-d1d8-4b1a-9568-89498960dbe4
+ - Curve
+ - Crv
+ - false
+ - 4ef07656-3815-4c3c-9bec-cbe2a01d5c6c
+ - 1
+
+
+
+
+ -
+ 14964
+ 7688
+ 50
+ 24
+
+ -
+ 14989.61
+ 7700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+ - 7499fe2e-87e7-4772-bac3-a0d57a987803
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Represents a collection of 3D Curves
+ - true
+ - 03fd0d0e-66f6-4da6-bc37-4abab539314f
+ - Curve
+ - Crv
+ - false
+ - c7f744ec-428b-4799-9ea5-243435bd5a68
+ - 1
+
+
+
+
+ -
+ 14964
+ 7795
+ 50
+ 24
+
+ -
+ 14989
+ 7807.833
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+ - c0c042fe-697d-4af7-a89f-a3ab1051b11a
+
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 818687c3-7cad-475e-88ac-63793f4563db
+ - Divide Curve
+ - Divide
+
+
+
+
+ -
+ 15150
+ 7731
+ 61
+ 64
+
+ -
+ 15181
+ 7763
+
+
+
+
+
+ - Curve to divide
+ - 182cfc5f-1a25-4b7d-84c7-9a60289c4d1b
+ - Curve
+ - C
+ - false
+ - 8449f4dd-8e4c-4ff6-ae7f-7356b982efb5
+ - 1
+
+
+
+
+ -
+ 15152
+ 7733
+ 14
+ 20
+
+ -
+ 15160.5
+ 7743
+
+
+
+
+
+
+
+ - Number of segments
+ - 31bc1985-05c4-4203-ab3d-22e8891baae7
+ - Number
+ - N
+ - false
+ - a2eae200-1ec9-4599-8c58-1aa5b21306f7
+ - 1
+
+
+
+
+ -
+ 15152
+ 7753
+ 14
+ 20
+
+ -
+ 15160.5
+ 7763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - b3a1c3ed-5e5d-4d63-b00a-f92da41b80e6
+ - Kinks
+ - K
+ - false
+ - 0
+
+
+
+
+ -
+ 15152
+ 7773
+ 14
+ 20
+
+ -
+ 15160.5
+ 7783
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 52d399fe-6741-427b-acf1-dffc7e225a20
+ - Points
+ - P
+ - false
+ - 0
+
+
+
+
+ -
+ 15196
+ 7733
+ 13
+ 20
+
+ -
+ 15204
+ 7743
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - bd8f8775-9b51-4230-ad29-7b151af5b2ec
+ - Tangents
+ - T
+ - false
+ - 0
+
+
+
+
+ -
+ 15196
+ 7753
+ 13
+ 20
+
+ -
+ 15204
+ 7763
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 86e11a4b-561e-4e8c-8990-7d9e87d537e5
+ - Parameters
+ - t
+ - false
+ - 0
+
+
+
+
+ -
+ 15196
+ 7773
+ 13
+ 20
+
+ -
+ 15204
+ 7783
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Decompose
+
+
+
+
+ - Decompose a point into its component parts.
+ - true
+ - 44dafb8a-c05c-49ac-924b-99d109f104da
+ - Decompose
+ - pComp
+
+
+
+
+ -
+ 15359
+ 7712
+ 61
+ 64
+
+ -
+ 15389
+ 7744
+
+
+
+
+
+ - Input point
+ - 85cc5f06-a88e-47e1-abe1-2d6ca5008bdb
+ - Point
+ - P
+ - false
+ - 52d399fe-6741-427b-acf1-dffc7e225a20
+ - 1
+
+
+
+
+ -
+ 15361
+ 7714
+ 13
+ 60
+
+ -
+ 15369
+ 7744
+
+
+
+
+
+
+
+ - Point {x} component
+ - 1f217589-8f01-48e5-9674-0ae887a9ace5
+ - X component
+ - X
+ - false
+ - 0
+
+
+
+
+ -
+ 15404
+ 7714
+ 14
+ 20
+
+ -
+ 15412.5
+ 7724
+
+
+
+
+
+
+
+ - Point {y} component
+ - ff4054e3-c09f-43d1-9ec0-59026b0a77bd
+ - Y component
+ - Y
+ - false
+ - 0
+
+
+
+
+ -
+ 15404
+ 7734
+ 14
+ 20
+
+ -
+ 15412.5
+ 7744
+
+
+
+
+
+
+
+ - Point {z} component
+ - 8c8d1558-44c0-46c9-9a73-fa9cb30b4ec2
+ - Z component
+ - Z
+ - false
+ - 0
+
+
+
+
+ -
+ 15404
+ 7754
+ 14
+ 20
+
+ -
+ 15412.5
+ 7764
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 47a89b1e-24ec-4b6b-b31c-116f77b29d25
+ - YZ Plane
+ - YZ
+
+
+
+
+ -
+ 15259
+ 7854
+ 61
+ 28
+
+ -
+ 15290
+ 7868
+
+
+
+
+
+ - Origin of plane
+ - ca48d935-1ced-434a-8103-82cb5f0c9ae3
+ - Origin
+ - O
+ - false
+ - 52d399fe-6741-427b-acf1-dffc7e225a20
+ - 1
+
+
+
+
+ -
+ 15261
+ 7856
+ 14
+ 24
+
+ -
+ 15269.5
+ 7868
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - a198ed81-9e93-4ddc-9918-66c5ae1eb57c
+ - Plane
+ - P
+ - false
+ - 0
+
+
+
+
+ -
+ 15305
+ 7856
+ 13
+ 24
+
+ -
+ 15313
+ 7868
+
+
+
+
+
+
+
+
+
+
+
+ - b7c12ed1-b09a-4e15-996f-3fa9f3f16b1c
+ - Curve | Plane
+
+
+
+
+ - Solve intersection events for a curve and a plane.
+ - true
+ - 2eb937ee-88b0-459e-affe-f69b32a66b32
+ - Curve | Plane
+ - PCX
+
+
+
+
+ -
+ 15359
+ 7821
+ 66
+ 64
+
+ -
+ 15390
+ 7853
+
+
+
+
+
+ - Base curve
+ - ec895db0-3e55-4487-82b9-55e3d5ffdbb4
+ - Curve
+ - C
+ - false
+ - dbf00101-214b-4aa6-9cd4-fec6e0831af7
+ - 1
+
+
+
+
+ -
+ 15361
+ 7823
+ 14
+ 30
+
+ -
+ 15369.5
+ 7838
+
+
+
+
+
+
+
+ - Intersection plane
+ - 9917ba36-6730-4a61-9591-4b2dbf1715c2
+ - Plane
+ - P
+ - false
+ - a198ed81-9e93-4ddc-9918-66c5ae1eb57c
+ - 1
+
+
+
+
+ -
+ 15361
+ 7853
+ 14
+ 30
+
+ -
+ 15369.5
+ 7868
+
+
+
+
+
+
+
+ - 1
+ - Intersection events
+ - c3f1243d-60be-40d1-b895-3613aa7cc7ab
+ - Points
+ - P
+ - false
+ - 0
+
+
+
+
+ -
+ 15405
+ 7823
+ 18
+ 20
+
+ -
+ 15415.5
+ 7833
+
+
+
+
+
+
+
+ - 1
+ - Parameters {t} on curve
+ - 9734f663-a350-44f0-b5a3-176cf4126868
+ - Params C
+ - t
+ - false
+ - 0
+
+
+
+
+ -
+ 15405
+ 7843
+ 18
+ 20
+
+ -
+ 15415.5
+ 7853
+
+
+
+
+
+
+
+ - 1
+ - Parameters {uv} on plane
+ - true
+ - f40ef8ea-b923-4b27-b6d7-c23b2f71e751
+ - Params P
+ - uv
+ - false
+ - 0
+
+
+
+
+ -
+ 15405
+ 7863
+ 18
+ 20
+
+ -
+ 15415.5
+ 7873
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Decompose
+
+
+
+
+ - Decompose a point into its component parts.
+ - true
+ - 80846edf-1ea0-4825-b470-37b6dfe0cb88
+ - Decompose
+ - pComp
+
+
+
+
+ -
+ 15486
+ 7762
+ 77
+ 64
+
+ -
+ 15532
+ 7794
+
+
+
+
+
+ - Input point
+ - 03c7f730-5795-4fac-aed7-3907ab0d306a
+ - 1
+ - Point
+ - P
+ - false
+ - c3f1243d-60be-40d1-b895-3613aa7cc7ab
+ - 1
+
+
+
+
+ -
+ 15488
+ 7764
+ 29
+ 60
+
+ -
+ 15512
+ 7794
+
+
+
+
+
+
+
+ - Point {x} component
+ - 79c44647-af84-4c65-8d12-5c9198d35c38
+ - X component
+ - X
+ - false
+ - 0
+
+
+
+
+ -
+ 15547
+ 7764
+ 14
+ 20
+
+ -
+ 15555.5
+ 7774
+
+
+
+
+
+
+
+ - Point {y} component
+ - 51f2b98e-4d78-43d4-9397-dfa28fb36456
+ - Y component
+ - Y
+ - false
+ - 0
+
+
+
+
+ -
+ 15547
+ 7784
+ 14
+ 20
+
+ -
+ 15555.5
+ 7794
+
+
+
+
+
+
+
+ - Point {z} component
+ - ab34a1f0-cc36-4ee7-95de-2858311797e5
+ - Z component
+ - Z
+ - false
+ - 0
+
+
+
+
+ -
+ 15547
+ 7804
+ 14
+ 20
+
+ -
+ 15555.5
+ 7814
+
+
+
+
+
+
+
+
+
+
+
+ - 3581f42a-9592-4549-bd6b-1c0fc39d067b
+ - Point XYZ
+
+
+
+
+ - Create a point from {xyz} coordinates.
+ - true
+ - bfb955a6-d38f-4a22-926f-2af274f699f1
+ - Point XYZ
+ - Pt
+
+
+
+
+ -
+ 15599
+ 7711
+ 64
+ 64
+
+ -
+ 15630
+ 7743
+
+
+
+
+
+ - {x} component
+ - 6ac3e1ba-b764-4af9-8b83-b9b20fd10895
+ - X component
+ - X
+ - false
+ - 1f217589-8f01-48e5-9674-0ae887a9ace5
+ - 1
+
+
+
+
+ -
+ 15601
+ 7713
+ 14
+ 20
+
+ -
+ 15609.5
+ 7723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {y} component
+ - cde2021c-94ec-4ea1-b0c4-ba872a9fb227
+ - Y component
+ - Y
+ - false
+ - ff4054e3-c09f-43d1-9ec0-59026b0a77bd
+ - 1
+
+
+
+
+ -
+ 15601
+ 7733
+ 14
+ 20
+
+ -
+ 15609.5
+ 7743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {z} component
+ - 6a01d70a-de8a-409e-a095-0984f565b5ba
+ - Z component
+ - Z
+ - false
+ - ab34a1f0-cc36-4ee7-95de-2858311797e5
+ - 1
+
+
+
+
+ -
+ 15601
+ 7753
+ 14
+ 20
+
+ -
+ 15609.5
+ 7763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Point coordinate
+ - 1c194c7c-c2a6-4cc3-b1bf-4410e4fc5eae
+ - Point
+ - Pt
+ - false
+ - 0
+
+
+
+
+ -
+ 15645
+ 7713
+ 16
+ 60
+
+ -
+ 15654.5
+ 7743
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - a2eae200-1ec9-4599-8c58-1aa5b21306f7
+ - Number Slider
+ - Slider
+ - false
+ - 0
+
+
+
+
+ -
+ 14893
+ 7742
+ 158
+ 20
+
+ -
+ 14893.37
+ 7742
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1024
+ - 0
+ - 0
+ - 845
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 5e8f1cc1-8af8-47e4-869d-992cff50b70d
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 15051
+ 7951
+ 154
+ 64
+
+ -
+ 15135
+ 7983
+
+
+
+
+
+ - Base geometry
+ - b1ce9421-984a-4c04-81b4-95220e6a6157
+ - Geometry
+ - Geometry
+ - true
+ - 03fd0d0e-66f6-4da6-bc37-4abab539314f
+ - 1
+
+
+
+
+ -
+ 15053
+ 7953
+ 67
+ 20
+
+ -
+ 15096
+ 7963
+
+
+
+
+
+
+
+ - Center of scaling
+ - 2268113c-c062-41b1-baf9-31a955cbe870
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 15053
+ 7973
+ 67
+ 20
+
+ -
+ 15096
+ 7983
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - fdd542c0-94dd-4495-90dc-be779f15ef6d
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - ce2e0e33-7dae-4dc1-a7a3-9c2380048795
+ - 1
+
+
+
+
+ -
+ 15053
+ 7993
+ 67
+ 20
+
+ -
+ 15096
+ 8003
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - dbf00101-214b-4aa6-9cd4-fec6e0831af7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 15150
+ 7953
+ 53
+ 30
+
+ -
+ 15178
+ 7968
+
+
+
+
+
+
+
+ - Transformation data
+ - 73143f99-7104-4d37-9b78-252d032f0d5e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 15150
+ 7983
+ 53
+ 30
+
+ -
+ 15178
+ 7998
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - ce2e0e33-7dae-4dc1-a7a3-9c2380048795
+ - Number Slider
+ - Number Slider
+ - false
+ - 0
+
+
+
+
+ -
+ 15311
+ 8119
+ 198
+ 20
+
+ -
+ 15311.17
+ 8119.468
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 32
+ - 0
+ - 0
+ - 20.424688
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - d476edef-8f13-43e8-a387-b867b1ceb368
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 15051
+ 7565
+ 154
+ 64
+
+ -
+ 15135
+ 7597
+
+
+
+
+
+ - Base geometry
+ - d05206bf-1b1e-4183-b22a-1de5ab034aaf
+ - Geometry
+ - Geometry
+ - true
+ - 8a2c0ef1-d1d8-4b1a-9568-89498960dbe4
+ - 1
+
+
+
+
+ -
+ 15053
+ 7567
+ 67
+ 20
+
+ -
+ 15096
+ 7577
+
+
+
+
+
+
+
+ - Center of scaling
+ - 2049380a-87fb-467e-9d85-68b78835fe13
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 15053
+ 7587
+ 67
+ 20
+
+ -
+ 15096
+ 7597
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 01c96109-d841-4024-bd47-964f63244de8
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - ce2e0e33-7dae-4dc1-a7a3-9c2380048795
+ - 1
+
+
+
+
+ -
+ 15053
+ 7607
+ 67
+ 20
+
+ -
+ 15096
+ 7617
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 8449f4dd-8e4c-4ff6-ae7f-7356b982efb5
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 15150
+ 7567
+ 53
+ 30
+
+ -
+ 15178
+ 7582
+
+
+
+
+
+
+
+ - Transformation data
+ - 4f826c75-e7a3-46c2-815a-9ef3f6d5f886
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 15150
+ 7597
+ 53
+ 30
+
+ -
+ 15178
+ 7612
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 22f48385-57a8-452e-a183-e0026ac4a609
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 15707
+ 7776
+ 154
+ 64
+
+ -
+ 15791
+ 7808
+
+
+
+
+
+ - Base geometry
+ - 86129583-b4f6-4726-a3a7-0dcbe7cd328c
+ - Geometry
+ - Geometry
+ - true
+ - 1c194c7c-c2a6-4cc3-b1bf-4410e4fc5eae
+ - 1
+
+
+
+
+ -
+ 15709
+ 7778
+ 67
+ 20
+
+ -
+ 15752
+ 7788
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7c30ad79-3753-4b2f-88fb-5445abf92a14
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 15709
+ 7798
+ 67
+ 20
+
+ -
+ 15752
+ 7808
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 3a47fd6e-8e9b-4d45-b6ab-198002d4f5f2
+ - 1/2^X
+ - Factor
+ - Factor
+ - false
+ - ce2e0e33-7dae-4dc1-a7a3-9c2380048795
+ - 1
+
+
+
+
+ -
+ 15709
+ 7818
+ 67
+ 20
+
+ -
+ 15752
+ 7828
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 321fc351-5bda-413e-ae1d-5de6257a6ccc
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 15806
+ 7778
+ 53
+ 30
+
+ -
+ 15834
+ 7793
+
+
+
+
+
+
+
+ - Transformation data
+ - 976cdaa4-edce-4e95-98ef-cdc8da8b9d3f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 15806
+ 7808
+ 53
+ 30
+
+ -
+ 15834
+ 7823
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - c19355af-a83c-4fb9-bd95-d47bd9343b75
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 15893
+ 7678
+ 125
+ 84
+
+ -
+ 15960
+ 7720
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 0e6e10a4-ee6b-42eb-9826-865328ab5303
+ - Vertices
+ - Vertices
+ - false
+ - 321fc351-5bda-413e-ae1d-5de6257a6ccc
+ - 1
+
+
+
+
+ -
+ 15895
+ 7680
+ 50
+ 20
+
+ -
+ 15921.5
+ 7690
+
+
+
+
+
+
+
+ - Curve degree
+ - 470ef577-9e7e-4d65-bf66-7f56205088cd
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 15895
+ 7700
+ 50
+ 20
+
+ -
+ 15921.5
+ 7710
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 59519d80-e76d-4398-b376-d026755f5ebe
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 15895
+ 7720
+ 50
+ 20
+
+ -
+ 15921.5
+ 7730
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 54c0b20d-73ae-46d7-af0a-b2162311cad3
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 15895
+ 7740
+ 50
+ 20
+
+ -
+ 15921.5
+ 7750
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 245a956d-fab7-477f-90ff-92655bd722b3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 15975
+ 7680
+ 41
+ 26
+
+ -
+ 15997
+ 7693.333
+
+
+
+
+
+
+
+ - Curve length
+ - 20b47101-bc21-4766-b2d4-2880a3a5e091
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 15975
+ 7706
+ 41
+ 27
+
+ -
+ 15997
+ 7720
+
+
+
+
+
+
+
+ - Curve domain
+ - 783815d2-0c07-48cb-ad71-36a9f34a573a
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 15975
+ 7733
+ 41
+ 27
+
+ -
+ 15997
+ 7746.667
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 00f558fd-c0bb-497e-92c2-16dcc2df96e3
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 15550
+ 9429
+ 50
+ 24
+
+ -
+ 15575.74
+ 9441.631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+ - 2
+
+
+
+
+ - 4
+
+
+
+
+ - 7
+
+
+
+
+ - 11
+
+
+
+
+ - 7
+
+
+
+
+ - 4
+
+
+
+
+ - 2
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9627d794-3190-435f-828a-43e587ad6853
+ - Panel
+
+ - false
+ - 0
+ - 00f558fd-c0bb-497e-92c2-16dcc2df96e3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 15495
+ 9180
+ 160
+ 227
+
+ - 0
+ - 0
+ - 0
+ -
+ 15495.04
+ 9180.296
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8a9195c7-b325-4e0e-90ab-8567bd37f451
+ - Panel
+
+ - false
+ - 0
+ - ba8e06ee-27d7-43a9-a15f-6cae44610eda
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 15495
+ 8355
+ 160
+ 227
+
+ - 0
+ - 0
+ - 0
+ -
+ 15495.12
+ 8355.742
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 510e9d1e-af88-404f-af1b-6a6e92448bc6
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 15511
+ 9096
+ 128
+ 28
+
+ -
+ 15564
+ 9110
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 0e4d0fe2-c3c0-436c-b915-28362310a61a
+ - Values
+ - Values
+ - false
+ - 5188c22e-144e-424d-870e-6bc78cde28c4
+ - 1
+
+
+
+
+ -
+ 15513
+ 9098
+ 36
+ 24
+
+ -
+ 15532.5
+ 9110
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 8d0b6724-599a-4346-a65a-fbae9cc5a727
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 15579
+ 9098
+ 58
+ 24
+
+ -
+ 15609.5
+ 9110
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 937da729-f633-4edd-92a4-365a9768a0d5
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 15528
+ 8805
+ 93
+ 28
+
+ -
+ 15567
+ 8819
+
+
+
+
+
+ - 1
+ - Base list
+ - 08fce6d3-18a7-4c8b-a3ac-e0366c4ba2a6
+ - List
+ - List
+ - false
+ - 8d0b6724-599a-4346-a65a-fbae9cc5a727
+ - 1
+
+
+
+
+ -
+ 15530
+ 8807
+ 22
+ 24
+
+ -
+ 15542.5
+ 8819
+
+
+
+
+
+
+
+ - Number of items in L
+ - 5d38dd17-e5f5-4952-8c1c-2e06b49c53da
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 15582
+ 8807
+ 37
+ 24
+
+ -
+ 15602
+ 8819
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - e193afba-91cd-488e-8bb1-81938bf96968
+ - Series
+ - Series
+
+
+
+
+ -
+ 15516
+ 8722
+ 117
+ 64
+
+ -
+ 15582
+ 8754
+
+
+
+
+
+ - First number in the series
+ - 90d7d416-4381-4101-9d2a-e149804a8c9a
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 15518
+ 8724
+ 49
+ 20
+
+ -
+ 15552
+ 8734
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - e55cb793-914f-4bcb-bba9-b06ddecf3b4c
+ - Step
+ - Step
+ - false
+ - 0
+
+
+
+
+ -
+ 15518
+ 8744
+ 49
+ 20
+
+ -
+ 15552
+ 8754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - b96b8689-534d-4605-a42a-a8062ee873a7
+ - X-1
+ - Count
+ - Count
+ - false
+ - 5d38dd17-e5f5-4952-8c1c-2e06b49c53da
+ - 1
+
+
+
+
+ -
+ 15518
+ 8764
+ 49
+ 20
+
+ -
+ 15552
+ 8774
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - d303d546-5584-4565-af8c-2b6830bd7491
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 15597
+ 8724
+ 34
+ 60
+
+ -
+ 15615.5
+ 8754
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 6a3a6a4f-9990-47dc-9269-e50765072ed5
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 15529
+ 8640
+ 92
+ 64
+
+ -
+ 15577
+ 8672
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - ef0dcbb3-3508-4692-8831-c3f9d6117f3e
+ - List
+ - List
+ - false
+ - 8d0b6724-599a-4346-a65a-fbae9cc5a727
+ - 1
+
+
+
+
+ -
+ 15531
+ 8642
+ 31
+ 20
+
+ -
+ 15548
+ 8652
+
+
+
+
+
+
+
+ - Item index
+ - b566e56c-9715-4b0d-8656-8990bfa6b9fe
+ - Index
+ - Index
+ - false
+ - d303d546-5584-4565-af8c-2b6830bd7491
+ - 1
+
+
+
+
+ -
+ 15531
+ 8662
+ 31
+ 20
+
+ -
+ 15548
+ 8672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - c9ca2586-0e5c-468d-b66a-d335fac70aec
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 15531
+ 8682
+ 31
+ 20
+
+ -
+ 15548
+ 8692
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - aba0f54c-4985-4a93-95c0-a71c0bb298ea
+ - false
+ - Item
+ - Item
+ - false
+ - 0
+
+
+
+
+ -
+ 15592
+ 8642
+ 27
+ 60
+
+ -
+ 15607
+ 8672
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2a0b4b08-3998-4e7f-9b5b-d2f595d365e3
+ - Panel
+
+ - false
+ - 0
+ - 8d0b6724-599a-4346-a65a-fbae9cc5a727
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 15495
+ 8852
+ 160
+ 227
+
+ - 0
+ - 0
+ - 0
+ -
+ 15495.04
+ 8852.318
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5188c22e-144e-424d-870e-6bc78cde28c4
+ - Relay
+
+ - false
+ - 00f558fd-c0bb-497e-92c2-16dcc2df96e3
+ - 1
+
+
+
+
+ -
+ 15555
+ 9144
+ 40
+ 16
+
+ -
+ 15575
+ 9152
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ba8e06ee-27d7-43a9-a15f-6cae44610eda
+ - Relay
+
+ - false
+ - aba0f54c-4985-4a93-95c0-a71c0bb298ea
+ - 1
+
+
+
+
+ -
+ 15555
+ 8603
+ 40
+ 16
+
+ -
+ 15575
+ 8611
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8a9195c7-b325-4e0e-90ab-8567bd37f451
+ - 510e9d1e-af88-404f-af1b-6a6e92448bc6
+ - 937da729-f633-4edd-92a4-365a9768a0d5
+ - e193afba-91cd-488e-8bb1-81938bf96968
+ - 6a3a6a4f-9990-47dc-9269-e50765072ed5
+ - 2a0b4b08-3998-4e7f-9b5b-d2f595d365e3
+ - 5188c22e-144e-424d-870e-6bc78cde28c4
+ - ba8e06ee-27d7-43a9-a15f-6cae44610eda
+ - 8
+ - 128dfb8c-ea2c-4581-b1a7-2b84dfaee489
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 498b4995-705c-49f4-9e15-74dd9bc519d5
+ - Panel
+
+ - false
+ - 0
+ - aeeed2b8-f888-41ca-8c28-1c5caf44e7a4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 15862
+ 8355
+ 160
+ 227
+
+ - 0
+ - 0
+ - 0
+ -
+ 15862.8
+ 8355.742
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 857dbf10-d211-4b31-9829-82b43e27de02
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 15878
+ 9096
+ 128
+ 28
+
+ -
+ 15931
+ 9110
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - d95617a7-8f49-4e83-a1f8-2e8a4519ba9b
+ - Values
+ - Values
+ - false
+ - 0787fa31-323e-477c-a68c-7e12b68739f2
+ - 1
+
+
+
+
+ -
+ 15880
+ 9098
+ 36
+ 24
+
+ -
+ 15899.5
+ 9110
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - a8680c88-e972-4a9b-886b-9f85da7f1786
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 15946
+ 9098
+ 58
+ 24
+
+ -
+ 15976.5
+ 9110
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 574d7331-581c-4d13-8937-c2ca09f0e9eb
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 15895
+ 8805
+ 93
+ 28
+
+ -
+ 15934
+ 8819
+
+
+
+
+
+ - 1
+ - Base list
+ - 955d738a-a8c5-4ce3-aa10-8f277196d94a
+ - List
+ - List
+ - false
+ - a8680c88-e972-4a9b-886b-9f85da7f1786
+ - 1
+
+
+
+
+ -
+ 15897
+ 8807
+ 22
+ 24
+
+ -
+ 15909.5
+ 8819
+
+
+
+
+
+
+
+ - Number of items in L
+ - 69a118e7-1a94-4a5e-a784-054acfb84428
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 15949
+ 8807
+ 37
+ 24
+
+ -
+ 15969
+ 8819
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 7761868a-30b7-4edd-b34c-204402f8b945
+ - Series
+ - Series
+
+
+
+
+ -
+ 15883
+ 8722
+ 117
+ 64
+
+ -
+ 15949
+ 8754
+
+
+
+
+
+ - First number in the series
+ - ee091d3f-07b8-4815-aa70-8ae62dee6840
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 15885
+ 8724
+ 49
+ 20
+
+ -
+ 15919
+ 8734
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 65c5f49e-b7ba-4a15-a4da-9fd7751bafab
+ - Step
+ - Step
+ - false
+ - 0
+
+
+
+
+ -
+ 15885
+ 8744
+ 49
+ 20
+
+ -
+ 15919
+ 8754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 9f73b23d-fe69-48b6-88fb-aab1e8871510
+ - X-1
+ - Count
+ - Count
+ - false
+ - 69a118e7-1a94-4a5e-a784-054acfb84428
+ - 1
+
+
+
+
+ -
+ 15885
+ 8764
+ 49
+ 20
+
+ -
+ 15919
+ 8774
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 0321d73a-1f60-40e0-9874-8e3839cc0a43
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 15964
+ 8724
+ 34
+ 60
+
+ -
+ 15982.5
+ 8754
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - f982b7e3-6105-47ca-bca9-e31146ad17f1
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 15905
+ 8640
+ 74
+ 64
+
+ -
+ 15953
+ 8672
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 4ce55afd-e5a7-4b0b-a3c3-b1d835ed446f
+ - List
+ - List
+ - false
+ - a8680c88-e972-4a9b-886b-9f85da7f1786
+ - 1
+
+
+
+
+ -
+ 15907
+ 8642
+ 31
+ 20
+
+ -
+ 15924
+ 8652
+
+
+
+
+
+
+
+ - Item index
+ - aab86247-b470-420c-af8c-6d2a84bdf9f5
+ - Index
+ - Index
+ - false
+ - 0321d73a-1f60-40e0-9874-8e3839cc0a43
+ - 1
+
+
+
+
+ -
+ 15907
+ 8662
+ 31
+ 20
+
+ -
+ 15924
+ 8672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - e57f5db1-0581-4513-b663-51d190d1405e
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 15907
+ 8682
+ 31
+ 20
+
+ -
+ 15924
+ 8692
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 026413c5-3e87-4eb8-ab71-804b2ad8e39c
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 15968
+ 8642
+ 9
+ 60
+
+ -
+ 15974
+ 8672
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7d8141c6-3468-4829-9b32-6cf9cf127419
+ - Panel
+
+ - false
+ - 0
+ - a8680c88-e972-4a9b-886b-9f85da7f1786
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 15862
+ 8852
+ 160
+ 227
+
+ - 0
+ - 0
+ - 0
+ -
+ 15862.72
+ 8852.318
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0787fa31-323e-477c-a68c-7e12b68739f2
+ - Relay
+
+ - false
+ - ba8e06ee-27d7-43a9-a15f-6cae44610eda
+ - 1
+
+
+
+
+ -
+ 15922
+ 9144
+ 40
+ 16
+
+ -
+ 15942
+ 9152
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - aeeed2b8-f888-41ca-8c28-1c5caf44e7a4
+ - Relay
+
+ - false
+ - 026413c5-3e87-4eb8-ab71-804b2ad8e39c
+ - 1
+
+
+
+
+ -
+ 15922
+ 8603
+ 40
+ 16
+
+ -
+ 15942
+ 8611
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 498b4995-705c-49f4-9e15-74dd9bc519d5
+ - 857dbf10-d211-4b31-9829-82b43e27de02
+ - 574d7331-581c-4d13-8937-c2ca09f0e9eb
+ - 7761868a-30b7-4edd-b34c-204402f8b945
+ - f982b7e3-6105-47ca-bca9-e31146ad17f1
+ - 7d8141c6-3468-4829-9b32-6cf9cf127419
+ - 0787fa31-323e-477c-a68c-7e12b68739f2
+ - aeeed2b8-f888-41ca-8c28-1c5caf44e7a4
+ - 8
+ - 8cc8d0cb-c4b7-440c-b0cf-73b0f59f9ead
+ - Group
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ -
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABKvSURBVHhe7Z3LclzVFYYZ5V0yzSyPkMo4eYDMMktVRrxBUhUmDCgPwPFFqgLiYNlgy9jIxvcb+IKNJN8ByfIFfIuNZVky5JM/s2qxuy3a3S0dsdW7qMPp0+cct87f/1r/uuzdr702GBU8gR8H41f7BF58/fj8nzY6Pv7445s3b/Ix7t69++2337Y+zx9++GGJh7ywsPDkyRNPOHny5CeffNLoX7Ny/zh/76qAcN++ffzRT58+5QN99913t27dEozZ2dl79+49fPjw8ePH9+/f94S2I0N47do1vhAr9xQb/ZdWC4S7d+8+f/682Jw9ezb2wQxE4eWDBw/YCZ61ogiEc3NzAfzevXv9WlQ/VhGE4BTAQD73nz17VqA1Nzs7fXbnlb3/evTgwUJ6Fwjv3LkzPz/v+adPn96zZ0/1+PEHrgoIYczhw4fD1fH0v/jiC5HAhGJUb9++jZu8cePG7Pz81NjRJ6//cfLvv5u6NjV1/frMzAzs5C34um3bNva9kCNrxJauCgh51pOTk8E2nF9bOeMJt8evnvrTX89t2LLw44+gDk3dwsKrV68Ga0GUb+hasKWrAkIcITYwIIRJcOt/zwcsdPv9998/evRIb/fwyVyrNgXCwuqeOnVqLdjS5iGEKPv37w8fxgdSzqBcoCMDRNGioMg+KBauMV5mRerBr776ai3Y0uYhJID77LPPCmBCzngcU7l0UMg5UBCXmaMO9BH8rl7RNA8hTzk7Qj4QBjDkjBBCxOvXr+MgiQ5fxkIw5l1gC0JjdaF49e6weQixdd98800GRoWpQnGACgOGsY2DxQ6A+S6Xh1M8cuTI2NhY3URsHkJYiAEsuAUGIIE5BZhOBpIHQYTL5D440QgxMdHVZ9qahxDRiE4pIES2FO7wZfYzjpO+AUhRRPsofFBG1YvS5iGEJTz9jBAU9IiK1MERgGGwk4+7D2CQj62DayXiuXPnBhD22Y+oL2Jwd3wV1NHh4e0YkAnlcuLECUQNGDDGx8ePHj26a9cuzv/888+//PJLjzs47cKFC8gZ2Qx47AM2XwWCkwGEfYAwACP+O3jwIBLj2LFjx48fpySEr2IHtZmJRS5tampqy5YtExMToMUWyYpM9T5nzpwBUQ5evnyZd9kHp0uXLgEe2PM9wALDSCEcGNKe8AtBf+jQoQBMzIAQIDl+4MAB5IxlwhjaQOQJaAESKdOADSwFlYPvv/++LARCjnAJ4IEcl6OPNMVroXC4LL5Q8EAIYwhmPEfMIPyDha2GlKCC3Gbghw3k6WNah4aG5B/O8sMPP8SKAjY73BPmbdiwYXh4mJvv3LmTe3KTHTt2QGXikwgfuRWfgRx6T9/EVX9xnyEUIRgmctQfMmxtnwa+qgjkQQKPCFQAL8lkG/zTcvJtGBkZ4SoGBGXLvwWVYWHOwJFWrT4o7HOxSeYJHk+5w8wILAHynD+DgsSCYP/222+/99576BfuyQ05c3R0FDsskAoZUUTOGEvk9M0aqTf1jYUAhofjcYNih+AFKTGVKJGwpbDnypUrmzZteuuttzZu3MgNtZMfffQRhhQIcYSomxgADJxcDvY5XQ7Mgxxpp34AzGAeo7sSHQghLwNCrCgEQqbCNqQmnvLixYuApKjhTABmG4N3cYHozyJFgB0eGNKOIAQ//Baj64QyD5rLsygFDLioU8zHLTm1TdwQSOQUAedUL2SEp1dDCmx82eGf7UbdDa5lZLTMk0ks9k1bm+zG2xEzFHUlI4psjYGz+qC+DYRLAxCURGjEILDDJxnhoTjYcaBFGegUtw7AZhjas2OAz5bBaaCCnrRYjyEFPDNq9M5gVBGclHDBksFBgg2OZxEEutmQcqvqE9xtIPRp+mS1jQ79XAzkg4Mj+CfERXGOV3kTtu5428BMFGMAv/Ec9lPY2HFgIRmgiPPjBKCCl+y3mlOCehJ1Gl52+FatBVv6M0PqYw3SwAz4xMN18EQYwT+/AgDJwe7sZ1zFg8YdRo9oEd6ZOWNwAikb0OUErK7+MntKAAb+OLIWsmulL+zQkAoeJ4MrROxaxYRlBj++OvHowSZiA5M1OdoDP0qJhvBRVPJaTjbH7UvAHvTOLKVIzcJgGHuHkAdtklPNkl0a+GWDiXkEIbaQ0tPAMnMxE5Ez+YTVe8TuFamxPOzpHUIC8KizZ8wAL+IE9tE42FISNxzEosJF32WbG/WBNjwiIqh6IvYKIV/zHiHEikaCDbUZWGarCLcI8InobWVDzqBIQc44xEph2F7dZJhlvHXd0UXzEMISogWfeE5yZjo6X4L+YLAEIbdZyHCCdeO29xlA2N4jGtRjS3thoQLKHu1MwSJOFxiQCyGT8XMf/CBfaJkcYNSdLO2Jhb3LGbxgngGj8iyEpfrFfnvAho54OFSMyZoc3WfgoakpHgaesuK5aj1B2HtQgRW1AzHDlkUmICE+0ZxAEjNggIojwKm6yYzMTtGile/iO2vVNd1DGKE9wX5H6fCWkzChpAV0YDlJHbEdAFCUR8XgF+0sBe9ilmgxy4JLgnxZ1+Bla40ueoLQGgVJnO7cISqD/JwsgWrGf2EA4Z8TYgQJbGi2WLduHXk4DClYErlzDsAgczIR+QZEN3cOMGrto+kVwl7cIZaNSfE+/Xju5kg1rexQJgQzgIR8fFGo2oOrc7I1kkiVgoh8GyKbE3fjzFon4PcEIaYRS0jg1Z0hRcs4FVRHGHTM6TSYSkOiaNlrmgmn0slH2M+iJud6YGSVRfxeIbRe350txQZKoPygTWdnVKz9WrWwfAg7nW7BmQWoxd3kt6qVM+3F6u4Lt2qv6gOE2NIuSvY+SumVNUg4xYwiSFuKwlMCpHMn0Dgq1WLqYY4vuUnWqFW2YvQKYS45vdL3VDkqhzKEzsnmIEgAT/g89pEwYWN5V4MJyfCODPadnyZs8Q3IGVSq0/Xp0j5AaL77VUsWOaLIEIYnk3NOcQI8Sr5IUNqcGAgTVKilYM2pM/G5hC1ddHm1hZy0q7KC2AcIIR8+BlHzSgEiEHK+qc7sC5EnShtjDOCBcOS4qUa5sJfhhPkzEzROHXVwFY2KAwhfySK+KP/aUdG5WOBMkl45oxamDzNoLs0sjA4vQ+XKCBhPmSodHRzh2ojuuWd2roSh9aW8+8NCiYgFeyUi8jTjWecYXKtYhAqtL816Fwk2PWvuRswrtyG76uss7RuEXXjEWPqQD5FFRyEp4Z8OLzxf7IM0deBiDYVC00ZQwW3t6n9lI7O6L+gbhP6ZEBGd2eGfnOc0Ff0TICq98IKAxEuLvQ6Ox9baRYSSRZUje9la06T9hNBums4bosiV0HKvhSwKhCIKvSANElSfh6+FRvaX6ilxiigXAI7kDmfmhuCYt80/gaatsljRTwhta0OadpisIUQjUBPCXN7jpeGB8+sVpWC2fv16JsqgSKGd0hQImXfInIrI0eRA3gAx3qp13n3/IYQomNNObCnKAh0rhBFL+DIa0TS2yBaQIBxkElomGWdm8ZlzrbyVfSr7tU4X7TOEEtHe7V8UDjY+iVnx9MMeyjnwi/pRFPGNC7MibaVydAZXvJhX/yEMXeMs0SXomJchLSDMRSKjQMJ5MjL2W0TiTRvrlyBz15e5ak/duEpHyONdFghBDneIU+wawsiUBjzscHB6ehosi1JGnFNclTu7se31ZUelx0shtLes6wHDnCwfk9Za6RhTtKGgfivCBpvwcyAB+TgBFuIXqdrDyNZKYY4I84zRWiPCNhCSW3Hui/NgiplmeZpZzDSzDzFPiYq5UUgVutPynCZnNsVcJ25CxsspLxg94z+rSICEmPQtB0dQnhIOtnFh68ptEU1yTvaLmOX6kjJBiZ+xMJ5vQBKTx2K6k1MGHYFxzH6KCVDOgeJkwoY8HzFn4PKq+Ln9ic+Ul1oXNlf1IhZ0cRmdJaFFNqrZ+eUbVqxlSkPatdn0wram0q9FW3Wa+7hzdqYQltkdFvuciV6NMCMb0gwhSFfZcvELvrCTwK7Dc9A1LoNRnJ+X5M4xeCCBtwOkXFRaXKItDdWpkb5F4Igicg1yAGGHSLU/zdJuaxFD4hrV5YiCfWvuzh00QHSub2AHciogW7zZcoJdbhHp5+woCmjAwl5RbM2doi/wuBrGbPRgkr2j/OgEPgyMnWifp++CmSvvueIa59CsTSrVayMDHg6Vg/WVCdvLmZ6AWvJiCOdKbOEU87pdxYQmSAOrVC7Z+U1PTR8YHTu0dz/vOr8QFLXAEN2G4NwAF72ppsuX769r9s7LEtq/7E/CnEbKBi1DxkSEwhEChqoSJAhI/J0Y15B9Oju3e/zEb/7xh9+v+1traB9z1TKhQ6DWvXTCykEIEXMGHAgJBIUwLF7U6+ENJ0A1dhjQcf7pPAuv/faff/7Lm6/fuvnid9W8HMsZ5YjsVnOypsr2w5VTpEFKUHSdIXbQF8qWXE/ItXunEsIqZ6YtPFu4MTMzcfzM6WMnbz+vNDmwn1YhovEwejhy7bDK9sMGIMx1DHyhDTJ5/lEOLTgBhDiCliE1WnTTQDv7MDShLHgZiyaE/cxxBSfUKkpXzpBmB+nilPa85AedJyXhDrGEthbKRaNAW/GNJfK7IXwirMxxBcm5AYR9k11YUdJsWDYJVGTCcvHI0F6aWqAAFZvzcZPQjpeek3vyA8Kc6R4Um/qGnzdC4hMG2LALMJEhK9omckQBctjVgErgnS6TUeeSSHZnL0vpf1Av7CeKJtuAEFMJh6Lts1hBJjIyss1mezqmANLEm/ArWQPvkDMDCPuJWdsMuEzC/wULc1CBAHHKC+c43RfMxs+d/8/GobHR3Xfv3fMXfjgHCJE80YYTIcoAwuWFkASbIpPoMH5/MgQITHKFUjvYTJYCyZHz50Zmxv+9b+TR/cXEqXltk3Cu4pbFEZBHpMHqwgM502dEiRmkC7ARM0QJPsygQtQt+Ll/+eaNsduXT0xPzj1e/D0RlaoyVUOaTXFWpBUvPdNMUMHXIWdnICKmUqmSe4ING6w/oEgXC7zEIc/bnTiZ49hP5xSqaIpO/lx3rHJCTDOhfXA5d+ODEO4wfFieIpNFqfNgnJlmlQq8i9mgWdfkcIX+jzXX/tRnu9lyu9x1AQywSiCLfA1MsscC8L7++mt4pnlEl0JBsIwiVNG6wX0iwcbNaROptVjRmCGFEyRLw4EZ5jtlUHqBjYtWOqce2ICQ06xmUB1E40QfsLjmAJ+bxIQKrjK3t9zfy0bu3xiEcIIcmz4s6oW8jKXvtZnZkPKuEEZdwnfNwizRk1jrnKaGfSH/PHGFuelcUgAkULQRJqdMM5bFPmwr+OcJke/mhrWmZniMjbFQUSrPipY1wSMlRiRAehr7yUR7tv5sDBFeHkyU8bcM2YG4UfvltpGuq3Xdp+ZZCIR29xbTmjgCb959911kJKrH37ljZhr7HPFnLpAn/ggiEb3T/Ldv345/zQQN61pxpalhFvLEqToZ5BW9vxRyyYPzFj+Cwbpr0JHKhvNJI97HI1ov1DsicLwkRkCIblor3dwrLKjsT1SGtEKo2OHp85tpcA4MCM/1kaZj2EbVl30g5JJWCPl+1DqzsHlDyieAiAZ2eRYSL2Eh74KTyU+4iM10ZQTlq9uYz80+FcGChWbGIWiVS68F35qUM3yIWAyxFULwwE5mqQkFzZdy3C0YS0QGeqdgIQGlxvZl8wVW2Oos0z/XMIQoGnjW1pBCHbPbNkG5kpfMY8etSyrYcYpeBfWifO9qJxU7wobljHGFq8oWvhCbefjkSX+4xxVI2fKSRIA7bvGiHGGH/2bu3j3007RvPaIAM2rNjq4KX4gh9ad+Cghpwf/vG29MbN58YXh4fPPmyc2bxzdtmhwenhgaWnzJwecv2bozOTT06Ztv7hkZyXJG7jIGEC6TDV+8bbTlR8EBAUL8sGN0dNc771zYuvXStm2TH3xwaft2thdHRi5u3br4cmTELScsHhwZYf/g+vX8eHqGECsKfqTOK55Q0bwhhR+0w/DcA0LoSF1wYnz8+E9L0rhws1uNZ7zUijpm7tzBkGZfCITOeKq1Xr8qDGnMbwoI7ZwgqFDOWLJwy0sLT22DCuVMZqGX1z0zrXkW2lOK8QS26CUkEuBXnIgQTL6AhFvl5dJBRWYhYHNnQv6Kc9zNQ2h076KjwBMcQpECra0xsQXaHE4Ip4EHA2VbBBUym6mHA0O6jHLG6B5b52oIAaE5UmgEluy7bhD7TlZqGxcKYdwh+mhqXXpttWRnDA2d3ZkTNByh/gCBEJOkuXGZ7FCLoKhky9ovZmdi/YUq1+POrOLRveZgb3np9pK7AyG5Mf51RcoLefkcQkoTBBgkSJEqlANJdrO1dt+a5jbBlmdpu1/xtLQ2ijTLucH+r+gJvGDh4H+/6ifwf2DQVjd41JvkAAAAAElFTkSuQmCC
+
+
+
+
+
\ No newline at end of file
diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX
new file mode 100644
index 00000000..10d51fb9
--- /dev/null
+++ b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX
@@ -0,0 +1,96717 @@
+
+
+
+
+
+
+ -
+ 0
+ 2
+ 2
+
+
+
+
+
+ -
+ 1
+ 0
+ 7
+
+
+
+
+
+ - 0141bd6a-9454-4dc0-8c73-3979d84677f6
+ - Shaded
+ - 0
+ -
+ 255;217;217;217
+
+ -
+ 255;207;207;207
+
+
+
+
+
+ - 637917650197246944
+
+ - XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX
+
+
+
+
+ - 0
+
+
+
+
+ -
+ -2933
+ 2640
+
+ - 0.736150146
+
+
+
+
+ - 0
+
+
+
+
+
+
+ - 0
+
+
+
+
+ - 2
+
+
+
+
+ - Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
+ - 3.0.0.0
+ - Michael Pryor
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Pufferfish
+ - 3.0.0.0
+
+
+
+
+ - Heteroptera, Version=0.7.2.4, Culture=neutral, PublicKeyToken=null
+ - 0.7.2.4
+ - Amin Bahrami [Studio Helioripple]
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - Heteroptera
+ - 0.7.2.4
+
+
+
+
+
+
+ - 918
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ac0563c4-269d-48f2-89e5-9a7e37533987
+ - b883c1db-e29a-419a-b27d-3b96c2dc49e7
+ - 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
+ - 0d292809-70fb-4714-b8b2-a4596f68805b
+ - 04b97450-c000-42e5-b63f-6bbaaadb98c0
+ - af76057b-70c5-4de0-822b-c12366bb72b7
+ - 6
+ - 5fe594b6-2c64-43cd-90e0-283742d5e25d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 08c21db0-e294-4d35-b427-295e2bca8d25
+ - 1b305121-20a8-4f71-a8a4-f82ca0722c55
+ - c9cbf642-d6b2-483e-a764-4c29904a12e2
+ - 8a30de04-d86f-4ebf-88d4-62eba780928a
+ - ae3f2420-9704-498d-850c-ca28fe138783
+ - 7ab314cb-067f-4bd5-a6ec-83e62b45e892
+ - fe23f036-7c14-45f0-96b8-41f076f4d4c3
+ - 97046d4d-bee4-43cb-b58d-50c530c4704a
+ - bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - b3a26ec3-225e-4749-9a1f-d5f47e692ae6
+ - 0051b812-f1a7-4227-a6b0-0fe8d3e93817
+ - cffe417a-70fa-4fe7-b301-c33b00e0067e
+ - 52267b50-1f37-44ac-be6d-01357b9b1067
+ - 27480f60-8e25-4221-a310-6e3b1ee2be45
+ - f74aec3b-86bd-4ed7-9020-9f2d86c45dd0
+ - 0848c2e1-bf66-439b-86d3-98f687a0e949
+ - b8b2549f-b370-49e7-bfa1-b0006b67c848
+ - cdaf463b-e347-48f5-833f-a1e0838e3931
+ - 3dbe5a4f-9520-461c-b7a9-55161e8424fa
+ - a6053e60-d038-433b-a2fc-6eb3aece1ec1
+ - 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
+ - 251642cc-53d1-4155-b8f9-31b81b470402
+ - 45fa6e2b-7726-4ce3-b5ad-b8bca22253b0
+ - d781137a-8110-4106-a4c8-0c2474e530da
+ - df5a1603-3787-4e24-8583-d12d307fd6fd
+ - 7bc34872-6323-4903-9256-fff4bb1813a5
+ - eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
+ - 246ad2c1-626a-454f-9aa8-bbafcd899aed
+ - 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
+ - 9e6ecb05-d56c-432f-af9b-825392b28a58
+ - 7cc4addf-023b-44f8-a4af-916931180c33
+ - 15dddce0-0e1b-4a30-bce0-f450d57b1564
+ - c4021ab4-235a-4b82-96c5-ab6df1d33381
+ - 9932a4f2-08f3-4e18-b948-51507591c861
+ - f46ed69f-b1eb-4476-b946-8f8cabd86dad
+ - 1eca1c19-a8f4-49cd-9222-51d85b78d014
+ - ddfc10a5-d2cd-4fa3-bb6d-b967aa1f7b45
+ - e5cfd78e-6de5-4679-ad21-f5b87fe45130
+ - 4f3aa960-fddc-4094-a378-3c820581d11e
+ - aa3317fe-01e5-49e4-a4a0-545f18f9a6fe
+ - e0c44022-95ec-431a-b6ac-3c9b92814529
+ - 8fbaba83-827d-4344-aac8-13d1142d93a0
+ - 3d81ae53-2d90-4091-8fdb-880e28db7265
+ - fd185e0b-5eff-4ceb-89d0-899b754ee2c5
+ - 2d2c9a13-6f18-4b63-b16b-982f5f207b1d
+ - 023d6ed4-d8cf-4983-97c4-e762f533d605
+ - f994613c-79e3-4423-a1c7-5941f394260b
+ - 6656a797-31bc-4afa-b33c-41944efe32e3
+ - bf5d5229-bc45-49d0-8f32-31b60e0aec6e
+ - 1549ecf8-8453-4a13-9f8c-4ad9aaeed473
+ - 03f97897-283b-4634-86b0-431945f07618
+ - b4622cd9-013d-4e09-ad4a-06ee6e3b6af3
+ - 4bb07e56-0cd3-4737-a6d3-d621d22da99e
+ - 67f6db11-1233-4a02-b46a-f4fe966e1889
+ - 26d9c13f-79ff-4367-baad-c775d2229988
+ - f4161164-94c0-4338-9747-25ef6aee8e11
+ - 1001b801-f1f0-43e1-92c0-e39a6260a7a7
+ - f71a0d4d-671e-4330-a6e7-80d35dd45d24
+ - f4a6511e-2fa9-4adc-845c-882c5823e3cf
+ - 0c9278c9-41ff-4720-aab1-bab44aeb2749
+ - 710ff60f-7299-433f-bde9-7885ee19b9ca
+ - 62
+ - c3ee1515-27ed-4423-a768-cd9cbd0b57b5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3dbe5a4f-9520-461c-b7a9-55161e8424fa
+ - 1
+ - 08c21db0-e294-4d35-b427-295e2bca8d25
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c9cbf642-d6b2-483e-a764-4c29904a12e2
+ - 8a30de04-d86f-4ebf-88d4-62eba780928a
+ - ae3f2420-9704-498d-850c-ca28fe138783
+ - 7ab314cb-067f-4bd5-a6ec-83e62b45e892
+ - fe23f036-7c14-45f0-96b8-41f076f4d4c3
+ - 97046d4d-bee4-43cb-b58d-50c530c4704a
+ - bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - 0051b812-f1a7-4227-a6b0-0fe8d3e93817
+ - b3a26ec3-225e-4749-9a1f-d5f47e692ae6
+ - 08c21db0-e294-4d35-b427-295e2bca8d25
+ - 0c9278c9-41ff-4720-aab1-bab44aeb2749
+ - 710ff60f-7299-433f-bde9-7885ee19b9ca
+ - 13
+ - 1b305121-20a8-4f71-a8a4-f82ca0722c55
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - c9cbf642-d6b2-483e-a764-4c29904a12e2
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 3753
+ 11542
+ 104
+ 64
+
+ -
+ 3812
+ 11574
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - f6819fc8-b1f2-44ff-9a8f-547bf101dc5d
+ - Data
+ - Data
+ - false
+ - 741061e5-8838-40ff-af91-077bcc0dd190
+ - 1
+
+
+
+
+ -
+ 3755
+ 11544
+ 42
+ 20
+
+ -
+ 3777.5
+ 11554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 8f7b417d-7852-4ac9-bd3a-6dbdb1ad230a
+ - Number
+ - Number
+ - false
+ - 26d9c13f-79ff-4367-baad-c775d2229988
+ - 1
+
+
+
+
+ -
+ 3755
+ 11564
+ 42
+ 20
+
+ -
+ 3777.5
+ 11574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 037e5528-5ac9-406e-9d23-c593b1abd4d7
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 3755
+ 11584
+ 42
+ 20
+
+ -
+ 3777.5
+ 11594
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 468310c5-beed-4a8e-85fc-148aedb5d5f7
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 3827
+ 11544
+ 28
+ 60
+
+ -
+ 3842.5
+ 11574
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 8a30de04-d86f-4ebf-88d4-62eba780928a
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 3748
+ 10583
+ 116
+ 44
+
+ -
+ 3809
+ 10605
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - a65b3e85-d2df-49dd-9087-77e2bf89e8cd
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 468310c5-beed-4a8e-85fc-148aedb5d5f7
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3750
+ 10585
+ 44
+ 20
+
+ -
+ 3773.5
+ 10595
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 04d40d0e-549e-482e-b755-9938e1664249
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - f4a6511e-2fa9-4adc-845c-882c5823e3cf
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3750
+ 10605
+ 44
+ 20
+
+ -
+ 3773.5
+ 10615
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 44e19548-7cb3-449b-80a4-2380800e030e
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 10585
+ 38
+ 20
+
+ -
+ 3844.5
+ 10595
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 210595a4-1d10-4344-bd58-627eab3a32ef
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 10605
+ 38
+ 20
+
+ -
+ 3844.5
+ 10615
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - ae3f2420-9704-498d-850c-ca28fe138783
+ - Point
+ - Point
+ - false
+ - 55afe88e-7557-479e-9e1c-b4203f6192a6
+ - 1
+
+
+
+
+ -
+ 3776
+ 10371
+ 50
+ 24
+
+ -
+ 3801
+ 10383.22
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 7ab314cb-067f-4bd5-a6ec-83e62b45e892
+ - Series
+ - Series
+
+
+
+
+ -
+ 3756
+ 11051
+ 101
+ 64
+
+ -
+ 3806
+ 11083
+
+
+
+
+
+ - First number in the series
+ - f36fe072-babf-42c1-b82b-3e41dab5c16e
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3758
+ 11053
+ 33
+ 20
+
+ -
+ 3776
+ 11063
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 571955aa-1291-494f-aa76-8259884bccbd
+ - Step
+ - Step
+ - false
+ - c489cc86-c206-4031-ad44-eecb7d194733
+ - 1
+
+
+
+
+ -
+ 3758
+ 11073
+ 33
+ 20
+
+ -
+ 3776
+ 11083
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - f301e105-e974-4f41-9aab-3224d38c3f3f
+ - Count
+ - Count
+ - false
+ - 26d9c13f-79ff-4367-baad-c775d2229988
+ - 1
+
+
+
+
+ -
+ 3758
+ 11093
+ 33
+ 20
+
+ -
+ 3776
+ 11103
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 5ee66eb4-ccfc-4657-a144-114058b11774
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 3821
+ 11053
+ 34
+ 60
+
+ -
+ 3839.5
+ 11083
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - fe23f036-7c14-45f0-96b8-41f076f4d4c3
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3732
+ 11713
+ 150
+ 20
+
+ -
+ 3732.29
+ 11713.13
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 97046d4d-bee4-43cb-b58d-50c530c4704a
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 3746
+ 11176
+ 120
+ 28
+
+ -
+ 3807
+ 11190
+
+
+
+
+
+ - Angle in degrees
+ - 2b5d6a5e-095e-45f9-b258-8ca7130cda3a
+ - Degrees
+ - Degrees
+ - false
+ - 80d6a883-8558-4a4b-bb1b-d14373512a75
+ - 1
+
+
+
+
+ -
+ 3748
+ 11178
+ 44
+ 24
+
+ -
+ 3771.5
+ 11190
+
+
+
+
+
+
+
+ - Angle in radians
+ - c489cc86-c206-4031-ad44-eecb7d194733
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 11178
+ 42
+ 24
+
+ -
+ 3844.5
+ 11190
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000007490
+
+
+
+
+ -
+ 3679
+ 11507
+ 250
+ 20
+
+ -
+ 3679.252
+ 11507.02
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - b3a26ec3-225e-4749-9a1f-d5f47e692ae6
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 3733
+ 10084
+ 144
+ 84
+
+ -
+ 3819
+ 10126
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 89e19858-663c-4637-8f9e-c5048c966d24
+ - Vertices
+ - Vertices
+ - false
+ - 4227074c-5231-425a-b277-d5164885ffc0
+ - 1
+
+
+
+
+ -
+ 3735
+ 10086
+ 69
+ 20
+
+ -
+ 3771
+ 10096
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 63814256-86b6-442c-ada6-70ff28d01590
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 10106
+ 69
+ 20
+
+ -
+ 3771
+ 10116
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - f46582bf-595f-4a7e-916d-da420a11b0d3
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 10126
+ 69
+ 20
+
+ -
+ 3771
+ 10136
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c2b86664-6e49-4126-8fba-abcebb7b7c28
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 10146
+ 69
+ 20
+
+ -
+ 3771
+ 10156
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 9b548d52-14a3-4819-ba2a-bb66575cdbd7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3834
+ 10086
+ 41
+ 26
+
+ -
+ 3856
+ 10099.33
+
+
+
+
+
+
+
+ - Curve length
+ - 2041db34-fcc7-4954-9c1a-f34b98c0b642
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3834
+ 10112
+ 41
+ 27
+
+ -
+ 3856
+ 10126
+
+
+
+
+
+
+
+ - Curve domain
+ - 603e7e72-0ea2-4f95-a009-61e36cdef3fb
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 3834
+ 10139
+ 41
+ 27
+
+ -
+ 3856
+ 10152.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c9cbf642-d6b2-483e-a764-4c29904a12e2
+ - 8a30de04-d86f-4ebf-88d4-62eba780928a
+ - ae3f2420-9704-498d-850c-ca28fe138783
+ - 7ab314cb-067f-4bd5-a6ec-83e62b45e892
+ - fe23f036-7c14-45f0-96b8-41f076f4d4c3
+ - 97046d4d-bee4-43cb-b58d-50c530c4704a
+ - bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - a598cad4-d1e2-46ad-bc9b-a7dbf66bbaf0
+ - 9
+ - 0051b812-f1a7-4227-a6b0-0fe8d3e93817
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - cffe417a-70fa-4fe7-b301-c33b00e0067e
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3733
+ 9916
+ 144
+ 64
+
+ -
+ 3807
+ 9948
+
+
+
+
+
+ - Curve to evaluate
+ - 36831cd5-ce3f-4885-8d10-051b05506f8c
+ - Curve
+ - Curve
+ - false
+ - 9b548d52-14a3-4819-ba2a-bb66575cdbd7
+ - 1
+
+
+
+
+ -
+ 3735
+ 9918
+ 57
+ 20
+
+ -
+ 3765
+ 9928
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - bb6aac52-fd26-401a-a275-9eaab033b5b3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 9938
+ 57
+ 20
+
+ -
+ 3765
+ 9948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a741c6a7-7efc-4b50-a64f-ee96190b508d
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 9958
+ 57
+ 20
+
+ -
+ 3765
+ 9968
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 21c07a27-cbbc-4431-98a6-86cbd91ac3d5
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9918
+ 53
+ 20
+
+ -
+ 3850
+ 9928
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a73921d2-6c5b-4578-8997-7788e8c96ca7
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9938
+ 53
+ 20
+
+ -
+ 3850
+ 9948
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 1972eecd-2e1f-43d4-b3fd-c1e703ca4bd4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9958
+ 53
+ 20
+
+ -
+ 3850
+ 9968
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 52267b50-1f37-44ac-be6d-01357b9b1067
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3736
+ 9854
+ 138
+ 44
+
+ -
+ 3804
+ 9876
+
+
+
+
+
+ - Base geometry
+ - db90bb81-7d20-4959-8f64-facad32f22df
+ - Geometry
+ - Geometry
+ - true
+ - 9b548d52-14a3-4819-ba2a-bb66575cdbd7
+ - 1
+
+
+
+
+ -
+ 3738
+ 9856
+ 51
+ 20
+
+ -
+ 3765
+ 9866
+
+
+
+
+
+
+
+ - Mirror plane
+ - c633a089-ff60-479b-aa83-059e8a9de6c2
+ - Plane
+ - Plane
+ - false
+ - 041ebd5e-27e5-419f-8b6b-d2d30b24a07f
+ - 1
+
+
+
+
+ -
+ 3738
+ 9876
+ 51
+ 20
+
+ -
+ 3765
+ 9886
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - e22dc444-a9d6-4ca1-9fa8-bdec4f0867a8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3819
+ 9856
+ 53
+ 20
+
+ -
+ 3847
+ 9866
+
+
+
+
+
+
+
+ - Transformation data
+ - 0d981e75-a6c6-426e-9af5-dd630e2c9c50
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3819
+ 9876
+ 53
+ 20
+
+ -
+ 3847
+ 9886
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 27480f60-8e25-4221-a310-6e3b1ee2be45
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 3752
+ 10000
+ 106
+ 64
+
+ -
+ 3816
+ 10032
+
+
+
+
+
+ - Line start point
+ - 9435c587-f8a3-4ee7-af5c-c925682cee23
+ - Start
+ - Start
+ - false
+ - 21c07a27-cbbc-4431-98a6-86cbd91ac3d5
+ - 1
+
+
+
+
+ -
+ 3754
+ 10002
+ 47
+ 20
+
+ -
+ 3779
+ 10012
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - cb0d6e85-ef16-4930-ab65-f2d1d6efffae
+ - Direction
+ - Direction
+ - false
+ - a73921d2-6c5b-4578-8997-7788e8c96ca7
+ - 1
+
+
+
+
+ -
+ 3754
+ 10022
+ 47
+ 20
+
+ -
+ 3779
+ 10032
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 71a7c7bd-28e6-4e04-9b06-2b918de9412e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3754
+ 10042
+ 47
+ 20
+
+ -
+ 3779
+ 10052
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 041ebd5e-27e5-419f-8b6b-d2d30b24a07f
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 3831
+ 10002
+ 25
+ 60
+
+ -
+ 3845
+ 10032
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - f74aec3b-86bd-4ed7-9020-9f2d86c45dd0
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3746
+ 9792
+ 118
+ 44
+
+ -
+ 3809
+ 9814
+
+
+
+
+
+ - 1
+ - Curves to join
+ - b82b3fc4-811b-4ddd-90d1-651c5037ce16
+ - Curves
+ - Curves
+ - false
+ - 9b548d52-14a3-4819-ba2a-bb66575cdbd7
+ - e22dc444-a9d6-4ca1-9fa8-bdec4f0867a8
+ - 2
+
+
+
+
+ -
+ 3748
+ 9794
+ 46
+ 20
+
+ -
+ 3772.5
+ 9804
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 82ccedbd-3560-494e-ab3a-2668d3290635
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3748
+ 9814
+ 46
+ 20
+
+ -
+ 3772.5
+ 9824
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 9794
+ 38
+ 40
+
+ -
+ 3844.5
+ 9814
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0848c2e1-bf66-439b-86d3-98f687a0e949
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3733
+ 9708
+ 144
+ 64
+
+ -
+ 3807
+ 9740
+
+
+
+
+
+ - Curve to evaluate
+ - 6eae68a9-0706-4499-94d5-83cec498962e
+ - Curve
+ - Curve
+ - false
+ - 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
+ - 1
+
+
+
+
+ -
+ 3735
+ 9710
+ 57
+ 20
+
+ -
+ 3765
+ 9720
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2e44d124-9fe8-4adf-837b-0e8d7770d3a4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 9730
+ 57
+ 20
+
+ -
+ 3765
+ 9740
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - bb709d96-3bb8-459f-9a73-a2dd1f7ca919
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 9750
+ 57
+ 20
+
+ -
+ 3765
+ 9760
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f830c52b-87b1-402a-9614-611f344646c9
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9710
+ 53
+ 20
+
+ -
+ 3850
+ 9720
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7f8a83a8-5f73-4cfd-88a5-47b4623c7553
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9730
+ 53
+ 20
+
+ -
+ 3850
+ 9740
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 0abc1d7f-4fbe-4f0f-a099-fc37d0dd711c
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9750
+ 53
+ 20
+
+ -
+ 3850
+ 9760
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - b8b2549f-b370-49e7-bfa1-b0006b67c848
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 3736
+ 9625
+ 138
+ 64
+
+ -
+ 3804
+ 9657
+
+
+
+
+
+ - Base geometry
+ - c9538d5a-d62c-427f-9764-0f36f1785c17
+ - Geometry
+ - Geometry
+ - true
+ - 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
+ - 1
+
+
+
+
+ -
+ 3738
+ 9627
+ 51
+ 20
+
+ -
+ 3765
+ 9637
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - ae02de00-9686-41d5-8eb6-3a83bc8ed4c3
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 3738
+ 9647
+ 51
+ 20
+
+ -
+ 3765
+ 9657
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 8891a7b9-2ecb-4f15-8078-2f6543e2f517
+ - Plane
+ - Plane
+ - false
+ - f830c52b-87b1-402a-9614-611f344646c9
+ - 1
+
+
+
+
+ -
+ 3738
+ 9667
+ 51
+ 20
+
+ -
+ 3765
+ 9677
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - a187d6f7-901e-4a57-b81c-57887296ebac
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3819
+ 9627
+ 53
+ 30
+
+ -
+ 3847
+ 9642
+
+
+
+
+
+
+
+ - Transformation data
+ - 5f726ff3-988a-49ad-ad7b-a7b04291f074
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3819
+ 9657
+ 53
+ 30
+
+ -
+ 3847
+ 9672
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - cdaf463b-e347-48f5-833f-a1e0838e3931
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3746
+ 9562
+ 118
+ 44
+
+ -
+ 3809
+ 9584
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 5e8128e5-ee67-4aa0-a4c3-88ffd5bcc4b0
+ - Curves
+ - Curves
+ - false
+ - 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
+ - a187d6f7-901e-4a57-b81c-57887296ebac
+ - 2
+
+
+
+
+ -
+ 3748
+ 9564
+ 46
+ 20
+
+ -
+ 3772.5
+ 9574
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 2711cd83-77fd-4c8f-a65a-4e0a2e0dc14e
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3748
+ 9584
+ 46
+ 20
+
+ -
+ 3772.5
+ 9594
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 4017acfc-c5f4-4360-88a0-fb30d36f6d78
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3824
+ 9564
+ 38
+ 40
+
+ -
+ 3844.5
+ 9584
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b3a26ec3-225e-4749-9a1f-d5f47e692ae6
+ - cffe417a-70fa-4fe7-b301-c33b00e0067e
+ - 52267b50-1f37-44ac-be6d-01357b9b1067
+ - 27480f60-8e25-4221-a310-6e3b1ee2be45
+ - f74aec3b-86bd-4ed7-9020-9f2d86c45dd0
+ - 0848c2e1-bf66-439b-86d3-98f687a0e949
+ - b8b2549f-b370-49e7-bfa1-b0006b67c848
+ - cdaf463b-e347-48f5-833f-a1e0838e3931
+ - 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
+ - 9
+ - 3dbe5a4f-9520-461c-b7a9-55161e8424fa
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a6053e60-d038-433b-a2fc-6eb3aece1ec1
+ - Panel
+
+ - false
+ - 0
+ - c4021ab4-235a-4b82-96c5-ab6df1d33381
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3734
+ 11143
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3734.636
+ 11143.07
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
+ - Curve
+ - Curve
+ - false
+ - 4017acfc-c5f4-4360-88a0-fb30d36f6d78
+ - 1
+
+
+
+
+ -
+ 3781
+ 9526
+ 50
+ 24
+
+ -
+ 3806
+ 9538.229
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
+ - 1
+ - 251642cc-53d1-4155-b8f9-31b81b470402
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 45fa6e2b-7726-4ce3-b5ad-b8bca22253b0
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695*4*4
+
+
+
+
+ -
+ 3679
+ 11224
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3679.058
+ 11224.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d781137a-8110-4106-a4c8-0c2474e530da
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3733
+ 9436
+ 144
+ 64
+
+ -
+ 3807
+ 9468
+
+
+
+
+
+ - Curve to evaluate
+ - da37fb64-e77e-4a2d-924b-23ca4c904224
+ - Curve
+ - Curve
+ - false
+ - 4017acfc-c5f4-4360-88a0-fb30d36f6d78
+ - 1
+
+
+
+
+ -
+ 3735
+ 9438
+ 57
+ 20
+
+ -
+ 3765
+ 9448
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a6fe7665-8f4a-4cd5-85cf-7d138589a5b9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 9458
+ 57
+ 20
+
+ -
+ 3765
+ 9468
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1a0d7c8a-363c-4122-a7e8-3a7c3d64ed66
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 9478
+ 57
+ 20
+
+ -
+ 3765
+ 9488
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 986c4b35-a986-44fc-8e63-19818b969ef1
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9438
+ 53
+ 20
+
+ -
+ 3850
+ 9448
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 467250fb-c2ee-4395-a784-3b2a6e77c311
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9458
+ 53
+ 20
+
+ -
+ 3850
+ 9468
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 87637400-23b3-4ce0-8fb9-b343ee2f4929
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 9478
+ 53
+ 20
+
+ -
+ 3850
+ 9488
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - df5a1603-3787-4e24-8583-d12d307fd6fd
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 9214
+ 194
+ 28
+
+ -
+ 3808
+ 9228
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d89d4e08-6bb2-4021-97b4-45f716dc8e06
+ - Variable O
+ - O
+ - true
+ - 2cb656a4-ec06-49b9-bc58-dd7978dd5c78
+ - 1
+
+
+
+
+ -
+ 3710
+ 9216
+ 14
+ 24
+
+ -
+ 3718.5
+ 9228
+
+
+
+
+
+
+
+ - Result of expression
+ - 4eeb0406-147e-494d-8c8b-39fadcc20a85
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 9216
+ 9
+ 24
+
+ -
+ 3897
+ 9228
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 7bc34872-6323-4903-9256-fff4bb1813a5
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 3739
+ 9348
+ 132
+ 64
+
+ -
+ 3786
+ 9380
+
+
+
+
+
+ - Input point
+ - 4c2d1f58-61fa-422e-b418-3c089d3cb1aa
+ - Point
+ - Point
+ - false
+ - 986c4b35-a986-44fc-8e63-19818b969ef1
+ - 1
+
+
+
+
+ -
+ 3741
+ 9350
+ 30
+ 60
+
+ -
+ 3757.5
+ 9380
+
+
+
+
+
+
+
+ - Point {x} component
+ - 2cb656a4-ec06-49b9-bc58-dd7978dd5c78
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3801
+ 9350
+ 68
+ 20
+
+ -
+ 3836.5
+ 9360
+
+
+
+
+
+
+
+ - Point {y} component
+ - ac5c5633-dc00-4f66-a7fb-ec888daf42c6
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3801
+ 9370
+ 68
+ 20
+
+ -
+ 3836.5
+ 9380
+
+
+
+
+
+
+
+ - Point {z} component
+ - c038d9c9-0abd-42bf-bfaa-b0f00cc970c6
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3801
+ 9390
+ 68
+ 20
+
+ -
+ 3836.5
+ 9400
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
+ - Panel
+
+ - false
+ - 0
+ - 4eeb0406-147e-494d-8c8b-39fadcc20a85
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 9182
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.494
+ 9182.221
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 246ad2c1-626a-454f-9aa8-bbafcd899aed
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 9128
+ 194
+ 28
+
+ -
+ 3808
+ 9142
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 395f3c98-8f99-4d40-bf35-0d57d56e1171
+ - Variable O
+ - O
+ - true
+ - ac5c5633-dc00-4f66-a7fb-ec888daf42c6
+ - 1
+
+
+
+
+ -
+ 3710
+ 9130
+ 14
+ 24
+
+ -
+ 3718.5
+ 9142
+
+
+
+
+
+
+
+ - Result of expression
+ - c5e2889d-482a-4d51-943d-fb7409a75bd4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 9130
+ 9
+ 24
+
+ -
+ 3897
+ 9142
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
+ - Panel
+
+ - false
+ - 0
+ - c5e2889d-482a-4d51-943d-fb7409a75bd4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 9093
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.494
+ 9093.797
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 9e6ecb05-d56c-432f-af9b-825392b28a58
+ - Division
+ - Division
+
+
+
+
+ -
+ 3764
+ 9026
+ 82
+ 44
+
+ -
+ 3795
+ 9048
+
+
+
+
+
+ - Item to divide (dividend)
+ - a1420282-650b-4a8e-80ea-6b2eae3a29dc
+ - A
+ - A
+ - false
+ - eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
+ - 1
+
+
+
+
+ -
+ 3766
+ 9028
+ 14
+ 20
+
+ -
+ 3774.5
+ 9038
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 965d45ed-9b1c-496b-882e-0d8a8989d0ab
+ - B
+ - B
+ - false
+ - 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
+ - 1
+
+
+
+
+ -
+ 3766
+ 9048
+ 14
+ 20
+
+ -
+ 3774.5
+ 9058
+
+
+
+
+
+
+
+ - The result of the Division
+ - bda9ac7b-9765-4538-a4f8-23b0bbcadd92
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3810
+ 9028
+ 34
+ 40
+
+ -
+ 3828.5
+ 9048
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7cc4addf-023b-44f8-a4af-916931180c33
+ - Panel
+
+ - false
+ - 0
+ - c4021ab4-235a-4b82-96c5-ab6df1d33381
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 8938
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.552
+ 8938.911
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 15dddce0-0e1b-4a30-bce0-f450d57b1564
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 8979
+ 194
+ 28
+
+ -
+ 3808
+ 8993
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 311b524e-fc5e-4173-8d70-afd10f2f5963
+ - Variable O
+ - O
+ - true
+ - bda9ac7b-9765-4538-a4f8-23b0bbcadd92
+ - 1
+
+
+
+
+ -
+ 3710
+ 8981
+ 14
+ 24
+
+ -
+ 3718.5
+ 8993
+
+
+
+
+
+
+
+ - Result of expression
+ - d0d54b74-bd9b-4ac8-8fb1-100e3e709549
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 8981
+ 9
+ 24
+
+ -
+ 3897
+ 8993
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c4021ab4-235a-4b82-96c5-ab6df1d33381
+ - Relay
+
+ - false
+ - d0d54b74-bd9b-4ac8-8fb1-100e3e709549
+ - 1
+
+
+
+
+ -
+ 3785
+ 8904
+ 40
+ 16
+
+ -
+ 3805
+ 8912
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 9932a4f2-08f3-4e18-b948-51507591c861
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 3764
+ 8841
+ 82
+ 44
+
+ -
+ 3795
+ 8863
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 584358c4-e6f8-4c88-b3d6-f42b562c6518
+ - A
+ - A
+ - true
+ - 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
+ - 1
+
+
+
+
+ -
+ 3766
+ 8843
+ 14
+ 20
+
+ -
+ 3774.5
+ 8853
+
+
+
+
+
+
+
+ - Second item for addition
+ - 080bdcd0-c11c-4c50-9b0d-a721d53b63d6
+ - B
+ - B
+ - true
+ - eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
+ - 1
+
+
+
+
+ -
+ 3766
+ 8863
+ 14
+ 20
+
+ -
+ 3774.5
+ 8873
+
+
+
+
+
+
+
+ - Result of addition
+ - 022d20de-fb27-4034-bfbc-6a877d3f67a9
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3810
+ 8843
+ 34
+ 40
+
+ -
+ 3828.5
+ 8863
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - f46ed69f-b1eb-4476-b946-8f8cabd86dad
+ - Division
+ - Division
+
+
+
+
+ -
+ 3764
+ 8691
+ 82
+ 44
+
+ -
+ 3795
+ 8713
+
+
+
+
+
+ - Item to divide (dividend)
+ - 57dc4016-27e8-4dd4-a79e-59df520941d5
+ - A
+ - A
+ - false
+ - e5cfd78e-6de5-4679-ad21-f5b87fe45130
+ - 1
+
+
+
+
+ -
+ 3766
+ 8693
+ 14
+ 20
+
+ -
+ 3774.5
+ 8703
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 80d84a71-1c78-45fa-98c0-2242f3da77a7
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 3766
+ 8713
+ 14
+ 20
+
+ -
+ 3774.5
+ 8723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 0a526a49-b794-44c5-89a5-a95162115b36
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3810
+ 8693
+ 34
+ 40
+
+ -
+ 3828.5
+ 8713
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1eca1c19-a8f4-49cd-9222-51d85b78d014
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 8643
+ 194
+ 28
+
+ -
+ 3808
+ 8657
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 226d101c-cfa9-4936-a5eb-88e11b7c5c89
+ - Variable O
+ - O
+ - true
+ - 0a526a49-b794-44c5-89a5-a95162115b36
+ - 1
+
+
+
+
+ -
+ 3710
+ 8645
+ 14
+ 24
+
+ -
+ 3718.5
+ 8657
+
+
+
+
+
+
+
+ - Result of expression
+ - a932c4b2-583b-466d-9119-77b66339029f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 8645
+ 9
+ 24
+
+ -
+ 3897
+ 8657
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ddfc10a5-d2cd-4fa3-bb6d-b967aa1f7b45
+ - Panel
+
+ - false
+ - 0
+ - a932c4b2-583b-466d-9119-77b66339029f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 8610
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.494
+ 8610.139
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e5cfd78e-6de5-4679-ad21-f5b87fe45130
+ - Panel
+
+ - false
+ - 0
+ - a04fe26b-6b37-499c-8388-992389439821
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 8762
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.494
+ 8762.049
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4f3aa960-fddc-4094-a378-3c820581d11e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 8794
+ 194
+ 28
+
+ -
+ 3808
+ 8808
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1453a362-58b2-4020-9eca-b6fe924ddf52
+ - Variable O
+ - O
+ - true
+ - 022d20de-fb27-4034-bfbc-6a877d3f67a9
+ - 1
+
+
+
+
+ -
+ 3710
+ 8796
+ 14
+ 24
+
+ -
+ 3718.5
+ 8808
+
+
+
+
+
+
+
+ - Result of expression
+ - a04fe26b-6b37-499c-8388-992389439821
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 8796
+ 9
+ 24
+
+ -
+ 3897
+ 8808
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - aa3317fe-01e5-49e4-a4a0-545f18f9a6fe
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3728
+ 8520
+ 154
+ 64
+
+ -
+ 3812
+ 8552
+
+
+
+
+
+ - Base geometry
+ - 6d7db568-3262-4991-b18b-f7df86ed55da
+ - Geometry
+ - Geometry
+ - true
+ - 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
+ - 1
+
+
+
+
+ -
+ 3730
+ 8522
+ 67
+ 20
+
+ -
+ 3773
+ 8532
+
+
+
+
+
+
+
+ - Center of scaling
+ - 1cd941fc-0343-4fdb-ac95-5692a34084b5
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3730
+ 8542
+ 67
+ 20
+
+ -
+ 3773
+ 8552
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - fb573978-ff58-4953-b663-f787460df2e6
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - ddfc10a5-d2cd-4fa3-bb6d-b967aa1f7b45
+ - 1
+
+
+
+
+ -
+ 3730
+ 8562
+ 67
+ 20
+
+ -
+ 3773
+ 8572
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 91c7cfb1-d886-4388-93eb-452ba2d6811a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3827
+ 8522
+ 53
+ 30
+
+ -
+ 3855
+ 8537
+
+
+
+
+
+
+
+ - Transformation data
+ - bc9f4d79-baff-4ba5-87b6-d378f8b73ecc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3827
+ 8552
+ 53
+ 30
+
+ -
+ 3855
+ 8567
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e0c44022-95ec-431a-b6ac-3c9b92814529
+ - Curve
+ - Curve
+ - false
+ - 91c7cfb1-d886-4388-93eb-452ba2d6811a
+ - 1
+
+
+
+
+ -
+ 3781
+ 8058
+ 50
+ 24
+
+ -
+ 3806.467
+ 8070.496
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8fbaba83-827d-4344-aac8-13d1142d93a0
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 9301
+ 194
+ 28
+
+ -
+ 3808
+ 9315
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bc784d8e-9a93-4525-9f00-6bd32d8c1622
+ - Variable O
+ - O
+ - true
+ - c038d9c9-0abd-42bf-bfaa-b0f00cc970c6
+ - 1
+
+
+
+
+ -
+ 3710
+ 9303
+ 14
+ 24
+
+ -
+ 3718.5
+ 9315
+
+
+
+
+
+
+
+ - Result of expression
+ - 49aefe12-b0f3-4e2b-ba9b-3a2bd33de342
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 9303
+ 9
+ 24
+
+ -
+ 3897
+ 9315
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3d81ae53-2d90-4091-8fdb-880e28db7265
+ - Panel
+
+ - false
+ - 0
+ - 49aefe12-b0f3-4e2b-ba9b-3a2bd33de342
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 9267
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.366
+ 9267.994
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - fd185e0b-5eff-4ceb-89d0-899b754ee2c5
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3733
+ 8437
+ 144
+ 64
+
+ -
+ 3807
+ 8469
+
+
+
+
+
+ - Curve to evaluate
+ - c7e9a791-cb3e-4faf-9015-18e1bb366923
+ - Curve
+ - Curve
+ - false
+ - 91c7cfb1-d886-4388-93eb-452ba2d6811a
+ - 1
+
+
+
+
+ -
+ 3735
+ 8439
+ 57
+ 20
+
+ -
+ 3765
+ 8449
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 11fe7708-3ac5-481e-aae7-fe87c5ea7b17
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 8459
+ 57
+ 20
+
+ -
+ 3765
+ 8469
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 627f153b-7f65-4a2d-9d99-47195bf0ce68
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3735
+ 8479
+ 57
+ 20
+
+ -
+ 3765
+ 8489
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 1b204eee-9c57-4a5d-accd-7cd8d6015f43
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 8439
+ 53
+ 20
+
+ -
+ 3850
+ 8449
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 41b43eff-29d7-4067-b42d-b249e48136d0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 8459
+ 53
+ 20
+
+ -
+ 3850
+ 8469
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2400ba44-d774-4380-9958-bdbf0aed9d35
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3822
+ 8479
+ 53
+ 20
+
+ -
+ 3850
+ 8489
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2d2c9a13-6f18-4b63-b16b-982f5f207b1d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 8220
+ 194
+ 28
+
+ -
+ 3808
+ 8234
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9e59839f-da67-42a4-a31f-0710093ae74a
+ - Variable O
+ - O
+ - true
+ - a3bad10d-f396-444e-86b8-6999caf7166b
+ - 1
+
+
+
+
+ -
+ 3710
+ 8222
+ 14
+ 24
+
+ -
+ 3718.5
+ 8234
+
+
+
+
+
+
+
+ - Result of expression
+ - 46f01101-5730-46be-b4aa-ed000eb7afea
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 8222
+ 9
+ 24
+
+ -
+ 3897
+ 8234
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 023d6ed4-d8cf-4983-97c4-e762f533d605
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 3739
+ 8354
+ 132
+ 64
+
+ -
+ 3786
+ 8386
+
+
+
+
+
+ - Input point
+ - 2209ccb5-55ee-4a02-9481-1e67a51c6e46
+ - Point
+ - Point
+ - false
+ - 1b204eee-9c57-4a5d-accd-7cd8d6015f43
+ - 1
+
+
+
+
+ -
+ 3741
+ 8356
+ 30
+ 60
+
+ -
+ 3757.5
+ 8386
+
+
+
+
+
+
+
+ - Point {x} component
+ - a3bad10d-f396-444e-86b8-6999caf7166b
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3801
+ 8356
+ 68
+ 20
+
+ -
+ 3836.5
+ 8366
+
+
+
+
+
+
+
+ - Point {y} component
+ - 44b274e4-12c8-4bd3-928a-d866b1f9b319
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3801
+ 8376
+ 68
+ 20
+
+ -
+ 3836.5
+ 8386
+
+
+
+
+
+
+
+ - Point {z} component
+ - 1dbc4935-50aa-49f4-9032-d582513f020c
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3801
+ 8396
+ 68
+ 20
+
+ -
+ 3836.5
+ 8406
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f994613c-79e3-4423-a1c7-5941f394260b
+ - Panel
+
+ - false
+ - 0
+ - 46f01101-5730-46be-b4aa-ed000eb7afea
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3725
+ 8188
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3725.749
+ 8188.498
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 6656a797-31bc-4afa-b33c-41944efe32e3
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 8134
+ 194
+ 28
+
+ -
+ 3808
+ 8148
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c5bed06b-6909-44d9-bc29-6984af8483c3
+ - Variable O
+ - O
+ - true
+ - 44b274e4-12c8-4bd3-928a-d866b1f9b319
+ - 1
+
+
+
+
+ -
+ 3710
+ 8136
+ 14
+ 24
+
+ -
+ 3718.5
+ 8148
+
+
+
+
+
+
+
+ - Result of expression
+ - 49697257-9f06-4043-92b9-4b7f781b6067
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 8136
+ 9
+ 24
+
+ -
+ 3897
+ 8148
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bf5d5229-bc45-49d0-8f32-31b60e0aec6e
+ - Panel
+
+ - false
+ - 0
+ - 49697257-9f06-4043-92b9-4b7f781b6067
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3725
+ 8101
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3725.749
+ 8101.789
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1549ecf8-8453-4a13-9f8c-4ad9aaeed473
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3708
+ 8306
+ 194
+ 28
+
+ -
+ 3808
+ 8320
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - dace7ac6-a6ab-4901-9d1f-70c352a7f7ad
+ - Variable O
+ - O
+ - true
+ - 1dbc4935-50aa-49f4-9032-d582513f020c
+ - 1
+
+
+
+
+ -
+ 3710
+ 8308
+ 14
+ 24
+
+ -
+ 3718.5
+ 8320
+
+
+
+
+
+
+
+ - Result of expression
+ - a54657e5-b5bf-4e3d-95ab-57382678c65a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3891
+ 8308
+ 9
+ 24
+
+ -
+ 3897
+ 8320
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 03f97897-283b-4634-86b0-431945f07618
+ - Panel
+
+ - false
+ - 0
+ - a54657e5-b5bf-4e3d-95ab-57382678c65a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3726
+ 8274
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3726.494
+ 8274.711
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b4622cd9-013d-4e09-ad4a-06ee6e3b6af3
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0 256 0.0013733120705119695
+0 4096 0.0000053644183496292
+
+
+
+
+ -
+ 3625
+ 11264
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 3625.994
+ 11264.31
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4bb07e56-0cd3-4737-a6d3-d621d22da99e
+ - Panel
+
+ - false
+ - 1
+ - 447adc57-9135-4da2-bcaf-a9e8d00dcf95
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3629
+ 10430
+ 355
+ 100
+
+ - 0
+ - 0
+ - 0
+ -
+ 3629.573
+ 10430.29
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 67f6db11-1233-4a02-b46a-f4fe966e1889
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3709
+ 10536
+ 194
+ 28
+
+ -
+ 3809
+ 10550
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e3c4a237-f358-47b1-b441-cc1a670db254
+ - Variable O
+ - O
+ - true
+ - 210595a4-1d10-4344-bd58-627eab3a32ef
+ - 1
+
+
+
+
+ -
+ 3711
+ 10538
+ 14
+ 24
+
+ -
+ 3719.5
+ 10550
+
+
+
+
+
+
+
+ - Result of expression
+ - 447adc57-9135-4da2-bcaf-a9e8d00dcf95
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3892
+ 10538
+ 9
+ 24
+
+ -
+ 3898
+ 10550
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 26d9c13f-79ff-4367-baad-c775d2229988
+ - Number
+ - Number
+ - false
+ - fe23f036-7c14-45f0-96b8-41f076f4d4c3
+ - 1
+
+
+
+
+ -
+ 3782
+ 11670
+ 50
+ 24
+
+ -
+ 3807.456
+ 11682.97
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e0c44022-95ec-431a-b6ac-3c9b92814529
+ - 1
+ - e80c15aa-2326-4167-9956-982b625ae83c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f4161164-94c0-4338-9747-25ef6aee8e11
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3709
+ 10971
+ 194
+ 28
+
+ -
+ 3809
+ 10985
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9d8f41b3-64ca-4905-b037-0a439fcde778
+ - Variable O
+ - O
+ - true
+ - f4a6511e-2fa9-4adc-845c-882c5823e3cf
+ - 1
+
+
+
+
+ -
+ 3711
+ 10973
+ 14
+ 24
+
+ -
+ 3719.5
+ 10985
+
+
+
+
+
+
+
+ - Result of expression
+ - e378179f-30cb-40e1-a207-c2d55bcf994f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3892
+ 10973
+ 9
+ 24
+
+ -
+ 3898
+ 10985
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1001b801-f1f0-43e1-92c0-e39a6260a7a7
+ - Panel
+
+ - false
+ - 0
+ - e378179f-30cb-40e1-a207-c2d55bcf994f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3710
+ 10685
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 3710.263
+ 10685.18
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f71a0d4d-671e-4330-a6e7-80d35dd45d24
+ - Relay
+ -
+ - false
+ - 1001b801-f1f0-43e1-92c0-e39a6260a7a7
+ - 1
+
+
+
+
+ -
+ 3786
+ 10648
+ 40
+ 16
+
+ -
+ 3806
+ 10656
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f4a6511e-2fa9-4adc-845c-882c5823e3cf
+ - Relay
+ -
+ - false
+ - 5ee66eb4-ccfc-4657-a144-114058b11774
+ - 1
+
+
+
+
+ -
+ 3786
+ 11016
+ 40
+ 16
+
+ -
+ 3806
+ 11024
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - f38b93d9-c175-4791-bd5c-d1441f533d0b
+ - true
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 4165
+ 8537
+ 96
+ 44
+
+ -
+ 4215
+ 8559
+
+
+
+
+
+ - Curve to evaluate
+ - cb30bac8-a429-440f-9804-464a2f68418f
+ - true
+ - Curve
+ - Curve
+ - false
+ - 41748b73-5cfb-4a1d-9cb6-c4943e5aa8af
+ - 1
+
+
+
+
+ -
+ 4167
+ 8539
+ 33
+ 40
+
+ -
+ 4185
+ 8559
+
+
+
+
+
+
+
+ - Curve start point
+ - e1c175f2-b8af-46ce-aea7-bd25a14d2590
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4230
+ 8539
+ 29
+ 20
+
+ -
+ 4246
+ 8549
+
+
+
+
+
+
+
+ - Curve end point
+ - ea380322-5845-4e6e-b4af-64d48b287785
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4230
+ 8559
+ 29
+ 20
+
+ -
+ 4246
+ 8569
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 2339e525-83d3-4d01-912d-ab9e03b8008a
+ - true
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 4150
+ 8434
+ 126
+ 84
+
+ -
+ 4208
+ 8476
+
+
+
+
+
+ - Rectangle base plane
+ - 6e8feeec-69c6-4ae8-9903-cf44ecfec6b9
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4152
+ 8436
+ 41
+ 20
+
+ -
+ 4174
+ 8446
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 1806c799-498f-4fa7-a98f-787b83cdbb6b
+ - true
+ - Point A
+ - Point A
+ - false
+ - e1c175f2-b8af-46ce-aea7-bd25a14d2590
+ - 1
+
+
+
+
+ -
+ 4152
+ 8456
+ 41
+ 20
+
+ -
+ 4174
+ 8466
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - e9c560ee-37e6-43d1-90bc-92f2996d37d1
+ - true
+ - Point B
+ - Point B
+ - false
+ - ea380322-5845-4e6e-b4af-64d48b287785
+ - 1
+
+
+
+
+ -
+ 4152
+ 8476
+ 41
+ 20
+
+ -
+ 4174
+ 8486
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 25da538d-9c86-480c-9679-5b83cc42a50e
+ - true
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4152
+ 8496
+ 41
+ 20
+
+ -
+ 4174
+ 8506
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - b2fa1926-8f52-4ea6-941a-e9d57eb2d4d7
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 4223
+ 8436
+ 51
+ 40
+
+ -
+ 4250
+ 8456
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - ff269275-4e88-49b5-af79-9d16beb9c1fb
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4223
+ 8476
+ 51
+ 40
+
+ -
+ 4250
+ 8496
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - f2a145f6-158d-4b59-a4d2-f3bd7f69b240
+ - true
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 4142
+ 8351
+ 142
+ 64
+
+ -
+ 4210
+ 8383
+
+
+
+
+
+ - Rectangle to deconstruct
+ - bcd6b502-a8ee-48e2-be67-e807cf73c582
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - b2fa1926-8f52-4ea6-941a-e9d57eb2d4d7
+ - 1
+
+
+
+
+ -
+ 4144
+ 8353
+ 51
+ 60
+
+ -
+ 4171
+ 8383
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - a42a95f4-c93a-4f93-9dc0-141aec6c46d0
+ - true
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8353
+ 57
+ 20
+
+ -
+ 4255
+ 8363
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - b09ed31f-4f86-43f6-b2e4-42d2b0b6c10a
+ - true
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8373
+ 57
+ 20
+
+ -
+ 4255
+ 8383
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 86109d6c-4302-4086-8162-96f5c501e054
+ - true
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4225
+ 8393
+ 57
+ 20
+
+ -
+ 4255
+ 8403
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 2ebaeea9-1442-4a1d-9f36-8e03d30ef743
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4161
+ 8224
+ 104
+ 44
+
+ -
+ 4219
+ 8246
+
+
+
+
+
+ - Base domain
+ - 0237d9f7-6413-436a-813e-44861adbd2b7
+ - true
+ - Domain
+ - Domain
+ - false
+ - 86109d6c-4302-4086-8162-96f5c501e054
+ - 1
+
+
+
+
+ -
+ 4163
+ 8226
+ 41
+ 40
+
+ -
+ 4185
+ 8246
+
+
+
+
+
+
+
+ - Start of domain
+ - def919dc-a262-4e68-a506-5e292638a2f1
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ 8226
+ 29
+ 20
+
+ -
+ 4250
+ 8236
+
+
+
+
+
+
+
+ - End of domain
+ - d6ff5fb3-ba22-4277-8d29-850909e8107a
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ 8246
+ 29
+ 20
+
+ -
+ 4250
+ 8256
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - cfa0a41e-e230-4dd6-876a-05c70faef459
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4161
+ 8286
+ 104
+ 44
+
+ -
+ 4219
+ 8308
+
+
+
+
+
+ - Base domain
+ - 92499bb2-edf9-48dd-9c7b-a95fa1f84141
+ - true
+ - Domain
+ - Domain
+ - false
+ - b09ed31f-4f86-43f6-b2e4-42d2b0b6c10a
+ - 1
+
+
+
+
+ -
+ 4163
+ 8288
+ 41
+ 40
+
+ -
+ 4185
+ 8308
+
+
+
+
+
+
+
+ - Start of domain
+ - 3a402873-353e-4c60-9d50-6e448f0150f5
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ 8288
+ 29
+ 20
+
+ -
+ 4250
+ 8298
+
+
+
+
+
+
+
+ - End of domain
+ - d91f57b9-0b9c-4d57-b884-e164ec49997b
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ 8308
+ 29
+ 20
+
+ -
+ 4250
+ 8318
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 3df990c6-6fdf-453e-bca5-69914229de37
+ - true
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 4136
+ 8101
+ 154
+ 104
+
+ -
+ 4220
+ 8153
+
+
+
+
+
+ - Base geometry
+ - a2ac7bfb-c1a6-40e2-9fa7-5afe9e6a46cc
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - e0c44022-95ec-431a-b6ac-3c9b92814529
+ - 1
+
+
+
+
+ -
+ 4138
+ 8103
+ 67
+ 20
+
+ -
+ 4181
+ 8113
+
+
+
+
+
+
+
+ - Base plane
+ - d6afb48d-07b1-4014-8d27-f2a064a66cde
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4138
+ 8123
+ 67
+ 20
+
+ -
+ 4181
+ 8133
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 3cbb676d-c0cb-4961-92cd-a9e6b88595f5
+ - 1/X
+ - true
+ - Scale X
+ - Scale X
+ - false
+ - d91f57b9-0b9c-4d57-b884-e164ec49997b
+ - 1
+
+
+
+
+ -
+ 4138
+ 8143
+ 67
+ 20
+
+ -
+ 4181
+ 8153
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 2b7bf670-ec67-40e3-ba42-172dae623b65
+ - 1/X
+ - true
+ - Scale Y
+ - Scale Y
+ - false
+ - d6ff5fb3-ba22-4277-8d29-850909e8107a
+ - 1
+
+
+
+
+ -
+ 4138
+ 8163
+ 67
+ 20
+
+ -
+ 4181
+ 8173
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 52520657-e2e1-4f64-ade8-5bd8e349c3b6
+ - true
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 4138
+ 8183
+ 67
+ 20
+
+ -
+ 4181
+ 8193
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ae3a3542-a687-443b-ba02-4d3849851a81
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4235
+ 8103
+ 53
+ 50
+
+ -
+ 4263
+ 8128
+
+
+
+
+
+
+
+ - Transformation data
+ - 5e7d0554-3b09-42b2-ad14-1d97dcb2f9a6
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4235
+ 8153
+ 53
+ 50
+
+ -
+ 4263
+ 8178
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f38b93d9-c175-4791-bd5c-d1441f533d0b
+ - 2339e525-83d3-4d01-912d-ab9e03b8008a
+ - f2a145f6-158d-4b59-a4d2-f3bd7f69b240
+ - 2ebaeea9-1442-4a1d-9f36-8e03d30ef743
+ - cfa0a41e-e230-4dd6-876a-05c70faef459
+ - 3df990c6-6fdf-453e-bca5-69914229de37
+ - 41748b73-5cfb-4a1d-9cb6-c4943e5aa8af
+ - 1dbb7805-b8ad-4aef-8985-5107dc9aaffb
+ - 8
+ - 19d02496-bc48-4c16-839c-fc13707f5f1f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 41748b73-5cfb-4a1d-9cb6-c4943e5aa8af
+ - true
+ - Curve
+ - Curve
+ - false
+ - e0c44022-95ec-431a-b6ac-3c9b92814529
+ - 1
+
+
+
+
+ -
+ 4188
+ 8599
+ 50
+ 24
+
+ -
+ 4213.758
+ 8611.335
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1dbb7805-b8ad-4aef-8985-5107dc9aaffb
+ - true
+ - Curve
+ - Curve
+ - false
+ - ae3a3542-a687-443b-ba02-4d3849851a81
+ - 1
+
+
+
+
+ -
+ 4188
+ 8059
+ 50
+ 24
+
+ -
+ 4213
+ 8071.206
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 80d6a883-8558-4a4b-bb1b-d14373512a75
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 3679
+ 11433
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3679.058
+ 11433.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fe738e39-d598-45df-a2ce-7ce4c85ea9bb
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0000710748925500000001421
+
+
+
+
+ -
+ 3679
+ 11391
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3679.058
+ 11391.92
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7f754298-7155-4f9b-9563-7ebff30f06c3
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 3679
+ 11466
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3679.058
+ 11466.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fde3255c-a22e-4e12-a717-c573c914426d
+ - b209923c-3a28-4705-b6c2-2d7aa0c13cc7
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - ffbd0ca9-452d-476b-aad7-d52654097132
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - 959f42b6-9f27-447c-ad2e-ce1242d74400
+ - 81e762e6-cf7c-4ae1-9584-48cd20085421
+ - 115f0245-8d8d-4e08-9afd-473c7a08d0bd
+ - aca130b6-7d71-401a-8538-59d8d28c145e
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - e8565a94-1105-499b-9121-d17b6a40c779
+ - 12a155cd-954b-41b5-9ebf-dfadc3960e64
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - 9c4b4d0a-421b-4c53-895c-1221d23a8c23
+ - af294dd2-b04a-4838-88c8-0277f80bc3b0
+ - a6eac927-8a3c-4732-b1a8-90e4b25850df
+ - 5bda71fa-0d3a-4287-94fd-b5d399b8202f
+ - d23b18ad-2e9d-4af3-a33d-e2ae8d08d84a
+ - eedba66f-c09e-4b6a-a6f6-e360e1607858
+ - a3be89c0-1a37-4050-ae27-b5fc88bad330
+ - 22
+ - 29331690-919f-48ab-ad76-1dc739965de3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ffbd0ca9-452d-476b-aad7-d52654097132
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - 959f42b6-9f27-447c-ad2e-ce1242d74400
+ - 81e762e6-cf7c-4ae1-9584-48cd20085421
+ - 115f0245-8d8d-4e08-9afd-473c7a08d0bd
+ - aca130b6-7d71-401a-8538-59d8d28c145e
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - e8565a94-1105-499b-9121-d17b6a40c779
+ - 12a155cd-954b-41b5-9ebf-dfadc3960e64
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - 6c6c28be-b01b-42e5-b60a-91c314905c9e
+ - c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
+ - 13
+ - fde3255c-a22e-4e12-a717-c573c914426d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - b95d8a38-41aa-4736-824a-ba59abe8a164
+ - 93c43765-186a-4186-a1a9-e77f1750e486
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 65df7317-6c88-4fda-8fed-06e7d0688f08
+ - 6897aa6f-691a-4a9e-9c03-e572cb62cff8
+ - b707e471-1378-4bfb-bd26-10f57a654a96
+ - 5af3936c-a114-48c9-97e6-a71d4495fe1c
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 1d60a251-59c1-4374-b24a-8b67b3ca92c6
+ - 5dab1729-964c-4894-9f64-653823a0fdac
+ - 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
+ - bbb3902c-2630-4a7b-b951-351a62cef558
+ - cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - 7ed3dd99-417d-4769-a70b-0badf48c5649
+ - 8f08f378-fe83-47ee-ba70-f262beab4dd0
+ - 3dc26939-4bac-457f-9c7c-219b4dc86741
+ - 9b8fe626-a4bb-4fca-8d8b-ac2298cbf3cb
+ - 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 077563a1-d2cf-43fe-a93d-642285cd95b7
+ - b6d0afa1-3dec-42e7-9c93-de08ed9790f2
+ - 4d6b9775-db5a-464b-b178-f930dd568ce2
+ - 84e913bd-a348-462a-a472-eab93956daf2
+ - beb498f4-7162-49c3-842b-a972d8ad71d9
+ - f9713408-b850-40b1-ac2d-56af5c03c800
+ - 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
+ - 506eabeb-a640-43fd-9af7-b2232e3fa71b
+ - e86ea7ed-38b8-40b5-bb42-623a7c8059c6
+ - a6d884fb-514f-42c3-86a9-71ade0d41a40
+ - b379a0ac-4016-4778-8d99-3b57d052a769
+ - 1ceffb1c-921e-4c1d-ab03-e05135b9b5e0
+ - 82046283-082e-419e-a05f-023d3a681021
+ - 41ca37bd-04a2-4730-a104-ccfdfebcb019
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - baea9c8f-4e59-442d-b5b4-d125979bf466
+ - 12c0d088-f108-4075-bb85-315d570d97ea
+ - 41093a5b-4ba4-4dfb-a5f8-1bd792353689
+ - 39d1ba4f-7fac-4207-98a7-67ceea5ef36c
+ - 42ced415-8369-4764-bd84-2655a9abcdd0
+ - 97be2d03-c12a-4c13-bcf1-179c5148fad7
+ - f9312303-3ba0-4d12-bf2a-4df8dd780ec7
+ - a0d0df39-1b14-428e-bf37-398cec030283
+ - 6717a073-4979-4ab7-8cca-94ec28dd910e
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - c7834162-f8d6-4396-a928-93ded1c673be
+ - d49b543b-255e-4b1e-afad-506fdeb4a087
+ - 9033362e-88b7-4ca5-82ec-e83b690b9e1f
+ - e9edf9da-696f-47bd-a5e5-79c7729f8e89
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - 47a743e6-2557-42d2-a2c1-210a6a941e82
+ - 1dfb13cb-b934-40bc-a126-3ef4f67aa6cb
+ - af01224e-c0e0-4809-ad30-4e4bd74d845a
+ - 2e1813eb-afd7-4c67-ae5d-0aea5806a643
+ - 5365386e-73e6-497c-b44a-34b85df3bb28
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 4a81f039-0b6b-406b-837f-1176119811ff
+ - e82225cb-a1a5-4ad3-b28d-40b2efc10203
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - 98efd460-a431-49c8-aded-a62a77c59e5f
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 929e2d4c-e84d-4d02-91ac-5e7752c650a1
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
+ - e73e0f67-8dcc-4b89-a973-43217655652f
+ - 5f2c0952-b956-47bf-90b0-5d5a4cb6cee6
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - e4026ef5-c10c-464e-9823-6797237c75c6
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - 2077772c-8556-4e37-b44d-c0a0d5d206ff
+ - e5bb3651-4fcd-4da1-9d37-64323a4cbaec
+ - 441bf542-5076-4985-9937-0bb3a042b678
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 31ebe528-d55d-4dff-927d-a48736be9cc3
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - 34ec62fd-1b45-4131-8bb3-067f9ae32190
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - 3f3172f7-bff5-4e81-85a2-58943326f0a7
+ - c9632403-1835-45bf-a8da-51dd473c2104
+ - 3579a27a-9991-4bf3-94de-84223b4b0a72
+ - b7462a41-d690-4e75-b5bb-082a0185ec77
+ - 5e698680-d615-4e2a-aed9-fd28b0220a65
+ - ca297271-f533-4d51-a8fc-bdb7b204740c
+ - 9e3117d6-b3b4-4adc-84f3-2835a988e21e
+ - c8c317c7-391f-4b40-93d8-4c1994caecef
+ - 3b490da6-b955-4f9c-bddc-980384007a01
+ - c2fc9a4e-ff43-4e6b-ba22-4562fab58558
+ - 99
+ - 61bcf775-8597-4b5c-a39e-6aa822a67ed7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - Number
+ - Number
+ - false
+ - 96971adb-dc6f-4220-b87f-875d4c7c2611
+ - 1
+
+
+
+
+ -
+ 4293
+ 7043
+ 50
+ 24
+
+ -
+ 4318.785
+ 7055.021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - b95d8a38-41aa-4736-824a-ba59abe8a164
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ 4249
+ 6873
+ 137
+ 64
+
+ -
+ 4319
+ 6905
+
+
+
+
+
+ - Curve to evaluate
+ - 19c1983b-2d95-47e4-8f56-f9ebcbdf4b86
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4251
+ 6875
+ 53
+ 30
+
+ -
+ 4279
+ 6890
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 115baf5b-eaad-418a-8025-23991d12e2ee
+ - Parameter
+ - Parameter
+ - false
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - 1
+
+
+
+
+ -
+ 4251
+ 6905
+ 53
+ 30
+
+ -
+ 4279
+ 6920
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 530f89ee-5568-4c47-990d-ddab27ed409e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 6875
+ 50
+ 20
+
+ -
+ 4360.5
+ 6885
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - 0740a746-92bd-42a5-be7d-7c4afad1589c
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 6895
+ 50
+ 20
+
+ -
+ 4360.5
+ 6905
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - cd58e8b9-06e1-45b4-a606-81544cb9262d
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 6915
+ 50
+ 20
+
+ -
+ 4360.5
+ 6925
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 93c43765-186a-4186-a1a9-e77f1750e486
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 4255
+ 6956
+ 125
+ 64
+
+ -
+ 4305
+ 6988
+
+
+
+
+
+ - Curve to divide
+ - d0f1a5a1-14fc-4928-a5ef-8feb9f1e8e65
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4257
+ 6958
+ 33
+ 20
+
+ -
+ 4275
+ 6968
+
+
+
+
+
+
+
+ - Number of segments
+ - c80889e9-7d20-4519-a4fe-c7d376ff0d17
+ - Count
+ - Count
+ - false
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - 1
+
+
+
+
+ -
+ 4257
+ 6978
+ 33
+ 20
+
+ -
+ 4275
+ 6988
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 798a9bca-31a3-4cc6-b5a7-d6320e4a9c6a
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 6998
+ 33
+ 20
+
+ -
+ 4275
+ 7008
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 8f938e34-0564-4935-842c-a035ea89a910
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 6958
+ 58
+ 20
+
+ -
+ 4350.5
+ 6968
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - c11a93a5-d484-4a27-a79d-20a0c829c1b9
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 6978
+ 58
+ 20
+
+ -
+ 4350.5
+ 6988
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 6998
+ 58
+ 20
+
+ -
+ 4350.5
+ 7008
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 2
+ - Curve
+ - Curve
+ - false
+ - a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
+ - 1
+
+
+
+
+ -
+ 4291
+ 7472
+ 53
+ 24
+
+ -
+ 4327.5
+ 7484.836
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - 65df7317-6c88-4fda-8fed-06e7d0688f08
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ 4261
+ 6792
+ 114
+ 64
+
+ -
+ 4301
+ 6824
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 789da2de-584e-42a0-a38e-b29e6b35279e
+ - Arc
+ - Arc
+ - false
+ - cd58e8b9-06e1-45b4-a606-81544cb9262d
+ - 1
+
+
+
+
+ -
+ 4263
+ 6794
+ 23
+ 60
+
+ -
+ 4276
+ 6824
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - 35a8e793-f0c7-4e6d-921e-18109ea98ceb
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ 6794
+ 57
+ 20
+
+ -
+ 4346
+ 6804
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 3654a9c9-a7f1-48df-8fa7-73ed1663a837
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ 6814
+ 57
+ 20
+
+ -
+ 4346
+ 6824
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - 0a990d82-8970-40a7-827e-8fb7dedd1a8c
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ 6834
+ 57
+ 20
+
+ -
+ 4346
+ 6844
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 6897aa6f-691a-4a9e-9c03-e572cb62cff8
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 4268
+ 6296
+ 100
+ 28
+
+ -
+ 4317
+ 6310
+
+
+
+
+
+ - Input value
+ - 605ebcc2-3259-4435-82ad-d9a5c07f3466
+ - Value
+ - Value
+ - false
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 1
+
+
+
+
+ -
+ 4270
+ 6298
+ 32
+ 24
+
+ -
+ 4287.5
+ 6310
+
+
+
+
+
+
+
+ - Output value
+ - 65383476-e61d-4ddb-9403-69c36989070f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4332
+ 6298
+ 34
+ 24
+
+ -
+ 4350.5
+ 6310
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - b707e471-1378-4bfb-bd26-10f57a654a96
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4243
+ 6114
+ 150
+ 150
+
+ -
+ 4243.486
+ 6114.676
+
+ - 0
+
+
+
+
+
+
+
+
+ - 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
+ - Line
+
+
+
+
+ - Create a line between two points.
+ - true
+ - 5af3936c-a114-48c9-97e6-a71d4495fe1c
+ - Line
+ - Line
+
+
+
+
+ -
+ 4261
+ 6360
+ 114
+ 44
+
+ -
+ 4333
+ 6382
+
+
+
+
+
+ - Line start point
+ - d77174e3-2f21-4b5a-a69b-36c3db06d110
+ - Start Point
+ - Start Point
+ - false
+ - 530f89ee-5568-4c47-990d-ddab27ed409e
+ - 1
+
+
+
+
+ -
+ 4263
+ 6362
+ 55
+ 20
+
+ -
+ 4292
+ 6372
+
+
+
+
+
+
+
+ - Line end point
+ - bcccc128-d879-4b75-8cca-bb5aac27fe03
+ - End Point
+ - End Point
+ - false
+ - 35a8e793-f0c7-4e6d-921e-18109ea98ceb
+ - 1
+
+
+
+
+ -
+ 4263
+ 6382
+ 55
+ 20
+
+ -
+ 4292
+ 6392
+
+
+
+
+
+
+
+ - Line segment
+ - ee24630f-f4f0-4780-abab-e012c957d4c6
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4348
+ 6362
+ 25
+ 40
+
+ -
+ 4362
+ 6382
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ 5278
+ 150
+ 20
+
+ -
+ 4240.236
+ 5278.513
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 2
+ - 0
+ - 0
+ - 0.043752
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1d60a251-59c1-4374-b24a-8b67b3ca92c6
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ 5160
+ 122
+ 64
+
+ -
+ 4337
+ 5192
+
+
+
+
+
+ - Line start point
+ - e22555ed-ce09-4f6a-86b7-694208f85afe
+ - Start
+ - Start
+ - false
+ - 530f89ee-5568-4c47-990d-ddab27ed409e
+ - 1
+
+
+
+
+ -
+ 4259
+ 5162
+ 63
+ 20
+
+ -
+ 4300
+ 5172
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - a5bec1ae-8462-420c-be22-d4988f1de771
+ - Direction
+ - Direction
+ - false
+ - 61f9e29f-feb3-4122-9ade-977c75c70121
+ - 1
+
+
+
+
+ -
+ 4259
+ 5182
+ 63
+ 20
+
+ -
+ 4300
+ 5192
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 20fc2090-edc5-4ea6-b00a-6537afd6b455
+ - -X
+ - Length
+ - Length
+ - false
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - 1
+
+
+
+
+ -
+ 4259
+ 5202
+ 63
+ 20
+
+ -
+ 4300
+ 5212
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 5162
+ 25
+ 60
+
+ -
+ 4366
+ 5192
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5dab1729-964c-4894-9f64-653823a0fdac
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ 4896
+ 144
+ 64
+
+ -
+ 4320
+ 4928
+
+
+
+
+
+ - Curve to evaluate
+ - 9629717c-17ba-4da9-b279-417bda8b5269
+ - Curve
+ - Curve
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4248
+ 4898
+ 57
+ 20
+
+ -
+ 4278
+ 4908
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 80b0ad13-9823-4b7a-b40a-3b34377e5d5e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4918
+ 57
+ 20
+
+ -
+ 4278
+ 4928
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a7b905ec-d2c6-4035-978f-8400334a8ca8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4938
+ 57
+ 20
+
+ -
+ 4278
+ 4948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4898
+ 53
+ 20
+
+ -
+ 4363
+ 4908
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9b982a23-a369-4aae-89b4-1d10c80fafd6
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4918
+ 53
+ 20
+
+ -
+ 4363
+ 4928
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2059ff87-cc57-4684-a6cc-860c3e9f8fd4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4938
+ 53
+ 20
+
+ -
+ 4363
+ 4948
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ 4794
+ 125
+ 84
+
+ -
+ 4322
+ 4836
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 7211f213-a1bc-47a9-a942-2e9f99f244ea
+ - Vertices
+ - Vertices
+ - false
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - 1
+
+
+
+
+ -
+ 4257
+ 4796
+ 50
+ 20
+
+ -
+ 4283.5
+ 4806
+
+
+
+
+
+
+
+ - Curve degree
+ - 1d00875e-8c8f-4255-8021-f9eace27906e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 4816
+ 50
+ 20
+
+ -
+ 4283.5
+ 4826
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - b55b69f0-6548-4440-86b5-e2c5bca673d1
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 4836
+ 50
+ 20
+
+ -
+ 4283.5
+ 4846
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 5fa7d12e-58e2-4597-bf61-f6aac4ca69b6
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 4856
+ 50
+ 20
+
+ -
+ 4283.5
+ 4866
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - c1394789-448d-4011-a7a5-a9c725907596
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 4796
+ 41
+ 26
+
+ -
+ 4359
+ 4809.333
+
+
+
+
+
+
+
+ - Curve length
+ - 321f9f82-5399-40aa-9b71-d9fded5fdfe2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 4822
+ 41
+ 27
+
+ -
+ 4359
+ 4836
+
+
+
+
+
+
+
+ - Curve domain
+ - a58dd5b1-6de2-4a22-a4c9-b6e6bb4ea3ef
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 4849
+ 41
+ 27
+
+ -
+ 4359
+ 4862.667
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - b95d8a38-41aa-4736-824a-ba59abe8a164
+ - 93c43765-186a-4186-a1a9-e77f1750e486
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 65df7317-6c88-4fda-8fed-06e7d0688f08
+ - 6897aa6f-691a-4a9e-9c03-e572cb62cff8
+ - b707e471-1378-4bfb-bd26-10f57a654a96
+ - 42201d77-7bc4-437d-baaf-c8290f91a477
+ - 5af3936c-a114-48c9-97e6-a71d4495fe1c
+ - dc8b9948-0b61-495f-bb5c-30271010864e
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 1d60a251-59c1-4374-b24a-8b67b3ca92c6
+ - 90f74d47-d623-4b80-a1f4-bde635cc690f
+ - 5dab1729-964c-4894-9f64-653823a0fdac
+ - 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
+ - 84e913bd-a348-462a-a472-eab93956daf2
+ - beb498f4-7162-49c3-842b-a972d8ad71d9
+ - b6d0afa1-3dec-42e7-9c93-de08ed9790f2
+ - 4d6b9775-db5a-464b-b178-f930dd568ce2
+ - f9713408-b850-40b1-ac2d-56af5c03c800
+ - 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
+ - 6717a073-4979-4ab7-8cca-94ec28dd910e
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
+ - cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - e4026ef5-c10c-464e-9823-6797237c75c6
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - 2077772c-8556-4e37-b44d-c0a0d5d206ff
+ - f12959c2-8cc4-4ce2-896d-7ff1a4aa1903
+ - 42
+ - bbb3902c-2630-4a7b-b951-351a62cef558
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
+ - Number
+ - Number
+ - false
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - 1
+
+
+
+
+ -
+ 4293
+ 4445
+ 50
+ 24
+
+ -
+ 4318
+ 4457.974
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - Curve
+ - Curve
+ - false
+ - c1394789-448d-4011-a7a5-a9c725907596
+ - 1
+
+
+
+
+ -
+ 4293
+ 4488
+ 50
+ 24
+
+ -
+ 4318
+ 4500.896
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 7ed3dd99-417d-4769-a70b-0badf48c5649
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ 3141
+ 122
+ 64
+
+ -
+ 4337
+ 3173
+
+
+
+
+
+ - Line start point
+ - a6313991-5fed-473e-8203-12902cc0ca23
+ - Start
+ - Start
+ - false
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - 1
+
+
+
+
+ -
+ 4259
+ 3143
+ 63
+ 20
+
+ -
+ 4300
+ 3153
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - c5b0bce5-96d7-447a-9757-7e6cc6e689aa
+ - Direction
+ - Direction
+ - false
+ - c7834162-f8d6-4396-a928-93ded1c673be
+ - 1
+
+
+
+
+ -
+ 4259
+ 3163
+ 63
+ 20
+
+ -
+ 4300
+ 3173
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e968eda2-2fd9-48da-99dc-b168c5ce158c
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 1
+
+
+
+
+ -
+ 4259
+ 3183
+ 63
+ 20
+
+ -
+ 4300
+ 3193
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 3fe9ed31-c050-492d-94ea-c80218f2b732
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 3143
+ 25
+ 60
+
+ -
+ 4366
+ 3173
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8f08f378-fe83-47ee-ba70-f262beab4dd0
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ 2818
+ 144
+ 64
+
+ -
+ 4320
+ 2850
+
+
+
+
+
+ - Curve to evaluate
+ - 0d9a8a58-4d0a-4434-a450-8e98b436a412
+ - Curve
+ - Curve
+ - false
+ - 441bf542-5076-4985-9937-0bb3a042b678
+ - 1
+
+
+
+
+ -
+ 4248
+ 2820
+ 57
+ 20
+
+ -
+ 4278
+ 2830
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a1aca457-48b1-4d2a-a0cc-9aa18d7bfcdf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 2840
+ 57
+ 20
+
+ -
+ 4278
+ 2850
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1188ad96-f0f1-40b7-810f-9b69492635d4
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 2860
+ 57
+ 20
+
+ -
+ 4278
+ 2870
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 18921b3c-23a8-4466-aa33-85dea6f5193e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 2820
+ 53
+ 20
+
+ -
+ 4363
+ 2830
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - aa8f58ce-50c4-4bf8-b24d-039a80bdcd54
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 2840
+ 53
+ 20
+
+ -
+ 4363
+ 2850
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 59b0d0c9-4175-42e9-936a-02e0b1b5547b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 2860
+ 53
+ 20
+
+ -
+ 4363
+ 2870
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 3dc26939-4bac-457f-9c7c-219b4dc86741
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ 1815
+ 125
+ 84
+
+ -
+ 4322
+ 1857
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 9ce862c7-e83a-44f6-a90e-5d01a0ac4cb2
+ - Vertices
+ - Vertices
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4257
+ 1817
+ 50
+ 20
+
+ -
+ 4283.5
+ 1827
+
+
+
+
+
+
+
+ - Curve degree
+ - 035ee24e-d16b-4cf3-b607-7bc2fd7f69d6
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 1837
+ 50
+ 20
+
+ -
+ 4283.5
+ 1847
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 280d1a76-ca69-4ee8-9b1c-a3fce38ab5c9
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 1857
+ 50
+ 20
+
+ -
+ 4283.5
+ 1867
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 9bf7f1ee-f145-4fe2-beef-c59418629ac7
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 1877
+ 50
+ 20
+
+ -
+ 4283.5
+ 1887
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 1817
+ 41
+ 26
+
+ -
+ 4359
+ 1830.333
+
+
+
+
+
+
+
+ - Curve length
+ - 38bf6ac5-4357-469b-9bba-7bba715cb5d1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 1843
+ 41
+ 27
+
+ -
+ 4359
+ 1857
+
+
+
+
+
+
+
+ - Curve domain
+ - 7a5c3ecf-7823-4983-873e-ab2b1c6c868c
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 1870
+ 41
+ 27
+
+ -
+ 4359
+ 1883.667
+
+
+
+
+
+
+
+
+
+
+
+ - dde71aef-d6ed-40a6-af98-6b0673983c82
+ - Nurbs Curve
+
+
+
+
+ - Construct a nurbs curve from control points.
+ - true
+ - 9b8fe626-a4bb-4fca-8d8b-ac2298cbf3cb
+ - Nurbs Curve
+ - Nurbs Curve
+
+
+
+
+ -
+ 4259
+ 4712
+ 118
+ 64
+
+ -
+ 4319
+ 4744
+
+
+
+
+
+ - 1
+ - Curve control points
+ - 2af9f5bc-8bea-48f0-8d9a-d37a5ba2a29f
+ - Vertices
+ - Vertices
+ - false
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - 1
+
+
+
+
+ -
+ 4261
+ 4714
+ 43
+ 20
+
+ -
+ 4284
+ 4724
+
+
+
+
+
+
+
+ - Curve degree
+ - e692fbe6-a99c-4693-9a36-98b14d2f9d42
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4261
+ 4734
+ 43
+ 20
+
+ -
+ 4284
+ 4744
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - b39e02b3-360a-4615-b920-7d6142b9ef32
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4261
+ 4754
+ 43
+ 20
+
+ -
+ 4284
+ 4764
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 901accb7-a63e-4aad-ad0b-1abd083399ab
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 4714
+ 41
+ 20
+
+ -
+ 4356
+ 4724
+
+
+
+
+
+
+
+ - Curve length
+ - e999b44b-5986-4917-a835-77c4f9bb1c4a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 4734
+ 41
+ 20
+
+ -
+ 4356
+ 4744
+
+
+
+
+
+
+
+ - Curve domain
+ - 7d47fdce-c93c-4e8b-b930-65a7b9d2c548
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 4754
+ 41
+ 20
+
+ -
+ 4356
+ 4764
+
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4254
+ 4299
+ 128
+ 28
+
+ -
+ 4307
+ 4313
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 2e382b39-db26-4f00-ad60-867949e375ae
+ - Values
+ - Values
+ - false
+ - c1cbf3cc-c305-48cc-a958-e9cacfba5960
+ - 1
+
+
+
+
+ -
+ 4256
+ 4301
+ 36
+ 24
+
+ -
+ 4275.5
+ 4313
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 52a4cb5e-e88f-43e5-bb41-82eb4d03ae2c
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ 4301
+ 58
+ 24
+
+ -
+ 4352.5
+ 4313
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - Relay
+ -
+ - false
+ - 65383476-e61d-4ddb-9403-69c36989070f
+ - 1
+
+
+
+
+ -
+ 4298
+ 6280
+ 40
+ 16
+
+ -
+ 4318
+ 6288
+
+
+
+
+
+
+
+
+
+ - ab14760f-87a6-462e-b481-4a2c26a9a0d7
+ - Derivatives
+
+
+
+
+ - Evaluate the derivatives of a curve at a specified parameter.
+ - true
+ - 077563a1-d2cf-43fe-a93d-642285cd95b7
+ - true
+ - Derivatives
+ - Derivatives
+
+
+
+
+ -
+ 4226
+ -9499
+ 117
+ 144
+
+ -
+ 4296
+ -9427
+
+
+
+
+
+ - 2
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 7
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+
+
+
+
+ - Curve to evaluate
+ - c5ce250c-64e3-46c4-be52-06c57f3ae50e
+ - true
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4228
+ -9497
+ 53
+ 70
+
+ -
+ 4256
+ -9462
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 6da23971-dde5-4d70-8a0c-4a507c037d78
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - 1
+
+
+
+
+ -
+ 4228
+ -9427
+ 53
+ 70
+
+ -
+ 4256
+ -9392
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 95bfb75e-deb2-41b2-ba5e-9f8b1037d613
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9497
+ 30
+ 20
+
+ -
+ 4327.5
+ -9487
+
+
+
+
+
+
+
+ - First curve derivative at t (Velocity)
+ - c9af63c9-0143-479e-9052-49ae8662e1b1
+ - true
+ - false
+ - First derivative
+ - 1
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9477
+ 30
+ 20
+
+ -
+ 4327.5
+ -9467
+
+
+
+
+
+
+
+ - Second curve derivative at t (Acceleration)
+ - 96867ac7-0810-4a7b-b16e-65dfb34d3ac7
+ - true
+ - false
+ - Second derivative
+ - 2
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9457
+ 30
+ 20
+
+ -
+ 4327.5
+ -9447
+
+
+
+
+
+
+
+ - Third curve derivative at t (Jolt)
+ - 42ee3241-4c5c-463a-b0d9-dd12d62c2293
+ - true
+ - false
+ - Third derivative
+ - 3
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9437
+ 30
+ 20
+
+ -
+ 4327.5
+ -9427
+
+
+
+
+
+
+
+ - Fourth curve derivative at t (Jounce)
+ - 533714a3-b663-4971-b5e9-26bce2a7de5c
+ - true
+ - false
+ - Fourth derivative
+ - 4
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9417
+ 30
+ 20
+
+ -
+ 4327.5
+ -9407
+
+
+
+
+
+
+
+ - Fifth curve derivative at t
+ - 8a09c8bb-c54e-4691-8429-43124dd1c8b3
+ - true
+ - false
+ - Fifth derivative
+ - 5
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9397
+ 30
+ 20
+
+ -
+ 4327.5
+ -9387
+
+
+
+
+
+
+
+ - Sixth curve derivative at t
+ - b52f3636-0270-4109-8b69-fa9470b344cd
+ - true
+ - false
+ - Sixth derivative
+ - 6
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9377
+ 30
+ 20
+
+ -
+ 4327.5
+ -9367
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b6d0afa1-3dec-42e7-9c93-de08ed9790f2
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 5040
+ 144
+ 104
+
+ -
+ 4330
+ 5092
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e2ff4e85-df78-45d2-bba7-7721635df2c5
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5042
+ 67
+ 20
+
+ -
+ 4283
+ 5052
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 389e0ea6-4a20-40c9-a249-fa446921528d
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5062
+ 67
+ 20
+
+ -
+ 4283
+ 5072
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 6f17d147-73f0-4c6e-aca7-231c42be2227
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5082
+ 67
+ 20
+
+ -
+ 4283
+ 5092
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a6119520-e999-41f2-84c5-06f39b44ca96
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5102
+ 67
+ 20
+
+ -
+ 4283
+ 5112
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - f9887e31-79e0-4d94-a182-2a888112f088
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5122
+ 67
+ 20
+
+ -
+ 4283
+ 5132
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6a9f7cab-703c-4616-a796-ebccc137552c
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 5042
+ 43
+ 100
+
+ -
+ 4368
+ 5092
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 4d6b9775-db5a-464b-b178-f930dd568ce2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 4978
+ 82
+ 44
+
+ -
+ 4345
+ 5000
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 6f52bd76-d249-4e5c-a489-b3503b532c14
+ - Geometry
+ - Geometry
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4279
+ 4980
+ 51
+ 20
+
+ -
+ 4306
+ 4990
+
+
+
+
+
+
+
+ - The material override
+ - 792abb0c-57ae-4335-8671-0166a55e35bb
+ - Material
+ - Material
+ - false
+ - 6a9f7cab-703c-4616-a796-ebccc137552c
+ - 1
+
+
+
+
+ -
+ 4279
+ 5000
+ 51
+ 20
+
+ -
+ 4306
+ 5010
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 84e913bd-a348-462a-a472-eab93956daf2
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 7303
+ 144
+ 104
+
+ -
+ 4330
+ 7355
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 22e1a45c-bb8a-4800-aab5-ef60f9829b69
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7305
+ 67
+ 20
+
+ -
+ 4283
+ 7315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 9233dd38-b5f3-4109-8975-987c7ae940b3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7325
+ 67
+ 20
+
+ -
+ 4283
+ 7335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 07405682-f855-4989-8549-b94d930c00a3
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7345
+ 67
+ 20
+
+ -
+ 4283
+ 7355
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 97f19c8e-e8a2-41d1-9c98-81c1b160b94c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7365
+ 67
+ 20
+
+ -
+ 4283
+ 7375
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - ef7f93e7-3f0d-469b-862d-f8aca466008d
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7385
+ 67
+ 20
+
+ -
+ 4283
+ 7395
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 350a76f4-71b7-4b5e-854c-31a2ecaf6ee6
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 7305
+ 43
+ 100
+
+ -
+ 4368
+ 7355
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - beb498f4-7162-49c3-842b-a972d8ad71d9
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 7242
+ 82
+ 44
+
+ -
+ 4345
+ 7264
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 8666d71b-9d2f-4e91-8d8a-210217567fa5
+ - Geometry
+ - Geometry
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4279
+ 7244
+ 51
+ 20
+
+ -
+ 4306
+ 7254
+
+
+
+
+
+
+
+ - The material override
+ - 62dec059-7971-4a48-932a-ffe71052b16a
+ - Material
+ - Material
+ - false
+ - 350a76f4-71b7-4b5e-854c-31a2ecaf6ee6
+ - 1
+
+
+
+
+ -
+ 4279
+ 7264
+ 51
+ 20
+
+ -
+ 4306
+ 7274
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - f9713408-b850-40b1-ac2d-56af5c03c800
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 4590
+ 144
+ 104
+
+ -
+ 4330
+ 4642
+
+
+
+
+
+ - Colour of the diffuse channel
+ - efb4e180-8efc-4284-8299-494c3de6e9f2
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4592
+ 67
+ 20
+
+ -
+ 4283
+ 4602
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 197f2502-11d7-49f9-9ca6-ac492a4514bf
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4612
+ 67
+ 20
+
+ -
+ 4283
+ 4622
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - e9dc0475-0054-474e-9957-8202366a4204
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4632
+ 67
+ 20
+
+ -
+ 4283
+ 4642
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 5cb49fe6-cfb0-49f8-bbaf-411d66898b82
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4652
+ 67
+ 20
+
+ -
+ 4283
+ 4662
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 705fb819-8775-4ed6-9b93-8645fbc5e6ed
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4672
+ 67
+ 20
+
+ -
+ 4283
+ 4682
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - fd31e66a-00fc-487d-8951-8d93283f87df
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 4592
+ 43
+ 100
+
+ -
+ 4368
+ 4642
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 4528
+ 82
+ 44
+
+ -
+ 4345
+ 4550
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ee9a19f8-4064-4d39-866c-85da768d1adc
+ - Geometry
+ - Geometry
+ - false
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - 1
+
+
+
+
+ -
+ 4279
+ 4530
+ 51
+ 20
+
+ -
+ 4306
+ 4540
+
+
+
+
+
+
+
+ - The material override
+ - 0df5bf50-74e4-431c-b6d2-cbaada924eb5
+ - Material
+ - Material
+ - false
+ - fd31e66a-00fc-487d-8951-8d93283f87df
+ - 1
+
+
+
+
+ -
+ 4279
+ 4550
+ 51
+ 20
+
+ -
+ 4306
+ 4560
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 506eabeb-a640-43fd-9af7-b2232e3fa71b
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 3016
+ 144
+ 104
+
+ -
+ 4330
+ 3068
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 3e896be4-47f0-40cd-b969-157ca5690c40
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3018
+ 67
+ 20
+
+ -
+ 4283
+ 3028
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ad00ff37-039f-4c69-a05c-2bcf6543f28a
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3038
+ 67
+ 20
+
+ -
+ 4283
+ 3048
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 56dcd222-a962-4e25-a153-d0c165d4a30b
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3058
+ 67
+ 20
+
+ -
+ 4283
+ 3068
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 0082b394-bd76-4cdb-9ec8-3851d681e34c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3078
+ 67
+ 20
+
+ -
+ 4283
+ 3088
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 4394475e-dcc9-4a08-89ce-7fe1812de379
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3098
+ 67
+ 20
+
+ -
+ 4283
+ 3108
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6fa0a1de-70c2-4743-8be9-56400b02e090
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 3018
+ 43
+ 100
+
+ -
+ 4368
+ 3068
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - e86ea7ed-38b8-40b5-bb42-623a7c8059c6
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 2954
+ 82
+ 44
+
+ -
+ 4345
+ 2976
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 23652758-9150-4810-9501-94d6bb7427a5
+ - Geometry
+ - Geometry
+ - false
+ - 3fe9ed31-c050-492d-94ea-c80218f2b732
+ - 1
+
+
+
+
+ -
+ 4279
+ 2956
+ 51
+ 20
+
+ -
+ 4306
+ 2966
+
+
+
+
+
+
+
+ - The material override
+ - f9d0f304-71ba-4d15-b680-4098daee205f
+ - Material
+ - Material
+ - false
+ - 6fa0a1de-70c2-4743-8be9-56400b02e090
+ - 1
+
+
+
+
+ -
+ 4279
+ 2976
+ 51
+ 20
+
+ -
+ 4306
+ 2986
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a6d884fb-514f-42c3-86a9-71ade0d41a40
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 1691
+ 144
+ 104
+
+ -
+ 4330
+ 1743
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 1d225664-df37-44d8-8293-fc65fcfaa053
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1693
+ 67
+ 20
+
+ -
+ 4283
+ 1703
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 55624669-9d88-4e19-8a54-d6b340b905ea
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1713
+ 67
+ 20
+
+ -
+ 4283
+ 1723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 07248625-ab72-43b8-bef8-3badfeb52fb2
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1733
+ 67
+ 20
+
+ -
+ 4283
+ 1743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ee9332dd-01f9-4de5-83cd-cf8d3516a179
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1753
+ 67
+ 20
+
+ -
+ 4283
+ 1763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 2e68d8ff-6779-4688-ad53-ea22a7ee0960
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1773
+ 67
+ 20
+
+ -
+ 4283
+ 1783
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ef37cf89-ca4c-487b-9404-0d7f2ac5f894
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 1693
+ 43
+ 100
+
+ -
+ 4368
+ 1743
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - b379a0ac-4016-4778-8d99-3b57d052a769
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 1631
+ 82
+ 44
+
+ -
+ 4345
+ 1653
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 5dd6a210-e7ec-4d78-b804-a7f2c5699174
+ - Geometry
+ - Geometry
+ - false
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - 1
+
+
+
+
+ -
+ 4279
+ 1633
+ 51
+ 20
+
+ -
+ 4306
+ 1643
+
+
+
+
+
+
+
+ - The material override
+ - 6d313118-895b-4546-9b3a-cd4b04e08f51
+ - Material
+ - Material
+ - false
+ - ef37cf89-ca4c-487b-9404-0d7f2ac5f894
+ - 1
+
+
+
+
+ -
+ 4279
+ 1653
+ 51
+ 20
+
+ -
+ 4306
+ 1663
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1ceffb1c-921e-4c1d-ab03-e05135b9b5e0
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4224
+ -10762
+ 122
+ 64
+
+ -
+ 4304
+ -10730
+
+
+
+
+
+ - Line start point
+ - 0c39c823-a263-4a95-b445-16304aeba6ec
+ - Start
+ - Start
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4226
+ -10760
+ 63
+ 20
+
+ -
+ 4267
+ -10750
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2614b05b-f2da-4a47-a084-b87ce2de0cc8
+ - Direction
+ - Direction
+ - false
+ - 42ee3241-4c5c-463a-b0d9-dd12d62c2293
+ - 1
+
+
+
+
+ -
+ 4226
+ -10740
+ 63
+ 20
+
+ -
+ 4267
+ -10730
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 562db1eb-3da9-4644-b300-679d6eabf7e0
+ - -X
+ - Length
+ - Length
+ - false
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 1
+
+
+
+
+ -
+ 4226
+ -10720
+ 63
+ 20
+
+ -
+ 4267
+ -10710
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -10760
+ 25
+ 60
+
+ -
+ 4333
+ -10730
+
+
+
+
+
+
+
+
+
+
+
+ - 71b5b089-500a-4ea6-81c5-2f960441a0e8
+ - PolyLine
+
+
+
+
+ - Create a polyline connecting a number of points.
+ - true
+ - 82046283-082e-419e-a05f-023d3a681021
+ - PolyLine
+ - PolyLine
+
+
+
+
+ -
+ 4259
+ 2715
+ 118
+ 44
+
+ -
+ 4319
+ 2737
+
+
+
+
+
+ - 1
+ - Polyline vertex points
+ - f1fc21bf-11ce-4976-bb26-c53a6549a2c4
+ - Vertices
+ - Vertices
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4261
+ 2717
+ 43
+ 20
+
+ -
+ 4284
+ 2727
+
+
+
+
+
+
+
+ - Close polyline
+ - 7a088eac-054c-4089-8375-2217cc10dcbd
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ 4261
+ 2737
+ 43
+ 20
+
+ -
+ 4284
+ 2747
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting polyline
+ - 812209f4-d890-44eb-8174-2bf48726e54c
+ - Polyline
+ - Polyline
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 2717
+ 41
+ 40
+
+ -
+ 4356
+ 2737
+
+
+
+
+
+
+
+
+
+
+
+ - afb96615-c59a-45c9-9cac-e27acb1c7ca0
+ - Explode
+
+
+
+
+ - Explode a curve into smaller segments.
+ - true
+ - 41ca37bd-04a2-4730-a104-ccfdfebcb019
+ - Explode
+ - Explode
+
+
+
+
+ -
+ 4250
+ 2652
+ 136
+ 44
+
+ -
+ 4317
+ 2674
+
+
+
+
+
+ - Curve to explode
+ - 93669a73-ddb7-4a6a-82e1-f3247b83dab9
+ - Curve
+ - Curve
+ - false
+ - 812209f4-d890-44eb-8174-2bf48726e54c
+ - 1
+
+
+
+
+ -
+ 4252
+ 2654
+ 50
+ 20
+
+ -
+ 4278.5
+ 2664
+
+
+
+
+
+
+
+ - Recursive decomposition until all segments are atomic
+ - a3eca606-0c18-4bd5-83e4-e0bb1e60b1d6
+ - Recursive
+ - Recursive
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 2674
+ 50
+ 20
+
+ -
+ 4278.5
+ 2684
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Exploded segments that make up the base curve
+ - 1aa63b77-1b30-4cd2-9d7d-88d1999ec0d8
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ 4332
+ 2654
+ 52
+ 20
+
+ -
+ 4359.5
+ 2664
+
+
+
+
+
+
+
+ - 1
+ - Vertices of the exploded segments
+ - 51a45158-c586-46f6-88d2-01c79c67669f
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 4332
+ 2674
+ 52
+ 20
+
+ -
+ 4359.5
+ 2684
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - 1
+ - Curve
+ - Curve
+ - false
+ - 1aa63b77-1b30-4cd2-9d7d-88d1999ec0d8
+ - 1
+
+
+
+
+ -
+ 4292
+ 2608
+ 53
+ 24
+
+ -
+ 4328
+ 2620.144
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - baea9c8f-4e59-442d-b5b4-d125979bf466
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4253
+ 2494
+ 130
+ 44
+
+ -
+ 4318
+ 2516
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 27eb4fd4-9a74-4641-903e-0228f03308d8
+ - Keys
+ - Keys
+ - false
+ - 6fa53b1f-925f-4bf9-a5d6-e49a44647f48
+ - 1
+
+
+
+
+ -
+ 4255
+ 2496
+ 48
+ 20
+
+ -
+ 4280.5
+ 2506
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - 0947c0bb-6fd7-465f-bd09-c7c651b3e131
+ - Values Values A
+ - Values A
+ - true
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - 1
+
+
+
+
+ -
+ 4255
+ 2516
+ 48
+ 20
+
+ -
+ 4280.5
+ 2526
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
+ - Keys
+ - Keys
+ - false
+ - 0
+
+
+
+
+ -
+ 4333
+ 2496
+ 48
+ 20
+
+ -
+ 4358.5
+ 2506
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in Values A
+ - 020d407e-5a0d-434c-8f36-8ad74f04be54
+ - Values Values A
+ - Values A
+ - false
+ - 0
+
+
+
+
+ -
+ 4333
+ 2516
+ 48
+ 20
+
+ -
+ 4358.5
+ 2526
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 12c0d088-f108-4075-bb85-315d570d97ea
+ - Length
+ - Length
+
+
+
+
+ -
+ 4266
+ 2558
+ 104
+ 28
+
+ -
+ 4316
+ 2572
+
+
+
+
+
+ - Curve to measure
+ - 396fc4e4-3161-49f2-bcd1-3c3c12aaf411
+ - Curve
+ - Curve
+ - false
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - 1
+
+
+
+
+ -
+ 4268
+ 2560
+ 33
+ 24
+
+ -
+ 4286
+ 2572
+
+
+
+
+
+
+
+ - Curve length
+ - 6fa53b1f-925f-4bf9-a5d6-e49a44647f48
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 2560
+ 37
+ 24
+
+ -
+ 4351
+ 2572
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 41093a5b-4ba4-4dfb-a5f8-1bd792353689
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4281
+ 2017
+ 74
+ 64
+
+ -
+ 4329
+ 2049
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - f4a956fe-c4c8-4faa-ab37-46863b6ab8f7
+ - List
+ - List
+ - false
+ - dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
+ - 1
+
+
+
+
+ -
+ 4283
+ 2019
+ 31
+ 20
+
+ -
+ 4300
+ 2029
+
+
+
+
+
+
+
+ - Item index
+ - 795f3412-014f-42a0-bb3e-68ed9d6519c3
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4283
+ 2039
+ 31
+ 20
+
+ -
+ 4300
+ 2049
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 94795b14-df1b-4254-875b-0b0c0f2f5fed
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4283
+ 2059
+ 31
+ 20
+
+ -
+ 4300
+ 2069
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 4d84ba38-35a7-4f3d-b366-8ad8331ebb7c
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4344
+ 2019
+ 9
+ 60
+
+ -
+ 4350
+ 2049
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
+ - Dot Display
+
+
+
+
+ - Draw a collection of coloured dots
+ - true
+ - false
+ - 39d1ba4f-7fac-4207-98a7-67ceea5ef36c
+ - Dot Display
+ - Dot Display
+
+
+
+
+ -
+ 4276
+ 1918
+ 83
+ 64
+
+ -
+ 4345
+ 1950
+
+
+
+
+
+ - Dot location
+ - true
+ - 00b953b9-3188-468d-93c1-becbe89ee898
+ - Point
+ - Point
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4278
+ 1920
+ 52
+ 20
+
+ -
+ 4313.5
+ 1930
+
+
+
+
+
+
+
+ - Dot colour
+ - f449e9ac-4676-4153-8107-1b77272d00ba
+ - Colour
+ - Colour
+ - false
+ - 0
+
+
+
+
+ -
+ 4278
+ 1940
+ 52
+ 20
+
+ -
+ 4313.5
+ 1950
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Dot size
+ - 37153672-679d-499c-85a8-bb1e26d25c8b
+ - X/2
+ - Size
+ - Size
+ - false
+ - 4d84ba38-35a7-4f3d-b366-8ad8331ebb7c
+ - 1
+
+
+
+
+ -
+ 4278
+ 1960
+ 52
+ 20
+
+ -
+ 4313.5
+ 1970
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 42ced415-8369-4764-bd84-2655a9abcdd0
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4213
+ -10886
+ 144
+ 104
+
+ -
+ 4297
+ -10834
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 23526173-3b15-42d7-a471-0759eadad650
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10884
+ 67
+ 20
+
+ -
+ 4250
+ -10874
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 428de005-cd25-40af-8285-d2bd9252f5b3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10864
+ 67
+ 20
+
+ -
+ 4250
+ -10854
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f9a525b9-eab9-4b11-9c82-5a6d53d7cba0
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10844
+ 67
+ 20
+
+ -
+ 4250
+ -10834
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7a04b174-5152-4d1e-9872-a9491f98995c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10824
+ 67
+ 20
+
+ -
+ 4250
+ -10814
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 313e8f5e-fddb-487f-a280-06859fa8fad6
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10804
+ 67
+ 20
+
+ -
+ 4250
+ -10794
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d7c0515a-62aa-41bd-a4bf-d5c02119a024
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -10884
+ 43
+ 100
+
+ -
+ 4335
+ -10834
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 97be2d03-c12a-4c13-bcf1-179c5148fad7
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4244
+ -10949
+ 82
+ 44
+
+ -
+ 4312
+ -10927
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 5c229870-d626-4d8a-8a53-2566190c6b40
+ - Geometry
+ - Geometry
+ - false
+ - a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
+ - 1
+
+
+
+
+ -
+ 4246
+ -10947
+ 51
+ 20
+
+ -
+ 4273
+ -10937
+
+
+
+
+
+
+
+ - The material override
+ - adb526d8-1109-4c75-bc7f-8b1a63d26467
+ - Material
+ - Material
+ - false
+ - d7c0515a-62aa-41bd-a4bf-d5c02119a024
+ - 1
+
+
+
+
+ -
+ 4246
+ -10927
+ 51
+ 20
+
+ -
+ 4273
+ -10917
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f9312303-3ba0-4d12-bf2a-4df8dd780ec7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4213
+ -11033
+ 144
+ 64
+
+ -
+ 4287
+ -11001
+
+
+
+
+
+ - Curve to evaluate
+ - d8e6535f-993b-441a-8f18-57c297ab434a
+ - Curve
+ - Curve
+ - false
+ - a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
+ - 1
+
+
+
+
+ -
+ 4215
+ -11031
+ 57
+ 20
+
+ -
+ 4245
+ -11021
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ebf67458-8b7c-48e4-aab4-2ce5c99336d1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11011
+ 57
+ 20
+
+ -
+ 4245
+ -11001
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2e2b937b-fe29-4e76-8bf1-327ada239851
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10991
+ 57
+ 20
+
+ -
+ 4245
+ -10981
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4232e5bd-4b43-4b68-86a3-1efca2b2863e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -11031
+ 53
+ 20
+
+ -
+ 4330
+ -11021
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 5371f1e6-105b-42b3-9ca4-0f9e0a7f71f2
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -11011
+ 53
+ 20
+
+ -
+ 4330
+ -11001
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c00145c8-bbdc-48a3-9c41-13e1f360e786
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -10991
+ 53
+ 20
+
+ -
+ 4330
+ -10981
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - a0d0df39-1b14-428e-bf37-398cec030283
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4222
+ -11137
+ 125
+ 84
+
+ -
+ 4289
+ -11095
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 151139fa-fa76-48be-87f4-c5c527e4e1b1
+ - Vertices
+ - Vertices
+ - false
+ - 4232e5bd-4b43-4b68-86a3-1efca2b2863e
+ - 1
+
+
+
+
+ -
+ 4224
+ -11135
+ 50
+ 20
+
+ -
+ 4250.5
+ -11125
+
+
+
+
+
+
+
+ - Curve degree
+ - 6f60e97f-e266-4e90-ad4b-9550433bbb96
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -11115
+ 50
+ 20
+
+ -
+ 4250.5
+ -11105
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 1dc9dddf-b84b-433d-aa60-521d302ee78d
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -11095
+ 50
+ 20
+
+ -
+ 4250.5
+ -11085
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - d6c6ffbd-fd59-4f06-834c-dfdda0e3cde9
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -11075
+ 50
+ 20
+
+ -
+ 4250.5
+ -11065
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ffa36bc2-d3b2-4655-954c-b3bb1caadc80
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -11135
+ 41
+ 26
+
+ -
+ 4326
+ -11121.67
+
+
+
+
+
+
+
+ - Curve length
+ - a073906c-f67b-4209-925d-0db2835809d1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -11109
+ 41
+ 27
+
+ -
+ 4326
+ -11095
+
+
+
+
+
+
+
+ - Curve domain
+ - a63f1658-8db8-4c8f-a21f-5e41ed15efe3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -11082
+ 41
+ 27
+
+ -
+ 4326
+ -11068.33
+
+
+
+
+
+
+
+
+
+
+
+ - 7376fe41-74ec-497e-b367-1ffe5072608b
+ - Curvature Graph
+
+
+
+
+ - Draws Rhino Curvature Graphs.
+ - true
+ - 6717a073-4979-4ab7-8cca-94ec28dd910e
+ - true
+ - Curvature Graph
+ - Curvature Graph
+
+
+
+
+ -
+ 4277
+ 7121
+ 71
+ 64
+
+ -
+ 4334
+ 7153
+
+
+
+
+
+ - Curve for Curvature graph display
+ - true
+ - 726626fc-0121-4a36-ad40-950aa805020d
+ - true
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4279
+ 7123
+ 40
+ 20
+
+ -
+ 4300.5
+ 7133
+
+
+
+
+
+
+
+ - Sampling density of the Graph
+ - e4e6c4d1-2571-43ab-bafa-ffc8e537aa7e
+ - true
+ - Density
+ - Density
+ - false
+ - 0
+
+
+
+
+ -
+ 4279
+ 7143
+ 40
+ 20
+
+ -
+ 4300.5
+ 7153
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scale of graph
+ - c4ca2177-0ce3-417f-aa30-2a48677eaa94
+ - true
+ - Scale
+ - Scale
+ - false
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - 1
+
+
+
+
+ -
+ 4279
+ 7163
+ 40
+ 20
+
+ -
+ 4300.5
+ 7173
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 105
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 87.0
+
+
+
+
+ -
+ 4193
+ 7211
+ 250
+ 20
+
+ -
+ 4193.743
+ 7211.873
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c7834162-f8d6-4396-a928-93ded1c673be
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ 3223
+ 40
+ 16
+
+ -
+ 4318
+ 3231
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - d49b543b-255e-4b1e-afad-506fdeb4a087
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ 5470
+ 115
+ 64
+
+ -
+ 4315
+ 5502
+
+
+
+
+
+ - Value to remap
+ - 448a0515-aaa4-4e34-bf65-8331febff788
+ - Value
+ - Value
+ - false
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 1
+
+
+
+
+ -
+ 4262
+ 5472
+ 38
+ 20
+
+ -
+ 4282.5
+ 5482
+
+
+
+
+
+
+
+ - Source domain
+ - 2af67ffd-d96e-4eed-825b-992ce2c4715f
+ - Source
+ - Source
+ - false
+ - 82ffcc9e-d4c9-4de1-a8ad-4da568b3d8c7
+ - 1
+
+
+
+
+ -
+ 4262
+ 5492
+ 38
+ 20
+
+ -
+ 4282.5
+ 5502
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 13280d18-8cc4-4627-a46f-9fe1951b318f
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ 5512
+ 38
+ 20
+
+ -
+ 4282.5
+ 5522
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - a321ca1e-018e-41d6-8820-b2a1c8ac90ab
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 5472
+ 43
+ 30
+
+ -
+ 4353
+ 5487
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 91e0b348-1054-48d9-bf59-ae8461fa1fac
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 5502
+ 43
+ 30
+
+ -
+ 4353
+ 5517
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 9033362e-88b7-4ca5-82ec-e83b690b9e1f
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ 5552
+ 122
+ 28
+
+ -
+ 4321
+ 5566
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 516ce2d0-b7ae-47b4-81cc-cdb8cfe44911
+ - Numbers
+ - Numbers
+ - false
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 1
+
+
+
+
+ -
+ 4259
+ 5554
+ 47
+ 24
+
+ -
+ 4284
+ 5566
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 82ffcc9e-d4c9-4de1-a8ad-4da568b3d8c7
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ 5554
+ 41
+ 24
+
+ -
+ 4358
+ 5566
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - d49b543b-255e-4b1e-afad-506fdeb4a087
+ - 9033362e-88b7-4ca5-82ec-e83b690b9e1f
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 47a743e6-2557-42d2-a2c1-210a6a941e82
+ - 476ce713-0dae-4d18-804a-2b7b11658f2a
+ - 15
+ - e9edf9da-696f-47bd-a5e5-79c7729f8e89
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - Relay
+ -
+ - false
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4298
+ 5599
+ 40
+ 16
+
+ -
+ 4318
+ 5607
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - Relay
+ -
+ - false
+ - 95926409-f740-467c-80b4-734f46eb4123
+ - 1
+
+
+
+
+ -
+ 4298
+ 5243
+ 40
+ 16
+
+ -
+ 4318
+ 5251
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 47a743e6-2557-42d2-a2c1-210a6a941e82
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 5315
+ 82
+ 44
+
+ -
+ 4308
+ 5337
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - dcbd1da4-8f69-4b06-8a33-0eecc767e991
+ - A
+ - A
+ - true
+ - f6322f85-aed1-4c85-95a8-8d761a4a73be
+ - 1
+
+
+
+
+ -
+ 4279
+ 5317
+ 14
+ 20
+
+ -
+ 4287.5
+ 5327
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 06fe588d-0bb9-4eda-9323-581799b3334d
+ - B
+ - B
+ - true
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 1
+
+
+
+
+ -
+ 4279
+ 5337
+ 14
+ 20
+
+ -
+ 4287.5
+ 5347
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 95926409-f740-467c-80b4-734f46eb4123
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 5317
+ 34
+ 40
+
+ -
+ 4341.5
+ 5337
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - af01224e-c0e0-4809-ad30-4e4bd74d845a
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ 3505
+ 115
+ 64
+
+ -
+ 4315
+ 3537
+
+
+
+
+
+ - Value to remap
+ - 0dd9c290-89b3-4f7f-b7f7-fea0ad374ec8
+ - Value
+ - Value
+ - false
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 1
+
+
+
+
+ -
+ 4262
+ 3507
+ 38
+ 20
+
+ -
+ 4282.5
+ 3517
+
+
+
+
+
+
+
+ - Source domain
+ - 565f7896-5376-4be8-9b87-65aabf7ca350
+ - Source
+ - Source
+ - false
+ - 4dafdc57-390a-45b4-9dad-94993250d3c0
+ - 1
+
+
+
+
+ -
+ 4262
+ 3527
+ 38
+ 20
+
+ -
+ 4282.5
+ 3537
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 8f2c29a0-d826-4f38-bc8c-1ca957ffc790
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ 3547
+ 38
+ 20
+
+ -
+ 4282.5
+ 3557
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 1900d5cb-3ebe-418f-b5c5-34f4f1f2980f
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 3507
+ 43
+ 30
+
+ -
+ 4353
+ 3522
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 747cdfe4-2981-48ee-b96b-401136eee8d9
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 3537
+ 43
+ 30
+
+ -
+ 4353
+ 3552
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 2e1813eb-afd7-4c67-ae5d-0aea5806a643
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ 3588
+ 122
+ 28
+
+ -
+ 4321
+ 3602
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2c788be9-e936-471d-8ef8-12877fe1813c
+ - Numbers
+ - Numbers
+ - false
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 1
+
+
+
+
+ -
+ 4259
+ 3590
+ 47
+ 24
+
+ -
+ 4284
+ 3602
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 4dafdc57-390a-45b4-9dad-94993250d3c0
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ 3590
+ 41
+ 24
+
+ -
+ 4358
+ 3602
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - af01224e-c0e0-4809-ad30-4e4bd74d845a
+ - 2e1813eb-afd7-4c67-ae5d-0aea5806a643
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 1dfb13cb-b934-40bc-a126-3ef4f67aa6cb
+ - 4a81f039-0b6b-406b-837f-1176119811ff
+ - b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
+ - 15
+ - 5365386e-73e6-497c-b44a-34b85df3bb28
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - Relay
+ -
+ - false
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - 1
+
+
+
+
+ -
+ 4298
+ 3633
+ 40
+ 16
+
+ -
+ 4318
+ 3641
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - Relay
+ -
+ - false
+ - 42398358-cfbe-4f21-96e5-282d62ee7e58
+ - 1
+
+
+
+
+ -
+ 4298
+ 3266
+ 40
+ 16
+
+ -
+ 4318
+ 3274
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 4a81f039-0b6b-406b-837f-1176119811ff
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 3305
+ 82
+ 44
+
+ -
+ 4308
+ 3327
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - b76c491c-1771-4316-82a4-113c7bcdbb11
+ - A
+ - A
+ - true
+ - 519c9f7f-5560-40d4-af0b-8be47a07ff02
+ - 1
+
+
+
+
+ -
+ 4279
+ 3307
+ 14
+ 20
+
+ -
+ 4287.5
+ 3317
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2ed48d06-e4d0-425d-975d-12021826cd1f
+ - B
+ - B
+ - true
+ - b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
+ - 1
+
+
+
+
+ -
+ 4279
+ 3327
+ 14
+ 20
+
+ -
+ 4287.5
+ 3337
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 42398358-cfbe-4f21-96e5-282d62ee7e58
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 3307
+ 34
+ 40
+
+ -
+ 4341.5
+ 3327
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e82225cb-a1a5-4ad3-b28d-40b2efc10203
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 6729
+ 194
+ 28
+
+ -
+ 4321
+ 6743
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b5f45c4f-f8dd-49ac-82bc-318d09dd2a13
+ - true
+ - Variable O
+ - O
+ - true
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 1
+
+
+
+
+ -
+ 4223
+ 6731
+ 14
+ 24
+
+ -
+ 4231.5
+ 6743
+
+
+
+
+
+
+
+ - Result of expression
+ - 49fcf7f9-8ddd-41ec-a183-2131adb07f3b
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 6731
+ 9
+ 24
+
+ -
+ 4410
+ 6743
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - Panel
+
+ - false
+ - 1
+ - 49fcf7f9-8ddd-41ec-a183-2131adb07f3b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4225
+ 6443
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4225.832
+ 6443.893
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 98efd460-a431-49c8-aded-a62a77c59e5f
+ - Relay
+ -
+ - false
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - 1
+
+
+
+
+ -
+ 4298
+ 6420
+ 40
+ 16
+
+ -
+ 4318
+ 6428
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - Relay
+ -
+ - false
+ - 3654a9c9-a7f1-48df-8fa7-73ed1663a837
+ - 1
+
+
+
+
+ -
+ 4298
+ 6776
+ 40
+ 16
+
+ -
+ 4318
+ 6784
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e82225cb-a1a5-4ad3-b28d-40b2efc10203
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - 98efd460-a431-49c8-aded-a62a77c59e5f
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 4
+ - 929e2d4c-e84d-4d02-91ac-5e7752c650a1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 6029
+ 194
+ 28
+
+ -
+ 4321
+ 6043
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - febdeb41-753b-4759-9155-f4ee00efa396
+ - true
+ - Variable O
+ - O
+ - true
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 1
+
+
+
+
+ -
+ 4223
+ 6031
+ 14
+ 24
+
+ -
+ 4231.5
+ 6043
+
+
+
+
+
+
+
+ - Result of expression
+ - 6914912a-bdac-4a4d-a2db-868eed728741
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 6031
+ 9
+ 24
+
+ -
+ 4410
+ 6043
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - Panel
+
+ - false
+ - 0
+ - 6914912a-bdac-4a4d-a2db-868eed728741
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4218
+ 5744
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4218.899
+ 5744.656
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - Relay
+ -
+ - false
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 1
+
+
+
+
+ -
+ 4298
+ 5701
+ 40
+ 16
+
+ -
+ 4318
+ 5709
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - Relay
+ -
+ - false
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4298
+ 6076
+ 40
+ 16
+
+ -
+ 4318
+ 6084
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 4
+ - 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - e73e0f67-8dcc-4b89-a973-43217655652f
+ - Length
+ - Length
+
+
+
+
+ -
+ 4266
+ 7426
+ 104
+ 28
+
+ -
+ 4316
+ 7440
+
+
+
+
+
+ - Curve to measure
+ - 23a61651-ddf4-4a20-9f47-60d37a73cc53
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4268
+ 7428
+ 33
+ 24
+
+ -
+ 4286
+ 7440
+
+
+
+
+
+
+
+ - Curve length
+ - db26abf6-6a27-458b-8296-41880794893f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 7428
+ 37
+ 24
+
+ -
+ 4351
+ 7440
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 5f2c0952-b956-47bf-90b0-5d5a4cb6cee6
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 5378
+ 82
+ 44
+
+ -
+ 4308
+ 5400
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - d1b16463-773d-4691-8d64-4a9105876f41
+ - A
+ - A
+ - true
+ - 476ce713-0dae-4d18-804a-2b7b11658f2a
+ - 1
+
+
+
+
+ -
+ 4279
+ 5380
+ 14
+ 20
+
+ -
+ 4287.5
+ 5390
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 3eb60ebd-243d-4aaf-a6c6-959f8ca48089
+ - B
+ - B
+ - true
+ - a321ca1e-018e-41d6-8820-b2a1c8ac90ab
+ - 1
+
+
+
+
+ -
+ 4279
+ 5400
+ 14
+ 20
+
+ -
+ 4287.5
+ 5410
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f6322f85-aed1-4c85-95a8-8d761a4a73be
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 5380
+ 34
+ 40
+
+ -
+ 4341.5
+ 5400
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - Relay
+
+ - false
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4298
+ 4407
+ 40
+ 16
+
+ -
+ 4318
+ 4415
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - e4026ef5-c10c-464e-9823-6797237c75c6
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 4250
+ 4347
+ 136
+ 44
+
+ -
+ 4336
+ 4369
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 1d2318fa-82e4-419f-9eeb-557eecb11207
+ - Items
+ - Items
+ - false
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - 1
+
+
+
+
+ -
+ 4252
+ 4349
+ 69
+ 20
+
+ -
+ 4288
+ 4359
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - a2b6febe-d6f0-409c-8289-483e5613c3fc
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 4369
+ 69
+ 20
+
+ -
+ 4288
+ 4379
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - c1cbf3cc-c305-48cc-a958-e9cacfba5960
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 4351
+ 4349
+ 33
+ 20
+
+ -
+ 4369
+ 4359
+
+
+
+
+
+
+
+ - Number of items replaced
+ - e42eb5df-9832-4e87-8857-c8e16a150234
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 4351
+ 4369
+ 33
+ 20
+
+ -
+ 4369
+ 4379
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - Relay
+
+ - false
+ - 52a4cb5e-e88f-43e5-bb41-82eb4d03ae2c
+ - 1
+
+
+
+
+ -
+ 4298
+ 4262
+ 40
+ 16
+
+ -
+ 4318
+ 4270
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 1
+
+
+
+
+ -
+ 4243
+ 4062
+ 150
+ 150
+
+ -
+ 4243.828
+ 4062.635
+
+ - 0
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - Relay
+ -
+ - false
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - 1
+
+
+
+
+ -
+ 4298
+ 4226
+ 40
+ 16
+
+ -
+ 4318
+ 4234
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 3975
+ 194
+ 28
+
+ -
+ 4321
+ 3989
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f77b6382-e1b3-4533-818e-1ddfd58b503f
+ - true
+ - Variable O
+ - O
+ - true
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - 1
+
+
+
+
+ -
+ 4223
+ 3977
+ 14
+ 24
+
+ -
+ 4231.5
+ 3989
+
+
+
+
+
+
+
+ - Result of expression
+ - 2b10f4b0-51cf-4386-8d0f-6069e3234145
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 3977
+ 9
+ 24
+
+ -
+ 4410
+ 3989
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - Panel
+
+ - false
+ - 0
+ - 2b10f4b0-51cf-4386-8d0f-6069e3234145
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4218
+ 3692
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4218.241
+ 3692.615
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - Relay
+ -
+ - false
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - 1
+
+
+
+
+ -
+ 4298
+ 3674
+ 40
+ 16
+
+ -
+ 4318
+ 3682
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - Relay
+ -
+ - false
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 1
+
+
+
+
+ -
+ 4298
+ 4022
+ 40
+ 16
+
+ -
+ 4318
+ 4030
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 6
+ - 2077772c-8556-4e37-b44d-c0a0d5d206ff
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e5bb3651-4fcd-4da1-9d37-64323a4cbaec
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 3406
+ 82
+ 44
+
+ -
+ 4308
+ 3428
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 233b5d7d-5e9c-4aab-a358-11af797d62ec
+ - A
+ - A
+ - true
+ - 1900d5cb-3ebe-418f-b5c5-34f4f1f2980f
+ - 1
+
+
+
+
+ -
+ 4279
+ 3408
+ 14
+ 20
+
+ -
+ 4287.5
+ 3418
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - bd9787ef-65bc-41d8-b5c7-68871373c4a5
+ - B
+ - B
+ - true
+ - fb8adc2b-49b7-409f-930c-e67bde1e9980
+ - 1
+
+
+
+
+ -
+ 4279
+ 3428
+ 14
+ 20
+
+ -
+ 4287.5
+ 3438
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 519c9f7f-5560-40d4-af0b-8be47a07ff02
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 3408
+ 34
+ 40
+
+ -
+ 4341.5
+ 3428
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 441bf542-5076-4985-9937-0bb3a042b678
+ - Curve
+ - Curve
+ - false
+ - 3fe9ed31-c050-492d-94ea-c80218f2b732
+ - 1
+
+
+
+
+ -
+ 4293
+ 2905
+ 50
+ 24
+
+ -
+ 4318
+ 2917.582
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - Relay
+
+ - false
+ - 18921b3c-23a8-4466-aa33-85dea6f5193e
+ - 1
+
+
+
+
+ -
+ 4298
+ 2783
+ 40
+ 16
+
+ -
+ 4318
+ 2791
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 31ebe528-d55d-4dff-927d-a48736be9cc3
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 2412
+ 194
+ 28
+
+ -
+ 4321
+ 2426
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 688ba6a6-9ee3-4856-8a10-8ab5b0316e87
+ - true
+ - Variable O
+ - O
+ - true
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - 1
+
+
+
+
+ -
+ 4223
+ 2414
+ 14
+ 24
+
+ -
+ 4231.5
+ 2426
+
+
+
+
+
+
+
+ - Result of expression
+ - 7388241d-d99f-4344-a537-5b48cc2edd76
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 2414
+ 9
+ 24
+
+ -
+ 4410
+ 2426
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - Panel
+
+ - false
+ - 0
+ - 7388241d-d99f-4344-a537-5b48cc2edd76
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4221
+ 2129
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4221.045
+ 2129.177
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 34ec62fd-1b45-4131-8bb3-067f9ae32190
+ - Relay
+ -
+ - false
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - 1
+
+
+
+
+ -
+ 4298
+ 2111
+ 40
+ 16
+
+ -
+ 4318
+ 2119
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - Relay
+ -
+ - false
+ - dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
+ - 1
+
+
+
+
+ -
+ 4298
+ 2457
+ 40
+ 16
+
+ -
+ 4318
+ 2465
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 31ebe528-d55d-4dff-927d-a48736be9cc3
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - 34ec62fd-1b45-4131-8bb3-067f9ae32190
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - 4
+ - 3f3172f7-bff5-4e81-85a2-58943326f0a7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c9632403-1835-45bf-a8da-51dd473c2104
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4213
+ -11261
+ 144
+ 104
+
+ -
+ 4297
+ -11209
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 45fbcd4a-120c-4ab7-a1af-fe8c72e99a7a
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11259
+ 67
+ 20
+
+ -
+ 4250
+ -11249
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4b010761-a439-40ca-b8d2-6e3bc0c13526
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11239
+ 67
+ 20
+
+ -
+ 4250
+ -11229
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 65184dab-7d0a-4e0b-bf79-ec0ca699b455
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11219
+ 67
+ 20
+
+ -
+ 4250
+ -11209
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 970c9b9d-64e0-40f4-89b3-92360e324de7
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11199
+ 67
+ 20
+
+ -
+ 4250
+ -11189
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 32bc5c00-d6c0-4aa6-a2d6-9b346f7c9cb6
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11179
+ 67
+ 20
+
+ -
+ 4250
+ -11169
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 2e6dccc8-6177-4800-bea6-4ea4ba2b9f92
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -11259
+ 43
+ 100
+
+ -
+ 4335
+ -11209
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 3579a27a-9991-4bf3-94de-84223b4b0a72
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4244
+ -11324
+ 82
+ 44
+
+ -
+ 4312
+ -11302
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 26eb909a-b46a-4478-9bb6-2fc20cf12003
+ - Geometry
+ - Geometry
+ - false
+ - ffa36bc2-d3b2-4655-954c-b3bb1caadc80
+ - 1
+
+
+
+
+ -
+ 4246
+ -11322
+ 51
+ 20
+
+ -
+ 4273
+ -11312
+
+
+
+
+
+
+
+ - The material override
+ - fe342583-bcbf-4e07-b919-4db37b6d38b2
+ - Material
+ - Material
+ - false
+ - 2e6dccc8-6177-4800-bea6-4ea4ba2b9f92
+ - 1
+
+
+
+
+ -
+ 4246
+ -11302
+ 51
+ 20
+
+ -
+ 4273
+ -11292
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f12959c2-8cc4-4ce2-896d-7ff1a4aa1903
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 256.0
+
+
+
+
+ -
+ 4193
+ 7085
+ 250
+ 20
+
+ -
+ 4193.743
+ 7085.877
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - b7462a41-d690-4e75-b5bb-082a0185ec77
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 95bfb75e-deb2-41b2-ba5e-9f8b1037d613
+ - 1
+
+
+
+
+ -
+ 4211
+ -9664
+ 150
+ 150
+
+ -
+ 4211.097
+ -9663.828
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 5e698680-d615-4e2a-aed9-fd28b0220a65
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - c9af63c9-0143-479e-9052-49ae8662e1b1
+ - 1
+
+
+
+
+ -
+ 4211
+ -9833
+ 150
+ 150
+
+ -
+ 4211.097
+ -9832.828
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - ca297271-f533-4d51-a8fc-bdb7b204740c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 96867ac7-0810-4a7b-b16e-65dfb34d3ac7
+ - 1
+
+
+
+
+ -
+ 4211
+ -10001
+ 150
+ 150
+
+ -
+ 4211.097
+ -10000.35
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 9e3117d6-b3b4-4adc-84f3-2835a988e21e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 42ee3241-4c5c-463a-b0d9-dd12d62c2293
+ - 1
+
+
+
+
+ -
+ 4211
+ -10170
+ 150
+ 150
+
+ -
+ 4211.097
+ -10169.35
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c8c317c7-391f-4b40-93d8-4c1994caecef
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 533714a3-b663-4971-b5e9-26bce2a7de5c
+ - 1
+
+
+
+
+ -
+ 4210
+ -10340
+ 150
+ 150
+
+ -
+ 4210.854
+ -10339.08
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 3b490da6-b955-4f9c-bddc-980384007a01
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 8a09c8bb-c54e-4691-8429-43124dd1c8b3
+ - 1
+
+
+
+
+ -
+ 4210
+ -10509
+ 150
+ 150
+
+ -
+ 4210.854
+ -10508.86
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c2fc9a4e-ff43-4e6b-ba22-4562fab58558
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - b52f3636-0270-4109-8b69-fa9470b344cd
+ - 1
+
+
+
+
+ -
+ 4210
+ -10678
+ 150
+ 150
+
+ -
+ 4210.854
+ -10677.6
+
+ - -1
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
+ - 2
+ - Curve
+ - Curve
+ - false
+ - c805c655-6882-4bac-bcea-fd9c2844f949
+ - 1
+
+
+
+
+ -
+ 3945
+ 7654
+ 53
+ 24
+
+ -
+ 3981.334
+ 7666.086
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 96971adb-dc6f-4220-b87f-875d4c7c2611
+ - X*4
+ - Number
+ - Number
+ - false
+ - b565e546-b7f7-4a1b-9c81-7e90c1d9e590
+ - 1
+
+
+
+
+ -
+ 3945
+ 7695
+ 53
+ 24
+
+ -
+ 3981.804
+ 7707.199
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - b209923c-3a28-4705-b6c2-2d7aa0c13cc7
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4256
+ 1505
+ 128
+ 28
+
+ -
+ 4309
+ 1519
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 4bd22293-c6e2-4782-ac84-5b600580b41c
+ - Values
+ - Values
+ - false
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - 1
+
+
+
+
+ -
+ 4258
+ 1507
+ 36
+ 24
+
+ -
+ 4277.5
+ 1519
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 0576e8b4-b93e-4625-ba08-32b7a12f9224
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 1507
+ 58
+ 24
+
+ -
+ 4354.5
+ 1519
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - Relay
+
+ - false
+ - 0576e8b4-b93e-4625-ba08-32b7a12f9224
+ - 1
+
+
+
+
+ -
+ 4300
+ 1471
+ 40
+ 16
+
+ -
+ 4320
+ 1479
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - Relay
+
+ - false
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - 1
+
+
+
+
+ -
+ 4300
+ 1553
+ 40
+ 16
+
+ -
+ 4320
+ 1561
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 61f9e29f-feb3-4122-9ade-977c75c70121
+ - Relay
+
+ - false
+ - ee24630f-f4f0-4780-abab-e012c957d4c6
+ - 1
+
+
+
+
+ -
+ 4298
+ 6344
+ 40
+ 16
+
+ -
+ 4318
+ 6352
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 476ce713-0dae-4d18-804a-2b7b11658f2a
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ 5443
+ 40
+ 16
+
+ -
+ 4318
+ 5451
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fb8adc2b-49b7-409f-930c-e67bde1e9980
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ 3468
+ 40
+ 16
+
+ -
+ 4318
+ 3476
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ffbd0ca9-452d-476b-aad7-d52654097132
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ 795
+ 122
+ 64
+
+ -
+ 4337
+ 827
+
+
+
+
+
+ - Line start point
+ - dfa13141-214f-4bdb-bcdf-fd35decbd4ce
+ - Start
+ - Start
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4259
+ 797
+ 63
+ 20
+
+ -
+ 4300
+ 807
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - c6523c5a-ebb1-4c5f-bf08-596ca65340a5
+ - Direction
+ - Direction
+ - false
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - 1
+
+
+
+
+ -
+ 4259
+ 817
+ 63
+ 20
+
+ -
+ 4300
+ 827
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e337c9e9-e37b-49b4-a4f3-a62e9d52b221
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - 1
+
+
+
+
+ -
+ 4259
+ 837
+ 63
+ 20
+
+ -
+ 4300
+ 847
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 797
+ 25
+ 60
+
+ -
+ 4366
+ 827
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ 877
+ 40
+ 16
+
+ -
+ 4318
+ 885
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 81e762e6-cf7c-4ae1-9584-48cd20085421
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ 1159
+ 115
+ 64
+
+ -
+ 4315
+ 1191
+
+
+
+
+
+ - Value to remap
+ - b8054dea-0dba-4d47-a361-76c40d8e7028
+ - Value
+ - Value
+ - false
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - 1
+
+
+
+
+ -
+ 4262
+ 1161
+ 38
+ 20
+
+ -
+ 4282.5
+ 1171
+
+
+
+
+
+
+
+ - Source domain
+ - 2dc4354d-6568-481e-9543-25086e8764ac
+ - Source
+ - Source
+ - false
+ - 4968227e-19f3-4a9f-97c2-33ce7e630f4f
+ - 1
+
+
+
+
+ -
+ 4262
+ 1181
+ 38
+ 20
+
+ -
+ 4282.5
+ 1191
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 631bebd6-f133-4834-8203-c2a2316bf850
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ 1201
+ 38
+ 20
+
+ -
+ 4282.5
+ 1211
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 977d529a-74c3-4a92-b264-ffd1fdf99c1c
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 1161
+ 43
+ 30
+
+ -
+ 4353
+ 1176
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - c2a7c612-4761-43d5-bc2d-fa1631585f85
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 1191
+ 43
+ 30
+
+ -
+ 4353
+ 1206
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 115f0245-8d8d-4e08-9afd-473c7a08d0bd
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ 1242
+ 122
+ 28
+
+ -
+ 4321
+ 1256
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 3ed0b4fa-c025-4e44-83fb-50c46e0be136
+ - Numbers
+ - Numbers
+ - false
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - 1
+
+
+
+
+ -
+ 4259
+ 1244
+ 47
+ 24
+
+ -
+ 4284
+ 1256
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 4968227e-19f3-4a9f-97c2-33ce7e630f4f
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ 1244
+ 41
+ 24
+
+ -
+ 4358
+ 1256
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - Relay
+ -
+ - false
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 1
+
+
+
+
+ -
+ 4298
+ 1287
+ 40
+ 16
+
+ -
+ 4318
+ 1295
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - Relay
+ -
+ - false
+ - fb6b6b3f-e722-4e8d-bc32-b6b0d0bb3a85
+ - 1
+
+
+
+
+ -
+ 4298
+ 920
+ 40
+ 16
+
+ -
+ 4318
+ 928
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e8565a94-1105-499b-9121-d17b6a40c779
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 959
+ 82
+ 44
+
+ -
+ 4308
+ 981
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - db629085-728c-4432-ad6b-11fd7f0c8e83
+ - A
+ - A
+ - true
+ - 98c48af7-cad0-4141-8752-76b25a6547b3
+ - 1
+
+
+
+
+ -
+ 4279
+ 961
+ 14
+ 20
+
+ -
+ 4287.5
+ 971
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 86f3c8f9-f877-4cac-ae2a-fb2f2c9d9f48
+ - B
+ - B
+ - true
+ - c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
+ - 1
+
+
+
+
+ -
+ 4279
+ 981
+ 14
+ 20
+
+ -
+ 4287.5
+ 991
+
+
+
+
+
+
+
+ - Result of multiplication
+ - fb6b6b3f-e722-4e8d-bc32-b6b0d0bb3a85
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 961
+ 34
+ 40
+
+ -
+ 4341.5
+ 981
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 12a155cd-954b-41b5-9ebf-dfadc3960e64
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 1060
+ 82
+ 44
+
+ -
+ 4308
+ 1082
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 7cb02247-b8fb-4071-99ef-c3eb7bc8f26e
+ - A
+ - A
+ - true
+ - 977d529a-74c3-4a92-b264-ffd1fdf99c1c
+ - 1
+
+
+
+
+ -
+ 4279
+ 1062
+ 14
+ 20
+
+ -
+ 4287.5
+ 1072
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 21b7d22c-0b3d-41c5-b6b5-c725c2e32b65
+ - B
+ - B
+ - true
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - 1
+
+
+
+
+ -
+ 4279
+ 1082
+ 14
+ 20
+
+ -
+ 4287.5
+ 1092
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 98c48af7-cad0-4141-8752-76b25a6547b3
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 1062
+ 34
+ 40
+
+ -
+ 4341.5
+ 1082
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ 1122
+ 40
+ 16
+
+ -
+ 4318
+ 1130
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - b209923c-3a28-4705-b6c2-2d7aa0c13cc7
+ - 3
+ - 9c4b4d0a-421b-4c53-895c-1221d23a8c23
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - af294dd2-b04a-4838-88c8-0277f80bc3b0
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 671
+ 144
+ 104
+
+ -
+ 4330
+ 723
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 842d3b1b-9411-48c1-a4b2-090889ff22b0
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 673
+ 67
+ 20
+
+ -
+ 4283
+ 683
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d514ba0e-8930-4c2b-a615-b7e12ced1b62
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 693
+ 67
+ 20
+
+ -
+ 4283
+ 703
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 635a8def-1a8d-4792-976c-d3f6d4930987
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 713
+ 67
+ 20
+
+ -
+ 4283
+ 723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f6dab51d-0c8f-479b-897a-f57ceedcacab
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 733
+ 67
+ 20
+
+ -
+ 4283
+ 743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - c8456449-9caa-4f29-b972-11ccf6caa135
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 753
+ 67
+ 20
+
+ -
+ 4283
+ 763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - b603312a-32b7-4d61-9db7-5526a8b7f1fe
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 673
+ 43
+ 100
+
+ -
+ 4368
+ 723
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - a6eac927-8a3c-4732-b1a8-90e4b25850df
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 609
+ 82
+ 44
+
+ -
+ 4345
+ 631
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 3beb0610-3674-43ef-adb2-e95400cf91c4
+ - Geometry
+ - Geometry
+ - false
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - 1
+
+
+
+
+ -
+ 4279
+ 611
+ 51
+ 20
+
+ -
+ 4306
+ 621
+
+
+
+
+
+
+
+ - The material override
+ - c38e03f4-6478-47b4-92c4-a02cc432b018
+ - Material
+ - Material
+ - false
+ - b603312a-32b7-4d61-9db7-5526a8b7f1fe
+ - 1
+
+
+
+
+ -
+ 4279
+ 631
+ 51
+ 20
+
+ -
+ 4306
+ 641
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5bda71fa-0d3a-4287-94fd-b5d399b8202f
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ 526
+ 144
+ 64
+
+ -
+ 4320
+ 558
+
+
+
+
+
+ - Curve to evaluate
+ - 96ffa41c-683e-4059-86c9-0564953e7936
+ - Curve
+ - Curve
+ - false
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - 1
+
+
+
+
+ -
+ 4248
+ 528
+ 57
+ 20
+
+ -
+ 4278
+ 538
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - cdbe5b1f-9d31-46fb-93c5-ad7291a1eb36
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 548
+ 57
+ 20
+
+ -
+ 4278
+ 558
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 60ac828e-adc4-47bf-bc1d-0bdb52bac1e8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 568
+ 57
+ 20
+
+ -
+ 4278
+ 578
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 637e10b6-0bed-46d6-a76a-6a7a71d05708
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 528
+ 53
+ 20
+
+ -
+ 4363
+ 538
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 33f9b60b-9f7d-4984-9b11-554b550460e5
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 548
+ 53
+ 20
+
+ -
+ 4363
+ 558
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2c8f1546-d78f-421e-b669-baed198bc74d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 568
+ 53
+ 20
+
+ -
+ 4363
+ 578
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - d23b18ad-2e9d-4af3-a33d-e2ae8d08d84a
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ 422
+ 125
+ 84
+
+ -
+ 4322
+ 464
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 9e2e3a9b-904b-48d7-a2f8-5e5e1cfec8fc
+ - Vertices
+ - Vertices
+ - false
+ - 637e10b6-0bed-46d6-a76a-6a7a71d05708
+ - 1
+
+
+
+
+ -
+ 4257
+ 424
+ 50
+ 20
+
+ -
+ 4283.5
+ 434
+
+
+
+
+
+
+
+ - Curve degree
+ - 4a44671b-a1a5-4b70-a51b-1efe0327b5a7
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 444
+ 50
+ 20
+
+ -
+ 4283.5
+ 454
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - ef1234b2-7eb7-49ec-baea-03a92561ca54
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 464
+ 50
+ 20
+
+ -
+ 4283.5
+ 474
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 13c20af2-e6f4-40ed-9e06-2a3cee0e1310
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 484
+ 50
+ 20
+
+ -
+ 4283.5
+ 494
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 424
+ 41
+ 26
+
+ -
+ 4359
+ 437.3333
+
+
+
+
+
+
+
+ - Curve length
+ - ad2fce30-d14b-4547-b1e0-1e3fa991cd24
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 450
+ 41
+ 27
+
+ -
+ 4359
+ 464
+
+
+
+
+
+
+
+ - Curve domain
+ - ac261476-0de2-41ba-b51f-1417c8ec05fd
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 477
+ 41
+ 27
+
+ -
+ 4359
+ 490.6667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - eedba66f-c09e-4b6a-a6f6-e360e1607858
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 298
+ 144
+ 104
+
+ -
+ 4330
+ 350
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 2ccdb9dd-ed00-46c0-9a61-9aeee619add6
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 300
+ 67
+ 20
+
+ -
+ 4283
+ 310
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ec981619-883f-4f2f-a76a-7485b8c267b4
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 320
+ 67
+ 20
+
+ -
+ 4283
+ 330
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - cc6526b3-ec30-4593-a25f-9b0a3bd2b635
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 340
+ 67
+ 20
+
+ -
+ 4283
+ 350
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 0379919a-925c-4039-b44d-31c5860a383f
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 360
+ 67
+ 20
+
+ -
+ 4283
+ 370
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - e211802f-3037-4ef9-9665-9961a4f13bf4
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 380
+ 67
+ 20
+
+ -
+ 4283
+ 390
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 68dbb0fe-eefc-4062-b9b1-d9b0eec3d07b
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 300
+ 43
+ 100
+
+ -
+ 4368
+ 350
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - a3be89c0-1a37-4050-ae27-b5fc88bad330
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 238
+ 82
+ 44
+
+ -
+ 4345
+ 260
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - a444dc8e-4663-4484-a04c-13ad66a87be0
+ - Geometry
+ - Geometry
+ - false
+ - 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
+ - 1
+
+
+
+
+ -
+ 4279
+ 240
+ 51
+ 20
+
+ -
+ 4306
+ 250
+
+
+
+
+
+
+
+ - The material override
+ - 1edb010e-19a0-4324-a37b-2faf51ea7917
+ - Material
+ - Material
+ - false
+ - 68dbb0fe-eefc-4062-b9b1-d9b0eec3d07b
+ - 1
+
+
+
+
+ -
+ 4279
+ 260
+ 51
+ 20
+
+ -
+ 4306
+ 270
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c96083ca-5a8a-4085-b4fd-6d5eea9ca472
+ - 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - edc3af5a-e25d-4381-a4d7-b2454ae6e271
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - d79fb373-d285-4a32-9d35-a411dd8a2305
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - 8df7d7e6-cf5d-4502-9323-231be7021412
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - 3692f38f-1d1e-454f-9e1e-559f3a96e560
+ - b0f623ea-310b-4b24-9cb7-58687d55b42d
+ - 0968c388-eb63-4f69-97af-52e68422d260
+ - 8d280e70-d586-432d-9c66-602cd4f4fd53
+ - f6de1485-e329-4dce-a6e4-89cb0f7016af
+ - 322a6b5b-a423-48a5-b19d-a56aff79885e
+ - 8cf28910-ebf9-447f-b49a-b8133c4bc05e
+ - 22
+ - 7f8caa90-5f65-4c95-97fa-030e76b167df
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - edc3af5a-e25d-4381-a4d7-b2454ae6e271
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - d79fb373-d285-4a32-9d35-a411dd8a2305
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - 8df7d7e6-cf5d-4502-9323-231be7021412
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - 845cb04b-45f5-445d-9f62-abad64b02fd2
+ - af226fd0-4701-4be9-ac43-12af7cefc54c
+ - f77a5006-5ba9-4819-b46f-c7f246c09821
+ - 14
+ - c96083ca-5a8a-4085-b4fd-6d5eea9ca472
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4257
+ 125
+ 128
+ 28
+
+ -
+ 4310
+ 139
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - cf9b5280-1356-40a0-bd2f-b91b9fe0a0d5
+ - Values
+ - Values
+ - false
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - 1
+
+
+
+
+ -
+ 4259
+ 127
+ 36
+ 24
+
+ -
+ 4278.5
+ 139
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 1f168d2a-aa06-4c70-8dc4-2ea3b603bb80
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 127
+ 58
+ 24
+
+ -
+ 4355.5
+ 139
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - Relay
+
+ - false
+ - 1f168d2a-aa06-4c70-8dc4-2ea3b603bb80
+ - 1
+
+
+
+
+ -
+ 4301
+ 91
+ 40
+ 16
+
+ -
+ 4321
+ 99
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - Relay
+
+ - false
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 1
+
+
+
+
+ -
+ 4301
+ 173
+ 40
+ 16
+
+ -
+ 4321
+ 181
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ -602
+ 122
+ 64
+
+ -
+ 4337
+ -570
+
+
+
+
+
+ - Line start point
+ - 6e2d24a9-2651-43b2-9059-a97658fefa94
+ - Start
+ - Start
+ - false
+ - 637e10b6-0bed-46d6-a76a-6a7a71d05708
+ - 1
+
+
+
+
+ -
+ 4259
+ -600
+ 63
+ 20
+
+ -
+ 4300
+ -590
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8d62e557-6e3c-4bf6-a04e-10b7a8808160
+ - Direction
+ - Direction
+ - false
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - 1
+
+
+
+
+ -
+ 4259
+ -580
+ 63
+ 20
+
+ -
+ 4300
+ -570
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 48067a4f-d715-425d-9142-e9acdf7e2d16
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - 1
+
+
+
+
+ -
+ 4259
+ -560
+ 63
+ 20
+
+ -
+ 4300
+ -550
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - be2cf019-1305-48ce-adba-8f4655e5d2ee
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ -600
+ 25
+ 60
+
+ -
+ 4366
+ -570
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ -520
+ 40
+ 16
+
+ -
+ 4318
+ -512
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ -238
+ 115
+ 64
+
+ -
+ 4315
+ -206
+
+
+
+
+
+ - Value to remap
+ - e2ce2793-7f92-435a-9592-107d9e9325c7
+ - Value
+ - Value
+ - false
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - 1
+
+
+
+
+ -
+ 4262
+ -236
+ 38
+ 20
+
+ -
+ 4282.5
+ -226
+
+
+
+
+
+
+
+ - Source domain
+ - aca09565-ad3a-4dff-9c3a-f829a275ed12
+ - Source
+ - Source
+ - false
+ - 6366097d-daba-401d-a3bb-09908d45be64
+ - 1
+
+
+
+
+ -
+ 4262
+ -216
+ 38
+ 20
+
+ -
+ 4282.5
+ -206
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 75fe238b-59fa-4483-9f0a-387f19e4effa
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ -196
+ 38
+ 20
+
+ -
+ 4282.5
+ -186
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - f7db2e14-5eac-4497-8d7a-faed2f5f076b
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -236
+ 43
+ 30
+
+ -
+ 4353
+ -221
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - a79c8122-d5a3-4494-801e-dc132432acb4
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -206
+ 43
+ 30
+
+ -
+ 4353
+ -191
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ -155
+ 122
+ 28
+
+ -
+ 4321
+ -141
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 65e00f66-a02a-4a1c-b13a-c34b1d32db8f
+ - Numbers
+ - Numbers
+ - false
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - 1
+
+
+
+
+ -
+ 4259
+ -153
+ 47
+ 24
+
+ -
+ 4284
+ -141
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 6366097d-daba-401d-a3bb-09908d45be64
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -153
+ 41
+ 24
+
+ -
+ 4358
+ -141
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - edc3af5a-e25d-4381-a4d7-b2454ae6e271
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - 14
+ - d79fb373-d285-4a32-9d35-a411dd8a2305
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - Relay
+ -
+ - false
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - 1
+
+
+
+
+ -
+ 4298
+ -110
+ 40
+ 16
+
+ -
+ 4318
+ -102
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - Relay
+ -
+ - false
+ - 1ab4b573-b016-44f4-9322-bcb16dcb97b9
+ - 1
+
+
+
+
+ -
+ 4298
+ -477
+ 40
+ 16
+
+ -
+ 4318
+ -469
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -438
+ 82
+ 44
+
+ -
+ 4308
+ -416
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - f38099fc-1a8f-4ec2-a980-4782834441e2
+ - A
+ - A
+ - true
+ - 4e4dd104-426c-41d2-bb08-6c08681a1283
+ - 1
+
+
+
+
+ -
+ 4279
+ -436
+ 14
+ 20
+
+ -
+ 4287.5
+ -426
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - c981e6f7-dd08-4e71-86f1-5294401a4440
+ - B
+ - B
+ - true
+ - f77a5006-5ba9-4819-b46f-c7f246c09821
+ - 1
+
+
+
+
+ -
+ 4279
+ -416
+ 14
+ 20
+
+ -
+ 4287.5
+ -406
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 1ab4b573-b016-44f4-9322-bcb16dcb97b9
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -436
+ 34
+ 40
+
+ -
+ 4341.5
+ -416
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 8df7d7e6-cf5d-4502-9323-231be7021412
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -337
+ 82
+ 44
+
+ -
+ 4308
+ -315
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - eae22736-cc25-48be-82b9-82ae0596aed0
+ - A
+ - A
+ - true
+ - f7db2e14-5eac-4497-8d7a-faed2f5f076b
+ - 1
+
+
+
+
+ -
+ 4279
+ -335
+ 14
+ 20
+
+ -
+ 4287.5
+ -325
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 46ccac10-5ef7-43c0-b5e4-750578a78456
+ - B
+ - B
+ - true
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - 1
+
+
+
+
+ -
+ 4279
+ -315
+ 14
+ 20
+
+ -
+ 4287.5
+ -305
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 4e4dd104-426c-41d2-bb08-6c08681a1283
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -335
+ 34
+ 40
+
+ -
+ 4341.5
+ -315
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ -275
+ 40
+ 16
+
+ -
+ 4318
+ -267
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
+ - 3
+ - 3692f38f-1d1e-454f-9e1e-559f3a96e560
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b0f623ea-310b-4b24-9cb7-58687d55b42d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -726
+ 144
+ 104
+
+ -
+ 4330
+ -674
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 0b2039c2-9096-48a6-a2a4-5e14c7289f90
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -724
+ 67
+ 20
+
+ -
+ 4283
+ -714
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;224;224;224
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ba122001-38ee-4908-b388-560c17dc7b38
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -704
+ 67
+ 20
+
+ -
+ 4283
+ -694
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - b19593ac-70b7-4a5b-a68d-d7c04b9d5039
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -684
+ 67
+ 20
+
+ -
+ 4283
+ -674
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - e50630b9-256d-4890-b2a2-710b1069a1a9
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -664
+ 67
+ 20
+
+ -
+ 4283
+ -654
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 3cb8a942-bbf6-485a-8eb7-177cc856e9d8
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -644
+ 67
+ 20
+
+ -
+ 4283
+ -634
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 9c578a14-3257-4ba9-bd47-aa9ac4e0f711
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -724
+ 43
+ 100
+
+ -
+ 4368
+ -674
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 0968c388-eb63-4f69-97af-52e68422d260
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -788
+ 82
+ 44
+
+ -
+ 4345
+ -766
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 804b2077-26f5-49bd-bca2-9e59ee6a5fe0
+ - Geometry
+ - Geometry
+ - false
+ - be2cf019-1305-48ce-adba-8f4655e5d2ee
+ - 1
+
+
+
+
+ -
+ 4279
+ -786
+ 51
+ 20
+
+ -
+ 4306
+ -776
+
+
+
+
+
+
+
+ - The material override
+ - c84c562c-4cf7-4ae2-85fb-0f5c52a48b01
+ - Material
+ - Material
+ - false
+ - 9c578a14-3257-4ba9-bd47-aa9ac4e0f711
+ - 1
+
+
+
+
+ -
+ 4279
+ -766
+ 51
+ 20
+
+ -
+ 4306
+ -756
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8d280e70-d586-432d-9c66-602cd4f4fd53
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ -871
+ 144
+ 64
+
+ -
+ 4320
+ -839
+
+
+
+
+
+ - Curve to evaluate
+ - 20375335-fe2f-4b9e-b95b-ff3bfc4229f7
+ - Curve
+ - Curve
+ - false
+ - be2cf019-1305-48ce-adba-8f4655e5d2ee
+ - 1
+
+
+
+
+ -
+ 4248
+ -869
+ 57
+ 20
+
+ -
+ 4278
+ -859
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 091e548d-72b9-42a9-87cc-c90e4b9d833d
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -849
+ 57
+ 20
+
+ -
+ 4278
+ -839
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ccbd7807-1a8d-4478-974e-eaeba34232b0
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -829
+ 57
+ 20
+
+ -
+ 4278
+ -819
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c0df840f-e21c-4129-b503-719f49fc6b16
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -869
+ 53
+ 20
+
+ -
+ 4363
+ -859
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ff9a3ab7-ae19-486e-8da8-c1e0a14e6800
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -849
+ 53
+ 20
+
+ -
+ 4363
+ -839
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 11442010-ed08-406e-8f80-cab63dbe48de
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -829
+ 53
+ 20
+
+ -
+ 4363
+ -819
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - f6de1485-e329-4dce-a6e4-89cb0f7016af
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ -975
+ 125
+ 84
+
+ -
+ 4322
+ -933
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 07e3a62a-f138-4908-8022-e63d0db12106
+ - Vertices
+ - Vertices
+ - false
+ - c0df840f-e21c-4129-b503-719f49fc6b16
+ - 1
+
+
+
+
+ -
+ 4257
+ -973
+ 50
+ 20
+
+ -
+ 4283.5
+ -963
+
+
+
+
+
+
+
+ - Curve degree
+ - c7a9d37a-9597-4be7-8fb4-788c127c3da4
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -953
+ 50
+ 20
+
+ -
+ 4283.5
+ -943
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - e55e9e83-721d-4edc-8736-2486181af6fd
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -933
+ 50
+ 20
+
+ -
+ 4283.5
+ -923
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - f3235844-9d1d-4d99-bd61-222abdd54981
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -913
+ 50
+ 20
+
+ -
+ 4283.5
+ -903
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - eda997fc-a64a-410d-984f-4373353f22d8
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -973
+ 41
+ 26
+
+ -
+ 4359
+ -959.6667
+
+
+
+
+
+
+
+ - Curve length
+ - af975174-342f-4023-8176-c430b910aa01
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -947
+ 41
+ 27
+
+ -
+ 4359
+ -933
+
+
+
+
+
+
+
+ - Curve domain
+ - 72b77803-9b17-4bbf-8606-c8a01fc98876
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -920
+ 41
+ 27
+
+ -
+ 4359
+ -906.3334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 322a6b5b-a423-48a5-b19d-a56aff79885e
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -1099
+ 144
+ 104
+
+ -
+ 4330
+ -1047
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 544f4ed3-57ae-49fe-8560-25df04b6d6b4
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1097
+ 67
+ 20
+
+ -
+ 4283
+ -1087
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;199;199;199
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d3f9d604-bf6f-4f65-85b0-64f38535d92f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1077
+ 67
+ 20
+
+ -
+ 4283
+ -1067
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 78f51403-90bc-41eb-973b-6a8618c61a9b
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1057
+ 67
+ 20
+
+ -
+ 4283
+ -1047
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d316c5f8-75ad-445c-b3fa-434bd3a704b5
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1037
+ 67
+ 20
+
+ -
+ 4283
+ -1027
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 0b914229-1375-4735-a7ef-fcf88df61be4
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1017
+ 67
+ 20
+
+ -
+ 4283
+ -1007
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 593cb676-3e96-41ce-a2a5-98139f80f758
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -1097
+ 43
+ 100
+
+ -
+ 4368
+ -1047
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 8cf28910-ebf9-447f-b49a-b8133c4bc05e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -1159
+ 82
+ 44
+
+ -
+ 4345
+ -1137
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7f4d70c9-8898-4534-a476-a481f4657452
+ - Geometry
+ - Geometry
+ - false
+ - eda997fc-a64a-410d-984f-4373353f22d8
+ - 1
+
+
+
+
+ -
+ 4279
+ -1157
+ 51
+ 20
+
+ -
+ 4306
+ -1147
+
+
+
+
+
+
+
+ - The material override
+ - 165d0974-e17c-4dd5-9a5c-584173fc1f1a
+ - Material
+ - Material
+ - false
+ - 593cb676-3e96-41ce-a2a5-98139f80f758
+ - 1
+
+
+
+
+ -
+ 4279
+ -1137
+ 51
+ 20
+
+ -
+ 4306
+ -1127
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2e7d434b-e497-40c2-9170-d80e0bf5bcba
+ - 7eb55334-5bfa-4486-9ff6-b5829dac3feb
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - 25966e22-4fd9-419c-b905-ad0d899b9233
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - 845cb04b-45f5-445d-9f62-abad64b02fd2
+ - 307e04c0-347d-42da-aac3-535ada9ac315
+ - 391984bd-bdf7-4963-92f0-2e256b508f09
+ - 8563ebf7-7afd-4569-aa53-0cc90bd1a378
+ - 91616bda-478d-47e7-987e-50b82258ce06
+ - 813e4314-bed9-4963-8fd6-132105ecb666
+ - ac616e7c-8b28-4c2e-bf9a-5a8c674ee521
+ - 22
+ - e415110b-3faf-49e8-889a-ea5803860fe9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - 25966e22-4fd9-419c-b905-ad0d899b9233
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - ac588950-bc7f-4799-998b-6293a8136543
+ - 12
+ - 2e7d434b-e497-40c2-9170-d80e0bf5bcba
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 7eb55334-5bfa-4486-9ff6-b5829dac3feb
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4255
+ -1284
+ 128
+ 28
+
+ -
+ 4308
+ -1270
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - ae80ef1a-72c2-4f48-843a-15d379553646
+ - Values
+ - Values
+ - false
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - 1
+
+
+
+
+ -
+ 4257
+ -1282
+ 36
+ 24
+
+ -
+ 4276.5
+ -1270
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 5a957f96-5a4e-438c-beb4-d71a40d90f89
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1282
+ 58
+ 24
+
+ -
+ 4353.5
+ -1270
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - Relay
+
+ - false
+ - 5a957f96-5a4e-438c-beb4-d71a40d90f89
+ - 1
+
+
+
+
+ -
+ 4302
+ -1318
+ 40
+ 16
+
+ -
+ 4322
+ -1310
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - Relay
+
+ - false
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - 1
+
+
+
+
+ -
+ 4299
+ -1236
+ 40
+ 16
+
+ -
+ 4319
+ -1228
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4260
+ -2012
+ 122
+ 64
+
+ -
+ 4340
+ -1980
+
+
+
+
+
+ - Line start point
+ - f5b17117-d25b-41b1-842c-a3197dca9123
+ - Start
+ - Start
+ - false
+ - c0df840f-e21c-4129-b503-719f49fc6b16
+ - 1
+
+
+
+
+ -
+ 4262
+ -2010
+ 63
+ 20
+
+ -
+ 4303
+ -2000
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2a8085b2-3baf-44f9-b34e-1d2d96385c84
+ - Direction
+ - Direction
+ - false
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - 1
+
+
+
+
+ -
+ 4262
+ -1990
+ 63
+ 20
+
+ -
+ 4303
+ -1980
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 2af41a7d-df5e-4691-9848-2507f8ba3c97
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - 1
+
+
+
+
+ -
+ 4262
+ -1970
+ 63
+ 20
+
+ -
+ 4303
+ -1960
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - fa43f40d-b436-439a-bab2-aac4d1b2ae8b
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -2010
+ 25
+ 60
+
+ -
+ 4369
+ -1980
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ -1931
+ 40
+ 16
+
+ -
+ 4318
+ -1923
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ -1649
+ 115
+ 64
+
+ -
+ 4315
+ -1617
+
+
+
+
+
+ - Value to remap
+ - 0c5b7722-f827-4fe2-94e4-2d203f324b13
+ - Value
+ - Value
+ - false
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 1
+
+
+
+
+ -
+ 4262
+ -1647
+ 38
+ 20
+
+ -
+ 4282.5
+ -1637
+
+
+
+
+
+
+
+ - Source domain
+ - da6b0a7a-afc2-472a-bb91-42cf57aaf2be
+ - Source
+ - Source
+ - false
+ - 0dbb88bc-fe27-4e6b-9f57-3dabd1d71520
+ - 1
+
+
+
+
+ -
+ 4262
+ -1627
+ 38
+ 20
+
+ -
+ 4282.5
+ -1617
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 01d28205-64da-48f4-b28b-d9b155277b2d
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ -1607
+ 38
+ 20
+
+ -
+ 4282.5
+ -1597
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - c395f5b4-45e8-4b90-b7b3-f484cd3aade4
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -1647
+ 43
+ 30
+
+ -
+ 4353
+ -1632
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 6ed0ec77-ff5b-4d62-9aa8-e5e43c3c9bd0
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -1617
+ 43
+ 30
+
+ -
+ 4353
+ -1602
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ -1566
+ 122
+ 28
+
+ -
+ 4321
+ -1552
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 49b06533-0be4-4801-9f1b-0d82020b6d5c
+ - Numbers
+ - Numbers
+ - false
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 1
+
+
+
+
+ -
+ 4259
+ -1564
+ 47
+ 24
+
+ -
+ 4284
+ -1552
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 0dbb88bc-fe27-4e6b-9f57-3dabd1d71520
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -1564
+ 41
+ 24
+
+ -
+ 4358
+ -1552
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
+ - 15
+ - 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - Relay
+ -
+ - false
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - 1
+
+
+
+
+ -
+ 4302
+ -1517
+ 40
+ 16
+
+ -
+ 4322
+ -1509
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - Relay
+ -
+ - false
+ - 8cea9731-8f9c-4e8b-85df-2050902b7807
+ - 1
+
+
+
+
+ -
+ 4301
+ -1888
+ 40
+ 16
+
+ -
+ 4321
+ -1880
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -1851
+ 82
+ 44
+
+ -
+ 4308
+ -1829
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 878222d7-48d3-4576-abd2-de0b7b2445f6
+ - A
+ - A
+ - true
+ - 817a1f1b-9353-4d8d-84f9-673116fd6d05
+ - 1
+
+
+
+
+ -
+ 4279
+ -1849
+ 14
+ 20
+
+ -
+ 4287.5
+ -1839
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - d21e7beb-ac2d-43d2-b690-4bfd03921f06
+ - B
+ - B
+ - true
+ - 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
+ - 1
+
+
+
+
+ -
+ 4279
+ -1829
+ 14
+ 20
+
+ -
+ 4287.5
+ -1819
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 8cea9731-8f9c-4e8b-85df-2050902b7807
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1849
+ 34
+ 40
+
+ -
+ 4341.5
+ -1829
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 25966e22-4fd9-419c-b905-ad0d899b9233
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -1747
+ 82
+ 44
+
+ -
+ 4308
+ -1725
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - c191cdf0-ce56-4ffa-83d6-d9e5ee1ce3ab
+ - A
+ - A
+ - true
+ - c395f5b4-45e8-4b90-b7b3-f484cd3aade4
+ - 1
+
+
+
+
+ -
+ 4279
+ -1745
+ 14
+ 20
+
+ -
+ 4287.5
+ -1735
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2e0d80ea-79b2-4e23-b4b2-f1c47cb6d051
+ - B
+ - B
+ - true
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - 1
+
+
+
+
+ -
+ 4279
+ -1725
+ 14
+ 20
+
+ -
+ 4287.5
+ -1715
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 1f4d203a-7210-473f-9482-f99a19778d4f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1745
+ 34
+ 40
+
+ -
+ 4341.5
+ -1725
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4295
+ -1685
+ 40
+ 16
+
+ -
+ 4315
+ -1677
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - 7eb55334-5bfa-4486-9ff6-b5829dac3feb
+ - 3
+ - 845cb04b-45f5-445d-9f62-abad64b02fd2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 307e04c0-347d-42da-aac3-535ada9ac315
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -2137
+ 144
+ 104
+
+ -
+ 4330
+ -2085
+
+
+
+
+
+ - Colour of the diffuse channel
+ - b17b0379-bc45-45ba-bd16-2a0eba0989df
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2135
+ 67
+ 20
+
+ -
+ 4283
+ -2125
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;217;217;217
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - cadc18a2-76b6-48c9-85f4-e683444ac926
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2115
+ 67
+ 20
+
+ -
+ 4283
+ -2105
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 45312f69-4306-4270-8336-9d4f988b53f5
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2095
+ 67
+ 20
+
+ -
+ 4283
+ -2085
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 93837e64-6bec-4f2c-a8e7-70ab7b01b7e2
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2075
+ 67
+ 20
+
+ -
+ 4283
+ -2065
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 117d8814-ca79-42a3-90fa-2d0ac9cb0bdb
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2055
+ 67
+ 20
+
+ -
+ 4283
+ -2045
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - dac4de77-9f6f-4daa-a2fb-101193a87ed7
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -2135
+ 43
+ 100
+
+ -
+ 4368
+ -2085
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 391984bd-bdf7-4963-92f0-2e256b508f09
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -2199
+ 82
+ 44
+
+ -
+ 4345
+ -2177
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 0cbf1ec0-48a5-4725-b163-a93cd896f78a
+ - Geometry
+ - Geometry
+ - false
+ - fa43f40d-b436-439a-bab2-aac4d1b2ae8b
+ - 1
+
+
+
+
+ -
+ 4279
+ -2197
+ 51
+ 20
+
+ -
+ 4306
+ -2187
+
+
+
+
+
+
+
+ - The material override
+ - 67084f2a-d79d-4f1b-bd0d-c0baf2bc54f3
+ - Material
+ - Material
+ - false
+ - dac4de77-9f6f-4daa-a2fb-101193a87ed7
+ - 1
+
+
+
+
+ -
+ 4279
+ -2177
+ 51
+ 20
+
+ -
+ 4306
+ -2167
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8563ebf7-7afd-4569-aa53-0cc90bd1a378
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ -2282
+ 144
+ 64
+
+ -
+ 4320
+ -2250
+
+
+
+
+
+ - Curve to evaluate
+ - 75e68839-7c56-486e-8934-2aec69846414
+ - Curve
+ - Curve
+ - false
+ - fa43f40d-b436-439a-bab2-aac4d1b2ae8b
+ - 1
+
+
+
+
+ -
+ 4248
+ -2280
+ 57
+ 20
+
+ -
+ 4278
+ -2270
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - df4e0f36-f4ca-4b09-b619-bd775693b056
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2260
+ 57
+ 20
+
+ -
+ 4278
+ -2250
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - de2c86ac-e32a-4606-a129-52dcce0396b7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2240
+ 57
+ 20
+
+ -
+ 4278
+ -2230
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2280
+ 53
+ 20
+
+ -
+ 4363
+ -2270
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9dd89b63-2e2c-42b0-a2a2-48bbe718af2a
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2260
+ 53
+ 20
+
+ -
+ 4363
+ -2250
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c7b66ac2-eefe-4c24-bc83-ef966d86fd7b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2240
+ 53
+ 20
+
+ -
+ 4363
+ -2230
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 91616bda-478d-47e7-987e-50b82258ce06
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ -2386
+ 125
+ 84
+
+ -
+ 4322
+ -2344
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - ef6f2b2f-7fc9-48b4-ab19-f8e956f17ef7
+ - Vertices
+ - Vertices
+ - false
+ - 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
+ - 1
+
+
+
+
+ -
+ 4257
+ -2384
+ 50
+ 20
+
+ -
+ 4283.5
+ -2374
+
+
+
+
+
+
+
+ - Curve degree
+ - 41b3d3c2-2d7b-496c-ad9b-d6395c994acc
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -2364
+ 50
+ 20
+
+ -
+ 4283.5
+ -2354
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 5d892f8d-5082-4e8b-b695-aa53350b964c
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -2344
+ 50
+ 20
+
+ -
+ 4283.5
+ -2334
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 48df9416-48a3-431e-83bb-dfded5c7cf13
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -2324
+ 50
+ 20
+
+ -
+ 4283.5
+ -2314
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 678b8bf7-9aac-4970-8a9e-ee50acb3e43a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -2384
+ 41
+ 26
+
+ -
+ 4359
+ -2370.667
+
+
+
+
+
+
+
+ - Curve length
+ - a5ea4950-35e0-413c-b420-38f10bcbc1dc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -2358
+ 41
+ 27
+
+ -
+ 4359
+ -2344
+
+
+
+
+
+
+
+ - Curve domain
+ - b7207c89-8e70-43e8-98d7-c34853a94e21
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -2331
+ 41
+ 27
+
+ -
+ 4359
+ -2317.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 813e4314-bed9-4963-8fd6-132105ecb666
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -2510
+ 144
+ 104
+
+ -
+ 4330
+ -2458
+
+
+
+
+
+ - Colour of the diffuse channel
+ - f81f1c89-8bc5-473f-b7c5-750a00edd80a
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2508
+ 67
+ 20
+
+ -
+ 4283
+ -2498
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;191;191;191
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 7eea7044-9ecc-498a-ac53-1d0937777605
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2488
+ 67
+ 20
+
+ -
+ 4283
+ -2478
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 5e84ac81-5265-4b77-9fb4-9608d8e14a39
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2468
+ 67
+ 20
+
+ -
+ 4283
+ -2458
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 273f6050-7148-4e70-8533-df9579105dda
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2448
+ 67
+ 20
+
+ -
+ 4283
+ -2438
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6fd3f45d-ffdd-47ca-8b53-5d632438bd38
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2428
+ 67
+ 20
+
+ -
+ 4283
+ -2418
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6f27c099-ecfb-4221-a1a3-f67aa8f90b49
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -2508
+ 43
+ 100
+
+ -
+ 4368
+ -2458
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - ac616e7c-8b28-4c2e-bf9a-5a8c674ee521
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -2570
+ 82
+ 44
+
+ -
+ 4345
+ -2548
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - b5ae2558-2f1a-4cb4-8602-975a07f8ba9f
+ - Geometry
+ - Geometry
+ - false
+ - 678b8bf7-9aac-4970-8a9e-ee50acb3e43a
+ - 1
+
+
+
+
+ -
+ 4279
+ -2568
+ 51
+ 20
+
+ -
+ 4306
+ -2558
+
+
+
+
+
+
+
+ - The material override
+ - 5170ecf1-f935-4d97-9b53-18f07f6c82d6
+ - Material
+ - Material
+ - false
+ - 6f27c099-ecfb-4221-a1a3-f67aa8f90b49
+ - 1
+
+
+
+
+ -
+ 4279
+ -2548
+ 51
+ 20
+
+ -
+ 4306
+ -2538
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 42e4b4aa-e5fd-4fa0-bf50-f55fc4f83c27
+ - 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - 8e072824-d558-4a16-83ee-15d5922d0358
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - f6a70308-0365-4a62-ae8f-7b0c06d916af
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - b42552e4-4295-43cd-9229-0f7fb6c498dc
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - efceaa27-3a6e-434b-b4ce-dc47dc3cbd9f
+ - 2fd38000-615a-4f6c-925c-fae90fde2a8e
+ - 65ac4482-b933-4f95-9a07-b23d2cef1c6a
+ - 1db7d0ec-8709-47d7-82e0-4691e7efbe8b
+ - eefa2f3e-ae14-4853-9588-e0ad60346408
+ - a9846cd4-c92f-4ca4-904e-88b9fe76c39c
+ - 100d237b-fd67-4830-be89-c236745d92e8
+ - 22
+ - 9a7db9c9-43b6-4731-b3bb-087fd868b276
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8e072824-d558-4a16-83ee-15d5922d0358
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - f6a70308-0365-4a62-ae8f-7b0c06d916af
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - b42552e4-4295-43cd-9229-0f7fb6c498dc
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - 7ea7c812-fbf2-4ab8-9a4e-7edd89c68a35
+ - 12
+ - 42e4b4aa-e5fd-4fa0-bf50-f55fc4f83c27
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4254
+ -2680
+ 128
+ 28
+
+ -
+ 4307
+ -2666
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 7f36f02f-6ddc-4cb0-a544-c62006d91a7e
+ - Values
+ - Values
+ - false
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - 1
+
+
+
+
+ -
+ 4256
+ -2678
+ 36
+ 24
+
+ -
+ 4275.5
+ -2666
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 097201c1-1da3-4b40-8dd0-b049871b7d99
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ -2678
+ 58
+ 24
+
+ -
+ 4352.5
+ -2666
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - Relay
+
+ - false
+ - 097201c1-1da3-4b40-8dd0-b049871b7d99
+ - 1
+
+
+
+
+ -
+ 4298
+ -2714
+ 40
+ 16
+
+ -
+ 4318
+ -2706
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - Relay
+
+ - false
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - 1
+
+
+
+
+ -
+ 4298
+ -2632
+ 40
+ 16
+
+ -
+ 4318
+ -2624
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 8e072824-d558-4a16-83ee-15d5922d0358
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ -3410
+ 122
+ 64
+
+ -
+ 4337
+ -3378
+
+
+
+
+
+ - Line start point
+ - cfd18607-4057-4291-9223-81c906b9c49f
+ - true
+ - Start
+ - Start
+ - false
+ - 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
+ - 1
+
+
+
+
+ -
+ 4259
+ -3408
+ 63
+ 20
+
+ -
+ 4300
+ -3398
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - cb2d2ba5-e6f3-4841-9978-746af6500450
+ - true
+ - Direction
+ - Direction
+ - false
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - 1
+
+
+
+
+ -
+ 4259
+ -3388
+ 63
+ 20
+
+ -
+ 4300
+ -3378
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 95296efb-57ab-4b1d-baea-2f0e4c3f9c8e
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 1
+
+
+
+
+ -
+ 4259
+ -3368
+ 63
+ 20
+
+ -
+ 4300
+ -3358
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 9fd0b496-5590-469c-9d73-be4bb1965f90
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ -3408
+ 25
+ 60
+
+ -
+ 4366
+ -3378
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ -3328
+ 40
+ 16
+
+ -
+ 4318
+ -3320
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ -3046
+ 115
+ 64
+
+ -
+ 4315
+ -3014
+
+
+
+
+
+ - Value to remap
+ - 1f626e82-58ae-438a-90e6-0b36707c73dd
+ - Value
+ - Value
+ - false
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - 1
+
+
+
+
+ -
+ 4262
+ -3044
+ 38
+ 20
+
+ -
+ 4282.5
+ -3034
+
+
+
+
+
+
+
+ - Source domain
+ - 96780f3e-9927-4116-be86-f0654fe684f5
+ - Source
+ - Source
+ - false
+ - efb5ced9-506b-4efb-aedb-6823b20f9f6e
+ - 1
+
+
+
+
+ -
+ 4262
+ -3024
+ 38
+ 20
+
+ -
+ 4282.5
+ -3014
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 6cf6be25-bd2a-4cad-b8b5-a5fb8313d332
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ -3004
+ 38
+ 20
+
+ -
+ 4282.5
+ -2994
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - e6c55d1f-8d23-47fb-9e63-67ee5eecb8ca
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -3044
+ 43
+ 30
+
+ -
+ 4353
+ -3029
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 0e5bb633-c4ae-4720-8365-f59d27ff8f00
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -3014
+ 43
+ 30
+
+ -
+ 4353
+ -2999
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ -2963
+ 122
+ 28
+
+ -
+ 4321
+ -2949
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 41279e52-c8b2-44d2-a05f-a12da73d9726
+ - Numbers
+ - Numbers
+ - false
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - 1
+
+
+
+
+ -
+ 4259
+ -2961
+ 47
+ 24
+
+ -
+ 4284
+ -2949
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - efb5ced9-506b-4efb-aedb-6823b20f9f6e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -2961
+ 41
+ 24
+
+ -
+ 4358
+ -2949
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - e9c988a3-a0f9-44b8-9dca-881e071528d5
+ - 15
+ - f6a70308-0365-4a62-ae8f-7b0c06d916af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - Relay
+ -
+ - false
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 1
+
+
+
+
+ -
+ 4298
+ -2918
+ 40
+ 16
+
+ -
+ 4318
+ -2910
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - Relay
+ -
+ - false
+ - f238ee5d-fbdb-4636-ba07-216e3abf726a
+ - 1
+
+
+
+
+ -
+ 4298
+ -3285
+ 40
+ 16
+
+ -
+ 4318
+ -3277
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -3246
+ 82
+ 44
+
+ -
+ 4308
+ -3224
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - a72226b1-1293-4dce-b956-5d0d458be578
+ - A
+ - A
+ - true
+ - d596036f-c261-4979-89f0-99a2e5d79241
+ - 1
+
+
+
+
+ -
+ 4279
+ -3244
+ 14
+ 20
+
+ -
+ 4287.5
+ -3234
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 31719fe6-f994-48d7-9ab2-4f5ecdbf23fe
+ - B
+ - B
+ - true
+ - e9c988a3-a0f9-44b8-9dca-881e071528d5
+ - 1
+
+
+
+
+ -
+ 4279
+ -3224
+ 14
+ 20
+
+ -
+ 4287.5
+ -3214
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f238ee5d-fbdb-4636-ba07-216e3abf726a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -3244
+ 34
+ 40
+
+ -
+ 4341.5
+ -3224
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - b42552e4-4295-43cd-9229-0f7fb6c498dc
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -3145
+ 82
+ 44
+
+ -
+ 4308
+ -3123
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ac0e6fc4-1bc1-41a0-ac67-6e577569d2e4
+ - A
+ - A
+ - true
+ - e6c55d1f-8d23-47fb-9e63-67ee5eecb8ca
+ - 1
+
+
+
+
+ -
+ 4279
+ -3143
+ 14
+ 20
+
+ -
+ 4287.5
+ -3133
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 318ea127-00ac-494e-b0d8-25457e3390c1
+ - B
+ - B
+ - true
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - 1
+
+
+
+
+ -
+ 4279
+ -3123
+ 14
+ 20
+
+ -
+ 4287.5
+ -3113
+
+
+
+
+
+
+
+ - Result of multiplication
+ - d596036f-c261-4979-89f0-99a2e5d79241
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -3143
+ 34
+ 40
+
+ -
+ 4341.5
+ -3123
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ -3083
+ 40
+ 16
+
+ -
+ 4318
+ -3075
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
+ - 3
+ - efceaa27-3a6e-434b-b4ce-dc47dc3cbd9f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 2fd38000-615a-4f6c-925c-fae90fde2a8e
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -3534
+ 144
+ 104
+
+ -
+ 4330
+ -3482
+
+
+
+
+
+ - Colour of the diffuse channel
+ - bca6b15c-ead9-4a78-a63a-f69e99028d80
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3532
+ 67
+ 20
+
+ -
+ 4283
+ -3522
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;209;209;209
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ca1e6ad1-156d-4f2e-9298-0f63c1b2cfb9
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3512
+ 67
+ 20
+
+ -
+ 4283
+ -3502
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 228c6c12-4d82-41c3-8f3f-029032a0cb64
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3492
+ 67
+ 20
+
+ -
+ 4283
+ -3482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a3339c35-080c-45a8-a809-c9945cdaa329
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3472
+ 67
+ 20
+
+ -
+ 4283
+ -3462
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 5e23e62d-4027-4195-9865-eab08a4a917c
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3452
+ 67
+ 20
+
+ -
+ 4283
+ -3442
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ee93036d-9997-483c-8552-de089dd4c99c
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -3532
+ 43
+ 100
+
+ -
+ 4368
+ -3482
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 65ac4482-b933-4f95-9a07-b23d2cef1c6a
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -3596
+ 82
+ 44
+
+ -
+ 4345
+ -3574
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - f898a738-0820-4631-aeef-a5195fb0f7df
+ - Geometry
+ - Geometry
+ - false
+ - 9fd0b496-5590-469c-9d73-be4bb1965f90
+ - 1
+
+
+
+
+ -
+ 4279
+ -3594
+ 51
+ 20
+
+ -
+ 4306
+ -3584
+
+
+
+
+
+
+
+ - The material override
+ - 26559eaa-9c07-4e60-8e34-94ecd3d2ebf0
+ - Material
+ - Material
+ - false
+ - ee93036d-9997-483c-8552-de089dd4c99c
+ - 1
+
+
+
+
+ -
+ 4279
+ -3574
+ 51
+ 20
+
+ -
+ 4306
+ -3564
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1db7d0ec-8709-47d7-82e0-4691e7efbe8b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ -3679
+ 144
+ 64
+
+ -
+ 4320
+ -3647
+
+
+
+
+
+ - Curve to evaluate
+ - bc77b9c3-ff4d-43ee-9957-74e39a55ce61
+ - Curve
+ - Curve
+ - false
+ - 9fd0b496-5590-469c-9d73-be4bb1965f90
+ - 1
+
+
+
+
+ -
+ 4248
+ -3677
+ 57
+ 20
+
+ -
+ 4278
+ -3667
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6915e62a-edd4-44cb-bf03-7535a64afcac
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3657
+ 57
+ 20
+
+ -
+ 4278
+ -3647
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 266bd85c-7f88-41d8-9c3b-3ce0b341a5f8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3637
+ 57
+ 20
+
+ -
+ 4278
+ -3627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8d3777b7-0158-4820-9120-622aa905cd46
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3677
+ 53
+ 20
+
+ -
+ 4363
+ -3667
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c1141206-a7b5-4b08-945d-fae603d78f89
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3657
+ 53
+ 20
+
+ -
+ 4363
+ -3647
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - da4c5437-7848-496c-b53a-7842912a6a34
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3637
+ 53
+ 20
+
+ -
+ 4363
+ -3627
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - eefa2f3e-ae14-4853-9588-e0ad60346408
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ -3783
+ 125
+ 84
+
+ -
+ 4322
+ -3741
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - df8c0ec6-5fac-4764-8313-e7a47148776a
+ - Vertices
+ - Vertices
+ - false
+ - 8d3777b7-0158-4820-9120-622aa905cd46
+ - 1
+
+
+
+
+ -
+ 4257
+ -3781
+ 50
+ 20
+
+ -
+ 4283.5
+ -3771
+
+
+
+
+
+
+
+ - Curve degree
+ - 8035489e-8099-4a6b-8f0b-573557cc8ffa
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -3761
+ 50
+ 20
+
+ -
+ 4283.5
+ -3751
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 0ddd8548-ed83-4c21-a12b-2a19ff7067e8
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -3741
+ 50
+ 20
+
+ -
+ 4283.5
+ -3731
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 4871b378-5d48-4299-a11f-818b754ea8ba
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -3721
+ 50
+ 20
+
+ -
+ 4283.5
+ -3711
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - e2f91283-565e-4ab1-9d00-f5fd3962d8aa
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -3781
+ 41
+ 26
+
+ -
+ 4359
+ -3767.667
+
+
+
+
+
+
+
+ - Curve length
+ - d7ab0794-2125-44ea-a786-889086e9224f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -3755
+ 41
+ 27
+
+ -
+ 4359
+ -3741
+
+
+
+
+
+
+
+ - Curve domain
+ - 4d96f078-c2cb-4b7a-85c1-451ddbb400a1
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -3728
+ 41
+ 27
+
+ -
+ 4359
+ -3714.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a9846cd4-c92f-4ca4-904e-88b9fe76c39c
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -3907
+ 144
+ 104
+
+ -
+ 4330
+ -3855
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 4081cfba-8922-4ccc-b948-7aba29e7e1e4
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3905
+ 67
+ 20
+
+ -
+ 4283
+ -3895
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;184;184;184
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d723a763-d553-4cc2-ab56-75c9564fa4ff
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3885
+ 67
+ 20
+
+ -
+ 4283
+ -3875
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 2ce26172-d066-4510-90d0-821d66b9c178
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3865
+ 67
+ 20
+
+ -
+ 4283
+ -3855
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1c055ac1-e75c-42d8-85f9-17e5fe94c3c0
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3845
+ 67
+ 20
+
+ -
+ 4283
+ -3835
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 26da2058-31ab-414b-81d8-a0ef9a78f436
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3825
+ 67
+ 20
+
+ -
+ 4283
+ -3815
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - c4947d2a-cae5-43ca-8a4e-5871ca9ef4cc
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -3905
+ 43
+ 100
+
+ -
+ 4368
+ -3855
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 100d237b-fd67-4830-be89-c236745d92e8
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -3967
+ 82
+ 44
+
+ -
+ 4345
+ -3945
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 55d282f5-6904-4842-8806-7ff55e58df22
+ - Geometry
+ - Geometry
+ - false
+ - e2f91283-565e-4ab1-9d00-f5fd3962d8aa
+ - 1
+
+
+
+
+ -
+ 4279
+ -3965
+ 51
+ 20
+
+ -
+ 4306
+ -3955
+
+
+
+
+
+
+
+ - The material override
+ - 22bdecdb-6352-498a-997a-71934bc18892
+ - Material
+ - Material
+ - false
+ - c4947d2a-cae5-43ca-8a4e-5871ca9ef4cc
+ - 1
+
+
+
+
+ -
+ 4279
+ -3945
+ 51
+ 20
+
+ -
+ 4306
+ -3935
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6a9f6fc8-e007-4c87-9e66-f55fa953e45c
+ - 94fef812-42f9-4896-95a0-5c758161262c
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - 2f126b04-498b-4c3f-b6b9-3930e501651f
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - 26121879-3995-4c35-a66b-5ea41fec4602
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - 3f5a2e69-963e-465f-9a2d-669b8d27d21b
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - f4498488-3182-41de-bfe4-5dd1a2ecdfc7
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - e4f5b0a2-58e9-4e30-9461-33f00d5672c4
+ - ca4c5c4d-c0a4-480f-b0d8-31eaa72ee7f9
+ - a798d6fb-4c16-4f3b-bb88-1cde76f46b6c
+ - b19c1b10-a682-4bbb-addc-9ac35992fdbc
+ - 42179dd5-e5d6-452c-b478-e8ccc4329041
+ - ac4acc33-29c1-4609-86ba-b90878e9b36f
+ - 3dc4cf53-4a61-4a5b-9d43-57fdb91b7ff2
+ - 22
+ - cd50e1b3-e2b3-4550-979f-3a1e22383084
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2f126b04-498b-4c3f-b6b9-3930e501651f
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - 26121879-3995-4c35-a66b-5ea41fec4602
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - 3f5a2e69-963e-465f-9a2d-669b8d27d21b
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - f4498488-3182-41de-bfe4-5dd1a2ecdfc7
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - d8ca333f-274c-4def-b0be-659a62d86c0c
+ - 12
+ - 6a9f6fc8-e007-4c87-9e66-f55fa953e45c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 94fef812-42f9-4896-95a0-5c758161262c
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4244
+ -4097
+ 128
+ 28
+
+ -
+ 4297
+ -4083
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 367de0f1-cc3a-4c51-94e2-68aeffec04de
+ - Values
+ - Values
+ - false
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - 1
+
+
+
+
+ -
+ 4246
+ -4095
+ 36
+ 24
+
+ -
+ 4265.5
+ -4083
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - fe0b0f9d-25f6-4ef7-b130-46e021fb117c
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -4095
+ 58
+ 24
+
+ -
+ 4342.5
+ -4083
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - Relay
+
+ - false
+ - fe0b0f9d-25f6-4ef7-b130-46e021fb117c
+ - 1
+
+
+
+
+ -
+ 4288
+ -4131
+ 40
+ 16
+
+ -
+ 4308
+ -4123
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - Relay
+
+ - false
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 1
+
+
+
+
+ -
+ 4288
+ -4049
+ 40
+ 16
+
+ -
+ 4308
+ -4041
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2f126b04-498b-4c3f-b6b9-3930e501651f
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4243
+ -4826
+ 122
+ 64
+
+ -
+ 4323
+ -4794
+
+
+
+
+
+ - Line start point
+ - 67607b47-bb2d-4d1c-8424-3d09b8cfdd12
+ - true
+ - Start
+ - Start
+ - false
+ - 8d3777b7-0158-4820-9120-622aa905cd46
+ - 1
+
+
+
+
+ -
+ 4245
+ -4824
+ 63
+ 20
+
+ -
+ 4286
+ -4814
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 729a0858-a439-4b71-ba15-9220fe10ce4e
+ - true
+ - Direction
+ - Direction
+ - false
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - 1
+
+
+
+
+ -
+ 4245
+ -4804
+ 63
+ 20
+
+ -
+ 4286
+ -4794
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0a98c27f-4e50-46be-8fad-f9ed4377317b
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 1
+
+
+
+
+ -
+ 4245
+ -4784
+ 63
+ 20
+
+ -
+ 4286
+ -4774
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 8ed14837-7174-47e7-a5b8-f4c28f3778d0
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ -4824
+ 25
+ 60
+
+ -
+ 4352
+ -4794
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4284
+ -4744
+ 40
+ 16
+
+ -
+ 4304
+ -4736
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4246
+ -4462
+ 115
+ 64
+
+ -
+ 4301
+ -4430
+
+
+
+
+
+ - Value to remap
+ - 78220fc5-ef9a-417a-905c-062cb8ca437d
+ - Value
+ - Value
+ - false
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 1
+
+
+
+
+ -
+ 4248
+ -4460
+ 38
+ 20
+
+ -
+ 4268.5
+ -4450
+
+
+
+
+
+
+
+ - Source domain
+ - 00a02fca-ec20-4c0f-8779-783399520de1
+ - Source
+ - Source
+ - false
+ - 6638590f-751a-4472-9612-af35db224cba
+ - 1
+
+
+
+
+ -
+ 4248
+ -4440
+ 38
+ 20
+
+ -
+ 4268.5
+ -4430
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - ab1aeac0-047f-474f-90dd-c38a9f26cdfb
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -4420
+ 38
+ 20
+
+ -
+ 4268.5
+ -4410
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - d7a4705d-0f84-48f1-b027-18cee9d886c4
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ -4460
+ 43
+ 30
+
+ -
+ 4339
+ -4445
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 438d903d-32fb-47b6-92da-9741aaba417c
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ -4430
+ 43
+ 30
+
+ -
+ 4339
+ -4415
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4243
+ -4379
+ 122
+ 28
+
+ -
+ 4307
+ -4365
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - d5615fe7-fa1d-4238-8ef1-e76cdc0dbe53
+ - Numbers
+ - Numbers
+ - false
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 1
+
+
+
+
+ -
+ 4245
+ -4377
+ 47
+ 24
+
+ -
+ 4270
+ -4365
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 6638590f-751a-4472-9612-af35db224cba
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ -4377
+ 41
+ 24
+
+ -
+ 4344
+ -4365
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 26121879-3995-4c35-a66b-5ea41fec4602
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - 2cf94056-6af5-459d-9d0b-edb8f8adea38
+ - 15
+ - 3f5a2e69-963e-465f-9a2d-669b8d27d21b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - Relay
+ -
+ - false
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - 1
+
+
+
+
+ -
+ 4284
+ -4334
+ 40
+ 16
+
+ -
+ 4304
+ -4326
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - Relay
+ -
+ - false
+ - 00fc5d31-f74d-43f8-ae07-8bb418bc4c5a
+ - 1
+
+
+
+
+ -
+ 4284
+ -4701
+ 40
+ 16
+
+ -
+ 4304
+ -4693
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4263
+ -4662
+ 82
+ 44
+
+ -
+ 4294
+ -4640
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 4341fd90-ace9-4860-9ac1-6924c6f803bc
+ - A
+ - A
+ - true
+ - 4333ce65-0670-473c-869e-fd9bd04229cf
+ - 1
+
+
+
+
+ -
+ 4265
+ -4660
+ 14
+ 20
+
+ -
+ 4273.5
+ -4650
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b18c525e-47bb-4a4e-8c7f-7d37922cc8ac
+ - B
+ - B
+ - true
+ - 2cf94056-6af5-459d-9d0b-edb8f8adea38
+ - 1
+
+
+
+
+ -
+ 4265
+ -4640
+ 14
+ 20
+
+ -
+ 4273.5
+ -4630
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 00fc5d31-f74d-43f8-ae07-8bb418bc4c5a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -4660
+ 34
+ 40
+
+ -
+ 4327.5
+ -4640
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - f4498488-3182-41de-bfe4-5dd1a2ecdfc7
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4263
+ -4561
+ 82
+ 44
+
+ -
+ 4294
+ -4539
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 69c0e289-3b78-44a2-aa4a-c278eba7c73c
+ - A
+ - A
+ - true
+ - d7a4705d-0f84-48f1-b027-18cee9d886c4
+ - 1
+
+
+
+
+ -
+ 4265
+ -4559
+ 14
+ 20
+
+ -
+ 4273.5
+ -4549
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2e5c99f5-44c0-4d0c-be99-a3a244abc0fc
+ - B
+ - B
+ - true
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - 1
+
+
+
+
+ -
+ 4265
+ -4539
+ 14
+ 20
+
+ -
+ 4273.5
+ -4529
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 4333ce65-0670-473c-869e-fd9bd04229cf
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -4559
+ 34
+ 40
+
+ -
+ 4327.5
+ -4539
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4284
+ -4499
+ 40
+ 16
+
+ -
+ 4304
+ -4491
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - 94fef812-42f9-4896-95a0-5c758161262c
+ - 3
+ - e4f5b0a2-58e9-4e30-9461-33f00d5672c4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ca4c5c4d-c0a4-480f-b0d8-31eaa72ee7f9
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4232
+ -4950
+ 144
+ 104
+
+ -
+ 4316
+ -4898
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 25494929-7b84-4be2-88a7-a974558005a2
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4948
+ 67
+ 20
+
+ -
+ 4269
+ -4938
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;201;201;201
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 6c0fb82e-c5d5-479e-a322-ece4a03394a8
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4928
+ 67
+ 20
+
+ -
+ 4269
+ -4918
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 236b244e-0db7-45f2-a214-61c0d38d3335
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4908
+ 67
+ 20
+
+ -
+ 4269
+ -4898
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 9395af38-376a-418d-904c-112532c004a0
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4888
+ 67
+ 20
+
+ -
+ 4269
+ -4878
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 7669361e-69da-4c47-a524-bcffd7cd2c0e
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4868
+ 67
+ 20
+
+ -
+ 4269
+ -4858
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6bd6548b-d902-40e4-bf34-1049267302b0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ -4948
+ 43
+ 100
+
+ -
+ 4354
+ -4898
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - a798d6fb-4c16-4f3b-bb88-1cde76f46b6c
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4263
+ -5012
+ 82
+ 44
+
+ -
+ 4331
+ -4990
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 64371237-cecb-44a0-be34-2f89426199a7
+ - Geometry
+ - Geometry
+ - false
+ - 8ed14837-7174-47e7-a5b8-f4c28f3778d0
+ - 1
+
+
+
+
+ -
+ 4265
+ -5010
+ 51
+ 20
+
+ -
+ 4292
+ -5000
+
+
+
+
+
+
+
+ - The material override
+ - 788d98bc-c6a3-46b2-93c7-68523390da47
+ - Material
+ - Material
+ - false
+ - 6bd6548b-d902-40e4-bf34-1049267302b0
+ - 1
+
+
+
+
+ -
+ 4265
+ -4990
+ 51
+ 20
+
+ -
+ 4292
+ -4980
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b19c1b10-a682-4bbb-addc-9ac35992fdbc
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4232
+ -5095
+ 144
+ 64
+
+ -
+ 4306
+ -5063
+
+
+
+
+
+ - Curve to evaluate
+ - e85fd3f2-51bc-4d31-9131-07fedc772719
+ - Curve
+ - Curve
+ - false
+ - 8ed14837-7174-47e7-a5b8-f4c28f3778d0
+ - 1
+
+
+
+
+ -
+ 4234
+ -5093
+ 57
+ 20
+
+ -
+ 4264
+ -5083
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - bdc17ddd-a4be-4617-a9cf-bd0107e5aa04
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5073
+ 57
+ 20
+
+ -
+ 4264
+ -5063
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a0e1fe99-c517-44b7-9f34-ad29473bdb7f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5053
+ 57
+ 20
+
+ -
+ 4264
+ -5043
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - bc29cb88-c13f-4b12-8911-f97c489562ea
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5093
+ 53
+ 20
+
+ -
+ 4349
+ -5083
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 057801e0-d1f6-4f98-b8b2-544c0c8d667e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5073
+ 53
+ 20
+
+ -
+ 4349
+ -5063
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 349e7af4-bf20-41de-8576-1c2270ac51e2
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5053
+ 53
+ 20
+
+ -
+ 4349
+ -5043
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 42179dd5-e5d6-452c-b478-e8ccc4329041
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4241
+ -5199
+ 125
+ 84
+
+ -
+ 4308
+ -5157
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - bd50e477-c50b-446f-bd00-4ad11163cf45
+ - Vertices
+ - Vertices
+ - false
+ - bc29cb88-c13f-4b12-8911-f97c489562ea
+ - 1
+
+
+
+
+ -
+ 4243
+ -5197
+ 50
+ 20
+
+ -
+ 4269.5
+ -5187
+
+
+
+
+
+
+
+ - Curve degree
+ - a1dd5264-df8e-453a-b0ea-cffa70db96a7
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4243
+ -5177
+ 50
+ 20
+
+ -
+ 4269.5
+ -5167
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - c48e02d6-e69a-45aa-b9a2-e7d4fdb553dd
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4243
+ -5157
+ 50
+ 20
+
+ -
+ 4269.5
+ -5147
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 0d00a672-6d63-4ea6-a79b-ba3516801867
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4243
+ -5137
+ 50
+ 20
+
+ -
+ 4269.5
+ -5127
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6b4d4575-8108-4fc8-bf3f-b8ba1640b2d0
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -5197
+ 41
+ 26
+
+ -
+ 4345
+ -5183.667
+
+
+
+
+
+
+
+ - Curve length
+ - 4203e371-b092-4bed-8271-4fcb88cff3d7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -5171
+ 41
+ 27
+
+ -
+ 4345
+ -5157
+
+
+
+
+
+
+
+ - Curve domain
+ - de6c5fcd-a830-496a-a94c-439d602ba99e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -5144
+ 41
+ 27
+
+ -
+ 4345
+ -5130.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ac4acc33-29c1-4609-86ba-b90878e9b36f
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4232
+ -5323
+ 144
+ 104
+
+ -
+ 4316
+ -5271
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e9457f5d-35ca-4456-8b63-804cd55e6539
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5321
+ 67
+ 20
+
+ -
+ 4269
+ -5311
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4fd826f0-7cea-4d4e-886d-6e7e2995d0f7
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5301
+ 67
+ 20
+
+ -
+ 4269
+ -5291
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 0bd816ff-a97c-4e7c-92cf-85b7122f1f60
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5281
+ 67
+ 20
+
+ -
+ 4269
+ -5271
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 06efe0fa-c4ae-486d-be57-157afe35ad5a
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5261
+ 67
+ 20
+
+ -
+ 4269
+ -5251
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 474b5db1-c730-44c9-ae2f-fbb407650768
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5241
+ 67
+ 20
+
+ -
+ 4269
+ -5231
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d3757f9f-d417-4624-9492-43eea0d3d0aa
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ -5321
+ 43
+ 100
+
+ -
+ 4354
+ -5271
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 3dc4cf53-4a61-4a5b-9d43-57fdb91b7ff2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4263
+ -5383
+ 82
+ 44
+
+ -
+ 4331
+ -5361
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7936315f-1721-480e-aa2d-cbdb015069de
+ - Geometry
+ - Geometry
+ - false
+ - 6b4d4575-8108-4fc8-bf3f-b8ba1640b2d0
+ - 1
+
+
+
+
+ -
+ 4265
+ -5381
+ 51
+ 20
+
+ -
+ 4292
+ -5371
+
+
+
+
+
+
+
+ - The material override
+ - 7e6ab2af-b6bc-4f1d-a6a1-2196adb89854
+ - Material
+ - Material
+ - false
+ - d3757f9f-d417-4624-9492-43eea0d3d0aa
+ - 1
+
+
+
+
+ -
+ 4265
+ -5361
+ 51
+ 20
+
+ -
+ 4292
+ -5351
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5ae9c4c4-0fdd-419a-8b20-550467d40768
+ - d84be735-4afa-4e87-89fd-0dd91e7ea031
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - 1a6a7949-8787-48bd-b33a-603df220e9b8
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - 91601ee3-b999-49b3-bc88-c3dbb40a1218
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - b9d84ba3-9f37-4bdd-825b-3150762b1c2f
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - 36f70708-8c92-4e52-8db3-af3700d6ed05
+ - a18f6543-bddc-4707-b9f1-c3de54d04df8
+ - 766feee9-94ce-4ae1-b353-3eb30b90d548
+ - 2d5623dd-b6c4-4bca-99dc-1fdc753fa7a0
+ - a6e7cf50-568a-4a69-b260-d8239fd6cfd5
+ - cbcf528b-ec99-4366-88c9-7821ca0b3868
+ - eec36f4c-60cb-4742-bd1d-d2f59b355b07
+ - 22
+ - 64e60f06-119f-42f8-b231-33efdd935130
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1a6a7949-8787-48bd-b33a-603df220e9b8
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - 91601ee3-b999-49b3-bc88-c3dbb40a1218
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - b9d84ba3-9f37-4bdd-825b-3150762b1c2f
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - 4bb2abaa-9c90-4ee1-9d3e-af6d1b129f69
+ - aeba0375-f313-4a4a-8b7e-4eacde97eba4
+ - 13
+ - 5ae9c4c4-0fdd-419a-8b20-550467d40768
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - d84be735-4afa-4e87-89fd-0dd91e7ea031
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4239
+ -5582
+ 128
+ 28
+
+ -
+ 4292
+ -5568
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 3e8be18c-9be8-4aa4-90e5-ccd06e444dd9
+ - Values
+ - Values
+ - false
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - 1
+
+
+
+
+ -
+ 4241
+ -5580
+ 36
+ 24
+
+ -
+ 4260.5
+ -5568
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 1f562b80-f400-412b-99a5-ec6b24e18c2f
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4307
+ -5580
+ 58
+ 24
+
+ -
+ 4337.5
+ -5568
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - Relay
+
+ - false
+ - 1f562b80-f400-412b-99a5-ec6b24e18c2f
+ - 1
+
+
+
+
+ -
+ 4283
+ -5616
+ 40
+ 16
+
+ -
+ 4303
+ -5608
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - Relay
+
+ - false
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - 1
+
+
+
+
+ -
+ 4283
+ -5534
+ 40
+ 16
+
+ -
+ 4303
+ -5526
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1a6a7949-8787-48bd-b33a-603df220e9b8
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4241
+ -6313
+ 122
+ 64
+
+ -
+ 4321
+ -6281
+
+
+
+
+
+ - Line start point
+ - 1ca0d20b-076b-4ed9-a752-42758dee84b4
+ - true
+ - Start
+ - Start
+ - false
+ - bc29cb88-c13f-4b12-8911-f97c489562ea
+ - 1
+
+
+
+
+ -
+ 4243
+ -6311
+ 63
+ 20
+
+ -
+ 4284
+ -6301
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 7835ecf1-4eba-488d-a140-57124bdc900a
+ - true
+ - Direction
+ - Direction
+ - false
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - 1
+
+
+
+
+ -
+ 4243
+ -6291
+ 63
+ 20
+
+ -
+ 4284
+ -6281
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - d3022bee-fd8d-493c-b155-389266eb8c7a
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - 1
+
+
+
+
+ -
+ 4243
+ -6271
+ 63
+ 20
+
+ -
+ 4284
+ -6261
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6ac2ff09-23b9-49c7-9641-907d5bc90f18
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -6311
+ 25
+ 60
+
+ -
+ 4350
+ -6281
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4282
+ -6231
+ 40
+ 16
+
+ -
+ 4302
+ -6223
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4244
+ -5949
+ 115
+ 64
+
+ -
+ 4299
+ -5917
+
+
+
+
+
+ - Value to remap
+ - 58781ee9-9b39-42ed-acec-28c2b6c8c7f0
+ - Value
+ - Value
+ - false
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - 1
+
+
+
+
+ -
+ 4246
+ -5947
+ 38
+ 20
+
+ -
+ 4266.5
+ -5937
+
+
+
+
+
+
+
+ - Source domain
+ - dbb0ecd7-8560-4144-b022-18afb6942aa5
+ - Source
+ - Source
+ - false
+ - ace4b3f6-f707-4fd4-a9bd-fe4b81a1cc43
+ - 1
+
+
+
+
+ -
+ 4246
+ -5927
+ 38
+ 20
+
+ -
+ 4266.5
+ -5917
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 14bea626-15dc-4bcd-a656-c2ae2fc2288d
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4246
+ -5907
+ 38
+ 20
+
+ -
+ 4266.5
+ -5897
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 05225228-e222-49df-931b-a1dfeaeab466
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4314
+ -5947
+ 43
+ 30
+
+ -
+ 4337
+ -5932
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - c94c03ce-a99e-45d9-8d97-aa84fed03f33
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4314
+ -5917
+ 43
+ 30
+
+ -
+ 4337
+ -5902
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4241
+ -5866
+ 122
+ 28
+
+ -
+ 4305
+ -5852
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 46ce88e0-d336-48e8-9271-b95f11a869ac
+ - Numbers
+ - Numbers
+ - false
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - 1
+
+
+
+
+ -
+ 4243
+ -5864
+ 47
+ 24
+
+ -
+ 4268
+ -5852
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - ace4b3f6-f707-4fd4-a9bd-fe4b81a1cc43
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -5864
+ 41
+ 24
+
+ -
+ 4342
+ -5852
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - 14
+ - 91601ee3-b999-49b3-bc88-c3dbb40a1218
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - Relay
+ -
+ - false
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 1
+
+
+
+
+ -
+ 4282
+ -5821
+ 40
+ 16
+
+ -
+ 4302
+ -5813
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - Relay
+ -
+ - false
+ - ace3cccc-1ad7-4fc7-bbb4-fbac97ba8718
+ - 1
+
+
+
+
+ -
+ 4282
+ -6188
+ 40
+ 16
+
+ -
+ 4302
+ -6180
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4261
+ -6149
+ 82
+ 44
+
+ -
+ 4292
+ -6127
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 5fb00b97-f199-404b-a29d-da89b6dde567
+ - A
+ - A
+ - true
+ - eaa9d3a2-bd6b-4033-a1a9-20654334c897
+ - 1
+
+
+
+
+ -
+ 4263
+ -6147
+ 14
+ 20
+
+ -
+ 4271.5
+ -6137
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 64d117fe-aace-435f-8590-100a0bea0086
+ - B
+ - B
+ - true
+ - aeba0375-f313-4a4a-8b7e-4eacde97eba4
+ - 1
+
+
+
+
+ -
+ 4263
+ -6127
+ 14
+ 20
+
+ -
+ 4271.5
+ -6117
+
+
+
+
+
+
+
+ - Result of multiplication
+ - ace3cccc-1ad7-4fc7-bbb4-fbac97ba8718
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4307
+ -6147
+ 34
+ 40
+
+ -
+ 4325.5
+ -6127
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - b9d84ba3-9f37-4bdd-825b-3150762b1c2f
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4261
+ -6048
+ 82
+ 44
+
+ -
+ 4292
+ -6026
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 6ae60ffc-2358-4b3f-a9f1-2f9a6c2b73ed
+ - A
+ - A
+ - true
+ - 05225228-e222-49df-931b-a1dfeaeab466
+ - 1
+
+
+
+
+ -
+ 4263
+ -6046
+ 14
+ 20
+
+ -
+ 4271.5
+ -6036
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b01dfe5b-e061-4a22-ae58-0629c2f8cabd
+ - B
+ - B
+ - true
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - 1
+
+
+
+
+ -
+ 4263
+ -6026
+ 14
+ 20
+
+ -
+ 4271.5
+ -6016
+
+
+
+
+
+
+
+ - Result of multiplication
+ - eaa9d3a2-bd6b-4033-a1a9-20654334c897
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4307
+ -6046
+ 34
+ 40
+
+ -
+ 4325.5
+ -6026
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4282
+ -5986
+ 40
+ 16
+
+ -
+ 4302
+ -5978
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - d84be735-4afa-4e87-89fd-0dd91e7ea031
+ - 3
+ - 36f70708-8c92-4e52-8db3-af3700d6ed05
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a18f6543-bddc-4707-b9f1-c3de54d04df8
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4230
+ -6437
+ 144
+ 104
+
+ -
+ 4314
+ -6385
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 4bfe5e86-c41e-4f30-89af-a24c4bd45b50
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6435
+ 67
+ 20
+
+ -
+ 4267
+ -6425
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 77e1e980-2949-416c-a018-b3c2ef85dcdf
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6415
+ 67
+ 20
+
+ -
+ 4267
+ -6405
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f2ad1c23-19e6-4bb7-a5c1-2bd0d1e214a1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6395
+ 67
+ 20
+
+ -
+ 4267
+ -6385
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 8b9db721-70d1-424e-b550-a789b17c303b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6375
+ 67
+ 20
+
+ -
+ 4267
+ -6365
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 7fa4e3a6-021a-4881-ba4d-46293c73c225
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6355
+ 67
+ 20
+
+ -
+ 4267
+ -6345
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 8e039377-5e77-484b-8fd0-fb84649ce474
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4329
+ -6435
+ 43
+ 100
+
+ -
+ 4352
+ -6385
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 766feee9-94ce-4ae1-b353-3eb30b90d548
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4261
+ -6499
+ 82
+ 44
+
+ -
+ 4329
+ -6477
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 296fdcd7-5819-4594-9960-b1aea4a38b5f
+ - Geometry
+ - Geometry
+ - false
+ - 6ac2ff09-23b9-49c7-9641-907d5bc90f18
+ - 1
+
+
+
+
+ -
+ 4263
+ -6497
+ 51
+ 20
+
+ -
+ 4290
+ -6487
+
+
+
+
+
+
+
+ - The material override
+ - 5275e0e9-2a77-4a7b-9d90-2e1073660d6a
+ - Material
+ - Material
+ - false
+ - 8e039377-5e77-484b-8fd0-fb84649ce474
+ - 1
+
+
+
+
+ -
+ 4263
+ -6477
+ 51
+ 20
+
+ -
+ 4290
+ -6467
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2d5623dd-b6c4-4bca-99dc-1fdc753fa7a0
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4230
+ -6582
+ 144
+ 64
+
+ -
+ 4304
+ -6550
+
+
+
+
+
+ - Curve to evaluate
+ - 93e4ca7a-ac6e-4511-b4f4-9a97007f3708
+ - Curve
+ - Curve
+ - false
+ - 6ac2ff09-23b9-49c7-9641-907d5bc90f18
+ - 1
+
+
+
+
+ -
+ 4232
+ -6580
+ 57
+ 20
+
+ -
+ 4262
+ -6570
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - bcb7ffad-e641-47a0-a396-e7500991bc58
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6560
+ 57
+ 20
+
+ -
+ 4262
+ -6550
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b9a1a6e8-8119-4341-ae4c-3d8415523d47
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6540
+ 57
+ 20
+
+ -
+ 4262
+ -6530
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 67f3e77d-3352-4cab-bef0-40379ae22b9b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6580
+ 53
+ 20
+
+ -
+ 4347
+ -6570
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c6f41415-c1d3-4db5-b0e9-411fde86fa5e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6560
+ 53
+ 20
+
+ -
+ 4347
+ -6550
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8b63082e-e6fb-4d63-8bef-5e12158500e0
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6540
+ 53
+ 20
+
+ -
+ 4347
+ -6530
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - a6e7cf50-568a-4a69-b260-d8239fd6cfd5
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4239
+ -6686
+ 125
+ 84
+
+ -
+ 4306
+ -6644
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 8ede0505-6080-49f8-8a13-222ff3826775
+ - Vertices
+ - Vertices
+ - false
+ - 67f3e77d-3352-4cab-bef0-40379ae22b9b
+ - 1
+
+
+
+
+ -
+ 4241
+ -6684
+ 50
+ 20
+
+ -
+ 4267.5
+ -6674
+
+
+
+
+
+
+
+ - Curve degree
+ - 195d02d9-53aa-4d8f-972d-253ac00a5a97
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4241
+ -6664
+ 50
+ 20
+
+ -
+ 4267.5
+ -6654
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - ba7e5a28-b315-4375-9e68-04c4735b8c3d
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4241
+ -6644
+ 50
+ 20
+
+ -
+ 4267.5
+ -6634
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - b7284919-07be-414c-bbf6-c22fffdb03ae
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4241
+ -6624
+ 50
+ 20
+
+ -
+ 4267.5
+ -6614
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4371434e-cdd5-4319-b921-c6483ea00395
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -6684
+ 41
+ 26
+
+ -
+ 4343
+ -6670.667
+
+
+
+
+
+
+
+ - Curve length
+ - a6fc1d64-6585-4a06-ab5d-ab49123079c1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -6658
+ 41
+ 27
+
+ -
+ 4343
+ -6644
+
+
+
+
+
+
+
+ - Curve domain
+ - f6768abc-a465-4932-8f04-ec5193f649a6
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -6631
+ 41
+ 27
+
+ -
+ 4343
+ -6617.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - cbcf528b-ec99-4366-88c9-7821ca0b3868
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4230
+ -6810
+ 144
+ 104
+
+ -
+ 4314
+ -6758
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 2fbe3cfd-ff90-4db1-b765-c7e1d04fbb37
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6808
+ 67
+ 20
+
+ -
+ 4267
+ -6798
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;168;168;168
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 88874422-d8f7-4c08-babe-a5c500b043c3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6788
+ 67
+ 20
+
+ -
+ 4267
+ -6778
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 2df3ddb1-d60b-41d7-a15b-33a40d3773dd
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6768
+ 67
+ 20
+
+ -
+ 4267
+ -6758
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 3d4f6ac3-b3d4-4c34-9edc-d645adaa9797
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6748
+ 67
+ 20
+
+ -
+ 4267
+ -6738
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 76f0cb28-085f-42f6-9306-b3bcd5d525cf
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6728
+ 67
+ 20
+
+ -
+ 4267
+ -6718
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 296b7776-70cb-4253-9bce-d083e5d76649
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4329
+ -6808
+ 43
+ 100
+
+ -
+ 4352
+ -6758
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - eec36f4c-60cb-4742-bd1d-d2f59b355b07
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4261
+ -6870
+ 82
+ 44
+
+ -
+ 4329
+ -6848
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 042b6aa7-5cf0-41f2-9ca6-b9f834ffa2a5
+ - Geometry
+ - Geometry
+ - false
+ - 4371434e-cdd5-4319-b921-c6483ea00395
+ - 1
+
+
+
+
+ -
+ 4263
+ -6868
+ 51
+ 20
+
+ -
+ 4290
+ -6858
+
+
+
+
+
+
+
+ - The material override
+ - 9ab58b30-8fbb-437d-85eb-19be1daaa4fc
+ - Material
+ - Material
+ - false
+ - 296b7776-70cb-4253-9bce-d083e5d76649
+ - 1
+
+
+
+
+ -
+ 4263
+ -6848
+ 51
+ 20
+
+ -
+ 4290
+ -6838
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a90d60d2-8b5e-48d7-a33a-454602481a06
+ - 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - 06c37c6f-92ed-4603-a7ef-6624026b46c0
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - fa933163-8b78-458d-b1ac-825f7bd3f6fd
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - 231e1df4-9237-4d03-9cb4-cb6329f1e5b4
+ - 4ac7d93a-83bc-4097-a09f-085ff4b7a496
+ - b176544c-2084-4538-95e4-30ad483bbbc3
+ - 3f7c293b-8bda-4841-bb51-5b3fee67daac
+ - 923b0d30-c122-4312-be66-898daa214df3
+ - d13ab75b-aade-4726-b7f6-bd13c77e36b4
+ - 254266e4-e3e4-4446-adb4-c5e696068203
+ - 22
+ - 7c42b68f-945c-4b1c-9b43-f8f3a6fcd50f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - 06c37c6f-92ed-4603-a7ef-6624026b46c0
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - fa933163-8b78-458d-b1ac-825f7bd3f6fd
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - 70b9b4d5-9f59-4bec-8b95-44a825aff278
+ - 12
+ - a90d60d2-8b5e-48d7-a33a-454602481a06
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4243
+ -7068
+ 128
+ 28
+
+ -
+ 4296
+ -7054
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - ffe32b16-1490-4131-bd81-59c1fffe0f1e
+ - Values
+ - Values
+ - false
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - 1
+
+
+
+
+ -
+ 4245
+ -7066
+ 36
+ 24
+
+ -
+ 4264.5
+ -7054
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - e56d41ed-bf3f-48d5-8d46-11ca14422590
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -7066
+ 58
+ 24
+
+ -
+ 4341.5
+ -7054
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - Relay
+
+ - false
+ - e56d41ed-bf3f-48d5-8d46-11ca14422590
+ - 1
+
+
+
+
+ -
+ 4287
+ -7102
+ 40
+ 16
+
+ -
+ 4307
+ -7094
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - Relay
+
+ - false
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 1
+
+
+
+
+ -
+ 4287
+ -7020
+ 40
+ 16
+
+ -
+ 4307
+ -7012
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4240
+ -7799
+ 122
+ 64
+
+ -
+ 4320
+ -7767
+
+
+
+
+
+ - Line start point
+ - 357d12be-6f06-405b-8a7d-67b2956260bd
+ - true
+ - Start
+ - Start
+ - false
+ - 67f3e77d-3352-4cab-bef0-40379ae22b9b
+ - 1
+
+
+
+
+ -
+ 4242
+ -7797
+ 63
+ 20
+
+ -
+ 4283
+ -7787
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 95d26d76-69dd-4889-bb53-dbce30dc7189
+ - true
+ - Direction
+ - Direction
+ - false
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - 1
+
+
+
+
+ -
+ 4242
+ -7777
+ 63
+ 20
+
+ -
+ 4283
+ -7767
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 9332fed5-0709-4b9c-9e4e-e93bb1384bb9
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - 1
+
+
+
+
+ -
+ 4242
+ -7757
+ 63
+ 20
+
+ -
+ 4283
+ -7747
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 4bee827f-0abc-4f89-8ac3-16ac83a96459
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -7797
+ 25
+ 60
+
+ -
+ 4349
+ -7767
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4281
+ -7717
+ 40
+ 16
+
+ -
+ 4301
+ -7709
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4243
+ -7435
+ 115
+ 64
+
+ -
+ 4298
+ -7403
+
+
+
+
+
+ - Value to remap
+ - 48593c74-64e0-426a-896d-644ed39e3452
+ - Value
+ - Value
+ - false
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 1
+
+
+
+
+ -
+ 4245
+ -7433
+ 38
+ 20
+
+ -
+ 4265.5
+ -7423
+
+
+
+
+
+
+
+ - Source domain
+ - 26edeb82-cc25-43f8-a59f-bd4e6e265821
+ - Source
+ - Source
+ - false
+ - 52d6fa59-3d0a-4f1a-96f7-cd7d2cd8dfc3
+ - 1
+
+
+
+
+ -
+ 4245
+ -7413
+ 38
+ 20
+
+ -
+ 4265.5
+ -7403
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 3e73bc70-ae01-41e3-8294-9ace75912b23
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4245
+ -7393
+ 38
+ 20
+
+ -
+ 4265.5
+ -7383
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 624b5528-ad9d-4b73-a9c1-f233a4b61bf6
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -7433
+ 43
+ 30
+
+ -
+ 4336
+ -7418
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 3783a63c-237b-41f7-a2fe-b7c3bb57d61b
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -7403
+ 43
+ 30
+
+ -
+ 4336
+ -7388
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4240
+ -7352
+ 122
+ 28
+
+ -
+ 4304
+ -7338
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - b09502b8-e9f1-45b8-a33e-dbb71e90a920
+ - Numbers
+ - Numbers
+ - false
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 1
+
+
+
+
+ -
+ 4242
+ -7350
+ 47
+ 24
+
+ -
+ 4267
+ -7338
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 52d6fa59-3d0a-4f1a-96f7-cd7d2cd8dfc3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -7350
+ 41
+ 24
+
+ -
+ 4341
+ -7338
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 06c37c6f-92ed-4603-a7ef-6624026b46c0
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - d20d51a6-0c15-4c64-97de-546619bd377a
+ - 15
+ - fa933163-8b78-458d-b1ac-825f7bd3f6fd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - Relay
+ -
+ - false
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 1
+
+
+
+
+ -
+ 4281
+ -7307
+ 40
+ 16
+
+ -
+ 4301
+ -7299
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - Relay
+ -
+ - false
+ - c4fd7ded-46c8-4ad0-8563-fdfb6416cee1
+ - 1
+
+
+
+
+ -
+ 4281
+ -7674
+ 40
+ 16
+
+ -
+ 4301
+ -7666
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4260
+ -7635
+ 82
+ 44
+
+ -
+ 4291
+ -7613
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - e931389e-d169-4b88-ba1a-7c89d5f8bad3
+ - A
+ - A
+ - true
+ - 7c83abf2-e560-41e6-98fe-488382df6abf
+ - 1
+
+
+
+
+ -
+ 4262
+ -7633
+ 14
+ 20
+
+ -
+ 4270.5
+ -7623
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b104166d-8536-42fb-bf25-619fe95d6218
+ - B
+ - B
+ - true
+ - d20d51a6-0c15-4c64-97de-546619bd377a
+ - 1
+
+
+
+
+ -
+ 4262
+ -7613
+ 14
+ 20
+
+ -
+ 4270.5
+ -7603
+
+
+
+
+
+
+
+ - Result of multiplication
+ - c4fd7ded-46c8-4ad0-8563-fdfb6416cee1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ -7633
+ 34
+ 40
+
+ -
+ 4324.5
+ -7613
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4260
+ -7534
+ 82
+ 44
+
+ -
+ 4291
+ -7512
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 0b530e6f-5ebd-46de-a702-011d2a81307f
+ - A
+ - A
+ - true
+ - 624b5528-ad9d-4b73-a9c1-f233a4b61bf6
+ - 1
+
+
+
+
+ -
+ 4262
+ -7532
+ 14
+ 20
+
+ -
+ 4270.5
+ -7522
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 7f3bd519-2e72-4e91-9045-7f9488218fbb
+ - B
+ - B
+ - true
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - 1
+
+
+
+
+ -
+ 4262
+ -7512
+ 14
+ 20
+
+ -
+ 4270.5
+ -7502
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 7c83abf2-e560-41e6-98fe-488382df6abf
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ -7532
+ 34
+ 40
+
+ -
+ 4324.5
+ -7512
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4281
+ -7472
+ 40
+ 16
+
+ -
+ 4301
+ -7464
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
+ - 3
+ - 231e1df4-9237-4d03-9cb4-cb6329f1e5b4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 4ac7d93a-83bc-4097-a09f-085ff4b7a496
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4229
+ -7923
+ 144
+ 104
+
+ -
+ 4313
+ -7871
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 3ef6a971-3e75-463b-8293-b6d367e3c87e
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7921
+ 67
+ 20
+
+ -
+ 4266
+ -7911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;186;186;186
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 40d2861e-7832-483d-ae74-a93e1b2c464a
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7901
+ 67
+ 20
+
+ -
+ 4266
+ -7891
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 6e7fd49c-46eb-4f33-b2f3-4f931bd738be
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7881
+ 67
+ 20
+
+ -
+ 4266
+ -7871
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c86b6111-8fd5-4c21-a764-a53ebf94fc9b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7861
+ 67
+ 20
+
+ -
+ 4266
+ -7851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a352bbf1-25c4-4ce1-98f2-339669fe48f8
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7841
+ 67
+ 20
+
+ -
+ 4266
+ -7831
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - dbf70f62-537f-4179-b958-3a9a8519ee19
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4328
+ -7921
+ 43
+ 100
+
+ -
+ 4351
+ -7871
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - b176544c-2084-4538-95e4-30ad483bbbc3
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4260
+ -7985
+ 82
+ 44
+
+ -
+ 4328
+ -7963
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 2b7b259b-c267-4303-8945-127bfb52841f
+ - Geometry
+ - Geometry
+ - false
+ - 4bee827f-0abc-4f89-8ac3-16ac83a96459
+ - 1
+
+
+
+
+ -
+ 4262
+ -7983
+ 51
+ 20
+
+ -
+ 4289
+ -7973
+
+
+
+
+
+
+
+ - The material override
+ - f17f6893-f9e7-4d3f-8c19-4c72a32eafc5
+ - Material
+ - Material
+ - false
+ - dbf70f62-537f-4179-b958-3a9a8519ee19
+ - 1
+
+
+
+
+ -
+ 4262
+ -7963
+ 51
+ 20
+
+ -
+ 4289
+ -7953
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3f7c293b-8bda-4841-bb51-5b3fee67daac
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4229
+ -8068
+ 144
+ 64
+
+ -
+ 4303
+ -8036
+
+
+
+
+
+ - Curve to evaluate
+ - 8d326d08-6747-4dfc-b043-a9cab708d599
+ - Curve
+ - Curve
+ - false
+ - 4bee827f-0abc-4f89-8ac3-16ac83a96459
+ - 1
+
+
+
+
+ -
+ 4231
+ -8066
+ 57
+ 20
+
+ -
+ 4261
+ -8056
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 9575e16a-b9dc-45b6-ad59-1237a8df15dd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8046
+ 57
+ 20
+
+ -
+ 4261
+ -8036
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 827eb3f9-fa1d-4245-889c-16958037f49c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8026
+ 57
+ 20
+
+ -
+ 4261
+ -8016
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e19c4f4a-6476-45c5-85ec-a4bec3b7ee75
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8066
+ 53
+ 20
+
+ -
+ 4346
+ -8056
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7cdc97d4-ab10-4674-add5-5707c5fd1985
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8046
+ 53
+ 20
+
+ -
+ 4346
+ -8036
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ca84891c-67ed-47da-a0e2-5c7230f5354a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8026
+ 53
+ 20
+
+ -
+ 4346
+ -8016
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 923b0d30-c122-4312-be66-898daa214df3
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4238
+ -8172
+ 125
+ 84
+
+ -
+ 4305
+ -8130
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - c67aec7c-4ed3-46d5-8d61-c194e4d096f6
+ - Vertices
+ - Vertices
+ - false
+ - e19c4f4a-6476-45c5-85ec-a4bec3b7ee75
+ - 1
+
+
+
+
+ -
+ 4240
+ -8170
+ 50
+ 20
+
+ -
+ 4266.5
+ -8160
+
+
+
+
+
+
+
+ - Curve degree
+ - afb25838-4988-4047-94a0-6e3d6925ab7e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ -8150
+ 50
+ 20
+
+ -
+ 4266.5
+ -8140
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 4b9d9664-1c8c-4bfe-a377-4914943cb9e3
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ -8130
+ 50
+ 20
+
+ -
+ 4266.5
+ -8120
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 76d2c8d1-de05-4e59-87b8-d9919f4c9475
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ -8110
+ 50
+ 20
+
+ -
+ 4266.5
+ -8100
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - cdae18ea-9257-4789-8ad0-379d60880a1d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -8170
+ 41
+ 26
+
+ -
+ 4342
+ -8156.667
+
+
+
+
+
+
+
+ - Curve length
+ - b0bfa94c-3d40-46bc-827f-cf3598d4db23
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -8144
+ 41
+ 27
+
+ -
+ 4342
+ -8130
+
+
+
+
+
+
+
+ - Curve domain
+ - 4ab08a2c-4633-48bc-85e1-efd2d6ce0f08
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -8117
+ 41
+ 27
+
+ -
+ 4342
+ -8103.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - d13ab75b-aade-4726-b7f6-bd13c77e36b4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4229
+ -8296
+ 144
+ 104
+
+ -
+ 4313
+ -8244
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 62929bd9-b896-49d7-b494-a78afcb55441
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8294
+ 67
+ 20
+
+ -
+ 4266
+ -8284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;161;161;161
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - a172e753-e481-4551-8ecf-260e53d6377b
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8274
+ 67
+ 20
+
+ -
+ 4266
+ -8264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 5a23d84e-78d0-4e6a-8a93-f227f55fef79
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8254
+ 67
+ 20
+
+ -
+ 4266
+ -8244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - fb0c3977-f34e-4195-a43a-210565a20274
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8234
+ 67
+ 20
+
+ -
+ 4266
+ -8224
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 5fdfc1ac-7a38-4f36-b361-e798b1b1bd7b
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8214
+ 67
+ 20
+
+ -
+ 4266
+ -8204
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e757b9b3-9378-4b6b-be97-a751cf00ceff
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4328
+ -8294
+ 43
+ 100
+
+ -
+ 4351
+ -8244
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 254266e4-e3e4-4446-adb4-c5e696068203
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4260
+ -8356
+ 82
+ 44
+
+ -
+ 4328
+ -8334
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 61956c77-9189-4364-92a2-371a92b1ba5f
+ - Geometry
+ - Geometry
+ - false
+ - cdae18ea-9257-4789-8ad0-379d60880a1d
+ - 1
+
+
+
+
+ -
+ 4262
+ -8354
+ 51
+ 20
+
+ -
+ 4289
+ -8344
+
+
+
+
+
+
+
+ - The material override
+ - 93dd7c30-a051-4709-8cd2-edea080c9a4e
+ - Material
+ - Material
+ - false
+ - e757b9b3-9378-4b6b-be97-a751cf00ceff
+ - 1
+
+
+
+
+ -
+ 4262
+ -8334
+ 51
+ 20
+
+ -
+ 4289
+ -8324
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 6c6c28be-b01b-42e5-b60a-91c314905c9e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 1
+
+
+
+
+ -
+ 4246
+ 1303
+ 150
+ 150
+
+ -
+ 4246.364
+ 1303
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - af226fd0-4701-4be9-ac43-12af7cefc54c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - 1
+
+
+
+
+ -
+ 4246
+ -76
+ 150
+ 150
+
+ -
+ 4246.694
+ -75.37048
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - ac588950-bc7f-4799-998b-6293a8136543
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - 1
+
+
+
+
+ -
+ 4246
+ -1489
+ 150
+ 150
+
+ -
+ 4246
+ -1488.14
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 7ea7c812-fbf2-4ab8-9a4e-7edd89c68a35
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 1
+
+
+
+
+ -
+ 4245
+ -2883
+ 150
+ 150
+
+ -
+ 4245.352
+ -2882.188
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - d8ca333f-274c-4def-b0be-659a62d86c0c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - 1
+
+
+
+
+ -
+ 4230
+ -4301
+ 150
+ 150
+
+ -
+ 4230
+ -4300.277
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 4bb2abaa-9c90-4ee1-9d3e-af6d1b129f69
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 1
+
+
+
+
+ -
+ 4232
+ -5786
+ 150
+ 150
+
+ -
+ 4232
+ -5785.794
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 70b9b4d5-9f59-4bec-8b95-44a825aff278
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 1
+
+
+
+
+ -
+ 4230
+ -7272
+ 150
+ 150
+
+ -
+ 4230
+ -7271.181
+
+ - 0
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 3
+
+ - 0.250000000
+
+
+
+
+ -
+ 4190
+ -1786
+ 250
+ 20
+
+ -
+ 4190.949
+ -1785.593
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e9c988a3-a0f9-44b8-9dca-881e071528d5
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 11
+
+ - 3000.0
+
+
+
+
+ -
+ 4211
+ -3180
+ 250
+ 20
+
+ -
+ 4211.862
+ -3179.823
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - aeba0375-f313-4a4a-8b7e-4eacde97eba4
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 8
+
+ - 12000.0000
+
+
+
+
+ -
+ 4169
+ -6087
+ 250
+ 20
+
+ -
+ 4169.419
+ -6086.237
+
+
+
+
+
+
+
+
+
+ - dbe9fce4-b6b3-465f-9615-34833c4763bd
+ - Torsion
+
+
+
+
+ - Evaluate the torsion of a curve at a specified parameter.
+ - true
+ - 64165250-d573-4d15-aad6-e3cad180c5f8
+ - true
+ - Torsion
+ - Torsion
+
+
+
+
+ -
+ 4575
+ 7121
+ 127
+ 44
+
+ -
+ 4645
+ 7143
+
+
+
+
+
+ - Curve to evaluate
+ - 8054e998-d832-46fc-bfb2-e1ef57c32ba8
+ - true
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4577
+ 7123
+ 53
+ 20
+
+ -
+ 4605
+ 7133
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - bbfbc9c4-c5f9-49e9-b239-4fceb5cf0ccc
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - 1
+
+
+
+
+ -
+ 4577
+ 7143
+ 53
+ 20
+
+ -
+ 4605
+ 7153
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - eb0b4d93-e7c1-4cb4-8d25-95086f1fb7f5
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4660
+ 7123
+ 40
+ 20
+
+ -
+ 4681.5
+ 7133
+
+
+
+
+
+
+
+ - Curvature torsion at {t}
+ - c6f2b4b0-b317-4612-811a-fdd7e8d1025e
+ - true
+ - Torsion
+ - Torsion
+ - false
+ - 0
+
+
+
+
+ -
+ 4660
+ 7143
+ 40
+ 20
+
+ -
+ 4681.5
+ 7153
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e76869be-c61a-4fdc-909a-fc4100b302c8
+ - Panel
+
+ - false
+ - 0
+ - eb0b4d93-e7c1-4cb4-8d25-95086f1fb7f5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4822
+ 7080
+ 391
+ 222
+
+ - 0
+ - 0
+ - 0
+ -
+ 4822.472
+ 7080.464
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - b565e546-b7f7-4a1b-9c81-7e90c1d9e590
+ - Number
+ - Number
+ - false
+ - 26d9c13f-79ff-4367-baad-c775d2229988
+ - 1
+
+
+
+
+ -
+ 3781
+ 7952
+ 50
+ 24
+
+ -
+ 3806.921
+ 7964.771
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b90c5c4a-28e8-406c-a48b-1e18f7e84271
+ - e5df8b8a-ee10-4243-b023-04465e1fd03a
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - 6544fcf4-de8d-4376-8953-865024da35a3
+ - a1095b3a-a75d-4dfe-874e-c9513ed7d845
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 163281f3-4fdd-4ec9-89f5-d9ea2684d152
+ - aab83e7e-03d3-46f1-8567-daf390ccafe4
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - 0ffd18d8-99db-40a1-81a8-50617de9a6c3
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - 284185cb-9b1b-44c4-9a94-6a846b6478b6
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - 059a3e69-9d54-4680-897c-cdf195bad7a8
+ - 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
+ - 7fce1877-7d49-42f2-9d77-f20f971a3c8d
+ - be575d1d-b0b0-4169-9453-f139fa5a69fc
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - 6bf311af-c478-40b6-8287-b57e5ebd2de6
+ - 19e6ba9f-ea5b-4adf-a53c-e38f7d1c7c24
+ - c1950f77-cc1d-4a94-8226-38115fad3527
+ - 34
+ - 82153d97-efd1-4c43-adfc-7c18a2863960
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5202e00c-44d2-4c14-a5b6-ef33c742b491
+ - a72d5419-fd91-41c5-b117-b1511799de43
+ - 6799a162-9bf6-4690-8e87-a1f7b11fc186
+ - 3dd22ce8-293a-4588-a9e5-2f0539214a5c
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 749872a2-7981-49cb-a7d8-7f6b73442974
+ - 41b1f9fe-b540-498e-b66d-f9a253c44c97
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - 64e05c4c-ae81-4d56-92b8-0d683e6178f7
+ - 401a4ec7-acb1-4812-b841-5ff8cafa66b1
+ - f6e745a8-7fe5-4039-af6b-f624d2e49c50
+ - 78dab7dd-d7e2-426b-bb90-b547c8224cb4
+ - c106ea49-3d33-4ec1-9439-7a451df09432
+ - ff3f4af7-3769-4434-b59a-235ecf1d678c
+ - 3bad1a66-165a-405e-94ae-9c7c448ecc44
+ - e606582f-8157-4dd3-9d74-b8545096f2b1
+ - 5a142162-4b8f-4585-967e-5ce611b2ed6b
+ - e9d1dc88-7240-4c0f-bb0a-9eef2eae717d
+ - 0119e2c8-ab78-45ad-b993-71b743e8bc99
+ - aad5e89f-1689-4ac6-8192-4f4373cbea4f
+ - 1fc6e624-7c49-41f9-becf-1b629588cf31
+ - 3198adc1-4a36-4f37-aea4-eff18ec21c4b
+ - ea9452ce-f391-4a3d-9fb3-f180e8edf584
+ - d8b69669-a2bd-4187-9589-204f3dbe274a
+ - 25
+ - 14ce4b09-3396-45db-b579-daf6cd4a779b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5df8b8a-ee10-4243-b023-04465e1fd03a
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - 136cd97b-9deb-4449-b884-bf54a4c926d4
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - 6544fcf4-de8d-4376-8953-865024da35a3
+ - a1095b3a-a75d-4dfe-874e-c9513ed7d845
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 163281f3-4fdd-4ec9-89f5-d9ea2684d152
+ - aab83e7e-03d3-46f1-8567-daf390ccafe4
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - 0ffd18d8-99db-40a1-81a8-50617de9a6c3
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - 284185cb-9b1b-44c4-9a94-6a846b6478b6
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - c1950f77-cc1d-4a94-8226-38115fad3527
+ - 26
+ - b90c5c4a-28e8-406c-a48b-1e18f7e84271
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - 136cd97b-9deb-4449-b884-bf54a4c926d4
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2
+ - 91acf8ab-b95d-4cf9-9042-41f5397d7e87
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - 16
+ - e5df8b8a-ee10-4243-b023-04465e1fd03a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 2740
+ 5569
+ 125
+ 64
+
+ -
+ 2790
+ 5601
+
+
+
+
+
+ - Curve to divide
+ - 2f24b97e-99f8-443a-9082-19c1f91d8d3f
+ - Curve
+ - Curve
+ - false
+ - ba58928d-5703-4a2a-8fde-736407679f3d
+ - 1
+
+
+
+
+ -
+ 2742
+ 5571
+ 33
+ 20
+
+ -
+ 2760
+ 5581
+
+
+
+
+
+
+
+ - Number of segments
+ - 35f75e33-d5f6-4e6e-b9cf-1bfa3b8bb635
+ - Count
+ - Count
+ - false
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - 1
+
+
+
+
+ -
+ 2742
+ 5591
+ 33
+ 20
+
+ -
+ 2760
+ 5601
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 87560cf5-edc9-4964-b195-b4f3d1dd8581
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 5611
+ 33
+ 20
+
+ -
+ 2760
+ 5621
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 5571
+ 58
+ 20
+
+ -
+ 2835.5
+ 5581
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 7a369f73-a46f-44bb-935a-990a674e70dc
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 5591
+ 58
+ 20
+
+ -
+ 2835.5
+ 5601
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - b1597b58-9c8c-420f-bec1-50f6c1f5b5a1
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 5611
+ 58
+ 20
+
+ -
+ 2835.5
+ 5621
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 5652
+ 106
+ 64
+
+ -
+ 2814
+ 5684
+
+
+
+
+
+ - Line start point
+ - d958b718-e348-4709-aa78-fe7498a8766c
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5654
+ 47
+ 20
+
+ -
+ 2777
+ 5664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8b52cc88-fbae-4974-afe9-a673b442bd74
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5674
+ 47
+ 20
+
+ -
+ 2777
+ 5684
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 7114e2f7-7cc2-4d94-a5e4-ce6dc55624c4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5694
+ 47
+ 20
+
+ -
+ 2777
+ 5704
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - ba58928d-5703-4a2a-8fde-736407679f3d
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 5654
+ 25
+ 60
+
+ -
+ 2843
+ 5684
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 5381
+ 106
+ 64
+
+ -
+ 2814
+ 5413
+
+
+
+
+
+ - Line start point
+ - eee0d4c1-93a0-442f-9fc5-d81d6dfd5aae
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2752
+ 5383
+ 47
+ 20
+
+ -
+ 2777
+ 5393
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - ac30e536-d7a6-4642-8b04-31576a917a18
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5403
+ 47
+ 20
+
+ -
+ 2777
+ 5413
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 8fab40a7-83b7-48c4-b1ba-e1dfbc420d51
+ - Length
+ - Length
+ - false
+ - 2da9ba30-40f8-4e2e-9ad5-a1bb181bc6aa
+ - 1
+
+
+
+
+ -
+ 2752
+ 5423
+ 47
+ 20
+
+ -
+ 2777
+ 5433
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6bb582bf-fb0d-4475-bd64-5159a23801fe
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 5383
+ 25
+ 60
+
+ -
+ 2843
+ 5413
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ 5506
+ 82
+ 44
+
+ -
+ 2793
+ 5528
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 3995eb05-caa2-438a-a9d9-c18e8358c01c
+ - A
+ - A
+ - true
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 1
+
+
+
+
+ -
+ 2764
+ 5508
+ 14
+ 20
+
+ -
+ 2772.5
+ 5518
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 44a0505e-9be8-4f10-bbcb-6f5e50704123
+ - B
+ - B
+ - true
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - 1
+
+
+
+
+ -
+ 2764
+ 5528
+ 14
+ 20
+
+ -
+ 2772.5
+ 5538
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 2da9ba30-40f8-4e2e-9ad5-a1bb181bc6aa
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ 5508
+ 34
+ 40
+
+ -
+ 2826.5
+ 5528
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 6220
+ 194
+ 28
+
+ -
+ 2806
+ 6234
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 253e074d-ddc9-4419-9a24-0a26722444e0
+ - true
+ - Variable O
+ - O
+ - true
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 1
+
+
+
+
+ -
+ 2708
+ 6222
+ 14
+ 24
+
+ -
+ 2716.5
+ 6234
+
+
+
+
+
+
+
+ - Result of expression
+ - 2ce7b1d9-752c-4298-ae7a-ed9c0d830e16
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 6222
+ 9
+ 24
+
+ -
+ 2895
+ 6234
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - Panel
+
+ - false
+ - 1
+ - 2ce7b1d9-752c-4298-ae7a-ed9c0d830e16
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ 5939
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.397
+ 5939.743
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - Relay
+ -
+ - false
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 1
+
+
+
+
+ -
+ 2783
+ 5904
+ 40
+ 16
+
+ -
+ 2803
+ 5912
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - Relay
+ -
+ - false
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - 1
+
+
+
+
+ -
+ 2783
+ 6267
+ 40
+ 16
+
+ -
+ 2803
+ 6275
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 4
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 1
+
+
+
+
+ -
+ 2728
+ 5737
+ 150
+ 150
+
+ -
+ 2728.496
+ 5737.921
+
+ - 0
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - 6544fcf4-de8d-4376-8953-865024da35a3
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ 2734
+ 7073
+ 137
+ 64
+
+ -
+ 2804
+ 7105
+
+
+
+
+
+ - Curve to evaluate
+ - 33d173a0-8437-48af-8f44-804ef32ab2e1
+ - Curve
+ - Curve
+ - false
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 1
+
+
+
+
+ -
+ 2736
+ 7075
+ 53
+ 30
+
+ -
+ 2764
+ 7090
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 2dc7ebde-f021-4d43-858a-f7f5ad2f6afe
+ - Parameter
+ - Parameter
+ - false
+ - 9bebf09e-b007-45c5-b78a-b561aa38667f
+ - 1
+
+
+
+
+ -
+ 2736
+ 7105
+ 53
+ 30
+
+ -
+ 2764
+ 7120
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 2d289b88-800e-4156-a6b1-c7434ad82dc7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 7075
+ 50
+ 20
+
+ -
+ 2845.5
+ 7085
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - 1a1dda0d-bbdd-40d9-90c1-6c9f0757da7a
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 7095
+ 50
+ 20
+
+ -
+ 2845.5
+ 7105
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - 1e82bf09-1919-4f7a-88f8-6effdeb1461d
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 7115
+ 50
+ 20
+
+ -
+ 2845.5
+ 7125
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - a1095b3a-a75d-4dfe-874e-c9513ed7d845
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 2740
+ 7156
+ 125
+ 64
+
+ -
+ 2790
+ 7188
+
+
+
+
+
+ - Curve to divide
+ - f2cb91dd-ffcf-4a87-8292-93a0b86821c1
+ - Curve
+ - Curve
+ - false
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 1
+
+
+
+
+ -
+ 2742
+ 7158
+ 33
+ 20
+
+ -
+ 2760
+ 7168
+
+
+
+
+
+
+
+ - Number of segments
+ - 98448139-6838-4cea-895a-19ef1e5ddb9a
+ - Count
+ - Count
+ - false
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - 1
+
+
+
+
+ -
+ 2742
+ 7178
+ 33
+ 20
+
+ -
+ 2760
+ 7188
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - f33c48c8-66c6-41e8-8815-5480fd688987
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 7198
+ 33
+ 20
+
+ -
+ 2760
+ 7208
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 362990c6-70f5-4e45-80e3-6e3b5820d61c
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 7158
+ 58
+ 20
+
+ -
+ 2835.5
+ 7168
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - c03522f8-2bfc-4536-b892-e10a78a9b6b9
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 7178
+ 58
+ 20
+
+ -
+ 2835.5
+ 7188
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 9bebf09e-b007-45c5-b78a-b561aa38667f
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 7198
+ 58
+ 20
+
+ -
+ 2835.5
+ 7208
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - true
+ - 2
+ - Curve
+ - Curve
+ - false
+ - a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
+ - 1
+
+
+
+
+ -
+ 2777
+ 7292
+ 53
+ 24
+
+ -
+ 2813.437
+ 7304.059
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - 163281f3-4fdd-4ec9-89f5-d9ea2684d152
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ 2746
+ 6992
+ 114
+ 64
+
+ -
+ 2786
+ 7024
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 1e500955-6ff2-4638-a014-022cb896ebeb
+ - Arc
+ - Arc
+ - false
+ - 1e82bf09-1919-4f7a-88f8-6effdeb1461d
+ - 1
+
+
+
+
+ -
+ 2748
+ 6994
+ 23
+ 60
+
+ -
+ 2761
+ 7024
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - ce07b596-b533-42b3-a650-9f00f7be13dc
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 2801
+ 6994
+ 57
+ 20
+
+ -
+ 2831
+ 7004
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 54837649-9551-4c51-b610-ce1c1a7990a3
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 2801
+ 7014
+ 57
+ 20
+
+ -
+ 2831
+ 7024
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - f6ce21ce-f13b-487e-b0a5-493bf815810f
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 2801
+ 7034
+ 57
+ 20
+
+ -
+ 2831
+ 7044
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - aab83e7e-03d3-46f1-8567-daf390ccafe4
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 2753
+ 6328
+ 100
+ 28
+
+ -
+ 2802
+ 6342
+
+
+
+
+
+ - Input value
+ - 6c7c8189-b6b5-4c14-ba98-3f1237843ba4
+ - Value
+ - Value
+ - false
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 1
+
+
+
+
+ -
+ 2755
+ 6330
+ 32
+ 24
+
+ -
+ 2772.5
+ 6342
+
+
+
+
+
+
+
+ - Output value
+ - 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 6330
+ 34
+ 24
+
+ -
+ 2835.5
+ 6342
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - Relay
+ -
+ - false
+ - 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
+ - 1
+
+
+
+
+ -
+ 2783
+ 6299
+ 40
+ 16
+
+ -
+ 2803
+ 6307
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0ffd18d8-99db-40a1-81a8-50617de9a6c3
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 6905
+ 194
+ 28
+
+ -
+ 2806
+ 6919
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5bbe1694-ae4e-4af7-b5d0-0e814d1bd025
+ - true
+ - Variable O
+ - O
+ - true
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 1
+
+
+
+
+ -
+ 2708
+ 6907
+ 14
+ 24
+
+ -
+ 2716.5
+ 6919
+
+
+
+
+
+
+
+ - Result of expression
+ - aa5c7f71-4773-436c-9465-eb6cfe47daee
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 6907
+ 9
+ 24
+
+ -
+ 2895
+ 6919
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - Panel
+
+ - false
+ - 1
+ - aa5c7f71-4773-436c-9465-eb6cfe47daee
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2711
+ 6615
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2711.033
+ 6615.335
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - false
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 284185cb-9b1b-44c4-9a94-6a846b6478b6
+ - Relay
+ -
+ - false
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - 1
+
+
+
+
+ -
+ 2783
+ 6577
+ 40
+ 16
+
+ -
+ 2803
+ 6585
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - Relay
+ -
+ - false
+ - 54837649-9551-4c51-b610-ce1c1a7990a3
+ - 1
+
+
+
+
+ -
+ 2783
+ 6959
+ 40
+ 16
+
+ -
+ 2803
+ 6967
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - Number
+ - Number
+ - false
+ - 96971adb-dc6f-4220-b87f-875d4c7c2611
+ - 1
+
+
+
+
+ -
+ 2778
+ 7248
+ 50
+ 24
+
+ -
+ 2803.937
+ 7260.646
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - Curve
+ - Curve
+ - false
+ - 6bb582bf-fb0d-4475-bd64-5159a23801fe
+ - 1
+
+
+
+
+ -
+ 2778
+ 5327
+ 50
+ 24
+
+ -
+ 2803.368
+ 5339.088
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 5
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 1
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 3
+
+ - 0.068900000
+
+
+
+
+ -
+ 2678
+ 5468
+ 250
+ 20
+
+ -
+ 2678.177
+ 5468.286
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 059a3e69-9d54-4680-897c-cdf195bad7a8
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ 4900
+ 138
+ 44
+
+ -
+ 2802
+ 4922
+
+
+
+
+
+ - Base geometry
+ - 14e44962-2dfd-440d-82ec-807ce03623f2
+ - Geometry
+ - Geometry
+ - true
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 1
+
+
+
+
+ -
+ 2736
+ 4902
+ 51
+ 20
+
+ -
+ 2763
+ 4912
+
+
+
+
+
+
+
+ - Translation vector
+ - 516286a3-d79c-4f44-b66a-629a6ff682ae
+ - Motion
+ - Motion
+ - false
+ - 0f9f7808-7869-4325-ad0a-d2198a518e33
+ - 1
+
+
+
+
+ -
+ 2736
+ 4922
+ 51
+ 20
+
+ -
+ 2763
+ 4932
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 1a211dc6-9d12-4255-9f70-29dc0d975fda
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 4902
+ 53
+ 20
+
+ -
+ 2845
+ 4912
+
+
+
+
+
+
+
+ - Transformation data
+ - a43be0c8-66f6-44cc-8f23-aaf95264f9aa
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 4922
+ 53
+ 20
+
+ -
+ 2845
+ 4932
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2731
+ 4962
+ 155
+ 64
+
+ -
+ 2832
+ 4994
+
+
+
+
+
+ - Vector {x} component
+ - 7cd953af-b064-4de0-a309-70d40bca17c0
+ - -X
+ - X component
+ - X component
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2733
+ 4964
+ 84
+ 20
+
+ -
+ 2784.5
+ 4974
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 4cfa8292-ee09-4b96-b0ae-fb6cee43c9ea
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4984
+ 84
+ 20
+
+ -
+ 2784.5
+ 4994
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 62e295ea-6f33-41f0-a0db-7aa786377b06
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 5004
+ 84
+ 20
+
+ -
+ 2784.5
+ 5014
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 0f9f7808-7869-4325-ad0a-d2198a518e33
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2847
+ 4964
+ 37
+ 30
+
+ -
+ 2867
+ 4979
+
+
+
+
+
+
+
+ - Vector length
+ - b502d75b-da03-4ea8-b2d9-378c3d5e63f8
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2847
+ 4994
+ 37
+ 30
+
+ -
+ 2867
+ 5009
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 7fce1877-7d49-42f2-9d77-f20f971a3c8d
+ - Series
+ - Series
+
+
+
+
+ -
+ 2744
+ 5046
+ 117
+ 64
+
+ -
+ 2794
+ 5078
+
+
+
+
+
+ - First number in the series
+ - e5962598-e389-423c-a85a-1e3c32fc81d7
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ 5048
+ 33
+ 20
+
+ -
+ 2764
+ 5058
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 931739e6-075e-4fad-9b6c-531639272855
+ - Step
+ - Step
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ 5068
+ 33
+ 20
+
+ -
+ 2764
+ 5078
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - d0353cba-1801-49d1-970d-a37da19a53d6
+ - Count
+ - Count
+ - false
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - 1
+
+
+
+
+ -
+ 2746
+ 5088
+ 33
+ 20
+
+ -
+ 2764
+ 5098
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 2
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 2809
+ 5048
+ 50
+ 60
+
+ -
+ 2827.5
+ 5078
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - be575d1d-b0b0-4169-9453-f139fa5a69fc
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 2748
+ 5229
+ 109
+ 28
+
+ -
+ 2787
+ 5243
+
+
+
+
+
+ - 1
+ - Base list
+ - 62df7b1c-1f20-4713-86f1-5953c8e31639
+ - List
+ - List
+ - false
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 1
+
+
+
+
+ -
+ 2750
+ 5231
+ 22
+ 24
+
+ -
+ 2762.5
+ 5243
+
+
+
+
+
+
+
+ - Number of items in L
+ - 0d9d676a-f6a5-493c-bf53-6fccdfd6d2e8
+ - 1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2802
+ 5231
+ 53
+ 24
+
+ -
+ 2822
+ 5243
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - Panel
+
+ - false
+ - 0
+ - 804204b5-0b21-42bc-a33b-bf59830956f2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2768
+ 5129
+ 50
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2768.119
+ 5129.574
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 5b850221-b527-4bd6-8c62-e94168cd6efa
+ - Mass Addition
+
+
+
+
+ - Perform mass addition of a list of items
+ - true
+ - 6bf311af-c478-40b6-8287-b57e5ebd2de6
+ - Mass Addition
+ - Mass Addition
+
+
+
+
+ -
+ 2735
+ 5167
+ 135
+ 44
+
+ -
+ 2782
+ 5189
+
+
+
+
+
+ - 1
+ - Input values for mass addition.
+ - e96db67d-f3fe-4b8a-a1b7-ed5f8f51b2c3
+ - Input
+ - Input
+ - false
+ - 0d9d676a-f6a5-493c-bf53-6fccdfd6d2e8
+ - 1
+
+
+
+
+ -
+ 2737
+ 5169
+ 30
+ 40
+
+ -
+ 2753.5
+ 5189
+
+
+
+
+
+
+
+ - Result of mass addition
+ - 804204b5-0b21-42bc-a33b-bf59830956f2
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 5169
+ 71
+ 20
+
+ -
+ 2834
+ 5179
+
+
+
+
+
+
+
+ - 1
+ - List of partial results
+ - dadbd113-cd60-4519-aab0-471e3119d138
+ - Partial Results
+ - Partial Results
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 5189
+ 71
+ 20
+
+ -
+ 2834
+ 5199
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 059a3e69-9d54-4680-897c-cdf195bad7a8
+ - 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
+ - 7fce1877-7d49-42f2-9d77-f20f971a3c8d
+ - be575d1d-b0b0-4169-9453-f139fa5a69fc
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - 6bf311af-c478-40b6-8287-b57e5ebd2de6
+ - b29ac3e2-b858-44d8-acce-0fb154f6a64a
+ - 28b8e0ed-0e44-4505-b866-bab948ef8584
+ - 50d6ea62-1933-4585-80ec-e31ffe7454f9
+ - 0a876c89-ef58-450e-ae46-5d661fc98802
+ - a8c2d2b8-7793-472a-add0-5c6add577a3e
+ - 11
+ - 19e6ba9f-ea5b-4adf-a53c-e38f7d1c7c24
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c1950f77-cc1d-4a94-8226-38115fad3527
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 1
+
+
+
+
+ -
+ 2728
+ 6410
+ 150
+ 150
+
+ -
+ 2728.338
+ 6410.525
+
+ - 0
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 5202e00c-44d2-4c14-a5b6-ef33c742b491
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2751
+ 3246
+ 106
+ 64
+
+ -
+ 2815
+ 3278
+
+
+
+
+
+ - Line start point
+ - 73576ba2-60f2-4199-85a0-b4261085e773
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2753
+ 3248
+ 47
+ 20
+
+ -
+ 2778
+ 3258
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 789af781-e97d-4b8b-9f99-6237ec423f84
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2753
+ 3268
+ 47
+ 20
+
+ -
+ 2778
+ 3278
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 517f58ad-11b5-49db-8e72-28cd683f268a
+ - Length
+ - Length
+ - false
+ - bc6ae7be-b2f7-495b-8309-85181ce50925
+ - 1
+
+
+
+
+ -
+ 2753
+ 3288
+ 47
+ 20
+
+ -
+ 2778
+ 3298
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 589f826a-73e0-4e35-b5a6-2051359d273a
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 3248
+ 25
+ 60
+
+ -
+ 2844
+ 3278
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a72d5419-fd91-41c5-b117-b1511799de43
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 3891
+ 194
+ 28
+
+ -
+ 2806
+ 3905
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fa6931b6-c67f-4ed7-8fbd-87514531ddfe
+ - true
+ - Variable O
+ - O
+ - true
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2708
+ 3893
+ 14
+ 24
+
+ -
+ 2716.5
+ 3905
+
+
+
+
+
+
+
+ - Result of expression
+ - a73d77b0-5abb-417c-b1b1-5bfacb79d7fd
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 3893
+ 9
+ 24
+
+ -
+ 2895
+ 3905
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6799a162-9bf6-4690-8e87-a1f7b11fc186
+ - Panel
+
+ - false
+ - 0.75034273974597454
+ - a73d77b0-5abb-417c-b1b1-5bfacb79d7fd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ 3612
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.37
+ 3612.744
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3dd22ce8-293a-4588-a9e5-2f0539214a5c
+ - Relay
+ -
+ - false
+ - 6799a162-9bf6-4690-8e87-a1f7b11fc186
+ - 1
+
+
+
+
+ -
+ 2783
+ 3575
+ 40
+ 16
+
+ -
+ 2803
+ 3583
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - Relay
+ -
+ - false
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - 1
+
+
+
+
+ -
+ 2783
+ 3938
+ 40
+ 16
+
+ -
+ 2803
+ 3946
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 749872a2-7981-49cb-a7d8-7f6b73442974
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2728
+ 3410
+ 150
+ 150
+
+ -
+ 2728.469
+ 3410.921
+
+ - 0
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3bad1a66-165a-405e-94ae-9c7c448ecc44
+ - Relay
+ -
+ - false
+ - 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
+ - 1
+
+
+
+
+ -
+ 2783
+ 4217
+ 40
+ 16
+
+ -
+ 2803
+ 4225
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 41b1f9fe-b540-498e-b66d-f9a253c44c97
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2739
+ 4051
+ 128
+ 28
+
+ -
+ 2792
+ 4065
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 83e171e6-8026-41d3-9b9a-04c48e91b757
+ - Values
+ - Values
+ - false
+ - fc90f942-eb44-4171-8b95-2c2a1d282bfc
+ - 1
+
+
+
+
+ -
+ 2741
+ 4053
+ 36
+ 24
+
+ -
+ 2760.5
+ 4065
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 41859e78-5ecd-4eaf-9046-5daab3c22ed7
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 4053
+ 58
+ 24
+
+ -
+ 2837.5
+ 4065
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - Relay
+
+ - false
+ - 41859e78-5ecd-4eaf-9046-5daab3c22ed7
+ - 1
+
+
+
+
+ -
+ 2783
+ 4017
+ 40
+ 16
+
+ -
+ 2803
+ 4025
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - Relay
+
+ - false
+ - 3bad1a66-165a-405e-94ae-9c7c448ecc44
+ - 1
+
+
+
+
+ -
+ 2783
+ 4158
+ 40
+ 16
+
+ -
+ 2803
+ 4166
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - 41b1f9fe-b540-498e-b66d-f9a253c44c97
+ - 401a4ec7-acb1-4812-b841-5ff8cafa66b1
+ - 4
+ - 64e05c4c-ae81-4d56-92b8-0d683e6178f7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 401a4ec7-acb1-4812-b841-5ff8cafa66b1
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2735
+ 4096
+ 136
+ 44
+
+ -
+ 2821
+ 4118
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 008d496f-cfcd-4e98-87a1-e7de0148c944
+ - Items
+ - Items
+ - false
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - 1
+
+
+
+
+ -
+ 2737
+ 4098
+ 69
+ 20
+
+ -
+ 2773
+ 4108
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 65f6ffb7-2d70-44a6-a76f-1b8cb5988027
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ 4118
+ 69
+ 20
+
+ -
+ 2773
+ 4128
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - fc90f942-eb44-4171-8b95-2c2a1d282bfc
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 4098
+ 33
+ 20
+
+ -
+ 2854
+ 4108
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 97321661-04ba-4c03-92bb-cbf26ad904bb
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 4118
+ 33
+ 20
+
+ -
+ 2854
+ 4128
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - f6e745a8-7fe5-4039-af6b-f624d2e49c50
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ 3347
+ 82
+ 44
+
+ -
+ 2793
+ 3369
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 50da1217-a2c7-48ef-8ac1-27862b7a31af
+ - A
+ - A
+ - true
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2764
+ 3349
+ 14
+ 20
+
+ -
+ 2772.5
+ 3359
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 0f99ba1b-48e7-47a4-8313-07539c0f8265
+ - B
+ - B
+ - true
+ - 78dab7dd-d7e2-426b-bb90-b547c8224cb4
+ - 1
+
+
+
+
+ -
+ 2764
+ 3369
+ 14
+ 20
+
+ -
+ 2772.5
+ 3379
+
+
+
+
+
+
+
+ - Result of multiplication
+ - bc6ae7be-b2f7-495b-8309-85181ce50925
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ 3349
+ 34
+ 40
+
+ -
+ 2826.5
+ 3369
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 78dab7dd-d7e2-426b-bb90-b547c8224cb4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 3
+
+ - 4.392015000
+
+
+
+
+ -
+ 2681
+ 3327
+ 250
+ 20
+
+ -
+ 2681.462
+ 3327.034
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - c106ea49-3d33-4ec1-9439-7a451df09432
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ 3067
+ 138
+ 44
+
+ -
+ 2802
+ 3089
+
+
+
+
+
+ - Base geometry
+ - 03f50bc9-cdd3-4a9e-bf72-f9e5a13824fd
+ - Geometry
+ - Geometry
+ - true
+ - 589f826a-73e0-4e35-b5a6-2051359d273a
+ - 1
+
+
+
+
+ -
+ 2736
+ 3069
+ 51
+ 20
+
+ -
+ 2763
+ 3079
+
+
+
+
+
+
+
+ - Translation vector
+ - 27e55aae-32fb-4931-9e33-8276f3143253
+ - Motion
+ - Motion
+ - false
+ - 235ef89b-113b-4adb-8da2-d51550e4eacb
+ - 1
+
+
+
+
+ -
+ 2736
+ 3089
+ 51
+ 20
+
+ -
+ 2763
+ 3099
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 05694d97-021c-4a49-a1f3-e45b41b569e0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 3069
+ 53
+ 20
+
+ -
+ 2845
+ 3079
+
+
+
+
+
+
+
+ - Transformation data
+ - d7c70fda-d3b4-4f52-8188-82500b831732
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 3089
+ 53
+ 20
+
+ -
+ 2845
+ 3099
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - ff3f4af7-3769-4434-b59a-235ecf1d678c
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2720
+ 3130
+ 155
+ 64
+
+ -
+ 2821
+ 3162
+
+
+
+
+
+ - Vector {x} component
+ - 5dda6578-81e3-4d08-a192-99efa4ef0918
+ - -X
+ - X component
+ - X component
+ - false
+ - d8b69669-a2bd-4187-9589-204f3dbe274a
+ - 1
+
+
+
+
+ -
+ 2722
+ 3132
+ 84
+ 20
+
+ -
+ 2773.5
+ 3142
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 51b8acc0-3713-4503-859f-00e28bbe1d12
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2722
+ 3152
+ 84
+ 20
+
+ -
+ 2773.5
+ 3162
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 27131421-4d00-4a7e-acc4-6b6b401840d1
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2722
+ 3172
+ 84
+ 20
+
+ -
+ 2773.5
+ 3182
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 235ef89b-113b-4adb-8da2-d51550e4eacb
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 3132
+ 37
+ 30
+
+ -
+ 2856
+ 3147
+
+
+
+
+
+
+
+ - Vector length
+ - eadaa5c9-b315-4cc0-883c-86b5919ef135
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 3162
+ 37
+ 30
+
+ -
+ 2856
+ 3177
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 19794563-a66c-483d-a5a7-3a141a317442
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 1337
+ 106
+ 64
+
+ -
+ 2814
+ 1369
+
+
+
+
+
+ - Line start point
+ - 579116b0-0e3a-4726-acaa-4eaf385cfbb8
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2752
+ 1339
+ 47
+ 20
+
+ -
+ 2777
+ 1349
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - d11cdf99-4df2-41e0-84cc-a41742432cef
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1359
+ 47
+ 20
+
+ -
+ 2777
+ 1369
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 052c1243-cfed-4a87-84bf-3af3cfd8de0f
+ - Length
+ - Length
+ - false
+ - 04002786-e0c2-482a-a5b0-087deb210247
+ - 1
+
+
+
+
+ -
+ 2752
+ 1379
+ 47
+ 20
+
+ -
+ 2777
+ 1389
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d8f86e25-327f-4bb8-b47a-52eb276b1670
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 1339
+ 25
+ 60
+
+ -
+ 2843
+ 1369
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e791fbc6-af59-4ad4-b7b9-bf23b2eb991d
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 2081
+ 194
+ 28
+
+ -
+ 2806
+ 2095
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 277497d4-3cc9-4675-9df2-1bdad4551e7b
+ - true
+ - Variable O
+ - O
+ - true
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2708
+ 2083
+ 14
+ 24
+
+ -
+ 2716.5
+ 2095
+
+
+
+
+
+
+
+ - Result of expression
+ - 7a91e35e-fe42-4292-81a3-bab62edacffc
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 2083
+ 9
+ 24
+
+ -
+ 2895
+ 2095
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
+ - Panel
+
+ - false
+ - 1
+ - 7a91e35e-fe42-4292-81a3-bab62edacffc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ 1804
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.01
+ 1804.322
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c4b05861-4dcc-4fa6-9a55-cd2ef09186a2
+ - Relay
+ -
+ - false
+ - 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
+ - 1
+
+
+
+
+ -
+ 2783
+ 1768
+ 40
+ 16
+
+ -
+ 2803
+ 1776
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - Relay
+ -
+ - false
+ - ac291d1c-68db-4960-a7e7-5db523fe6c22
+ - 1
+
+
+
+
+ -
+ 2783
+ 2128
+ 40
+ 16
+
+ -
+ 2803
+ 2136
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 67a350fe-d446-4487-9291-6bee5215236f
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2728
+ 1602
+ 150
+ 150
+
+ -
+ 2728.11
+ 1602.499
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - e6ebbaf0-0ce2-416a-9da6-4b087003b097
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2739
+ 2241
+ 128
+ 28
+
+ -
+ 2792
+ 2255
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 78d2cb1e-3351-4a2b-9058-87a3e892866b
+ - Values
+ - Values
+ - false
+ - f82f722b-e058-4539-9262-05fb080d34b6
+ - 1
+
+
+
+
+ -
+ 2741
+ 2243
+ 36
+ 24
+
+ -
+ 2760.5
+ 2255
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 89077281-b492-48e9-a85e-54f1b18d13e1
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 2243
+ 58
+ 24
+
+ -
+ 2837.5
+ 2255
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ac291d1c-68db-4960-a7e7-5db523fe6c22
+ - Relay
+
+ - false
+ - 89077281-b492-48e9-a85e-54f1b18d13e1
+ - 1
+
+
+
+
+ -
+ 2783
+ 2207
+ 40
+ 16
+
+ -
+ 2803
+ 2215
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
+ - Relay
+
+ - false
+ - 931f5277-2c60-43e1-83f4-396ccd594a3a
+ - 1
+
+
+
+
+ -
+ 2783
+ 2348
+ 40
+ 16
+
+ -
+ 2803
+ 2356
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 18d36f48-a4e9-48f8-a2d1-bab088228a1c
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2735
+ 2286
+ 136
+ 44
+
+ -
+ 2821
+ 2308
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 486e1cf2-b307-4115-a700-c1b678a5423b
+ - Items
+ - Items
+ - false
+ - bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
+ - 1
+
+
+
+
+ -
+ 2737
+ 2288
+ 69
+ 20
+
+ -
+ 2773
+ 2298
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - b4803253-ebb4-4f65-aa55-ef46e0615c40
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ 2308
+ 69
+ 20
+
+ -
+ 2773
+ 2318
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - f82f722b-e058-4539-9262-05fb080d34b6
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 2288
+ 33
+ 20
+
+ -
+ 2854
+ 2298
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 67596dde-04c0-445e-9f73-d5c3a5d8ac8c
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 2308
+ 33
+ 20
+
+ -
+ 2854
+ 2318
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 6fce7b17-02a7-4fe3-b8c9-47d13b69247f
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ 1454
+ 82
+ 44
+
+ -
+ 2793
+ 1476
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - edc9e8c0-0a99-450e-ab3f-dd67ef6b135a
+ - A
+ - A
+ - true
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2764
+ 1456
+ 14
+ 20
+
+ -
+ 2772.5
+ 1466
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2a560f7c-5209-4e8c-a57a-db57f1802b79
+ - B
+ - B
+ - true
+ - e560636d-e6f0-4cec-9254-b1218b844a79
+ - 1
+
+
+
+
+ -
+ 2764
+ 1476
+ 14
+ 20
+
+ -
+ 2772.5
+ 1486
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 04002786-e0c2-482a-a5b0-087deb210247
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ 1456
+ 34
+ 40
+
+ -
+ 2826.5
+ 1476
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e560636d-e6f0-4cec-9254-b1218b844a79
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 4
+
+ - 281.08106675
+
+
+
+
+ -
+ 2678
+ 1417
+ 250
+ 20
+
+ -
+ 2678.09
+ 1417.532
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 29a022c6-b2ea-4f5b-8024-18d708b5bbd8
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ 1174
+ 138
+ 44
+
+ -
+ 2802
+ 1196
+
+
+
+
+
+ - Base geometry
+ - 7eda48ca-557a-43a2-91ab-7f55538e5e6b
+ - Geometry
+ - Geometry
+ - true
+ - d8f86e25-327f-4bb8-b47a-52eb276b1670
+ - 1
+
+
+
+
+ -
+ 2736
+ 1176
+ 51
+ 20
+
+ -
+ 2763
+ 1186
+
+
+
+
+
+
+
+ - Translation vector
+ - b649e3c1-aa59-4773-95ae-5a48561f84c8
+ - Motion
+ - Motion
+ - false
+ - d4dd9a2b-a6ba-4935-8c80-8821e6625ee6
+ - 1
+
+
+
+
+ -
+ 2736
+ 1196
+ 51
+ 20
+
+ -
+ 2763
+ 1206
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 5c55b193-0023-4ff8-875f-0339cdcf9c91
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 1176
+ 53
+ 20
+
+ -
+ 2845
+ 1186
+
+
+
+
+
+
+
+ - Transformation data
+ - 90a73c6e-4868-4058-8cd1-2421b3702fcc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 1196
+ 53
+ 20
+
+ -
+ 2845
+ 1206
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - a3109dcd-b6cf-41a8-b769-b80a5894b219
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2725
+ 1239
+ 155
+ 64
+
+ -
+ 2826
+ 1271
+
+
+
+
+
+ - Vector {x} component
+ - 44969ae5-8746-4507-a6c1-31b16af59304
+ - -X
+ - X component
+ - X component
+ - false
+ - 45cacb59-db8f-4bcf-92f7-9858295e7129
+ - 1
+
+
+
+
+ -
+ 2727
+ 1241
+ 84
+ 20
+
+ -
+ 2778.5
+ 1251
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 70a752f0-8268-4395-a051-8f5ac3e5187c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 1261
+ 84
+ 20
+
+ -
+ 2778.5
+ 1271
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 7d1751a9-6b18-4d20-af0c-d90afbd82213
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 1281
+ 84
+ 20
+
+ -
+ 2778.5
+ 1291
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - d4dd9a2b-a6ba-4935-8c80-8821e6625ee6
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ 1241
+ 37
+ 30
+
+ -
+ 2861
+ 1256
+
+
+
+
+
+
+
+ - Vector length
+ - f74aa292-aab1-4ce6-a9ae-6cb67ef5eb1b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ 1271
+ 37
+ 30
+
+ -
+ 2861
+ 1286
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 19794563-a66c-483d-a5a7-3a141a317442
+ - e791fbc6-af59-4ad4-b7b9-bf23b2eb991d
+ - 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
+ - c4b05861-4dcc-4fa6-9a55-cd2ef09186a2
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 67a350fe-d446-4487-9291-6bee5215236f
+ - e6ebbaf0-0ce2-416a-9da6-4b087003b097
+ - ac291d1c-68db-4960-a7e7-5db523fe6c22
+ - bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
+ - 18d36f48-a4e9-48f8-a2d1-bab088228a1c
+ - 6fce7b17-02a7-4fe3-b8c9-47d13b69247f
+ - e560636d-e6f0-4cec-9254-b1218b844a79
+ - 29a022c6-b2ea-4f5b-8024-18d708b5bbd8
+ - a3109dcd-b6cf-41a8-b769-b80a5894b219
+ - 931f5277-2c60-43e1-83f4-396ccd594a3a
+ - 2a80daa5-7f21-4cee-8c44-d32500908c11
+ - 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
+ - 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
+ - e3749bf3-dd2f-4da8-826c-372b05cde1be
+ - d37fe9ae-0bf0-4e5b-b780-b8ffbbe9b87b
+ - 66bf7298-94f5-4b70-9e91-e530523ea15e
+ - b7947ef7-88a1-45b5-96cb-4bbca7365312
+ - 1c193ff0-05e8-47a8-96fc-bbafada6a625
+ - bb422305-f56f-490b-b653-544931c09145
+ - 45cacb59-db8f-4bcf-92f7-9858295e7129
+ - 25
+ - e755cd13-50eb-45cb-81a9-a1569b22e5f0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 931f5277-2c60-43e1-83f4-396ccd594a3a
+ - Relay
+ -
+ - false
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2783
+ 2382
+ 40
+ 16
+
+ -
+ 2803
+ 2390
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 66a4b758-7a62-4d07-a8d0-412ee9d032c8
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2762
+ -423
+ 106
+ 64
+
+ -
+ 2826
+ -391
+
+
+
+
+
+ - Line start point
+ - 580103c3-dba4-4d4d-8db3-c5ce957e00ca
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2764
+ -421
+ 47
+ 20
+
+ -
+ 2789
+ -411
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - eb1bc218-593e-4f0f-883c-a5651a92571b
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2764
+ -401
+ 47
+ 20
+
+ -
+ 2789
+ -391
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 6745e242-fe3f-401b-9526-0a256ab4cbe4
+ - true
+ - Length
+ - Length
+ - false
+ - cb55f4ee-f70b-4570-a002-0e1149eab871
+ - 1
+
+
+
+
+ -
+ 2764
+ -381
+ 47
+ 20
+
+ -
+ 2789
+ -371
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d0b5c3fe-016c-41f8-88bb-b8f9b2c3a272
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -421
+ 25
+ 60
+
+ -
+ 2855
+ -391
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 66b05dfa-3cbf-42ec-8f9c-811a3b9ba050
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 252
+ 194
+ 28
+
+ -
+ 2806
+ 266
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1f95b2d9-be8a-40b7-ba63-2c1e3c58b242
+ - true
+ - Variable O
+ - O
+ - true
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2708
+ 254
+ 14
+ 24
+
+ -
+ 2716.5
+ 266
+
+
+
+
+
+
+
+ - Result of expression
+ - 76246871-dc5c-4fce-aec3-104f1e344229
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 254
+ 9
+ 24
+
+ -
+ 2895
+ 266
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e2f4d4a2-4219-48d3-921e-84f34ef86664
+ - Panel
+
+ - false
+ - 1
+ - 76246871-dc5c-4fce-aec3-104f1e344229
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ -38
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.355
+ -37.07108
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5d453582-942a-43d2-92be-06c1d12de2a6
+ - Relay
+ -
+ - false
+ - e2f4d4a2-4219-48d3-921e-84f34ef86664
+ - 1
+
+
+
+
+ -
+ 2783
+ -73
+ 40
+ 16
+
+ -
+ 2803
+ -65
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - Relay
+ -
+ - false
+ - ebd6e7da-401e-4c36-9647-c47021848030
+ - 1
+
+
+
+
+ -
+ 2783
+ 280
+ 40
+ 16
+
+ -
+ 2803
+ 288
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 11600905-2419-4939-b8c9-dbab8d35b7d3
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2728
+ -241
+ 150
+ 150
+
+ -
+ 2728.454
+ -240.0285
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 96bc0fe3-f065-4aa3-916f-5940bd50fd88
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2737
+ 353
+ 128
+ 28
+
+ -
+ 2790
+ 367
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - a1d0f6f4-4ba1-4086-8421-6e4e3358667f
+ - Values
+ - Values
+ - false
+ - ff57e150-073d-4bce-b863-68e84728b1ca
+ - 1
+
+
+
+
+ -
+ 2739
+ 355
+ 36
+ 24
+
+ -
+ 2758.5
+ 367
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - a599322f-0d2f-427b-b855-5f76e8e13e74
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 355
+ 58
+ 24
+
+ -
+ 2835.5
+ 367
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ebd6e7da-401e-4c36-9647-c47021848030
+ - Relay
+
+ - false
+ - a599322f-0d2f-427b-b855-5f76e8e13e74
+ - 1
+
+
+
+
+ -
+ 2783
+ 317
+ 40
+ 16
+
+ -
+ 2803
+ 325
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
+ - Relay
+
+ - false
+ - de531981-8867-4b45-8952-b36202bf4e1d
+ - 1
+
+
+
+
+ -
+ 2785
+ 464
+ 40
+ 16
+
+ -
+ 2805
+ 472
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 6b5426f7-8efd-4d40-8b6e-1bbb463df895
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2737
+ 399
+ 136
+ 44
+
+ -
+ 2823
+ 421
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - dbcdcd49-3e92-4600-83c6-26173aa03331
+ - Items
+ - Items
+ - false
+ - b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
+ - 1
+
+
+
+
+ -
+ 2739
+ 401
+ 69
+ 20
+
+ -
+ 2775
+ 411
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 6f8a5940-0853-4ccb-ad5a-b7db9ed51fad
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2739
+ 421
+ 69
+ 20
+
+ -
+ 2775
+ 431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - ff57e150-073d-4bce-b863-68e84728b1ca
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2838
+ 401
+ 33
+ 20
+
+ -
+ 2856
+ 411
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 0c5e93a4-81cf-489f-9695-468581e553cc
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2838
+ 421
+ 33
+ 20
+
+ -
+ 2856
+ 431
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 0604e4e1-ad52-4e70-aa40-6b7bb7fec836
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ -307
+ 82
+ 44
+
+ -
+ 2793
+ -285
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - f8a24621-5889-44f3-be0f-7719de89ddea
+ - A
+ - A
+ - true
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2764
+ -305
+ 14
+ 20
+
+ -
+ 2772.5
+ -295
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2e633020-026b-4494-8b75-0bdc0ac0d480
+ - B
+ - B
+ - true
+ - 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
+ - 1
+
+
+
+
+ -
+ 2764
+ -285
+ 14
+ 20
+
+ -
+ 2772.5
+ -275
+
+
+
+
+
+
+
+ - Result of multiplication
+ - cb55f4ee-f70b-4570-a002-0e1149eab871
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ -305
+ 34
+ 40
+
+ -
+ 2826.5
+ -285
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 4
+
+ - 2233.52343808
+
+
+
+
+ -
+ 2678
+ -343
+ 250
+ 20
+
+ -
+ 2678.434
+ -342.6825
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 4e44e341-6f47-4f00-a431-777a1b460d34
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ -587
+ 138
+ 44
+
+ -
+ 2802
+ -565
+
+
+
+
+
+ - Base geometry
+ - 8947fec3-8004-47b2-8f38-158813550f76
+ - Geometry
+ - Geometry
+ - true
+ - d0b5c3fe-016c-41f8-88bb-b8f9b2c3a272
+ - 1
+
+
+
+
+ -
+ 2736
+ -585
+ 51
+ 20
+
+ -
+ 2763
+ -575
+
+
+
+
+
+
+
+ - Translation vector
+ - 485a1315-bd80-458c-88e2-d817d8496ddc
+ - Motion
+ - Motion
+ - false
+ - 63fc990e-fddf-41f2-9b12-284f0462fe11
+ - 1
+
+
+
+
+ -
+ 2736
+ -565
+ 51
+ 20
+
+ -
+ 2763
+ -555
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -585
+ 53
+ 20
+
+ -
+ 2845
+ -575
+
+
+
+
+
+
+
+ - Transformation data
+ - 44b69aa6-bb49-4dd9-b3bf-0b3cd4a8ec76
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -565
+ 53
+ 20
+
+ -
+ 2845
+ -555
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - c22469cc-e888-4b1c-bd52-1bb4a2191b49
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2725
+ -522
+ 155
+ 64
+
+ -
+ 2826
+ -490
+
+
+
+
+
+ - Vector {x} component
+ - b09718a6-4876-4d94-a977-784ad2ed008d
+ - -X
+ - X component
+ - X component
+ - false
+ - f0a46a15-062c-4b96-9a51-0ebf280e5a4a
+ - 1
+
+
+
+
+ -
+ 2727
+ -520
+ 84
+ 20
+
+ -
+ 2778.5
+ -510
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 8ffd5027-e0ca-43f1-b014-9fa80cd55a48
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -500
+ 84
+ 20
+
+ -
+ 2778.5
+ -490
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 72a0e4ec-fd97-4061-8567-d5afc981a80d
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -480
+ 84
+ 20
+
+ -
+ 2778.5
+ -470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 63fc990e-fddf-41f2-9b12-284f0462fe11
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -520
+ 37
+ 30
+
+ -
+ 2861
+ -505
+
+
+
+
+
+
+
+ - Vector length
+ - 7d9826bd-d248-43d9-9150-445b646fc6c3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -490
+ 37
+ 30
+
+ -
+ 2861
+ -475
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 66a4b758-7a62-4d07-a8d0-412ee9d032c8
+ - 66b05dfa-3cbf-42ec-8f9c-811a3b9ba050
+ - e2f4d4a2-4219-48d3-921e-84f34ef86664
+ - 5d453582-942a-43d2-92be-06c1d12de2a6
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 11600905-2419-4939-b8c9-dbab8d35b7d3
+ - 96bc0fe3-f065-4aa3-916f-5940bd50fd88
+ - ebd6e7da-401e-4c36-9647-c47021848030
+ - b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
+ - 6b5426f7-8efd-4d40-8b6e-1bbb463df895
+ - 0604e4e1-ad52-4e70-aa40-6b7bb7fec836
+ - 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
+ - 4e44e341-6f47-4f00-a431-777a1b460d34
+ - c22469cc-e888-4b1c-bd52-1bb4a2191b49
+ - de531981-8867-4b45-8952-b36202bf4e1d
+ - e909739f-f11a-4f63-961e-cbe23cb83593
+ - 84185437-01a9-46d2-8587-90dc91fbaeef
+ - a59697d7-edbc-4983-90af-5eeb0652d3e3
+ - a628cbff-e924-4087-b69a-6ae9e00ca171
+ - e02dc4a6-1ed5-4658-8ab5-2a962ae14431
+ - 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
+ - 4793db3b-823e-4fc7-9363-44884123053d
+ - 36470645-ff8a-4059-9665-a25ef0bc1bff
+ - f0a46a15-062c-4b96-9a51-0ebf280e5a4a
+ - 24
+ - 46694f6f-bc7f-49b1-b788-c73845685196
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - de531981-8867-4b45-8952-b36202bf4e1d
+ - Relay
+ -
+ - false
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2783
+ 500
+ 40
+ 16
+
+ -
+ 2803
+ 508
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - a215e2b8-03ec-47c3-a47b-74a2b0223ad1
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2766
+ -2213
+ 106
+ 64
+
+ -
+ 2830
+ -2181
+
+
+
+
+
+ - Line start point
+ - 88c9e5e9-5534-4d81-a29a-e298d744d3f3
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2768
+ -2211
+ 47
+ 20
+
+ -
+ 2793
+ -2201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 003f01d7-c77d-4202-84b1-47279a3f7288
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2768
+ -2191
+ 47
+ 20
+
+ -
+ 2793
+ -2181
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 2e1c9145-3960-4497-acd5-6ba3d6538a90
+ - true
+ - Length
+ - Length
+ - false
+ - 04b08fbe-172b-4933-9952-829403b1a725
+ - 1
+
+
+
+
+ -
+ 2768
+ -2171
+ 47
+ 20
+
+ -
+ 2793
+ -2161
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - e8152b51-a75c-4739-ae10-fb04a597422d
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -2211
+ 25
+ 60
+
+ -
+ 2859
+ -2181
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c099f5d9-814b-4093-b58d-5105beb0ea10
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ -1550
+ 194
+ 28
+
+ -
+ 2806
+ -1536
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0c9ed85a-0c10-4294-a05a-08eccacd357a
+ - true
+ - Variable O
+ - O
+ - true
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2708
+ -1548
+ 14
+ 24
+
+ -
+ 2716.5
+ -1536
+
+
+
+
+
+
+
+ - Result of expression
+ - 54af680b-e20d-406c-be22-11cc537a8367
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ -1548
+ 9
+ 24
+
+ -
+ 2895
+ -1536
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b40d92d1-a240-45cd-a34c-b1e003fcb81a
+ - Panel
+
+ - false
+ - 1
+ - 54af680b-e20d-406c-be22-11cc537a8367
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ -1842
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.486
+ -1841.444
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - face4faf-9c7f-4e39-916f-957ffe7938f9
+ - Relay
+ -
+ - false
+ - b40d92d1-a240-45cd-a34c-b1e003fcb81a
+ - 1
+
+
+
+
+ -
+ 2783
+ -1878
+ 40
+ 16
+
+ -
+ 2803
+ -1870
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - Relay
+ -
+ - false
+ - d2e976df-5bed-4b60-bcf0-53bc9faed943
+ - 1
+
+
+
+
+ -
+ 2783
+ -1504
+ 40
+ 16
+
+ -
+ 2803
+ -1496
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - dd0f6cee-8116-4a3b-a587-2587eed44998
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2728
+ -2044
+ 150
+ 150
+
+ -
+ 2728.585
+ -2043.267
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 333b2be5-4551-45ff-8cde-28df0c73e1e3
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2739
+ -1409
+ 128
+ 28
+
+ -
+ 2792
+ -1395
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - ab0a368a-1844-4969-be9e-3749177d7e38
+ - Values
+ - Values
+ - false
+ - 3084c808-7cec-485b-ab86-376db1f115a1
+ - 1
+
+
+
+
+ -
+ 2741
+ -1407
+ 36
+ 24
+
+ -
+ 2760.5
+ -1395
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 0cb5fa70-ea4c-406a-af82-30bab56f0c2b
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -1407
+ 58
+ 24
+
+ -
+ 2837.5
+ -1395
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d2e976df-5bed-4b60-bcf0-53bc9faed943
+ - Relay
+
+ - false
+ - 0cb5fa70-ea4c-406a-af82-30bab56f0c2b
+ - 1
+
+
+
+
+ -
+ 2783
+ -1443
+ 40
+ 16
+
+ -
+ 2803
+ -1435
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6a3d6332-c462-42bc-9c10-9d6432e71731
+ - Relay
+
+ - false
+ - 0576783e-c535-4691-b39c-477f6935999c
+ - 1
+
+
+
+
+ -
+ 2783
+ -1302
+ 40
+ 16
+
+ -
+ 2803
+ -1294
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 19366a9a-5dc4-4739-a801-49f17d8989b5
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2735
+ -1364
+ 136
+ 44
+
+ -
+ 2821
+ -1342
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - c5fd2979-3f7a-4fea-a551-275772f36a8b
+ - Items
+ - Items
+ - false
+ - 6a3d6332-c462-42bc-9c10-9d6432e71731
+ - 1
+
+
+
+
+ -
+ 2737
+ -1362
+ 69
+ 20
+
+ -
+ 2773
+ -1352
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - e82548c9-e185-463a-af4c-9f9703b5f5ee
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -1342
+ 69
+ 20
+
+ -
+ 2773
+ -1332
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 3084c808-7cec-485b-ab86-376db1f115a1
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ -1362
+ 33
+ 20
+
+ -
+ 2854
+ -1352
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 7cbcd3bf-8d2f-436f-8a76-6ac67870b3f8
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ -1342
+ 33
+ 20
+
+ -
+ 2854
+ -1332
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - f9b0a7de-ecf1-4969-b872-fdadfa9af113
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ -2113
+ 82
+ 44
+
+ -
+ 2793
+ -2091
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 269ab055-0d40-468d-9d96-33528da5c12c
+ - A
+ - A
+ - true
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2764
+ -2111
+ 14
+ 20
+
+ -
+ 2772.5
+ -2101
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 6ddf6eae-0c4a-41bb-9f8f-40f021cc5850
+ - B
+ - B
+ - true
+ - c0e2db88-5789-426d-83c7-0588de3ef25b
+ - 1
+
+
+
+
+ -
+ 2764
+ -2091
+ 14
+ 20
+
+ -
+ 2772.5
+ -2081
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 04b08fbe-172b-4933-9952-829403b1a725
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ -2111
+ 34
+ 40
+
+ -
+ 2826.5
+ -2091
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c0e2db88-5789-426d-83c7-0588de3ef25b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 20817.0283827
+
+
+
+
+ -
+ 2678
+ -2133
+ 250
+ 20
+
+ -
+ 2678.565
+ -2132.921
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - f9efa372-460e-4f62-b112-3081e9e3ef5e
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ -2393
+ 138
+ 44
+
+ -
+ 2802
+ -2371
+
+
+
+
+
+ - Base geometry
+ - 9c3296c6-7709-433e-9c14-dee1444eb571
+ - Geometry
+ - Geometry
+ - true
+ - e8152b51-a75c-4739-ae10-fb04a597422d
+ - 1
+
+
+
+
+ -
+ 2736
+ -2391
+ 51
+ 20
+
+ -
+ 2763
+ -2381
+
+
+
+
+
+
+
+ - Translation vector
+ - d0311c28-141d-44f3-bd9c-39ed49d81bb9
+ - Motion
+ - Motion
+ - false
+ - d9489a97-3b72-4c68-a11f-cd3f614bb8e6
+ - 1
+
+
+
+
+ -
+ 2736
+ -2371
+ 51
+ 20
+
+ -
+ 2763
+ -2361
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -2391
+ 53
+ 20
+
+ -
+ 2845
+ -2381
+
+
+
+
+
+
+
+ - Transformation data
+ - 6511a1f1-0c1c-4bdd-b0e1-e7e508faf1a7
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -2371
+ 53
+ 20
+
+ -
+ 2845
+ -2361
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - def11018-cdab-4a0d-8a79-53646db73041
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2725
+ -2328
+ 155
+ 64
+
+ -
+ 2826
+ -2296
+
+
+
+
+
+ - Vector {x} component
+ - 100046f4-03fb-441c-a3eb-b1857577ffa8
+ - -X
+ - X component
+ - X component
+ - false
+ - f49ae725-c6ea-4bce-920d-d82e9007d475
+ - 1
+
+
+
+
+ -
+ 2727
+ -2326
+ 84
+ 20
+
+ -
+ 2778.5
+ -2316
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - d1bb1f9a-9302-4414-9aba-af01df8f861a
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -2306
+ 84
+ 20
+
+ -
+ 2778.5
+ -2296
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 4fa47ac3-b67d-4e38-8168-fd2aae2d9e5a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -2286
+ 84
+ 20
+
+ -
+ 2778.5
+ -2276
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - d9489a97-3b72-4c68-a11f-cd3f614bb8e6
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -2326
+ 37
+ 30
+
+ -
+ 2861
+ -2311
+
+
+
+
+
+
+
+ - Vector length
+ - 8bcf063d-7669-4c27-83b2-0bafbaad2aa7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -2296
+ 37
+ 30
+
+ -
+ 2861
+ -2281
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a215e2b8-03ec-47c3-a47b-74a2b0223ad1
+ - c099f5d9-814b-4093-b58d-5105beb0ea10
+ - b40d92d1-a240-45cd-a34c-b1e003fcb81a
+ - face4faf-9c7f-4e39-916f-957ffe7938f9
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - dd0f6cee-8116-4a3b-a587-2587eed44998
+ - 333b2be5-4551-45ff-8cde-28df0c73e1e3
+ - d2e976df-5bed-4b60-bcf0-53bc9faed943
+ - 6a3d6332-c462-42bc-9c10-9d6432e71731
+ - 19366a9a-5dc4-4739-a801-49f17d8989b5
+ - f9b0a7de-ecf1-4969-b872-fdadfa9af113
+ - c0e2db88-5789-426d-83c7-0588de3ef25b
+ - f9efa372-460e-4f62-b112-3081e9e3ef5e
+ - def11018-cdab-4a0d-8a79-53646db73041
+ - 0576783e-c535-4691-b39c-477f6935999c
+ - 373fcd53-e5a6-4804-a735-47b5d060439d
+ - 488f27d6-7474-41e8-8662-7a97ae90ccac
+ - ee5c627c-1bb9-411b-8539-5f5cfd653e05
+ - 3e7cc59c-5d43-43d2-a2fc-3ff56e225a0a
+ - 23406fea-d648-42ad-a9a6-9e6a5e871332
+ - 6e9a05fd-a63f-46c8-8e9c-6c2090966168
+ - 5b1003b9-09b0-4476-8f1b-58290691bc28
+ - dcb7528a-ecb2-455e-a7a9-bbc1925d8141
+ - f49ae725-c6ea-4bce-920d-d82e9007d475
+ - 24
+ - 63f630a9-0dcd-4541-82a2-b0a37918ce26
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0576783e-c535-4691-b39c-477f6935999c
+ - Relay
+ -
+ - false
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2783
+ -1268
+ 40
+ 16
+
+ -
+ 2803
+ -1260
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2a80daa5-7f21-4cee-8c44-d32500908c11
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 1522
+ 106
+ 64
+
+ -
+ 2814
+ 1554
+
+
+
+
+
+ - Line start point
+ - 6973d845-c78b-4031-abff-d030ca769ebc
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1524
+ 47
+ 20
+
+ -
+ 2777
+ 1534
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ -2.12109391180815
+ 1.99985794027194
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 70b7f2d6-8386-46e4-83d1-81953d8f7fbd
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1544
+ 47
+ 20
+
+ -
+ 2777
+ 1554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0.0625
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - aa139009-b95c-479b-a98b-045d7c8ced43
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1564
+ 47
+ 20
+
+ -
+ 2777
+ 1574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6b86b814-e46e-4186-82ec-e4a645aae545
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 1524
+ 25
+ 60
+
+ -
+ 2843
+ 1554
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 042c7918-1ded-400b-ba9c-adc3004fce23
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2755
+ -4019
+ 106
+ 64
+
+ -
+ 2819
+ -3987
+
+
+
+
+
+ - Line start point
+ - 3fa6e5ea-adee-472e-8b3f-05dc29429866
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2757
+ -4017
+ 47
+ 20
+
+ -
+ 2782
+ -4007
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 29615d06-03ae-4c97-b722-93093d338683
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2757
+ -3997
+ 47
+ 20
+
+ -
+ 2782
+ -3987
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 9f596764-c393-41b4-b737-b159912b86d1
+ - true
+ - Length
+ - Length
+ - false
+ - 76dad168-9920-4c9d-9b0c-7840e0411195
+ - 1
+
+
+
+
+ -
+ 2757
+ -3977
+ 47
+ 20
+
+ -
+ 2782
+ -3967
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - c8946353-1197-4675-9f3c-83408d67f6da
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -4017
+ 25
+ 60
+
+ -
+ 2848
+ -3987
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bb4ec53c-c335-4888-a813-6dba4b0b3879
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2710
+ -3341
+ 194
+ 28
+
+ -
+ 2810
+ -3327
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f87d3193-d293-441b-b2af-3d511bcd31a1
+ - true
+ - Variable O
+ - O
+ - true
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2712
+ -3339
+ 14
+ 24
+
+ -
+ 2720.5
+ -3327
+
+
+
+
+
+
+
+ - Result of expression
+ - 304ce3dc-ec45-463b-95a9-eb4796ff8aed
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ -3339
+ 9
+ 24
+
+ -
+ 2899
+ -3327
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 539290d9-dce9-43a1-adf4-e5affd26f6ea
+ - Panel
+
+ - false
+ - 1
+ - 304ce3dc-ec45-463b-95a9-eb4796ff8aed
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -3633
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.717
+ -3632.704
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 238896a6-397f-4896-9866-4977be1c5cb8
+ - Relay
+ -
+ - false
+ - 539290d9-dce9-43a1-adf4-e5affd26f6ea
+ - 1
+
+
+
+
+ -
+ 2787
+ -3676
+ 40
+ 16
+
+ -
+ 2807
+ -3668
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - Relay
+ -
+ - false
+ - b64f24de-d0b2-4d54-bf7e-07324953940a
+ - 1
+
+
+
+
+ -
+ 2787
+ -3313
+ 40
+ 16
+
+ -
+ 2807
+ -3305
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 06278da8-5577-4c01-9bca-f378277efc42
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2733
+ -3835
+ 150
+ 150
+
+ -
+ 2733.816
+ -3834.528
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 075e2fbe-e8d0-4a47-912a-e40abbb65453
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2743
+ -3200
+ 128
+ 28
+
+ -
+ 2796
+ -3186
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 72b8a0b1-d1d3-4dcc-b243-4685a2d6f2c3
+ - Values
+ - Values
+ - false
+ - a841c1a5-bb93-4744-bf9c-c03e90064964
+ - 1
+
+
+
+
+ -
+ 2745
+ -3198
+ 36
+ 24
+
+ -
+ 2764.5
+ -3186
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 7fc4d72d-84c3-4dd1-bf48-0a27e1a8a871
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2811
+ -3198
+ 58
+ 24
+
+ -
+ 2841.5
+ -3186
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b64f24de-d0b2-4d54-bf7e-07324953940a
+ - Relay
+
+ - false
+ - 7fc4d72d-84c3-4dd1-bf48-0a27e1a8a871
+ - 1
+
+
+
+
+ -
+ 2787
+ -3234
+ 40
+ 16
+
+ -
+ 2807
+ -3226
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f209f4a2-f539-4aa3-ae96-2646314ce948
+ - Relay
+
+ - false
+ - dc4a89cc-6391-4120-a0c7-bb01947e616d
+ - 1
+
+
+
+
+ -
+ 2787
+ -3093
+ 40
+ 16
+
+ -
+ 2807
+ -3085
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 9c3b67af-a7a4-4fb2-b1fa-95d0eb77ef5b
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2739
+ -3155
+ 136
+ 44
+
+ -
+ 2825
+ -3133
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - f4cf7b8c-094d-4232-8bd6-b670561fb534
+ - Items
+ - Items
+ - false
+ - f209f4a2-f539-4aa3-ae96-2646314ce948
+ - 1
+
+
+
+
+ -
+ 2741
+ -3153
+ 69
+ 20
+
+ -
+ 2777
+ -3143
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 726e1471-dba4-428d-982b-cec7b3b6c89c
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -3133
+ 69
+ 20
+
+ -
+ 2777
+ -3123
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - a841c1a5-bb93-4744-bf9c-c03e90064964
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -3153
+ 33
+ 20
+
+ -
+ 2858
+ -3143
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 0da654db-e64e-4aa3-bd42-1e3cdc517fe9
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -3133
+ 33
+ 20
+
+ -
+ 2858
+ -3123
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 814cda62-2c48-4bb8-9edc-976f47afdf2a
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2770
+ -3898
+ 82
+ 44
+
+ -
+ 2801
+ -3876
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 41f1a18d-0420-4bd8-927b-0dd17657e8a7
+ - A
+ - A
+ - true
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2772
+ -3896
+ 14
+ 20
+
+ -
+ 2780.5
+ -3886
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b694a7ae-c9fa-4cc7-a775-f46636839f1f
+ - B
+ - B
+ - true
+ - d2eb7a37-d5dd-4ee1-8748-628d8498578a
+ - 1
+
+
+
+
+ -
+ 2772
+ -3876
+ 14
+ 20
+
+ -
+ 2780.5
+ -3866
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 76dad168-9920-4c9d-9b0c-7840e0411195
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -3896
+ 34
+ 40
+
+ -
+ 2834.5
+ -3876
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d2eb7a37-d5dd-4ee1-8748-628d8498578a
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 56336.1968128
+
+
+
+
+ -
+ 2682
+ -3937
+ 250
+ 20
+
+ -
+ 2682.217
+ -3936.787
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 11047804-87b6-4b30-bd41-bf40de79677a
+ - Move
+ - Move
+
+
+
+
+ -
+ 2738
+ -4182
+ 138
+ 44
+
+ -
+ 2806
+ -4160
+
+
+
+
+
+ - Base geometry
+ - f49caf1a-65e2-45bb-aacd-2dfc52d04f59
+ - Geometry
+ - Geometry
+ - true
+ - c8946353-1197-4675-9f3c-83408d67f6da
+ - 1
+
+
+
+
+ -
+ 2740
+ -4180
+ 51
+ 20
+
+ -
+ 2767
+ -4170
+
+
+
+
+
+
+
+ - Translation vector
+ - ceeceab3-c17b-4e19-9177-d15f796f675c
+ - Motion
+ - Motion
+ - false
+ - db4d5bd9-6588-461b-99cc-36749b76ef54
+ - 1
+
+
+
+
+ -
+ 2740
+ -4160
+ 51
+ 20
+
+ -
+ 2767
+ -4150
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2c9695ba-b315-4f78-85cd-abc3b3a78187
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4180
+ 53
+ 20
+
+ -
+ 2849
+ -4170
+
+
+
+
+
+
+
+ - Transformation data
+ - 317fe4f6-2c97-4959-bc91-a97c0d7694e9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4160
+ 53
+ 20
+
+ -
+ 2849
+ -4150
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 7559b255-f641-4d37-8771-422671c9d661
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2729
+ -4119
+ 155
+ 64
+
+ -
+ 2830
+ -4087
+
+
+
+
+
+ - Vector {x} component
+ - 86dcd50f-b6ae-4f17-9afc-cc4ef5b72aff
+ - -X
+ - X component
+ - X component
+ - false
+ - eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
+ - 1
+
+
+
+
+ -
+ 2731
+ -4117
+ 84
+ 20
+
+ -
+ 2782.5
+ -4107
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - ca8927b3-a645-48f7-bea7-3e0c7c770d9c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -4097
+ 84
+ 20
+
+ -
+ 2782.5
+ -4087
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - a30b780b-5434-49c4-b140-fa9591b9e3a5
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -4077
+ 84
+ 20
+
+ -
+ 2782.5
+ -4067
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - db4d5bd9-6588-461b-99cc-36749b76ef54
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -4117
+ 37
+ 30
+
+ -
+ 2865
+ -4102
+
+
+
+
+
+
+
+ - Vector length
+ - b2d573de-5c72-449f-801b-5c7ebd9594ae
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -4087
+ 37
+ 30
+
+ -
+ 2865
+ -4072
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 042c7918-1ded-400b-ba9c-adc3004fce23
+ - bb4ec53c-c335-4888-a813-6dba4b0b3879
+ - 539290d9-dce9-43a1-adf4-e5affd26f6ea
+ - 238896a6-397f-4896-9866-4977be1c5cb8
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 06278da8-5577-4c01-9bca-f378277efc42
+ - 075e2fbe-e8d0-4a47-912a-e40abbb65453
+ - b64f24de-d0b2-4d54-bf7e-07324953940a
+ - f209f4a2-f539-4aa3-ae96-2646314ce948
+ - 9c3b67af-a7a4-4fb2-b1fa-95d0eb77ef5b
+ - 814cda62-2c48-4bb8-9edc-976f47afdf2a
+ - d2eb7a37-d5dd-4ee1-8748-628d8498578a
+ - 11047804-87b6-4b30-bd41-bf40de79677a
+ - 7559b255-f641-4d37-8771-422671c9d661
+ - dc4a89cc-6391-4120-a0c7-bb01947e616d
+ - 3a1806c9-f1d1-40d4-b0c3-ba40727c7574
+ - 8500138e-2946-4f7c-be93-c3c7109b4c2f
+ - cad9f703-3621-4a15-835e-3c62c5728043
+ - 19800ae1-a0b6-4fea-a742-1c5c30324ec3
+ - ceffa153-887e-4858-9494-ff4113ed6ec8
+ - e9181e89-67db-453a-a90b-03cf875e54e4
+ - eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
+ - 22
+ - 60746e92-8e7d-4181-8157-9d909cfaa5af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - dc4a89cc-6391-4120-a0c7-bb01947e616d
+ - Relay
+ -
+ - false
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2787
+ -3059
+ 40
+ 16
+
+ -
+ 2807
+ -3051
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 6f02b009-b1e7-40fb-982b-a4cc92989f93
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2758
+ -5797
+ 106
+ 64
+
+ -
+ 2822
+ -5765
+
+
+
+
+
+ - Line start point
+ - 9b1f3040-25b4-465c-b48b-20d876ca8d30
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2760
+ -5795
+ 47
+ 20
+
+ -
+ 2785
+ -5785
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - ab363ead-60ce-42e6-abb6-fada154e2d83
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2760
+ -5775
+ 47
+ 20
+
+ -
+ 2785
+ -5765
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - a12ca76e-b81d-4f86-82e5-94db0c56f6bc
+ - true
+ - Length
+ - Length
+ - false
+ - 219456fb-d7b5-4771-8625-546ff24ec0db
+ - 1
+
+
+
+
+ -
+ 2760
+ -5755
+ 47
+ 20
+
+ -
+ 2785
+ -5745
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - dbe25fd3-7c8f-4ba4-aa76-935deab2513d
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2837
+ -5795
+ 25
+ 60
+
+ -
+ 2851
+ -5765
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e8ede47a-0766-46eb-98e9-795795777e72
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2711
+ -5159
+ 194
+ 28
+
+ -
+ 2811
+ -5145
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3a17e425-d670-4f6e-a8de-3f02eace241a
+ - true
+ - Variable O
+ - O
+ - true
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2713
+ -5157
+ 14
+ 24
+
+ -
+ 2721.5
+ -5145
+
+
+
+
+
+
+
+ - Result of expression
+ - 2e133f21-2d54-4357-82b6-d6caa9c58bb9
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2894
+ -5157
+ 9
+ 24
+
+ -
+ 2900
+ -5145
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f0598189-5cbb-4645-844b-5261772d3d6f
+ - Panel
+
+ - false
+ - 1
+ - 2e133f21-2d54-4357-82b6-d6caa9c58bb9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -5432
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.714
+ -5431.091
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - abd6a449-9c16-4c76-8ef0-98e478cd83ad
+ - Relay
+ -
+ - false
+ - f0598189-5cbb-4645-844b-5261772d3d6f
+ - 1
+
+
+
+
+ -
+ 2788
+ -5475
+ 40
+ 16
+
+ -
+ 2808
+ -5467
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - Relay
+ -
+ - false
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - 1
+
+
+
+
+ -
+ 2788
+ -5112
+ 40
+ 16
+
+ -
+ 2808
+ -5104
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - d1b7aee9-6996-44d7-a2a8-751ca861756f
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2733
+ -5633
+ 150
+ 150
+
+ -
+ 2733.813
+ -5632.915
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 33d169ca-0346-4d9c-8215-357b9043028e
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2744
+ -4999
+ 128
+ 28
+
+ -
+ 2797
+ -4985
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 78975a9e-52d2-4a86-9086-68be735702ad
+ - Values
+ - Values
+ - false
+ - 9c15500f-157e-41a9-92a5-a20d78dd6d0a
+ - 1
+
+
+
+
+ -
+ 2746
+ -4997
+ 36
+ 24
+
+ -
+ 2765.5
+ -4985
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - e0b41d41-010c-450b-87c6-534ab840d77b
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -4997
+ 58
+ 24
+
+ -
+ 2842.5
+ -4985
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - Relay
+
+ - false
+ - e0b41d41-010c-450b-87c6-534ab840d77b
+ - 1
+
+
+
+
+ -
+ 2788
+ -5033
+ 40
+ 16
+
+ -
+ 2808
+ -5025
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - Relay
+
+ - false
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - 1
+
+
+
+
+ -
+ 2788
+ -4892
+ 40
+ 16
+
+ -
+ 2808
+ -4884
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 81207625-50b7-466b-a33d-23c0e88f3ac9
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2740
+ -4954
+ 136
+ 44
+
+ -
+ 2826
+ -4932
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 0766398e-adae-4a68-af23-b7c778109ed1
+ - Items
+ - Items
+ - false
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - 1
+
+
+
+
+ -
+ 2742
+ -4952
+ 69
+ 20
+
+ -
+ 2778
+ -4942
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 32702515-c5ba-40c5-8d36-701e5e367bdb
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -4932
+ 69
+ 20
+
+ -
+ 2778
+ -4922
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 9c15500f-157e-41a9-92a5-a20d78dd6d0a
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -4952
+ 33
+ 20
+
+ -
+ 2859
+ -4942
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 799563c9-5274-4ae7-beb6-b23dee7a1a4e
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -4932
+ 33
+ 20
+
+ -
+ 2859
+ -4922
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 7239acaa-4bc2-4df7-9ccc-41202268cb8a
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2770
+ -5693
+ 82
+ 44
+
+ -
+ 2801
+ -5671
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - b43d79dd-62fc-46ee-9f3a-671373fd1cc3
+ - A
+ - A
+ - true
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2772
+ -5691
+ 14
+ 20
+
+ -
+ 2780.5
+ -5681
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - a4927aff-3c14-4dd1-8427-f305933617b5
+ - B
+ - B
+ - true
+ - 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
+ - 1
+
+
+
+
+ -
+ 2772
+ -5671
+ 14
+ 20
+
+ -
+ 2780.5
+ -5661
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 219456fb-d7b5-4771-8625-546ff24ec0db
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -5691
+ 34
+ 40
+
+ -
+ 2834.5
+ -5671
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 6
+
+ - 271915.006280
+
+
+
+
+ -
+ 2684
+ -5713
+ 250
+ 20
+
+ -
+ 2684.547
+ -5712.496
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 4e1fee94-8bf0-4a03-9bb5-efb4198de1d7
+ - Move
+ - Move
+
+
+
+
+ -
+ 2739
+ -5983
+ 138
+ 44
+
+ -
+ 2807
+ -5961
+
+
+
+
+
+ - Base geometry
+ - ad9b15b9-3d25-44f8-835e-637cd41ab1f3
+ - Geometry
+ - Geometry
+ - true
+ - dbe25fd3-7c8f-4ba4-aa76-935deab2513d
+ - 1
+
+
+
+
+ -
+ 2741
+ -5981
+ 51
+ 20
+
+ -
+ 2768
+ -5971
+
+
+
+
+
+
+
+ - Translation vector
+ - 835cfb38-6c49-4afe-8da6-226f3a5aac91
+ - Motion
+ - Motion
+ - false
+ - 532b21ed-054c-48dc-9ad9-d23e32f3c462
+ - 1
+
+
+
+
+ -
+ 2741
+ -5961
+ 51
+ 20
+
+ -
+ 2768
+ -5951
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 6887d1d4-79dc-484f-ba0b-cbc72eeea403
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -5981
+ 53
+ 20
+
+ -
+ 2850
+ -5971
+
+
+
+
+
+
+
+ - Transformation data
+ - 7d36d4f0-da61-46e7-80c2-c9a571beca63
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -5961
+ 53
+ 20
+
+ -
+ 2850
+ -5951
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 0e8fc1e8-082d-43ee-a7cb-5a08841c0259
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2730
+ -5918
+ 155
+ 64
+
+ -
+ 2831
+ -5886
+
+
+
+
+
+ - Vector {x} component
+ - 1b39f073-7197-461a-92d6-670b7c39add9
+ - -X
+ - X component
+ - X component
+ - false
+ - 647310bf-b19d-44df-ae6f-ffbd5b863fe9
+ - 1
+
+
+
+
+ -
+ 2732
+ -5916
+ 84
+ 20
+
+ -
+ 2783.5
+ -5906
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 3514c265-9042-4c28-8ab6-41303131d2d4
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -5896
+ 84
+ 20
+
+ -
+ 2783.5
+ -5886
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 7d33e313-0e01-4d2b-9bd6-5619cee4cb27
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -5876
+ 84
+ 20
+
+ -
+ 2783.5
+ -5866
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 532b21ed-054c-48dc-9ad9-d23e32f3c462
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2846
+ -5916
+ 37
+ 30
+
+ -
+ 2866
+ -5901
+
+
+
+
+
+
+
+ - Vector length
+ - 3b99ba49-6ac8-43e3-bd99-f3213da6a2bf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2846
+ -5886
+ 37
+ 30
+
+ -
+ 2866
+ -5871
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6f02b009-b1e7-40fb-982b-a4cc92989f93
+ - e8ede47a-0766-46eb-98e9-795795777e72
+ - f0598189-5cbb-4645-844b-5261772d3d6f
+ - abd6a449-9c16-4c76-8ef0-98e478cd83ad
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - d1b7aee9-6996-44d7-a2a8-751ca861756f
+ - 33d169ca-0346-4d9c-8215-357b9043028e
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - 81207625-50b7-466b-a33d-23c0e88f3ac9
+ - 7239acaa-4bc2-4df7-9ccc-41202268cb8a
+ - 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
+ - 4e1fee94-8bf0-4a03-9bb5-efb4198de1d7
+ - 0e8fc1e8-082d-43ee-a7cb-5a08841c0259
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
+ - 91d19239-fa22-43d8-9328-a5aaa83c29d0
+ - c85fbe40-8c7e-4798-9c91-10dc94e3ce94
+ - 1ed8af89-73d9-46fb-9f92-85e97b1954ab
+ - 35cf69c6-1a64-47f3-beee-9ffa3d777872
+ - 9cb83053-a3f1-4d08-bad8-b0b6d4352272
+ - b0dc11e3-028a-4c68-abf7-dc7f220168c2
+ - 957995f5-c366-463c-b3ce-f70bdb0ab1f3
+ - 647310bf-b19d-44df-ae6f-ffbd5b863fe9
+ - 24
+ - 476c07b4-d4b7-48f5-ab23-63a6ae96d8b0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - Relay
+ -
+ - false
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2788
+ -4858
+ 40
+ 16
+
+ -
+ 2808
+ -4850
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 7fad2a3d-6b73-4fd3-b85f-cbcca0edb0e9
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2755
+ -7608
+ 106
+ 64
+
+ -
+ 2819
+ -7576
+
+
+
+
+
+ - Line start point
+ - d0cf9246-2f18-4473-bf16-83da1ef7502f
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2757
+ -7606
+ 47
+ 20
+
+ -
+ 2782
+ -7596
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 4ebccf48-81fd-4163-b2ad-9c377061e5b4
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2757
+ -7586
+ 47
+ 20
+
+ -
+ 2782
+ -7576
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 4c250e73-ca00-491e-8345-30d0c199d208
+ - true
+ - Length
+ - Length
+ - false
+ - eed75ede-9954-4e74-ba7c-3bd2194f1ac6
+ - 1
+
+
+
+
+ -
+ 2757
+ -7566
+ 47
+ 20
+
+ -
+ 2782
+ -7556
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 37fc79be-f3e4-4303-9f79-031b628eb7dc
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -7606
+ 25
+ 60
+
+ -
+ 2848
+ -7576
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f6e9f1c3-eee4-412c-baba-b0430add3abc
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2710
+ -6936
+ 194
+ 28
+
+ -
+ 2810
+ -6922
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8303f00c-4b96-4759-b910-899f66742b0e
+ - true
+ - Variable O
+ - O
+ - true
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2712
+ -6934
+ 14
+ 24
+
+ -
+ 2720.5
+ -6922
+
+
+
+
+
+
+
+ - Result of expression
+ - d4046849-9388-4abb-ad4b-8c2a65b66e28
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ -6934
+ 9
+ 24
+
+ -
+ 2899
+ -6922
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 44d9ac45-165c-4030-80af-37df49237525
+ - Panel
+
+ - false
+ - 1
+ - d4046849-9388-4abb-ad4b-8c2a65b66e28
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -7229
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.867
+ -7228.153
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a8aee104-1a78-4e6f-9c6b-f240f9e79dc3
+ - Relay
+ -
+ - false
+ - 44d9ac45-165c-4030-80af-37df49237525
+ - 1
+
+
+
+
+ -
+ 2787
+ -7276
+ 40
+ 16
+
+ -
+ 2807
+ -7268
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - Relay
+ -
+ - false
+ - 6234ac24-d0b0-412d-8309-3a3c0d7d470e
+ - 1
+
+
+
+
+ -
+ 2787
+ -6889
+ 40
+ 16
+
+ -
+ 2807
+ -6881
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - a010a0aa-e30f-4f91-a2a2-d90e6518b218
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2732
+ -7430
+ 150
+ 150
+
+ -
+ 2732.966
+ -7429.977
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 73b7337b-7d22-476b-b538-b7ba58edd468
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2743
+ -6800
+ 128
+ 28
+
+ -
+ 2796
+ -6786
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - f9008767-dc99-4bbc-80ec-9f00fdbe3638
+ - Values
+ - Values
+ - false
+ - 8e78b602-bf7b-41ab-acd6-75e9dd78a318
+ - 1
+
+
+
+
+ -
+ 2745
+ -6798
+ 36
+ 24
+
+ -
+ 2764.5
+ -6786
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 86f264df-1e7e-42b2-bbf5-062c2f94d72e
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2811
+ -6798
+ 58
+ 24
+
+ -
+ 2841.5
+ -6786
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6234ac24-d0b0-412d-8309-3a3c0d7d470e
+ - Relay
+
+ - false
+ - 86f264df-1e7e-42b2-bbf5-062c2f94d72e
+ - 1
+
+
+
+
+ -
+ 2787
+ -6834
+ 40
+ 16
+
+ -
+ 2807
+ -6826
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2ad015b5-75aa-4327-af12-ae66b821121a
+ - Relay
+
+ - false
+ - a9078840-89ba-460d-b861-d52f705e4fb5
+ - 1
+
+
+
+
+ -
+ 2787
+ -6693
+ 40
+ 16
+
+ -
+ 2807
+ -6685
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - fe79c4c0-7b7d-412d-9138-48cd990ffa41
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2739
+ -6755
+ 136
+ 44
+
+ -
+ 2825
+ -6733
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 91ecac42-f5a5-4b03-a9df-28662d8d96b0
+ - Items
+ - Items
+ - false
+ - 2ad015b5-75aa-4327-af12-ae66b821121a
+ - 1
+
+
+
+
+ -
+ 2741
+ -6753
+ 69
+ 20
+
+ -
+ 2777
+ -6743
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 467868de-26c2-4f1f-a7ac-6f2f62ce628c
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -6733
+ 69
+ 20
+
+ -
+ 2777
+ -6723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 8e78b602-bf7b-41ab-acd6-75e9dd78a318
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -6753
+ 33
+ 20
+
+ -
+ 2858
+ -6743
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 8493b36e-89a5-45ef-84f4-a49793c215a8
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -6733
+ 33
+ 20
+
+ -
+ 2858
+ -6723
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e36e38bd-69b6-4b50-aa47-e40c3308a856
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2769
+ -7493
+ 82
+ 44
+
+ -
+ 2800
+ -7471
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 06b7a419-33b2-4d8a-b837-1cdce113f55b
+ - A
+ - A
+ - true
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2771
+ -7491
+ 14
+ 20
+
+ -
+ 2779.5
+ -7481
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 9c229038-e9c6-490f-a6e4-31f6e96af3b4
+ - B
+ - B
+ - true
+ - 232d4da2-850f-4939-a451-e2ac412c6f34
+ - 1
+
+
+
+
+ -
+ 2771
+ -7471
+ 14
+ 20
+
+ -
+ 2779.5
+ -7461
+
+
+
+
+
+
+
+ - Result of multiplication
+ - eed75ede-9954-4e74-ba7c-3bd2194f1ac6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2815
+ -7491
+ 34
+ 40
+
+ -
+ 2833.5
+ -7471
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 232d4da2-850f-4939-a451-e2ac412c6f34
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 6
+
+ - 383463.976640
+
+
+
+
+ -
+ 2679
+ -7530
+ 250
+ 20
+
+ -
+ 2679.178
+ -7529.615
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 6a844a25-3a25-4592-b8bd-990161e9c483
+ - Move
+ - Move
+
+
+
+
+ -
+ 2738
+ -7784
+ 138
+ 44
+
+ -
+ 2806
+ -7762
+
+
+
+
+
+ - Base geometry
+ - 5b63efe8-e076-4f0c-bc0b-c75f953f0de4
+ - Geometry
+ - Geometry
+ - true
+ - 37fc79be-f3e4-4303-9f79-031b628eb7dc
+ - 1
+
+
+
+
+ -
+ 2740
+ -7782
+ 51
+ 20
+
+ -
+ 2767
+ -7772
+
+
+
+
+
+
+
+ - Translation vector
+ - f8ec87b4-b92d-431e-bfb8-9cc293e8b169
+ - Motion
+ - Motion
+ - false
+ - 3276370e-5437-4e4d-a00b-34a267233b72
+ - 1
+
+
+
+
+ -
+ 2740
+ -7762
+ 51
+ 20
+
+ -
+ 2767
+ -7752
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -7782
+ 53
+ 20
+
+ -
+ 2849
+ -7772
+
+
+
+
+
+
+
+ - Transformation data
+ - 1613cb01-5f0f-4f26-a5e1-07023926a0ad
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -7762
+ 53
+ 20
+
+ -
+ 2849
+ -7752
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - f61f92f1-b10f-4586-86fa-3d41998aa56d
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2729
+ -7719
+ 155
+ 64
+
+ -
+ 2830
+ -7687
+
+
+
+
+
+ - Vector {x} component
+ - cd0e24e3-86ea-4f50-baf3-54c92ed21d6d
+ - -X
+ - X component
+ - X component
+ - false
+ - 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
+ - 1
+
+
+
+
+ -
+ 2731
+ -7717
+ 84
+ 20
+
+ -
+ 2782.5
+ -7707
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 06145659-02ed-467e-85b6-ae2cf3d98573
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -7697
+ 84
+ 20
+
+ -
+ 2782.5
+ -7687
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 7
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - afd74686-31f3-4a45-86f7-739561f2eba1
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -7677
+ 84
+ 20
+
+ -
+ 2782.5
+ -7667
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 3276370e-5437-4e4d-a00b-34a267233b72
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -7717
+ 37
+ 30
+
+ -
+ 2865
+ -7702
+
+
+
+
+
+
+
+ - Vector length
+ - 0798d4b7-6861-49a8-80df-74eece16c617
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -7687
+ 37
+ 30
+
+ -
+ 2865
+ -7672
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7fad2a3d-6b73-4fd3-b85f-cbcca0edb0e9
+ - f6e9f1c3-eee4-412c-baba-b0430add3abc
+ - 44d9ac45-165c-4030-80af-37df49237525
+ - a8aee104-1a78-4e6f-9c6b-f240f9e79dc3
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - a010a0aa-e30f-4f91-a2a2-d90e6518b218
+ - 73b7337b-7d22-476b-b538-b7ba58edd468
+ - 6234ac24-d0b0-412d-8309-3a3c0d7d470e
+ - 2ad015b5-75aa-4327-af12-ae66b821121a
+ - fe79c4c0-7b7d-412d-9138-48cd990ffa41
+ - e36e38bd-69b6-4b50-aa47-e40c3308a856
+ - 232d4da2-850f-4939-a451-e2ac412c6f34
+ - 6a844a25-3a25-4592-b8bd-990161e9c483
+ - f61f92f1-b10f-4586-86fa-3d41998aa56d
+ - a9078840-89ba-460d-b861-d52f705e4fb5
+ - 81849188-b493-4caf-b711-90072846d543
+ - 01de0c9e-9e9f-4576-b496-5f24525a07d9
+ - e6204409-8517-47d2-8bad-b618d6ba81d7
+ - f204596d-0539-42bc-b3c3-7a6c11f93504
+ - 4188728e-68e2-4d42-82f2-19bb6c40b380
+ - 844999aa-f0e7-431f-b0df-673861258066
+ - aced67d1-3056-41dd-ae2f-76dd69e0987e
+ - 820d65ee-b16e-41e8-bf3f-4da0ede194da
+ - 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
+ - 24
+ - a2cd357f-68cc-478e-bfc9-b15dcd14bcd8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a9078840-89ba-460d-b861-d52f705e4fb5
+ - Relay
+ -
+ - false
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2787
+ -6659
+ 40
+ 16
+
+ -
+ 2807
+ -6651
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ad773b43-698a-43df-9f39-1c84baa567ca
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 4777
+ 144
+ 104
+
+ -
+ 2815
+ 4829
+
+
+
+
+
+ - Colour of the diffuse channel
+ - ad67bb89-00f7-4f5d-80bb-5312e0b77548
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4779
+ 67
+ 20
+
+ -
+ 2768
+ 4789
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - beb00b3d-6cd2-45bc-8d57-b861eb1da2a7
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4799
+ 67
+ 20
+
+ -
+ 2768
+ 4809
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 4a12640f-dbac-4142-a987-4363e6401952
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4819
+ 67
+ 20
+
+ -
+ 2768
+ 4829
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7f2f25cc-1741-4494-9115-acc59237030b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4839
+ 67
+ 20
+
+ -
+ 2768
+ 4849
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 732e91ec-ef14-43b3-9c8c-ee3eff54ae40
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4859
+ 67
+ 20
+
+ -
+ 2768
+ 4869
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f82ad4a3-12a6-426d-b37d-9cba6ac96914
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 4779
+ 43
+ 100
+
+ -
+ 2853
+ 4829
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 9183d5f8-089d-4708-9f00-983f03c9f90e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 4733
+ 82
+ 44
+
+ -
+ 2830
+ 4755
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - b65a33e6-e0ae-4a17-8c26-6a37887699d7
+ - Geometry
+ - Geometry
+ - false
+ - 1a211dc6-9d12-4255-9f70-29dc0d975fda
+ - 1
+
+
+
+
+ -
+ 2764
+ 4735
+ 51
+ 20
+
+ -
+ 2791
+ 4745
+
+
+
+
+
+
+
+ - The material override
+ - 987365d5-4e94-4309-af90-c316b4fcfa7d
+ - Material
+ - Material
+ - false
+ - f82ad4a3-12a6-426d-b37d-9cba6ac96914
+ - 1
+
+
+
+
+ -
+ 2764
+ 4755
+ 51
+ 20
+
+ -
+ 2791
+ 4765
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ad773b43-698a-43df-9f39-1c84baa567ca
+ - 9183d5f8-089d-4708-9f00-983f03c9f90e
+ - 2
+ - b29ac3e2-b858-44d8-acce-0fb154f6a64a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - e606582f-8157-4dd3-9d74-b8545096f2b1
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 2941
+ 144
+ 104
+
+ -
+ 2815
+ 2993
+
+
+
+
+
+ - Colour of the diffuse channel
+ - f35f8c3b-42c1-4f8f-8bae-afa3e89c8adf
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2943
+ 67
+ 20
+
+ -
+ 2768
+ 2953
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 5ede20c4-85f8-476e-b24d-15a10ed8ec36
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2963
+ 67
+ 20
+
+ -
+ 2768
+ 2973
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d8e416fa-c61f-4474-b1cc-ed0e23dda398
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2983
+ 67
+ 20
+
+ -
+ 2768
+ 2993
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c5eaca7e-9f62-4201-8a59-2c655d613222
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 3003
+ 67
+ 20
+
+ -
+ 2768
+ 3013
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 64a96de1-9ad2-4973-b980-32a9b66896c5
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 3023
+ 67
+ 20
+
+ -
+ 2768
+ 3033
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 5fa6b6a9-e7b7-4492-8fb8-e076221c6ab0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 2943
+ 43
+ 100
+
+ -
+ 2853
+ 2993
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 5a142162-4b8f-4585-967e-5ce611b2ed6b
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 2879
+ 82
+ 44
+
+ -
+ 2830
+ 2901
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - a775575b-6a9d-4faf-98e2-fcec280ac080
+ - Geometry
+ - Geometry
+ - false
+ - 05694d97-021c-4a49-a1f3-e45b41b569e0
+ - 1
+
+
+
+
+ -
+ 2764
+ 2881
+ 51
+ 20
+
+ -
+ 2791
+ 2891
+
+
+
+
+
+
+
+ - The material override
+ - 27e298d6-366b-40d7-adad-44c20aa72f49
+ - Material
+ - Material
+ - false
+ - 5fa6b6a9-e7b7-4492-8fb8-e076221c6ab0
+ - 1
+
+
+
+
+ -
+ 2764
+ 2901
+ 51
+ 20
+
+ -
+ 2791
+ 2911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e606582f-8157-4dd3-9d74-b8545096f2b1
+ - 5a142162-4b8f-4585-967e-5ce611b2ed6b
+ - 2
+ - e9d1dc88-7240-4c0f-bb0a-9eef2eae717d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 1052
+ 144
+ 104
+
+ -
+ 2815
+ 1104
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 862ecfb4-9dce-499f-aea5-424712d104e6
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1054
+ 67
+ 20
+
+ -
+ 2768
+ 1064
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 0cb9200c-9143-4763-a8ad-5051c5a83a76
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1074
+ 67
+ 20
+
+ -
+ 2768
+ 1084
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 1f1703d7-7614-474f-82fd-f9dc460666b9
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1094
+ 67
+ 20
+
+ -
+ 2768
+ 1104
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 25d1a990-b412-4b7d-a24f-9e51b52b2bae
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1114
+ 67
+ 20
+
+ -
+ 2768
+ 1124
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 365c0911-7c14-4a89-905d-b4e5075d21f9
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1134
+ 67
+ 20
+
+ -
+ 2768
+ 1144
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 44e5dd6b-0761-4b9d-82ab-234494eed3da
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 1054
+ 43
+ 100
+
+ -
+ 2853
+ 1104
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 989
+ 82
+ 44
+
+ -
+ 2830
+ 1011
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - aca82de9-175d-4131-a4db-7b596ef9748d
+ - Geometry
+ - Geometry
+ - false
+ - 5c55b193-0023-4ff8-875f-0339cdcf9c91
+ - 1
+
+
+
+
+ -
+ 2764
+ 991
+ 51
+ 20
+
+ -
+ 2791
+ 1001
+
+
+
+
+
+
+
+ - The material override
+ - e34f1e18-8aa0-4179-843c-f4a0d467e743
+ - Material
+ - Material
+ - false
+ - 44e5dd6b-0761-4b9d-82ab-234494eed3da
+ - 1
+
+
+
+
+ -
+ 2764
+ 1011
+ 51
+ 20
+
+ -
+ 2791
+ 1021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
+ - 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
+ - 2
+ - e3749bf3-dd2f-4da8-826c-372b05cde1be
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - e909739f-f11a-4f63-961e-cbe23cb83593
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -711
+ 144
+ 104
+
+ -
+ 2815
+ -659
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 9dfb472c-5cc8-46c1-8cd5-0f2e7a48bcda
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -709
+ 67
+ 20
+
+ -
+ 2768
+ -699
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;224;224;224
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 7c307556-214d-4f71-b322-4f69ce0ab7ed
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -689
+ 67
+ 20
+
+ -
+ 2768
+ -679
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d19faa40-2451-47cc-a9df-b4aa836f36e1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -669
+ 67
+ 20
+
+ -
+ 2768
+ -659
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ce97aa24-ec44-4710-97d4-ac49f48d4c43
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -649
+ 67
+ 20
+
+ -
+ 2768
+ -639
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 469363af-0fc7-489b-bb94-4f8cb9e85d87
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -629
+ 67
+ 20
+
+ -
+ 2768
+ -619
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ac32a6b4-fcbd-4d08-a147-a6f41fb252cd
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -709
+ 43
+ 100
+
+ -
+ 2853
+ -659
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 84185437-01a9-46d2-8587-90dc91fbaeef
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -775
+ 82
+ 44
+
+ -
+ 2830
+ -753
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 8c3a847d-108d-47cf-b9f2-b5f6ff0de7d4
+ - Geometry
+ - Geometry
+ - false
+ - 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
+ - 1
+
+
+
+
+ -
+ 2764
+ -773
+ 51
+ 20
+
+ -
+ 2791
+ -763
+
+
+
+
+
+
+
+ - The material override
+ - 34a16f33-55af-4ff7-a4cb-527a6ae14d66
+ - Material
+ - Material
+ - false
+ - ac32a6b4-fcbd-4d08-a147-a6f41fb252cd
+ - 1
+
+
+
+
+ -
+ 2764
+ -753
+ 51
+ 20
+
+ -
+ 2791
+ -743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e909739f-f11a-4f63-961e-cbe23cb83593
+ - 84185437-01a9-46d2-8587-90dc91fbaeef
+ - 2
+ - a59697d7-edbc-4983-90af-5eeb0652d3e3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 373fcd53-e5a6-4804-a735-47b5d060439d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -2514
+ 144
+ 104
+
+ -
+ 2815
+ -2462
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 6a9969b5-d39c-418a-8e41-8cea0282875f
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2512
+ 67
+ 20
+
+ -
+ 2768
+ -2502
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;217;217;217
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 08335843-7ba9-47d9-9493-8a29bff63cb3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2492
+ 67
+ 20
+
+ -
+ 2768
+ -2482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 899d01de-bbfa-4690-8f86-695d0c4022d4
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2472
+ 67
+ 20
+
+ -
+ 2768
+ -2462
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f0338b96-2125-4c44-a2ae-0427c3c7b14b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2452
+ 67
+ 20
+
+ -
+ 2768
+ -2442
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a8fd779b-1d35-4470-8506-63f134c77f35
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2432
+ 67
+ 20
+
+ -
+ 2768
+ -2422
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 72d97efc-127d-43bd-8b96-346c9d2de708
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -2512
+ 43
+ 100
+
+ -
+ 2853
+ -2462
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 488f27d6-7474-41e8-8662-7a97ae90ccac
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -2576
+ 82
+ 44
+
+ -
+ 2830
+ -2554
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 2499e526-3d53-41ff-a140-6b6ed3766d97
+ - Geometry
+ - Geometry
+ - false
+ - 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
+ - 1
+
+
+
+
+ -
+ 2764
+ -2574
+ 51
+ 20
+
+ -
+ 2791
+ -2564
+
+
+
+
+
+
+
+ - The material override
+ - a9864782-8162-46a4-bd26-08eb8495c635
+ - Material
+ - Material
+ - false
+ - 72d97efc-127d-43bd-8b96-346c9d2de708
+ - 1
+
+
+
+
+ -
+ 2764
+ -2554
+ 51
+ 20
+
+ -
+ 2791
+ -2544
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 373fcd53-e5a6-4804-a735-47b5d060439d
+ - 488f27d6-7474-41e8-8662-7a97ae90ccac
+ - 2
+ - ee5c627c-1bb9-411b-8539-5f5cfd653e05
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 2c8dd4d6-85ae-4307-8e6b-7e1cb32cc6e4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -4307
+ 144
+ 104
+
+ -
+ 2819
+ -4255
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e8083e49-d8fc-43e7-9e13-90196d88fd22
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4305
+ 67
+ 20
+
+ -
+ 2772
+ -4295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;209;209;209
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4c6d451b-8ce0-4895-8840-6333f6417f8f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4285
+ 67
+ 20
+
+ -
+ 2772
+ -4275
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - e5b83aa7-e213-4918-8fc2-73636ee06c40
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4265
+ 67
+ 20
+
+ -
+ 2772
+ -4255
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 10ac19be-3776-44e0-8533-cd25d50459ba
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4245
+ 67
+ 20
+
+ -
+ 2772
+ -4235
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - ebbfcc4f-ddad-4d5c-96d5-7b5091ab9879
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4225
+ 67
+ 20
+
+ -
+ 2772
+ -4215
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f555af9a-1db5-40bd-b0e7-18bede30614a
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -4305
+ 43
+ 100
+
+ -
+ 2857
+ -4255
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 4c5340f4-b6ee-4d02-9738-f4534ec1d02d
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -4369
+ 82
+ 44
+
+ -
+ 2834
+ -4347
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ea4e91dd-40e4-42d0-af6a-a4a80637f782
+ - Geometry
+ - Geometry
+ - false
+ - 2c9695ba-b315-4f78-85cd-abc3b3a78187
+ - 1
+
+
+
+
+ -
+ 2768
+ -4367
+ 51
+ 20
+
+ -
+ 2795
+ -4357
+
+
+
+
+
+
+
+ - The material override
+ - 910ce2f8-54a6-4c8f-a029-1ce8ebd6a538
+ - Material
+ - Material
+ - false
+ - f555af9a-1db5-40bd-b0e7-18bede30614a
+ - 1
+
+
+
+
+ -
+ 2768
+ -4347
+ 51
+ 20
+
+ -
+ 2795
+ -4337
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2c8dd4d6-85ae-4307-8e6b-7e1cb32cc6e4
+ - 4c5340f4-b6ee-4d02-9738-f4534ec1d02d
+ - 2
+ - 3a1806c9-f1d1-40d4-b0c3-ba40727c7574
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2736
+ -6107
+ 144
+ 104
+
+ -
+ 2820
+ -6055
+
+
+
+
+
+ - Colour of the diffuse channel
+ - ffc5fc26-df97-4628-815d-1fbc69bbd8ce
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6105
+ 67
+ 20
+
+ -
+ 2773
+ -6095
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;201;201;201
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - b4555e19-48b9-489f-9ede-b276df8e0ff5
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6085
+ 67
+ 20
+
+ -
+ 2773
+ -6075
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - c2c70153-07dc-4b02-af76-d2a542ff3409
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6065
+ 67
+ 20
+
+ -
+ 2773
+ -6055
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d03ba336-d7ca-4b3d-8da3-5ce5393a2382
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6045
+ 67
+ 20
+
+ -
+ 2773
+ -6035
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - b6c078d2-b806-4fe1-bd6c-38262eb48030
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6025
+ 67
+ 20
+
+ -
+ 2773
+ -6015
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d036ce0d-4e57-4466-9ee5-b83c97c296ec
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -6105
+ 43
+ 100
+
+ -
+ 2858
+ -6055
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 91d19239-fa22-43d8-9328-a5aaa83c29d0
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2767
+ -6170
+ 82
+ 44
+
+ -
+ 2835
+ -6148
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 569d8839-4b6e-4511-a163-061f73b0c2c3
+ - Geometry
+ - Geometry
+ - false
+ - 6887d1d4-79dc-484f-ba0b-cbc72eeea403
+ - 1
+
+
+
+
+ -
+ 2769
+ -6168
+ 51
+ 20
+
+ -
+ 2796
+ -6158
+
+
+
+
+
+
+
+ - The material override
+ - 64463d3f-5ebe-4484-b8dd-78af72c4c971
+ - Material
+ - Material
+ - false
+ - d036ce0d-4e57-4466-9ee5-b83c97c296ec
+ - 1
+
+
+
+
+ -
+ 2769
+ -6148
+ 51
+ 20
+
+ -
+ 2796
+ -6138
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
+ - 91d19239-fa22-43d8-9328-a5aaa83c29d0
+ - 2
+ - c85fbe40-8c7e-4798-9c91-10dc94e3ce94
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 81849188-b493-4caf-b711-90072846d543
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -7943
+ 144
+ 104
+
+ -
+ 2819
+ -7891
+
+
+
+
+
+ - Colour of the diffuse channel
+ - d45cbd41-93f0-467f-9696-2a9b3bf4f447
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7941
+ 67
+ 20
+
+ -
+ 2772
+ -7931
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 916b1084-e922-49cc-961b-81818ef69fbb
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7921
+ 67
+ 20
+
+ -
+ 2772
+ -7911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d9c3425f-35ce-4ad2-bc04-7a7b6ad0c5b4
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7901
+ 67
+ 20
+
+ -
+ 2772
+ -7891
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1c04e62d-869e-4a43-bcc2-30f8bbd4de45
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7881
+ 67
+ 20
+
+ -
+ 2772
+ -7871
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6e7e40e6-3813-481e-9ca1-fb96e8f08a64
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7861
+ 67
+ 20
+
+ -
+ 2772
+ -7851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e5f7b402-d467-469c-9339-523875c835c0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -7941
+ 43
+ 100
+
+ -
+ 2857
+ -7891
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 01de0c9e-9e9f-4576-b496-5f24525a07d9
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -8005
+ 82
+ 44
+
+ -
+ 2834
+ -7983
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 393f6e0a-5bf5-4d57-9dd9-5769e8b30001
+ - Geometry
+ - Geometry
+ - false
+ - 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
+ - 1
+
+
+
+
+ -
+ 2768
+ -8003
+ 51
+ 20
+
+ -
+ 2795
+ -7993
+
+
+
+
+
+
+
+ - The material override
+ - dbbfe754-3ecd-4a4b-b535-cc9392f3c940
+ - Material
+ - Material
+ - false
+ - e5f7b402-d467-469c-9339-523875c835c0
+ - 1
+
+
+
+
+ -
+ 2768
+ -7983
+ 51
+ 20
+
+ -
+ 2795
+ -7973
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 81849188-b493-4caf-b711-90072846d543
+ - 01de0c9e-9e9f-4576-b496-5f24525a07d9
+ - 2
+ - e6204409-8517-47d2-8bad-b618d6ba81d7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 176808cf-6dbb-4465-91a4-587fdbff58b1
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2774
+ -9428
+ 106
+ 64
+
+ -
+ 2838
+ -9396
+
+
+
+
+
+ - Line start point
+ - 0f7ccecc-e0e9-4c5a-a5c2-37b6a1c89f94
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2776
+ -9426
+ 47
+ 20
+
+ -
+ 2801
+ -9416
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2dd18fad-fe56-49af-8d7c-ff770b16d28b
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2776
+ -9406
+ 47
+ 20
+
+ -
+ 2801
+ -9396
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - d6a94cb8-a1d9-487a-b7d4-86174377d65a
+ - true
+ - Length
+ - Length
+ - false
+ - 363c1268-91ff-471d-af28-65ce38ad48b5
+ - 1
+
+
+
+
+ -
+ 2776
+ -9386
+ 47
+ 20
+
+ -
+ 2801
+ -9376
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 3c7fbaad-3a66-4e9b-aa4a-1700eda029b9
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2853
+ -9426
+ 25
+ 60
+
+ -
+ 2867
+ -9396
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 689496b4-7709-4277-b48e-e5e34601568a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2709
+ -8769
+ 194
+ 28
+
+ -
+ 2809
+ -8755
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f7006f73-3992-4384-8c5d-3ba2718bac56
+ - true
+ - Variable O
+ - O
+ - true
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - 1
+
+
+
+
+ -
+ 2711
+ -8767
+ 14
+ 24
+
+ -
+ 2719.5
+ -8755
+
+
+
+
+
+
+
+ - Result of expression
+ - 3e3dadbe-dd8a-4bc6-8678-a7a7dc8a7cc3
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2892
+ -8767
+ 9
+ 24
+
+ -
+ 2898
+ -8755
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d55c439b-a720-4f39-ad97-9b9e49606d02
+ - Panel
+
+ - false
+ - 1
+ - 3e3dadbe-dd8a-4bc6-8678-a7a7dc8a7cc3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -9062
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.036
+ -9061.007
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1e81bf43-4be8-4eb1-864b-95a258d57f2f
+ - Relay
+ -
+ - false
+ - d55c439b-a720-4f39-ad97-9b9e49606d02
+ - 1
+
+
+
+
+ -
+ 2786
+ -9108
+ 40
+ 16
+
+ -
+ 2806
+ -9100
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - Relay
+ -
+ - false
+ - 5964343a-531a-40e7-a7bd-a34379601d4d
+ - 1
+
+
+
+
+ -
+ 2786
+ -8721
+ 40
+ 16
+
+ -
+ 2806
+ -8713
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - bede73fe-828b-4f54-b263-8945e4b41bc3
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - 1
+
+
+
+
+ -
+ 2733
+ -9263
+ 150
+ 150
+
+ -
+ 2733.136
+ -9262.829
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - c0a3dcb9-bca7-4fc5-9bb1-7cd02527dbdb
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2742
+ -8632
+ 128
+ 28
+
+ -
+ 2795
+ -8618
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - d846ee0d-8e0d-4df8-bb11-e468fa4098bb
+ - Values
+ - Values
+ - false
+ - d1b21b3f-8f9f-4bd0-adb1-cef864d42fa1
+ - 1
+
+
+
+
+ -
+ 2744
+ -8630
+ 36
+ 24
+
+ -
+ 2763.5
+ -8618
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - ecc1e601-f24b-4ebc-8c0f-4439786d6f00
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -8630
+ 58
+ 24
+
+ -
+ 2840.5
+ -8618
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5964343a-531a-40e7-a7bd-a34379601d4d
+ - Relay
+
+ - false
+ - ecc1e601-f24b-4ebc-8c0f-4439786d6f00
+ - 1
+
+
+
+
+ -
+ 2786
+ -8666
+ 40
+ 16
+
+ -
+ 2806
+ -8658
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
+ - Relay
+
+ - false
+ - 601aa3b6-34d0-4a75-9712-3a105ed8c617
+ - 1
+
+
+
+
+ -
+ 2786
+ -8525
+ 40
+ 16
+
+ -
+ 2806
+ -8517
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 70057e17-ddee-4825-99e2-ea1ec62f02db
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2738
+ -8587
+ 136
+ 44
+
+ -
+ 2824
+ -8565
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 5fe79787-3412-49fd-9e00-13330f43ed85
+ - Items
+ - Items
+ - false
+ - 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
+ - 1
+
+
+
+
+ -
+ 2740
+ -8585
+ 69
+ 20
+
+ -
+ 2776
+ -8575
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 28f7a17d-7b5f-44cf-ab0b-c58199dec7ac
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2740
+ -8565
+ 69
+ 20
+
+ -
+ 2776
+ -8555
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - d1b21b3f-8f9f-4bd0-adb1-cef864d42fa1
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2839
+ -8585
+ 33
+ 20
+
+ -
+ 2857
+ -8575
+
+
+
+
+
+
+
+ - Number of items replaced
+ - d57bd584-4a69-4286-91fb-6cf3c15a06ef
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2839
+ -8565
+ 33
+ 20
+
+ -
+ 2857
+ -8555
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 486b6841-9208-4a69-a5aa-9c08bdef0dcf
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2777
+ -9324
+ 82
+ 44
+
+ -
+ 2808
+ -9302
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 2307e579-998d-4f07-9d0e-c42c822c05fb
+ - A
+ - A
+ - true
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - 1
+
+
+
+
+ -
+ 2779
+ -9322
+ 14
+ 20
+
+ -
+ 2787.5
+ -9312
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 20fd6e60-24ce-4425-b4f2-1e331622ea1b
+ - B
+ - B
+ - true
+ - 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
+ - 1
+
+
+
+
+ -
+ 2779
+ -9302
+ 14
+ 20
+
+ -
+ 2787.5
+ -9292
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 363c1268-91ff-471d-af28-65ce38ad48b5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9322
+ 34
+ 40
+
+ -
+ 2841.5
+ -9302
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 7
+
+ - 2183007.89888
+
+
+
+
+ -
+ 2688
+ -9344
+ 250
+ 20
+
+ -
+ 2688.392
+ -9343.671
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 6438715f-b0fd-4b4e-9310-90c8dc88eed7
+ - Move
+ - Move
+
+
+
+
+ -
+ 2742
+ -9616
+ 138
+ 44
+
+ -
+ 2810
+ -9594
+
+
+
+
+
+ - Base geometry
+ - 2940cc7e-bea0-49cb-9092-38052325b555
+ - Geometry
+ - Geometry
+ - true
+ - 3c7fbaad-3a66-4e9b-aa4a-1700eda029b9
+ - 1
+
+
+
+
+ -
+ 2744
+ -9614
+ 51
+ 20
+
+ -
+ 2771
+ -9604
+
+
+
+
+
+
+
+ - Translation vector
+ - ac17c328-5da0-4fe0-944f-7eda470ed7e5
+ - Motion
+ - Motion
+ - false
+ - ad7160db-5a22-4671-b943-afdf62fc6dfa
+ - 1
+
+
+
+
+ -
+ 2744
+ -9594
+ 51
+ 20
+
+ -
+ 2771
+ -9584
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -9614
+ 53
+ 20
+
+ -
+ 2853
+ -9604
+
+
+
+
+
+
+
+ - Transformation data
+ - 28681979-1747-4c79-8901-2aa89c3702d7
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -9594
+ 53
+ 20
+
+ -
+ 2853
+ -9584
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 78ea33a1-9827-433a-be36-4e7b57a05958
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2728
+ -9551
+ 155
+ 64
+
+ -
+ 2829
+ -9519
+
+
+
+
+
+ - Vector {x} component
+ - a4403a75-80a5-4b9b-9744-7ae1fd69dadd
+ - -X
+ - X component
+ - X component
+ - false
+ - a5231a70-f4f4-4b81-9867-e1428a4b482a
+ - 1
+
+
+
+
+ -
+ 2730
+ -9549
+ 84
+ 20
+
+ -
+ 2781.5
+ -9539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - d927ae3d-fdf3-4174-bf3e-990487df0fcd
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2730
+ -9529
+ 84
+ 20
+
+ -
+ 2781.5
+ -9519
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 8
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - b218b573-f5ec-4514-a850-f7ad760fc03d
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2730
+ -9509
+ 84
+ 20
+
+ -
+ 2781.5
+ -9499
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - ad7160db-5a22-4671-b943-afdf62fc6dfa
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2844
+ -9549
+ 37
+ 30
+
+ -
+ 2864
+ -9534
+
+
+
+
+
+
+
+ - Vector length
+ - 5ddbae44-47e6-45a8-b8fe-0e204073488f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2844
+ -9519
+ 37
+ 30
+
+ -
+ 2864
+ -9504
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 176808cf-6dbb-4465-91a4-587fdbff58b1
+ - 689496b4-7709-4277-b48e-e5e34601568a
+ - d55c439b-a720-4f39-ad97-9b9e49606d02
+ - 1e81bf43-4be8-4eb1-864b-95a258d57f2f
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - bede73fe-828b-4f54-b263-8945e4b41bc3
+ - c0a3dcb9-bca7-4fc5-9bb1-7cd02527dbdb
+ - 5964343a-531a-40e7-a7bd-a34379601d4d
+ - 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
+ - 70057e17-ddee-4825-99e2-ea1ec62f02db
+ - 486b6841-9208-4a69-a5aa-9c08bdef0dcf
+ - 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
+ - 6438715f-b0fd-4b4e-9310-90c8dc88eed7
+ - 78ea33a1-9827-433a-be36-4e7b57a05958
+ - 601aa3b6-34d0-4a75-9712-3a105ed8c617
+ - fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
+ - e1e086c6-b972-4c75-b268-a004ac8a9dd2
+ - 360d26a9-188d-4a04-ab85-c54f876af341
+ - 849853a5-9fa1-44dc-a6cb-6a6bd83c05a7
+ - db4363b4-d574-4300-84c6-5450a67bacc0
+ - a72749a1-3b33-4ce0-9980-144fc2c4dfd6
+ - d890eaf4-c21c-45e8-ac03-75c58ccbdf99
+ - 717103e5-0ed1-4969-ae88-8af3c23de426
+ - a5231a70-f4f4-4b81-9867-e1428a4b482a
+ - 24
+ - 11c51077-c738-44ff-b97c-c70596e4a90c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 601aa3b6-34d0-4a75-9712-3a105ed8c617
+ - Relay
+ -
+ - false
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2786
+ -8491
+ 40
+ 16
+
+ -
+ 2806
+ -8483
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2734
+ -9775
+ 144
+ 104
+
+ -
+ 2818
+ -9723
+
+
+
+
+
+ - Colour of the diffuse channel
+ - b174bc38-cf40-4d69-ba60-9f514adbf386
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9773
+ 67
+ 20
+
+ -
+ 2771
+ -9763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;186;186;186
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 157d70e8-95da-47f3-a47d-565655495fb6
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9753
+ 67
+ 20
+
+ -
+ 2771
+ -9743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - ca2b9cd2-ba13-4a55-b373-e503d5fc893f
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9733
+ 67
+ 20
+
+ -
+ 2771
+ -9723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 5001bf57-64e1-4f1d-8c22-c98e35203217
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9713
+ 67
+ 20
+
+ -
+ 2771
+ -9703
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8a3823d8-a7cf-4ed3-b142-693eb42ead70
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9693
+ 67
+ 20
+
+ -
+ 2771
+ -9683
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 5e878f84-d64f-488e-9c2b-cf28add842a9
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2833
+ -9773
+ 43
+ 100
+
+ -
+ 2856
+ -9723
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - e1e086c6-b972-4c75-b268-a004ac8a9dd2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2765
+ -9837
+ 82
+ 44
+
+ -
+ 2833
+ -9815
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - c07540f6-ca1c-4703-90c1-dd0c7c7be7c5
+ - Geometry
+ - Geometry
+ - false
+ - a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
+ - 1
+
+
+
+
+ -
+ 2767
+ -9835
+ 51
+ 20
+
+ -
+ 2794
+ -9825
+
+
+
+
+
+
+
+ - The material override
+ - c497aebf-b647-4b79-8e5e-87d73179f881
+ - Material
+ - Material
+ - false
+ - 5e878f84-d64f-488e-9c2b-cf28add842a9
+ - 1
+
+
+
+
+ -
+ 2767
+ -9815
+ 51
+ 20
+
+ -
+ 2794
+ -9805
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
+ - e1e086c6-b972-4c75-b268-a004ac8a9dd2
+ - 2
+ - 360d26a9-188d-4a04-ab85-c54f876af341
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 28b8e0ed-0e44-4505-b866-bab948ef8584
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ 4633
+ 144
+ 64
+
+ -
+ 2805
+ 4665
+
+
+
+
+
+ - Curve to evaluate
+ - caf28ead-e3d6-40a7-91e8-d4e36841eee5
+ - Curve
+ - Curve
+ - false
+ - 1a211dc6-9d12-4255-9f70-29dc0d975fda
+ - 1
+
+
+
+
+ -
+ 2733
+ 4635
+ 57
+ 20
+
+ -
+ 2763
+ 4645
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d8829370-f071-42b1-9ddc-5b2dfb1c1762
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4655
+ 57
+ 20
+
+ -
+ 2763
+ 4665
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 388410ea-9e9d-4ae1-a9fb-62980d055bc9
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4675
+ 57
+ 20
+
+ -
+ 2763
+ 4685
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 46a8ffb0-0a6f-4f4a-af17-85da32781c16
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4635
+ 53
+ 20
+
+ -
+ 2848
+ 4645
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7f8394c2-2c0f-4b2c-802d-b0a8d128058e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4655
+ 53
+ 20
+
+ -
+ 2848
+ 4665
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b25e0766-e715-4b8d-9025-3e1aa0905b22
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4675
+ 53
+ 20
+
+ -
+ 2848
+ 4685
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 50d6ea62-1933-4585-80ec-e31ffe7454f9
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ 4529
+ 125
+ 84
+
+ -
+ 2807
+ 4571
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - b93cec8f-3919-43b3-9986-4220621f67e9
+ - Vertices
+ - Vertices
+ - false
+ - 46a8ffb0-0a6f-4f4a-af17-85da32781c16
+ - 1
+
+
+
+
+ -
+ 2742
+ 4531
+ 50
+ 20
+
+ -
+ 2768.5
+ 4541
+
+
+
+
+
+
+
+ - Curve degree
+ - 4d2826ec-8084-4c8d-9464-ad0a8136d22f
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 4551
+ 50
+ 20
+
+ -
+ 2768.5
+ 4561
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - d93bb10c-7eff-4cd2-be7f-d56be052b3fa
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 4571
+ 50
+ 20
+
+ -
+ 2768.5
+ 4581
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - a166b497-32cf-4d01-a3d6-ac10edf23528
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 4591
+ 50
+ 20
+
+ -
+ 2768.5
+ 4601
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4b3e0cfc-1bf6-4465-bf99-c5f0e54e134f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 4531
+ 41
+ 26
+
+ -
+ 2844
+ 4544.333
+
+
+
+
+
+
+
+ - Curve length
+ - 8c5df789-be84-4bba-93f8-9bea1a4d81e1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 4557
+ 41
+ 27
+
+ -
+ 2844
+ 4571
+
+
+
+
+
+
+
+ - Curve domain
+ - c8ce1e91-9a93-4efe-be71-781d6411bb46
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 4584
+ 41
+ 27
+
+ -
+ 2844
+ 4597.667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 0a876c89-ef58-450e-ae46-5d661fc98802
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 4406
+ 144
+ 104
+
+ -
+ 2815
+ 4458
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 187535bd-483f-4359-9955-cbaa80c28dfe
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4408
+ 67
+ 20
+
+ -
+ 2768
+ 4418
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 49a9589c-7e26-4199-b47f-2d628b0107f6
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4428
+ 67
+ 20
+
+ -
+ 2768
+ 4438
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 59201c17-3176-4c8e-898b-9cbcc204db7c
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4448
+ 67
+ 20
+
+ -
+ 2768
+ 4458
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 11cabf8f-8e8e-411f-ab2d-5b57498b3f3b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4468
+ 67
+ 20
+
+ -
+ 2768
+ 4478
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6401c554-d3e2-4643-b23c-9ae4e5cbb028
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4488
+ 67
+ 20
+
+ -
+ 2768
+ 4498
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 9962f537-c0cf-46f4-a78e-ecdfe3901837
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 4408
+ 43
+ 100
+
+ -
+ 2853
+ 4458
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 232fb359-d2a7-4c55-92a5-fe7f34103c48
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 4344
+ 82
+ 44
+
+ -
+ 2830
+ 4366
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - bd1a9e35-6632-4962-8e54-90d44cf1addf
+ - Geometry
+ - Geometry
+ - false
+ - 4b3e0cfc-1bf6-4465-bf99-c5f0e54e134f
+ - 1
+
+
+
+
+ -
+ 2764
+ 4346
+ 51
+ 20
+
+ -
+ 2791
+ 4356
+
+
+
+
+
+
+
+ - The material override
+ - a854219f-c8b6-4b07-a2d4-326ff44a5612
+ - Material
+ - Material
+ - false
+ - 9962f537-c0cf-46f4-a78e-ecdfe3901837
+ - 1
+
+
+
+
+ -
+ 2764
+ 4366
+ 51
+ 20
+
+ -
+ 2791
+ 4376
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0a876c89-ef58-450e-ae46-5d661fc98802
+ - 232fb359-d2a7-4c55-92a5-fe7f34103c48
+ - 2
+ - a8c2d2b8-7793-472a-add0-5c6add577a3e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0119e2c8-ab78-45ad-b993-71b743e8bc99
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ 2796
+ 144
+ 64
+
+ -
+ 2805
+ 2828
+
+
+
+
+
+ - Curve to evaluate
+ - 3333f64c-2af5-44de-a880-e2fc7a1228ce
+ - Curve
+ - Curve
+ - false
+ - 05694d97-021c-4a49-a1f3-e45b41b569e0
+ - 1
+
+
+
+
+ -
+ 2733
+ 2798
+ 57
+ 20
+
+ -
+ 2763
+ 2808
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 35823d4a-07d6-45ea-bbae-4d969549a7b7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2818
+ 57
+ 20
+
+ -
+ 2763
+ 2828
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 673a3038-d415-4c1c-9d51-997cb4db2b4f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2838
+ 57
+ 20
+
+ -
+ 2763
+ 2848
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - da6e1a4f-7342-4c2d-ba53-b75ff40d63bb
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2798
+ 53
+ 20
+
+ -
+ 2848
+ 2808
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 10c424d1-9914-425e-b107-92859d7f8413
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2818
+ 53
+ 20
+
+ -
+ 2848
+ 2828
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c7495475-a113-4d0b-a2c5-244c8b3d82e3
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2838
+ 53
+ 20
+
+ -
+ 2848
+ 2848
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - aad5e89f-1689-4ac6-8192-4f4373cbea4f
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ 2692
+ 125
+ 84
+
+ -
+ 2807
+ 2734
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 5b853f36-6ff2-4cab-932b-1fc49f517c99
+ - Vertices
+ - Vertices
+ - false
+ - da6e1a4f-7342-4c2d-ba53-b75ff40d63bb
+ - 1
+
+
+
+
+ -
+ 2742
+ 2694
+ 50
+ 20
+
+ -
+ 2768.5
+ 2704
+
+
+
+
+
+
+
+ - Curve degree
+ - 3e0c70d2-c5ae-4d39-9aed-b0b3540f767b
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 2714
+ 50
+ 20
+
+ -
+ 2768.5
+ 2724
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 0b0227db-9aeb-4899-b796-20910564fc8b
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 2734
+ 50
+ 20
+
+ -
+ 2768.5
+ 2744
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 74c0b564-26ac-4175-af76-eed0523089d3
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 2754
+ 50
+ 20
+
+ -
+ 2768.5
+ 2764
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 2fda8a5c-a335-4f9c-b920-73287d3f5422
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 2694
+ 41
+ 26
+
+ -
+ 2844
+ 2707.333
+
+
+
+
+
+
+
+ - Curve length
+ - a352c05d-0573-4dc9-ae04-191182727d3c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 2720
+ 41
+ 27
+
+ -
+ 2844
+ 2734
+
+
+
+
+
+
+
+ - Curve domain
+ - b744393d-0624-4eaa-87c1-50dd3b860c51
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 2747
+ 41
+ 27
+
+ -
+ 2844
+ 2760.667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 1fc6e624-7c49-41f9-becf-1b629588cf31
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 2569
+ 144
+ 104
+
+ -
+ 2815
+ 2621
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e1eb9e3a-f03b-4fc0-a345-5991dc5820ae
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2571
+ 67
+ 20
+
+ -
+ 2768
+ 2581
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 9a84ad35-7dd9-4846-81bb-43c14ea38c15
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2591
+ 67
+ 20
+
+ -
+ 2768
+ 2601
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f667f166-c5fd-4a9c-8714-b482f16d0c90
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2611
+ 67
+ 20
+
+ -
+ 2768
+ 2621
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a6a79189-a0df-48b8-a360-cbbf5e96e255
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2631
+ 67
+ 20
+
+ -
+ 2768
+ 2641
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 0ff4fbe8-f24f-4914-bbb0-03354dc14eef
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2651
+ 67
+ 20
+
+ -
+ 2768
+ 2661
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 66a9c6af-38bc-4d3f-a19d-af81e5ae48cf
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 2571
+ 43
+ 100
+
+ -
+ 2853
+ 2621
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 3198adc1-4a36-4f37-aea4-eff18ec21c4b
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 2507
+ 82
+ 44
+
+ -
+ 2830
+ 2529
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 326eedbe-9d1d-46a7-a68a-5de5a0ca6a5c
+ - Geometry
+ - Geometry
+ - false
+ - 2fda8a5c-a335-4f9c-b920-73287d3f5422
+ - 1
+
+
+
+
+ -
+ 2764
+ 2509
+ 51
+ 20
+
+ -
+ 2791
+ 2519
+
+
+
+
+
+
+
+ - The material override
+ - ec27fd3b-058e-4ef3-aeee-d5ab782d682f
+ - Material
+ - Material
+ - false
+ - 66a9c6af-38bc-4d3f-a19d-af81e5ae48cf
+ - 1
+
+
+
+
+ -
+ 2764
+ 2529
+ 51
+ 20
+
+ -
+ 2791
+ 2539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1fc6e624-7c49-41f9-becf-1b629588cf31
+ - 3198adc1-4a36-4f37-aea4-eff18ec21c4b
+ - 2
+ - ea9452ce-f391-4a3d-9fb3-f180e8edf584
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d37fe9ae-0bf0-4e5b-b780-b8ffbbe9b87b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ 905
+ 144
+ 64
+
+ -
+ 2805
+ 937
+
+
+
+
+
+ - Curve to evaluate
+ - 07060f14-c6ce-415a-a7e3-26d336871d87
+ - Curve
+ - Curve
+ - false
+ - 5c55b193-0023-4ff8-875f-0339cdcf9c91
+ - 1
+
+
+
+
+ -
+ 2733
+ 907
+ 57
+ 20
+
+ -
+ 2763
+ 917
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4c3318bf-fa32-4624-b087-ed4c29ce7d2f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 927
+ 57
+ 20
+
+ -
+ 2763
+ 937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 052a21ce-a9b3-4784-8d47-3d5f0cb90e27
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 947
+ 57
+ 20
+
+ -
+ 2763
+ 957
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4837c179-4459-4b6b-a179-288feb8ea049
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 907
+ 53
+ 20
+
+ -
+ 2848
+ 917
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - cc1c29d8-f214-4102-b61e-af2010d2d1bf
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 927
+ 53
+ 20
+
+ -
+ 2848
+ 937
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 3bafbba0-e362-4f44-8749-bad014c79515
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 947
+ 53
+ 20
+
+ -
+ 2848
+ 957
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 66bf7298-94f5-4b70-9e91-e530523ea15e
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ 801
+ 125
+ 84
+
+ -
+ 2807
+ 843
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 3d9ce99d-7c33-4373-a86d-f6dd7ff0603d
+ - Vertices
+ - Vertices
+ - false
+ - 4837c179-4459-4b6b-a179-288feb8ea049
+ - 1
+
+
+
+
+ -
+ 2742
+ 803
+ 50
+ 20
+
+ -
+ 2768.5
+ 813
+
+
+
+
+
+
+
+ - Curve degree
+ - ec9a5bc7-e43a-40c0-86d2-b330c682b730
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 823
+ 50
+ 20
+
+ -
+ 2768.5
+ 833
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - e17b9f44-b3f9-47d6-bcb3-639799270b83
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 843
+ 50
+ 20
+
+ -
+ 2768.5
+ 853
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c1f91afb-9db6-4499-b567-2397b7e769ec
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 863
+ 50
+ 20
+
+ -
+ 2768.5
+ 873
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 16088e98-5016-47cf-9e06-33de8403752e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 803
+ 41
+ 26
+
+ -
+ 2844
+ 816.3333
+
+
+
+
+
+
+
+ - Curve length
+ - 9eb0f0ea-2965-4fc8-b572-ef5296567ba4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 829
+ 41
+ 27
+
+ -
+ 2844
+ 843
+
+
+
+
+
+
+
+ - Curve domain
+ - b475e5c3-0c60-4abe-9d2e-5a898b27707b
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 856
+ 41
+ 27
+
+ -
+ 2844
+ 869.6666
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b7947ef7-88a1-45b5-96cb-4bbca7365312
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 678
+ 144
+ 104
+
+ -
+ 2815
+ 730
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 40a5ebe3-7b8d-4c9b-920f-6f90ffe39f9c
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 680
+ 67
+ 20
+
+ -
+ 2768
+ 690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - e57ee3f0-2d4e-47d4-9f76-165fa4feca9f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 700
+ 67
+ 20
+
+ -
+ 2768
+ 710
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 1fa8318b-5c7e-4f2a-a16a-9c18f1eb1c96
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 720
+ 67
+ 20
+
+ -
+ 2768
+ 730
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - be82d0b7-6946-4b3f-8c47-30f33589bb4b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 740
+ 67
+ 20
+
+ -
+ 2768
+ 750
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 705f39c6-8b1f-4839-874c-bab611bc7933
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 760
+ 67
+ 20
+
+ -
+ 2768
+ 770
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 29efeab3-518b-400b-8807-f7536d0764bb
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 680
+ 43
+ 100
+
+ -
+ 2853
+ 730
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 1c193ff0-05e8-47a8-96fc-bbafada6a625
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 616
+ 82
+ 44
+
+ -
+ 2830
+ 638
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 026cae0e-93ad-480a-a99e-61ecb378d4c4
+ - Geometry
+ - Geometry
+ - false
+ - 16088e98-5016-47cf-9e06-33de8403752e
+ - 1
+
+
+
+
+ -
+ 2764
+ 618
+ 51
+ 20
+
+ -
+ 2791
+ 628
+
+
+
+
+
+
+
+ - The material override
+ - 68d59d9f-5684-43a8-aab8-2d3b87155155
+ - Material
+ - Material
+ - false
+ - 29efeab3-518b-400b-8807-f7536d0764bb
+ - 1
+
+
+
+
+ -
+ 2764
+ 638
+ 51
+ 20
+
+ -
+ 2791
+ 648
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b7947ef7-88a1-45b5-96cb-4bbca7365312
+ - 1c193ff0-05e8-47a8-96fc-bbafada6a625
+ - 2
+ - bb422305-f56f-490b-b653-544931c09145
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - a628cbff-e924-4087-b69a-6ae9e00ca171
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ -858
+ 144
+ 64
+
+ -
+ 2805
+ -826
+
+
+
+
+
+ - Curve to evaluate
+ - 7d680361-612f-4597-b92e-e7a39e433b82
+ - Curve
+ - Curve
+ - false
+ - 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
+ - 1
+
+
+
+
+ -
+ 2733
+ -856
+ 57
+ 20
+
+ -
+ 2763
+ -846
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ecb7d58d-f12b-4083-a286-3c860ec02870
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -836
+ 57
+ 20
+
+ -
+ 2763
+ -826
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - e74be359-5cba-4fe2-b76e-d5984b3df516
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -816
+ 57
+ 20
+
+ -
+ 2763
+ -806
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d2941202-8d0a-4dd6-bfc8-2c750ee6b352
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -856
+ 53
+ 20
+
+ -
+ 2848
+ -846
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e2bb87aa-c7e9-49e3-94d1-b6bf4496d193
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -836
+ 53
+ 20
+
+ -
+ 2848
+ -826
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 06fa28fb-0615-47b5-94dd-222c17617c39
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -816
+ 53
+ 20
+
+ -
+ 2848
+ -806
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - e02dc4a6-1ed5-4658-8ab5-2a962ae14431
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ -962
+ 125
+ 84
+
+ -
+ 2807
+ -920
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 1c02e629-be1d-464f-a454-fb753462143c
+ - Vertices
+ - Vertices
+ - false
+ - d2941202-8d0a-4dd6-bfc8-2c750ee6b352
+ - 1
+
+
+
+
+ -
+ 2742
+ -960
+ 50
+ 20
+
+ -
+ 2768.5
+ -950
+
+
+
+
+
+
+
+ - Curve degree
+ - e9fcd0c7-60d3-46b8-86cb-60060d76f560
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -940
+ 50
+ 20
+
+ -
+ 2768.5
+ -930
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 6fb52cf2-f3cd-4410-8c7f-12b46722b7fd
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -920
+ 50
+ 20
+
+ -
+ 2768.5
+ -910
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 31efb708-8f46-42f6-9447-9c6fe45d1c6f
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -900
+ 50
+ 20
+
+ -
+ 2768.5
+ -890
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 28cadc91-34c8-4ad0-8a0c-e13862554c89
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -960
+ 41
+ 26
+
+ -
+ 2844
+ -946.6667
+
+
+
+
+
+
+
+ - Curve length
+ - 5c7d6f64-079a-4ae4-af56-0d6f63d06ed5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -934
+ 41
+ 27
+
+ -
+ 2844
+ -920
+
+
+
+
+
+
+
+ - Curve domain
+ - 0c74b56c-c91f-4e48-8147-a035074f3602
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -907
+ 41
+ 27
+
+ -
+ 2844
+ -893.3334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -1085
+ 144
+ 104
+
+ -
+ 2815
+ -1033
+
+
+
+
+
+ - Colour of the diffuse channel
+ - fdaf6f4f-d379-4e03-8e14-1ae5af262073
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1083
+ 67
+ 20
+
+ -
+ 2768
+ -1073
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;199;199;199
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 2eb9cb51-059e-4efb-9574-6ab5d513b44b
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1063
+ 67
+ 20
+
+ -
+ 2768
+ -1053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - a37ffe1b-5ee8-46c8-afc4-b479eacfc6b2
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1043
+ 67
+ 20
+
+ -
+ 2768
+ -1033
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 08bdb14d-4890-4185-bb41-eeb1d208541b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1023
+ 67
+ 20
+
+ -
+ 2768
+ -1013
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 209ab11b-1c07-4264-b2ea-3abddf2938fb
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1003
+ 67
+ 20
+
+ -
+ 2768
+ -993
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0465f47b-cc56-49f2-a4a4-1c51e7d15db0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -1083
+ 43
+ 100
+
+ -
+ 2853
+ -1033
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 4793db3b-823e-4fc7-9363-44884123053d
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -1147
+ 82
+ 44
+
+ -
+ 2830
+ -1125
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ee4b8549-14aa-4c33-ba01-ded1f5e8b6f1
+ - Geometry
+ - Geometry
+ - false
+ - 28cadc91-34c8-4ad0-8a0c-e13862554c89
+ - 1
+
+
+
+
+ -
+ 2764
+ -1145
+ 51
+ 20
+
+ -
+ 2791
+ -1135
+
+
+
+
+
+
+
+ - The material override
+ - feef5d5d-af6d-46de-bbd9-9be97643707e
+ - Material
+ - Material
+ - false
+ - 0465f47b-cc56-49f2-a4a4-1c51e7d15db0
+ - 1
+
+
+
+
+ -
+ 2764
+ -1125
+ 51
+ 20
+
+ -
+ 2791
+ -1115
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
+ - 4793db3b-823e-4fc7-9363-44884123053d
+ - 2
+ - 36470645-ff8a-4059-9665-a25ef0bc1bff
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3e7cc59c-5d43-43d2-a2fc-3ff56e225a0a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ -2656
+ 144
+ 64
+
+ -
+ 2805
+ -2624
+
+
+
+
+
+ - Curve to evaluate
+ - 5291eaad-112f-4858-b476-8a63ec73f9ab
+ - Curve
+ - Curve
+ - false
+ - 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
+ - 1
+
+
+
+
+ -
+ 2733
+ -2654
+ 57
+ 20
+
+ -
+ 2763
+ -2644
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - f531c7b0-3e27-4250-b0e1-ceadc8fd1bfc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2634
+ 57
+ 20
+
+ -
+ 2763
+ -2624
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6bbfeab5-3df3-42c1-91d8-4cd62b4e9d7c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2614
+ 57
+ 20
+
+ -
+ 2763
+ -2604
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 392dd8ca-50b1-4832-9c2a-70b3c5c08ace
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2654
+ 53
+ 20
+
+ -
+ 2848
+ -2644
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 0b49d03c-7253-4a06-aed5-ea6f4c64964f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2634
+ 53
+ 20
+
+ -
+ 2848
+ -2624
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 39ee3f46-1864-4eb2-812d-8b03f5df68cd
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2614
+ 53
+ 20
+
+ -
+ 2848
+ -2604
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 23406fea-d648-42ad-a9a6-9e6a5e871332
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ -2760
+ 125
+ 84
+
+ -
+ 2807
+ -2718
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 28909a9b-01ce-4f31-a16d-6322153d5598
+ - Vertices
+ - Vertices
+ - false
+ - 392dd8ca-50b1-4832-9c2a-70b3c5c08ace
+ - 1
+
+
+
+
+ -
+ 2742
+ -2758
+ 50
+ 20
+
+ -
+ 2768.5
+ -2748
+
+
+
+
+
+
+
+ - Curve degree
+ - 722d2441-f0fc-4557-a48d-18c999cf1aa6
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2738
+ 50
+ 20
+
+ -
+ 2768.5
+ -2728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 9654d4c8-c749-4e5b-9f92-86217d9b75d1
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2718
+ 50
+ 20
+
+ -
+ 2768.5
+ -2708
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 083481ca-4714-4e50-bbdb-975ab796d19d
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2698
+ 50
+ 20
+
+ -
+ 2768.5
+ -2688
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - cf73f88f-731e-4747-b666-01db880b93b4
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -2758
+ 41
+ 26
+
+ -
+ 2844
+ -2744.667
+
+
+
+
+
+
+
+ - Curve length
+ - eab89f53-0c10-44ed-b69e-b76065c74526
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -2732
+ 41
+ 27
+
+ -
+ 2844
+ -2718
+
+
+
+
+
+
+
+ - Curve domain
+ - 74f2a6ab-5a65-4809-ae93-c553136974db
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -2705
+ 41
+ 27
+
+ -
+ 2844
+ -2691.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 6e9a05fd-a63f-46c8-8e9c-6c2090966168
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -2883
+ 144
+ 104
+
+ -
+ 2815
+ -2831
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 1b77150c-56dc-458c-96ed-001110e8d77e
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2881
+ 67
+ 20
+
+ -
+ 2768
+ -2871
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;191;191;191
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3fc82104-3c05-4b51-8b46-e5715460b6d8
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2861
+ 67
+ 20
+
+ -
+ 2768
+ -2851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - bbb5f55a-b345-4752-a8f8-d6d623e4fdca
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2841
+ 67
+ 20
+
+ -
+ 2768
+ -2831
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d0b3ee2c-3902-4b56-9522-710d7ec8d8f5
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2821
+ 67
+ 20
+
+ -
+ 2768
+ -2811
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1e93df78-1421-4a87-8d5e-81f66824b877
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2801
+ 67
+ 20
+
+ -
+ 2768
+ -2791
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 4842bdcf-dc78-4ab6-8b3a-93e6f341072f
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -2881
+ 43
+ 100
+
+ -
+ 2853
+ -2831
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 5b1003b9-09b0-4476-8f1b-58290691bc28
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -2945
+ 82
+ 44
+
+ -
+ 2830
+ -2923
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - e4f0e23f-3d02-4af6-8ddd-9eb89b7f9270
+ - Geometry
+ - Geometry
+ - false
+ - cf73f88f-731e-4747-b666-01db880b93b4
+ - 1
+
+
+
+
+ -
+ 2764
+ -2943
+ 51
+ 20
+
+ -
+ 2791
+ -2933
+
+
+
+
+
+
+
+ - The material override
+ - 7de66a47-dc70-4ff5-a337-9a15eca19455
+ - Material
+ - Material
+ - false
+ - 4842bdcf-dc78-4ab6-8b3a-93e6f341072f
+ - 1
+
+
+
+
+ -
+ 2764
+ -2923
+ 51
+ 20
+
+ -
+ 2791
+ -2913
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6e9a05fd-a63f-46c8-8e9c-6c2090966168
+ - 5b1003b9-09b0-4476-8f1b-58290691bc28
+ - 2
+ - dcb7528a-ecb2-455e-a7a9-bbc1925d8141
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 33d169ca-0346-4d9c-8215-357b9043028e
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - 81207625-50b7-466b-a33d-23c0e88f3ac9
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - 5
+ - d4852463-f9fa-4e3e-83d1-08d306826395
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8500138e-2946-4f7c-be93-c3c7109b4c2f
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2735
+ -4453
+ 144
+ 64
+
+ -
+ 2809
+ -4421
+
+
+
+
+
+ - Curve to evaluate
+ - 1bd32a94-d147-45be-8a0f-1e4dce95c4a4
+ - Curve
+ - Curve
+ - false
+ - 2c9695ba-b315-4f78-85cd-abc3b3a78187
+ - 1
+
+
+
+
+ -
+ 2737
+ -4451
+ 57
+ 20
+
+ -
+ 2767
+ -4441
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - f024bb82-6011-45dd-bff5-acfe413195ee
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4431
+ 57
+ 20
+
+ -
+ 2767
+ -4421
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 59ab80ba-f9eb-4352-b012-6afab2e1bc28
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4411
+ 57
+ 20
+
+ -
+ 2767
+ -4401
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 0dc9f2cb-fa29-4c8e-8186-db35e5abf4af
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -4451
+ 53
+ 20
+
+ -
+ 2852
+ -4441
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a3e505b1-2bf5-4fb5-8813-cbaff30d53da
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -4431
+ 53
+ 20
+
+ -
+ 2852
+ -4421
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b5d70c8b-a430-4da0-b488-c56572a09b2d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -4411
+ 53
+ 20
+
+ -
+ 2852
+ -4401
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - cad9f703-3621-4a15-835e-3c62c5728043
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2744
+ -4559
+ 125
+ 84
+
+ -
+ 2811
+ -4517
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 5ed9bce7-4015-4df0-b8f5-0de94c1cbf95
+ - Vertices
+ - Vertices
+ - false
+ - 0dc9f2cb-fa29-4c8e-8186-db35e5abf4af
+ - 1
+
+
+
+
+ -
+ 2746
+ -4557
+ 50
+ 20
+
+ -
+ 2772.5
+ -4547
+
+
+
+
+
+
+
+ - Curve degree
+ - 151fcd36-e8e1-4f57-a353-9e136351155b
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -4537
+ 50
+ 20
+
+ -
+ 2772.5
+ -4527
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 44d97364-de0d-42c1-b461-d89223876d34
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -4517
+ 50
+ 20
+
+ -
+ 2772.5
+ -4507
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 25ca8fff-1ec8-414d-95c3-374462bea822
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -4497
+ 50
+ 20
+
+ -
+ 2772.5
+ -4487
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 66845570-eed1-42c1-b834-160fef10c84f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -4557
+ 41
+ 26
+
+ -
+ 2848
+ -4543.667
+
+
+
+
+
+
+
+ - Curve length
+ - 36c22447-bf2f-47c5-87e0-7772131609ba
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -4531
+ 41
+ 27
+
+ -
+ 2848
+ -4517
+
+
+
+
+
+
+
+ - Curve domain
+ - 531ca2f9-4502-433d-a846-7e6e38102384
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -4504
+ 41
+ 27
+
+ -
+ 2848
+ -4490.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 19800ae1-a0b6-4fea-a742-1c5c30324ec3
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -4682
+ 144
+ 104
+
+ -
+ 2819
+ -4630
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 798af4f9-0b91-4c67-a146-f8ad1602f43d
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4680
+ 67
+ 20
+
+ -
+ 2772
+ -4670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;184;184;184
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 161df7f9-b363-4f5b-a5d8-62681df0dfb6
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4660
+ 67
+ 20
+
+ -
+ 2772
+ -4650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 22752c53-b4e2-4979-abb6-386367b72112
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4640
+ 67
+ 20
+
+ -
+ 2772
+ -4630
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - b34e8871-494d-47ba-a649-f8b835b14530
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4620
+ 67
+ 20
+
+ -
+ 2772
+ -4610
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - e3c15594-84a4-42e2-80f7-176381f104a4
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4600
+ 67
+ 20
+
+ -
+ 2772
+ -4590
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 4acb491c-4b2c-4547-9db6-02d779e78cef
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -4680
+ 43
+ 100
+
+ -
+ 2857
+ -4630
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - ceffa153-887e-4858-9494-ff4113ed6ec8
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -4744
+ 82
+ 44
+
+ -
+ 2834
+ -4722
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 365e9e83-b0ce-4edf-92d4-e61353683006
+ - Geometry
+ - Geometry
+ - false
+ - 66845570-eed1-42c1-b834-160fef10c84f
+ - 1
+
+
+
+
+ -
+ 2768
+ -4742
+ 51
+ 20
+
+ -
+ 2795
+ -4732
+
+
+
+
+
+
+
+ - The material override
+ - 195e77de-8ce9-40c3-940e-66add71fd5a7
+ - Material
+ - Material
+ - false
+ - 4acb491c-4b2c-4547-9db6-02d779e78cef
+ - 1
+
+
+
+
+ -
+ 2768
+ -4722
+ 51
+ 20
+
+ -
+ 2795
+ -4712
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 19800ae1-a0b6-4fea-a742-1c5c30324ec3
+ - ceffa153-887e-4858-9494-ff4113ed6ec8
+ - 2
+ - e9181e89-67db-453a-a90b-03cf875e54e4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1ed8af89-73d9-46fb-9f92-85e97b1954ab
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2736
+ -6254
+ 144
+ 64
+
+ -
+ 2810
+ -6222
+
+
+
+
+
+ - Curve to evaluate
+ - 317be7dc-eb4a-4b04-a50a-3d099775df9f
+ - Curve
+ - Curve
+ - false
+ - 6887d1d4-79dc-484f-ba0b-cbc72eeea403
+ - 1
+
+
+
+
+ -
+ 2738
+ -6252
+ 57
+ 20
+
+ -
+ 2768
+ -6242
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - cf6786f7-c209-49b2-9c1d-b5738c2930bf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6232
+ 57
+ 20
+
+ -
+ 2768
+ -6222
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 5a5a4805-c174-42bf-b1c2-2dabbf02147b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6212
+ 57
+ 20
+
+ -
+ 2768
+ -6202
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5fcc74ba-0e29-4f6c-85df-f1a715ae68be
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -6252
+ 53
+ 20
+
+ -
+ 2853
+ -6242
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 73cb7946-f977-44ec-b1c4-35587265ebd7
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -6232
+ 53
+ 20
+
+ -
+ 2853
+ -6222
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 6d9240b7-36e9-49be-9f55-bc39647103ec
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -6212
+ 53
+ 20
+
+ -
+ 2853
+ -6202
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 35cf69c6-1a64-47f3-beee-9ffa3d777872
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2745
+ -6360
+ 125
+ 84
+
+ -
+ 2812
+ -6318
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 0e79b795-d38e-4540-9f76-3cae416aa75d
+ - Vertices
+ - Vertices
+ - false
+ - 5fcc74ba-0e29-4f6c-85df-f1a715ae68be
+ - 1
+
+
+
+
+ -
+ 2747
+ -6358
+ 50
+ 20
+
+ -
+ 2773.5
+ -6348
+
+
+
+
+
+
+
+ - Curve degree
+ - 023486d2-3d90-4c94-85a8-6ec7e26d3f54
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -6338
+ 50
+ 20
+
+ -
+ 2773.5
+ -6328
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - f0bd6571-6ddf-4f9a-9010-6afb2db35516
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -6318
+ 50
+ 20
+
+ -
+ 2773.5
+ -6308
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c29a4089-d1df-4eb7-87b8-5760006cd8f1
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -6298
+ 50
+ 20
+
+ -
+ 2773.5
+ -6288
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 3d8a624c-87ce-442d-bd4d-01088ae62c90
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -6358
+ 41
+ 26
+
+ -
+ 2849
+ -6344.667
+
+
+
+
+
+
+
+ - Curve length
+ - 5bf8f24a-c210-4f9f-b69d-6bc3edeb020a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -6332
+ 41
+ 27
+
+ -
+ 2849
+ -6318
+
+
+
+
+
+
+
+ - Curve domain
+ - b2911b12-0c31-412f-b48e-4c87f541b21d
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -6305
+ 41
+ 27
+
+ -
+ 2849
+ -6291.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 9cb83053-a3f1-4d08-bad8-b0b6d4352272
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2736
+ -6483
+ 144
+ 104
+
+ -
+ 2820
+ -6431
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e4ebfa9c-8dff-4e98-9e81-9e94f8912f89
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6481
+ 67
+ 20
+
+ -
+ 2773
+ -6471
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - a45bbbd8-5417-4fa8-a90e-537d5562f7ff
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6461
+ 67
+ 20
+
+ -
+ 2773
+ -6451
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 74ef5c1a-cb30-48a5-9045-fc4ac82ef322
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6441
+ 67
+ 20
+
+ -
+ 2773
+ -6431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 3064c491-155d-4541-a63b-4d60abb4fd63
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6421
+ 67
+ 20
+
+ -
+ 2773
+ -6411
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8a33f754-f6af-46d8-9c3b-b4e8a215f771
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6401
+ 67
+ 20
+
+ -
+ 2773
+ -6391
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 11050eac-b82c-4dfe-b312-13b0f6b7bd38
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -6481
+ 43
+ 100
+
+ -
+ 2858
+ -6431
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - b0dc11e3-028a-4c68-abf7-dc7f220168c2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2767
+ -6545
+ 82
+ 44
+
+ -
+ 2835
+ -6523
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - cdc9bf03-a4a6-4d0b-8389-a75eda5e95c6
+ - Geometry
+ - Geometry
+ - false
+ - 3d8a624c-87ce-442d-bd4d-01088ae62c90
+ - 1
+
+
+
+
+ -
+ 2769
+ -6543
+ 51
+ 20
+
+ -
+ 2796
+ -6533
+
+
+
+
+
+
+
+ - The material override
+ - 2a5f5d5d-72d3-442e-996f-30723a10cdf5
+ - Material
+ - Material
+ - false
+ - 11050eac-b82c-4dfe-b312-13b0f6b7bd38
+ - 1
+
+
+
+
+ -
+ 2769
+ -6523
+ 51
+ 20
+
+ -
+ 2796
+ -6513
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9cb83053-a3f1-4d08-bad8-b0b6d4352272
+ - b0dc11e3-028a-4c68-abf7-dc7f220168c2
+ - 2
+ - 957995f5-c366-463c-b3ce-f70bdb0ab1f3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f204596d-0539-42bc-b3c3-7a6c11f93504
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2735
+ -8087
+ 144
+ 64
+
+ -
+ 2809
+ -8055
+
+
+
+
+
+ - Curve to evaluate
+ - 5d07980d-9b5d-4839-9837-673407fab7e2
+ - Curve
+ - Curve
+ - false
+ - 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
+ - 1
+
+
+
+
+ -
+ 2737
+ -8085
+ 57
+ 20
+
+ -
+ 2767
+ -8075
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4fba7df1-34b1-4fae-842c-94ab12f833d3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8065
+ 57
+ 20
+
+ -
+ 2767
+ -8055
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4da6ac45-93c0-4778-bf44-2170ee05988f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8045
+ 57
+ 20
+
+ -
+ 2767
+ -8035
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ac7b3481-1027-4677-86c0-0467cd2f6b29
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -8085
+ 53
+ 20
+
+ -
+ 2852
+ -8075
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9b09da1b-d90b-4e0e-8413-616830d9269b
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -8065
+ 53
+ 20
+
+ -
+ 2852
+ -8055
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - aa85df81-6dd0-4755-83a0-661676b646df
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -8045
+ 53
+ 20
+
+ -
+ 2852
+ -8035
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 4188728e-68e2-4d42-82f2-19bb6c40b380
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2744
+ -8193
+ 125
+ 84
+
+ -
+ 2811
+ -8151
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 20e3d53a-42b1-4313-b071-46dba1b25a71
+ - Vertices
+ - Vertices
+ - false
+ - ac7b3481-1027-4677-86c0-0467cd2f6b29
+ - 1
+
+
+
+
+ -
+ 2746
+ -8191
+ 50
+ 20
+
+ -
+ 2772.5
+ -8181
+
+
+
+
+
+
+
+ - Curve degree
+ - 6ce624b9-0b32-4b5c-a581-6fc102f9456f
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -8171
+ 50
+ 20
+
+ -
+ 2772.5
+ -8161
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 4f7b9876-037c-489e-a1ee-d69840321db6
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -8151
+ 50
+ 20
+
+ -
+ 2772.5
+ -8141
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c75613a9-6ea8-4f77-a3e5-6e2d236bed31
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -8131
+ 50
+ 20
+
+ -
+ 2772.5
+ -8121
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - b577260e-1f33-4ead-9e5e-d3fd4bde379a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -8191
+ 41
+ 26
+
+ -
+ 2848
+ -8177.667
+
+
+
+
+
+
+
+ - Curve length
+ - 8c82ae2b-09c9-4079-ac43-d59ad8341e81
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -8165
+ 41
+ 27
+
+ -
+ 2848
+ -8151
+
+
+
+
+
+
+
+ - Curve domain
+ - 52e29a2f-1c7b-4db7-8117-c0141924e05e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -8138
+ 41
+ 27
+
+ -
+ 2848
+ -8124.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 844999aa-f0e7-431f-b0df-673861258066
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -8316
+ 144
+ 104
+
+ -
+ 2819
+ -8264
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 2fabe4e0-a17b-4cc8-8636-c46f20d35512
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8314
+ 67
+ 20
+
+ -
+ 2772
+ -8304
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;168;168;168
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 6e381911-f2cd-4b19-8843-4a7b22a3c5b8
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8294
+ 67
+ 20
+
+ -
+ 2772
+ -8284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - b57b9b21-e4a7-4532-9d71-e0c219a7f3ba
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8274
+ 67
+ 20
+
+ -
+ 2772
+ -8264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1a3bb167-f4f0-42a7-a29d-15464d045612
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8254
+ 67
+ 20
+
+ -
+ 2772
+ -8244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a67b3a4e-371b-4da9-8e68-d995d117f98e
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8234
+ 67
+ 20
+
+ -
+ 2772
+ -8224
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 13d86a2c-22d1-4f55-9666-48646c3be46e
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -8314
+ 43
+ 100
+
+ -
+ 2857
+ -8264
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - aced67d1-3056-41dd-ae2f-76dd69e0987e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -8378
+ 82
+ 44
+
+ -
+ 2834
+ -8356
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - c9c40787-4cec-4597-b4a0-acedae807771
+ - Geometry
+ - Geometry
+ - false
+ - b577260e-1f33-4ead-9e5e-d3fd4bde379a
+ - 1
+
+
+
+
+ -
+ 2768
+ -8376
+ 51
+ 20
+
+ -
+ 2795
+ -8366
+
+
+
+
+
+
+
+ - The material override
+ - 557aa6cd-3da5-442a-aaf3-bee6d3c4fa2a
+ - Material
+ - Material
+ - false
+ - 13d86a2c-22d1-4f55-9666-48646c3be46e
+ - 1
+
+
+
+
+ -
+ 2768
+ -8356
+ 51
+ 20
+
+ -
+ 2795
+ -8346
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 844999aa-f0e7-431f-b0df-673861258066
+ - aced67d1-3056-41dd-ae2f-76dd69e0987e
+ - 2
+ - 820d65ee-b16e-41e8-bf3f-4da0ede194da
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 849853a5-9fa1-44dc-a6cb-6a6bd83c05a7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2734
+ -9921
+ 144
+ 64
+
+ -
+ 2808
+ -9889
+
+
+
+
+
+ - Curve to evaluate
+ - e0f26723-e6ff-4ce9-b582-f65ee6484a2a
+ - Curve
+ - Curve
+ - false
+ - a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
+ - 1
+
+
+
+
+ -
+ 2736
+ -9919
+ 57
+ 20
+
+ -
+ 2766
+ -9909
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 681bc8ed-8583-4ef7-98fd-e37c031a5189
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9899
+ 57
+ 20
+
+ -
+ 2766
+ -9889
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - eb5fc821-c2da-4bae-b1ec-e9520fb0ce91
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9879
+ 57
+ 20
+
+ -
+ 2766
+ -9869
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - b579a4ce-06f7-4362-ab8d-dcced9e2a355
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9919
+ 53
+ 20
+
+ -
+ 2851
+ -9909
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 901e95ff-01af-4061-8ffd-d8fe531bd4a7
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9899
+ 53
+ 20
+
+ -
+ 2851
+ -9889
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 5b6fd995-922d-4361-891b-63b05b0af517
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9879
+ 53
+ 20
+
+ -
+ 2851
+ -9869
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - db4363b4-d574-4300-84c6-5450a67bacc0
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2743
+ -10027
+ 125
+ 84
+
+ -
+ 2810
+ -9985
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - e67764f8-b843-4b5f-bda6-7642b40f29e6
+ - Vertices
+ - Vertices
+ - false
+ - b579a4ce-06f7-4362-ab8d-dcced9e2a355
+ - 1
+
+
+
+
+ -
+ 2745
+ -10025
+ 50
+ 20
+
+ -
+ 2771.5
+ -10015
+
+
+
+
+
+
+
+ - Curve degree
+ - a4cad95c-dfd4-4581-8d89-b20327c89a1e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2745
+ -10005
+ 50
+ 20
+
+ -
+ 2771.5
+ -9995
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 1cb94c23-c004-45a3-924b-67f12eca2f39
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2745
+ -9985
+ 50
+ 20
+
+ -
+ 2771.5
+ -9975
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - bd640419-7486-46af-91f3-bc0a191b0cd4
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2745
+ -9965
+ 50
+ 20
+
+ -
+ 2771.5
+ -9955
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ec5436f0-1b36-4ea0-81a5-dc0d95baba79
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10025
+ 41
+ 26
+
+ -
+ 2847
+ -10011.67
+
+
+
+
+
+
+
+ - Curve length
+ - cb23c111-31ed-4d24-a5df-095fee07f63b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -9999
+ 41
+ 27
+
+ -
+ 2847
+ -9985
+
+
+
+
+
+
+
+ - Curve domain
+ - 28600d5d-d27b-4fc7-92e2-d6b582f95712
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -9972
+ 41
+ 27
+
+ -
+ 2847
+ -9958.334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a72749a1-3b33-4ce0-9980-144fc2c4dfd6
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2734
+ -10150
+ 144
+ 104
+
+ -
+ 2818
+ -10098
+
+
+
+
+
+ - Colour of the diffuse channel
+ - c5926cab-4646-449b-904f-b2af563a3fee
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10148
+ 67
+ 20
+
+ -
+ 2771
+ -10138
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;161;161;161
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 6fc6c729-2250-4c8f-84d7-bc281aac89f1
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10128
+ 67
+ 20
+
+ -
+ 2771
+ -10118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - b16c46b9-0e96-4ad5-8781-82c985711738
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10108
+ 67
+ 20
+
+ -
+ 2771
+ -10098
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 940ae8b1-661d-4b15-a408-4a4a2eb2e3b3
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10088
+ 67
+ 20
+
+ -
+ 2771
+ -10078
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1ab3380c-8e2c-471a-bc81-cef12c23e22f
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10068
+ 67
+ 20
+
+ -
+ 2771
+ -10058
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - fd4cd563-5745-49a3-a2b6-97794306ac59
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2833
+ -10148
+ 43
+ 100
+
+ -
+ 2856
+ -10098
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - d890eaf4-c21c-45e8-ac03-75c58ccbdf99
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2765
+ -10212
+ 82
+ 44
+
+ -
+ 2833
+ -10190
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 49248837-c4b5-4f81-a8c4-2a5f6db96f58
+ - Geometry
+ - Geometry
+ - false
+ - ec5436f0-1b36-4ea0-81a5-dc0d95baba79
+ - 1
+
+
+
+
+ -
+ 2767
+ -10210
+ 51
+ 20
+
+ -
+ 2794
+ -10200
+
+
+
+
+
+
+
+ - The material override
+ - 92d87252-f0c4-46f8-9a9a-d4cef4af76a1
+ - Material
+ - Material
+ - false
+ - fd4cd563-5745-49a3-a2b6-97794306ac59
+ - 1
+
+
+
+
+ -
+ 2767
+ -10190
+ 51
+ 20
+
+ -
+ 2794
+ -10180
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a72749a1-3b33-4ce0-9980-144fc2c4dfd6
+ - d890eaf4-c21c-45e8-ac03-75c58ccbdf99
+ - 2
+ - 717103e5-0ed1-4969-ae88-8af3c23de426
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f77a5006-5ba9-4819-b46f-c7f246c09821
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 5
+
+ - 2.0000000
+
+
+
+
+ -
+ 4189
+ -376
+ 250
+ 20
+
+ -
+ 4189.567
+ -375.0449
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0437500000
+
+
+
+
+ -
+ 4195
+ 1022
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.05635200000
+
+
+
+
+ -
+ 4205
+ 3368
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 2cf94056-6af5-459d-9d0b-edb8f8adea38
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 6
+
+ - 0.100000
+
+
+
+
+ -
+ 4183
+ -4601
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d20d51a6-0c15-4c64-97de-546619bd377a
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 6
+
+ - 0.300000
+
+
+
+
+ -
+ 4176
+ -7571
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 55afe88e-7557-479e-9e1c-b4203f6192a6
+ - Relay
+
+ - false
+ - 210595a4-1d10-4344-bd58-627eab3a32ef
+ - 1
+
+
+
+
+ -
+ 3776
+ 10414
+ 40
+ 16
+
+ -
+ 3796
+ 10422
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4227074c-5231-425a-b277-d5164885ffc0
+ - Relay
+
+ - false
+ - 9ceab0bb-ef18-4345-9200-ef7c70eb6654
+ - 1
+
+
+
+
+ -
+ 3786
+ 10191
+ 40
+ 16
+
+ -
+ 3806
+ 10199
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 0c9278c9-41ff-4720-aab1-bab44aeb2749
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3735
+ 10227
+ 154
+ 64
+
+ -
+ 3819
+ 10259
+
+
+
+
+
+ - Base geometry
+ - 78ba6dbf-381a-4729-9459-5e3d95034b04
+ - Geometry
+ - Geometry
+ - true
+ - ae3f2420-9704-498d-850c-ca28fe138783
+ - 1
+
+
+
+
+ -
+ 3737
+ 10229
+ 67
+ 20
+
+ -
+ 3780
+ 10239
+
+
+
+
+
+
+
+ - Center of scaling
+ - fdc2ecf5-677c-44bf-8e7c-34a2b894854d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3737
+ 10249
+ 67
+ 20
+
+ -
+ 3780
+ 10259
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - a27fb2b2-c82a-421e-9dc2-95b7ed6cb938
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 710ff60f-7299-433f-bde9-7885ee19b9ca
+ - 1
+
+
+
+
+ -
+ 3737
+ 10269
+ 67
+ 20
+
+ -
+ 3780
+ 10279
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 9ceab0bb-ef18-4345-9200-ef7c70eb6654
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3834
+ 10229
+ 53
+ 30
+
+ -
+ 3862
+ 10244
+
+
+
+
+
+
+
+ - Transformation data
+ - 514b4484-f8d9-4fff-b013-f63c889560be
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3834
+ 10259
+ 53
+ 30
+
+ -
+ 3862
+ 10274
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 710ff60f-7299-433f-bde9-7885ee19b9ca
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 3681
+ 10311
+ 250
+ 20
+
+ -
+ 3681.04
+ 10311.38
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5d91aef4-3441-4a3b-9dc2-547980473cf4
+ - 85ee6eeb-392d-4c79-b3c5-af1bf84e29a9
+ - 2
+ - 9260f95b-108f-4253-b9a3-822f423289c2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0c9278c9-41ff-4720-aab1-bab44aeb2749
+ - 710ff60f-7299-433f-bde9-7885ee19b9ca
+ - 2
+ - ca2d1f68-0d4b-4b97-ba76-467d79e8b927
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - a598cad4-d1e2-46ad-bc9b-a7dbf66bbaf0
+ - Expression
+
+
+
+
+
+ -
+ 3765
+ 11625
+ 79
+ 28
+
+ -
+ 3807
+ 11639
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 627964b4-e998-497f-a4bc-4001f97662e5
+ - Variable X
+ - X
+ - true
+ - 26d9c13f-79ff-4367-baad-c775d2229988
+ - 1
+
+
+
+
+ -
+ 3767
+ 11627
+ 14
+ 24
+
+ -
+ 3775.5
+ 11639
+
+
+
+
+
+
+
+ - Result of expression
+ - 741061e5-8838-40ff-af91-077bcc0dd190
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 3833
+ 11627
+ 9
+ 24
+
+ -
+ 3839
+ 11639
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a45e2b7f-bd84-46c3-ae14-f8de9c721e80
+ - 2be13947-d202-4d6c-8661-bb52cdd4559b
+ - c11491fd-5330-4b29-89af-d635ad183d27
+ - 47b940f0-6a69-42c7-b488-28d4fcf07751
+ - 73d58913-c57b-480b-a2d6-b364fe4a8709
+ - 00eba88b-f92d-486d-968c-ef25222e80f8
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 60fc7e6e-0905-4df6-a879-c9490492de11
+ - c670c4f7-058a-46e7-8fed-cf9ea24de8be
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - 97ee1972-ee6d-4dc7-aa10-315de104a993
+ - 5d23a2dd-2bae-4676-ac88-a3ffa5aca37c
+ - 78fe7cba-ec07-4f12-a980-d38d4fe178df
+ - 1a4eb693-9f0e-41c4-bb80-c90308becfb0
+ - 711ff170-ddf9-4a8e-b98f-8b34fe1af746
+ - 2760faa9-211f-407b-956c-0955bc0da208
+ - 3f86c888-3f3e-4db9-8579-4ec92539d7e9
+ - a755fe4d-5521-4a0b-a268-02d5cfd8903f
+ - 9ca8501c-7a2b-4b0c-ac18-31e182203589
+ - 46da597d-016c-4a41-ba7f-97e839de7a7c
+ - 7ce16bf7-e715-456c-b186-116f096c7300
+ - 626883ba-251e-4f51-b191-919abecd3c18
+ - f7d9b247-c182-4e98-ac93-bb39b82182b1
+ - 832096f9-889a-4701-b1d2-a84dba0f1b0e
+ - 10940583-c6ca-4b99-bd7b-959739d9d2e3
+ - 34a4ce13-1c47-4398-9b9a-a0fde71ccbdc
+ - f2660d87-cb05-456f-95ae-bcc6d758382c
+ - 032c37df-7075-4d52-b69b-071ee5566de8
+ - f9b75dc3-fe04-4057-9984-d294d2ec4e12
+ - be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
+ - c36315ab-000f-431f-956e-8d3f39ccd5eb
+ - 49431070-a862-4701-a56c-d3b9d5b4ca7e
+ - 850f77e3-253a-4758-833e-f86700b16848
+ - e83325b8-c6c9-40d4-b320-79b7dca87819
+ - a6959f7e-1cb0-44c3-9f28-d81ad07ed447
+ - 50861111-0562-4cd5-87f4-576cac894cf2
+ - cda3bf8c-fb84-4a4b-b4b7-d2247839716a
+ - f0284d88-cbb4-4fbe-a78d-06f04695f526
+ - 1af46a8d-1db1-4274-90fa-39f1d18d58d1
+ - 711a318e-c3c4-40bd-bd83-91013b79755b
+ - 022a4e61-381f-4954-9ab4-dd8f7cb690cc
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - 712a4212-4aab-445a-a323-f0a1cc93baf0
+ - e420d856-6202-42cf-af09-faeb400ac89f
+ - 10cca06e-aec1-424f-a900-2a2f5c79ab18
+ - 497375b1-6f36-4c5e-8902-1f8499a6c89b
+ - b7a44b6d-2dd1-4d2a-afef-c4948f723e1a
+ - 3c3cced9-57f0-45d0-8bda-c9399c010249
+ - 4715df04-415c-41cc-8f14-73dbdc59b1b9
+ - 1650bed7-08da-4fe8-bf2b-c93b3838b2d0
+ - 4a024c0a-c68d-4474-af3e-5d0033cead14
+ - 3e42318e-cbf7-4476-998b-46550a4d3d82
+ - 96cc284a-abce-42d7-be47-574463189553
+ - 44f07163-efd6-4af3-b1fd-ffe3391bdefe
+ - 10d04f0c-09d7-4141-afa2-68af0490cc1e
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 068e8deb-57ea-4dba-a25e-bb297e4df76e
+ - 90f1cab6-4df3-4148-8b42-c9426d3a090b
+ - 4485ea51-adcd-4a4f-b040-963091ac0ec0
+ - 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
+ - dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
+ - 718407b4-0abc-4bca-a225-a6fae160c6ce
+ - 62
+ - 776abed5-1ba5-429e-8b57-6c9b3db2624d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 46da597d-016c-4a41-ba7f-97e839de7a7c
+ - 1
+ - a45e2b7f-bd84-46c3-ae14-f8de9c721e80
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c11491fd-5330-4b29-89af-d635ad183d27
+ - 47b940f0-6a69-42c7-b488-28d4fcf07751
+ - 73d58913-c57b-480b-a2d6-b364fe4a8709
+ - 00eba88b-f92d-486d-968c-ef25222e80f8
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 60fc7e6e-0905-4df6-a879-c9490492de11
+ - c670c4f7-058a-46e7-8fed-cf9ea24de8be
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - 5d23a2dd-2bae-4676-ac88-a3ffa5aca37c
+ - 97ee1972-ee6d-4dc7-aa10-315de104a993
+ - a45e2b7f-bd84-46c3-ae14-f8de9c721e80
+ - dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
+ - 718407b4-0abc-4bca-a225-a6fae160c6ce
+ - 13
+ - 2be13947-d202-4d6c-8661-bb52cdd4559b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - c11491fd-5330-4b29-89af-d635ad183d27
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 3930
+ 16432
+ 104
+ 64
+
+ -
+ 3989
+ 16464
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 212d2ce5-1141-4df6-8677-c37360c7c035
+ - Data
+ - Data
+ - false
+ - cc9ab0d6-775f-4267-a313-c957dc638053
+ - 1
+
+
+
+
+ -
+ 3932
+ 16434
+ 42
+ 20
+
+ -
+ 3954.5
+ 16444
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - f466188a-7338-4fbb-b7d6-4d637ad0d28c
+ - Number
+ - Number
+ - false
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 1
+
+
+
+
+ -
+ 3932
+ 16454
+ 42
+ 20
+
+ -
+ 3954.5
+ 16464
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - b4c80a08-78e7-41d6-b438-744bb1f496e2
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 3932
+ 16474
+ 42
+ 20
+
+ -
+ 3954.5
+ 16484
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 99042d74-0e8b-438f-ab47-ce22a8e27a51
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 4004
+ 16434
+ 28
+ 60
+
+ -
+ 4019.5
+ 16464
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 47b940f0-6a69-42c7-b488-28d4fcf07751
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 3925
+ 15473
+ 116
+ 44
+
+ -
+ 3986
+ 15495
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 15c17e24-4798-41af-a693-12c59c59aaea
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 99042d74-0e8b-438f-ab47-ce22a8e27a51
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3927
+ 15475
+ 44
+ 20
+
+ -
+ 3950.5
+ 15485
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - da61bd1f-5977-4b7b-9e05-71dd9cd6bc59
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3927
+ 15495
+ 44
+ 20
+
+ -
+ 3950.5
+ 15505
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 6fd06940-4df2-4317-8c29-2f9e22d5eb3e
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 15475
+ 38
+ 20
+
+ -
+ 4021.5
+ 15485
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 18e384ae-d247-44fc-bc3d-f479f1740b7a
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 15495
+ 38
+ 20
+
+ -
+ 4021.5
+ 15505
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 73d58913-c57b-480b-a2d6-b364fe4a8709
+ - Point
+ - Point
+ - false
+ - 36d249d4-0f1a-493f-a5f7-cb03a891e629
+ - 1
+
+
+
+
+ -
+ 3943
+ 15171
+ 50
+ 24
+
+ -
+ 3968
+ 15183.48
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 00eba88b-f92d-486d-968c-ef25222e80f8
+ - Series
+ - Series
+
+
+
+
+ -
+ 3933
+ 15941
+ 101
+ 64
+
+ -
+ 3983
+ 15973
+
+
+
+
+
+ - First number in the series
+ - d8dccfe6-8012-4e19-9658-782635b2501b
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3935
+ 15943
+ 33
+ 20
+
+ -
+ 3953
+ 15953
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 207360ac-23e0-4183-8a79-dd9f9e009e40
+ - Step
+ - Step
+ - false
+ - 10b16b4e-dda0-4767-ae4d-33ca60339161
+ - 1
+
+
+
+
+ -
+ 3935
+ 15963
+ 33
+ 20
+
+ -
+ 3953
+ 15973
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - c9d27e41-6e66-4f2e-b8b6-85cf9e0d546f
+ - Count
+ - Count
+ - false
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 1
+
+
+
+
+ -
+ 3935
+ 15983
+ 33
+ 20
+
+ -
+ 3953
+ 15993
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - c67311cc-dbc4-46e5-829b-e623c45b3537
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 3998
+ 15943
+ 34
+ 60
+
+ -
+ 4016.5
+ 15973
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3910
+ 16605
+ 150
+ 20
+
+ -
+ 3910.028
+ 16605.26
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 60fc7e6e-0905-4df6-a879-c9490492de11
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 3923
+ 16066
+ 120
+ 28
+
+ -
+ 3984
+ 16080
+
+
+
+
+
+ - Angle in degrees
+ - d3a19c9c-8033-4485-bb74-197a488edd7d
+ - Degrees
+ - Degrees
+ - false
+ - c4bdd32b-2f4b-4512-97a3-269f4e7691df
+ - 1
+
+
+
+
+ -
+ 3925
+ 16068
+ 44
+ 24
+
+ -
+ 3948.5
+ 16080
+
+
+
+
+
+
+
+ - Angle in radians
+ - 10b16b4e-dda0-4767-ae4d-33ca60339161
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 3999
+ 16068
+ 42
+ 24
+
+ -
+ 4021.5
+ 16080
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c670c4f7-058a-46e7-8fed-cf9ea24de8be
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000007490
+
+
+
+
+ -
+ 3856
+ 16378
+ 250
+ 20
+
+ -
+ 3856.99
+ 16378.15
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 97ee1972-ee6d-4dc7-aa10-315de104a993
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 3900
+ 14893
+ 144
+ 84
+
+ -
+ 3986
+ 14935
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 1241badb-44bf-417a-b788-d8fabac4ca70
+ - Vertices
+ - Vertices
+ - false
+ - 3fa4d838-4e57-49ec-8096-0e35d0a39602
+ - 1
+
+
+
+
+ -
+ 3902
+ 14895
+ 69
+ 20
+
+ -
+ 3938
+ 14905
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - ea550354-4d07-49f7-95a5-ccaf94882dd8
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14915
+ 69
+ 20
+
+ -
+ 3938
+ 14925
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - e8f5a884-6055-4049-b250-b916788cbb59
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14935
+ 69
+ 20
+
+ -
+ 3938
+ 14945
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 2fb587a4-6c49-49a7-b689-eeb5262517bb
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14955
+ 69
+ 20
+
+ -
+ 3938
+ 14965
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 14895
+ 41
+ 26
+
+ -
+ 4023
+ 14908.33
+
+
+
+
+
+
+
+ - Curve length
+ - e0fd3b44-4702-46dd-9652-eb3dbe74bd68
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 14921
+ 41
+ 27
+
+ -
+ 4023
+ 14935
+
+
+
+
+
+
+
+ - Curve domain
+ - 31fbcd10-a7f2-4bbf-b4b1-aaacd1eaffda
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 14948
+ 41
+ 27
+
+ -
+ 4023
+ 14961.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c11491fd-5330-4b29-89af-d635ad183d27
+ - 47b940f0-6a69-42c7-b488-28d4fcf07751
+ - 73d58913-c57b-480b-a2d6-b364fe4a8709
+ - 00eba88b-f92d-486d-968c-ef25222e80f8
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 60fc7e6e-0905-4df6-a879-c9490492de11
+ - c670c4f7-058a-46e7-8fed-cf9ea24de8be
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - 5feac64c-534d-4c48-92aa-1f8db786693c
+ - c4bdd32b-2f4b-4512-97a3-269f4e7691df
+ - 10
+ - 5d23a2dd-2bae-4676-ac88-a3ffa5aca37c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 78fe7cba-ec07-4f12-a980-d38d4fe178df
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3900
+ 14725
+ 144
+ 64
+
+ -
+ 3974
+ 14757
+
+
+
+
+
+ - Curve to evaluate
+ - cefbf56b-09bc-4c52-9336-4d2f53998e9b
+ - Curve
+ - Curve
+ - false
+ - 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
+ - 1
+
+
+
+
+ -
+ 3902
+ 14727
+ 57
+ 20
+
+ -
+ 3932
+ 14737
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ff9ae3ac-c6cd-4a44-85a8-3b9dda0c2f7a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14747
+ 57
+ 20
+
+ -
+ 3932
+ 14757
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ef0b3dd5-57bf-4caa-aec2-d45a6017d2f6
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14767
+ 57
+ 20
+
+ -
+ 3932
+ 14777
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - a1e3744f-973b-4d9d-9dd4-4d485d002b69
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14727
+ 53
+ 20
+
+ -
+ 4017
+ 14737
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 2f45b093-16ef-4f43-bd20-d292bb0a199e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14747
+ 53
+ 20
+
+ -
+ 4017
+ 14757
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8873a632-441a-4b05-8539-072cd43d835e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14767
+ 53
+ 20
+
+ -
+ 4017
+ 14777
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 1a4eb693-9f0e-41c4-bb80-c90308becfb0
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3903
+ 14663
+ 138
+ 44
+
+ -
+ 3971
+ 14685
+
+
+
+
+
+ - Base geometry
+ - 6e16e1c9-5c5f-4ca3-b317-f8e95d655379
+ - Geometry
+ - Geometry
+ - true
+ - 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
+ - 1
+
+
+
+
+ -
+ 3905
+ 14665
+ 51
+ 20
+
+ -
+ 3932
+ 14675
+
+
+
+
+
+
+
+ - Mirror plane
+ - 6931536e-6cd7-42d5-a620-67a80c7dc285
+ - Plane
+ - Plane
+ - false
+ - 6e1d81c0-2717-4165-8880-da73cb47d0f3
+ - 1
+
+
+
+
+ -
+ 3905
+ 14685
+ 51
+ 20
+
+ -
+ 3932
+ 14695
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 73835f60-b27b-41d5-8317-d6b1f68e1468
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3986
+ 14665
+ 53
+ 20
+
+ -
+ 4014
+ 14675
+
+
+
+
+
+
+
+ - Transformation data
+ - 7c20ddcd-0b54-43f9-b14b-b3c7e0bd4a48
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3986
+ 14685
+ 53
+ 20
+
+ -
+ 4014
+ 14695
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 711ff170-ddf9-4a8e-b98f-8b34fe1af746
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 3919
+ 14809
+ 106
+ 64
+
+ -
+ 3983
+ 14841
+
+
+
+
+
+ - Line start point
+ - ed327cca-d332-4e15-a0c5-0aa042b1d777
+ - Start
+ - Start
+ - false
+ - a1e3744f-973b-4d9d-9dd4-4d485d002b69
+ - 1
+
+
+
+
+ -
+ 3921
+ 14811
+ 47
+ 20
+
+ -
+ 3946
+ 14821
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - e12c95e6-e01f-478f-a6b5-ff0155067431
+ - Direction
+ - Direction
+ - false
+ - 2f45b093-16ef-4f43-bd20-d292bb0a199e
+ - 1
+
+
+
+
+ -
+ 3921
+ 14831
+ 47
+ 20
+
+ -
+ 3946
+ 14841
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 76e8344a-287f-45ec-9862-5b5d5b0a0373
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3921
+ 14851
+ 47
+ 20
+
+ -
+ 3946
+ 14861
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6e1d81c0-2717-4165-8880-da73cb47d0f3
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 3998
+ 14811
+ 25
+ 60
+
+ -
+ 4012
+ 14841
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 2760faa9-211f-407b-956c-0955bc0da208
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3913
+ 14601
+ 118
+ 44
+
+ -
+ 3976
+ 14623
+
+
+
+
+
+ - 1
+ - Curves to join
+ - fcaf2b81-38b4-4ea6-96c3-9dfbbe12da3c
+ - Curves
+ - Curves
+ - false
+ - 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
+ - 73835f60-b27b-41d5-8317-d6b1f68e1468
+ - 2
+
+
+
+
+ -
+ 3915
+ 14603
+ 46
+ 20
+
+ -
+ 3939.5
+ 14613
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - d0f3721b-2187-49a6-9ecc-12ff8ea0ca7b
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3915
+ 14623
+ 46
+ 20
+
+ -
+ 3939.5
+ 14633
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3991
+ 14603
+ 38
+ 40
+
+ -
+ 4011.5
+ 14623
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3f86c888-3f3e-4db9-8579-4ec92539d7e9
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3900
+ 14517
+ 144
+ 64
+
+ -
+ 3974
+ 14549
+
+
+
+
+
+ - Curve to evaluate
+ - 1275b4e6-7602-4122-ae9d-7ffbedc35459
+ - Curve
+ - Curve
+ - false
+ - 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
+ - 1
+
+
+
+
+ -
+ 3902
+ 14519
+ 57
+ 20
+
+ -
+ 3932
+ 14529
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 890497f2-50c8-4abf-a885-2499035e273a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14539
+ 57
+ 20
+
+ -
+ 3932
+ 14549
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 8c35faea-2f72-4f79-83a0-047b09ba1205
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14559
+ 57
+ 20
+
+ -
+ 3932
+ 14569
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 451b5434-dab5-482e-9a6d-787d60c3f06c
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14519
+ 53
+ 20
+
+ -
+ 4017
+ 14529
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 84243467-65a9-4cbb-a438-bf0032956480
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14539
+ 53
+ 20
+
+ -
+ 4017
+ 14549
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c6d57112-5b3f-46ac-a670-8973b71d8952
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14559
+ 53
+ 20
+
+ -
+ 4017
+ 14569
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - a755fe4d-5521-4a0b-a268-02d5cfd8903f
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 3903
+ 14434
+ 138
+ 64
+
+ -
+ 3971
+ 14466
+
+
+
+
+
+ - Base geometry
+ - 2e0a23a9-421d-4c2a-aefe-d430d836beed
+ - Geometry
+ - Geometry
+ - true
+ - 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
+ - 1
+
+
+
+
+ -
+ 3905
+ 14436
+ 51
+ 20
+
+ -
+ 3932
+ 14446
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 0978cad3-0fe2-4025-ac1a-7fa1ca7f5fd0
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 3905
+ 14456
+ 51
+ 20
+
+ -
+ 3932
+ 14466
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 14f1ad5d-7687-46ef-bbea-e92a304146ac
+ - Plane
+ - Plane
+ - false
+ - 451b5434-dab5-482e-9a6d-787d60c3f06c
+ - 1
+
+
+
+
+ -
+ 3905
+ 14476
+ 51
+ 20
+
+ -
+ 3932
+ 14486
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 8100fe34-ee80-416f-b5f6-2b9f96aae8c9
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3986
+ 14436
+ 53
+ 30
+
+ -
+ 4014
+ 14451
+
+
+
+
+
+
+
+ - Transformation data
+ - 5fca03d7-1fcd-44ea-a612-2e2fb2019766
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3986
+ 14466
+ 53
+ 30
+
+ -
+ 4014
+ 14481
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 9ca8501c-7a2b-4b0c-ac18-31e182203589
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3913
+ 14371
+ 118
+ 44
+
+ -
+ 3976
+ 14393
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 0f1d3de6-034b-487f-a904-f1a09444a9d7
+ - Curves
+ - Curves
+ - false
+ - 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
+ - 8100fe34-ee80-416f-b5f6-2b9f96aae8c9
+ - 2
+
+
+
+
+ -
+ 3915
+ 14373
+ 46
+ 20
+
+ -
+ 3939.5
+ 14383
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 15bf7b33-7c70-463d-b751-8058d597e384
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3915
+ 14393
+ 46
+ 20
+
+ -
+ 3939.5
+ 14403
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - be586885-b930-4685-830f-15e020656b38
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3991
+ 14373
+ 38
+ 40
+
+ -
+ 4011.5
+ 14393
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97ee1972-ee6d-4dc7-aa10-315de104a993
+ - 78fe7cba-ec07-4f12-a980-d38d4fe178df
+ - 1a4eb693-9f0e-41c4-bb80-c90308becfb0
+ - 711ff170-ddf9-4a8e-b98f-8b34fe1af746
+ - 2760faa9-211f-407b-956c-0955bc0da208
+ - 3f86c888-3f3e-4db9-8579-4ec92539d7e9
+ - a755fe4d-5521-4a0b-a268-02d5cfd8903f
+ - 9ca8501c-7a2b-4b0c-ac18-31e182203589
+ - 626883ba-251e-4f51-b191-919abecd3c18
+ - 9
+ - 46da597d-016c-4a41-ba7f-97e839de7a7c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7ce16bf7-e715-456c-b186-116f096c7300
+ - Panel
+
+ - false
+ - 0
+ - e83325b8-c6c9-40d4-b320-79b7dca87819
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3912
+ 16035
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3912.374
+ 16035.2
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 626883ba-251e-4f51-b191-919abecd3c18
+ - Curve
+ - Curve
+ - false
+ - be586885-b930-4685-830f-15e020656b38
+ - 1
+
+
+
+
+ -
+ 3948
+ 14336
+ 50
+ 24
+
+ -
+ 3973.738
+ 14348.68
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 626883ba-251e-4f51-b191-919abecd3c18
+ - 1
+ - f7d9b247-c182-4e98-ac93-bb39b82182b1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 832096f9-889a-4701-b1d2-a84dba0f1b0e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695*4*4
+
+
+
+
+ -
+ 3856
+ 16116
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3856.796
+ 16116.58
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 10940583-c6ca-4b99-bd7b-959739d9d2e3
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3900
+ 14245
+ 144
+ 64
+
+ -
+ 3974
+ 14277
+
+
+
+
+
+ - Curve to evaluate
+ - 79080a81-dd0a-4698-a858-d8505d1d7fdf
+ - Curve
+ - Curve
+ - false
+ - be586885-b930-4685-830f-15e020656b38
+ - 1
+
+
+
+
+ -
+ 3902
+ 14247
+ 57
+ 20
+
+ -
+ 3932
+ 14257
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 887a4ace-5ba4-489d-bd44-60e892cf988b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14267
+ 57
+ 20
+
+ -
+ 3932
+ 14277
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 81cc3855-2fe5-46cd-8bd5-d88130382bf9
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 14287
+ 57
+ 20
+
+ -
+ 3932
+ 14297
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 07b2fc88-ae16-4c06-9155-e3da7d6e6def
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14247
+ 53
+ 20
+
+ -
+ 4017
+ 14257
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 34ba120a-3dae-40b7-baee-4be095e32883
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14267
+ 53
+ 20
+
+ -
+ 4017
+ 14277
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - a534e31f-9642-4573-934b-8edb69bf0e4a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 14287
+ 53
+ 20
+
+ -
+ 4017
+ 14297
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 34a4ce13-1c47-4398-9b9a-a0fde71ccbdc
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 14023
+ 194
+ 28
+
+ -
+ 3975
+ 14037
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9929237c-5891-4be0-88b3-1b825140f548
+ - Variable O
+ - O
+ - true
+ - 62f0c229-a1e3-4de2-ac84-cca846328068
+ - 1
+
+
+
+
+ -
+ 3877
+ 14025
+ 14
+ 24
+
+ -
+ 3885.5
+ 14037
+
+
+
+
+
+
+
+ - Result of expression
+ - c2cc5bf2-5d1f-4219-9998-d56de8f5f9e3
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 14025
+ 9
+ 24
+
+ -
+ 4064
+ 14037
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - f2660d87-cb05-456f-95ae-bcc6d758382c
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 3906
+ 14157
+ 132
+ 64
+
+ -
+ 3953
+ 14189
+
+
+
+
+
+ - Input point
+ - 76014b31-cd3c-4faf-85d3-9ed20608f1c7
+ - Point
+ - Point
+ - false
+ - 07b2fc88-ae16-4c06-9155-e3da7d6e6def
+ - 1
+
+
+
+
+ -
+ 3908
+ 14159
+ 30
+ 60
+
+ -
+ 3924.5
+ 14189
+
+
+
+
+
+
+
+ - Point {x} component
+ - 62f0c229-a1e3-4de2-ac84-cca846328068
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ 14159
+ 68
+ 20
+
+ -
+ 4003.5
+ 14169
+
+
+
+
+
+
+
+ - Point {y} component
+ - b64a2e76-2db2-4e40-92e2-69b2889487a9
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ 14179
+ 68
+ 20
+
+ -
+ 4003.5
+ 14189
+
+
+
+
+
+
+
+ - Point {z} component
+ - 22991e0f-6b45-4f26-abcc-1289cf0d3ff1
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ 14199
+ 68
+ 20
+
+ -
+ 4003.5
+ 14209
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 032c37df-7075-4d52-b69b-071ee5566de8
+ - Panel
+
+ - false
+ - 0
+ - c2cc5bf2-5d1f-4219-9998-d56de8f5f9e3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 13992
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.232
+ 13992.68
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f9b75dc3-fe04-4057-9984-d294d2ec4e12
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 13937
+ 194
+ 28
+
+ -
+ 3975
+ 13951
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 84a2e453-a92d-41b6-8652-16ea1683e0b0
+ - Variable O
+ - O
+ - true
+ - b64a2e76-2db2-4e40-92e2-69b2889487a9
+ - 1
+
+
+
+
+ -
+ 3877
+ 13939
+ 14
+ 24
+
+ -
+ 3885.5
+ 13951
+
+
+
+
+
+
+
+ - Result of expression
+ - 696b6bb5-5954-4ea5-8256-1e0a1bfe07fd
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 13939
+ 9
+ 24
+
+ -
+ 4064
+ 13951
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
+ - Panel
+
+ - false
+ - 0
+ - 696b6bb5-5954-4ea5-8256-1e0a1bfe07fd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 13904
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.232
+ 13904.25
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c36315ab-000f-431f-956e-8d3f39ccd5eb
+ - Division
+ - Division
+
+
+
+
+ -
+ 3931
+ 13835
+ 82
+ 44
+
+ -
+ 3962
+ 13857
+
+
+
+
+
+ - Item to divide (dividend)
+ - 8d98f3ad-300c-47ae-9072-27095ea7d4bb
+ - A
+ - A
+ - false
+ - 032c37df-7075-4d52-b69b-071ee5566de8
+ - 1
+
+
+
+
+ -
+ 3933
+ 13837
+ 14
+ 20
+
+ -
+ 3941.5
+ 13847
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 34a82367-2a70-49dd-9873-a54c3167e085
+ - B
+ - B
+ - false
+ - be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
+ - 1
+
+
+
+
+ -
+ 3933
+ 13857
+ 14
+ 20
+
+ -
+ 3941.5
+ 13867
+
+
+
+
+
+
+
+ - The result of the Division
+ - df35c167-bcd9-49e6-8281-92c63864fe32
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3977
+ 13837
+ 34
+ 40
+
+ -
+ 3995.5
+ 13857
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 49431070-a862-4701-a56c-d3b9d5b4ca7e
+ - Panel
+
+ - false
+ - 0
+ - e83325b8-c6c9-40d4-b320-79b7dca87819
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 13749
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.29
+ 13749.37
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 850f77e3-253a-4758-833e-f86700b16848
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 13788
+ 194
+ 28
+
+ -
+ 3975
+ 13802
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1e780145-ca26-4633-a204-0a918f616817
+ - Variable O
+ - O
+ - true
+ - df35c167-bcd9-49e6-8281-92c63864fe32
+ - 1
+
+
+
+
+ -
+ 3877
+ 13790
+ 14
+ 24
+
+ -
+ 3885.5
+ 13802
+
+
+
+
+
+
+
+ - Result of expression
+ - 6430bc25-9eae-4187-ad62-7d69e39fdcf1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 13790
+ 9
+ 24
+
+ -
+ 4064
+ 13802
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e83325b8-c6c9-40d4-b320-79b7dca87819
+ - Relay
+
+ - false
+ - 6430bc25-9eae-4187-ad62-7d69e39fdcf1
+ - 1
+
+
+
+
+ -
+ 3952
+ 13713
+ 40
+ 16
+
+ -
+ 3972
+ 13721
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - a6959f7e-1cb0-44c3-9f28-d81ad07ed447
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 3931
+ 13650
+ 82
+ 44
+
+ -
+ 3962
+ 13672
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 2266ab5b-bda2-40c9-9308-f4d48efb661a
+ - A
+ - A
+ - true
+ - be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
+ - 1
+
+
+
+
+ -
+ 3933
+ 13652
+ 14
+ 20
+
+ -
+ 3941.5
+ 13662
+
+
+
+
+
+
+
+ - Second item for addition
+ - 3347b569-8973-44ef-8d82-6b1c998ca3cc
+ - B
+ - B
+ - true
+ - 032c37df-7075-4d52-b69b-071ee5566de8
+ - 1
+
+
+
+
+ -
+ 3933
+ 13672
+ 14
+ 20
+
+ -
+ 3941.5
+ 13682
+
+
+
+
+
+
+
+ - Result of addition
+ - 4523110a-9a4b-47ae-a91c-4b2efe54effb
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3977
+ 13652
+ 34
+ 40
+
+ -
+ 3995.5
+ 13672
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 50861111-0562-4cd5-87f4-576cac894cf2
+ - Division
+ - Division
+
+
+
+
+ -
+ 3931
+ 13500
+ 82
+ 44
+
+ -
+ 3962
+ 13522
+
+
+
+
+
+ - Item to divide (dividend)
+ - a2daad46-969e-4344-b89a-7769a111231d
+ - A
+ - A
+ - false
+ - 1af46a8d-1db1-4274-90fa-39f1d18d58d1
+ - 1
+
+
+
+
+ -
+ 3933
+ 13502
+ 14
+ 20
+
+ -
+ 3941.5
+ 13512
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 4eca21d9-c9ac-467a-ac3d-f168b5712564
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 3933
+ 13522
+ 14
+ 20
+
+ -
+ 3941.5
+ 13532
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - c1bc0109-fe34-450d-9f5e-65f5cb82cc00
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3977
+ 13502
+ 34
+ 40
+
+ -
+ 3995.5
+ 13522
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - cda3bf8c-fb84-4a4b-b4b7-d2247839716a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 13452
+ 194
+ 28
+
+ -
+ 3975
+ 13466
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5b721167-8cd0-471c-bc56-9551ac8ff85d
+ - Variable O
+ - O
+ - true
+ - c1bc0109-fe34-450d-9f5e-65f5cb82cc00
+ - 1
+
+
+
+
+ -
+ 3877
+ 13454
+ 14
+ 24
+
+ -
+ 3885.5
+ 13466
+
+
+
+
+
+
+
+ - Result of expression
+ - 9bed50d4-0250-4707-ba45-cec394e082cd
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 13454
+ 9
+ 24
+
+ -
+ 4064
+ 13466
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f0284d88-cbb4-4fbe-a78d-06f04695f526
+ - Panel
+
+ - false
+ - 0
+ - 9bed50d4-0250-4707-ba45-cec394e082cd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 13420
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.232
+ 13420.59
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1af46a8d-1db1-4274-90fa-39f1d18d58d1
+ - Panel
+
+ - false
+ - 0
+ - fe9a622b-f243-4d41-93d6-3e533d213b5b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 13572
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.232
+ 13572.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 711a318e-c3c4-40bd-bd83-91013b79755b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 13603
+ 194
+ 28
+
+ -
+ 3975
+ 13617
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d785e6e7-130a-4976-be34-7ada854edc1b
+ - Variable O
+ - O
+ - true
+ - 4523110a-9a4b-47ae-a91c-4b2efe54effb
+ - 1
+
+
+
+
+ -
+ 3877
+ 13605
+ 14
+ 24
+
+ -
+ 3885.5
+ 13617
+
+
+
+
+
+
+
+ - Result of expression
+ - fe9a622b-f243-4d41-93d6-3e533d213b5b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 13605
+ 9
+ 24
+
+ -
+ 4064
+ 13617
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 022a4e61-381f-4954-9ab4-dd8f7cb690cc
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3895
+ 13329
+ 154
+ 64
+
+ -
+ 3979
+ 13361
+
+
+
+
+
+ - Base geometry
+ - 221778e4-c5a5-428b-866a-e7daaf2b081d
+ - Geometry
+ - Geometry
+ - true
+ - 626883ba-251e-4f51-b191-919abecd3c18
+ - 1
+
+
+
+
+ -
+ 3897
+ 13331
+ 67
+ 20
+
+ -
+ 3940
+ 13341
+
+
+
+
+
+
+
+ - Center of scaling
+ - b3819b39-8c95-4454-a072-96d8bb95c204
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3897
+ 13351
+ 67
+ 20
+
+ -
+ 3940
+ 13361
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - bedd39e9-e835-4f0c-a2a8-a897bcb0de37
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - f0284d88-cbb4-4fbe-a78d-06f04695f526
+ - 1
+
+
+
+
+ -
+ 3897
+ 13371
+ 67
+ 20
+
+ -
+ 3940
+ 13381
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - f409b8fb-a35c-4fc5-95e6-0d9e982103bd
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3994
+ 13331
+ 53
+ 30
+
+ -
+ 4022
+ 13346
+
+
+
+
+
+
+
+ - Transformation data
+ - e1dfbda5-158d-4151-a74a-8f27edda3a0c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3994
+ 13361
+ 53
+ 30
+
+ -
+ 4022
+ 13376
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - Curve
+ - Curve
+ - false
+ - f409b8fb-a35c-4fc5-95e6-0d9e982103bd
+ - 1
+
+
+
+
+ -
+ 3949
+ 12868
+ 50
+ 24
+
+ -
+ 3974.205
+ 12880.95
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 712a4212-4aab-445a-a323-f0a1cc93baf0
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 14110
+ 194
+ 28
+
+ -
+ 3975
+ 14124
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5b24470e-be57-4758-88dd-8f13767bc8cc
+ - Variable O
+ - O
+ - true
+ - 22991e0f-6b45-4f26-abcc-1289cf0d3ff1
+ - 1
+
+
+
+
+ -
+ 3877
+ 14112
+ 14
+ 24
+
+ -
+ 3885.5
+ 14124
+
+
+
+
+
+
+
+ - Result of expression
+ - 6f6c2ed4-8a96-493c-b092-a9b424c4e692
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 14112
+ 9
+ 24
+
+ -
+ 4064
+ 14124
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e420d856-6202-42cf-af09-faeb400ac89f
+ - Panel
+
+ - false
+ - 0
+ - 6f6c2ed4-8a96-493c-b092-a9b424c4e692
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 14078
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.104
+ 14078.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 10cca06e-aec1-424f-a900-2a2f5c79ab18
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3900
+ 13246
+ 144
+ 64
+
+ -
+ 3974
+ 13278
+
+
+
+
+
+ - Curve to evaluate
+ - d8076d4c-6b57-4b21-b7ea-5954019ae871
+ - Curve
+ - Curve
+ - false
+ - f409b8fb-a35c-4fc5-95e6-0d9e982103bd
+ - 1
+
+
+
+
+ -
+ 3902
+ 13248
+ 57
+ 20
+
+ -
+ 3932
+ 13258
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 73070b10-a608-4990-9fc7-c5cf5b836b26
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 13268
+ 57
+ 20
+
+ -
+ 3932
+ 13278
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a96e13c9-8421-49bc-9cb4-426fde3d06d7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3902
+ 13288
+ 57
+ 20
+
+ -
+ 3932
+ 13298
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 46162371-ae34-4e16-9692-6abb7a61cdc6
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 13248
+ 53
+ 20
+
+ -
+ 4017
+ 13258
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 276e76ca-0d9a-4219-a49b-8d87c9936903
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 13268
+ 53
+ 20
+
+ -
+ 4017
+ 13278
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b7b8dd63-083d-486c-9751-94404f406720
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 13288
+ 53
+ 20
+
+ -
+ 4017
+ 13298
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 497375b1-6f36-4c5e-8902-1f8499a6c89b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 13029
+ 194
+ 28
+
+ -
+ 3975
+ 13043
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 977c665e-2605-4638-8ec1-c7e92735574f
+ - Variable O
+ - O
+ - true
+ - 2dcafbcc-0ac2-4bb3-915e-9c31f8d9a2f9
+ - 1
+
+
+
+
+ -
+ 3877
+ 13031
+ 14
+ 24
+
+ -
+ 3885.5
+ 13043
+
+
+
+
+
+
+
+ - Result of expression
+ - 3d65f7b4-af0d-49d6-a3ea-987f6ddb0ec7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 13031
+ 9
+ 24
+
+ -
+ 4064
+ 13043
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - b7a44b6d-2dd1-4d2a-afef-c4948f723e1a
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 3906
+ 13163
+ 132
+ 64
+
+ -
+ 3953
+ 13195
+
+
+
+
+
+ - Input point
+ - 0a52f508-70ae-4790-8604-6781768989e6
+ - Point
+ - Point
+ - false
+ - 46162371-ae34-4e16-9692-6abb7a61cdc6
+ - 1
+
+
+
+
+ -
+ 3908
+ 13165
+ 30
+ 60
+
+ -
+ 3924.5
+ 13195
+
+
+
+
+
+
+
+ - Point {x} component
+ - 2dcafbcc-0ac2-4bb3-915e-9c31f8d9a2f9
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ 13165
+ 68
+ 20
+
+ -
+ 4003.5
+ 13175
+
+
+
+
+
+
+
+ - Point {y} component
+ - 965c147e-3f38-40c6-9b1e-32a7bfd226b2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ 13185
+ 68
+ 20
+
+ -
+ 4003.5
+ 13195
+
+
+
+
+
+
+
+ - Point {z} component
+ - 1dfe58e9-8784-46e4-ac51-007ea1fcf731
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ 13205
+ 68
+ 20
+
+ -
+ 4003.5
+ 13215
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3c3cced9-57f0-45d0-8bda-c9399c010249
+ - Panel
+
+ - false
+ - 0
+ - 3d65f7b4-af0d-49d6-a3ea-987f6ddb0ec7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3893
+ 12998
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3893.487
+ 12998.95
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4715df04-415c-41cc-8f14-73dbdc59b1b9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 12943
+ 194
+ 28
+
+ -
+ 3975
+ 12957
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d1471bc4-6b88-425a-98ce-c2af3a14f3d4
+ - Variable O
+ - O
+ - true
+ - 965c147e-3f38-40c6-9b1e-32a7bfd226b2
+ - 1
+
+
+
+
+ -
+ 3877
+ 12945
+ 14
+ 24
+
+ -
+ 3885.5
+ 12957
+
+
+
+
+
+
+
+ - Result of expression
+ - b4e49e4c-c357-4054-9fe7-c7761ca6f37e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 12945
+ 9
+ 24
+
+ -
+ 4064
+ 12957
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1650bed7-08da-4fe8-bf2b-c93b3838b2d0
+ - Panel
+
+ - false
+ - 0
+ - b4e49e4c-c357-4054-9fe7-c7761ca6f37e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3893
+ 12912
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3893.487
+ 12912.25
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4a024c0a-c68d-4474-af3e-5d0033cead14
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3875
+ 13115
+ 194
+ 28
+
+ -
+ 3975
+ 13129
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d625a29d-a2cc-416b-8d43-f78812b545c6
+ - Variable O
+ - O
+ - true
+ - 1dfe58e9-8784-46e4-ac51-007ea1fcf731
+ - 1
+
+
+
+
+ -
+ 3877
+ 13117
+ 14
+ 24
+
+ -
+ 3885.5
+ 13129
+
+
+
+
+
+
+
+ - Result of expression
+ - 004397eb-c10e-42f5-ab82-5ae82b253e58
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4058
+ 13117
+ 9
+ 24
+
+ -
+ 4064
+ 13129
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3e42318e-cbf7-4476-998b-46550a4d3d82
+ - Panel
+
+ - false
+ - 0
+ - 004397eb-c10e-42f5-ab82-5ae82b253e58
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3894
+ 13085
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3894.232
+ 13085.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 96cc284a-abce-42d7-be47-574463189553
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0 256 0.0013733120705119695
+0 4096 0.0000053644183496292
+
+
+
+
+ -
+ 3803
+ 16156
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 3803.732
+ 16156.44
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 44f07163-efd6-4af3-b1fd-ffe3391bdefe
+ - Panel
+
+ - false
+ - 1
+ - f2d24f8b-b4bd-45ec-9446-d23045930859
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3797
+ 15240
+ 355
+ 100
+
+ - 0
+ - 0
+ - 0
+ -
+ 3797.311
+ 15240.75
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 10d04f0c-09d7-4141-afa2-68af0490cc1e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3886
+ 15426
+ 194
+ 28
+
+ -
+ 3986
+ 15440
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 805ed27e-fc3c-4471-9144-c7291cdedae9
+ - Variable O
+ - O
+ - true
+ - 18e384ae-d247-44fc-bc3d-f479f1740b7a
+ - 1
+
+
+
+
+ -
+ 3888
+ 15428
+ 14
+ 24
+
+ -
+ 3896.5
+ 15440
+
+
+
+
+
+
+
+ - Result of expression
+ - f2d24f8b-b4bd-45ec-9446-d23045930859
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4069
+ 15428
+ 9
+ 24
+
+ -
+ 4075
+ 15440
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - Number
+ - Number
+ - false
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 1
+
+
+
+
+ -
+ 3960
+ 16563
+ 50
+ 24
+
+ -
+ 3985.194
+ 16575.1
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - 1
+ - f361bc50-81d2-4660-954e-7da817156972
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 068e8deb-57ea-4dba-a25e-bb297e4df76e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 3886
+ 15861
+ 194
+ 28
+
+ -
+ 3986
+ 15875
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 28b1645e-0422-4786-a5b8-42d2270dfd2b
+ - Variable O
+ - O
+ - true
+ - 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
+ - 1
+
+
+
+
+ -
+ 3888
+ 15863
+ 14
+ 24
+
+ -
+ 3896.5
+ 15875
+
+
+
+
+
+
+
+ - Result of expression
+ - 97f55ec8-7cd6-4436-b1c5-843a9c8f5ccd
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4069
+ 15863
+ 9
+ 24
+
+ -
+ 4075
+ 15875
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 90f1cab6-4df3-4148-8b42-c9426d3a090b
+ - Panel
+
+ - false
+ - 0
+ - 97f55ec8-7cd6-4436-b1c5-843a9c8f5ccd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 3888
+ 15577
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 3888.001
+ 15577.31
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4485ea51-adcd-4a4f-b040-963091ac0ec0
+ - Relay
+ -
+ - false
+ - 90f1cab6-4df3-4148-8b42-c9426d3a090b
+ - 1
+
+
+
+
+ -
+ 3963
+ 15538
+ 40
+ 16
+
+ -
+ 3983
+ 15546
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
+ - Relay
+ -
+ - false
+ - c67311cc-dbc4-46e5-829b-e623c45b3537
+ - 1
+
+
+
+
+ -
+ 3963
+ 15906
+ 40
+ 16
+
+ -
+ 3983
+ 15914
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - ae174cc8-14c6-4c07-a85d-3b4ecf2e012c
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 4332
+ 13346
+ 96
+ 44
+
+ -
+ 4382
+ 13368
+
+
+
+
+
+ - Curve to evaluate
+ - de27ae8f-7271-4e5a-97d5-323495c48d90
+ - Curve
+ - Curve
+ - false
+ - 5bb6ccef-9110-4508-b1c4-1cc9b75d6a5a
+ - 1
+
+
+
+
+ -
+ 4334
+ 13348
+ 33
+ 40
+
+ -
+ 4352
+ 13368
+
+
+
+
+
+
+
+ - Curve start point
+ - 3b0ce0ef-9add-4197-9fbe-df6a52cf9256
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4397
+ 13348
+ 29
+ 20
+
+ -
+ 4413
+ 13358
+
+
+
+
+
+
+
+ - Curve end point
+ - 4c5dc04d-089e-4779-a563-4469dcd2614e
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4397
+ 13368
+ 29
+ 20
+
+ -
+ 4413
+ 13378
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 22ff4b0d-595e-45dc-8e77-cb0dd4d496ea
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 4317
+ 13243
+ 126
+ 84
+
+ -
+ 4375
+ 13285
+
+
+
+
+
+ - Rectangle base plane
+ - 33ee1ed9-0107-4855-82e6-ac719998e661
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ 13245
+ 41
+ 20
+
+ -
+ 4341
+ 13255
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 41106f62-1178-40c0-a6a1-cc9bb8e11b63
+ - Point A
+ - Point A
+ - false
+ - 3b0ce0ef-9add-4197-9fbe-df6a52cf9256
+ - 1
+
+
+
+
+ -
+ 4319
+ 13265
+ 41
+ 20
+
+ -
+ 4341
+ 13275
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - cce2cecb-7a40-49b6-b447-ad881f7b8bc0
+ - Point B
+ - Point B
+ - false
+ - 4c5dc04d-089e-4779-a563-4469dcd2614e
+ - 1
+
+
+
+
+ -
+ 4319
+ 13285
+ 41
+ 20
+
+ -
+ 4341
+ 13295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 24a73d42-76d1-49c5-a115-a709a67ea2a1
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ 13305
+ 41
+ 20
+
+ -
+ 4341
+ 13315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 9bf4b333-ad84-4618-b946-ddc148251ced
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 4390
+ 13245
+ 51
+ 40
+
+ -
+ 4417
+ 13265
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - fec0cd4c-6403-4d97-9848-14cf50104a8a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4390
+ 13285
+ 51
+ 40
+
+ -
+ 4417
+ 13305
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - e43aef83-d47f-4a21-85bf-24a309d91844
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 4309
+ 13160
+ 142
+ 64
+
+ -
+ 4377
+ 13192
+
+
+
+
+
+ - Rectangle to deconstruct
+ - a95e3174-92fa-448f-bbaa-91db21e443c6
+ - Rectangle
+ - Rectangle
+ - false
+ - 9bf4b333-ad84-4618-b946-ddc148251ced
+ - 1
+
+
+
+
+ -
+ 4311
+ 13162
+ 51
+ 60
+
+ -
+ 4338
+ 13192
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 1b36909e-7cc2-41c6-90d6-272045cb4455
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4392
+ 13162
+ 57
+ 20
+
+ -
+ 4422
+ 13172
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 0f119bb0-53dd-40a3-b660-0e65f9e794c3
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4392
+ 13182
+ 57
+ 20
+
+ -
+ 4422
+ 13192
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - eb4dc28a-6e71-4413-8733-6e8b19762f57
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4392
+ 13202
+ 57
+ 20
+
+ -
+ 4422
+ 13212
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 36733665-feab-44dc-a40c-eb37a575d1cd
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4328
+ 13033
+ 104
+ 44
+
+ -
+ 4386
+ 13055
+
+
+
+
+
+ - Base domain
+ - 20624b80-b81d-4389-99c2-1e82de9b3e18
+ - Domain
+ - Domain
+ - false
+ - eb4dc28a-6e71-4413-8733-6e8b19762f57
+ - 1
+
+
+
+
+ -
+ 4330
+ 13035
+ 41
+ 40
+
+ -
+ 4352
+ 13055
+
+
+
+
+
+
+
+ - Start of domain
+ - cf23777c-43e0-4679-81d6-2332d57183dc
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4401
+ 13035
+ 29
+ 20
+
+ -
+ 4417
+ 13045
+
+
+
+
+
+
+
+ - End of domain
+ - 0f97bdf0-fbd7-4b4e-a03e-24601583c651
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4401
+ 13055
+ 29
+ 20
+
+ -
+ 4417
+ 13065
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 926140fa-b81a-4e6d-9695-4cae28ec00a6
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4328
+ 13095
+ 104
+ 44
+
+ -
+ 4386
+ 13117
+
+
+
+
+
+ - Base domain
+ - df5daabc-5d4e-40f3-86a2-c542e37c2eab
+ - Domain
+ - Domain
+ - false
+ - 0f119bb0-53dd-40a3-b660-0e65f9e794c3
+ - 1
+
+
+
+
+ -
+ 4330
+ 13097
+ 41
+ 40
+
+ -
+ 4352
+ 13117
+
+
+
+
+
+
+
+ - Start of domain
+ - 9fcabcd4-e867-462a-b4a6-bc8994a4bb9e
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4401
+ 13097
+ 29
+ 20
+
+ -
+ 4417
+ 13107
+
+
+
+
+
+
+
+ - End of domain
+ - c5ce1e02-d156-4332-86ab-cee8079d26d4
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4401
+ 13117
+ 29
+ 20
+
+ -
+ 4417
+ 13127
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - ae93279f-87d7-4af4-add7-9d8f0fb9c67d
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 4303
+ 12910
+ 154
+ 104
+
+ -
+ 4387
+ 12962
+
+
+
+
+
+ - Base geometry
+ - 991af3e2-703c-402c-b961-f8aa46085313
+ - Geometry
+ - Geometry
+ - true
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - 1
+
+
+
+
+ -
+ 4305
+ 12912
+ 67
+ 20
+
+ -
+ 4348
+ 12922
+
+
+
+
+
+
+
+ - Base plane
+ - 57b2416e-a4e5-49d2-beaf-acaf982eb18f
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4305
+ 12932
+ 67
+ 20
+
+ -
+ 4348
+ 12942
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 6bb7e740-e1fe-4f0c-bb44-389bbc1bb918
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - c5ce1e02-d156-4332-86ab-cee8079d26d4
+ - 1
+
+
+
+
+ -
+ 4305
+ 12952
+ 67
+ 20
+
+ -
+ 4348
+ 12962
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - d01b10c5-907f-4605-8923-4f2b1680b8d5
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 0f97bdf0-fbd7-4b4e-a03e-24601583c651
+ - 1
+
+
+
+
+ -
+ 4305
+ 12972
+ 67
+ 20
+
+ -
+ 4348
+ 12982
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 27138051-36ab-47b1-aa3e-2013b80b8cac
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 4305
+ 12992
+ 67
+ 20
+
+ -
+ 4348
+ 13002
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - aeacac62-b59f-4f52-9376-abb4b3dae6b9
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4402
+ 12912
+ 53
+ 50
+
+ -
+ 4430
+ 12937
+
+
+
+
+
+
+
+ - Transformation data
+ - 67e1fbe3-6ecc-4376-a975-dd4251aa2490
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4402
+ 12962
+ 53
+ 50
+
+ -
+ 4430
+ 12987
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ae174cc8-14c6-4c07-a85d-3b4ecf2e012c
+ - 22ff4b0d-595e-45dc-8e77-cb0dd4d496ea
+ - e43aef83-d47f-4a21-85bf-24a309d91844
+ - 36733665-feab-44dc-a40c-eb37a575d1cd
+ - 926140fa-b81a-4e6d-9695-4cae28ec00a6
+ - ae93279f-87d7-4af4-add7-9d8f0fb9c67d
+ - 5bb6ccef-9110-4508-b1c4-1cc9b75d6a5a
+ - 81f088dd-94a4-48be-b31f-7aba0efd2713
+ - 8
+ - 5bb0b17f-8cd4-42d8-b387-ad9b4200e5a4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5bb6ccef-9110-4508-b1c4-1cc9b75d6a5a
+ - Curve
+ - Curve
+ - false
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - 1
+
+
+
+
+ -
+ 4356
+ 13409
+ 50
+ 24
+
+ -
+ 4381.496
+ 13421.79
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 81f088dd-94a4-48be-b31f-7aba0efd2713
+ - Curve
+ - Curve
+ - false
+ - aeacac62-b59f-4f52-9376-abb4b3dae6b9
+ - 1
+
+
+
+
+ -
+ 4355
+ 12869
+ 50
+ 24
+
+ -
+ 4380.738
+ 12881.66
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6b59e572-2fa5-41aa-b410-4898d051b922
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 3856
+ 16325
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3856.796
+ 16325.58
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3f2f742c-35d6-4f06-82af-a2490aeb04f6
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0000710748925500000001421
+
+
+
+
+ -
+ 3856
+ 16284
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3856.796
+ 16284.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 46eb5cee-44e0-482e-a3a9-e448befc68ed
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 3856
+ 16358
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3856.796
+ 16358.52
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - e3433f5e-24e1-4bb1-b6fc-19300815f5fc
+ - Number
+ - Number
+ - false
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 1
+
+
+
+
+ -
+ 3949
+ 12673
+ 50
+ 24
+
+ -
+ 3974.659
+ 12685.76
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 36d249d4-0f1a-493f-a5f7-cb03a891e629
+ - Relay
+
+ - false
+ - 18e384ae-d247-44fc-bc3d-f479f1740b7a
+ - 1
+
+
+
+
+ -
+ 3943
+ 15223
+ 40
+ 16
+
+ -
+ 3963
+ 15231
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3fa4d838-4e57-49ec-8096-0e35d0a39602
+ - Relay
+
+ - false
+ - 5d9ab525-130a-484d-92f6-120959d913b4
+ - 1
+
+
+
+
+ -
+ 3953
+ 15000
+ 40
+ 16
+
+ -
+ 3973
+ 15008
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3902
+ 15036
+ 154
+ 64
+
+ -
+ 3986
+ 15068
+
+
+
+
+
+ - Base geometry
+ - d00a7f07-d761-4206-abf5-9a69a7655518
+ - Geometry
+ - Geometry
+ - true
+ - 73d58913-c57b-480b-a2d6-b364fe4a8709
+ - 1
+
+
+
+
+ -
+ 3904
+ 15038
+ 67
+ 20
+
+ -
+ 3947
+ 15048
+
+
+
+
+
+
+
+ - Center of scaling
+ - 0dab37bd-9135-4706-b00c-41b3dc3a83af
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3904
+ 15058
+ 67
+ 20
+
+ -
+ 3947
+ 15068
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 96012918-4786-4a17-aa2a-6e91467fadcf
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 718407b4-0abc-4bca-a225-a6fae160c6ce
+ - 1
+
+
+
+
+ -
+ 3904
+ 15078
+ 67
+ 20
+
+ -
+ 3947
+ 15088
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 5d9ab525-130a-484d-92f6-120959d913b4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 15038
+ 53
+ 30
+
+ -
+ 4029
+ 15053
+
+
+
+
+
+
+
+ - Transformation data
+ - f7f9547b-a2e9-40af-aae6-72c2f8e59fd4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 15068
+ 53
+ 30
+
+ -
+ 4029
+ 15083
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 718407b4-0abc-4bca-a225-a6fae160c6ce
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 3848
+ 15121
+ 250
+ 20
+
+ -
+ 3848.778
+ 15121.84
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
+ - 718407b4-0abc-4bca-a225-a6fae160c6ce
+ - 2
+ - f6239726-8ae1-43d2-8e49-101ba1b5b8ae
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 5feac64c-534d-4c48-92aa-1f8db786693c
+ - Expression
+
+
+
+
+
+ -
+ 3942
+ 16515
+ 79
+ 28
+
+ -
+ 3984
+ 16529
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c92d241b-4166-40f1-a895-4e6461448c6c
+ - Variable X
+ - X
+ - true
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 1
+
+
+
+
+ -
+ 3944
+ 16517
+ 14
+ 24
+
+ -
+ 3952.5
+ 16529
+
+
+
+
+
+
+
+ - Result of expression
+ - cc9ab0d6-775f-4267-a313-c957dc638053
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 4010
+ 16517
+ 9
+ 24
+
+ -
+ 4016
+ 16529
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 58d810fb-ae08-42e2-a647-4abb24f51d7b
+ - 088679fe-0d9d-4734-b02e-df8da927fc6d
+ - 7fa5374f-eb1f-41c8-9449-9aca419e1334
+ - e16c01ae-b0ec-4bd3-8756-736445c58074
+ - af6fe750-f67c-4850-99f4-b3fdf8819875
+ - 8f8737df-7669-451f-8f03-930ee478c87e
+ - 9c12faa7-f51a-44f3-84b8-f74e0ca74788
+ - 1254cf24-304f-4243-ac04-bb238f264a35
+ - 3a2c256b-9088-44c5-befd-33cdcc48c807
+ - 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
+ - ce611084-9d1c-4d17-b689-e5a62b2c6eb7
+ - a49e82c3-c536-409d-9166-af71d95ebe90
+ - 93c314d3-46db-461f-b761-4608ff2db869
+ - 4a9a1cbf-6193-4196-974f-7236e5b8cab4
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 89eea354-b996-41e9-8764-49aa12c19e31
+ - 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
+ - 620e0f28-52e8-42da-a659-0dcd81cf296e
+ - f248edc9-bcde-4aa1-b292-051e8917fd76
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - fa724b88-6e46-46b7-a815-5b5e75263c2e
+ - 1f097239-760b-4d9e-a731-f084f3a5590c
+ - 0a4acbc7-897f-4daf-af3e-2456c722c81b
+ - 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
+ - 9e484615-75b8-44b4-9dff-1315c2b8b430
+ - c7de736c-245a-4709-8150-9915efa12ce0
+ - c429793a-ecca-4a47-810c-0efcd2ddb010
+ - 9e29a813-762d-427d-8a8f-09f4aea42f59
+ - 115c2663-08f3-4bef-8b5b-09991598ca70
+ - 9a564a00-5ceb-4c3e-b479-f74af4d4016c
+ - b29420b3-ac20-4258-b338-f96b92f3d0f9
+ - da0a78c2-e42a-41b3-9209-0836aaa1e3d8
+ - 57377b8d-3759-45e5-a018-b5343227155b
+ - a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
+ - 961c3b67-0bd4-48ec-b4ef-ef516f992b9d
+ - d42768ea-2a3f-4d90-9d2d-fc59d8c2e312
+ - 414a009a-97be-48e4-82ce-6c3acea9858c
+ - e9aeaf87-e233-4357-a19b-af3034a1b9e8
+ - 4f0d1c53-bbb0-40bb-85a1-81f8f1bd7c2c
+ - 87ac02d4-cab2-4c41-92c8-274e16b1549e
+ - b53ceaef-e556-45b9-aa1c-effb45fde9f9
+ - faa3d4bd-4095-4604-9eb0-5c4980686920
+ - 3bd9ec17-73cd-44e7-b087-4ecfd543cf61
+ - d4a78052-b2be-4baf-a749-ab1493095336
+ - 2d98e3c7-4ec0-412e-af88-fe5d831e3541
+ - 6e292688-68a2-40e2-bac4-6beffb026567
+ - 0a89620d-6e81-41d7-a186-5e60bdf8bf82
+ - e0bb1d65-8f43-4e62-9a82-d1e96f795827
+ - f9297beb-af46-4739-8357-5e88101b9779
+ - f5c91f32-d2d2-466e-9380-e4d127f11275
+ - 904892d5-d7a3-4d91-a85c-d65902b5cb8f
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - d0eecc54-1b50-441f-81ac-ce055c2d1aa9
+ - 2f0f6452-fa94-4a66-9243-fee7125d79f9
+ - 112ae8ba-f1e3-4b59-9f12-8d359c1e3095
+ - fb9e5b67-1dd9-43ef-9b6c-d72a088ea77e
+ - cb52044a-de63-4450-b103-a635f3a1f429
+ - 89d6b908-26b0-472d-988e-e629ad5109d0
+ - 0d560297-f006-4fd3-8db6-690017c41c52
+ - b7dbb186-1611-4c53-b4f7-01fa6b4ae529
+ - 04401445-ab23-493e-999a-f5e4ee341658
+ - 4155937e-e3fb-4df8-bd49-e36e359a98d6
+ - 680df784-c22a-415e-a32e-710a9df95f88
+ - 97fab6c6-9ead-4054-833f-221a3603ba37
+ - 2b5446d4-2662-40c1-90ef-28bce3dad14a
+ - 33e20571-35ad-4b71-9b27-b96292662551
+ - e4e81a6b-49cd-4934-bc18-1fc9fc697ada
+ - f3fde9a5-2ea1-4afe-9d9a-928b067af03e
+ - 1f7639fc-9e90-4129-b924-89e68f321767
+ - 2990a666-db3a-47b9-94fc-9242b4498c1b
+ - 8317b12d-ff53-48f0-81f0-88795d1f61d1
+ - 7139f8e3-eaa9-4693-b756-639fca419fc2
+ - 3154d2c4-7bdd-49b5-b43d-59aa89efc602
+ - cf5f65dd-af9a-4743-8528-ed3e3a3756f4
+ - 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
+ - 946c731f-dff8-494b-887e-c414085f65fd
+ - 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
+ - 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
+ - bb4603b8-07f0-49ad-aad4-05a629f7587a
+ - c7939aa7-8fff-41f0-b836-5d909adc77bc
+ - 036b35d9-b1a1-4aef-91e0-5825bc907926
+ - 753d2f70-ec97-49d5-be42-ca631f83d557
+ - 0d7e2e50-a5bd-4802-9b01-5d484618175f
+ - 83
+ - 160a4f05-4776-4de7-80a9-f3f872cb9a85
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 088679fe-0d9d-4734-b02e-df8da927fc6d
+ - 7fa5374f-eb1f-41c8-9449-9aca419e1334
+ - e16c01ae-b0ec-4bd3-8756-736445c58074
+ - af6fe750-f67c-4850-99f4-b3fdf8819875
+ - 8f8737df-7669-451f-8f03-930ee478c87e
+ - 9c12faa7-f51a-44f3-84b8-f74e0ca74788
+ - 1254cf24-304f-4243-ac04-bb238f264a35
+ - 3a2c256b-9088-44c5-befd-33cdcc48c807
+ - 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
+ - ce611084-9d1c-4d17-b689-e5a62b2c6eb7
+ - a49e82c3-c536-409d-9166-af71d95ebe90
+ - 93c314d3-46db-461f-b761-4608ff2db869
+ - 4a9a1cbf-6193-4196-974f-7236e5b8cab4
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 89eea354-b996-41e9-8764-49aa12c19e31
+ - 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
+ - 620e0f28-52e8-42da-a659-0dcd81cf296e
+ - f248edc9-bcde-4aa1-b292-051e8917fd76
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - fa724b88-6e46-46b7-a815-5b5e75263c2e
+ - 1f097239-760b-4d9e-a731-f084f3a5590c
+ - 0a4acbc7-897f-4daf-af3e-2456c722c81b
+ - 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
+ - 9e484615-75b8-44b4-9dff-1315c2b8b430
+ - c7de736c-245a-4709-8150-9915efa12ce0
+ - c429793a-ecca-4a47-810c-0efcd2ddb010
+ - 9e29a813-762d-427d-8a8f-09f4aea42f59
+ - 115c2663-08f3-4bef-8b5b-09991598ca70
+ - 9a564a00-5ceb-4c3e-b479-f74af4d4016c
+ - b29420b3-ac20-4258-b338-f96b92f3d0f9
+ - da0a78c2-e42a-41b3-9209-0836aaa1e3d8
+ - 57377b8d-3759-45e5-a018-b5343227155b
+ - a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
+ - 961c3b67-0bd4-48ec-b4ef-ef516f992b9d
+ - d42768ea-2a3f-4d90-9d2d-fc59d8c2e312
+ - 414a009a-97be-48e4-82ce-6c3acea9858c
+ - e9aeaf87-e233-4357-a19b-af3034a1b9e8
+ - 4f0d1c53-bbb0-40bb-85a1-81f8f1bd7c2c
+ - 87ac02d4-cab2-4c41-92c8-274e16b1549e
+ - b53ceaef-e556-45b9-aa1c-effb45fde9f9
+ - faa3d4bd-4095-4604-9eb0-5c4980686920
+ - 3bd9ec17-73cd-44e7-b087-4ecfd543cf61
+ - d4a78052-b2be-4baf-a749-ab1493095336
+ - 2d98e3c7-4ec0-412e-af88-fe5d831e3541
+ - 6e292688-68a2-40e2-bac4-6beffb026567
+ - 0a89620d-6e81-41d7-a186-5e60bdf8bf82
+ - e0bb1d65-8f43-4e62-9a82-d1e96f795827
+ - f9297beb-af46-4739-8357-5e88101b9779
+ - f5c91f32-d2d2-466e-9380-e4d127f11275
+ - 904892d5-d7a3-4d91-a85c-d65902b5cb8f
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - d0eecc54-1b50-441f-81ac-ce055c2d1aa9
+ - 2f0f6452-fa94-4a66-9243-fee7125d79f9
+ - 112ae8ba-f1e3-4b59-9f12-8d359c1e3095
+ - fb9e5b67-1dd9-43ef-9b6c-d72a088ea77e
+ - cb52044a-de63-4450-b103-a635f3a1f429
+ - 89d6b908-26b0-472d-988e-e629ad5109d0
+ - 0d560297-f006-4fd3-8db6-690017c41c52
+ - b7dbb186-1611-4c53-b4f7-01fa6b4ae529
+ - 04401445-ab23-493e-999a-f5e4ee341658
+ - 4155937e-e3fb-4df8-bd49-e36e359a98d6
+ - 680df784-c22a-415e-a32e-710a9df95f88
+ - 97fab6c6-9ead-4054-833f-221a3603ba37
+ - 2b5446d4-2662-40c1-90ef-28bce3dad14a
+ - 33e20571-35ad-4b71-9b27-b96292662551
+ - e4e81a6b-49cd-4934-bc18-1fc9fc697ada
+ - f3fde9a5-2ea1-4afe-9d9a-928b067af03e
+ - 1f7639fc-9e90-4129-b924-89e68f321767
+ - 2990a666-db3a-47b9-94fc-9242b4498c1b
+ - 8317b12d-ff53-48f0-81f0-88795d1f61d1
+ - 7139f8e3-eaa9-4693-b756-639fca419fc2
+ - 3154d2c4-7bdd-49b5-b43d-59aa89efc602
+ - cf5f65dd-af9a-4743-8528-ed3e3a3756f4
+ - 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
+ - 946c731f-dff8-494b-887e-c414085f65fd
+ - 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
+ - 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
+ - bb4603b8-07f0-49ad-aad4-05a629f7587a
+ - c7939aa7-8fff-41f0-b836-5d909adc77bc
+ - 79
+ - 58d810fb-ae08-42e2-a647-4abb24f51d7b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
+ - 1
+ - 088679fe-0d9d-4734-b02e-df8da927fc6d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e16c01ae-b0ec-4bd3-8756-736445c58074
+ - 1
+ - 7fa5374f-eb1f-41c8-9449-9aca419e1334
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - af6fe750-f67c-4850-99f4-b3fdf8819875
+ - 1
+ - e16c01ae-b0ec-4bd3-8756-736445c58074
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8f8737df-7669-451f-8f03-930ee478c87e
+ - 1
+ - af6fe750-f67c-4850-99f4-b3fdf8819875
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9c12faa7-f51a-44f3-84b8-f74e0ca74788
+ - 1
+ - 8f8737df-7669-451f-8f03-930ee478c87e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1254cf24-304f-4243-ac04-bb238f264a35
+ - 1
+ - 9c12faa7-f51a-44f3-84b8-f74e0ca74788
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
+ - 1
+ - 1254cf24-304f-4243-ac04-bb238f264a35
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3a2c256b-9088-44c5-befd-33cdcc48c807
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5464
+ 16621
+ 50
+ 24
+
+ -
+ 5489.311
+ 16633.09
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3a2c256b-9088-44c5-befd-33cdcc48c807
+ - 1
+ - 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9a564a00-5ceb-4c3e-b479-f74af4d4016c
+ - 1
+ - ce611084-9d1c-4d17-b689-e5a62b2c6eb7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 93c314d3-46db-461f-b761-4608ff2db869
+ - 4a9a1cbf-6193-4196-974f-7236e5b8cab4
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 89eea354-b996-41e9-8764-49aa12c19e31
+ - 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
+ - 620e0f28-52e8-42da-a659-0dcd81cf296e
+ - f248edc9-bcde-4aa1-b292-051e8917fd76
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 1f097239-760b-4d9e-a731-f084f3a5590c
+ - fa724b88-6e46-46b7-a815-5b5e75263c2e
+ - ce611084-9d1c-4d17-b689-e5a62b2c6eb7
+ - 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
+ - e4e81a6b-49cd-4934-bc18-1fc9fc697ada
+ - f3fde9a5-2ea1-4afe-9d9a-928b067af03e
+ - 1f7639fc-9e90-4129-b924-89e68f321767
+ - 2990a666-db3a-47b9-94fc-9242b4498c1b
+ - 8317b12d-ff53-48f0-81f0-88795d1f61d1
+ - 7139f8e3-eaa9-4693-b756-639fca419fc2
+ - 97fab6c6-9ead-4054-833f-221a3603ba37
+ - 2b5446d4-2662-40c1-90ef-28bce3dad14a
+ - 20
+ - a49e82c3-c536-409d-9166-af71d95ebe90
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 93c314d3-46db-461f-b761-4608ff2db869
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 5442
+ 17638
+ 104
+ 64
+
+ -
+ 5501
+ 17670
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 38fbd148-261f-4aea-bf66-13e2b8c7132e
+ - Data
+ - Data
+ - false
+ - f70822e3-31a4-4282-bec8-3922e48d70b0
+ - 1
+
+
+
+
+ -
+ 5444
+ 17640
+ 42
+ 20
+
+ -
+ 5466.5
+ 17650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - fffd7802-1be4-4911-a182-3cc5d55ced95
+ - Number
+ - Number
+ - false
+ - 33e20571-35ad-4b71-9b27-b96292662551
+ - 1
+
+
+
+
+ -
+ 5444
+ 17660
+ 42
+ 20
+
+ -
+ 5466.5
+ 17670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - f59921a9-216c-4308-a13f-3fda41516909
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 5444
+ 17680
+ 42
+ 20
+
+ -
+ 5466.5
+ 17690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - f22241aa-2819-474a-8675-d52584c26780
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 5516
+ 17640
+ 28
+ 60
+
+ -
+ 5531.5
+ 17670
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 4a9a1cbf-6193-4196-974f-7236e5b8cab4
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 5428
+ 15977
+ 116
+ 44
+
+ -
+ 5489
+ 15999
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 7b2f4fbb-4219-4b2e-9416-ec0ee1c1b820
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - f22241aa-2819-474a-8675-d52584c26780
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5430
+ 15979
+ 44
+ 20
+
+ -
+ 5453.5
+ 15989
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 6b024569-57b7-4bf0-a26e-538262e1e1e1
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - d63382c0-8c72-4c9e-b48c-4524b1fd9d2f
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5430
+ 15999
+ 44
+ 20
+
+ -
+ 5453.5
+ 16009
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 4e66a084-5fa1-45f8-aba4-16b3579dc259
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 5504
+ 15979
+ 38
+ 20
+
+ -
+ 5524.5
+ 15989
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 7e56875d-6195-4648-9416-e7dbfed38f2c
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5504
+ 15999
+ 38
+ 20
+
+ -
+ 5524.5
+ 16009
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 89eea354-b996-41e9-8764-49aa12c19e31
+ - Series
+ - Series
+
+
+
+
+ -
+ 5439
+ 17041
+ 101
+ 64
+
+ -
+ 5489
+ 17073
+
+
+
+
+
+ - First number in the series
+ - 37bff983-b892-4386-9f3a-32d2e875e126
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5441
+ 17043
+ 33
+ 20
+
+ -
+ 5459
+ 17053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 943a2fab-5868-4e4f-8ae7-ab93fbdf1b3b
+ - Step
+ - Step
+ - false
+ - 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
+ - 1
+
+
+
+
+ -
+ 5441
+ 17063
+ 33
+ 20
+
+ -
+ 5459
+ 17073
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - b818483e-50d9-4cd5-84cb-50f74f50c8ef
+ - Count
+ - Count
+ - false
+ - 33e20571-35ad-4b71-9b27-b96292662551
+ - 1
+
+
+
+
+ -
+ 5441
+ 17083
+ 33
+ 20
+
+ -
+ 5459
+ 17093
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 5504
+ 17043
+ 34
+ 60
+
+ -
+ 5522.5
+ 17073
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5421
+ 17810
+ 150
+ 20
+
+ -
+ 5421.991
+ 17810.19
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 620e0f28-52e8-42da-a659-0dcd81cf296e
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 5426
+ 17243
+ 120
+ 28
+
+ -
+ 5487
+ 17257
+
+
+
+
+
+ - Angle in degrees
+ - 96fe2758-2ce7-43f6-866e-63a10a3bb8bc
+ - Degrees
+ - Degrees
+ - false
+ - 34dd5b72-ea07-47ca-81bb-f79a2688ae4f
+ - 1
+
+
+
+
+ -
+ 5428
+ 17245
+ 44
+ 24
+
+ -
+ 5451.5
+ 17257
+
+
+
+
+
+
+
+ - Angle in radians
+ - f2db67b6-36a8-4c16-930b-5f8777edaacb
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 5502
+ 17245
+ 42
+ 24
+
+ -
+ 5524.5
+ 17257
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f248edc9-bcde-4aa1-b292-051e8917fd76
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 5362
+ 17546
+ 251
+ 20
+
+ -
+ 5362.703
+ 17546.98
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - fa724b88-6e46-46b7-a815-5b5e75263c2e
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 5414
+ 15212
+ 144
+ 84
+
+ -
+ 5500
+ 15254
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 3034ddd9-02ca-4c96-90a6-00a6c21c74d6
+ - Vertices
+ - Vertices
+ - false
+ - 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
+ - 1
+
+
+
+
+ -
+ 5416
+ 15214
+ 69
+ 20
+
+ -
+ 5452
+ 15224
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - aba4a021-9895-4c2f-91a0-940a1f1b6adb
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 15234
+ 69
+ 20
+
+ -
+ 5452
+ 15244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - a8bb886c-9fa1-43e1-90a5-893e6052a6ff
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 15254
+ 69
+ 20
+
+ -
+ 5452
+ 15264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - ee359cd8-e9fa-4b93-b15b-7fedfb9af172
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 15274
+ 69
+ 20
+
+ -
+ 5452
+ 15284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 49f11615-022f-40f0-b338-3261f9fba31e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5515
+ 15214
+ 41
+ 26
+
+ -
+ 5537
+ 15227.33
+
+
+
+
+
+
+
+ - Curve length
+ - 37263645-78fa-4a92-b6fa-55d9c83b36f5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5515
+ 15240
+ 41
+ 27
+
+ -
+ 5537
+ 15254
+
+
+
+
+
+
+
+ - Curve domain
+ - 6d4edb64-ac53-458b-8d6e-c0096709e83f
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5515
+ 15267
+ 41
+ 27
+
+ -
+ 5537
+ 15280.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 93c314d3-46db-461f-b761-4608ff2db869
+ - 4a9a1cbf-6193-4196-974f-7236e5b8cab4
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 89eea354-b996-41e9-8764-49aa12c19e31
+ - 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
+ - 620e0f28-52e8-42da-a659-0dcd81cf296e
+ - f248edc9-bcde-4aa1-b292-051e8917fd76
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - cf5f65dd-af9a-4743-8528-ed3e3a3756f4
+ - a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
+ - 680df784-c22a-415e-a32e-710a9df95f88
+ - 3154d2c4-7bdd-49b5-b43d-59aa89efc602
+ - 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
+ - 6a0d61a0-055d-484a-8ad8-79cab07d7a8a
+ - 14
+ - 1f097239-760b-4d9e-a731-f084f3a5590c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0a4acbc7-897f-4daf-af3e-2456c722c81b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5414
+ 15044
+ 144
+ 64
+
+ -
+ 5488
+ 15076
+
+
+
+
+
+ - Curve to evaluate
+ - b1662b3f-d362-458f-8864-e9be4ac4f4ea
+ - Curve
+ - Curve
+ - false
+ - 49f11615-022f-40f0-b338-3261f9fba31e
+ - 1
+
+
+
+
+ -
+ 5416
+ 15046
+ 57
+ 20
+
+ -
+ 5446
+ 15056
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5435c4e9-3d20-46b4-9a36-bd783498541c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 15066
+ 57
+ 20
+
+ -
+ 5446
+ 15076
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c962cf96-d0e7-4abe-93a8-476e8123ba4a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 15086
+ 57
+ 20
+
+ -
+ 5446
+ 15096
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 50365429-838c-4805-8409-9ec71f4a9545
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 15046
+ 53
+ 20
+
+ -
+ 5531
+ 15056
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f488a10f-84bf-4e7e-ab23-4de568b0aaa0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 15066
+ 53
+ 20
+
+ -
+ 5531
+ 15076
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e17b88df-9103-4889-af2f-ed81a23f8db6
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 15086
+ 53
+ 20
+
+ -
+ 5531
+ 15096
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5417
+ 14982
+ 138
+ 44
+
+ -
+ 5485
+ 15004
+
+
+
+
+
+ - Base geometry
+ - 731a12ca-0eca-40c9-8288-aaeb8edb25d2
+ - Geometry
+ - Geometry
+ - true
+ - 49f11615-022f-40f0-b338-3261f9fba31e
+ - 1
+
+
+
+
+ -
+ 5419
+ 14984
+ 51
+ 20
+
+ -
+ 5446
+ 14994
+
+
+
+
+
+
+
+ - Mirror plane
+ - 2bf1366e-2815-4a05-a44b-c50e8e602d8d
+ - Plane
+ - Plane
+ - false
+ - 026ace1d-4007-416d-abc1-889de4f9eaea
+ - 1
+
+
+
+
+ -
+ 5419
+ 15004
+ 51
+ 20
+
+ -
+ 5446
+ 15014
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 98e89619-5461-41f8-b419-a5cb0c6a7724
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5500
+ 14984
+ 53
+ 20
+
+ -
+ 5528
+ 14994
+
+
+
+
+
+
+
+ - Transformation data
+ - 887489b0-6146-458b-b41b-18af26de18e8
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5500
+ 15004
+ 53
+ 20
+
+ -
+ 5528
+ 15014
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 9e484615-75b8-44b4-9dff-1315c2b8b430
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 5433
+ 15128
+ 106
+ 64
+
+ -
+ 5497
+ 15160
+
+
+
+
+
+ - Line start point
+ - 74bf2370-117d-4c81-bc97-22d1c7432be9
+ - Start
+ - Start
+ - false
+ - 50365429-838c-4805-8409-9ec71f4a9545
+ - 1
+
+
+
+
+ -
+ 5435
+ 15130
+ 47
+ 20
+
+ -
+ 5460
+ 15140
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 636da2f8-cef0-423b-8689-10cceb83311f
+ - Direction
+ - Direction
+ - false
+ - f488a10f-84bf-4e7e-ab23-4de568b0aaa0
+ - 1
+
+
+
+
+ -
+ 5435
+ 15150
+ 47
+ 20
+
+ -
+ 5460
+ 15160
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0a68b130-e957-42d4-8c1c-d5e4941dc773
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5435
+ 15170
+ 47
+ 20
+
+ -
+ 5460
+ 15180
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 026ace1d-4007-416d-abc1-889de4f9eaea
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 5512
+ 15130
+ 25
+ 60
+
+ -
+ 5526
+ 15160
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - c7de736c-245a-4709-8150-9915efa12ce0
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5427
+ 14920
+ 118
+ 44
+
+ -
+ 5490
+ 14942
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 01211884-bcf0-4a39-95a4-e3afb1974a17
+ - Curves
+ - Curves
+ - false
+ - 49f11615-022f-40f0-b338-3261f9fba31e
+ - 98e89619-5461-41f8-b419-a5cb0c6a7724
+ - 2
+
+
+
+
+ -
+ 5429
+ 14922
+ 46
+ 20
+
+ -
+ 5453.5
+ 14932
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - d58c4818-7123-4707-93cb-3b97188ef12c
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5429
+ 14942
+ 46
+ 20
+
+ -
+ 5453.5
+ 14952
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - d568abf7-1f1b-49a1-9f2f-1d0f115b029b
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5505
+ 14922
+ 38
+ 40
+
+ -
+ 5525.5
+ 14942
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - c429793a-ecca-4a47-810c-0efcd2ddb010
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5414
+ 14836
+ 144
+ 64
+
+ -
+ 5488
+ 14868
+
+
+
+
+
+ - Curve to evaluate
+ - edbfd1bf-9014-47a6-9984-23c216e5d7cf
+ - Curve
+ - Curve
+ - false
+ - d568abf7-1f1b-49a1-9f2f-1d0f115b029b
+ - 1
+
+
+
+
+ -
+ 5416
+ 14838
+ 57
+ 20
+
+ -
+ 5446
+ 14848
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 479dbb6c-c333-4a8e-9ec9-8159c81550e3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 14858
+ 57
+ 20
+
+ -
+ 5446
+ 14868
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b53773bb-0c6c-4910-a4f9-79d04e076032
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 14878
+ 57
+ 20
+
+ -
+ 5446
+ 14888
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - af398e9e-0876-40a2-a865-465179b4fc82
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 14838
+ 53
+ 20
+
+ -
+ 5531
+ 14848
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 293074fe-9517-469d-9cf3-55fb6fb86c72
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 14858
+ 53
+ 20
+
+ -
+ 5531
+ 14868
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 87a43a1b-20e4-4f50-9cfb-2103f3d7724d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 14878
+ 53
+ 20
+
+ -
+ 5531
+ 14888
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 9e29a813-762d-427d-8a8f-09f4aea42f59
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 5417
+ 14753
+ 138
+ 64
+
+ -
+ 5485
+ 14785
+
+
+
+
+
+ - Base geometry
+ - bdfb7505-6a77-411f-bff2-5cc373cd290a
+ - Geometry
+ - Geometry
+ - true
+ - d568abf7-1f1b-49a1-9f2f-1d0f115b029b
+ - 1
+
+
+
+
+ -
+ 5419
+ 14755
+ 51
+ 20
+
+ -
+ 5446
+ 14765
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - a2b5c049-3acb-43f0-8157-44a3c2d9b3ce
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 5419
+ 14775
+ 51
+ 20
+
+ -
+ 5446
+ 14785
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - a307de1c-b965-40ac-b657-dca31e465458
+ - Plane
+ - Plane
+ - false
+ - af398e9e-0876-40a2-a865-465179b4fc82
+ - 1
+
+
+
+
+ -
+ 5419
+ 14795
+ 51
+ 20
+
+ -
+ 5446
+ 14805
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 3b3bb12d-a4bf-45c5-b60c-fbab8ae4f566
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5500
+ 14755
+ 53
+ 30
+
+ -
+ 5528
+ 14770
+
+
+
+
+
+
+
+ - Transformation data
+ - 729f59a7-041b-4632-be82-036f8be715fe
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5500
+ 14785
+ 53
+ 30
+
+ -
+ 5528
+ 14800
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 115c2663-08f3-4bef-8b5b-09991598ca70
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5427
+ 14690
+ 118
+ 44
+
+ -
+ 5490
+ 14712
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 4596e284-6e1c-415d-b008-a6fd91bd113c
+ - Curves
+ - Curves
+ - false
+ - d568abf7-1f1b-49a1-9f2f-1d0f115b029b
+ - 3b3bb12d-a4bf-45c5-b60c-fbab8ae4f566
+ - 2
+
+
+
+
+ -
+ 5429
+ 14692
+ 46
+ 20
+
+ -
+ 5453.5
+ 14702
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 54bfaf20-55eb-49cf-93fd-2651cfa67ba7
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5429
+ 14712
+ 46
+ 20
+
+ -
+ 5453.5
+ 14722
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - be40b0c6-4870-487e-b6ec-0a4c47fcf0ea
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5505
+ 14692
+ 38
+ 40
+
+ -
+ 5525.5
+ 14712
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fa724b88-6e46-46b7-a815-5b5e75263c2e
+ - 0a4acbc7-897f-4daf-af3e-2456c722c81b
+ - 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
+ - 9e484615-75b8-44b4-9dff-1315c2b8b430
+ - c7de736c-245a-4709-8150-9915efa12ce0
+ - c429793a-ecca-4a47-810c-0efcd2ddb010
+ - 9e29a813-762d-427d-8a8f-09f4aea42f59
+ - 115c2663-08f3-4bef-8b5b-09991598ca70
+ - da0a78c2-e42a-41b3-9209-0836aaa1e3d8
+ - ac0563c4-269d-48f2-89e5-9a7e37533987
+ - b883c1db-e29a-419a-b27d-3b96c2dc49e7
+ - 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
+ - 0d292809-70fb-4714-b8b2-a4596f68805b
+ - af76057b-70c5-4de0-822b-c12366bb72b7
+ - 04b97450-c000-42e5-b63f-6bbaaadb98c0
+ - 15
+ - 9a564a00-5ceb-4c3e-b479-f74af4d4016c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b29420b3-ac20-4258-b338-f96b92f3d0f9
+ - Panel
+
+ - false
+ - 0
+ - d4a78052-b2be-4baf-a749-ab1493095336
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5415
+ 17126
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5415.731
+ 17126.74
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - da0a78c2-e42a-41b3-9209-0836aaa1e3d8
+ - Curve
+ - Curve
+ - false
+ - be40b0c6-4870-487e-b6ec-0a4c47fcf0ea
+ - 1
+
+
+
+
+ -
+ 5464
+ 14650
+ 50
+ 24
+
+ -
+ 5489.311
+ 14662.25
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - da0a78c2-e42a-41b3-9209-0836aaa1e3d8
+ - 1
+ - 57377b8d-3759-45e5-a018-b5343227155b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 5269
+ 17300
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5269.292
+ 17300.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 961c3b67-0bd4-48ec-b4ef-ef516f992b9d
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5414
+ 14564
+ 144
+ 64
+
+ -
+ 5488
+ 14596
+
+
+
+
+
+ - Curve to evaluate
+ - 8f8d1815-de3e-45d5-9bb3-8531f2d0676f
+ - Curve
+ - Curve
+ - false
+ - be40b0c6-4870-487e-b6ec-0a4c47fcf0ea
+ - 1
+
+
+
+
+ -
+ 5416
+ 14566
+ 57
+ 20
+
+ -
+ 5446
+ 14576
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 57bda122-df02-4c15-9341-7089c498c75f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 14586
+ 57
+ 20
+
+ -
+ 5446
+ 14596
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 8fa75b22-b43d-4e39-b7ed-df31c65b6750
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 14606
+ 57
+ 20
+
+ -
+ 5446
+ 14616
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ae50478e-fea3-4e06-afe3-d1746baaeed9
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 14566
+ 53
+ 20
+
+ -
+ 5531
+ 14576
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f65a84b8-620a-44f4-832f-52018e9792bf
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 14586
+ 53
+ 20
+
+ -
+ 5531
+ 14596
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 18eb4b62-ce65-437e-940a-713ddddd37e3
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 14606
+ 53
+ 20
+
+ -
+ 5531
+ 14616
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d42768ea-2a3f-4d90-9d2d-fc59d8c2e312
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 14342
+ 194
+ 28
+
+ -
+ 5489
+ 14356
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4e9f5cf1-f207-4dea-adde-5fc62e19d034
+ - Variable O
+ - O
+ - true
+ - 75f0c148-a26b-44a8-a252-cded50fad262
+ - 1
+
+
+
+
+ -
+ 5391
+ 14344
+ 14
+ 24
+
+ -
+ 5399.5
+ 14356
+
+
+
+
+
+
+
+ - Result of expression
+ - 5d69fbe7-8b2a-4806-9d4b-7e76faf50b16
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 14344
+ 9
+ 24
+
+ -
+ 5578
+ 14356
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 414a009a-97be-48e4-82ce-6c3acea9858c
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5420
+ 14476
+ 132
+ 64
+
+ -
+ 5467
+ 14508
+
+
+
+
+
+ - Input point
+ - c79bcb08-7452-4bfc-bdb5-3f389667c5ea
+ - Point
+ - Point
+ - false
+ - ae50478e-fea3-4e06-afe3-d1746baaeed9
+ - 1
+
+
+
+
+ -
+ 5422
+ 14478
+ 30
+ 60
+
+ -
+ 5438.5
+ 14508
+
+
+
+
+
+
+
+ - Point {x} component
+ - 75f0c148-a26b-44a8-a252-cded50fad262
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 14478
+ 68
+ 20
+
+ -
+ 5517.5
+ 14488
+
+
+
+
+
+
+
+ - Point {y} component
+ - 6eb9d368-dd27-4c4f-89f4-4fd61cc0e52b
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 14498
+ 68
+ 20
+
+ -
+ 5517.5
+ 14508
+
+
+
+
+
+
+
+ - Point {z} component
+ - a7ad4e7b-7d95-461f-9be9-06a4f128e61f
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 14518
+ 68
+ 20
+
+ -
+ 5517.5
+ 14528
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e9aeaf87-e233-4357-a19b-af3034a1b9e8
+ - Panel
+
+ - false
+ - 0
+ - 5d69fbe7-8b2a-4806-9d4b-7e76faf50b16
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 14315
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.081
+ 14315.83
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4f0d1c53-bbb0-40bb-85a1-81f8f1bd7c2c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 14256
+ 194
+ 28
+
+ -
+ 5489
+ 14270
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a37aa2f2-32b0-47f2-8374-79cf06d36272
+ - Variable O
+ - O
+ - true
+ - 6eb9d368-dd27-4c4f-89f4-4fd61cc0e52b
+ - 1
+
+
+
+
+ -
+ 5391
+ 14258
+ 14
+ 24
+
+ -
+ 5399.5
+ 14270
+
+
+
+
+
+
+
+ - Result of expression
+ - 3129179e-8d32-46dc-bd65-2fdaccae77ec
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 14258
+ 9
+ 24
+
+ -
+ 5578
+ 14270
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 87ac02d4-cab2-4c41-92c8-274e16b1549e
+ - Panel
+
+ - false
+ - 0
+ - 3129179e-8d32-46dc-bd65-2fdaccae77ec
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 14227
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.081
+ 14227.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - b53ceaef-e556-45b9-aa1c-effb45fde9f9
+ - Division
+ - Division
+
+
+
+
+ -
+ 5445
+ 14154
+ 82
+ 44
+
+ -
+ 5476
+ 14176
+
+
+
+
+
+ - Item to divide (dividend)
+ - 673d3b3f-3f5b-4e46-97f7-acfe5d90a2b2
+ - A
+ - A
+ - false
+ - e9aeaf87-e233-4357-a19b-af3034a1b9e8
+ - 1
+
+
+
+
+ -
+ 5447
+ 14156
+ 14
+ 20
+
+ -
+ 5455.5
+ 14166
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 455e6a18-f788-43a4-a426-bea0637160b1
+ - B
+ - B
+ - false
+ - 87ac02d4-cab2-4c41-92c8-274e16b1549e
+ - 1
+
+
+
+
+ -
+ 5447
+ 14176
+ 14
+ 20
+
+ -
+ 5455.5
+ 14186
+
+
+
+
+
+
+
+ - The result of the Division
+ - 88b10a5b-30cb-4fa3-bb36-d1fcfe59fb32
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5491
+ 14156
+ 34
+ 40
+
+ -
+ 5509.5
+ 14176
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - faa3d4bd-4095-4604-9eb0-5c4980686920
+ - Panel
+
+ - false
+ - 0
+ - d4a78052-b2be-4baf-a749-ab1493095336
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 14079
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.321
+ 14079.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3bd9ec17-73cd-44e7-b087-4ecfd543cf61
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 14107
+ 194
+ 28
+
+ -
+ 5489
+ 14121
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 381e0442-8e34-4cfd-bee2-ed73b7fca949
+ - Variable O
+ - O
+ - true
+ - 88b10a5b-30cb-4fa3-bb36-d1fcfe59fb32
+ - 1
+
+
+
+
+ -
+ 5391
+ 14109
+ 14
+ 24
+
+ -
+ 5399.5
+ 14121
+
+
+
+
+
+
+
+ - Result of expression
+ - 4397d970-0f4a-46a4-8b6f-f5d0880e1989
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 14109
+ 9
+ 24
+
+ -
+ 5578
+ 14121
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d4a78052-b2be-4baf-a749-ab1493095336
+ - Relay
+
+ - false
+ - 4397d970-0f4a-46a4-8b6f-f5d0880e1989
+ - 1
+
+
+
+
+ -
+ 5466
+ 14032
+ 40
+ 16
+
+ -
+ 5486
+ 14040
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 2d98e3c7-4ec0-412e-af88-fe5d831e3541
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 5445
+ 13969
+ 82
+ 44
+
+ -
+ 5476
+ 13991
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 52c083db-77df-4448-8f5a-6dffb97d1c5c
+ - A
+ - A
+ - true
+ - 87ac02d4-cab2-4c41-92c8-274e16b1549e
+ - 1
+
+
+
+
+ -
+ 5447
+ 13971
+ 14
+ 20
+
+ -
+ 5455.5
+ 13981
+
+
+
+
+
+
+
+ - Second item for addition
+ - bfa58218-d333-4ce6-85f6-7f48c0d048b7
+ - B
+ - B
+ - true
+ - e9aeaf87-e233-4357-a19b-af3034a1b9e8
+ - 1
+
+
+
+
+ -
+ 5447
+ 13991
+ 14
+ 20
+
+ -
+ 5455.5
+ 14001
+
+
+
+
+
+
+
+ - Result of addition
+ - 6ebf73a5-50ed-4a96-a4ec-240a28474784
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5491
+ 13971
+ 34
+ 40
+
+ -
+ 5509.5
+ 13991
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 6e292688-68a2-40e2-bac4-6beffb026567
+ - Division
+ - Division
+
+
+
+
+ -
+ 5445
+ 13819
+ 82
+ 44
+
+ -
+ 5476
+ 13841
+
+
+
+
+
+ - Item to divide (dividend)
+ - 0e0919a3-1bf2-4d70-82fc-d377221f2da4
+ - A
+ - A
+ - false
+ - f9297beb-af46-4739-8357-5e88101b9779
+ - 1
+
+
+
+
+ -
+ 5447
+ 13821
+ 14
+ 20
+
+ -
+ 5455.5
+ 13831
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 817fa8db-e8a9-407e-bdea-5eddf4887fb6
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 5447
+ 13841
+ 14
+ 20
+
+ -
+ 5455.5
+ 13851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 8a4bdaf2-4664-4778-87bb-d446233c45e4
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5491
+ 13821
+ 34
+ 40
+
+ -
+ 5509.5
+ 13841
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0a89620d-6e81-41d7-a186-5e60bdf8bf82
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 13771
+ 194
+ 28
+
+ -
+ 5489
+ 13785
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 29d8848c-6c48-45ad-b388-eb5115547684
+ - Variable O
+ - O
+ - true
+ - 8a4bdaf2-4664-4778-87bb-d446233c45e4
+ - 1
+
+
+
+
+ -
+ 5391
+ 13773
+ 14
+ 24
+
+ -
+ 5399.5
+ 13785
+
+
+
+
+
+
+
+ - Result of expression
+ - 7a5739d2-9dd3-42cb-873f-a2ed403f97c7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 13773
+ 9
+ 24
+
+ -
+ 5578
+ 13785
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e0bb1d65-8f43-4e62-9a82-d1e96f795827
+ - Panel
+
+ - false
+ - 0
+ - 7a5739d2-9dd3-42cb-873f-a2ed403f97c7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 13743
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.081
+ 13743.75
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f9297beb-af46-4739-8357-5e88101b9779
+ - Panel
+
+ - false
+ - 0
+ - 36c90317-6fdf-486a-9a48-40ac666a7f4f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 13895
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.081
+ 13895.66
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f5c91f32-d2d2-466e-9380-e4d127f11275
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 13922
+ 194
+ 28
+
+ -
+ 5489
+ 13936
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e8aa17a0-1e79-4b7e-ad06-21668baadbf3
+ - Variable O
+ - O
+ - true
+ - 6ebf73a5-50ed-4a96-a4ec-240a28474784
+ - 1
+
+
+
+
+ -
+ 5391
+ 13924
+ 14
+ 24
+
+ -
+ 5399.5
+ 13936
+
+
+
+
+
+
+
+ - Result of expression
+ - 36c90317-6fdf-486a-9a48-40ac666a7f4f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 13924
+ 9
+ 24
+
+ -
+ 5578
+ 13936
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 904892d5-d7a3-4d91-a85c-d65902b5cb8f
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5409
+ 13648
+ 154
+ 64
+
+ -
+ 5493
+ 13680
+
+
+
+
+
+ - Base geometry
+ - 6ed1aa2a-1a44-4e97-9f30-ac13d292c946
+ - Geometry
+ - Geometry
+ - true
+ - da0a78c2-e42a-41b3-9209-0836aaa1e3d8
+ - 1
+
+
+
+
+ -
+ 5411
+ 13650
+ 67
+ 20
+
+ -
+ 5454
+ 13660
+
+
+
+
+
+
+
+ - Center of scaling
+ - dbce7019-415c-49d5-aae1-29df5c6f5db9
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5411
+ 13670
+ 67
+ 20
+
+ -
+ 5454
+ 13680
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 6e5b68b8-04d6-4442-bca0-e386a1916c8a
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - e0bb1d65-8f43-4e62-9a82-d1e96f795827
+ - 1
+
+
+
+
+ -
+ 5411
+ 13690
+ 67
+ 20
+
+ -
+ 5454
+ 13700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 26926bd0-16e1-498c-8f99-6b3d60362da9
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5508
+ 13650
+ 53
+ 30
+
+ -
+ 5536
+ 13665
+
+
+
+
+
+
+
+ - Transformation data
+ - c91aaa21-1755-4027-b205-2a8f523cdc2f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5508
+ 13680
+ 53
+ 30
+
+ -
+ 5536
+ 13695
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - Curve
+ - Curve
+ - false
+ - 26926bd0-16e1-498c-8f99-6b3d60362da9
+ - 1
+
+
+
+
+ -
+ 5462
+ 13049
+ 50
+ 24
+
+ -
+ 5487.061
+ 13061.25
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d0eecc54-1b50-441f-81ac-ce055c2d1aa9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 14429
+ 194
+ 28
+
+ -
+ 5489
+ 14443
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 445840c5-340b-4067-9907-f993dfb6e55a
+ - Variable O
+ - O
+ - true
+ - a7ad4e7b-7d95-461f-9be9-06a4f128e61f
+ - 1
+
+
+
+
+ -
+ 5391
+ 14431
+ 14
+ 24
+
+ -
+ 5399.5
+ 14443
+
+
+
+
+
+
+
+ - Result of expression
+ - ee2a5ea9-d39c-4ed8-be57-0dc8ed20bec2
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 14431
+ 9
+ 24
+
+ -
+ 5578
+ 14443
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2f0f6452-fa94-4a66-9243-fee7125d79f9
+ - Panel
+
+ - false
+ - 0
+ - ee2a5ea9-d39c-4ed8-be57-0dc8ed20bec2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 14401
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.951
+ 14401.6
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 112ae8ba-f1e3-4b59-9f12-8d359c1e3095
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5414
+ 13438
+ 144
+ 64
+
+ -
+ 5488
+ 13470
+
+
+
+
+
+ - Curve to evaluate
+ - d100e1ef-6f4f-4d6f-9297-2ac07a16cb1e
+ - Curve
+ - Curve
+ - false
+ - 26926bd0-16e1-498c-8f99-6b3d60362da9
+ - 1
+
+
+
+
+ -
+ 5416
+ 13440
+ 57
+ 20
+
+ -
+ 5446
+ 13450
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2658d7a3-e47e-4465-bbf7-e198f28ff969
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 13460
+ 57
+ 20
+
+ -
+ 5446
+ 13470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 799ef59f-1a1c-439f-b3ec-1ef05011c197
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 13480
+ 57
+ 20
+
+ -
+ 5446
+ 13490
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 97832c2c-1966-4787-8114-997dd6c5640d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 13440
+ 53
+ 20
+
+ -
+ 5531
+ 13450
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - fb3cbe54-8624-42bf-a7c8-6640b034d701
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 13460
+ 53
+ 20
+
+ -
+ 5531
+ 13470
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - eeb4620c-e6e2-4ec1-be63-aa27c3a85832
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 13480
+ 53
+ 20
+
+ -
+ 5531
+ 13490
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - fb9e5b67-1dd9-43ef-9b6c-d72a088ea77e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 13221
+ 194
+ 28
+
+ -
+ 5489
+ 13235
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 45bb4473-bacb-4c2e-b6c6-e78437ff4210
+ - Variable O
+ - O
+ - true
+ - f3aa052e-061b-4fbd-a512-bf8c8671cd17
+ - 1
+
+
+
+
+ -
+ 5391
+ 13223
+ 14
+ 24
+
+ -
+ 5399.5
+ 13235
+
+
+
+
+
+
+
+ - Result of expression
+ - 334ee449-bb91-4040-87f4-5bfeebbe8c25
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 13223
+ 9
+ 24
+
+ -
+ 5578
+ 13235
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - cb52044a-de63-4450-b103-a635f3a1f429
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5420
+ 13355
+ 132
+ 64
+
+ -
+ 5467
+ 13387
+
+
+
+
+
+ - Input point
+ - 65205cc4-abb0-43b7-8ab4-c06c52bcf289
+ - Point
+ - Point
+ - false
+ - 97832c2c-1966-4787-8114-997dd6c5640d
+ - 1
+
+
+
+
+ -
+ 5422
+ 13357
+ 30
+ 60
+
+ -
+ 5438.5
+ 13387
+
+
+
+
+
+
+
+ - Point {x} component
+ - f3aa052e-061b-4fbd-a512-bf8c8671cd17
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 13357
+ 68
+ 20
+
+ -
+ 5517.5
+ 13367
+
+
+
+
+
+
+
+ - Point {y} component
+ - bd425996-dd75-45a7-a5b7-1d684203bc1f
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 13377
+ 68
+ 20
+
+ -
+ 5517.5
+ 13387
+
+
+
+
+
+
+
+ - Point {z} component
+ - b98ab803-461a-49eb-94fe-2af517b0ccfd
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5482
+ 13397
+ 68
+ 20
+
+ -
+ 5517.5
+ 13407
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 89d6b908-26b0-472d-988e-e629ad5109d0
+ - Panel
+
+ - false
+ - 0
+ - 334ee449-bb91-4040-87f4-5bfeebbe8c25
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 13189
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.331
+ 13189.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0d560297-f006-4fd3-8db6-690017c41c52
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 13135
+ 194
+ 28
+
+ -
+ 5489
+ 13149
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d7a21b21-241b-4ac0-bebd-2ff02e4c9829
+ - Variable O
+ - O
+ - true
+ - bd425996-dd75-45a7-a5b7-1d684203bc1f
+ - 1
+
+
+
+
+ -
+ 5391
+ 13137
+ 14
+ 24
+
+ -
+ 5399.5
+ 13149
+
+
+
+
+
+
+
+ - Result of expression
+ - 4b1c81f1-8711-491e-b47e-7e0588d09b15
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 13137
+ 9
+ 24
+
+ -
+ 5578
+ 13149
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b7dbb186-1611-4c53-b4f7-01fa6b4ae529
+ - Panel
+
+ - false
+ - 0
+ - 4b1c81f1-8711-491e-b47e-7e0588d09b15
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 13103
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.342
+ 13103.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 04401445-ab23-493e-999a-f5e4ee341658
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 13307
+ 194
+ 28
+
+ -
+ 5489
+ 13321
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0184b245-3f14-4c97-8b3b-2ea6f1abe1d3
+ - Variable O
+ - O
+ - true
+ - b98ab803-461a-49eb-94fe-2af517b0ccfd
+ - 1
+
+
+
+
+ -
+ 5391
+ 13309
+ 14
+ 24
+
+ -
+ 5399.5
+ 13321
+
+
+
+
+
+
+
+ - Result of expression
+ - e9861c3e-27b5-4bfd-acc2-9a94e9a0ced6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 13309
+ 9
+ 24
+
+ -
+ 5578
+ 13321
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4155937e-e3fb-4df8-bd49-e36e359a98d6
+ - Panel
+
+ - false
+ - 0
+ - e9861c3e-27b5-4bfd-acc2-9a94e9a0ced6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5408
+ 13275
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5408.081
+ 13275.38
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 680df784-c22a-415e-a32e-710a9df95f88
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 5306
+ 17383
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 5306.737
+ 17383.36
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 97fab6c6-9ead-4054-833f-221a3603ba37
+ - Panel
+
+ - false
+ - 0
+ - 180acb8f-4e37-4c84-8292-6421f7e5b08e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5320
+ 15639
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 5320.271
+ 15639.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2b5446d4-2662-40c1-90ef-28bce3dad14a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 15929
+ 194
+ 28
+
+ -
+ 5489
+ 15943
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b04ba87e-0a9d-42d2-b72f-3ed0d2c3ebfc
+ - Variable O
+ - O
+ - true
+ - 7e56875d-6195-4648-9416-e7dbfed38f2c
+ - 1
+
+
+
+
+ -
+ 5391
+ 15931
+ 14
+ 24
+
+ -
+ 5399.5
+ 15943
+
+
+
+
+
+
+
+ - Result of expression
+ - 180acb8f-4e37-4c84-8292-6421f7e5b08e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 15931
+ 9
+ 24
+
+ -
+ 5578
+ 15943
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 33e20571-35ad-4b71-9b27-b96292662551
+ - Number
+ - Number
+ - false
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 1
+
+
+
+
+ -
+ 5472
+ 17768
+ 50
+ 24
+
+ -
+ 5497.042
+ 17780.48
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - e4e81a6b-49cd-4934-bc18-1fc9fc697ada
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 5317
+ 16161
+ 160
+ 224
+
+ -
+ 5385
+ 16273
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 92522141-2b43-43bf-a53b-30970a9e51fc
+ - true
+ - Curves
+ - Curves
+ - false
+ - 8040d8b5-20c7-45dd-8317-e46a038236d5
+ - 1
+
+
+
+
+ -
+ 5319
+ 16163
+ 51
+ 27
+
+ -
+ 5346
+ 16176.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - fe5b00f2-a7b3-4a51-9d11-edef1a97f723
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - ffe95e94-6ae4-4ded-b8da-8dcc2650942b
+ - 1
+
+
+
+
+ -
+ 5319
+ 16190
+ 51
+ 28
+
+ -
+ 5346
+ 16204.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - c78510bf-4fba-4c6c-85c3-15ff74378e8a
+ - true
+ - Values
+ - Values
+ - false
+ - 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
+ - 1
+
+
+
+
+ -
+ 5319
+ 16218
+ 51
+ 27
+
+ -
+ 5346
+ 16231.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 32eba012-a22b-432b-8410-af553315ce4a
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5319
+ 16245
+ 51
+ 28
+
+ -
+ 5346
+ 16259.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - a8a46fed-4cff-4d19-97a9-663e3e9f1e2d
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5319
+ 16273
+ 51
+ 27
+
+ -
+ 5346
+ 16286.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 03d70106-b718-484d-8f8e-53b54dda0a64
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 5319
+ 16300
+ 51
+ 28
+
+ -
+ 5346
+ 16314.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 027a6efd-3ded-4828-b071-063698cb2a64
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 5319
+ 16328
+ 51
+ 27
+
+ -
+ 5346
+ 16341.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - c01bf397-1423-42a8-b6b9-dd848c41a424
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 5319
+ 16355
+ 51
+ 28
+
+ -
+ 5346
+ 16369.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 655eaf8d-d9bd-47a0-b7e9-00f288846cf5
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16163
+ 75
+ 20
+
+ -
+ 5439
+ 16173
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 21afb9ee-6a63-47e3-a916-042886bbd142
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16183
+ 75
+ 20
+
+ -
+ 5439
+ 16193
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 1ff48f80-a0a1-425c-81ca-0e0be7ce7628
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16203
+ 75
+ 20
+
+ -
+ 5439
+ 16213
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 6c0516ee-59f4-4192-9b9c-8066a1c997d6
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16223
+ 75
+ 20
+
+ -
+ 5439
+ 16233
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 07af53b3-bc6e-44e1-b8fc-f371d56bbdec
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16243
+ 75
+ 20
+
+ -
+ 5439
+ 16253
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 5788b688-f198-4822-8ded-05a4450550ee
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16263
+ 75
+ 20
+
+ -
+ 5439
+ 16273
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 04bab464-8ccd-47a7-b0e6-28036d6f0760
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16283
+ 75
+ 20
+
+ -
+ 5439
+ 16293
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - b4bcb671-84d1-41d3-afd1-85b96f4effe7
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16303
+ 75
+ 20
+
+ -
+ 5439
+ 16313
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - e1b54202-131b-4eba-87cd-4040eab95063
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16323
+ 75
+ 20
+
+ -
+ 5439
+ 16333
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 6ea78899-dfdd-4250-9f24-311acdf08c16
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16343
+ 75
+ 20
+
+ -
+ 5439
+ 16353
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 44271429-a98c-424c-857c-e84bf6334810
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 5400
+ 16363
+ 75
+ 20
+
+ -
+ 5439
+ 16373
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - f3fde9a5-2ea1-4afe-9d9a-928b067af03e
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5438
+ 16521
+ 96
+ 44
+
+ -
+ 5488
+ 16543
+
+
+
+
+
+ - Curve to evaluate
+ - 454c9eb3-ee73-4b71-a8ba-bf1ebbcc7908
+ - Curve
+ - Curve
+ - false
+ - 8040d8b5-20c7-45dd-8317-e46a038236d5
+ - 1
+
+
+
+
+ -
+ 5440
+ 16523
+ 33
+ 40
+
+ -
+ 5458
+ 16543
+
+
+
+
+
+
+
+ - Curve start point
+ - f5a67493-fe18-4e80-b678-918b995b1305
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 16523
+ 29
+ 20
+
+ -
+ 5519
+ 16533
+
+
+
+
+
+
+
+ - Curve end point
+ - cf79c7ad-ce0c-44be-b241-c1cc28038fe1
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5503
+ 16543
+ 29
+ 20
+
+ -
+ 5519
+ 16553
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 1f7639fc-9e90-4129-b924-89e68f321767
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 5423
+ 16419
+ 126
+ 84
+
+ -
+ 5481
+ 16461
+
+
+
+
+
+ - Rectangle base plane
+ - 1a0b033a-2d6d-4dba-a264-94b51f53be45
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5425
+ 16421
+ 41
+ 20
+
+ -
+ 5447
+ 16431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 90cbb827-ab89-4d58-bf90-1d4243890157
+ - Point A
+ - Point A
+ - false
+ - f5a67493-fe18-4e80-b678-918b995b1305
+ - 1
+
+
+
+
+ -
+ 5425
+ 16441
+ 41
+ 20
+
+ -
+ 5447
+ 16451
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - e71cbccd-670f-4c09-9884-173b6da6c1b2
+ - Point B
+ - Point B
+ - false
+ - cf79c7ad-ce0c-44be-b241-c1cc28038fe1
+ - 1
+
+
+
+
+ -
+ 5425
+ 16461
+ 41
+ 20
+
+ -
+ 5447
+ 16471
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - a54396ac-dcff-47d4-8517-cbc7dd3e7feb
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 5425
+ 16481
+ 41
+ 20
+
+ -
+ 5447
+ 16491
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - ffe95e94-6ae4-4ded-b8da-8dcc2650942b
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 5496
+ 16421
+ 51
+ 40
+
+ -
+ 5523
+ 16441
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - d5693f1b-3c15-4d81-bfa2-1f179f6c2f0e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5496
+ 16461
+ 51
+ 40
+
+ -
+ 5523
+ 16481
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 2990a666-db3a-47b9-94fc-9242b4498c1b
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 5477
+ 16281
+ 126
+ 104
+
+ -
+ 5544
+ 16333
+
+
+
+
+
+ - External curve as a graph
+ - f61a827b-5792-492d-968a-df0fb0479f5e
+ - Curve
+ - Curve
+ - false
+ - 8040d8b5-20c7-45dd-8317-e46a038236d5
+ - 1
+
+
+
+
+ -
+ 5479
+ 16283
+ 50
+ 20
+
+ -
+ 5505.5
+ 16293
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - c6cd0c35-928d-4b13-b801-c6c62bc98485
+ - Boundary
+ - Boundary
+ - true
+ - ffe95e94-6ae4-4ded-b8da-8dcc2650942b
+ - 1
+
+
+
+
+ -
+ 5479
+ 16303
+ 50
+ 20
+
+ -
+ 5505.5
+ 16313
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 805be465-f0c7-4ae5-a1b6-27e71e11f4c2
+ - Numbers
+ - Numbers
+ - false
+ - 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
+ - 1
+
+
+
+
+ -
+ 5479
+ 16323
+ 50
+ 20
+
+ -
+ 5505.5
+ 16333
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - b96f2d8c-3146-45f4-b3a6-90c2f1c2e899
+ - Input
+ - Input
+ - true
+ - fa2b0deb-c337-4c3b-97df-b062aaba5cca
+ - 1
+
+
+
+
+ -
+ 5479
+ 16343
+ 50
+ 20
+
+ -
+ 5505.5
+ 16353
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 701a6e51-9925-418b-900a-7a3e9218efc8
+ - Output
+ - Output
+ - true
+ - fa2b0deb-c337-4c3b-97df-b062aaba5cca
+ - 1
+
+
+
+
+ -
+ 5479
+ 16363
+ 50
+ 20
+
+ -
+ 5505.5
+ 16373
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 648c670e-390a-49db-8bb5-efde35578e09
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 5559
+ 16283
+ 42
+ 100
+
+ -
+ 5581.5
+ 16333
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 8317b12d-ff53-48f0-81f0-88795d1f61d1
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 5452
+ 16078
+ 89
+ 64
+
+ -
+ 5497
+ 16110
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 4089ee28-5768-4313-a1c2-7c33ab0550d6
+ - Gate
+ - Gate
+ - false
+ - 7139f8e3-eaa9-4693-b756-639fca419fc2
+ - 1
+
+
+
+
+ -
+ 5454
+ 16080
+ 28
+ 20
+
+ -
+ 5469.5
+ 16090
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 7944637b-2cba-4d72-917a-6a02b5aec705
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 655eaf8d-d9bd-47a0-b7e9-00f288846cf5
+ - 1
+
+
+
+
+ -
+ 5454
+ 16100
+ 28
+ 20
+
+ -
+ 5469.5
+ 16110
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - c23701e4-96ac-42e5-970e-ee9c34554fe0
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 648c670e-390a-49db-8bb5-efde35578e09
+ - 1
+
+
+
+
+ -
+ 5454
+ 16120
+ 28
+ 20
+
+ -
+ 5469.5
+ 16130
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - d63382c0-8c72-4c9e-b48c-4524b1fd9d2f
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 5512
+ 16080
+ 27
+ 60
+
+ -
+ 5527
+ 16110
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 7139f8e3-eaa9-4693-b756-639fca419fc2
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5418
+ 16050
+ 150
+ 20
+
+ -
+ 5418.701
+ 16050.77
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3154d2c4-7bdd-49b5-b43d-59aa89efc602
+ - Panel
+
+ - false
+ - 1
+ - 1060c1be-e29f-4869-9de5-5e30f9be912d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5398
+ 16709
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 5398.771
+ 16709.79
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - cf5f65dd-af9a-4743-8528-ed3e3a3756f4
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 5427
+ 16660
+ 122
+ 28
+
+ -
+ 5491
+ 16674
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 0f35c9be-c009-4484-938b-387d42faade0
+ - Numbers
+ - Numbers
+ - false
+ - 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
+ - 1
+
+
+
+
+ -
+ 5429
+ 16662
+ 47
+ 24
+
+ -
+ 5454
+ 16674
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - fa2b0deb-c337-4c3b-97df-b062aaba5cca
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5506
+ 16662
+ 41
+ 24
+
+ -
+ 5528
+ 16674
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5389
+ 16996
+ 194
+ 28
+
+ -
+ 5489
+ 17010
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 697cd88b-0970-4e60-b0c0-9ea4bf2ce758
+ - true
+ - Variable O
+ - O
+ - true
+ - 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
+ - 1
+
+
+
+
+ -
+ 5391
+ 16998
+ 14
+ 24
+
+ -
+ 5399.5
+ 17010
+
+
+
+
+
+
+
+ - Result of expression
+ - 1060c1be-e29f-4869-9de5-5e30f9be912d
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5572
+ 16998
+ 9
+ 24
+
+ -
+ 5578
+ 17010
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 946c731f-dff8-494b-887e-c414085f65fd
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5303
+ 17195
+ 367
+ 28
+
+ -
+ 5489
+ 17209
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3e74eedc-08b4-4e2d-91c9-039ed265ab24
+ - Variable O
+ - O
+ - true
+ - f2db67b6-36a8-4c16-930b-5f8777edaacb
+ - 1
+
+
+
+
+ -
+ 5305
+ 17197
+ 14
+ 24
+
+ -
+ 5313.5
+ 17209
+
+
+
+
+
+
+
+ - Result of expression
+ - d5fe8339-6e63-4bf8-824e-dfd20728398a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5659
+ 17197
+ 9
+ 24
+
+ -
+ 5665
+ 17209
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
+ - Panel
+
+ - false
+ - 0
+ - d5fe8339-6e63-4bf8-824e-dfd20728398a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5398
+ 17166
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5398.911
+ 17166.96
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - 1
+ - 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - bb4603b8-07f0-49ad-aad4-05a629f7587a
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5409
+ 13563
+ 154
+ 64
+
+ -
+ 5493
+ 13595
+
+
+
+
+
+ - Base geometry
+ - 703bff70-3767-4406-b6dc-d2f74f5d1575
+ - Geometry
+ - Geometry
+ - true
+ - 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
+ - 1
+
+
+
+
+ -
+ 5411
+ 13565
+ 67
+ 20
+
+ -
+ 5454
+ 13575
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7eba0228-0ab3-4a10-a2a5-2050d1c780a7
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5411
+ 13585
+ 67
+ 20
+
+ -
+ 5454
+ 13595
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 1d1f712d-e597-475b-a4de-606ecb8c93e6
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - e0bb1d65-8f43-4e62-9a82-d1e96f795827
+ - 1
+
+
+
+
+ -
+ 5411
+ 13605
+ 67
+ 20
+
+ -
+ 5454
+ 13615
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - d1abe780-8f64-4e2e-a0cf-edcc5149c963
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5508
+ 13565
+ 53
+ 30
+
+ -
+ 5536
+ 13580
+
+
+
+
+
+
+
+ - Transformation data
+ - 5e640669-a63d-4577-82c5-9183d28a06d4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5508
+ 13595
+ 53
+ 30
+
+ -
+ 5536
+ 13610
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - c7939aa7-8fff-41f0-b836-5d909adc77bc
+ - Point
+ - Point
+ - false
+ - d1abe780-8f64-4e2e-a0cf-edcc5149c963
+ - 1
+
+
+
+
+ -
+ 5463
+ 13527
+ 50
+ 24
+
+ -
+ 5488.061
+ 13539.42
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 036b35d9-b1a1-4aef-91e0-5825bc907926
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5414
+ 12905
+ 138
+ 44
+
+ -
+ 5482
+ 12927
+
+
+
+
+
+ - Base geometry
+ - 12addec4-1027-4b71-b570-0e481d653339
+ - Geometry
+ - Geometry
+ - true
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - 1
+
+
+
+
+ -
+ 5416
+ 12907
+ 51
+ 20
+
+ -
+ 5443
+ 12917
+
+
+
+
+
+
+
+ - Mirror plane
+ - e3a2d039-c112-4709-a8da-a69a699d2e89
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 12927
+ 51
+ 20
+
+ -
+ 5443
+ 12937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 83fbefb6-b996-46d3-ac18-058f8ef6dcbf
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5497
+ 12907
+ 53
+ 20
+
+ -
+ 5525
+ 12917
+
+
+
+
+
+
+
+ - Transformation data
+ - 9496e689-66a0-4008-8dd7-b97bce32ef2e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5497
+ 12927
+ 53
+ 20
+
+ -
+ 5525
+ 12937
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 753d2f70-ec97-49d5-be42-ca631f83d557
+ - Curve
+ - Curve
+ - false
+ - b5dbf3e2-2824-40ad-8378-eb6f716817aa
+ - 1
+
+
+
+
+ -
+ 5462
+ 12800
+ 50
+ 24
+
+ -
+ 5487.311
+ 12812.43
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8040d8b5-20c7-45dd-8317-e46a038236d5
+ - Relay
+
+ - false
+ - 006eedfb-60cf-4eff-bd38-f7c31c0b08f9
+ - 1
+
+
+
+
+ -
+ 5468
+ 16588
+ 40
+ 16
+
+ -
+ 5488
+ 16596
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 65a27db8-6cdf-412c-80cf-9074bb1e2ce6
+ - Curve
+ - Curve
+ - false
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - 1
+
+
+
+
+ -
+ 4909
+ 16859
+ 50
+ 24
+
+ -
+ 4934.321
+ 16871.49
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 006eedfb-60cf-4eff-bd38-f7c31c0b08f9
+ - Curve
+ - Curve
+ - false
+ - b00a8555-14a9-42c1-b73a-df344f84da7e
+ - 1
+
+
+
+
+ -
+ 4909
+ 16657
+ 50
+ 24
+
+ -
+ 4934.417
+ 16669.52
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 3efed958-c8aa-42a6-8c98-99350727cda7
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4856
+ 16696
+ 154
+ 64
+
+ -
+ 4940
+ 16728
+
+
+
+
+
+ - Base geometry
+ - 14c7022a-ec32-41ce-bdc9-ff3e529b1ca3
+ - Geometry
+ - Geometry
+ - true
+ - 65a27db8-6cdf-412c-80cf-9074bb1e2ce6
+ - 1
+
+
+
+
+ -
+ 4858
+ 16698
+ 67
+ 20
+
+ -
+ 4901
+ 16708
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7bcaac63-3d4b-433a-885b-c8c9e58c0cc3
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4858
+ 16718
+ 67
+ 20
+
+ -
+ 4901
+ 16728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - c1a3945d-0322-4554-bb1f-77db0917105c
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 2ce48945-3ebb-4f8c-92dd-73095625a0cf
+ - 1
+
+
+
+
+ -
+ 4858
+ 16738
+ 67
+ 20
+
+ -
+ 4901
+ 16748
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - b00a8555-14a9-42c1-b73a-df344f84da7e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4955
+ 16698
+ 53
+ 30
+
+ -
+ 4983
+ 16713
+
+
+
+
+
+
+
+ - Transformation data
+ - 456f5327-5a27-4139-a472-74223ee06b1a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4955
+ 16728
+ 53
+ 30
+
+ -
+ 4983
+ 16743
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 65a27db8-6cdf-412c-80cf-9074bb1e2ce6
+ - 006eedfb-60cf-4eff-bd38-f7c31c0b08f9
+ - 3efed958-c8aa-42a6-8c98-99350727cda7
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 288aead7-3cdd-4e1d-8e5e-f8c1121bff23
+ - 2ce48945-3ebb-4f8c-92dd-73095625a0cf
+ - d36ec6f3-96bc-4f5f-9d8d-7ee30562d78c
+ - 7
+ - 6e31f6c1-3023-4703-945c-66643f71adad
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 0d7e2e50-a5bd-4802-9b01-5d484618175f
+ - Move
+ - Move
+
+
+
+
+ -
+ 5414
+ 12841
+ 138
+ 44
+
+ -
+ 5482
+ 12863
+
+
+
+
+
+ - Base geometry
+ - 031ae77b-721a-4661-8340-f08dec6a7e9a
+ - Geometry
+ - Geometry
+ - true
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - 1
+
+
+
+
+ -
+ 5416
+ 12843
+ 51
+ 20
+
+ -
+ 5443
+ 12853
+
+
+
+
+
+
+
+ - Translation vector
+ - 3d657963-2313-45a1-abbc-36da546ef377
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 5416
+ 12863
+ 51
+ 20
+
+ -
+ 5443
+ 12873
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 2
+ 2
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - b5dbf3e2-2824-40ad-8378-eb6f716817aa
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5497
+ 12843
+ 53
+ 20
+
+ -
+ 5525
+ 12853
+
+
+
+
+
+
+
+ - Transformation data
+ - 46ededc2-6f80-4ac0-afb5-c6a105fc879b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5497
+ 12863
+ 53
+ 20
+
+ -
+ 5525
+ 12873
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 288aead7-3cdd-4e1d-8e5e-f8c1121bff23
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 4809
+ 16818
+ 250
+ 20
+
+ -
+ 4809.717
+ 16818.88
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2ce48945-3ebb-4f8c-92dd-73095625a0cf
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 4866
+ 16782
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4866.884
+ 16782.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d36ec6f3-96bc-4f5f-9d8d-7ee30562d78c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4909
+ 16614
+ 50
+ 24
+
+ -
+ 4934.417
+ 16626.52
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e1fec703-67c6-4d34-97d2-e1d9d2581fc7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4987
+ 16859
+ 50
+ 24
+
+ -
+ 5012.039
+ 16871.42
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ac0c2f92-5c8e-4a64-9f0f-f79bb037cf97
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 5269
+ 17346
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5269.292
+ 17346.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - a2a06c5a-3db9-4c29-b002-538ab4285c23
+ - true
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5845
+ 13483
+ 96
+ 44
+
+ -
+ 5895
+ 13505
+
+
+
+
+
+ - Curve to evaluate
+ - 40455b52-a4c8-4ce1-9fbc-66d544fc9abc
+ - true
+ - Curve
+ - Curve
+ - false
+ - 5ba91209-70bf-441b-84c9-1c6489a2c35f
+ - 1
+
+
+
+
+ -
+ 5847
+ 13485
+ 33
+ 40
+
+ -
+ 5865
+ 13505
+
+
+
+
+
+
+
+ - Curve start point
+ - 01fab085-2513-4dcc-8c03-0f4487e36c87
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 13485
+ 29
+ 20
+
+ -
+ 5926
+ 13495
+
+
+
+
+
+
+
+ - Curve end point
+ - e03b999a-e7c6-4486-924f-91b26deff32c
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 13505
+ 29
+ 20
+
+ -
+ 5926
+ 13515
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 002c3aaf-2bae-4b70-b8d5-2b41e6f6ef58
+ - true
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 5830
+ 13380
+ 126
+ 84
+
+ -
+ 5888
+ 13422
+
+
+
+
+
+ - Rectangle base plane
+ - 748371db-4b89-48fa-a228-a987e16d23f9
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5832
+ 13382
+ 41
+ 20
+
+ -
+ 5854
+ 13392
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - febf0d58-1a2a-403d-8ead-c8c23586042a
+ - true
+ - Point A
+ - Point A
+ - false
+ - 01fab085-2513-4dcc-8c03-0f4487e36c87
+ - 1
+
+
+
+
+ -
+ 5832
+ 13402
+ 41
+ 20
+
+ -
+ 5854
+ 13412
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 1c0be1b0-95a7-4245-a3e0-d61ea9bce3ff
+ - true
+ - Point B
+ - Point B
+ - false
+ - e03b999a-e7c6-4486-924f-91b26deff32c
+ - 1
+
+
+
+
+ -
+ 5832
+ 13422
+ 41
+ 20
+
+ -
+ 5854
+ 13432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - e4a50f63-9a04-407d-94e1-e94ad8fef7bf
+ - true
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 5832
+ 13442
+ 41
+ 20
+
+ -
+ 5854
+ 13452
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 0a1d1fcd-c5ae-4783-8942-4c2d7037e2a4
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 5903
+ 13382
+ 51
+ 40
+
+ -
+ 5930
+ 13402
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - e0fe2cea-f20a-4ec3-9e7e-430cb777911a
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5903
+ 13422
+ 51
+ 40
+
+ -
+ 5930
+ 13442
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - 7dc9b1fa-34a3-4910-b157-fd5d6df71320
+ - true
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 5822
+ 13297
+ 142
+ 64
+
+ -
+ 5890
+ 13329
+
+
+
+
+
+ - Rectangle to deconstruct
+ - 91dbd219-1e2c-4397-a6ab-f547f9717387
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0a1d1fcd-c5ae-4783-8942-4c2d7037e2a4
+ - 1
+
+
+
+
+ -
+ 5824
+ 13299
+ 51
+ 60
+
+ -
+ 5851
+ 13329
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 98d4862a-37a7-47d9-ad5d-279ef0887f5b
+ - true
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5905
+ 13299
+ 57
+ 20
+
+ -
+ 5935
+ 13309
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - e8b7ce31-3d4d-44a6-b64c-7c4e514a3f30
+ - true
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 5905
+ 13319
+ 57
+ 20
+
+ -
+ 5935
+ 13329
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - ec429665-a7b5-498a-8b07-1c5b5cb1aa55
+ - true
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 5905
+ 13339
+ 57
+ 20
+
+ -
+ 5935
+ 13349
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 2ebf6e7a-f8fb-4d09-8da4-8f406721bb40
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 5841
+ 13170
+ 104
+ 44
+
+ -
+ 5899
+ 13192
+
+
+
+
+
+ - Base domain
+ - 4138a53d-36a1-49d2-a384-66119792f159
+ - true
+ - Domain
+ - Domain
+ - false
+ - ec429665-a7b5-498a-8b07-1c5b5cb1aa55
+ - 1
+
+
+
+
+ -
+ 5843
+ 13172
+ 41
+ 40
+
+ -
+ 5865
+ 13192
+
+
+
+
+
+
+
+ - Start of domain
+ - 6ce6e327-8b68-44c4-b7b7-12b3bd61e879
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5914
+ 13172
+ 29
+ 20
+
+ -
+ 5930
+ 13182
+
+
+
+
+
+
+
+ - End of domain
+ - b113f25a-0b9d-4821-8344-0796767beef1
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5914
+ 13192
+ 29
+ 20
+
+ -
+ 5930
+ 13202
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - c1328565-f4da-42d6-8c15-c1953a257c1d
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 5841
+ 13232
+ 104
+ 44
+
+ -
+ 5899
+ 13254
+
+
+
+
+
+ - Base domain
+ - 6098ca9c-4ad6-4287-990a-568c93a2aa0a
+ - true
+ - Domain
+ - Domain
+ - false
+ - e8b7ce31-3d4d-44a6-b64c-7c4e514a3f30
+ - 1
+
+
+
+
+ -
+ 5843
+ 13234
+ 41
+ 40
+
+ -
+ 5865
+ 13254
+
+
+
+
+
+
+
+ - Start of domain
+ - dd3ac956-4a4e-472e-b660-56b73450d91e
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5914
+ 13234
+ 29
+ 20
+
+ -
+ 5930
+ 13244
+
+
+
+
+
+
+
+ - End of domain
+ - d9ffd57c-36f6-485e-8318-995beeeb67b9
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5914
+ 13254
+ 29
+ 20
+
+ -
+ 5930
+ 13264
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - d4189abd-c2f9-41b2-9d89-cf401d5a055e
+ - true
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 5816
+ 13047
+ 154
+ 104
+
+ -
+ 5900
+ 13099
+
+
+
+
+
+ - Base geometry
+ - 434d96a4-8a58-40c3-8d45-5084012fa1b1
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - 1
+
+
+
+
+ -
+ 5818
+ 13049
+ 67
+ 20
+
+ -
+ 5861
+ 13059
+
+
+
+
+
+
+
+ - Base plane
+ - 7e8101ad-3c6e-4cb8-b72a-f1ae595d678b
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5818
+ 13069
+ 67
+ 20
+
+ -
+ 5861
+ 13079
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 872a1606-cb52-4eb5-b3c7-3520c2096f0f
+ - 1/X
+ - true
+ - Scale X
+ - Scale X
+ - false
+ - d9ffd57c-36f6-485e-8318-995beeeb67b9
+ - 1
+
+
+
+
+ -
+ 5818
+ 13089
+ 67
+ 20
+
+ -
+ 5861
+ 13099
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 9e9716a2-c113-4357-ae99-8552a9985a50
+ - 1/X
+ - true
+ - Scale Y
+ - Scale Y
+ - false
+ - b113f25a-0b9d-4821-8344-0796767beef1
+ - 1
+
+
+
+
+ -
+ 5818
+ 13109
+ 67
+ 20
+
+ -
+ 5861
+ 13119
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 5fbf3f11-27ce-4f8e-a45d-51a9b5fa1847
+ - true
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 5818
+ 13129
+ 67
+ 20
+
+ -
+ 5861
+ 13139
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 3e270a6f-f85b-41a6-b4dc-8ff949f32e10
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5915
+ 13049
+ 53
+ 50
+
+ -
+ 5943
+ 13074
+
+
+
+
+
+
+
+ - Transformation data
+ - 4e2e0107-a19a-4cfe-9f39-e4f172ffc936
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5915
+ 13099
+ 53
+ 50
+
+ -
+ 5943
+ 13124
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a2a06c5a-3db9-4c29-b002-538ab4285c23
+ - 002c3aaf-2bae-4b70-b8d5-2b41e6f6ef58
+ - 7dc9b1fa-34a3-4910-b157-fd5d6df71320
+ - 2ebf6e7a-f8fb-4d09-8da4-8f406721bb40
+ - c1328565-f4da-42d6-8c15-c1953a257c1d
+ - d4189abd-c2f9-41b2-9d89-cf401d5a055e
+ - 5ba91209-70bf-441b-84c9-1c6489a2c35f
+ - 7eaee9d9-87c9-4eef-8256-64df6d1afecb
+ - f747c5b6-a0fa-49c2-ab44-3b6a1e483c52
+ - eacb2384-049a-4ead-8722-725b92dcd001
+ - 10
+ - a3502f60-ca5f-4241-b01e-1fc95f471a8b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5ba91209-70bf-441b-84c9-1c6489a2c35f
+ - true
+ - Curve
+ - Curve
+ - false
+ - f1aea4ec-a8bb-4e50-8784-40578c2299f6
+ - 1
+
+
+
+
+ -
+ 5869
+ 13553
+ 50
+ 24
+
+ -
+ 5894.623
+ 13565.59
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7eaee9d9-87c9-4eef-8256-64df6d1afecb
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3e270a6f-f85b-41a6-b4dc-8ff949f32e10
+ - 1
+
+
+
+
+ -
+ 5868
+ 13025
+ 50
+ 24
+
+ -
+ 5893.865
+ 13037.46
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - f747c5b6-a0fa-49c2-ab44-3b6a1e483c52
+ - true
+ - Move
+ - Move
+
+
+
+
+ -
+ 5824
+ 12905
+ 138
+ 44
+
+ -
+ 5892
+ 12927
+
+
+
+
+
+ - Base geometry
+ - c9e04664-18e8-40df-a499-1626b14dba3c
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 7eaee9d9-87c9-4eef-8256-64df6d1afecb
+ - 1
+
+
+
+
+ -
+ 5826
+ 12907
+ 51
+ 20
+
+ -
+ 5853
+ 12917
+
+
+
+
+
+
+
+ - Translation vector
+ - 24e26d31-109f-4a3e-a8b4-8681868cc443
+ - true
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 5826
+ 12927
+ 51
+ 20
+
+ -
+ 5853
+ 12937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 6f7533c2-e995-4de1-a50e-9e2321ea252b
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5907
+ 12907
+ 53
+ 20
+
+ -
+ 5935
+ 12917
+
+
+
+
+
+
+
+ - Transformation data
+ - 55433255-fc94-41cc-8042-bc44ed4932c1
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5907
+ 12927
+ 53
+ 20
+
+ -
+ 5935
+ 12937
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - eacb2384-049a-4ead-8722-725b92dcd001
+ - true
+ - Curve
+ - Curve
+ - false
+ - 6f7533c2-e995-4de1-a50e-9e2321ea252b
+ - 1
+
+
+
+
+ -
+ 5868
+ 12852
+ 50
+ 24
+
+ -
+ 5893.738
+ 12864.46
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 125d3a1c-930f-4463-9347-52d3fdf7374e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 5269
+ 17507
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 5269.598
+ 17507.85
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 51a5ccd4-fe7a-4905-946e-cc623d85be8c
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 5362
+ 17604
+ 251
+ 20
+
+ -
+ 5362.203
+ 17604.73
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 34dd5b72-ea07-47ca-81bb-f79a2688ae4f
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 5269
+ 17566
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5269.042
+ 17566.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 6a0d61a0-055d-484a-8ad8-79cab07d7a8a
+ - Expression
+
+
+
+
+
+ -
+ 5454
+ 17718
+ 79
+ 28
+
+ -
+ 5496
+ 17732
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4faed1ce-4873-4795-8daa-638e471653fa
+ - Variable X
+ - X
+ - true
+ - 33e20571-35ad-4b71-9b27-b96292662551
+ - 1
+
+
+
+
+ -
+ 5456
+ 17720
+ 14
+ 24
+
+ -
+ 5464.5
+ 17732
+
+
+
+
+
+
+
+ - Result of expression
+ - f70822e3-31a4-4282-bec8-3922e48d70b0
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 5522
+ 17720
+ 9
+ 24
+
+ -
+ 5528
+ 17732
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 801d94bb-da1a-4765-8d5f-80e3b14be793
+ - Move
+ - Move
+
+
+
+
+ -
+ 3918
+ 12792
+ 138
+ 44
+
+ -
+ 3986
+ 12814
+
+
+
+
+
+ - Base geometry
+ - a8fd8c13-9926-44dc-9299-0920feb37321
+ - Geometry
+ - Geometry
+ - true
+ - 90e19fa7-f6b1-4d31-96cb-4efdb2699129
+ - 1
+
+
+
+
+ -
+ 3920
+ 12794
+ 51
+ 20
+
+ -
+ 3947
+ 12804
+
+
+
+
+
+
+
+ - Translation vector
+ - e255673c-7411-4f34-9b31-b1f040fe174a
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 3920
+ 12814
+ 51
+ 20
+
+ -
+ 3947
+ 12824
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 2
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 09d02923-a736-4695-b9f9-2969520949b2
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 12794
+ 53
+ 20
+
+ -
+ 4029
+ 12804
+
+
+
+
+
+
+
+ - Transformation data
+ - 6d016aea-4756-4a1b-beee-468606cf1aba
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4001
+ 12814
+ 53
+ 20
+
+ -
+ 4029
+ 12824
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d72bdd86-fcc5-489b-922f-820eed5ab644
+ - Curve
+ - Curve
+ - false
+ - 09d02923-a736-4695-b9f9-2969520949b2
+ - 1
+
+
+
+
+ -
+ 3961
+ 12744
+ 50
+ 24
+
+ -
+ 3986
+ 12756.73
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - 5ec4d760-d1d0-4fa0-91cb-4e75eb9e4582
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 4883
+ 12238
+ 97
+ 164
+
+ -
+ 4929
+ 12320
+
+
+
+
+
+ - 8
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 63a7ea77-f675-4feb-91b9-35c7f9e60e54
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - e0c44022-95ec-431a-b6ac-3c9b92814529
+ - 1
+
+
+
+
+ -
+ 4885
+ 12240
+ 29
+ 20
+
+ -
+ 4901
+ 12250
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 50bd0a59-26b5-455e-b568-d0ae40672c88
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - d72bdd86-fcc5-489b-922f-820eed5ab644
+ - 1
+
+
+
+
+ -
+ 4885
+ 12260
+ 29
+ 20
+
+ -
+ 4901
+ 12270
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 18656fbe-1894-47e8-9abc-b623f4711834
+ - false
+ - Branch {2;x}
+ - {2;x}
+ - true
+ - 5d2b4f82-e973-403a-91a1-1837ec84137e
+ - 1
+
+
+
+
+ -
+ 4885
+ 12280
+ 29
+ 20
+
+ -
+ 4901
+ 12290
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - ff76948c-a81b-411a-9ff8-14071469d96d
+ - false
+ - Branch {3;x}
+ - {3;x}
+ - true
+ - 753d2f70-ec97-49d5-be42-ca631f83d557
+ - 1
+
+
+
+
+ -
+ 4885
+ 12300
+ 29
+ 20
+
+ -
+ 4901
+ 12310
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 0ca85c19-7d18-4a3e-b447-eafc52a55385
+ - false
+ - Branch {4;x}
+ - {4;x}
+ - true
+ - 0acb87a9-1c34-4be4-9a0a-51d135ea71a9
+ - 1
+
+
+
+
+ -
+ 4885
+ 12320
+ 29
+ 20
+
+ -
+ 4901
+ 12330
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 82669f82-f5c2-4900-a525-57bcc5cc5e75
+ - false
+ - Branch {5;x}
+ - {5;x}
+ - true
+ - 0
+
+
+
+
+ -
+ 4885
+ 12340
+ 29
+ 20
+
+ -
+ 4901
+ 12350
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - bd04a5ec-3e4e-468b-bf65-807bb1ae7074
+ - false
+ - Branch {6;x}
+ - {6;x}
+ - true
+ - 0
+
+
+
+
+ -
+ 4885
+ 12360
+ 29
+ 20
+
+ -
+ 4901
+ 12370
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 396248f8-a048-43a0-afb4-8700d2b0e39e
+ - false
+ - Branch {7;x}
+ - {7;x}
+ - true
+ - 0
+
+
+
+
+ -
+ 4885
+ 12380
+ 29
+ 20
+
+ -
+ 4901
+ 12390
+
+
+
+
+
+
+
+ - Entwined result
+ - 23d638bb-eaf7-4140-8cea-d4d59de419f0
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4944
+ 12240
+ 34
+ 160
+
+ -
+ 4962.5
+ 12320
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c805c655-6882-4bac-bcea-fd9c2844f949
+ - Curve
+ - Curve
+ - false
+ - 23d638bb-eaf7-4140-8cea-d4d59de419f0
+ - 1
+
+
+
+
+ -
+ 3948
+ 7793
+ 50
+ 24
+
+ -
+ 3973.804
+ 7805.155
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d8b69669-a2bd-4187-9589-204f3dbe274a
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2773
+ 3215
+ 40
+ 16
+
+ -
+ 2793
+ 3223
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 45cacb59-db8f-4bcf-92f7-9858295e7129
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2782
+ 1321
+ 40
+ 16
+
+ -
+ 2802
+ 1329
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f0a46a15-062c-4b96-9a51-0ebf280e5a4a
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2789
+ -439
+ 40
+ 16
+
+ -
+ 2809
+ -431
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f49ae725-c6ea-4bce-920d-d82e9007d475
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2782
+ -2246
+ 40
+ 16
+
+ -
+ 2802
+ -2238
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2786
+ -4035
+ 40
+ 16
+
+ -
+ 2806
+ -4027
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 647310bf-b19d-44df-ae6f-ffbd5b863fe9
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2788
+ -5834
+ 40
+ 16
+
+ -
+ 2808
+ -5826
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2787
+ -7638
+ 40
+ 16
+
+ -
+ 2807
+ -7630
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a5231a70-f4f4-4b81-9867-e1428a4b482a
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2790
+ -9468
+ 40
+ 16
+
+ -
+ 2810
+ -9460
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c4bdd32b-2f4b-4512-97a3-269f4e7691df
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000331207
+
+
+
+
+ -
+ 3856
+ 16398
+ 250
+ 20
+
+ -
+ 3856.99
+ 16398.15
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - ac0563c4-269d-48f2-89e5-9a7e37533987
+ - Point
+ - Point
+ - false
+ - b883c1db-e29a-419a-b27d-3b96c2dc49e7
+ - 1
+
+
+
+
+ -
+ 5485
+ 15509
+ 50
+ 24
+
+ -
+ 5510.019
+ 15521.45
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b883c1db-e29a-419a-b27d-3b96c2dc49e7
+ - Relay
+
+ - false
+ - 7e56875d-6195-4648-9416-e7dbfed38f2c
+ - 1
+
+
+
+
+ -
+ 5490
+ 15559
+ 40
+ 16
+
+ -
+ 5510
+ 15567
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
+ - Relay
+
+ - false
+ - 30e44a79-a5f5-4524-bb24-e6f86372367c
+ - 1
+
+
+
+
+ -
+ 5490
+ 15336
+ 40
+ 16
+
+ -
+ 5510
+ 15344
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 0d292809-70fb-4714-b8b2-a4596f68805b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5433
+ 15372
+ 154
+ 64
+
+ -
+ 5517
+ 15404
+
+
+
+
+
+ - Base geometry
+ - 2e27ff84-f3f9-4058-9ef2-8c952b224c43
+ - Geometry
+ - Geometry
+ - true
+ - ac0563c4-269d-48f2-89e5-9a7e37533987
+ - 1
+
+
+
+
+ -
+ 5435
+ 15374
+ 67
+ 20
+
+ -
+ 5478
+ 15384
+
+
+
+
+
+
+
+ - Center of scaling
+ - e1c5a546-5e92-4c39-9a6c-b254595a7974
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5435
+ 15394
+ 67
+ 20
+
+ -
+ 5478
+ 15404
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 42701b69-b1cc-4e61-9b9d-a79c84d7f909
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 04b97450-c000-42e5-b63f-6bbaaadb98c0
+ - 1
+
+
+
+
+ -
+ 5435
+ 15414
+ 67
+ 20
+
+ -
+ 5478
+ 15424
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 30e44a79-a5f5-4524-bb24-e6f86372367c
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5532
+ 15374
+ 53
+ 30
+
+ -
+ 5560
+ 15389
+
+
+
+
+
+
+
+ - Transformation data
+ - e37754f6-eab7-4149-a31b-4879926f50c2
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5532
+ 15404
+ 53
+ 30
+
+ -
+ 5560
+ 15419
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 04b97450-c000-42e5-b63f-6bbaaadb98c0
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 5389
+ 15453
+ 250
+ 20
+
+ -
+ 5389.797
+ 15453.81
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ac0563c4-269d-48f2-89e5-9a7e37533987
+ - 1
+ - af76057b-70c5-4de0-822b-c12366bb72b7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 817a1f1b-9353-4d8d-84f9-673116fd6d05
+ - Relay
+
+ - false
+ - 1f4d203a-7210-473f-9482-f99a19778d4f
+ - 1
+
+
+
+
+ -
+ 4327
+ -1769
+ 40
+ 16
+
+ -
+ 4347
+ -1761
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - d197346e-1ec5-40f0-983c-c7a6ead3065e
+ - Move
+ - Move
+
+
+
+
+ -
+ 4318
+ 12762
+ 138
+ 44
+
+ -
+ 4386
+ 12784
+
+
+
+
+
+ - Base geometry
+ - a423dcdd-4853-4b7d-a2f3-cffe291f9850
+ - Geometry
+ - Geometry
+ - true
+ - 81f088dd-94a4-48be-b31f-7aba0efd2713
+ - 1
+
+
+
+
+ -
+ 4320
+ 12764
+ 51
+ 20
+
+ -
+ 4347
+ 12774
+
+
+
+
+
+
+
+ - Translation vector
+ - 408bfb91-bcf5-4126-8885-85433413bdcf
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 12784
+ 51
+ 20
+
+ -
+ 4347
+ 12794
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 4
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - fe8ab74c-cf45-4b89-8ea1-35bc99c27d5b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4401
+ 12764
+ 53
+ 20
+
+ -
+ 4429
+ 12774
+
+
+
+
+
+
+
+ - Transformation data
+ - 1bc666a9-3ed9-4da4-9700-9ed0d2b28c54
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4401
+ 12784
+ 53
+ 20
+
+ -
+ 4429
+ 12794
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - 5d2b4f82-e973-403a-91a1-1837ec84137e
+ - Curve
+ - Curve
+ - false
+ - fe8ab74c-cf45-4b89-8ea1-35bc99c27d5b
+ - 1
+
+
+
+
+ -
+ 4361
+ 12722
+ 50
+ 24
+
+ -
+ 4386.667
+ 12734.07
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 818cae34-4f9c-4a98-a357-da5e0454ab34
+ - 8b9a3012-f494-4be4-96eb-9046c4b5c4be
+ - 7026d177-417b-48d9-89bd-1b653119ba4d
+ - 4349e7b3-029c-4438-8455-d081a0551ea7
+ - 330d0272-c7e2-4aee-9324-9b82cd45051e
+ - c57af627-40bd-41eb-9023-2b3d876665ad
+ - 6
+ - 0101e44a-c070-45c9-afd3-723f4eb84969
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 71b37780-b90b-4013-bfd4-0ab8e9747212
+ - b03e833c-fca6-4ccb-92b1-6861e0602af5
+ - 9d42db50-e21b-4ca7-8257-ab545d2d537a
+ - 93048264-4b36-421d-9dc8-6f63b09e2e02
+ - 8a073dea-ee64-41a0-a142-f0419aa1983a
+ - c7bfe210-2c9c-4606-a81e-4c841f6a26e7
+ - de5ef085-d946-4cbc-a865-d62c7ac5b59f
+ - 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
+ - 5e9559ab-b36f-4135-a20b-0f83883d0c16
+ - e7231421-695c-411b-be55-ddb09db98c02
+ - 4b2a6410-7370-4694-9e32-2aa5978d40f9
+ - b70db8ac-ad66-4443-85b9-31ebfab630d6
+ - 146dd4e9-d31a-47ab-96a2-4e5a7b067380
+ - a37ed670-3231-4174-9012-88b689f8c3ec
+ - c224342c-801f-4459-9224-44879ddf539f
+ - a16b5aba-6b7d-4c32-900e-608495f6304a
+ - e7644f26-8c06-4185-a067-2a43d69f923f
+ - 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
+ - eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 9ba04202-972f-46cf-bbdb-ec7165cf9218
+ - 15f4b4a9-678a-4279-bcbf-8c346070768f
+ - 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
+ - efd312fd-5e18-4a1e-b794-4ff2fce83a8c
+ - fff9a471-5152-49fd-99a1-8314714ec684
+ - a5e32ddc-34b6-4c3a-b077-6d8835921880
+ - f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
+ - 3d813d91-92fa-4852-945d-e3a25c964c7e
+ - 991e2e02-facb-422f-94b3-f99e9e5fb37c
+ - 32bdb325-7b6d-415f-adf0-86c7bbba7c50
+ - 3bf63ba3-f267-4d79-aaef-631ecd541cb9
+ - cc9c241b-c6a7-47bd-8026-177029f27f11
+ - 51762e9b-3278-4635-b56f-bbed71f7be4a
+ - 92dea64a-2d16-439e-9f27-9c0d88d741dc
+ - e54e9014-dac7-4d48-b29e-4e9328a0c364
+ - 88286176-d253-439c-ad14-7da02c75ca8b
+ - 2e9fc4e7-11d6-46e7-bbe2-4be37b0bfe47
+ - 6c2c0e34-fde6-416e-b38f-17e237ffa612
+ - 96103962-5729-44c6-919b-b5e668bb459d
+ - cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
+ - 6b265988-c729-43d9-88ad-548c22e07a09
+ - 376fda74-51b3-4127-b018-e74a14bf6894
+ - 29b0ed52-1bf6-4d5b-b0dd-81f23322e72e
+ - 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
+ - fdb4fd70-bdff-4175-8783-9cf3c3a117db
+ - c501f714-9d8e-43b6-8bac-048ca2bb80cf
+ - 0b08a1a9-9bef-44f3-b7d3-687ca9617c3f
+ - 913fa83a-7c8e-40f4-ba27-a4799bffb36e
+ - 7493d9a5-e75e-4270-943a-49f011ebc376
+ - de444b16-e90f-46ab-bc54-6b6b8ba29496
+ - c43c079b-63ca-493a-8642-e54578ba8b03
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 9cbe6a37-a7e2-4fd1-9eaf-24df74f69a5c
+ - 316f3779-ed94-4d88-a48c-0bcda6b652ff
+ - ec81026f-aaf0-400a-a481-5a2730b38b20
+ - 6508b285-8a59-4d0c-a67a-44a3db97fc39
+ - edd134a4-57ee-42b4-9a96-203dd2d224a1
+ - 1ee22ab9-d81d-496a-95aa-c79966d9f1ee
+ - 38d1a553-d197-4de9-be8f-831f3678bc16
+ - 97ee1782-c906-46c4-91b5-f223dbe502df
+ - c0237c22-ae4e-4bcc-a7f3-8849e1f79852
+ - b98c6ab4-6826-4894-b815-39419e0c3a74
+ - 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
+ - fa5f5265-773a-47ad-93dd-9e26a91e6025
+ - d73f2344-3af1-4e8b-aa88-550107d9e330
+ - a581cb4b-1814-48fc-a1b8-43b1d1292aed
+ - 9325032a-eb1d-4417-917b-7ac65f028126
+ - 34b3f794-c511-49ff-92c6-10cd056aa48c
+ - 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
+ - a1119ab4-5e53-41b5-800a-934be5132300
+ - 6d014d07-0f02-444c-ac9d-e170313d1517
+ - 1753a518-f0a0-46e5-8dd8-9caf11fd6412
+ - 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
+ - 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
+ - 723d57d4-e61b-41f3-a500-fda5845c7a33
+ - ef313551-48ea-4e3c-b4c0-4a190bd7321a
+ - 63453c88-bf0b-4d36-85c6-a269170a7b71
+ - b14cb3b4-9404-4bbf-adca-ddf843b42203
+ - 3ce6ef90-b08d-4cde-aaac-5cd8c3a27dff
+ - 99b9d330-df78-461e-a740-618abd0be001
+ - f8e459ea-0b4f-43ea-ba11-4269ab3fae7e
+ - 0acb87a9-1c34-4be4-9a0a-51d135ea71a9
+ - 2ae4353f-5da3-48ee-b4ec-327901fe84b9
+ - 83
+ - 6f908309-1408-4e8c-be44-93157dd82c8a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b03e833c-fca6-4ccb-92b1-6861e0602af5
+ - 9d42db50-e21b-4ca7-8257-ab545d2d537a
+ - 93048264-4b36-421d-9dc8-6f63b09e2e02
+ - 8a073dea-ee64-41a0-a142-f0419aa1983a
+ - c7bfe210-2c9c-4606-a81e-4c841f6a26e7
+ - de5ef085-d946-4cbc-a865-d62c7ac5b59f
+ - 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
+ - 5e9559ab-b36f-4135-a20b-0f83883d0c16
+ - e7231421-695c-411b-be55-ddb09db98c02
+ - 4b2a6410-7370-4694-9e32-2aa5978d40f9
+ - b70db8ac-ad66-4443-85b9-31ebfab630d6
+ - 146dd4e9-d31a-47ab-96a2-4e5a7b067380
+ - a37ed670-3231-4174-9012-88b689f8c3ec
+ - c224342c-801f-4459-9224-44879ddf539f
+ - a16b5aba-6b7d-4c32-900e-608495f6304a
+ - e7644f26-8c06-4185-a067-2a43d69f923f
+ - 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
+ - eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 9ba04202-972f-46cf-bbdb-ec7165cf9218
+ - 15f4b4a9-678a-4279-bcbf-8c346070768f
+ - 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
+ - efd312fd-5e18-4a1e-b794-4ff2fce83a8c
+ - fff9a471-5152-49fd-99a1-8314714ec684
+ - a5e32ddc-34b6-4c3a-b077-6d8835921880
+ - f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
+ - 3d813d91-92fa-4852-945d-e3a25c964c7e
+ - 991e2e02-facb-422f-94b3-f99e9e5fb37c
+ - 32bdb325-7b6d-415f-adf0-86c7bbba7c50
+ - 3bf63ba3-f267-4d79-aaef-631ecd541cb9
+ - cc9c241b-c6a7-47bd-8026-177029f27f11
+ - 51762e9b-3278-4635-b56f-bbed71f7be4a
+ - 92dea64a-2d16-439e-9f27-9c0d88d741dc
+ - e54e9014-dac7-4d48-b29e-4e9328a0c364
+ - 88286176-d253-439c-ad14-7da02c75ca8b
+ - 2e9fc4e7-11d6-46e7-bbe2-4be37b0bfe47
+ - 6c2c0e34-fde6-416e-b38f-17e237ffa612
+ - 96103962-5729-44c6-919b-b5e668bb459d
+ - cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
+ - 6b265988-c729-43d9-88ad-548c22e07a09
+ - 376fda74-51b3-4127-b018-e74a14bf6894
+ - 29b0ed52-1bf6-4d5b-b0dd-81f23322e72e
+ - 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
+ - fdb4fd70-bdff-4175-8783-9cf3c3a117db
+ - c501f714-9d8e-43b6-8bac-048ca2bb80cf
+ - 0b08a1a9-9bef-44f3-b7d3-687ca9617c3f
+ - 913fa83a-7c8e-40f4-ba27-a4799bffb36e
+ - 7493d9a5-e75e-4270-943a-49f011ebc376
+ - de444b16-e90f-46ab-bc54-6b6b8ba29496
+ - c43c079b-63ca-493a-8642-e54578ba8b03
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 9cbe6a37-a7e2-4fd1-9eaf-24df74f69a5c
+ - 316f3779-ed94-4d88-a48c-0bcda6b652ff
+ - ec81026f-aaf0-400a-a481-5a2730b38b20
+ - 6508b285-8a59-4d0c-a67a-44a3db97fc39
+ - edd134a4-57ee-42b4-9a96-203dd2d224a1
+ - 1ee22ab9-d81d-496a-95aa-c79966d9f1ee
+ - 38d1a553-d197-4de9-be8f-831f3678bc16
+ - 97ee1782-c906-46c4-91b5-f223dbe502df
+ - c0237c22-ae4e-4bcc-a7f3-8849e1f79852
+ - b98c6ab4-6826-4894-b815-39419e0c3a74
+ - 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
+ - fa5f5265-773a-47ad-93dd-9e26a91e6025
+ - d73f2344-3af1-4e8b-aa88-550107d9e330
+ - a581cb4b-1814-48fc-a1b8-43b1d1292aed
+ - 9325032a-eb1d-4417-917b-7ac65f028126
+ - 34b3f794-c511-49ff-92c6-10cd056aa48c
+ - 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
+ - a1119ab4-5e53-41b5-800a-934be5132300
+ - 6d014d07-0f02-444c-ac9d-e170313d1517
+ - 1753a518-f0a0-46e5-8dd8-9caf11fd6412
+ - 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
+ - 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
+ - 723d57d4-e61b-41f3-a500-fda5845c7a33
+ - ef313551-48ea-4e3c-b4c0-4a190bd7321a
+ - 63453c88-bf0b-4d36-85c6-a269170a7b71
+ - b14cb3b4-9404-4bbf-adca-ddf843b42203
+ - 3ce6ef90-b08d-4cde-aaac-5cd8c3a27dff
+ - 99b9d330-df78-461e-a740-618abd0be001
+ - 79
+ - 71b37780-b90b-4013-bfd4-0ab8e9747212
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b14cb3b4-9404-4bbf-adca-ddf843b42203
+ - 1
+ - b03e833c-fca6-4ccb-92b1-6861e0602af5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 93048264-4b36-421d-9dc8-6f63b09e2e02
+ - 1
+ - 9d42db50-e21b-4ca7-8257-ab545d2d537a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8a073dea-ee64-41a0-a142-f0419aa1983a
+ - 1
+ - 93048264-4b36-421d-9dc8-6f63b09e2e02
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c7bfe210-2c9c-4606-a81e-4c841f6a26e7
+ - 1
+ - 8a073dea-ee64-41a0-a142-f0419aa1983a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - de5ef085-d946-4cbc-a865-d62c7ac5b59f
+ - 1
+ - c7bfe210-2c9c-4606-a81e-4c841f6a26e7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
+ - 1
+ - de5ef085-d946-4cbc-a865-d62c7ac5b59f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e7231421-695c-411b-be55-ddb09db98c02
+ - 1
+ - 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5e9559ab-b36f-4135-a20b-0f83883d0c16
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6902
+ 16621
+ 50
+ 24
+
+ -
+ 6927.354
+ 16633.31
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5e9559ab-b36f-4135-a20b-0f83883d0c16
+ - 1
+ - e7231421-695c-411b-be55-ddb09db98c02
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 32bdb325-7b6d-415f-adf0-86c7bbba7c50
+ - 1
+ - 4b2a6410-7370-4694-9e32-2aa5978d40f9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 146dd4e9-d31a-47ab-96a2-4e5a7b067380
+ - a37ed670-3231-4174-9012-88b689f8c3ec
+ - c224342c-801f-4459-9224-44879ddf539f
+ - a16b5aba-6b7d-4c32-900e-608495f6304a
+ - e7644f26-8c06-4185-a067-2a43d69f923f
+ - 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
+ - eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 15f4b4a9-678a-4279-bcbf-8c346070768f
+ - 9ba04202-972f-46cf-bbdb-ec7165cf9218
+ - 4b2a6410-7370-4694-9e32-2aa5978d40f9
+ - e7231421-695c-411b-be55-ddb09db98c02
+ - 9325032a-eb1d-4417-917b-7ac65f028126
+ - 34b3f794-c511-49ff-92c6-10cd056aa48c
+ - 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
+ - a1119ab4-5e53-41b5-800a-934be5132300
+ - 6d014d07-0f02-444c-ac9d-e170313d1517
+ - 1753a518-f0a0-46e5-8dd8-9caf11fd6412
+ - fa5f5265-773a-47ad-93dd-9e26a91e6025
+ - d73f2344-3af1-4e8b-aa88-550107d9e330
+ - 20
+ - b70db8ac-ad66-4443-85b9-31ebfab630d6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 146dd4e9-d31a-47ab-96a2-4e5a7b067380
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 6880
+ 17638
+ 104
+ 64
+
+ -
+ 6939
+ 17670
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 432d2d62-6a24-494d-bcfa-22ba08c6901b
+ - Data
+ - Data
+ - false
+ - 3ad7dfe7-0bcc-40c5-ba1e-131b10b2e1e0
+ - 1
+
+
+
+
+ -
+ 6882
+ 17640
+ 42
+ 20
+
+ -
+ 6904.5
+ 17650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 3a7f67fc-9e30-4d01-af92-8a22caf1cd63
+ - Number
+ - Number
+ - false
+ - a581cb4b-1814-48fc-a1b8-43b1d1292aed
+ - 1
+
+
+
+
+ -
+ 6882
+ 17660
+ 42
+ 20
+
+ -
+ 6904.5
+ 17670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 19e13fca-58e6-4de7-8df0-45fc14125c83
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 6882
+ 17680
+ 42
+ 20
+
+ -
+ 6904.5
+ 17690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 44f0502a-3401-4938-b9ac-11e734bde58a
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 6954
+ 17640
+ 28
+ 60
+
+ -
+ 6969.5
+ 17670
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - a37ed670-3231-4174-9012-88b689f8c3ec
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 6866
+ 15977
+ 116
+ 44
+
+ -
+ 6927
+ 15999
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 744c6902-9d5c-4582-ba51-cb4b5fe416c9
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 44f0502a-3401-4938-b9ac-11e734bde58a
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 6868
+ 15979
+ 44
+ 20
+
+ -
+ 6891.5
+ 15989
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 52fc1124-4208-4f8f-b122-c00559927a62
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - b33b8004-7930-480a-ac46-8cdfdfe4c3fd
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 6868
+ 15999
+ 44
+ 20
+
+ -
+ 6891.5
+ 16009
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 19f9cffa-730b-4a74-944a-dc68c27659a7
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 6942
+ 15979
+ 38
+ 20
+
+ -
+ 6962.5
+ 15989
+
+
+
+
+
+
+
+ - Output parameter Points
+ - cc0559b1-a1cc-49c2-a2e5-a855627d3509
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6942
+ 15999
+ 38
+ 20
+
+ -
+ 6962.5
+ 16009
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - a16b5aba-6b7d-4c32-900e-608495f6304a
+ - Series
+ - Series
+
+
+
+
+ -
+ 6877
+ 17041
+ 101
+ 64
+
+ -
+ 6927
+ 17073
+
+
+
+
+
+ - First number in the series
+ - 9c31dfae-88de-46d8-b753-bbdefdb960cd
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 6879
+ 17043
+ 33
+ 20
+
+ -
+ 6897
+ 17053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 53488e46-8c08-4996-819d-c90fcc76e959
+ - Step
+ - Step
+ - false
+ - 63453c88-bf0b-4d36-85c6-a269170a7b71
+ - 1
+
+
+
+
+ -
+ 6879
+ 17063
+ 33
+ 20
+
+ -
+ 6897
+ 17073
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 5f10196d-4db6-4b93-9f3c-9b531348ae11
+ - Count
+ - Count
+ - false
+ - a581cb4b-1814-48fc-a1b8-43b1d1292aed
+ - 1
+
+
+
+
+ -
+ 6879
+ 17083
+ 33
+ 20
+
+ -
+ 6897
+ 17093
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - d600ac99-97d4-49fd-83df-b1b6d6afdef2
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 6942
+ 17043
+ 34
+ 60
+
+ -
+ 6960.5
+ 17073
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - e7644f26-8c06-4185-a067-2a43d69f923f
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6860
+ 17810
+ 150
+ 20
+
+ -
+ 6860.035
+ 17810.41
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 6864
+ 17243
+ 120
+ 28
+
+ -
+ 6925
+ 17257
+
+
+
+
+
+ - Angle in degrees
+ - 3b639ada-9a77-4ac0-ada9-20b70a3c8cfc
+ - Degrees
+ - Degrees
+ - false
+ - 007508b2-f339-4553-8d9f-37c194c198e4
+ - 1
+
+
+
+
+ -
+ 6866
+ 17245
+ 44
+ 24
+
+ -
+ 6889.5
+ 17257
+
+
+
+
+
+
+
+ - Angle in radians
+ - 795cb8d8-c83c-4a7a-a3dc-11c297145099
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 6940
+ 17245
+ 42
+ 24
+
+ -
+ 6962.5
+ 17257
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 6800
+ 17547
+ 251
+ 20
+
+ -
+ 6800.747
+ 17547.2
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 9ba04202-972f-46cf-bbdb-ec7165cf9218
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 6852
+ 15212
+ 144
+ 84
+
+ -
+ 6938
+ 15254
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - cc093273-492e-4d1e-a636-91b1bd476a4a
+ - Vertices
+ - Vertices
+ - false
+ - 7026d177-417b-48d9-89bd-1b653119ba4d
+ - 1
+
+
+
+
+ -
+ 6854
+ 15214
+ 69
+ 20
+
+ -
+ 6890
+ 15224
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 4eab187c-ac00-4ae8-af02-d74d82b3abb6
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 15234
+ 69
+ 20
+
+ -
+ 6890
+ 15244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - e3107843-c6d2-46db-b0b7-2f07cfb85280
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 15254
+ 69
+ 20
+
+ -
+ 6890
+ 15264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 650cb869-7f2f-4d83-8e51-fe36b2b6d11f
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 15274
+ 69
+ 20
+
+ -
+ 6890
+ 15284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 7335fc5e-2f53-45be-a90e-b994f0a163d7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6953
+ 15214
+ 41
+ 26
+
+ -
+ 6975
+ 15227.33
+
+
+
+
+
+
+
+ - Curve length
+ - 0e96ab2a-4239-4660-aea1-ded9799d471d
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6953
+ 15240
+ 41
+ 27
+
+ -
+ 6975
+ 15254
+
+
+
+
+
+
+
+ - Curve domain
+ - 11fdecd1-6ec8-4ea9-b805-8645a753aae3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 6953
+ 15267
+ 41
+ 27
+
+ -
+ 6975
+ 15280.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 146dd4e9-d31a-47ab-96a2-4e5a7b067380
+ - a37ed670-3231-4174-9012-88b689f8c3ec
+ - c224342c-801f-4459-9224-44879ddf539f
+ - a16b5aba-6b7d-4c32-900e-608495f6304a
+ - e7644f26-8c06-4185-a067-2a43d69f923f
+ - 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
+ - eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
+ - 92dea64a-2d16-439e-9f27-9c0d88d741dc
+ - 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
+ - 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
+ - 723d57d4-e61b-41f3-a500-fda5845c7a33
+ - 8559c532-2d07-4a7d-9687-32d3d6a8d21d
+ - 14
+ - 15f4b4a9-678a-4279-bcbf-8c346070768f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 6852
+ 15044
+ 144
+ 64
+
+ -
+ 6926
+ 15076
+
+
+
+
+
+ - Curve to evaluate
+ - cd87cea7-8b64-45ec-b441-63b4ea9641e8
+ - Curve
+ - Curve
+ - false
+ - 7335fc5e-2f53-45be-a90e-b994f0a163d7
+ - 1
+
+
+
+
+ -
+ 6854
+ 15046
+ 57
+ 20
+
+ -
+ 6884
+ 15056
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 0ac6cc97-2b50-4c22-8a64-aab512b0fd27
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 15066
+ 57
+ 20
+
+ -
+ 6884
+ 15076
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 52bb28ee-2360-4448-a022-f17157ac36cf
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 15086
+ 57
+ 20
+
+ -
+ 6884
+ 15096
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 80bde40b-b7f1-4388-ad90-deebf5bbe4b7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 15046
+ 53
+ 20
+
+ -
+ 6969
+ 15056
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 4af12d93-41e4-4c3e-a671-450d903ce2d9
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 15066
+ 53
+ 20
+
+ -
+ 6969
+ 15076
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 068e87c8-2e5e-43bf-a881-662a96c97c1b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 15086
+ 53
+ 20
+
+ -
+ 6969
+ 15096
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - efd312fd-5e18-4a1e-b794-4ff2fce83a8c
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 6855
+ 14982
+ 138
+ 44
+
+ -
+ 6923
+ 15004
+
+
+
+
+
+ - Base geometry
+ - 9252772e-0621-46d3-af11-f8d7ada86a67
+ - Geometry
+ - Geometry
+ - true
+ - 7335fc5e-2f53-45be-a90e-b994f0a163d7
+ - 1
+
+
+
+
+ -
+ 6857
+ 14984
+ 51
+ 20
+
+ -
+ 6884
+ 14994
+
+
+
+
+
+
+
+ - Mirror plane
+ - b3c2c055-3b2b-40c6-bfd1-fc902eddd5ff
+ - Plane
+ - Plane
+ - false
+ - 2a3024ad-0c46-4a3c-a8be-ecf6a7d5a5b3
+ - 1
+
+
+
+
+ -
+ 6857
+ 15004
+ 51
+ 20
+
+ -
+ 6884
+ 15014
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 1ed2cae7-489d-450a-bb13-578ad1f75da8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6938
+ 14984
+ 53
+ 20
+
+ -
+ 6966
+ 14994
+
+
+
+
+
+
+
+ - Transformation data
+ - 9e3491f3-4791-4ab1-9760-3d628a61e78a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6938
+ 15004
+ 53
+ 20
+
+ -
+ 6966
+ 15014
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - fff9a471-5152-49fd-99a1-8314714ec684
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 6871
+ 15128
+ 106
+ 64
+
+ -
+ 6935
+ 15160
+
+
+
+
+
+ - Line start point
+ - 172d8b2d-b3da-4259-999b-af1cd5fe5908
+ - Start
+ - Start
+ - false
+ - 80bde40b-b7f1-4388-ad90-deebf5bbe4b7
+ - 1
+
+
+
+
+ -
+ 6873
+ 15130
+ 47
+ 20
+
+ -
+ 6898
+ 15140
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - f4e0c70a-e4ae-4ece-8ae6-58e5afb78ed7
+ - Direction
+ - Direction
+ - false
+ - 4af12d93-41e4-4c3e-a671-450d903ce2d9
+ - 1
+
+
+
+
+ -
+ 6873
+ 15150
+ 47
+ 20
+
+ -
+ 6898
+ 15160
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - ef8f041a-92a8-4f8e-bb78-e2faac1d98a9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6873
+ 15170
+ 47
+ 20
+
+ -
+ 6898
+ 15180
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 2a3024ad-0c46-4a3c-a8be-ecf6a7d5a5b3
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 6950
+ 15130
+ 25
+ 60
+
+ -
+ 6964
+ 15160
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - a5e32ddc-34b6-4c3a-b077-6d8835921880
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 6865
+ 14920
+ 118
+ 44
+
+ -
+ 6928
+ 14942
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 718175f0-5683-4661-aec5-ba43e9625ee7
+ - Curves
+ - Curves
+ - false
+ - 7335fc5e-2f53-45be-a90e-b994f0a163d7
+ - 1ed2cae7-489d-450a-bb13-578ad1f75da8
+ - 2
+
+
+
+
+ -
+ 6867
+ 14922
+ 46
+ 20
+
+ -
+ 6891.5
+ 14932
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 3893ca90-0261-40d0-bf20-664c3c887e1d
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 6867
+ 14942
+ 46
+ 20
+
+ -
+ 6891.5
+ 14952
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - c8245540-9ccf-4c49-b97d-9c03f5c238f7
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6943
+ 14922
+ 38
+ 40
+
+ -
+ 6963.5
+ 14942
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 6852
+ 14836
+ 144
+ 64
+
+ -
+ 6926
+ 14868
+
+
+
+
+
+ - Curve to evaluate
+ - 69840715-b3f4-4652-a9b7-6ef1c782c769
+ - Curve
+ - Curve
+ - false
+ - c8245540-9ccf-4c49-b97d-9c03f5c238f7
+ - 1
+
+
+
+
+ -
+ 6854
+ 14838
+ 57
+ 20
+
+ -
+ 6884
+ 14848
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2c4a4d71-593a-47c5-a549-28ae38db738e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 14858
+ 57
+ 20
+
+ -
+ 6884
+ 14868
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 8b86e75a-e75f-481e-9ebd-b74c8666de17
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 14878
+ 57
+ 20
+
+ -
+ 6884
+ 14888
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 80b75d2a-cde6-4c0a-8714-8f5f6f351931
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 14838
+ 53
+ 20
+
+ -
+ 6969
+ 14848
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 08064a23-4b64-4fe5-8943-8a596b576b4f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 14858
+ 53
+ 20
+
+ -
+ 6969
+ 14868
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - a7e1f55e-2d8e-4570-aea5-0e00591e758d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 14878
+ 53
+ 20
+
+ -
+ 6969
+ 14888
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 3d813d91-92fa-4852-945d-e3a25c964c7e
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 6855
+ 14753
+ 138
+ 64
+
+ -
+ 6923
+ 14785
+
+
+
+
+
+ - Base geometry
+ - 41df0193-3654-45b5-b544-1d264056a1d7
+ - Geometry
+ - Geometry
+ - true
+ - c8245540-9ccf-4c49-b97d-9c03f5c238f7
+ - 1
+
+
+
+
+ -
+ 6857
+ 14755
+ 51
+ 20
+
+ -
+ 6884
+ 14765
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 41513c05-39a8-4c2f-b48b-d6f5def30e2e
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 6857
+ 14775
+ 51
+ 20
+
+ -
+ 6884
+ 14785
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 8da2b837-d09c-4ccb-b28f-4b4c3d9fd292
+ - Plane
+ - Plane
+ - false
+ - 80b75d2a-cde6-4c0a-8714-8f5f6f351931
+ - 1
+
+
+
+
+ -
+ 6857
+ 14795
+ 51
+ 20
+
+ -
+ 6884
+ 14805
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - b791e682-97a7-45da-89a7-f788fb0877e7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6938
+ 14755
+ 53
+ 30
+
+ -
+ 6966
+ 14770
+
+
+
+
+
+
+
+ - Transformation data
+ - ce8cb4c0-433e-4826-ad7b-b0af78b6841e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6938
+ 14785
+ 53
+ 30
+
+ -
+ 6966
+ 14800
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 991e2e02-facb-422f-94b3-f99e9e5fb37c
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 6865
+ 14690
+ 118
+ 44
+
+ -
+ 6928
+ 14712
+
+
+
+
+
+ - 1
+ - Curves to join
+ - c22aa788-dc65-4752-ba31-7a70e831849d
+ - Curves
+ - Curves
+ - false
+ - c8245540-9ccf-4c49-b97d-9c03f5c238f7
+ - b791e682-97a7-45da-89a7-f788fb0877e7
+ - 2
+
+
+
+
+ -
+ 6867
+ 14692
+ 46
+ 20
+
+ -
+ 6891.5
+ 14702
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - f71968ba-1a09-45b5-a370-cb8e22bdb286
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 6867
+ 14712
+ 46
+ 20
+
+ -
+ 6891.5
+ 14722
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - fc8429ea-b288-4e5f-8717-57ac43d070f5
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6943
+ 14692
+ 38
+ 40
+
+ -
+ 6963.5
+ 14712
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9ba04202-972f-46cf-bbdb-ec7165cf9218
+ - 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
+ - efd312fd-5e18-4a1e-b794-4ff2fce83a8c
+ - fff9a471-5152-49fd-99a1-8314714ec684
+ - a5e32ddc-34b6-4c3a-b077-6d8835921880
+ - f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
+ - 3d813d91-92fa-4852-945d-e3a25c964c7e
+ - 991e2e02-facb-422f-94b3-f99e9e5fb37c
+ - cc9c241b-c6a7-47bd-8026-177029f27f11
+ - 818cae34-4f9c-4a98-a357-da5e0454ab34
+ - 8b9a3012-f494-4be4-96eb-9046c4b5c4be
+ - 7026d177-417b-48d9-89bd-1b653119ba4d
+ - 4349e7b3-029c-4438-8455-d081a0551ea7
+ - c57af627-40bd-41eb-9023-2b3d876665ad
+ - 330d0272-c7e2-4aee-9324-9b82cd45051e
+ - 15
+ - 32bdb325-7b6d-415f-adf0-86c7bbba7c50
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3bf63ba3-f267-4d79-aaef-631ecd541cb9
+ - Panel
+
+ - false
+ - 0
+ - 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6853
+ 17126
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6853.774
+ 17126.96
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - cc9c241b-c6a7-47bd-8026-177029f27f11
+ - Curve
+ - Curve
+ - false
+ - fc8429ea-b288-4e5f-8717-57ac43d070f5
+ - 1
+
+
+
+
+ -
+ 6902
+ 14650
+ 50
+ 24
+
+ -
+ 6927.354
+ 14662.47
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cc9c241b-c6a7-47bd-8026-177029f27f11
+ - 1
+ - 51762e9b-3278-4635-b56f-bbed71f7be4a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 92dea64a-2d16-439e-9f27-9c0d88d741dc
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 6707
+ 17301
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6707.335
+ 17301.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - e54e9014-dac7-4d48-b29e-4e9328a0c364
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 6852
+ 14564
+ 144
+ 64
+
+ -
+ 6926
+ 14596
+
+
+
+
+
+ - Curve to evaluate
+ - c618e0a6-5834-480e-9a56-d1645320b677
+ - Curve
+ - Curve
+ - false
+ - fc8429ea-b288-4e5f-8717-57ac43d070f5
+ - 1
+
+
+
+
+ -
+ 6854
+ 14566
+ 57
+ 20
+
+ -
+ 6884
+ 14576
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5e252022-adfb-4149-b4c1-55f412e2f722
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 14586
+ 57
+ 20
+
+ -
+ 6884
+ 14596
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c5927de9-af36-495e-b466-c3b256972da2
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 14606
+ 57
+ 20
+
+ -
+ 6884
+ 14616
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 85f5a83b-6f04-46aa-980e-b5b5cca654ed
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 14566
+ 53
+ 20
+
+ -
+ 6969
+ 14576
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a1bcf24f-b713-496a-bda8-20443864a59d
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 14586
+ 53
+ 20
+
+ -
+ 6969
+ 14596
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 26a2448e-7567-49b0-ba79-7e70d69c52d1
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 14606
+ 53
+ 20
+
+ -
+ 6969
+ 14616
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 88286176-d253-439c-ad14-7da02c75ca8b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 14342
+ 194
+ 28
+
+ -
+ 6927
+ 14356
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0568d588-3beb-49ea-b452-a96d06407d4c
+ - Variable O
+ - O
+ - true
+ - 30827a16-3332-47cb-94ee-6a55276f8962
+ - 1
+
+
+
+
+ -
+ 6829
+ 14344
+ 14
+ 24
+
+ -
+ 6837.5
+ 14356
+
+
+
+
+
+
+
+ - Result of expression
+ - da6b1fed-141c-40e8-89e8-131a3465fa02
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 14344
+ 9
+ 24
+
+ -
+ 7016
+ 14356
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 2e9fc4e7-11d6-46e7-bbe2-4be37b0bfe47
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 6858
+ 14476
+ 132
+ 64
+
+ -
+ 6905
+ 14508
+
+
+
+
+
+ - Input point
+ - 8e83c129-779b-4ca0-b212-0eefe34230f1
+ - Point
+ - Point
+ - false
+ - 85f5a83b-6f04-46aa-980e-b5b5cca654ed
+ - 1
+
+
+
+
+ -
+ 6860
+ 14478
+ 30
+ 60
+
+ -
+ 6876.5
+ 14508
+
+
+
+
+
+
+
+ - Point {x} component
+ - 30827a16-3332-47cb-94ee-6a55276f8962
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 6920
+ 14478
+ 68
+ 20
+
+ -
+ 6955.5
+ 14488
+
+
+
+
+
+
+
+ - Point {y} component
+ - eac5f733-f99a-4af6-a291-d796050d3c1c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 6920
+ 14498
+ 68
+ 20
+
+ -
+ 6955.5
+ 14508
+
+
+
+
+
+
+
+ - Point {z} component
+ - 53a53c44-c8d4-47df-9d00-8ffdc5031427
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 6920
+ 14518
+ 68
+ 20
+
+ -
+ 6955.5
+ 14528
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6c2c0e34-fde6-416e-b38f-17e237ffa612
+ - Panel
+
+ - false
+ - 0
+ - da6b1fed-141c-40e8-89e8-131a3465fa02
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 14316
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.125
+ 14316.05
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 96103962-5729-44c6-919b-b5e668bb459d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 14256
+ 194
+ 28
+
+ -
+ 6927
+ 14270
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d90e1818-cad6-4beb-8c04-acf83d1da21f
+ - Variable O
+ - O
+ - true
+ - eac5f733-f99a-4af6-a291-d796050d3c1c
+ - 1
+
+
+
+
+ -
+ 6829
+ 14258
+ 14
+ 24
+
+ -
+ 6837.5
+ 14270
+
+
+
+
+
+
+
+ - Result of expression
+ - e17eb789-6be7-4eaa-8299-4f50d695429f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 14258
+ 9
+ 24
+
+ -
+ 7016
+ 14270
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
+ - Panel
+
+ - false
+ - 0
+ - e17eb789-6be7-4eaa-8299-4f50d695429f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 14227
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.125
+ 14227.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 6b265988-c729-43d9-88ad-548c22e07a09
+ - Division
+ - Division
+
+
+
+
+ -
+ 6883
+ 14154
+ 82
+ 44
+
+ -
+ 6914
+ 14176
+
+
+
+
+
+ - Item to divide (dividend)
+ - 78f608cb-7062-4725-90b3-2eb2d47d8145
+ - A
+ - A
+ - false
+ - 6c2c0e34-fde6-416e-b38f-17e237ffa612
+ - 1
+
+
+
+
+ -
+ 6885
+ 14156
+ 14
+ 20
+
+ -
+ 6893.5
+ 14166
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - ac61823e-3ddf-46a6-9ce5-2534f38a44a5
+ - B
+ - B
+ - false
+ - cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
+ - 1
+
+
+
+
+ -
+ 6885
+ 14176
+ 14
+ 20
+
+ -
+ 6893.5
+ 14186
+
+
+
+
+
+
+
+ - The result of the Division
+ - 25075bce-e1d1-41e4-af05-77b4eeff1de5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 6929
+ 14156
+ 34
+ 40
+
+ -
+ 6947.5
+ 14176
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 376fda74-51b3-4127-b018-e74a14bf6894
+ - Panel
+
+ - false
+ - 0
+ - 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 14080
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.364
+ 14080.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 29b0ed52-1bf6-4d5b-b0dd-81f23322e72e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 14107
+ 194
+ 28
+
+ -
+ 6927
+ 14121
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d0b96673-3aed-4fbf-8e4d-9632ce138f49
+ - Variable O
+ - O
+ - true
+ - 25075bce-e1d1-41e4-af05-77b4eeff1de5
+ - 1
+
+
+
+
+ -
+ 6829
+ 14109
+ 14
+ 24
+
+ -
+ 6837.5
+ 14121
+
+
+
+
+
+
+
+ - Result of expression
+ - 92dda82d-3eec-4851-9a38-6fefa8dd7dd7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 14109
+ 9
+ 24
+
+ -
+ 7016
+ 14121
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
+ - Relay
+
+ - false
+ - 92dda82d-3eec-4851-9a38-6fefa8dd7dd7
+ - 1
+
+
+
+
+ -
+ 6904
+ 14032
+ 40
+ 16
+
+ -
+ 6924
+ 14040
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - fdb4fd70-bdff-4175-8783-9cf3c3a117db
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 6883
+ 13969
+ 82
+ 44
+
+ -
+ 6914
+ 13991
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - a969c7e4-0d1c-41a5-9eb0-56fba8863cbe
+ - A
+ - A
+ - true
+ - cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
+ - 1
+
+
+
+
+ -
+ 6885
+ 13971
+ 14
+ 20
+
+ -
+ 6893.5
+ 13981
+
+
+
+
+
+
+
+ - Second item for addition
+ - f3a826ee-c2c3-48fd-8631-9fe975d38742
+ - B
+ - B
+ - true
+ - 6c2c0e34-fde6-416e-b38f-17e237ffa612
+ - 1
+
+
+
+
+ -
+ 6885
+ 13991
+ 14
+ 20
+
+ -
+ 6893.5
+ 14001
+
+
+
+
+
+
+
+ - Result of addition
+ - 5f3b1174-311c-40f1-8716-cd0ace71680d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 6929
+ 13971
+ 34
+ 40
+
+ -
+ 6947.5
+ 13991
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c501f714-9d8e-43b6-8bac-048ca2bb80cf
+ - Division
+ - Division
+
+
+
+
+ -
+ 6883
+ 13819
+ 82
+ 44
+
+ -
+ 6914
+ 13841
+
+
+
+
+
+ - Item to divide (dividend)
+ - 5007c73e-4f74-4750-9879-bee494dfd1a0
+ - A
+ - A
+ - false
+ - 7493d9a5-e75e-4270-943a-49f011ebc376
+ - 1
+
+
+
+
+ -
+ 6885
+ 13821
+ 14
+ 20
+
+ -
+ 6893.5
+ 13831
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - a69bc258-00ec-4324-8cc3-bc918e362c62
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 6885
+ 13841
+ 14
+ 20
+
+ -
+ 6893.5
+ 13851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - b3993f62-42b6-4fb9-9b28-2211eb8806f7
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 6929
+ 13821
+ 34
+ 40
+
+ -
+ 6947.5
+ 13841
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0b08a1a9-9bef-44f3-b7d3-687ca9617c3f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 13771
+ 194
+ 28
+
+ -
+ 6927
+ 13785
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d6e6767c-c3c0-414f-96c5-f4af729b296a
+ - Variable O
+ - O
+ - true
+ - b3993f62-42b6-4fb9-9b28-2211eb8806f7
+ - 1
+
+
+
+
+ -
+ 6829
+ 13773
+ 14
+ 24
+
+ -
+ 6837.5
+ 13785
+
+
+
+
+
+
+
+ - Result of expression
+ - 73d1c055-8222-4f71-8c50-8a872cf6cf11
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 13773
+ 9
+ 24
+
+ -
+ 7016
+ 13785
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 913fa83a-7c8e-40f4-ba27-a4799bffb36e
+ - Panel
+
+ - false
+ - 0
+ - 73d1c055-8222-4f71-8c50-8a872cf6cf11
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 13743
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.125
+ 13743.97
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7493d9a5-e75e-4270-943a-49f011ebc376
+ - Panel
+
+ - false
+ - 0
+ - 30c8051a-7feb-42f7-b490-93aea9d26a8b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 13895
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.125
+ 13895.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - de444b16-e90f-46ab-bc54-6b6b8ba29496
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 13922
+ 194
+ 28
+
+ -
+ 6927
+ 13936
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - afe2af60-e5c3-4037-b6b3-a7bc5afb40cd
+ - Variable O
+ - O
+ - true
+ - 5f3b1174-311c-40f1-8716-cd0ace71680d
+ - 1
+
+
+
+
+ -
+ 6829
+ 13924
+ 14
+ 24
+
+ -
+ 6837.5
+ 13936
+
+
+
+
+
+
+
+ - Result of expression
+ - 30c8051a-7feb-42f7-b490-93aea9d26a8b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 13924
+ 9
+ 24
+
+ -
+ 7016
+ 13936
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - c43c079b-63ca-493a-8642-e54578ba8b03
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6847
+ 13648
+ 154
+ 64
+
+ -
+ 6931
+ 13680
+
+
+
+
+
+ - Base geometry
+ - de499428-93eb-475c-9e53-a916b398a633
+ - Geometry
+ - Geometry
+ - true
+ - cc9c241b-c6a7-47bd-8026-177029f27f11
+ - 1
+
+
+
+
+ -
+ 6849
+ 13650
+ 67
+ 20
+
+ -
+ 6892
+ 13660
+
+
+
+
+
+
+
+ - Center of scaling
+ - 011c2b05-c91d-4d4e-aa86-37821546ecca
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6849
+ 13670
+ 67
+ 20
+
+ -
+ 6892
+ 13680
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - df4a4967-6d20-4154-a796-f1e10e303498
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 913fa83a-7c8e-40f4-ba27-a4799bffb36e
+ - 1
+
+
+
+
+ -
+ 6849
+ 13690
+ 67
+ 20
+
+ -
+ 6892
+ 13700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - b146afbb-b984-4270-98bd-a5c5e4decde4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6946
+ 13650
+ 53
+ 30
+
+ -
+ 6974
+ 13665
+
+
+
+
+
+
+
+ - Transformation data
+ - adfdc112-fb27-4eeb-8ee6-d910d5a50efe
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6946
+ 13680
+ 53
+ 30
+
+ -
+ 6974
+ 13695
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - Curve
+ - Curve
+ - false
+ - b146afbb-b984-4270-98bd-a5c5e4decde4
+ - 1
+
+
+
+
+ -
+ 6900
+ 13049
+ 50
+ 24
+
+ -
+ 6925.104
+ 13061.47
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9cbe6a37-a7e2-4fd1-9eaf-24df74f69a5c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 14429
+ 194
+ 28
+
+ -
+ 6927
+ 14443
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9cc20c5b-0aad-4a76-8799-5618857d7cbf
+ - Variable O
+ - O
+ - true
+ - 53a53c44-c8d4-47df-9d00-8ffdc5031427
+ - 1
+
+
+
+
+ -
+ 6829
+ 14431
+ 14
+ 24
+
+ -
+ 6837.5
+ 14443
+
+
+
+
+
+
+
+ - Result of expression
+ - 6f991fab-af6c-41fb-ba85-20da3062ee48
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 14431
+ 9
+ 24
+
+ -
+ 7016
+ 14443
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 316f3779-ed94-4d88-a48c-0bcda6b652ff
+ - Panel
+
+ - false
+ - 0
+ - 6f991fab-af6c-41fb-ba85-20da3062ee48
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 14401
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.995
+ 14401.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ec81026f-aaf0-400a-a481-5a2730b38b20
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 6852
+ 13438
+ 144
+ 64
+
+ -
+ 6926
+ 13470
+
+
+
+
+
+ - Curve to evaluate
+ - 724dfc03-4a01-4628-925e-2fa9ba491185
+ - Curve
+ - Curve
+ - false
+ - b146afbb-b984-4270-98bd-a5c5e4decde4
+ - 1
+
+
+
+
+ -
+ 6854
+ 13440
+ 57
+ 20
+
+ -
+ 6884
+ 13450
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 0e460a08-226a-4f98-bd37-41f44c443db4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 13460
+ 57
+ 20
+
+ -
+ 6884
+ 13470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1d59fa3e-b687-4eb9-afa1-a414c2b8bb08
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 13480
+ 57
+ 20
+
+ -
+ 6884
+ 13490
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 38b05bbc-62e7-40e7-8489-6773a9d2dd9d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 13440
+ 53
+ 20
+
+ -
+ 6969
+ 13450
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - d4a0fd95-7f8e-402a-ada1-4afbf333ba3f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 13460
+ 53
+ 20
+
+ -
+ 6969
+ 13470
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 08a437d4-0e42-4cb2-856f-09ba4c37bb87
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 13480
+ 53
+ 20
+
+ -
+ 6969
+ 13490
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 6508b285-8a59-4d0c-a67a-44a3db97fc39
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 13221
+ 194
+ 28
+
+ -
+ 6927
+ 13235
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2bb13d42-f309-44b9-b9ee-c6512e1a26bd
+ - Variable O
+ - O
+ - true
+ - 013e28c5-00c7-4b0f-a894-2351e9bcba9e
+ - 1
+
+
+
+
+ -
+ 6829
+ 13223
+ 14
+ 24
+
+ -
+ 6837.5
+ 13235
+
+
+
+
+
+
+
+ - Result of expression
+ - 6ae89430-3b55-4283-95d6-72edf8aea781
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 13223
+ 9
+ 24
+
+ -
+ 7016
+ 13235
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - edd134a4-57ee-42b4-9a96-203dd2d224a1
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 6858
+ 13355
+ 132
+ 64
+
+ -
+ 6905
+ 13387
+
+
+
+
+
+ - Input point
+ - 98c309aa-58e3-4474-a276-3c1859834940
+ - Point
+ - Point
+ - false
+ - 38b05bbc-62e7-40e7-8489-6773a9d2dd9d
+ - 1
+
+
+
+
+ -
+ 6860
+ 13357
+ 30
+ 60
+
+ -
+ 6876.5
+ 13387
+
+
+
+
+
+
+
+ - Point {x} component
+ - 013e28c5-00c7-4b0f-a894-2351e9bcba9e
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 6920
+ 13357
+ 68
+ 20
+
+ -
+ 6955.5
+ 13367
+
+
+
+
+
+
+
+ - Point {y} component
+ - 31865eff-3999-4f34-b33a-4592611410b3
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 6920
+ 13377
+ 68
+ 20
+
+ -
+ 6955.5
+ 13387
+
+
+
+
+
+
+
+ - Point {z} component
+ - acd62f9f-fce9-479c-9e17-c17634e78b4c
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 6920
+ 13397
+ 68
+ 20
+
+ -
+ 6955.5
+ 13407
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1ee22ab9-d81d-496a-95aa-c79966d9f1ee
+ - Panel
+
+ - false
+ - 0
+ - 6ae89430-3b55-4283-95d6-72edf8aea781
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 13189
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.375
+ 13189.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 38d1a553-d197-4de9-be8f-831f3678bc16
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 13135
+ 194
+ 28
+
+ -
+ 6927
+ 13149
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 412be963-af87-45b6-861c-fd80a8ac935a
+ - Variable O
+ - O
+ - true
+ - 31865eff-3999-4f34-b33a-4592611410b3
+ - 1
+
+
+
+
+ -
+ 6829
+ 13137
+ 14
+ 24
+
+ -
+ 6837.5
+ 13149
+
+
+
+
+
+
+
+ - Result of expression
+ - 9dcb2313-d8c3-402d-9098-1a54686d1385
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 13137
+ 9
+ 24
+
+ -
+ 7016
+ 13149
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 97ee1782-c906-46c4-91b5-f223dbe502df
+ - Panel
+
+ - false
+ - 0
+ - 9dcb2313-d8c3-402d-9098-1a54686d1385
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 13103
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.385
+ 13103.76
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c0237c22-ae4e-4bcc-a7f3-8849e1f79852
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 13307
+ 194
+ 28
+
+ -
+ 6927
+ 13321
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 00115f47-de0e-4eb8-a92f-6dbf606b38a5
+ - Variable O
+ - O
+ - true
+ - acd62f9f-fce9-479c-9e17-c17634e78b4c
+ - 1
+
+
+
+
+ -
+ 6829
+ 13309
+ 14
+ 24
+
+ -
+ 6837.5
+ 13321
+
+
+
+
+
+
+
+ - Result of expression
+ - 41436266-95f6-4db9-ac5f-fd5e1afc5627
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 13309
+ 9
+ 24
+
+ -
+ 7016
+ 13321
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b98c6ab4-6826-4894-b815-39419e0c3a74
+ - Panel
+
+ - false
+ - 0
+ - 41436266-95f6-4db9-ac5f-fd5e1afc5627
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6846
+ 13275
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6846.125
+ 13275.6
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 6744
+ 17383
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 6744.78
+ 17383.58
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fa5f5265-773a-47ad-93dd-9e26a91e6025
+ - Panel
+
+ - false
+ - 0
+ - f9b597d7-e7e9-4cf4-a495-b1dc5b56fa82
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6758
+ 15639
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 6758.314
+ 15639.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d73f2344-3af1-4e8b-aa88-550107d9e330
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 15929
+ 194
+ 28
+
+ -
+ 6927
+ 15943
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b623fc8b-7899-4132-a07f-ad90008bd4ab
+ - Variable O
+ - O
+ - true
+ - cc0559b1-a1cc-49c2-a2e5-a855627d3509
+ - 1
+
+
+
+
+ -
+ 6829
+ 15931
+ 14
+ 24
+
+ -
+ 6837.5
+ 15943
+
+
+
+
+
+
+
+ - Result of expression
+ - f9b597d7-e7e9-4cf4-a495-b1dc5b56fa82
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 15931
+ 9
+ 24
+
+ -
+ 7016
+ 15943
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - a581cb4b-1814-48fc-a1b8-43b1d1292aed
+ - Number
+ - Number
+ - false
+ - c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
+ - 1
+
+
+
+
+ -
+ 6910
+ 17768
+ 50
+ 24
+
+ -
+ 6935.085
+ 17780.7
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 9325032a-eb1d-4417-917b-7ac65f028126
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 6755
+ 16161
+ 160
+ 224
+
+ -
+ 6823
+ 16273
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 0f5238b5-962a-4449-a37f-b83452708e99
+ - true
+ - Curves
+ - Curves
+ - false
+ - 1b74b401-f27b-49e6-9626-6edd9c832a56
+ - 1
+
+
+
+
+ -
+ 6757
+ 16163
+ 51
+ 27
+
+ -
+ 6784
+ 16176.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - bb5926c8-b9d1-4ecd-9cd4-b32ced703abe
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0f7b89d3-7996-42ee-8772-0c17266d2e97
+ - 1
+
+
+
+
+ -
+ 6757
+ 16190
+ 51
+ 28
+
+ -
+ 6784
+ 16204.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 1253dedb-fcef-48eb-a7e6-79efac3fd7be
+ - true
+ - Values
+ - Values
+ - false
+ - d600ac99-97d4-49fd-83df-b1b6d6afdef2
+ - 1
+
+
+
+
+ -
+ 6757
+ 16218
+ 51
+ 27
+
+ -
+ 6784
+ 16231.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 01c15511-a078-4c96-ade8-0f0b6a624d58
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 6757
+ 16245
+ 51
+ 28
+
+ -
+ 6784
+ 16259.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - b830b13e-448d-44d4-858a-77d04b30353c
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 6757
+ 16273
+ 51
+ 27
+
+ -
+ 6784
+ 16286.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - c4f43e77-5feb-41de-95a4-e4b36a49512c
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 6757
+ 16300
+ 51
+ 28
+
+ -
+ 6784
+ 16314.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - bc4bc4c9-3d21-4264-8bda-50f75e16678a
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 6757
+ 16328
+ 51
+ 27
+
+ -
+ 6784
+ 16341.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - bc982548-351e-4c63-b1ad-03f915c2795f
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 6757
+ 16355
+ 51
+ 28
+
+ -
+ 6784
+ 16369.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 011386d1-e099-452e-bab7-c5dbfbefb515
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16163
+ 75
+ 20
+
+ -
+ 6877
+ 16173
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - c698696a-32e5-4809-8dcd-5365f87e8c9f
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16183
+ 75
+ 20
+
+ -
+ 6877
+ 16193
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - c0db385f-5512-4eaf-bccc-62d01193c09c
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16203
+ 75
+ 20
+
+ -
+ 6877
+ 16213
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - fa37ee92-0a24-416d-badb-1a6a138f01e8
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16223
+ 75
+ 20
+
+ -
+ 6877
+ 16233
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 6640fc97-76ff-4e77-9522-712d6b65e5da
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16243
+ 75
+ 20
+
+ -
+ 6877
+ 16253
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 4aa8681c-1516-4d1d-98b9-02acfc57482d
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16263
+ 75
+ 20
+
+ -
+ 6877
+ 16273
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - ebead631-594f-42aa-a4fd-18092310b626
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16283
+ 75
+ 20
+
+ -
+ 6877
+ 16293
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - d8ce45e5-0a15-4805-b4dc-555c7e8b3cda
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16303
+ 75
+ 20
+
+ -
+ 6877
+ 16313
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 52c86fc7-b169-460d-9c29-9db6362cbb6f
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16323
+ 75
+ 20
+
+ -
+ 6877
+ 16333
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - bb3fa2d1-533f-4438-8d57-b3b5ba7eb84d
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16343
+ 75
+ 20
+
+ -
+ 6877
+ 16353
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - c07faeb2-9a2f-47d5-9d83-bcebc16f762b
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 6838
+ 16363
+ 75
+ 20
+
+ -
+ 6877
+ 16373
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 34b3f794-c511-49ff-92c6-10cd056aa48c
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 6876
+ 16521
+ 96
+ 44
+
+ -
+ 6926
+ 16543
+
+
+
+
+
+ - Curve to evaluate
+ - d858e62d-5fb2-44e7-8a88-85f63040ad09
+ - Curve
+ - Curve
+ - false
+ - 1b74b401-f27b-49e6-9626-6edd9c832a56
+ - 1
+
+
+
+
+ -
+ 6878
+ 16523
+ 33
+ 40
+
+ -
+ 6896
+ 16543
+
+
+
+
+
+
+
+ - Curve start point
+ - c766a1eb-bd60-4aff-9a5a-acec00503bd5
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 16523
+ 29
+ 20
+
+ -
+ 6957
+ 16533
+
+
+
+
+
+
+
+ - Curve end point
+ - 552406bf-ef4c-44fc-931e-cd49b038f197
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 6941
+ 16543
+ 29
+ 20
+
+ -
+ 6957
+ 16553
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 6861
+ 16419
+ 126
+ 84
+
+ -
+ 6919
+ 16461
+
+
+
+
+
+ - Rectangle base plane
+ - 43f3f04c-c4b5-453d-a04d-ae143e26c2ad
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 6863
+ 16421
+ 41
+ 20
+
+ -
+ 6885
+ 16431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 788062c0-7e8e-4b50-9146-f6ab498210d2
+ - Point A
+ - Point A
+ - false
+ - c766a1eb-bd60-4aff-9a5a-acec00503bd5
+ - 1
+
+
+
+
+ -
+ 6863
+ 16441
+ 41
+ 20
+
+ -
+ 6885
+ 16451
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 6fb88a11-52ac-44ac-adb6-079fb454ad9c
+ - Point B
+ - Point B
+ - false
+ - 552406bf-ef4c-44fc-931e-cd49b038f197
+ - 1
+
+
+
+
+ -
+ 6863
+ 16461
+ 41
+ 20
+
+ -
+ 6885
+ 16471
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 37ca533c-9322-43f2-89ff-977506ec18ff
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 6863
+ 16481
+ 41
+ 20
+
+ -
+ 6885
+ 16491
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 0f7b89d3-7996-42ee-8772-0c17266d2e97
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 6934
+ 16421
+ 51
+ 40
+
+ -
+ 6961
+ 16441
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 67af2704-c31c-42bc-9333-bd2fc0bd3bed
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6934
+ 16461
+ 51
+ 40
+
+ -
+ 6961
+ 16481
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - a1119ab4-5e53-41b5-800a-934be5132300
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 6915
+ 16281
+ 126
+ 104
+
+ -
+ 6982
+ 16333
+
+
+
+
+
+ - External curve as a graph
+ - 904b7a78-b77f-477b-83ef-602a42402909
+ - Curve
+ - Curve
+ - false
+ - 1b74b401-f27b-49e6-9626-6edd9c832a56
+ - 1
+
+
+
+
+ -
+ 6917
+ 16283
+ 50
+ 20
+
+ -
+ 6943.5
+ 16293
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - c894c604-e5ec-4f9b-b0ac-909fafb4abd0
+ - Boundary
+ - Boundary
+ - true
+ - 0f7b89d3-7996-42ee-8772-0c17266d2e97
+ - 1
+
+
+
+
+ -
+ 6917
+ 16303
+ 50
+ 20
+
+ -
+ 6943.5
+ 16313
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - aebc8dae-8731-4075-ac22-a47249b9aef8
+ - Numbers
+ - Numbers
+ - false
+ - d600ac99-97d4-49fd-83df-b1b6d6afdef2
+ - 1
+
+
+
+
+ -
+ 6917
+ 16323
+ 50
+ 20
+
+ -
+ 6943.5
+ 16333
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 2b8af201-5eb0-41a7-ad17-858345067966
+ - Input
+ - Input
+ - true
+ - 9760d0ab-7937-4289-b202-4edca57e8024
+ - 1
+
+
+
+
+ -
+ 6917
+ 16343
+ 50
+ 20
+
+ -
+ 6943.5
+ 16353
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - f8843e7d-9718-48ca-aff1-de5663e4e81e
+ - Output
+ - Output
+ - true
+ - 9760d0ab-7937-4289-b202-4edca57e8024
+ - 1
+
+
+
+
+ -
+ 6917
+ 16363
+ 50
+ 20
+
+ -
+ 6943.5
+ 16373
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 1dd04826-157e-4b52-bfd3-12b8923553fe
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 6997
+ 16283
+ 42
+ 100
+
+ -
+ 7019.5
+ 16333
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 6d014d07-0f02-444c-ac9d-e170313d1517
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 6890
+ 16078
+ 89
+ 64
+
+ -
+ 6935
+ 16110
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - fa964bb7-c4d9-4921-b361-17278365f386
+ - Gate
+ - Gate
+ - false
+ - 1753a518-f0a0-46e5-8dd8-9caf11fd6412
+ - 1
+
+
+
+
+ -
+ 6892
+ 16080
+ 28
+ 20
+
+ -
+ 6907.5
+ 16090
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - da7eb75b-1d1d-4af4-85c0-bb96144d5479
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 011386d1-e099-452e-bab7-c5dbfbefb515
+ - 1
+
+
+
+
+ -
+ 6892
+ 16100
+ 28
+ 20
+
+ -
+ 6907.5
+ 16110
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - ca2a0d47-d578-475e-8060-bc2ff7f1a9f9
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 1dd04826-157e-4b52-bfd3-12b8923553fe
+ - 1
+
+
+
+
+ -
+ 6892
+ 16120
+ 28
+ 20
+
+ -
+ 6907.5
+ 16130
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - b33b8004-7930-480a-ac46-8cdfdfe4c3fd
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 6950
+ 16080
+ 27
+ 60
+
+ -
+ 6965
+ 16110
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 1753a518-f0a0-46e5-8dd8-9caf11fd6412
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6856
+ 16050
+ 150
+ 20
+
+ -
+ 6856.745
+ 16050.99
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
+ - Panel
+
+ - false
+ - 1
+ - 381507ca-69e4-41bf-b449-b49ecf24853e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6836
+ 16710
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 6836.814
+ 16710.01
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 6865
+ 16660
+ 122
+ 28
+
+ -
+ 6929
+ 16674
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 5769d565-6652-4d0e-a386-2eca5c734e92
+ - Numbers
+ - Numbers
+ - false
+ - d600ac99-97d4-49fd-83df-b1b6d6afdef2
+ - 1
+
+
+
+
+ -
+ 6867
+ 16662
+ 47
+ 24
+
+ -
+ 6892
+ 16674
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 9760d0ab-7937-4289-b202-4edca57e8024
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 6944
+ 16662
+ 41
+ 24
+
+ -
+ 6966
+ 16674
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 723d57d4-e61b-41f3-a500-fda5845c7a33
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6827
+ 16996
+ 194
+ 28
+
+ -
+ 6927
+ 17010
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1c6a839e-b6f1-4505-91de-342ea754d5a2
+ - true
+ - Variable O
+ - O
+ - true
+ - d600ac99-97d4-49fd-83df-b1b6d6afdef2
+ - 1
+
+
+
+
+ -
+ 6829
+ 16998
+ 14
+ 24
+
+ -
+ 6837.5
+ 17010
+
+
+
+
+
+
+
+ - Result of expression
+ - 381507ca-69e4-41bf-b449-b49ecf24853e
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7010
+ 16998
+ 9
+ 24
+
+ -
+ 7016
+ 17010
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - ef313551-48ea-4e3c-b4c0-4a190bd7321a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6741
+ 17195
+ 367
+ 28
+
+ -
+ 6927
+ 17209
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5f7349b6-6fe2-48ad-924f-9f80b070576f
+ - Variable O
+ - O
+ - true
+ - 795cb8d8-c83c-4a7a-a3dc-11c297145099
+ - 1
+
+
+
+
+ -
+ 6743
+ 17197
+ 14
+ 24
+
+ -
+ 6751.5
+ 17209
+
+
+
+
+
+
+
+ - Result of expression
+ - fffd1cd6-ddbc-4c4c-9af1-5e6d5196a1f9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7097
+ 17197
+ 9
+ 24
+
+ -
+ 7103
+ 17209
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 63453c88-bf0b-4d36-85c6-a269170a7b71
+ - Panel
+
+ - false
+ - 0
+ - fffd1cd6-ddbc-4c4c-9af1-5e6d5196a1f9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6836
+ 17167
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6836.955
+ 17167.18
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 1
+ - b14cb3b4-9404-4bbf-adca-ddf843b42203
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 3ce6ef90-b08d-4cde-aaac-5cd8c3a27dff
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6847
+ 13563
+ 154
+ 64
+
+ -
+ 6931
+ 13595
+
+
+
+
+
+ - Base geometry
+ - 29ec6822-9f32-4735-ac6e-e9de0174cffc
+ - Geometry
+ - Geometry
+ - true
+ - 7026d177-417b-48d9-89bd-1b653119ba4d
+ - 1
+
+
+
+
+ -
+ 6849
+ 13565
+ 67
+ 20
+
+ -
+ 6892
+ 13575
+
+
+
+
+
+
+
+ - Center of scaling
+ - ae20d631-4337-4bdc-92c1-f56bab23662b
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6849
+ 13585
+ 67
+ 20
+
+ -
+ 6892
+ 13595
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 890f1ffc-39c5-4772-95f2-3b43ccbbf990
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 913fa83a-7c8e-40f4-ba27-a4799bffb36e
+ - 1
+
+
+
+
+ -
+ 6849
+ 13605
+ 67
+ 20
+
+ -
+ 6892
+ 13615
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 58f6450e-2a4b-48c0-9d7c-595dec969df6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6946
+ 13565
+ 53
+ 30
+
+ -
+ 6974
+ 13580
+
+
+
+
+
+
+
+ - Transformation data
+ - f5f0a553-a703-4ba1-bd50-2fb5c09fc891
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6946
+ 13595
+ 53
+ 30
+
+ -
+ 6974
+ 13610
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 99b9d330-df78-461e-a740-618abd0be001
+ - Point
+ - Point
+ - false
+ - 58f6450e-2a4b-48c0-9d7c-595dec969df6
+ - 1
+
+
+
+
+ -
+ 6901
+ 13527
+ 50
+ 24
+
+ -
+ 6926.104
+ 13539.64
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - f8e459ea-0b4f-43ea-ba11-4269ab3fae7e
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 6852
+ 12905
+ 138
+ 44
+
+ -
+ 6920
+ 12927
+
+
+
+
+
+ - Base geometry
+ - bd8fb4a1-624a-44d3-95d8-7f0555d129fc
+ - Geometry
+ - Geometry
+ - true
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 1
+
+
+
+
+ -
+ 6854
+ 12907
+ 51
+ 20
+
+ -
+ 6881
+ 12917
+
+
+
+
+
+
+
+ - Mirror plane
+ - 09e1c099-572d-4aec-a6c2-40d1cd563889
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 12927
+ 51
+ 20
+
+ -
+ 6881
+ 12937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - aaed0ecd-e5a3-47f3-9c89-855bf34ecf9a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6935
+ 12907
+ 53
+ 20
+
+ -
+ 6963
+ 12917
+
+
+
+
+
+
+
+ - Transformation data
+ - c5b132a6-1f8f-4fac-9f6f-243d6f928dfc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6935
+ 12927
+ 53
+ 20
+
+ -
+ 6963
+ 12937
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - 0acb87a9-1c34-4be4-9a0a-51d135ea71a9
+ - Curve
+ - Curve
+ - false
+ - 96a2e07e-f9f4-48cf-88f2-619a1da4816e
+ - 1
+
+
+
+
+ -
+ 6900
+ 12800
+ 50
+ 24
+
+ -
+ 6925.354
+ 12812.65
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1b74b401-f27b-49e6-9626-6edd9c832a56
+ - Relay
+
+ - false
+ - 4c3d6f0a-1a3d-42fc-ba4c-f7a6253681d7
+ - 1
+
+
+
+
+ -
+ 6906
+ 16588
+ 40
+ 16
+
+ -
+ 6926
+ 16596
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 28f7a517-369a-47f4-ab2d-61c770da64a9
+ - Curve
+ - Curve
+ - false
+ - 81f088dd-94a4-48be-b31f-7aba0efd2713
+ - 1
+
+
+
+
+ -
+ 6347
+ 16859
+ 50
+ 24
+
+ -
+ 6372.364
+ 16871.71
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4c3d6f0a-1a3d-42fc-ba4c-f7a6253681d7
+ - Curve
+ - Curve
+ - false
+ - f4ff4579-8945-47b9-96e3-99cde3ffad6b
+ - 1
+
+
+
+
+ -
+ 6347
+ 16657
+ 50
+ 24
+
+ -
+ 6372.46
+ 16669.74
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 6d4a2a1f-cf79-4c4c-91d4-2a31b1cbbc7b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6294
+ 16696
+ 154
+ 64
+
+ -
+ 6378
+ 16728
+
+
+
+
+
+ - Base geometry
+ - ec88baa9-a234-4fca-82cb-4e2da68104f9
+ - Geometry
+ - Geometry
+ - true
+ - 28f7a517-369a-47f4-ab2d-61c770da64a9
+ - 1
+
+
+
+
+ -
+ 6296
+ 16698
+ 67
+ 20
+
+ -
+ 6339
+ 16708
+
+
+
+
+
+
+
+ - Center of scaling
+ - 454545c7-d4b9-48b2-b34b-87350dab6d0d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6296
+ 16718
+ 67
+ 20
+
+ -
+ 6339
+ 16728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 2ba86669-8366-424a-baeb-8c3651e44550
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - a4bb390c-3cb3-4726-8ae4-049fed6f9f5d
+ - 1
+
+
+
+
+ -
+ 6296
+ 16738
+ 67
+ 20
+
+ -
+ 6339
+ 16748
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - f4ff4579-8945-47b9-96e3-99cde3ffad6b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6393
+ 16698
+ 53
+ 30
+
+ -
+ 6421
+ 16713
+
+
+
+
+
+
+
+ - Transformation data
+ - 55391c68-247a-42f2-b366-ef983380c73a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6393
+ 16728
+ 53
+ 30
+
+ -
+ 6421
+ 16743
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 28f7a517-369a-47f4-ab2d-61c770da64a9
+ - 4c3d6f0a-1a3d-42fc-ba4c-f7a6253681d7
+ - 6d4a2a1f-cf79-4c4c-91d4-2a31b1cbbc7b
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 16352977-0c47-4807-ac27-7e6e1c8aa3d0
+ - a4bb390c-3cb3-4726-8ae4-049fed6f9f5d
+ - 5c82da50-ba91-4829-93ac-d30b7bb06ba0
+ - 7
+ - a050f731-85b7-406b-98f7-abb1de3b7df3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 2ae4353f-5da3-48ee-b4ec-327901fe84b9
+ - Move
+ - Move
+
+
+
+
+ -
+ 6852
+ 12841
+ 138
+ 44
+
+ -
+ 6920
+ 12863
+
+
+
+
+
+ - Base geometry
+ - 8f3598b9-3426-4369-977f-151ca75c941f
+ - Geometry
+ - Geometry
+ - true
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 1
+
+
+
+
+ -
+ 6854
+ 12843
+ 51
+ 20
+
+ -
+ 6881
+ 12853
+
+
+
+
+
+
+
+ - Translation vector
+ - f8670bc8-b266-4d46-a732-760aca4c6a24
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 6854
+ 12863
+ 51
+ 20
+
+ -
+ 6881
+ 12873
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 2
+ 4
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 96a2e07e-f9f4-48cf-88f2-619a1da4816e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6935
+ 12843
+ 53
+ 20
+
+ -
+ 6963
+ 12853
+
+
+
+
+
+
+
+ - Transformation data
+ - 3a5df1aa-cebe-4f7b-bcea-6c2fe7a5c46e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6935
+ 12863
+ 53
+ 20
+
+ -
+ 6963
+ 12873
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 16352977-0c47-4807-ac27-7e6e1c8aa3d0
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 6247
+ 16819
+ 250
+ 20
+
+ -
+ 6247.76
+ 16819.1
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a4bb390c-3cb3-4726-8ae4-049fed6f9f5d
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 6304
+ 16782
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6304.927
+ 16782.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5c82da50-ba91-4829-93ac-d30b7bb06ba0
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6347
+ 16614
+ 50
+ 24
+
+ -
+ 6372.46
+ 16626.74
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1fb2e7f3-3db0-4bae-aa6f-0d22308f98ea
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6425
+ 16859
+ 50
+ 24
+
+ -
+ 6450.083
+ 16871.64
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a64bb5c7-d622-4fba-af56-0efe1ca2545e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 6707
+ 17347
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6707.335
+ 17347.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 6dfe9960-5cb6-4710-b358-d13a8cf132a9
+ - true
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 7283
+ 13483
+ 96
+ 44
+
+ -
+ 7333
+ 13505
+
+
+
+
+
+ - Curve to evaluate
+ - e2b75845-a13d-4155-b9ee-c5bf47ad3e85
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3adde76a-58cf-4501-958f-0df2da9ec5fb
+ - 1
+
+
+
+
+ -
+ 7285
+ 13485
+ 33
+ 40
+
+ -
+ 7303
+ 13505
+
+
+
+
+
+
+
+ - Curve start point
+ - da66e959-b2d5-4e3b-9152-11e5b7d5e08d
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 13485
+ 29
+ 20
+
+ -
+ 7364
+ 13495
+
+
+
+
+
+
+
+ - Curve end point
+ - 7925d5f1-7e7a-43e3-bb55-16c7b2bc97bb
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7348
+ 13505
+ 29
+ 20
+
+ -
+ 7364
+ 13515
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 3b3019a8-9f4e-4abd-9be4-32f44addad75
+ - true
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 7268
+ 13380
+ 126
+ 84
+
+ -
+ 7326
+ 13422
+
+
+
+
+
+ - Rectangle base plane
+ - 32784160-a334-4c01-b851-1f76085d4ddc
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7270
+ 13382
+ 41
+ 20
+
+ -
+ 7292
+ 13392
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 9191c15d-c5a1-4f91-81d8-cd61ee1e7d9f
+ - true
+ - Point A
+ - Point A
+ - false
+ - da66e959-b2d5-4e3b-9152-11e5b7d5e08d
+ - 1
+
+
+
+
+ -
+ 7270
+ 13402
+ 41
+ 20
+
+ -
+ 7292
+ 13412
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - d213591a-88ec-435e-8453-824a03b6de7e
+ - true
+ - Point B
+ - Point B
+ - false
+ - 7925d5f1-7e7a-43e3-bb55-16c7b2bc97bb
+ - 1
+
+
+
+
+ -
+ 7270
+ 13422
+ 41
+ 20
+
+ -
+ 7292
+ 13432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 52029b52-5d2a-4db8-8079-f2afddfa4afd
+ - true
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 7270
+ 13442
+ 41
+ 20
+
+ -
+ 7292
+ 13452
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - bc2d255b-8d45-4b38-bf3d-bb8001456d14
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 7341
+ 13382
+ 51
+ 40
+
+ -
+ 7368
+ 13402
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 6245d13a-4f5b-4a29-b897-24082c40ac42
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7341
+ 13422
+ 51
+ 40
+
+ -
+ 7368
+ 13442
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - 2e0c4e78-1d06-4c1e-97d9-73182319f6a1
+ - true
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 7260
+ 13297
+ 142
+ 64
+
+ -
+ 7328
+ 13329
+
+
+
+
+
+ - Rectangle to deconstruct
+ - b6e2727e-5775-4180-8c9b-40bfa7ac05c7
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - bc2d255b-8d45-4b38-bf3d-bb8001456d14
+ - 1
+
+
+
+
+ -
+ 7262
+ 13299
+ 51
+ 60
+
+ -
+ 7289
+ 13329
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 66d0b103-f47c-402d-9fc3-8203e0a5859c
+ - true
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7343
+ 13299
+ 57
+ 20
+
+ -
+ 7373
+ 13309
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 88127139-aacf-44d9-90a4-83008f48ac09
+ - true
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 7343
+ 13319
+ 57
+ 20
+
+ -
+ 7373
+ 13329
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 23a22d70-ce55-40ac-9c37-99862f1b8f7d
+ - true
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 7343
+ 13339
+ 57
+ 20
+
+ -
+ 7373
+ 13349
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 842cdb6b-cc33-47f2-a40d-da25a1f7b040
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 7279
+ 13170
+ 104
+ 44
+
+ -
+ 7337
+ 13192
+
+
+
+
+
+ - Base domain
+ - fcc9c338-eafe-4882-a4ae-34de93e25a0c
+ - true
+ - Domain
+ - Domain
+ - false
+ - 23a22d70-ce55-40ac-9c37-99862f1b8f7d
+ - 1
+
+
+
+
+ -
+ 7281
+ 13172
+ 41
+ 40
+
+ -
+ 7303
+ 13192
+
+
+
+
+
+
+
+ - Start of domain
+ - c4a23226-0a6a-493f-8230-ae87fed7e335
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7352
+ 13172
+ 29
+ 20
+
+ -
+ 7368
+ 13182
+
+
+
+
+
+
+
+ - End of domain
+ - cc77d38c-a5ae-40fb-a692-05acf6b325ad
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7352
+ 13192
+ 29
+ 20
+
+ -
+ 7368
+ 13202
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 0a40a34c-688b-4d7a-a320-fdf66a2134b5
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 7279
+ 13232
+ 104
+ 44
+
+ -
+ 7337
+ 13254
+
+
+
+
+
+ - Base domain
+ - 188b8c86-8c69-40db-ab22-0df9aaca98f1
+ - true
+ - Domain
+ - Domain
+ - false
+ - 88127139-aacf-44d9-90a4-83008f48ac09
+ - 1
+
+
+
+
+ -
+ 7281
+ 13234
+ 41
+ 40
+
+ -
+ 7303
+ 13254
+
+
+
+
+
+
+
+ - Start of domain
+ - 9b8ece22-1993-481f-8cc9-b3339bef2afd
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7352
+ 13234
+ 29
+ 20
+
+ -
+ 7368
+ 13244
+
+
+
+
+
+
+
+ - End of domain
+ - 911a88ad-5385-4d8d-9d45-04b9207f9dd4
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7352
+ 13254
+ 29
+ 20
+
+ -
+ 7368
+ 13264
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 8bb05e5e-b580-470e-920b-6d8726060587
+ - true
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 7254
+ 13047
+ 154
+ 104
+
+ -
+ 7338
+ 13099
+
+
+
+
+
+ - Base geometry
+ - 95b0b11f-bc1e-4458-9606-d0428926bce4
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 1
+
+
+
+
+ -
+ 7256
+ 13049
+ 67
+ 20
+
+ -
+ 7299
+ 13059
+
+
+
+
+
+
+
+ - Base plane
+ - 7a6374bc-e5e0-46f1-9cfd-7b2824e23394
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7256
+ 13069
+ 67
+ 20
+
+ -
+ 7299
+ 13079
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - dcb26664-cfd6-4535-ac11-49f5b53120cb
+ - 1/X
+ - true
+ - Scale X
+ - Scale X
+ - false
+ - 911a88ad-5385-4d8d-9d45-04b9207f9dd4
+ - 1
+
+
+
+
+ -
+ 7256
+ 13089
+ 67
+ 20
+
+ -
+ 7299
+ 13099
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - f1484f83-eeef-40f2-a863-a50d7a2225ef
+ - 1/X
+ - true
+ - Scale Y
+ - Scale Y
+ - false
+ - cc77d38c-a5ae-40fb-a692-05acf6b325ad
+ - 1
+
+
+
+
+ -
+ 7256
+ 13109
+ 67
+ 20
+
+ -
+ 7299
+ 13119
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - f6600f01-23ea-490c-96f3-1412d6db3033
+ - true
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 7256
+ 13129
+ 67
+ 20
+
+ -
+ 7299
+ 13139
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 03f315ff-9a6e-4253-8c71-ef439acd3970
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7353
+ 13049
+ 53
+ 50
+
+ -
+ 7381
+ 13074
+
+
+
+
+
+
+
+ - Transformation data
+ - d703ce36-f93f-428e-aacf-6ac9fd751cb8
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7353
+ 13099
+ 53
+ 50
+
+ -
+ 7381
+ 13124
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6dfe9960-5cb6-4710-b358-d13a8cf132a9
+ - 3b3019a8-9f4e-4abd-9be4-32f44addad75
+ - 2e0c4e78-1d06-4c1e-97d9-73182319f6a1
+ - 842cdb6b-cc33-47f2-a40d-da25a1f7b040
+ - 0a40a34c-688b-4d7a-a320-fdf66a2134b5
+ - 8bb05e5e-b580-470e-920b-6d8726060587
+ - 3adde76a-58cf-4501-958f-0df2da9ec5fb
+ - ce28329e-9c86-45f0-87d0-fe87fcbe6818
+ - 68803261-a9b4-4a6f-b325-f62a9bd69dab
+ - ad923099-21cb-49ab-a3b9-4baff6fa881d
+ - 10
+ - 8089e68a-a88f-49de-a701-9c448439be03
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3adde76a-58cf-4501-958f-0df2da9ec5fb
+ - true
+ - Curve
+ - Curve
+ - false
+ - 00c03ab1-9ce8-4428-8686-be8bf8753098
+ - 1
+
+
+
+
+ -
+ 7307
+ 13553
+ 50
+ 24
+
+ -
+ 7332.667
+ 13565.81
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ce28329e-9c86-45f0-87d0-fe87fcbe6818
+ - true
+ - Curve
+ - Curve
+ - false
+ - 03f315ff-9a6e-4253-8c71-ef439acd3970
+ - 1
+
+
+
+
+ -
+ 7306
+ 13025
+ 50
+ 24
+
+ -
+ 7331.909
+ 13037.68
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 68803261-a9b4-4a6f-b325-f62a9bd69dab
+ - true
+ - Move
+ - Move
+
+
+
+
+ -
+ 7262
+ 12905
+ 138
+ 44
+
+ -
+ 7330
+ 12927
+
+
+
+
+
+ - Base geometry
+ - 5187b29f-4ecb-4f53-8731-3aed05b8a490
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - ce28329e-9c86-45f0-87d0-fe87fcbe6818
+ - 1
+
+
+
+
+ -
+ 7264
+ 12907
+ 51
+ 20
+
+ -
+ 7291
+ 12917
+
+
+
+
+
+
+
+ - Translation vector
+ - 92473a51-3eba-4c8d-a194-3cb6aa13e9a5
+ - true
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 7264
+ 12927
+ 51
+ 20
+
+ -
+ 7291
+ 12937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 916f32fc-3b0e-435d-8040-05a868538939
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7345
+ 12907
+ 53
+ 20
+
+ -
+ 7373
+ 12917
+
+
+
+
+
+
+
+ - Transformation data
+ - ec66bb14-9c97-4ccd-b24b-b84f6a99397c
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7345
+ 12927
+ 53
+ 20
+
+ -
+ 7373
+ 12937
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ad923099-21cb-49ab-a3b9-4baff6fa881d
+ - true
+ - Curve
+ - Curve
+ - false
+ - 916f32fc-3b0e-435d-8040-05a868538939
+ - 1
+
+
+
+
+ -
+ 7306
+ 12852
+ 50
+ 24
+
+ -
+ 7331.781
+ 12864.68
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 075cb523-28a2-4c82-bfda-9ae04abc6a55
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 6707
+ 17508
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 6707.642
+ 17508.07
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ec6a4618-1b45-4427-b8d3-34c62c6f53f9
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 6800
+ 17604
+ 251
+ 20
+
+ -
+ 6800.247
+ 17604.95
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 007508b2-f339-4553-8d9f-37c194c198e4
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 6707
+ 17567
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6707.085
+ 17567.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 8559c532-2d07-4a7d-9687-32d3d6a8d21d
+ - Expression
+
+
+
+
+
+ -
+ 6892
+ 17718
+ 79
+ 28
+
+ -
+ 6934
+ 17732
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 16b3eab5-de4a-4248-b04d-7b8ad4830f27
+ - Variable X
+ - X
+ - true
+ - a581cb4b-1814-48fc-a1b8-43b1d1292aed
+ - 1
+
+
+
+
+ -
+ 6894
+ 17720
+ 14
+ 24
+
+ -
+ 6902.5
+ 17732
+
+
+
+
+
+
+
+ - Result of expression
+ - 3ad7dfe7-0bcc-40c5-ba1e-131b10b2e1e0
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 6960
+ 17720
+ 9
+ 24
+
+ -
+ 6966
+ 17732
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 818cae34-4f9c-4a98-a357-da5e0454ab34
+ - Point
+ - Point
+ - false
+ - 8b9a3012-f494-4be4-96eb-9046c4b5c4be
+ - 1
+
+
+
+
+ -
+ 6923
+ 15509
+ 50
+ 24
+
+ -
+ 6948.063
+ 15521.67
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8b9a3012-f494-4be4-96eb-9046c4b5c4be
+ - Relay
+
+ - false
+ - cc0559b1-a1cc-49c2-a2e5-a855627d3509
+ - 1
+
+
+
+
+ -
+ 6928
+ 15559
+ 40
+ 16
+
+ -
+ 6948
+ 15567
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7026d177-417b-48d9-89bd-1b653119ba4d
+ - Relay
+
+ - false
+ - 5bf352b3-6639-46ea-a98b-19c6289cc839
+ - 1
+
+
+
+
+ -
+ 6928
+ 15336
+ 40
+ 16
+
+ -
+ 6948
+ 15344
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 4349e7b3-029c-4438-8455-d081a0551ea7
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6871
+ 15372
+ 154
+ 64
+
+ -
+ 6955
+ 15404
+
+
+
+
+
+ - Base geometry
+ - f839f96a-3866-465a-96a5-afe9bcecb52f
+ - Geometry
+ - Geometry
+ - true
+ - 818cae34-4f9c-4a98-a357-da5e0454ab34
+ - 1
+
+
+
+
+ -
+ 6873
+ 15374
+ 67
+ 20
+
+ -
+ 6916
+ 15384
+
+
+
+
+
+
+
+ - Center of scaling
+ - 349caa30-53e1-4800-acbb-dd6cf36f4433
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6873
+ 15394
+ 67
+ 20
+
+ -
+ 6916
+ 15404
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 2d112deb-80c9-4bb1-a329-68f386e16a06
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 330d0272-c7e2-4aee-9324-9b82cd45051e
+ - 1
+
+
+
+
+ -
+ 6873
+ 15414
+ 67
+ 20
+
+ -
+ 6916
+ 15424
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 5bf352b3-6639-46ea-a98b-19c6289cc839
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6970
+ 15374
+ 53
+ 30
+
+ -
+ 6998
+ 15389
+
+
+
+
+
+
+
+ - Transformation data
+ - 9b431a70-10c3-4b63-82e1-e7883d6fe6b4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6970
+ 15404
+ 53
+ 30
+
+ -
+ 6998
+ 15419
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 330d0272-c7e2-4aee-9324-9b82cd45051e
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 6827
+ 15454
+ 250
+ 20
+
+ -
+ 6827.84
+ 15454.03
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 818cae34-4f9c-4a98-a357-da5e0454ab34
+ - 1
+ - c57af627-40bd-41eb-9023-2b3d876665ad
+ - Group
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ -
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABKQSURBVHhe7d3rslZFfgZwbyYXkgvILeQGUpkkZar8MDCxrJqar8l8GEvjWB4q4pGSUVFBIIqgIILHkcFT3AiITFQUOQqTHz5TXW33evfeE9ZKZb9rd1nLftfut1+qn/X8z93rtts22xKswJ8224ZdgT8/fv79/zlq271791tvvVUvy4kTJ958880ffvjhv39sX3zxxblz577++utvvvlG/8qVK6us4eXLl2/cuFEPeP/993ft2jXqP3lDTmZNpoLwxRdf/PTTTxtULl269L971nsIz5w54yc25KqP+o+eEEIUQbWGN6+//np959q1a2BGwbNnz/6lLLx48eKePXtGXY0NOdmEEO7du7fhHLH5ySef+EkisUhFclWDZW7WLWBnZM9CNw8ePOhXNuTCj/ePngpCK3vgwIFGewWPr7766vvvv79w4YIrYfjll18iK4347bffwqlu2Pndd9+546+DEvjdd9/dVIdTQfjSSy8dOXKkV3uQIwDRzhU2SHnq1Kk//thA2IyHHBTdvHr1KpOnn21lZWVTHU4FIXKwGJtFL0jADzyuIPz8888JWLrQnUjU0nz87LPPkNU8WNhjDFd273gyaUPONBWEyPHxxx83EBKh169fBwl033nnHddXXnmFPnv11VcPHTqEtbyOP1Ttww8/NIwFFEsHxh6Cxhp6+eWX9+3btyHXfqR/9IQQole93MQmGiHWAw88EMDefvvtqMzHHnvsnnvueeihh44dO/bBBx/8/scGYM1HAAPPVNiZTt0OHz5MaI+0GhtymqkgJEiJx3qtrT4MQAgVLv/Ro0cZI9YMQoj42muvwTXIGQBdfZ3jx4/rRyNqJGfjexg2c4tmKgipqNoAIT9JUT+m895776HgG2+8gUCPPPLIzp070eiFF17wFX+iHdH04Ycf1gctKQpCMCOxr7ueP3++fjJwfeYWzVQQkpCslbLWZekps7vvvht4lBwUoQXFRx999PHHH3/qqafA9txzzxGqOOqvcH3++eex8/777y9OhUeh9lUgOnOLZhIIY1/Upgf3riDKExBVYcjQfEaiGrTETuFKKvqTDkkLzshS/ZrQ+mFkGslsqjlbNJNAiIJEX82VosMI0u3bt+PZfffdhz1E6BNPPPHkk0/iIuEJSJgBD0dLA2FNaAatB6KWpSg7ZyJOAiEmkX71KpN+6BKrkv0JP+IU0uSkj0AlS13xDx6ArBuO1pj1bj5aE7kb0poc4x89CYR9mqlWYPpQQTKWC2sFZiSqO67/1TVBcPdqKzQhuvr5IFc9DbOVpZNAyMrnoDcsLHI1NBIX1RFdEyZNdE2Ahm1C0v7E7xv6kBBB/Rdac7Z26SQQWk3YNBCWj4EQWpD46KOPIKeTDDA9F3QjdRe1PkzDXp0tESeBkCBt4pm16KMOgQQtTKLGiFOBNHGAOP5GcufdXyU5nJxGA7Bo6jw14vgQxhytBV2jvXxENRACCQs1oVEQ+oqmI7iKo8YkoNNzMYmq/r6IwQwjNeNDSIpyDOr1xa0mtkn5UYFAwjbsQUpBFg23WC5Fa+ojJTgbudrHaPJz7ot6zy2VPz6EpGgTA+tXnP7TQBUIZX25DamG6mnHKYRx7Vf0Rml5YjwWIJxVKn9kCOHHpWtEHNVVfHOi0kdoIWLSgdwGVNMAWbL5g8LTmOJd9PHu8pXTp0/PyjodGUJrB5sGgOIDwM/Ss0hpwfgPJ0+eDAvxzzBIh3OufdFGBDJFaP7BxFP53VnVJ44J4SAFrXUinLFiEjiFECKGhYwXTmQBXifWzSK/gkSNoK7jrs1D40f3798/E6U4MoR9bYTljgNQOrE7YoIyYXgUGuSgS07qkIRNdr5BCIk9DfUz0Qtej8hMxOloELLmpXCbpYyf52ZT+eI+DHCFOYOFrNM0T8B6ojMmhHFEMdHai9z8MwTt5pDQHw1CixUtVbf44DEg64UGIf3nioVc+4RmQAiPdULoV1DW/K6NAVz+AYg+ByKOA2Ef147yCwVjZ9bQhj0RpNQh/BJyi6VKUwJGWxNOMxucWtNelrojjL70GnEcCD3sTaVMbJaoxoaC7sQW5RoSsHWZtvuoSUiSsTFcB4Gpb8a7WCROPR9LT8QRIORHM/96xkTbLRJ0gmGShZgHJwBEFzaTNKndQTj9hEnQcTDklvD3GFm5/79zjADhYNVvyOdaG6IFAzI2Tn3usIPuvPNOCT+ou8kiJWCtvvpEGfw1iVieg8GRnpXlNmpGgJCkQqBm+Yrr3UvRqElQccDj2/EL1V6kTE0LpTBSFpCwXRNCItc82uDeKBbvcsvSESBkL/RCLF5EnIdBDFLw4oswg5bxveZbPWvYaMSiepufYx8td/riViHsU0tZwdiKi1QUFnIq2J+FczqxLbNdBrHi6a9JwQzwuPitvtbbn5ZeHd4qhNQMD7pf6Bj6tNRgnAWEKUSjEeULVccQmLzD7HLKNm54GAAAM6zpXRiWwFs/0m8R0Uts1NwqhIRhH5QJLUoYbJBJBCw1ybWgq9Jxp5alwMBCpORTmk0DUhLFPagGw2+ROlQYt8Te4a1CSM00Cd4i2ax+Iplx7QNGEu6uYEO4hLmF2fAvfn1BCx4Zr+m7j5fYSQKznozXGK7uGJBgeljbPzH07hIbpbcKIWOvKVYrEFpZzLC4vH4wi2WHc6krJD8TFNUMyzXUJFTh1Dfz+K6AnK+nI6eh0AaKniSzRfv2EComXuJa4REgtI79qoEkAhCEwABzCkeTWgKnKxigErumtDiFwB5svg571zSlpyCMzQn7RdbTJoSrBSYWCdKIQcRKpBRFcCs4pUN4gopryPkLHoQqekEOtKkvBWfT3ExAPB3fMjJh7ijLunS/PFjLXbF/qywczDHFqQDhIqfQAH+FLl5iFSJiUnxEvmCS+4tSSIPGkW+tYs6wmTfNmYVEZCb0xTJWmTEZK3+wihA8QStFwCmniL0TIKMd1+8X+kp+ro8G+C2Buk2nYiGEiw4nCS0CzCBv6DDYGxCckqNoRg7aJoOzxd8YdO2hK/q6xDsublWQwrY/Isiknv2UzS+SpVQgchgAOdaN/aHEXWDgGMRPoBTJ2PUEaPyKZ2Uw94vomwG2NfIs/IrBYHQyFYNhbvdBlawvsAUH7rrrLuoKBmycGKVhz3oyFcCOATzoFHoONsPca0DoGScVe66UZNPgyvIH0DeHPqFadlY04bG+mGqQkYkELcr6LrdfD5sRBGm/ITQLHQgTvO6Xnv/Ao0DB2vLUz86KtEXlFPVsMV8TI+1/haBebkU4DoRZo365A+Hg/gdQxXokgQk6viA30fgkLhg4OlAZtGYbnBJJX2T68hqXW4qOA6FZLFNjd5TaJ3gMWjQpiOKhC+4k2ulqkkGrcpFFU6o68rj0belT9mNC2ITZyLcs6yCEsVeNEWERaRNm4x1muxMsAYmC63HtU+qPsoNa06Oz3LZojJQRdKFZctJITYJSeLHIrwgLEz5ldpbDZ6GSsOeaKfsyc8yZnoLLHRotRuY4EMZxroMpZX0XQYgiCBRBmpRv8vUYSaKuEpkrUJUNU1Dv8cbyOVBwNBaaSDanVkhFSy3aghTRFxYSpzpJa8SwTO5pdVkaKbpor6HQzxInmGo/bxwWxqJhWBaKFEPUKg9aKECy+lgolVgyt8UViRIlXRcZpWXawUfEF5feEB1ZkJqucfDLPphBliTAnX3YqZfRSWgtTl6qEZMEHgx2l/mbDTd5hmayIWZMcyaCVMClsLD26BuLH2ZCaEamzCIlo/nioORMMWPvDsYT7TdskMnzoeCYupBRWr/AYBUIxdXEuK1+dtxThLW0pAtF2mCcP/mYg4EbCKMIozUbc9TZYUtcKdNHO0fThYxSp00UMFaBkGDst7Ft37Hj339z71M7diCcvxKqKWdi0MoJ59UIpdXCuZG0S5+XmBBCU3v2S6CygbCWkGzFeH6pHb0Z1rl24293/uttv/7rO174be/e9VK0NmGas2lmtct+ZF3YhNlqK6PJNxGMHEEwJD10M697/U//9h/3/tW//M2v7/1NH2vti4nruGs9ObCdTbrECfrBnNFogjQQKmEKjepVbvbupkgiuYiYMNdvXP/g3fdPHHnv2JtH/Sn2DkWoAxWxm+Z9CcWEKWG8/OjSb5/4v4Cw1JTWodFG1imPBwkgc2KJTEXNvJTVJI+YEinWTfP6rmLCNE6hX5+VLTq+IOVXEJIhRDmrRL+xOHh76IJAxqQIqqQJU75WHAz3s+m3UZDlmWgyWfN84cGYgrR+yU+O+cnSpzaphgFOUKQImTM58SKmja8QofHxs7MJSE2ApjZHa6PJeE/lEpc5LSqeGBNCdoSz0gNVraUGAygBlTEiwMa6ofni3hGe0EXcHrzMXMfN64cD8DMJijZYjglhXMMi90pQpmZkYIimDAtz4kVMmJySkN0t5C1/A6KNjZpa08xT7wKnWWeoCMeMzuTRqF3DEkAJ24qSS9l1SKZF4fnohPVHt22z66LIT/ejL6Fbvl6nlnIiQ+Cc7WtjxmRhgt3l9JJ6fYvEg4cj8fMuSipQyUxiaWj3++PH97928Onf7SASURMvEcsYIG3bti1Bg8YErZ+M5d5EuEgRjs9CogwqvZQrshQG6BJh+5PatStX7zuw7+4/Hn3i2B6efirbkg40GMwZnMMtMn9t15h2tq9QG5+Fpaa0MURr1yJJpVSQgidbCW8e2H3xZjW3lgq2XAtmjSNfM9Js87RlxmehdVR6G5Y0R1AgU537JQPdYXyySOPgn1w5eeniRTcJz8HCmeYIm9opnPPLt0ZmYe1X9LVrdWKIYZkqXqzNbkJEhCs1ycfoN6cBrCmoqTOFs7VlxmdhXRbc+xLRXmFYSoF9VP4kClo8EOIUHnEwwmYtIrQYpblZPxDzjMuMH2DLjGRpBOZgyUUCb/6USDcgBTZzDHBOP8wZCnVQzeDauC24ZueUj0lQzDAuMxWE9atimhxFVj/FbQRpaJoKNuQjS0nLvlzK4MHymcJLT8Os0vQTRmcydX0GBvYMHh3kJtjCRbqQ2MypshGedUA1m34L8+pOkb3zOcN58mRTCdCUrdu1G5fVhwdHPgfHsF9yKnCyTnHnwZljaHRcmTYZHJ+kuJI1WWWj5hlam0qQ5njS2Cx1PDMQgserJsk9b3712skHH3zQVbzGG319K6/OKs3HOOxPP/20F8TG0888ta2kcm62TuH4FmkhYoq1+82FUkteno1/UJHWwFelbxBNotF4MhZTY9ok5RTiGpPMYiAsfr07y30awiqhtalYGHWYStE+zURsKhIkG5955hmvyg7h3IElkuVU7sRlGggxMjHxBkIjl34T6OooWpDb0vTWBHydA0BIPy2CEAsZLyRnklPas88+m8BpUkuATFwttoyPIF8EIbrP2RydSpCW4xEHWUjuxUnHM7IxIVB9JCuS08eIUDf1Cd4GwqILPQ1zVoRTQVjOE+p1IUHKbEn8OkWIyR0m1JITuGIEpRMuEstUZq0LS8gbujPZhLZIBE4iSMsBCv2GBxCyYkouF8lA5aPrX8RC/+74hXN7T1oP5CQQ5kioOBXN6U+cv/2OUSckaT57Qq9dVRpFhrrmzqUrV5wae/PgWB1kdars5ctnvji7b+++2pwpEM623qJgOQmECVeSdcRjHVvh6XMeXt29++K5c9977aRdL17ys7Li4/lTp9w5f/r0hbNnvz1z5sKPfzq/suKm/sqJP/xu5zOO+KqzxElc8P3n7NdPpQtBiIjMkOak5Zf27Hlx167Hbr/9jV/8wn+Ht2x95e/+/uAdd+i//vOf37xu2XJ469ZDW7bo7//ZPxy4/Z+PGLl1685/+seHfvVLgPUQLv07DNb0AiZhoV9l0RR7JJ6cJqitjvvQkSOcOybpVYVPN254M5OPwtuuOUddnFRo59r16wa4qW8H6d5du2pzJrO5ynJsmjPj+4VJOaXMsCkCRppYpFrcvjA1dmkxQeMa/sQv3DesC53ftulUTAJhXiETdVhYqMMiZemkXjReIJx8dNVff3SmJCPnnOydMMCWGFv2dTZnJbhpW0yK7QMY5iUuox/aJbpWu/bSSRyV2iJN0hGQCY6vqTCWeMBUurBkDZtDYdaEEDYCLr5FDmevL6iEuRsIc2awNnP8prJIzVuOXW8CNKsL0pSMMoVwyyTejpeX1EtR+VizMH49DbrEh26vU3JMxcLyRrworeIMBEJQDepCIPHzZC00eQzh7/QFzWsIydsUd892K0yN7oQQlgN962C3sw+gSzZqBGb2GpKKrrkJLdlgRiaVqagJI7dv367WlGROGrl+Jua5rbdh508grE3Hzf4GWoE/OxWb/9vQK/A/SnhUo9dnbOwAAAAASUVORK5CYII=
+
+
+
+
+
\ No newline at end of file