diff --git a/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG.Ξ©.GHX b/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG.Ξ©.GHX
index 8e6eb8ce..10c3c365 100644
--- a/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG.Ξ©.GHX
+++ b/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG.Ξ©.GHX
@@ -48,8 +48,8 @@
-
- -1320
- -5504
+ -1313
+ -4999
- 1
@@ -95,9 +95,9 @@
- - 274
+ - 276
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
@@ -33489,14 +33489,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1607
- 4968
+ 1603
+ 5029
103
404
-
- 1668
- 5170
+ 1664
+ 5231
@@ -33557,14 +33557,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 4970
+ 1605
+ 5031
47
20
-
- 1632.5
- 4980
+ 1628.5
+ 5041
@@ -33584,14 +33584,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 4990
+ 1605
+ 5051
47
20
-
- 1632.5
- 5000
+ 1628.5
+ 5061
@@ -33611,14 +33611,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5010
+ 1605
+ 5071
47
20
-
- 1632.5
- 5020
+ 1628.5
+ 5081
@@ -33638,14 +33638,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5030
+ 1605
+ 5091
47
20
-
- 1632.5
- 5040
+ 1628.5
+ 5101
@@ -33665,14 +33665,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5050
+ 1605
+ 5111
47
20
-
- 1632.5
- 5060
+ 1628.5
+ 5121
@@ -33692,14 +33692,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5070
+ 1605
+ 5131
47
20
-
- 1632.5
- 5080
+ 1628.5
+ 5141
@@ -33719,14 +33719,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5090
+ 1605
+ 5151
47
20
-
- 1632.5
- 5100
+ 1628.5
+ 5161
@@ -33746,14 +33746,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5110
+ 1605
+ 5171
47
20
-
- 1632.5
- 5120
+ 1628.5
+ 5181
@@ -33773,14 +33773,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5130
+ 1605
+ 5191
47
20
-
- 1632.5
- 5140
+ 1628.5
+ 5201
@@ -33800,14 +33800,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5150
+ 1605
+ 5211
47
20
-
- 1632.5
- 5160
+ 1628.5
+ 5221
@@ -33827,14 +33827,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5170
+ 1605
+ 5231
47
20
-
- 1632.5
- 5180
+ 1628.5
+ 5241
@@ -33854,14 +33854,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5190
+ 1605
+ 5251
47
20
-
- 1632.5
- 5200
+ 1628.5
+ 5261
@@ -33881,14 +33881,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5210
+ 1605
+ 5271
47
20
-
- 1632.5
- 5220
+ 1628.5
+ 5281
@@ -33908,14 +33908,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5230
+ 1605
+ 5291
47
20
-
- 1632.5
- 5240
+ 1628.5
+ 5301
@@ -33935,14 +33935,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5250
+ 1605
+ 5311
47
20
-
- 1632.5
- 5260
+ 1628.5
+ 5321
@@ -33962,14 +33962,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5270
+ 1605
+ 5331
47
20
-
- 1632.5
- 5280
+ 1628.5
+ 5341
@@ -33989,14 +33989,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5290
+ 1605
+ 5351
47
20
-
- 1632.5
- 5300
+ 1628.5
+ 5361
@@ -34015,14 +34015,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5310
+ 1605
+ 5371
47
20
-
- 1632.5
- 5320
+ 1628.5
+ 5381
@@ -34055,21 +34055,21 @@ False for input values on the X Axis which do not intersect a graph curve
- Curve
- Curve
- true
- - 7e4e6adc-a4d1-47ab-a4c6-c48fb8239b6b
+ - 1e4870d3-d88b-4e3b-a627-be71345d40a9
- 1
-
- 1609
- 5330
+ 1605
+ 5391
47
20
-
- 1632.5
- 5340
+ 1628.5
+ 5401
@@ -34112,14 +34112,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1609
- 5350
+ 1605
+ 5411
47
20
-
- 1632.5
- 5360
+ 1628.5
+ 5421
@@ -34139,14 +34139,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 4970
+ 1676
+ 5031
28
23
-
- 1694
- 4981.765
+ 1690
+ 5042.765
@@ -34166,14 +34166,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 4993
+ 1676
+ 5054
28
24
-
- 1694
- 5005.294
+ 1690
+ 5066.294
@@ -34193,14 +34193,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5017
+ 1676
+ 5078
28
23
-
- 1694
- 5028.823
+ 1690
+ 5089.823
@@ -34220,14 +34220,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5040
+ 1676
+ 5101
28
24
-
- 1694
- 5052.353
+ 1690
+ 5113.353
@@ -34247,14 +34247,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5064
+ 1676
+ 5125
28
23
-
- 1694
- 5075.882
+ 1690
+ 5136.882
@@ -34274,14 +34274,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5087
+ 1676
+ 5148
28
24
-
- 1694
- 5099.412
+ 1690
+ 5160.412
@@ -34301,14 +34301,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5111
+ 1676
+ 5172
28
23
-
- 1694
- 5122.941
+ 1690
+ 5183.941
@@ -34328,14 +34328,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5134
+ 1676
+ 5195
28
24
-
- 1694
- 5146.471
+ 1690
+ 5207.471
@@ -34355,14 +34355,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5158
+ 1676
+ 5219
28
23
-
- 1694
- 5170
+ 1690
+ 5231
@@ -34382,14 +34382,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5181
+ 1676
+ 5242
28
24
-
- 1694
- 5193.529
+ 1690
+ 5254.529
@@ -34409,14 +34409,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5205
+ 1676
+ 5266
28
23
-
- 1694
- 5217.059
+ 1690
+ 5278.059
@@ -34436,14 +34436,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5228
+ 1676
+ 5289
28
24
-
- 1694
- 5240.588
+ 1690
+ 5301.588
@@ -34463,14 +34463,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5252
+ 1676
+ 5313
28
23
-
- 1694
- 5264.118
+ 1690
+ 5325.118
@@ -34490,14 +34490,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5275
+ 1676
+ 5336
28
24
-
- 1694
- 5287.647
+ 1690
+ 5348.647
@@ -34517,14 +34517,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5299
+ 1676
+ 5360
28
23
-
- 1694
- 5311.176
+ 1690
+ 5372.176
@@ -34544,14 +34544,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5322
+ 1676
+ 5383
28
24
-
- 1694
- 5334.706
+ 1690
+ 5395.706
@@ -34571,14 +34571,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1680
- 5346
+ 1676
+ 5407
28
24
-
- 1694
- 5358.235
+ 1690
+ 5419.235
@@ -34612,7 +34612,7 @@ False for input values on the X Axis which do not intersect a graph curve
- Digit Scroller
- 2
- - 0.0625000000
+ - 0.1250000000
@@ -34702,14 +34702,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1744
- 4966
+ 1852
+ 5038
110
404
-
- 1840
- 5168
+ 1948
+ 5240
@@ -34752,14 +34752,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 4968
+ 1854
+ 5040
82
20
-
- 1787
- 4978
+ 1895
+ 5050
@@ -34799,14 +34799,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 4988
+ 1854
+ 5060
82
20
-
- 1787
- 4998
+ 1895
+ 5070
@@ -34825,14 +34825,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5008
+ 1854
+ 5080
82
20
-
- 1787
- 5018
+ 1895
+ 5090
@@ -34872,14 +34872,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5028
+ 1854
+ 5100
82
20
-
- 1787
- 5038
+ 1895
+ 5110
@@ -34898,14 +34898,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5048
+ 1854
+ 5120
82
20
-
- 1787
- 5058
+ 1895
+ 5130
@@ -34945,14 +34945,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5068
+ 1854
+ 5140
82
20
-
- 1787
- 5078
+ 1895
+ 5150
@@ -34971,14 +34971,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5088
+ 1854
+ 5160
82
20
-
- 1787
- 5098
+ 1895
+ 5170
@@ -35018,14 +35018,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5108
+ 1854
+ 5180
82
20
-
- 1787
- 5118
+ 1895
+ 5190
@@ -35044,14 +35044,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5128
+ 1854
+ 5200
82
20
-
- 1787
- 5138
+ 1895
+ 5210
@@ -35091,14 +35091,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5148
+ 1854
+ 5220
82
20
-
- 1787
- 5158
+ 1895
+ 5230
@@ -35117,14 +35117,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5168
+ 1854
+ 5240
82
20
-
- 1787
- 5178
+ 1895
+ 5250
@@ -35164,14 +35164,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5188
+ 1854
+ 5260
82
20
-
- 1787
- 5198
+ 1895
+ 5270
@@ -35190,14 +35190,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5208
+ 1854
+ 5280
82
20
-
- 1787
- 5218
+ 1895
+ 5290
@@ -35237,14 +35237,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5228
+ 1854
+ 5300
82
20
-
- 1787
- 5238
+ 1895
+ 5310
@@ -35263,14 +35263,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5248
+ 1854
+ 5320
82
20
-
- 1787
- 5258
+ 1895
+ 5330
@@ -35310,14 +35310,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5268
+ 1854
+ 5340
82
20
-
- 1787
- 5278
+ 1895
+ 5350
@@ -35336,14 +35336,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5288
+ 1854
+ 5360
82
20
-
- 1787
- 5298
+ 1895
+ 5370
@@ -35383,14 +35383,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5308
+ 1854
+ 5380
82
20
-
- 1787
- 5318
+ 1895
+ 5390
@@ -35403,21 +35403,21 @@ False for input values on the X Axis which do not intersect a graph curve
- Count
- Count
- true
- - 72713788-9a21-48b2-80ba-d8d582f5c87b
+ - 1e4870d3-d88b-4e3b-a627-be71345d40a9
- 1
-
- 1746
- 5328
+ 1854
+ 5400
82
20
-
- 1787
- 5338
+ 1895
+ 5410
@@ -35458,14 +35458,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1746
- 5348
+ 1854
+ 5420
82
20
-
- 1787
- 5358
+ 1895
+ 5430
@@ -35498,14 +35498,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1518
- 5404
+ 1544
+ 5455
40
16
-
- 1538
- 5412
+ 1564
+ 5463
@@ -38708,14 +38708,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1496
- 5266
+ 1499
+ 5262
85
44
-
- 1536
- 5288
+ 1539
+ 5284
@@ -38733,14 +38733,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1498
- 5268
+ 1501
+ 5264
26
20
-
- 1511
- 5278
+ 1514
+ 5274
@@ -38759,14 +38759,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1498
- 5288
+ 1501
+ 5284
26
20
-
- 1511
- 5298
+ 1514
+ 5294
@@ -38807,14 +38807,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1548
- 5268
+ 1551
+ 5264
31
40
-
- 1563.5
- 5288
+ 1566.5
+ 5284
@@ -38839,17 +38839,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1500
- 5589
+ 1503
+ 5556
77
104
-
- 1539
- 5641
+ 1542
+ 5608
+ - true
@@ -38876,17 +38877,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1502
- 5591
+ 1505
+ 5558
25
20
-
- 1514.5
- 5601
+ 1517.5
+ 5568
+ - true
@@ -38925,17 +38927,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1502
- 5611
+ 1505
+ 5578
25
20
-
- 1514.5
- 5621
+ 1517.5
+ 5588
+ - true
@@ -38954,17 +38957,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1502
- 5631
+ 1505
+ 5598
25
20
-
- 1514.5
- 5641
+ 1517.5
+ 5608
+ - true
@@ -38983,17 +38987,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1502
- 5651
+ 1505
+ 5618
25
20
-
- 1514.5
- 5661
+ 1517.5
+ 5628
+ - true
@@ -39012,17 +39017,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1502
- 5671
+ 1505
+ 5638
25
20
-
- 1514.5
- 5681
+ 1517.5
+ 5648
+ - true
@@ -39040,17 +39046,18 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
-
- 1551
- 5591
+ 1554
+ 5558
24
100
-
- 1563
- 5641
+ 1566
+ 5608
+ - true
@@ -39089,14 +39096,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 1346
- 5531
+ 1347
+ 5508
250
20
-
- 1346.551
- 5531.053
+ 1347.551
+ 5508.053
@@ -39353,6 +39360,283 @@ False for input values on the X Axis which do not intersect a graph curve
+
+
+ - ad013215-63f3-46da-8b16-ce3bf593a0c0
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Edit Points
+
+
+
+
+ - Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
+ - true
+ - 1606297d-c3a7-4bc0-95e2-acd8e3cc0489
+ - Curve Edit Points
+ - Curve Edit Points
+
+
+
+
+ -
+ 1641
+ 5475
+ 123
+ 64
+
+ -
+ 1695
+ 5507
+
+
+
+
+
+ - Curve to get the edit points of
+ - c2631487-b875-473d-a3b0-c180fad25644
+ - Curve
+ - Curve
+ - false
+ - 0e0d5017-4f0f-4bab-986c-96ea91bffc65
+ - 1
+
+
+
+
+ -
+ 1643
+ 5477
+ 40
+ 30
+
+ -
+ 1663
+ 5492
+
+
+
+
+
+
+
+ - If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
+If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
+ - ffda07ea-46a6-4262-9f81-b21190e6784c
+ - Knots
+ - Knots
+ - false
+ - 0
+
+
+
+
+ -
+ 1643
+ 5507
+ 40
+ 30
+
+ -
+ 1663
+ 5522
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Edit points on the curve
+ - d0b35ace-2c61-468c-b741-4314b71498c3
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 1707
+ 5477
+ 55
+ 20
+
+ -
+ 1734.5
+ 5487
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at edit points
+ - f6957ee7-4abe-433d-8de1-f9298145bca2
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 1707
+ 5497
+ 55
+ 20
+
+ -
+ 1734.5
+ 5507
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at edit points
+ - f31e48a4-7cbe-4990-89d5-e4c79512edb4
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 1707
+ 5517
+ 55
+ 20
+
+ -
+ 1734.5
+ 5527
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 4b2f821b-45e3-4410-9aa9-a29a26c362df
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 1809
+ 5483
+ 97
+ 28
+
+ -
+ 1842
+ 5497
+
+
+
+
+
+ - 1
+ - Base list
+ - aab63b11-16ab-4f4e-8cf2-b7fa556e1009
+ - List
+ - List
+ - false
+ - d0b35ace-2c61-468c-b741-4314b71498c3
+ - 1
+
+
+
+
+ -
+ 1811
+ 5485
+ 19
+ 24
+
+ -
+ 1820.5
+ 5497
+
+
+
+
+
+
+
+ - Number of items in L
+ - 1e4870d3-d88b-4e3b-a627-be71345d40a9
+ - X-1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 1854
+ 5485
+ 50
+ 24
+
+ -
+ 1871
+ 5497
+
+
+
+
+
+
+
+
+
@@ -39360,7 +39644,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
- iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfiSURBVHhe7ZtLaxRZFID9Gf6HceVWRQQRFBFRQURw5UbRhRJhNjJDUMTHSoKziQ9woclCG83CiAgjqKAwETShk5h0TEx3252k3+/qZL7UKWraxKruhq4qajjforn3Vt1e3C/n3nOqOluU/wNrSmj5T+H3nrK4uBiLxebn52nQpTE3Nxebnf327ZtcNe+yoCs3bBhX2uKhQsAKFrEyOzubz+UMo7n+N7O2trq6ajhQqVQWFhas+UoHsJ4eKkQeCgm7u3fvJePfZ2a+zszMTE1NZ/NFU+UvwKIq7AoWzVuF+MPinTt/pVPJhW9z0cmpycnJpZWc6esXNBoNVdgVLJqHCgUUYqVUKpmO2qAKu4VF81ah5CljY2PZbNZ0hKR6pVKV9mZUYbewaH4ovHr1qq1wKRWfmpmT9mbq9Tp5qTVZ6QAWzVuFEI/HR0ZGlpeXTUfrUVit1qS9GaKQlMeaqXQAi+a5QiAEa7WftCXevqV6sDotNBqGBK41U2kHi+a5wg1RWKuWi+VK5NGjPw8d+jsSmYhGa5USG24ikfiRWqpWq5FIZHp6mlnWfMUVltRbhVJXtJ6FtWolV66Mv3jxx2+//X7ixL2HD3E6OTVNFrOwGK/V6rdu3fz06VMymbS+QnGFJfVDIUpshcLYvXv/3L9vddYr+kaNTKZeK5XLpK8agp3D6nmoUE41yTCLReuJzGqzaRhNCgvpbsAwDI2/rmDRPFQIs7OzWBwYGMhkMqajtWJuZf77orQ3o3Vht7BoXikkBIk/QMng4KCtsFIuZXN5aW9GFXYLi+aVQkxIhReLxdgbKw475wZUYbewaJ4oJATlHQVtPt+/f7+ysmI6WqtXK/mC45sKVdgtLFrvFUoWwyko6SixeOXKFTsjzWeWZ2Lz0t6MKuwWFs0ThZLFSCyi5NWrVy1FxSpYzU00m01V2BUsWo8VSuRhTmKRBiQSCTbSnEk+ny8U8tLeDFmPKuyK3isEQhANEoKik0F00m4Lt8mXKB3SY4WijUKCBhZlO2WErnWH0mt6rFC0IQwQSVTJpyr0jl4qxJOdxdCV7VQ+5QbFC3qmEG1Em71nyv6JPN1FvaaXUUj9JwGHM8xJ/iLnotygeEEbhax+W+Q2VNm27BNR9lXzmxSvcFOICQKrLUgSZzILcxJ8tO1BxTscFWJieno6mUwutbBsYnVMUqnU169fJdokBCX4kKq7qD+4KcQNg7D+QOznR2KtIwgjFm1VuGSErhyHMqh4BwocFRKFDBqGUavV+IxGo319fadOnfrw4UOz2WRQfpRGqBFw9izMSVd3UX9wU8hmOD4+/u7dOy4Vi8XTp0/v37//3LlzZ86cyeXW/yliYmLi5cuXCLNDEMQc8aflhD+4KeQgxNDIyAiX4vH4gQMHrl271t/fv23bth8/fjD48ePHBw8ecBwiW6agU8xJaKpCH3BTyFnYaDTS6TTbJleHhob27t27devWwcFBupyFXKrX65KRyhRJZOyGfJXiKW0UMghy7FWr1c+fP4tXGZGMhoATW3YiQ1ca8lWKp6DAUeHU1BRHoNgCzK37NF+sW0OmV9JRiTx786QBqtAfMOKokFONpJSwc4Eb7ICjIRN1F/UTR4WAjM6xExnZRa2vULzHTWHnYA5tnIWtLq1risf0RqGdvwD+9KGMn/RAIdrsRIau7qI+46bQDKr2cKdoo60PZfzHUSEakGHlnc5QURCCog1aw1HxB0eFkpWYv/m0KJVKlUqlXC5b/UKBq6lUamJiwppjhqOWEz7jqJB4isfjDK6urlLLG4ZBG4WU8zTsERqUhhJ2dlIj36D4AxYcFSYSCQaLxaLYGhgYOH78+MmTJ7PZrLyBqtfrhKadizIFVKHPuClMp9NPnjyhzaXR0dFdu3adPXv2/Pnzly9fZgSePn365s0bOfwAl1pO+A8i3BQODQ3R5tKzZ8+OHDly+/btHTt29PX1rQtcWxseHh4bG2P/xJ8+lAkKRDgqlI2UtIVtE/r7+/fs2bN79+5MJiMbKakNeylnIaemPpQJCjeFrelMs9nEFjrl3SEjQKNarVJacCf+dBcNBEeFrUUFGQ0Qc2SkIF3gkvyCDYW6iwaFo0JJT8zyvQ2cgvpQJkAcFQJKOkF2UX0oExRuCjuHeNWHMkHRA4X6UCZY3BSa22QbpJzQhzIB4qaQ2Gr72xlBd9EAcVQosUXlQC0hUAJSC1IdWv1yuVQqraysRKNRDcEAcVRol/ZS1BuGgb9MJpPL5Sj2GZHSnk/utOYoQeCmUB6wUd3jj8aNGzcOHz587NixpaUlRrBImY9UNlKNwgBxU5hOpx8/fkybS8+fP9+5c+fFixcvXLhw6dIlRmB4ePj169dsucSrzFL8BxFuCiORCBHGpdHR0aNHj968eXP79u2tL5u+fPlCLqNRGCCIcFQoZyEZDQceJ+L169f37dt38ODBQqHAiLzyBfutvRII7RUCJ5+8oJBPGQEa8qZCFQYIFn6tkBOOulBSUMH+KZTVz+Wy2WwymVSFweKoECuxzn6EqHV9sDgqBCx2gnW3EhBuCpVQoApDjyoMPaow9KjC0KMKQ48qDD2qMPSowtCjCkOPKgw9qjD0qMLQowpDjyoMPaow9KjC0KMKQ48qDD2qMPSowtCjCkOPKgw9qjD0qMLQowpDjyoMPaow9KjC0POTQiWkWAqVELNly78x4QhujUsswQAAAABJRU5ErkJggg==
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACcxSURBVHhe7Z3nchtJtufnOe7T7Lf9shEbcTdiH2C/7DNsxJ2OiZmebpnWbSO11PLeUCQleiNRFD0JAgRJEB4ECUd47+gk6v6qTrFUhBNIdUPbE/pHdykzKytP5vnnOXmyDPiXr/hXwIev+NPiI4XBYLBcLkvpTiiwtbXlddstpvm5men52emZt5NjI0Ovx8aHBkfS+ZJUawdHR0c7OzvhcDgSifh8Prfb7fV6Sfj9fkQIAoHA9vZ2KBTiSDc2VZCm5vfff1+tVrW2PnzY9Lp34mktcxLv373b3z/QMh8+xONxj8dDy7RPy/SBDuggK72SCiJdCrUaBlAYjUZLpRKD0VpvAoaxsWF3Op25XE4rUpFKpWhfa+53BY03pnB708O43I4Ni2lpZmZq8s2bmam3Y6Oj46OjQyNj2aJWrU2gApTFEU3pFEKSsEghQDppqonG5Sz6XVlZ0XvVGqVC1mJetq5aLdaVYDjq8nh++fnnTCZDa7QpzdYzJCUiHZDQC3XA342bNyOhwE40VioVqRMOhwLBUDhEf8PUhjnvpn9zc+v167G5+ZnRV28cTrfWLXUSd47CYrH4/j2z+R1Z/lXkN8TREXXaxOHhoU4hw8AygJFCIFZIBzjqLFKHLKd2d3c1uao6mlkCPS+XislUMhaLpjM5Wu/t7U0mk4xTRNMsDTYjUupQQfojHZazUHjz5s1kMrG7t7dbrVCSSCazmSyVqZPOZGPRnRD0RuNLpiX/pndp2exwurRudZJCZGSzWfS1v7+/vLS4YrWal+Zejw0N9L3se9k7OjTY/fhJ1/Ou5897tsLR/b09jKNNME5ltqqAGCjEEGusEK0JIFLUzSUOh+PXX3+lBVUVCrxuZySe0jItUSgUUL0IBQpFOzs0LhKNDBlBIafoBtUA9aUwHo9VKh/9eTMgUWl+a+vLOFKhkIUHFj1uF2p22NYtJtMci+H01MIMdL6anluw2WyRWII6Qk87EL0gjwTqq18OhUKOOnnCJRWuXbtGC6oeFKSSiXx7bjyfzyszIhAQuep4T0EkRzpDHemPxWLBJ2tNN8LhwX4uX9AyJ9FRK2Tm4vewQrL7+3uK/JMQL4Z3pE77QCNCIUCKWGGL5ZBCLpE089roSFugXMw5Hc5gKEhD2VwBAc+fP+dyWkOokSpJf5JIIOXMg3/84x/pdOMwSlDMpSzWtXfvG3j5zlHIkPT5vm41bdjtayumN69Ghgb6X3Q9f3Dv7vDQ8NjQ0J37D+OZxtOtGdCjTiEQX2qkEKAmtKmajWJ/pFEf6aWlJSUUPEaxkK/uNphbYH9vN7Dtx/eu29a3gxGP13fl8mVMB9ENqdLpkbN6ST0IbicmJqBBk9QIhA57e407Br4AhalEPJFIRiPhbb8fdTtcLptt3eXwpJIpu9NRbqLEZjBSiJrQVw2FlAh0QyTNkQpMf+OmwuWwBXcSWqYlCGRoHNEiVFqGsBqejERy1EtqwBKzpzqn1igWS0ikhZoQrNOO9ODgQJY6ZB/Rgffv1Z4oOHx3ePT+6PBAqdMmahwpaQTVRDQAztAgR86SpaYcmf7EyZr4Dx9o7vCweahsgKzBqkwFkqZ9mkWE8RSQLB2gP/VExmKxFy9eRMLBRDKFZrBskEylctkc1IJ0OsWUj8eTfS+6R8fHx15NuNwerR+dj0iZ8jgEl91mXbFMT77q63n25PGjW9ev//LL5StXLt++fePXq9d9wR1WSnTUJlCHTqEA8vSIRlhEuQD1ASyGo3BJVMI8UFXxCVTLRVphxUqm0pXqLtNjcHAQuUDngwTNIhFZkpVygWQRjVyOegnHH364lIzHcoVCuZj3eD10lAG5nE6GwMA2vR6H20uXBwdeLi0vmyxW474QdJrCSqWCQ0inkihy27+Fpp1u94bD4XK76T3pTC5PNY2fNoAKjBSSRYP1y6FQyFHIoybpp0+fGtfCUGArmclrmZPYrZbdTvuKdWXZvLy5FXR7fZd++EHcKXNCyBDpHBFUU65DeitEUoESrJDe5psEnEYwGo/bzXqMO9WKVHRuLcRlyWZcjAyfun/AbnaXXSDFBwckMVEWhQPqtA9RiiZTBeOpXw6FP7pBlgqkSVy8eJEppepBQTCwlUif2HI1BNt8hG5sbKB9xEn7JHTCpEtSbjRTHVJB+iA1WWW01huB5aaZt/gyEenC3JTFurq8MDM88KL7+bO7t27evn3nxrWrz3r6hocGg9GkVGsTog5N5jHElxopBLAooDMcGTZ1jBS2D/xEIpEQuXSA1hBUwxZpmTGcJW08JaCESzh76dKlT20q0iur6+///9lUlMqlYkk5FPOFbC6XzmYJUOPxRLFSwSqJKKRaO2AAoghNpgpKIOyTEQ1ZLNUYkRIe4Se0zEngMvD/7zEHNf5iOGazWeJDkUizyBK21F4okDRCkUgF4ykdmDL+HBpEUEMcHuxlslktU4fOrYXEDrIZhzvWxWKxkMtlMsRbiQS6yOfymZSy3SiXK9RRXGobIIRDL/UUIk4imnpD5AgBgFM1jpQ4q5kPKBVyFvMyC+Giacm/HWLdPn/uHN3WiTGypWcF0h/pg2SlXAchKAuIJqk5mD2s3OVSyRjGf4GIFJ8+82ZidnZuamKst+vx/bu3Hz58/OzJo9Hh0Sf3bp87f8kXjBDcK4FKe0AjNRQKYAgK4U8oFA3qhihE1oQzbO0r1aa7UmwUcYVCvlgq09rr16/ZldM47eiskCBLoU6tDrJIr6kPsMKZmZnoTiSvbrpkYjKxZLozRwF6I5J4/Wpsanr6zeRbpqXWp85TqPRmdxetZTJZjJIwjMJcoUggg3ZyeUwxXyqX1bi1XaCOegophKR6XyrMkRYWc7kcalJVcTqgVMJRkSst66xIf2oKBXKKcs6SICv453ffxaMR9oWFfJaA0+uj2377xobL5fJvbTvtG9b1Da9nc7D/pclsXjSvOF0f94WgcxTCHFOGecU2NZfPFfK5FCtgTL25Eg6zj03Ed/B81b19ZcFpDyxdeDMu12QeA70gsd6RAkwBQCTAkoxb+3QyUSg1jm6UR76GmFB2AhKRIotmESGidSBFp0orUiF94xQVyGLKS4uLafU2N/phRBxJY41KWkpZDg8P19bWbDbbyoqVa5VOHKNDFNJv7IwE5jY18crtdi3NT48MvOzpfv7g/t1bN67fu3N7dHCsv78/1OS5eTM0pFAAfzVWiNY4Qh4JCP7222+N4YzHZQ/HGocVHx/5riiPfFkLCSMJSoUejrSJICNhQlW95wSSpSecpQ4cGLvRDFBJNTyZlldBYYcoJK9QePxElRVR5pqWV3F8kjPG4lagZjMKURM6Mi6HZIGwyJFh19zmJkxoJhqLLxULOM9YbEd95LvV29ODFJ0enTCOOmGSkAmkZ3WQpef05M6dO9CgSWqEciFrd7qbKaVDFDqdTnavLDyFXHbbH4jFouFgwOd1uZyOjbU1p9Pu2LC7nS7meDqbx4cw3dqEKEKTaQDlDEwoFCUCnUJOcYSSs62FuF99X0+Dwo30BHF6iYC02KiRXQFZpuCVK1daU7hbLQWD4YaziznXIQrn5uagcG9/P5NMrFvXNr2uqTevBl70PHv69O6dW7dv3JqZWliYfnv1xvXN0OfeIzUCxdX4UiCOlOzNmzdpQVWFgk2fJ5po9ehVB2NB9SKCdmo4E0HGEulkPbtAThm70QI4Ay11jM5RqMTN0ShTXp6qEEkeHBzit96ptxzohz7DTmWCQFSgyTwJTqFKnUKVPgXoERYp//XXX+mJJpggJRrJ5D9GN0aUi3kcSTAUDARDuVzB4/V2dXVhxCKlhjMSMkUkawTVKKfDemWs2W63p1JJBq6rQd/56SWojhh1xWKZm59ntFIo6JwjZcAk9qqVTY83jhcKBQgf7Lb1VbNlybS0urbisK+blkz5JjFhQzBCdNGCQsbWIqKhTk100AzyyNdOF9fXtoMRr2/zpx9/RPvCBEfaBDoxJMR5GtkCejlH0oLz5y9EI6FINMamwulysqmgfZfT5Xa76bfTYV9d33C7fSODfYuLc9Pzi44vtamQ+X64v7cwNbPp9a9alghNR4aHel+86Op6NjjQ/2ps5Onz7kT2dE/tUUEzCgXoq8YQIQ/QpdXVVaMHq1bKe4aXRVuAWJQGaUSnjSNpRIhQQAkidLa0UrWcDktnSLOpGBoaSiWTTMd3h4elUpGgk3CPHTOh1t7ePr0qVyqkzWazw75htqy4PV/ieSHDoBO6K8d/SqIhlB1fe2DnJBrRZNaBs2gKChUbVKFTSKTz3Xff4Yo1qbgK+/rHp/ZHRyGzOexy2azW9OamVniMarUiXpTWgDDEkWYRoUpWIOWUUC5pHVIZgtF+Pk8E9+moitkGW+l02vjUonMU4nOUju7v51KppfkFt8ttt60uzk9PTU5MvZl8Ozn59vXE7NvZ6anpUDS+v7en3HdpDwxAE9gIaIrh1fhSoHAYCAwPDxu39rvVqnH/7nnzxjYwMDIw4Bwb262UuFJ75FvZ9W1ujo2NwSLtGxniyGSlRKTrEKFa5hhUZvJx7cDAAKPQpDYC0gPBsJY5ic5RaLFYGBvTp5TLLczPbtjtlqWFtzjSkeG+/r5eNlnPul+Pv5mZmd4O7+zttfUSolBoMpl0DTYD/AmFokrAJRyZVcYZXQOs0NLT03PzZsrlOnx34DI88vV4fefPn4dRGm/IIuKMqyAJKgi1eiEgDb7//vvWD5vKxZzD6WbTKtnZ2VmH2/uhkv1QTneOwm+//ZYBHB4eyjQnMlX60giHh8rLNYRn7YABXL58eXJysoUtoiPUJxQCnULw4sUL49Y+GglncppREhNanz5dn5gY7++PLC8jSMoBDpzoem1tjRZoXKTQsp7liE7rWRRqOaUXAvzTxsZG9uTbva3hC+5EVl5/sD75EFgii2/tBIVv376l3ySwrxXzMjbgsq/jSCcnXk+8ejU3PTU+Nv7m9euenpfJYyW2AzQLf6xq+i6tHqJQfTkUCtGmx+PBkoxr4damN5o83hceHeUIwfL5NHuISOT9ydeimGR4UWlK54PGaVayIrSGMBKQSqFeTS/EnxsfITXElt8P2U6ny7S0kJ68wVyisHNWSNwl4fvRu3cux0Y4srPpca2vWnGDc/Nzs9MzSybLps/Lspgrf/puoRGZTEZXRwugOKBTiMWgRzZkOGStoZbANxQJx1CzqmiUbrPZGJS0pneghkUhrIZFjlQTkwVMvqtXr+2EApGdaKlYkFNb2/pdwDDxtAvH7fOPjgxOTb99O7c4MTKwNDGwtm7Di1CtUCh0gkIGxkQjgHynfhCDR+XYEEwrzrYPtICmNJlNQB3UIRQC0Q5d4mjcFxLhGh2mEcoj32WTaXl5cUl75Hvx4kUWMFoWpZMQWUgxslhTIiCtMK9yjyO9e+9eMpFgP7O3W43FojhGFmlYYYpkc/lkIh6NJ5LJ9PTUW6vVajJb3F4fvWQysZSg0Q5ZITLY6Ozv72cT8f6+vtW1taX56dGhvhc93T1dzx8/eHjj5vWurqdPnz7zB3fO8FkMQEQLoGX8rR6aSvbnn38mIFI5UuB2Nn1SAdRHvqVCIac+8t1+9eoVu0MZKg0aSarnrCGL9IFy0nBQrX76DkNSpYqJVzz5rlRHKWTKl0tF9qdo0e10rFuty8xrk2lhcZGNhXV13eVyRePJ3d3TvYSYSMTzeXnkjQQNEu8ALX8MSpj4KB0679+/TwuqHhRkM+liua17Q6ygrIVG64cMxmhk0ZgFNcYKSFOHwoWFhdYR6cH+XibT+N2Zzq2FyMBlo2WJSNGjIr8WytOed+qnM8T67YCamEJ//0B0J4L/aewE68DyCX/ojsHTglbaEjWPfHFxxhgKMqAT2lqQChqyyPHvf/97awrlDbaGn8WADlGIG5H5jhmODPU7XS7r8sLrscG+F729z7u7nzyffD35vOvxjTv3YunGL+M2AxSeO3c+uO3f3treO9DiRiyebfvU1BRbqHqSoBBV0qWZmRnjpiKfy5abOLRiPmtZXraurVqsVuUrX7fnl19+ln2hQExKHKNASK1nUZZALa8+taef0KBJaoSjo6bvkYJOUwhYn3ELyXicqYsqWaC8ns10OoOX9/r9u+3dpdSBV1xdXYUVLa8CE/nmm2/+9re/jYyMRCMhl8upKHcnmkR2Is1K/OzZM0TXPLUnVA41eYON2OHkI18/m365x6YDYhgmJOkM1bNIQo1jTrCovsH26Y+BMuk07bMYGtdv0HFHurfHxC8Ui4fv1A9g9vc5vHt3KKEgZ1UvyqFdyMKWy+WIzUivr6+73W6n04mKofCvf/2GlTKVjCufKGz6Q+FwKp1dtlhu3boFAdPT08YbbPjw1jdvdTAEZGkDNaCGRY66g9U5I8HskTqAdrq6uiKhQDyRkCU2pbxTlMDE4SaVStN/dh5cp77B9nZ47JXx9aeOroU4N/hJx2Jv30za1temJsZedD959ODe3Vt3ntx7/PTh/UeP7l2+cs0biLB6K4FKe8CRXr58JRIOOBzO6ZnpVbudiNFsNrPlHx0d7e7uJoRRB/sRsWgUM0WPTH8mgVZ6GkB8s5sJsGK0M46tWaSdH3/8MZmIFZR3RAss0sFQiELlSZN/ayca2/Zvun2bwUD4zcT42vqq+lnMx2/tQUcpRJuVcpnxE/spowmFWZE2t/wet5fJiyP1+f3shJiMGj+fAi4FCh89ekQ4Ax8r1tVNdbFBEeroGoNdF+pDrQ8ePDCuhYGtzXiTbyoMj3yDuVzB6/V1P39e40h1QAztQ5JwxrEhiwyYQtiiMm5Jk9QcMOp2ewjaWT61IhUdopDuwhwrCrOeRKlUJNqvwGepWCkpL47iPfK5wnt2/nhV5RZAW8AzowIAK7gUZgnm5fV6EcEpgcSuRsA6uqPaTz/9ZFxX8GbNvmxSHvlufXzk6/H6Ll++bAxn6gExjFpnES03ZBGm1S+bWgVxLb7y7Zwjpa8YDYn9Srm3u2vNtrE8Pz3c3/vsyaMXPf2vxkYHhgbGhsdJRNp7e0UH/KEXAWlmKAnES0k96AmqxFJJoGVjONM+mAQYOuJkqM1A+yi3nkU5CygkKw89tKYbocW39qDTFIK9/b1KRXkfcre6q7y7vb+P7R1gLopRHRBRSLV2wBwULWgyVYimdN3VgMpoVih0OBxGKySYQryWaQmIh8UaufWggtHydBblrIBwRoJbrelGODzYb/YBYkfDGYJGnBgrYTwaZ9Jls2nW8Lgyk8OMjxAjHiN0TFXUL4EVgttDPYVS0oxFSvBdUEi8cOHCBaMVOu1Nv7Wvlovb24F0Jp1Ky1e+yiNfWNQabYJ6zupLAP6/naiKOrlsrlDIs4JoRZ2kEJ1KRJpPJbufPl1cXJp+M97b9eThg3u3b92+efXXu3ceTIwMX/7lF38oeqqIVAjTZB5DChuySFZcKGD6G8MZFubqbmNV7lbLNY985Ta31mhz1HMmHdBLsMI3b94wj3M55fkzXqFaqRAsMDuZXmQBncxmc3OzM4tLi68mJry+E8FahyhEX0SMdIuNH0bG6k23iCjpa0mJaspMbcVGK9qz+PYhbGkyVS+qgyyaQl9yygj6gyGKY1D1cAoQlCFU/8r3k9AnDYn6EvCd+llMMp0uap/F+PxbW7RP8Lm1HXA57Ks2u8vlXVhc8Pm9Cybzl/kshu5CFla/Vy3jxqAzk04qExSXpszHcGh7y7/pw1mxsVdei28PaFNiChQBkUBpWQUmwsAoQXTNCKksvnRkZITYVdWDgkQ81uavPzEL21kLdegSSeglYovMg5WVFTosLesPfplbDFDSAOdpt9shWN4W0EpVdG4txGJIJMPbPc+6YWt5YXZ8eOBFD271aV93T9fTZ2Ojo0SkO8mmn7M2BC2jGgnNa8YmH6c1pBDtM8f/+c9/GtdCn8cVafJRjnzlq04aRa1cbrPZ2rRCAUKln0YWydI9omhRzifBcljjNuhShyhkxuEtFRWoM6v1z7tQrU1ghUhCEYyB8AQdaU2okB9NaGYrXGWxWIxrYQsYvvI1+bfDLrfn4sUL7ayFRsAZhKEKI4v0/LfffoMGTVIjlApZm93ZZE/RQStU4q6DA+JQl8Md3Yls+X1OZaO8altdNS+ZFpf432RdXcvmCwSkGEebQAuQJEe0g38TMLUhiX7o+jKCQjGIdu4vC9Rvj0uFvPbId3x8HClac6eBeAW9VywE169fb03hXrUSjkSbvFDQQQpx9ziBbY9z8vVMYMs383ZiuP/l866nj+89vHXz1v2HD27evHn73r3tcOwMT+01mSd39A3JE6A41qGaX0JUf8yy1RZbB5EiOzlEaM2dEojWu8eRzrTpSNk4vz/5gw64os5RSPinbviUWY/1vDvewtfMrYODfTGvNlFDYZvgKqyQ6W+kkH1qrtDYr6qPfD++7xOPx4yPfE8F6bCwSJYFlQglqT6m0OI49S111KIm1TL1NRkzbnxxcWZ2LhgKaf1Q0SEKZS0kUSlkVy3WKBrc8m2sr6yYl1dMppmZKf6bn59bsayUKp9+i0QHo0OPZ7MGLkR99Y6UNpns/KPlVSiPfM3Lq8ePfN0e7y+//HLatVAHLKJ0WCQBvj93LhoJ7cTiyrf2TidRGDs/p8PhcikPK5Rv7ddsbpd3oL930bQ0s2AyfhZDbztNYSYeGXo5EgyENlYt89NvX70aG3zR/6Tr2aMnj5+/eNE/OJjKtRVf6PgcConmiwWWXuXrfqY6cz+dTik/cctsXzJhFpqMj498E9HoTiqdbfjI91SAOXTCusg0YlmFBqYMPcCj7u3vv3t3mC8U6MDBwaFyp2qP1bC6tLS4StxgsXi8Xq1bHaaQ2E/RlCq49ZNVVEnNdkBNdHEGCuGP/ca58+ezqfiGzQYlG+u21fX16ZnZidfjC6blqfll4i+tQ3UolbSvfD8H9BxnDot55bOYT0dVUEmXgOIkDOjcWkg4Q0Sa2Am9Gh1zOp3rVvPMFOoaGx8aGhoeNi8uz8/OL8zNR2IJxsNkbBNno1AwNj5WKCi3tQ729yC1uruLTpns6zabaXm50Px30YrFIl5Ya+UzQOfRDAYNDVrTjVAtF/1bJ7a8RnSOQlaO/YP9yLZ/ZHjc7fGsWpZnp3Ck44Mv+3t6+2zrjlAwaFqcC0RiuA68bps4M4VcyPSv36FCD5FX+eR+UX3k6wqFQ+xAc3n1kW939+c4UgF9ABcuKFtMTVIjVEp5l8crW+oadM6RIkO5Ian+zCHZ/eY35lmSsML2gQrORiFX9fX1JeNR9XuzCg4KXTR7g0195Ltpd9jX5Ctf5ZHv2cMZI3DILpcL5WiSTokvEM4U0vE346+2t7ft6yuzUxPjo8NvX78ZHQFDvb29gwNDmcLHKL8dnC2c4Sp2BRd/+CGT1r70DEd2HA57NNHWvpBNfTuPfNsBjeC9jbdqddTcS2uGzlHITCdRzKSWl8yoIOD3uewb7CrWVu3BYMC0vGQyL8/PLxRPs6kAZ6MQ2+XIhqydPxBRD2JFhnA2668BPfn555+hQWv6GAf7u0wsuEFIMBja8gf2DBtTHR11pEQHSqipOvQWjpReMfsIutoBNc/sSOGenRlrHu1okptjb7cqv51NyMMoUC77jng8rrX1ebh//349hWxy0Fgul2XFzebyxWKpYRjfUQpZOWAmuu27f+f+6vrawszkUH/v865nXQ8f3bhxrae3d6D/Bb50K3yWz2I0mW2Dq4jmr1y5kojtKC/9KfF9kN10TP++8CTKpcKa1WJaNi0sLfr8QZfbe+7cOWJsrbnPAJ1nMhn3oKdCpykk+kjsRMzmFUK7Ta/Habevrloty+Yl07LHp/xpKZ/XG08qP0im8dMGzkYhWsOSHjx4UCywhy5kMtlypZJOJUst/So70UMlJDvAsy0sLHyOFdJtAY3MzMw0eHfm6AgTJPzDY6G3Zn6r044Ul4UXQi4O6b3y3En55lLtifJHYg5VX0+hslFrG2jhbFbI8syF5XJFv0uAOjhq7dZB9dz0UQHRR5v8qTQpkCwSAdpAOlEMYCY1/GsxROZh6gSDXh+z3b22vtHwYVPnKNTDmUws/PDePZfbbVmaGxvu7+3pxpE+efRwqO+l8iLNw0fJU/7uzJnDmeNg4RSgPlexguKE0b4oThjSIe3r9YUqrgJcBSRNIaeoQP/n5ub0p/YnoE4pLd0c0C89+d1B4ycoxOmRqJZL4VCEWZxNp5PxRGRHCbfCwVBsJxYmHQo1jLtaAK2hLE3maYA2tVTbEJIAEhkRTEAnICFUCVSONJAVqlROtX5qrRzzTXALhXkVbE8lAfBbRmildaAFveXfF6j3I4WMgd2r4ogO9omzsrnc3v5edbdSVV4oVV6Cwkar1Yr8qRj8fps489aeS1pTKCoGklXUX2dVAjFKEuwUAQnqGFsA0kgLSMscaYEGJdsm6JjWyu+NWgolIg14nL3dfQ77xtvXo71dTx7cv3v3+s0rv/56+87tR3fuX79+ffOz/1qMEaI+Vf8apJD+wISi3WOo1ZtSVe8Apaa0JpDLOSv1AZWlpl7hk6AaF9JIm/X/UNRSiK/AaDIsvulsIZ9T3oyIxeloMBCi4+FIGOUw3EKheJqf5m56m5tyIOqQeESAfoUeIBonobJzAhRyqiFVQEQ0hF5BGqcp+iANtk8nhsi1n6z2R+MEhXSI9U8Jyg/3c7kMnr1aKReL+Vw2W6mUq5USAXSpWN7b3cXZsoa3CSozTlGxERSiMsKEtbU1NEgHdHi9Xrfbjb+S79OATpV+rQ4pOTP0Rox0AoTqEptJEXfa7GxngLpOUIjFkMjGwjd+u2l3ucyLs6ODyrszPU+67ty+fv3W7Y01+9uJ8dO+hNgwIo2p34ouLy9zCpXtGoBq0CB1RKFUUPV8QlMUor4zo74/QJfCWZ1OsU6yconeDRKU0FWOemHngXo/UsjAiJ0IQMqlovJr/hJg5fIskMlkKptVAhzlbLlUrSp/77ceOGGAJ9TyKiiR0Woyj0Eh45+fn4dLzopmBXJWjmRFjzWawscTJbaPJKtDKsX2XEBJ6wfCyBJxyG1hnaQZhXrFl8EJCsmLKkmI3cgwSAM1oTEh1WpAISOEEipoRcegpCFQIvVxm7SvFTUColGiqE+y8IfDp8/t45A4+uSNVnw1TYkII2pGFwlHYjvKm4ykhUs4k6BUJhaFZOXazoOBnKDwM4FmFxcXHQ5H6wmug2obGxv40k/eRhFdQyGKQ5W2jY1KubSr/kDoUbN3N08iFg3bHU6W103/tnNjI50r3L59e3JyEtEyL0UEk0lckQAXUq4WM8V4tVpli0WJBFxyFlCO5y+VSgrZXwIM7fekkPETgBChtEkhWmPkMzMzWv5ToD4tWyyWH3/6KZdJbQeIVBX/tra6mvrUDaN3797v7e2y8WWXy+acY19f38rKCjbEtKARTAoRLM8kqP/++LaLs7z6N9P/yBa0573ajDk6gr90JkvnZ2dnaWFpaYmp0NCs/1DQl9+TQsCkxjd6PJ7WvlEH9Rm80+lsn3VUPDg4JD8/VSyVsAsCaXmDlLMbdjvufqK3x7yyoui6OVjrxQSBeEj6cOnSJYvZlEzE19fXAuFowe7uu////tc//7Lq2IBSn9djtqx4vb4166rT5V7fcF68eOHcuXMQf+HCBdxpm6P+HcFAmlLIwLTUaYAWXC5X+4bImFmTaurrc7lhHzhLPMK2RiXiBDCyldXVm/95aeDJI1YqSo7eH8Zi0aLykZ3yV7IIuRXii0UWxqmpKf1dYdoExDhYldfrkcD4/dEH/43bD//nfz/3v/9bz+DLo/fv2Q3jTPHhREcsxgR6T1WwnE9MTHSeP8AYG1PIeNApcxNHdwYwK/VrJVFzrMnaPtZXbILpLORhJYSR0qUasN1USGuE3ksXdj++AH6UTERXrBaPb3PNajUtL3t8Ww6bLZnJ/XbtN9ZCY/sIZdQQjLcEyrORDx9Yb3eV70+rTBp8qHJCbZezkuTIkgn9WiudBR1oQCEjYZozDVnYGc8ZwPKOQTBJs8pfm/54zGQyHJV/1ASFOfWIT8tQIZeLx5jIUa/HEwwGWGnY1jC7awyayU5JvRWiR8/m5t2f/vPulcuvJyeZDtoJVcsckSIvJJCFAMIo4iMmq9ZuI3AWcQKt6CQU4+34+mcEw2lFIWQotzhPCZxVLqeyBY2k2FEqd3gkpyAvx+NC7VQ2my8UopGQf1tZljZ93nhCebD8H//xH2azGXOUvqFKvFZXV1c6GdvaDsjPMKHn8E7U43ZjZC6bbU+5KxvFvI4NpgE4RQWmgpj7nxeMpSmFzFmiEnzaGUCEBlhpSEsj8h2h8iWCCknUnOISKZ+emWaBhC3cwNDQkPHhO0q32+1Xr14tF/OBYBAbYRO35fc73N5Nn4/9mkqQhlBwy+Vy0wnfpi8YjuCyoZm0fzuAOT598oTJ8aUc4O8FhtmAQgGOSGHjM0CQAh9apiWI6ZVPEcxmZg/OjQCVcJ9gHfJIcNborGCRZuvXQsioKcSRxKI77BiYHKlMlrlJU/4t5WfeWNYePLjPLvZfmUIgjv5sQDVQws6dhFbUCJgalGD0zBiiQcgzmUwwx7XKr3EFg9hf/TpECftr1jMdus/U8iqkpCHY8zFX6lv+04GxtKLwcwA9LGlYUjM1UQ49VMOkrFYru8Ph4WExXM5yCmo5K5XrofD/2dDa+jPjD6QQQEP9tp005ThMVjuLxQJn2Jz8RAQ1KcEitaqfAo18DrRW/uT4YynEzjApeRbBlOcITwQjcDY9PU0520dWKWpyFp3iNtlus1z9y+i3A/hjKQQYnDyLgBWbzZZKp1kaKSwrP52kPPlnBylbSUCaPSJRKBsSlkatia9oiT+cQizP5XLhHuHvydOnlXKRTeCu8hpxpfmeTfkcAovUmviKlkBdfyyFAHfKiogtXvzhh3wmubQ4PzMzOz0zm8wq97HUdzNOgMJyufzVCttEJyjEbbK1YJMAKuXynvriOmBXwDZOffp2ArD4BR+//enQCQoF8iwCD3lMm/K2akNQgXXxa0TTJjpEIfuExcXFK1euYIIYISRu+73boQgJ5aHOScAi4Qx7yn+NfdsfjQ5RiP2x57t27ZqQBI2RcHAnljh8/x67rAEUQh4REB5Yu/4rmqNDFAJYxDcW1B9qIVphPdytVPKBAEuf8rq/8qo//yoU7qm/+0H489WXtoPOUUhcyr4CbtTnUWVl85fNPv7rX99cvar86E61ms1kYurtUPaOON6hoSF2k2S167+iCTpEIS5xbW3t/PnzWBuhCpvCcDgYiES77975P//2b//33//9cVdXJLhlMlus1hXPpvLHO7755q9+9Q9EaE18RROcoPAr/qTQKPyKPzH+8pf/AkCehKw2aJkNAAAAAElFTkSuQmCC