From bcc934623dd89a62cec70986138af7e78e2e22a6 Mon Sep 17 00:00:00 2001 From: OOOO Date: Fri, 18 Aug 2023 03:42:51 +0000 Subject: [PATCH] =?UTF-8?q?B=D0=98.=E2=9A=AA=E2=9C=A4=E2=93=84=E1=99=81?= =?UTF-8?q?=DF=A6=E2=9A=AA=E1=97=B1=E1=97=B4=E1=B4=A5=E1=91=8E=E2=9C=A4?= =?UTF-8?q?=E1=97=A9=E1=97=AF=E1=B4=A5=E1=91=8E=E1=91=90=E1=91=95=E2=9A=AA?= =?UTF-8?q?=D0=98N=E2=93=84=EA=96=B4=E2=9C=A4=E1=91=90=E1=91=95=D0=98N?= =?UTF-8?q?=E1=91=8E=EA=97=B3=E2=9A=AA=E1=94=93=E1=94=95=E1=91=8E=EA=96=B4?= =?UTF-8?q?=E2=9A=AD=E1=97=A9=EA=97=B3=E2=9A=AA=E2=97=8C=E2=9A=AA=E2=97=8C?= =?UTF-8?q?=E2=9A=AA=E2=97=8C=E2=9A=AA=E2=97=8C=E2=9A=AA=E2=97=8C=E2=9A=AA?= =?UTF-8?q?=E2=97=8C=E2=9A=AA=EA=97=B3=E1=97=A9=E2=9A=AD=EA=96=B4=E1=91=8E?= =?UTF-8?q?=E1=94=93=E1=94=95=E2=9A=AA=EA=97=B3=E1=91=8E=D0=98N=E1=91=90?= =?UTF-8?q?=E1=91=95=E2=9C=A4=EA=96=B4=E2=93=84=D0=98N=E2=9A=AA=E1=91=90?= =?UTF-8?q?=E1=91=95=E1=91=8E=E1=B4=A5=E1=97=AF=E1=97=A9=E2=9C=A4=E1=91=8E?= =?UTF-8?q?=E1=B4=A5=E1=97=B1=E1=97=B4=E2=9A=AA=DF=A6=E1=99=81=E2=93=84?= =?UTF-8?q?=E2=9C=A4=E2=9A=AA.NB?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB Signed-off-by: OOOO --- .../⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB | 688 ++++++++++++++++++ 1 file changed, 688 insertions(+) create mode 100644 ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB diff --git a/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB b/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB new file mode 100644 index 00000000..aaaf7399 --- /dev/null +++ b/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ∣❁∣ⵙ/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/BИ.⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪.NB @@ -0,0 +1,688 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.1' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 28766, 678] +NotebookOptionsPosition[ 28088, 659] +NotebookOutlinePosition[ 28488, 675] +CellTagsIndexPosition[ 28445, 672] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "::", "usage"}], " ", "=", " ", + "\"\\""}], ";"}], "\n", + RowBox[{ + RowBox[{"Macros`SetArgumentCount", "[", + RowBox[{"FabiusF", ",", " ", "1"}], "]"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"SyntaxInformation", "[", "FabiusF", "]"}], " ", "=", " ", + RowBox[{"{", + RowBox[{"\"\\"", " ", "->", " ", + RowBox[{"{", "_", "}"}]}], "}"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"SetAttributes", "[", + RowBox[{"FabiusF", ",", " ", + RowBox[{"{", + RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}], + ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ", + ":=", " ", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{"n", " ", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], + " ", + RowBox[{"FabiusF", "[", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n", "\n", + RowBox[{"(*", + RowBox[{ + RowBox[{"https", ":"}], "//", + RowBox[{ + RowBox[{ + RowBox[{"mathematica", ".", "stackexchange", ".", "com"}], "/", "a"}], + "/", "13245"}]}], "*)"}]}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"powerOfTwoQ", "[", "n_", "]"}], " ", ":=", " ", + RowBox[{ + RowBox[{"IntegerQ", "[", "n", "]"}], " ", "&&", " ", + RowBox[{ + RowBox[{"BitAnd", "[", + RowBox[{"n", ",", " ", + RowBox[{"n", " ", "-", " ", "1"}]}], "]"}], " ", "==", " ", "0"}]}]}], + "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ", + RowBox[{"Interval", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", + RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"0", " ", "<=", " ", + RowBox[{"Re", "[", "x", "]"}]}], " ", "&&", " ", + RowBox[{ + RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}]}], ",", " ", + RowBox[{"powerOfTwoQ", "[", + RowBox[{"Denominator", "[", "x", "]"}], "]"}], ",", " ", + RowBox[{ + RowBox[{"Message", "[", + RowBox[{ + RowBox[{"FabiusF", "::", "realnn"}], ",", " ", "x"}], "]"}], ";", + " ", "False"}]}], "]"}]}], " ", ":=", " ", + RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", + RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", " ", + RowBox[{"(", + RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ", + RowBox[{"n", " ", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/", + "2"}], ")"}]}], " ", + RowBox[{ + RowBox[{"ariasD", "[", "k", "]"}], "/", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}], + "!"}]}]}], ",", " ", + RowBox[{"{", + RowBox[{"k", ",", " ", "0", ",", " ", + RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], ";"}], + "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"tri", "[", "x_", "]"}], " ", ":=", " ", + RowBox[{"Piecewise", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"2", " ", "-", " ", "x"}], ",", " ", + RowBox[{"x", " ", ">", " ", "1"}]}], "}"}], "}"}], ",", " ", "x"}], + "]"}]}], "\n"}], "\n", + RowBox[{ + RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"prec", " ", "=", " ", + RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", + RowBox[{"s", " ", "=", " ", "1"}], ",", " ", + RowBox[{"y", " ", "=", " ", "0"}], ",", " ", + RowBox[{"z", " ", "=", " ", + RowBox[{"SetPrecision", "[", + RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ",", " ", "n", ",", " ", + "p", ",", " ", "q", ",", " ", "tol", ",", " ", "w"}], "}"}], ",", " ", + RowBox[{ + RowBox[{"z", " ", "=", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ", + RowBox[{"tri", "[", "z", "]"}], ",", " ", + RowBox[{ + RowBox[{"q", " ", "=", " ", + RowBox[{"Quotient", "[", + RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ", + RowBox[{"(*", + RowBox[{ + RowBox[{"can", " ", "replace", " ", + RowBox[{"ThueMorse", "[", "]"}], " ", "with", " ", "the", " ", + "implementation", " ", "in", " ", + RowBox[{"https", ":"}]}], "//", + RowBox[{ + RowBox[{ + RowBox[{"mathematica", ".", "stackexchange", ".", "com"}], "/", + "a"}], "/", "89351"}]}], "*)"}], + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}], ",", + " ", + RowBox[{"s", " ", "=", " ", + RowBox[{"-", "1"}]}]}], "]"}], ";", " ", + RowBox[{"tri", "[", + RowBox[{"z", " ", "-", " ", + RowBox[{"2", " ", "q"}]}], "]"}]}]}], "]"}]}], ";", "\n", " ", + RowBox[{"tol", " ", "=", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ", + RowBox[{"While", "[", + RowBox[{ + RowBox[{"z", " ", ">", " ", "0"}], ",", " ", + RowBox[{ + RowBox[{"n", " ", "=", " ", + RowBox[{"-", + RowBox[{"Floor", "[", + RowBox[{"RealExponent", "[", + RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ", + RowBox[{"p", " ", "=", " ", + RowBox[{"2", "^", "n"}]}], ";", " ", + RowBox[{"z", " ", "-=", " ", + RowBox[{"1", "/", "p"}]}], ";", " ", + RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"w", " ", "=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ", + RowBox[{"p", " ", "z", " ", + RowBox[{"w", "/", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}], + ")"}]}]}]}]}], ";", " ", + RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ", + RowBox[{"{", + RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ", + RowBox[{"y", " ", "=", " ", + RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ", + RowBox[{ + RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ", + RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ", + RowBox[{"SetPrecision", "[", + RowBox[{ + RowBox[{"s", " ", + RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}], + "]"}]}]}], "Input", + CellLabel-> + "In[183]:=",ExpressionUUID->"b6d7bb97-f801-4b79-84e9-03757a7fafc8"], + +Cell[BoxData[{ + RowBox[{"ClearAll", "[", + RowBox[{"iCurvaturePlotHelper", ",", "CurvaturePlot"}], + "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{ + RowBox[{"f_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"Head", "[", "#", "]"}], "=!=", "List"}], "&"}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"x0_", ",", "y0_"}], "}"}], ",", "\[Theta]0_"}], "}"}], ",", + RowBox[{"opts", ":", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"sol", ",", "\[Theta]", ",", "x", ",", "y", ",", "if"}], "}"}], + ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"sol", "=", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", "f"}], + ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", + RowBox[{"Cos", "[", + RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Theta]", "[", "tmin", "]"}], "\[Equal]", "\[Theta]0"}], + ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"x", "[", "tmin", "]"}], "\[Equal]", "x0"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"y", "[", "tmin", "]"}], "\[Equal]", "y0"}]}], + "\[IndentingNewLine]", "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "y"}], "}"}], ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "opts"}], + "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"if", "=", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"x", "[", "#", "]"}], ",", + RowBox[{"y", "[", "#", "]"}]}], "}"}], "&"}], "/.", + RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\[IndentingNewLine]", + "if"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{"f_", ",", + RowBox[{"{", + RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", + RowBox[{"opts", ":", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", + RowBox[{"CurvaturePlot", "[", + RowBox[{"f", ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", "0"}], "}"}], ",", "opts"}], + "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{"f_", ",", + RowBox[{"{", + RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", + RowBox[{"p", ":", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"x0_", ",", "y0_"}], "}"}], ",", "\[Theta]0_"}], "}"}]}], ",", + RowBox[{"opts", ":", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\[Theta]", ",", "x", ",", "y", ",", "sol", ",", "rlsplot", ",", + "rlsndsolve", ",", "if", ",", "ifs"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rlsplot", "=", + RowBox[{"FilterRules", "[", + RowBox[{ + RowBox[{"{", "opts", "}"}], ",", + RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"rlsndsolve", "=", + RowBox[{"FilterRules", "[", + RowBox[{ + RowBox[{"{", "opts", "}"}], ",", + RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Head", "[", "f", "]"}], "===", "List"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"ifs", "=", + RowBox[{ + RowBox[{ + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{"#", ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "p", ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsndsolve"}], ")"}]}]}], "]"}], + "&"}], "/@", "f"}]}], ";", "\[IndentingNewLine]", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{"#", "[", "tplot", "]"}], "&"}], "/@", "ifs"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"tplot", ",", "tmin", ",", "tmax"}], "}"}], ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsplot"}], ")"}]}]}], "]"}]}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"if", "=", + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{"f", ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "p", ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsndsolve"}], ")"}]}]}], "]"}]}], + ";", "\[IndentingNewLine]", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"tplot", ",", "tmin", ",", "tmax"}], "}"}], ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsplot"}], ")"}]}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", + "]"}]}]}], "Input", + CellLabel-> + "In[195]:=",ExpressionUUID->"f922cec0-aa84-4593-aff3-3268dbccfdf7"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"FabiusF", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel-> + "In[205]:=",ExpressionUUID->"83f1c93d-5075-475d-b9f3-efc604a47ce1"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" +1:eJxd1nc8lf/7B3D7nGOTMiJS9kiSlXNfbykpoyWliIxSFEqKUGRVQshooeyR +PbJ3RglZGWWPjKQI58jvPn2+f/3OH+c8no/3fe73db2u+9z32W7leMKWgY6O +7hD+Rvv8/y8rypamAEFj8G+8ZJt7YELjP9uApRDv2pXoH/v+sws8TLn1LLpX +SkuzxKx0WtQNqlrc796tddLa5PY6U1/SC97bDgmo9IdpLW/9/ckk0huATblq +uSle67/v+0KVxubMjq4d5NY+jZriF/7AnWvPJTimS/7vfA/gjLPel9VmU3JS +zN18oTePYEU5LuDFzovk/84fDLtm4vaJOTiRUYbVyQrjUBji/MspvtuV/N9+ +T4CeYbujNq8HOeORn8GPnjBgio9nUR26R/5v/whQlTz68ZDrfbKAfcpBsXNP +IW4tzDro6cP/1RMJVZICh6KpL8m+R1qw41+jQC880/+7Q+b/6osB7rGXajuO +FZMXZObVfC48gwmjhwx97dX/q/c5DIgIDZ9iavxfva9g6KOxoLppB7l5ao/s +2KVYqD/Ec75pfxcZ/tUfB7u/2616d/aQhWzSnzxcioOkQ5PPBoP6yEv/+omH ++13Kjcyxg+S2z1qcO9ReA1Hv5LHm8KH/9fca7qoN7RivHSEH6LQ+LL39BvKM +t70y/Dj+v34ToC3kTgnTu2kyOc+CYFySAL1Tf26zBsyT+f/1nwhjWU0OWVsX +yYviP+/PUhLhxJrkPJ3tEvnjvzySoM94IvmV6Co5JcyHzo+cDB8C8oajetfJ +Pv/ySQaYa6hfZmbAzBj4PEXupoBbUknHpwFmbO+/vFIh8kc+f48TK8Z5PXG1 +oCoVIhoLIthruLDJf/mlQUn0153qU7xY1bCqqxFDOtTpbr09dW4LFvkvz3QI +66a/KJQnhF053rg4oZMB29GfeX8mMUyTxLM7bywDZuMXHIcVd2Cs1aaOd/0y +IZt7ruBFryTWdZuW/1uwCpqtKqaXw14pzczwv38LzJt/hO5N24VZ/5tHFvhm +Rl8Wc1HGOI9hKmeYsqH12fGDTz32YuPptPlkQ3GsjW7gujqWTwi4vjMxGyQN +r552YiZj7ta0eWXDRsz93VbtCFOt/JS9cDAHni1OpK4762BTQrT55cDUbUXW +Bntd7LGrwI+yiRy43e3YIdd4GOProM0zF3RrHkvJvTLE3BUuKDwIyAX7vshi +jr/HsOJA2nxzwSzq6DTbrZNY02iq/SnpPFDpjS4SQSZYMkabdx5ImwsVHLMw +xYxiFlO3N+WB38SdG7l9ZljJL9r88+Fz0MIxPTNL7KDSkkyOUz7ojtBt+1ho +he1w+Pyw730+cFkf9bhgYYtpJOfMMIoWgJEXHz46O+zacIiBgmsBqLwJ5Akq +sMdShK5lmnwsgDE01vfIyRFrPmHAeW9nIWiO7lJQa3bG0h7IOqbeKYShkG7u +cD4X7GYFsa2joxBiDi3Y1Ma5YjkLE0pUmSKoXqkpP37TDWMRq38i4V0Ex6pk +OFKiPDBBgzeLRr1FEDN4Vzya5R721MX75O1dxaDJGCqXNueNicZY5Mf7F4PP +t1yhSkZfjO8deXPLYDG48bSc3tD3x1I6trr+VnkHbCXMV9NbAjHzsdVukaB3 +MNJAEB4JeITVz/aoHRp9Bwmji4XZfsGY0/eCaCfNElg3/32IdzwUm+sPX415 +UgJVnn4eEplhWGul89naqRJYSSK/jn4ZgSVGHC2dhVJwzVKwWiyOxCzPKAhv +iSoFlXaF9Eb6GOxezNSg3cEyYNQ2cvWWeYWZcTZgYS/K4IVgovSPgDjMw/JN +bOmvMjDaknBHWPA1lvnoHt34kXLI+T5dI9X8Bqt4ZH6B83U5zF7R4lh4kYh5 +mmnWqK2Wg6D9hcvG4cmY+cqWHReOVcDyruc9+7NSMY4Ln8by/lZArlJ8yvML +b7FB/vSDg6cqgT51qPqlVzYW4+CfxJJZCXFXX8gfG8vBNNOyGQUYqmDWpnyz +snUednREJD9DoQoiOTy9Qqn5mNSXhzbaplVgNsFnV5xTiIkF/uHr9q0Cp5vt +tXS+xVhdz6ebG/1VkHeELiPXvwxbOr9PMoJQDR+XFk3jSiow6ytJ3dJ7qkF2 +/GK60YMq7MEcd0D5+WrwfmNnubexGhvvd1c78bAa9Ja29Y8J1WK/pccmJwqq +4btgWhrZpw6TbjCIvjNcDdMicySJjXos4t7W1QT1GjBubbBZJzdh85e8UzVs +asDkOClZjaEFq1KeMG0NqQGQvTB0b+gD9pOYUfJnogZ46hfdpm61YZbf2O2D +eGshbs/85tAn7ZiXrMPW7VgtZG28Tbhf0oG1cEl4HHlaCw7RdekNWl3YH2kv ++W9VtXBsuej7m6huzCm3c+DGbC0Uz1ydLWDqxYSF3MgvderAFEWTYgX6MU33 +hrndjnWg8/P9Y1L1AOZhxP2q4VkdsA8qJX3y+oppn47+++NnHZj4huU2bxvG +zPpETOOF6sGOucg9mXMEK78am3dCpx6E4ypeKpBGMdLKU7uCiHpI1Yow8xId +x44FstZeLK+H4BYn+bl9E9jQGXcRgYl66PP3uGRkM4lN1+t1uKs1gPevDc2G +vmksnpAkL2/ZAB3Tfo6fZGYw1m8U/8HABtgpvnUmyX8Wi1oN3of6GuDDK4E/ +ofY/MMPA/QnMnu9B13QxxPvPIqYibvy3MPE9hLarSEQP/MKYk03P2LW+h5d2 +pG0Xm39jlgpa7C2ijcBATlKRrl7GCiu2XPTQa4Q+yViv9OY/2HjGUKWCcyP4 +Kk9rUAZXMD4h7EZoTSNUbubqF9tBwXabfPqgPdMI18Q05QNOUbGLl/Ulf21q +Au084/q+sHXMNGSj95RtE3yyp5wo4KcDpZN7yVuJzVD/t/ujAJUBSnxXnn5Q +aoZ54V3OvPWMsNwRM+9p2gyo3vBUWQQThAZdix1Ka4YvAoVcrXos4Nz/8s+T +z81wxHXGM0iBAKycb47qUJtBr6bCLEWQCPTjkhuJhi3glK79IpHICnktcSan +XVsAFT1c/MrGBiFOE5nE2BYIcXj3SYafHUplG8/ZL7RA70POZyW6nBDa9yhf +KfwDmBjUTjwL4AEdeVbWkdIPcGN1yUxFnheqYzUtwsc+wLbaR3wvu3jBLDKW +uLz3IyyYMjUdVOMD74sLJqW9H2GXRFQdowY/MFS4pTrQtwJpa4qIAEEAjr4J +pojItkKXiFbWlz4B4A459OrenVbYHfwzszNcCO5J7B88uO0TRD216Zgy2gYq +QUMdsrqfIMBpMjZETxRujw2857r2Cd5xrroe3ikGMgmdWV/KP4FGhus1XsXt +kPjSo7RQsQ2+BxpuPXdlB7idNN+Tur8NpAYFHusw7IQvTz6kPTdpgyDlr/pd +L3dCfrxO9D2vNri+8TN575AE5H7hvHqktQ2WSmyvZYdLA+PTwSGtkTaQmb1e +nXJEBu658BjvWm6D0PTvTR+YZaGLK0idb1s7fIdR6eFAOWB/z7Q6eLUdwjPc +LfbVKYJLdt1xZ44OcKBP/dLPtQd6Y4KKrbd3gOsc8fxG6B6gvNfeZrK3A1rl +Fe+28KmA/V80oWneAYH7nDgDdu6FxuDDl5gyO+CySfzrLFs1uK8qU7dc1QHG +77Te7FtXA9nqSNHpzg542xqdUhulDidvzrZ/pHZAmFyX988uDZjepLEjyuAz +3LRXyJ66pQXvH2M3Hlh+hrptLwXcpMlQ1naj+o7LZ+juZCeYDpCh8cDOM5Yv +PoNIZP+AihGAXGCUg8zsZ2hPGuduU9AG6Yy94qWPOoHdbuNGavgBUGKK3Xw+ +vhMixU8vym86CAvf7zDTF3WCXKatA8/Tg9B6QLhPd6QTjgarxgvH6YLbkeaT +Hepd0DwZLM/fqQc8YbFSN426QCyzI9vz0mGQCPu1zG/TBb+7NRV91w+DKa9P +gHlIF8ya5KuG7daHPc7bHabGu+D+xo+rz0oMYayvk/8RpQsshtbSpqyNQDet +v1yBpxuO73gtIch9FDI6969c1+oG8TpzYrz6Mci8cnr7elg3SF0mGHSkHwfp +rFUhbtQDDaz1d3d8NYb9PnQmuad64D7TtMuw/in4/gELNLbvgfjenwYmpafg +97Vb7dGRPXDNUSjfNdYEFPkcF8TmesDWfVM1t+cZYMrWlNr1rBeui3TwpD4x +gyRx+uK2rF7w0GSjWxE2h0vfOvddr++Fow/9jQ6lmcO4rc3WgoVeULjOkbba +fB6GXUuUNA99gbgbGcoxYZZwd/m0nfbvL+CCdC+HiFkDG3uinxOxD1weGQz7 +OFuDx3JtWKxwH+i6i0S41lrDko3cnfUDfVBsUxB48YoNlJKC7xQ/7YNfBlhF +bJ0ttDLGzsiq9YPqXf2pXRl2YFkWNHBGvx8eGYV6buK8DCJqXkX+Fv0Q5cqz +tMX5MrR8GJAZCegHE+15Xz/NK+D+4MlSVG8/HKjYQVXvt4croo31f90G4HNT +bG/hKUcQ3Mq6Uy54AJ5av4gMaHaEJjqy7enXA7D8IJ/NQMwJzrz1CM5qHgDP +SHUlFO0ElfFpV89vHQSPClf2zyHOoDe3daqgbBAUQz+L3X91AwR2aNUe2vgK +b++/MGLVvg2cFiNWopu/wbpb5Fex6NtQMS3WvCz7DaRjdnQJLNyGmnMdMwkm +uP0iCbmv3eBqTPqFv5nfIExh+2oG7x2gKAbEnVAcAmNso3Bomxe4rgi6aGkM +wTZP48REXy/Im0vdIXlgCHJFrTUtZ7wg0bqEb9V0CI5fb7lUWnoX3hg5KL30 +GwIGpo8vtuTfg5Lujx8GB4aAa2jVP+i2DzAr3d1WPzkEQ7+XflzK84E+LbJO +xuIQNJks6TTO+8AOnzhGd+IwHDjarix06T7Ead402KQyDGebzXL5zvtC7YPh +K1qPhqHBxapswdYfLIeHOG00RsDwpMD+pOGH0BL5NY3nwAi4dyvsmZd/BFOv +mpgrjUbgFrHQu+n2I8i9zr8kYDMCaSEt/lq8QWDXcuJNU/AIrNgnuew0eAxO +HIeDRMZGYKGrvcZzIAT+ak+mPAgeBVt/nb70d2HAYW0VoBAzCruXSUp802FA +iT1Oan8zCr3GGkafBMKhi6Ho15Z3o/BoCzsVcwuH9ZTWQ69GR4G5u7+eDYuA +PUo8PM/Ux6Bxp4ByVM9TWMuRXcVGxsA8fkuDnkEMzEvGKIrOjkGBXtxkrE8M +dJIblv8ujcHa6yFM910MNKSU7isnjUOa8ZET3lLPoDte1ktl9ziMXh88Xkh4 +Dg3Mdzdz3BsHzkGRnIM9L0Bqhn7EQmQCgFwuIXw2Dr7Q7XihJDUBub8zN9m5 +x8FE5tlmut0T8Dun1u7rszioYOO+G3tgAjS5mWOODMRBi42PQrf9BOi56Gjs +uBAPzWZcJVIlExBmfiF5/PprsM4uOmtsMgmpd9yuyBQlAOtnq6lRy0mwTpSV +2jKUAMMdj9Ou20/CFo/Y/WqkRJCeW294fG8SXI6GfdtilgjarXc1S9ImIX5N +PNmQKQmmVIP6v/+dBLMEz8Tk88kQK733dnzSFAR3hFi47EuDFGueX3w5U9Co +PCHDZo/b7b1rQOkUPMp3EOh9lgYsHAfDL7dNQdqWo4/4KGmQ1Cextn1tCjbS +Y6cEKtLB70mgkZXhNKxSeUROG2VCbdGfMP5f01DRfrRmVj8bND0+MpZQp+HE +tUSzE7bZcP7jq1vnWL5D68Ww6U9e2aDmMmX9XPA7iIcnfuXNzQaJKyy7udB3 +qJ7vNiwWzAFm987M+qDvsC5z+pv3XA6Qu/XaL0rMwNGf7STu5DwwU68zQidn +QUC1LWX0QhHE3m9UdjCbhcSJyISEe0WgEjo+Fmk7C4bnPtp4xBbBtYKqrKlb +swCcj2ScBotAP7WhwfPFLGjFPL1jd7YYkoQidl8dn4WhuOFPMWfegXf0g/Kz +rnOwbc8e1RnbUsjrPfscIuZBySLELqa2El7ef3Wn9+U88NNVkdlnKqG8ITvH +MXke1neS3A1IVXC6ZVQopmQektoEVzeUqoDTj7+2Z2geRPgc+ui9q8Dw6o1b +jAo/4Kt6gKzjjmoYPN07xF73A7CZ1wXfnGtAd/bAwinXBbDn7/B9olIPjp/C +g565L0BEWSjd7OF6MFQrOP7VawE0LQQ1jlvUQ659lbF1wAJU+DD07ntYD/wH +FZWtoxeg6tGDJ0+G6qHm6eCsRskC3NN/wU4OaQDV9n4vtL4AWz3N3X1/v4fL +1tt7n9/7CeT532VGX5shcJ2cdyp0ERSTRdhX+tvggObJTauBv4B040d7Ev5c +jpQ8LUV/4TcMK1/x26vZC88bHCa/7VsCYVuT4h9XB6CIzSD4BHUJHNv2bb4K +Q7Bedq79eu0yqHcU1vTcG4HHa3/sBLz/AKk+hDGtcgxsexz0g3atAPm4327J +/gm4eKlAuH9mBTary7PslJiG4b0P6oKfr0LjNdW9dnoz0BRyw7H10Bp8O9bD +O285B1tQZWQGAwWmw5j2rSb9gFWxWi65HApUb9KW3BhZAAm7YxRJRyoM8ro5 +5RMXQTLI2dZNfh2shJteqEr9AlHrzduNRtbh/BNK47jib/BIcE+syP4LFYtq +NRq6S1AZp8Sh67kBnx9fZ2jRXoZKu8trb2XokFpz9KO38n9gQEKY9XwSHaqI +LdftF1qBoc4SuSlxenSFe5+Iz8QKmJrz798sQY9OedAdb55eATFXu4n9UvTI +7lcdG8/cCvx8xdMbK0eP0gbO8T37tQKL7+JMLVXo0WCwms0zulXQu7mRSDlI +jw69xyJOCq0CMbD8Q8xleqTw5/rWRINVCMdupV3MpUfK+xPIbzNWQbBE40Bw +Pj16XNeVa521Cv2OcgaFhfTIN225kT93FQ6xVSQSSunR4Zbv3XeKViFHJ8gt +q5YejRv2Oe+pWYX4gc7rm7roUUXe0kXLHny/Ydvtciv06F5gvmMW3RpMmsQt +BgEDygyQeLDp6BqweToSarUZ0E46FRPr42vg/tL+9qoOA3oexFmTc3INeBo4 +r13SY0DGqejmkTNroORLjT90nAE9sdPVsb+wBm47jakC1gyILU9H/8qNNZh6 +MbC07s+ABspP+ptFrkEHB8qu+8SAbjz24GfpXQMrpfoB7Q4GpCBJMJPsW4MF +XjHbyk4G5Gdb/vPAwBpwHVYILP3CgHwvfObyHFoD9iwfruJRBvTscSr3l6k1 +uPlCa7j6DwM6Jem0CqtrELpP6s4WMUYk3uOp0ihAAZGwlyGvxBnRAa91nVwh +CtiInl6WlGBEORFusc+EKSCXY/JOXZYRlSqyal4Uo8DTA/3sliqMSOo8M2VK +ioLfL1fflOsxIpiyeflClQJ+v+nO5jozIh/9bNWyExR4eMtIU8CFEUlOv8k9 +YUyBhKN2pl6ujChY5Fbu5CkKOBv9PKF/hxGpy/8kc5hS4G/EqNyULyMamVb1 +17WgwPLcrLpCNCNS+d6z5GyP77/2/stIBSNq77Q6numD/w4SP3Acq2ZEykJ/ +/fl8KZD4YP5WeS0j8t9986C7H368ntNcdCMjCtSdMdcOpEDI7LtTJzoY0f2y +j4wVjymwMNc42DrOiNIHM62doymwkVz9dZadCRWyxBTWZFBATTSrNYKLCfX6 +NZZsfkuBrD9tv7R4mdDxzs2bLmVRAGSMBh7zMyHVL+QaplwKkAVvCiuLM6Fz +Z3bJyhdRoEfcgt1XjQndLRFLkKumQPD7j3r6VkwoN2uo7+dnChC2Bu5dtWFC +nHsPRXN3UeCP5wuD5EtMSHdja6VCNwViagJXGK8yoe12lwyseykgO2iOVd5i +QvsnOT1LByiw65qfBvkxExJOv/BLbJwCjIPjxcbFTAiLuOze8JsC99qSytZK +mFDEkcfvs5YocLk36ltcORNqGp9JiVqmQEXsT++5GibUKasvb71Cgf2cvUqB +H5nQ7kOKx6cp+H2lM2StZoQJjTf1/8xloMK5i8euGHAwI4dJ68b9XFQoqXzS +tsTFjNDqeAQdNxUCA2sNY3mZkeLG6JZy3MdD2YIW+ZlREddHUObF10PyeJ6J +M6N58zcHODZTwc9xkmNOjRmtyH3jCxCiwpcVTC/eihn9uKLS/GQnFaL2aCmJ +2uLHd7NbbZOgwmyZruTLS8zoTR3HWipuu7SxfTEOzMj5nIlihSQVtgUsEsNc +mZH6i2c1fdJU4Ls2QPJ/yIxe1vE7jctTwSuit4rpMTPyTf7jYaVAhQ/aj+/f +D2FGR98axXzFbS0dKecdwYw6Q1WZOhXxep/eZ/B8xYwMBybL85So0PC4/a1r +LjNi1h+MPqRChSuKNTzL+cwoMq2euxB30pKV180ivJ+IiOQde6nQXa7p4lLG +jDY51++l4v6ZMdd6vYEZsV8O/vFajQqG37ZKOfcxo5OuAznvNalw61Z+wg0G +FsRqskK+iagw6djMKMvMgqTUbvq24eZkM7kyRGBBNtqLE7LaVHAYP21oyMGC +ZNzGmQZxv7vVcElKgAX5mrq9V9WhgtmQaM+AAgs65Q1e1QepsHn8SVy4Egu6 +NcEqxKVLBX+9D45H9rCg2sTq8XO4q132iBars6B5jjmeX7jjWDdVhuuwoHRH +oSF+PSo8tmRa0DdlQUV+B+y1jlDh2gcxNkYzFrS/yua5J+6llDjZkvMsyGDV +lqsCt27uTVdpGxbkk05q1NKngqu4ETA7siC/Fv9Xuw2oUL6R61fpy4L0f/1Y +WTWkQtsi/1fXABY0aVZO3WWE10Mo01B8iK/XnD1ji/vtbu+1FyEsSPXu+tZW +3M/TDsa5P2NB3CjuT9RRKhxOyHZUzWZBy1LumzmPU2HvE7v6ylwWVHiEf78a +7lkOOZHDBSzotNz+OQvcZc7JHedK8P7V9tVm4VahszH2rsP3/xP64PAJKsx4 +WaR96GVBdw3fm188SQVLwV3CJv0s6Jm0yPcA3HsWXEK+DbKgEoEaplTcu4z2 +uy+OsKCzhwempnHzi61bCMyxoMwDAQEXjalwM+axrQ09ARVKiSzpn8KvFz2l +mTlGAjpwrezLRdxSlC7nWywEtEyZPeeNO2SDy+chGwE992/QKsB9PD8qM3sz +ARmjsw8FTKhgEZ+qqSlAQD+VfW8q4b6760ljrRABBbhEM+vhVnb+MNEtSkAM +BiICrrj5zlrJr8sQEFV0QrQVd61YaKW/PAElWWfrj+L28LtyknsXAV188XLH +Cu40wc2eO1QIKP/QyX6x01SQnWrvOYwRkMYeWZ9ruH2vOyVHniCgEQvbqxTc +UaLaXptOEVBNbYwT2xkqqH/wPBV6moCAR1VpK+65kV3MD80IaNP7jEkN3FZk +6cueFwnosFKlgQtu8jZWnTU7Atp1w0LPB7eCh7bILXsCKjvnwhKK26cyscPJ +iYDspOk+puEm7SRo27gT0PhAZtQgbl2TkyLDHgT0IFOndBr3NrPRVfO7BHRs +lDF5CfdySkPeaV88r5VPX9hN8fzzLGX1gwlIXEqxSh33PiGj7cqvCaipeF4q +ALdw0R+6rAR8fZVNLBT3yYamIblkAnqJ/n6Pxt1hNRwnkUFAUao/Kam4meiK +xQULCYizpXFrM+6qk3cZI4sJiFIqXdaOO9XIdoy3lIAM7farfMFdu/tBEnsV +Af1I+pU5ifv1DT55umYCWk3y6WE4SwW19/kcnh8IqNV8/CAJd0CO/Y/VVgJ6 +q/YmlAs381PBvF+f8bwP+5ZvxZ2bY7VvcpCA1F8l31fG/Sz9tYjNEAENXOcd +U8MtnfBrY2iEgPquc0mQcftu1Nf1TRJQs0DTkUO4na2Fjrb+JKD0P+57zuI2 +EW/S9/5NQMOd6iwWuBPr/fRU/hBQfMOnYmvcR75I7H9GJaAuEd4qB9yXGJb2 +XiQQke/Jzxc9cZv1Mu4RZCWibOMvet641R8JK31gJ6JrXqe4/HC7v7osq8xL +RKFJP/WDcLMZ2Ir+FSYiqTnX8BjcgrsKhXNEiej8ltaUF7hvveYQshEnogyp +2aRYWh7Mn/iapYho/a6jRSLu8bPqvJ6yRFTE3CqUgnuRLZlLSYGI/iyMV6Xh +djIIZ41UJiLXmyqfsnA/0eYmHt5LRA6GNuq5uMvNnzBT1YjoNBEF5+MuEo+l +syITkfmZAfp3uJnMxpYV9IjoLp8lXzWt3jOev4eOEFHTNf4fNbipHIKL4YZE +9Ord4Ls63B3Lp+dWTxDRngyt7Y24TdvXvmecIqJIwZSKJtycBbFTFmeIKI+h +0bAFt7D8j9F6cyKKDsna34q7KyJm+LYlET0pkUz9hFsi6eA3OWsiYmetYGjH +PXLhdd8TOyJiKE0K/Yz7Sox9u/kNIto39lmsF/eF12KfuF3x/XIrZb7Q+g3v +/lB7m4gseryk+3DPsx5slPEiIhG7DOIA7pN31usH7uH91Cd8p3l7amFtyH0i ++twTXDuIu5RNrnIpkIj82I6c+4b7u9REWcojPD/JBKEh3Ifb4kvOBROR8hR9 +B81nI4QKq8OJaOBEn8wIbkILd+bjV0QUf9vAbwx3ytsbN3njiWirpjjjOG7o +6iZHvSGi1Mq0OzRf633ZGpdCRG6xnuYTuEPS6aMk0oloqVz4Pc3Vb20t0jKJ +aE1aQH4S91VlxYW8XCISuPpxiuYbqWHF6gVEdIV1AE3hniP/uVdeRETnUhci +aH7eXMXzvoyI5A592j2NW6xaok+/kogUOHvcafbrfPi6rZqIam/ZV9GsrXdq +T18DESnKZml/p10vb0oo55uI6P18tCfNl3jF6kZbiOi2oW8hzcGiM8Zzbfj1 +2tYpOoN797tjItc/E9FPJ5djNBuaFY4vdxFR5+uHXjRjBd6udP1ERM0N+Uyz ++sVJzG+QiBg53q3RzMRvSGAdIqKEkY+is7jzvQWiN43j+T/ktKF5lOxlGT1J +RI6e5+/T7P53FH9SEZHnhck4mp2Dst5J/iCi109+dNP81HSzT/pPvP+UiB80 +Z8neOaL0Gz//gQqWOdyxG0O8BctEdMjgrjDNBr26/RqrRGSQ8F2J5qj8jDcV +FCKa373pAM1WEbwOOn+JyKaPzYRmofNfqQaMJFRJznelOfLQgfp2ZhKSHvH0 +o/nNnrTHJkQSsi05Gk7zl+3cJv2sJPRcc28czR95XLdZcpDw/38aGTQLMg5M +jHGRkC/j5SKaTy1pZ13mJSFvldZqmpf6ONANfhLScbHrpPnRxxvEFUESOmGf +P0DztcovbR7CJHROzWaMZrVsiKEXJaH7BvdnaO6KTbzgv52EZmqEF2kuDWGT +ZdtJQlZ71Fdo5rvnvBgiSUJpbf3rNA9cIN+PkSMh/7hOwjxuxZNv9LcpkpDf +WVV2mvMPkPjeKJGQwjENbprNVR0HpPaQ0J760U00C0t3JWTsJaGj6/v4aR4W +3Hd1tzoJqWjpCdH8nC1+b6Emnkc9pwjN5HWWv5pkElIbfCpKc+G8Q0MlkFBV +w+h2mi8fkQ8K2U9CA6c0dtJ8ImnmuMVBEtqlfELy3zpDOv8uPRKyM1WWpjnp +/JXBv0dI6GrnoAzNF/in7V4dI6E700nyNO9qu/SbbEJCQcUfFWkuRrZsnhdI +yM29YDfNydlW4mUOJGRxz2LPP4eaH9O8j89rMFyF5nnHM17FMSR0UTznn5cV +jPryG0hIDC7+8+iMjmrOLxLqnpL55/8DdghmFA== + "]]}, + Annotation[#, "Charting`Private`Tag$437871#1"]& ]}, {}}, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> + None}, + PlotRange->{{0., 3.243990348766134}, {0., 1.7721998270300445`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.05], + Scaled[0.05]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellLabel-> + "Out[205]=",ExpressionUUID->"e6db7c3b-6fac-4a3a-b719-f61dc8c48834"] +}, Open ]] +}, +WindowSize->{786, 884}, +WindowMargins->{{Automatic, 210}, {-186, Automatic}}, +FrontEndVersion->"12.1 for Microsoft Windows (64-bit) (June 9, 2020)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"403bb8c0-0efb-4c0b-a09f-03976a9aa4f6" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 8002, 224, 656, "Input",ExpressionUUID->"b6d7bb97-f801-4b79-84e9-03757a7fafc8"], +Cell[8563, 246, 6219, 170, 561, "Input",ExpressionUUID->"f922cec0-aa84-4593-aff3-3268dbccfdf7"], +Cell[CellGroupData[{ +Cell[14807, 420, 266, 7, 28, "Input",ExpressionUUID->"83f1c93d-5075-475d-b9f3-efc604a47ce1"], +Cell[15076, 429, 12996, 227, 220, "Output",ExpressionUUID->"e6db7c3b-6fac-4a3a-b719-f61dc8c48834"] +}, Open ]] +} +] +*) + +(* End of internal cache information *) +