diff --git a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⚪ИN⚪Ⓞ⚪ᴥ⚪ᗝ⚪ᗱᗴ⚪옷⚪ᗩ⚪✤⚪ᑐᑕ⚪Ⓞ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪Ⓞ⚪ᑐᑕ⚪✤⚪ᗩ⚪옷⚪ᗱᗴ⚪ᗝ⚪ᴥ⚪Ⓞ⚪ИN⚪.GHX b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⚪ИN⚪Ⓞ⚪ᴥ⚪ᗝ⚪ᗱᗴ⚪옷⚪ᗩ⚪✤⚪ᑐᑕ⚪Ⓞ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪Ⓞ⚪ᑐᑕ⚪✤⚪ᗩ⚪옷⚪ᗱᗴ⚪ᗝ⚪ᴥ⚪Ⓞ⚪ИN⚪.GHX
index ec91c45f..bcff53be 100644
--- a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⚪ИN⚪Ⓞ⚪ᴥ⚪ᗝ⚪ᗱᗴ⚪옷⚪ᗩ⚪✤⚪ᑐᑕ⚪Ⓞ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪Ⓞ⚪ᑐᑕ⚪✤⚪ᗩ⚪옷⚪ᗱᗴ⚪ᗝ⚪ᴥ⚪Ⓞ⚪ИN⚪.GHX
+++ b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⚪ИN⚪Ⓞ⚪ᴥ⚪ᗝ⚪ᗱᗴ⚪옷⚪ᗩ⚪✤⚪ᑐᑕ⚪Ⓞ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪Ⓞ⚪ᑐᑕ⚪✤⚪ᗩ⚪옷⚪ᗱᗴ⚪ᗝ⚪ᴥ⚪Ⓞ⚪ИN⚪.GHX
@@ -48,10 +48,10 @@
-
- -3348
- -253
+ -5926
+ -1585
- - 0.779164553
+ - 1
@@ -68,9 +68,9 @@
- - 5
+ - 13
-
+
- Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null
@@ -121,13 +121,93 @@
+
+
+ - Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
+ - 3.0.0.0
+ - Michael Pryor
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Pufferfish
+ - 3.0.0.0
+
+
+
+
+ - WeaverBird.Gh.CommonSdk, Version=0.9.0.1, Culture=neutral, PublicKeyToken=null
+ - 0.9.0.1
+ - Piacentino
+ - a4634196-add1-8181-6e78-09a045132c7c
+ - Weaverbird
+ - 0.9.0.1
+
+
+
+
+ - Mesh Pipe, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
+ - 1.0.0.0
+
+ - cc201624-ce0d-d105-495c-210b876cef63
+ - Mesh Pipe
+ - 1.0.0.0
+
+
+
+
+ - Meshedit2000, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null
+ - 2.0.0.0
+ - [uto]
+ - 14601aeb-b64f-9304-459d-d5d06df91218
+ - MeshEdit Components
+ - 2.0.0.0
+
+
+
+
+ - froGH, Version=1.3.7688.26297, Culture=neutral, PublicKeyToken=null
+ - 1.3.7688.26297
+ - Co-de-iT
+ - d2580c41-5c48-4997-87c5-b6333b5e21d7
+ - froGH
+
+
+
+
+
+ - Kangaroo2Component, Version=2.5.3.0, Culture=neutral, PublicKeyToken=794d913993c0f82d
+ - 2.5.3.0
+ - Daniel Piker
+ - c2ea695e-1a09-6f42-266d-113498879f60
+ - Kangaroo2 Components
+ - 2.5.3
+
+
+
+
+ - BullantGH, Version=1.5.8.0, Culture=neutral, PublicKeyToken=null
+ - 1.5.8.0
+ - Geometry Gym Pty Ltd
+ - 2cd3c35a-cada-1a81-ddba-5b184219e513
+ - BullAnt
+
+
+
+
+
+ - ShaderGraphComponents, Version=0.1.1.0, Culture=neutral, PublicKeyToken=null
+ - 0.1.1.0
+ - Nathan 'jesterKing' Letwory
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Shader Nodes
+
+
+
- - 289
+ - 448
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
@@ -423,14 +503,13 @@
-
+
-
- 7H0HXBNZ13dQBAQpVnRRDFZUBOxiJSShhqKgYieQANGQxCQIWLFTLNgRG/Yu2LuiYlsb9l7XgrquuJZFV+W7dzITMpOZIXkIkOf9HvenC3MyNzP/c+4p9557jgVHGhUfJ5QoS8AfEwaDUQP8tZGJ42NEkpFjhXKFSCqBpBBwGZLhH3P4Eew+XyFfIJTDj9RAyZYYyY8DL9cEl0a5i/p72Y7zT+m8K33xt/pHzUPkwrEiYQKkWwK6WWgsGEVgi14OFCpiw5JkQkiujn6xNUoLksrj+GJIaQGurlmzpgS7K1QoFkYphQKMJhKJSupxhNEiiUgJ3iJELpUJ5UqRUIENC/+acvhK5HsswC97nsWlzZ/1wMKKI1REyUUyJfry8BEZpkH8OCH22/vq4b4+rq7P9y17uyoV/Pt8aQ7499nSXc+W7kV+QH7duwH+O38u8m/Gs/mL1Z8syAyCPy+cDkdYAm95vmK9+udnixY+W7RY/bFnS7eoR1N9TDXI26V74PVlU3Bfjd2LPhJK3YJ/vJWl35uWhXx4Nt3PWVvVA6L/oldo70J+Rt8I+UaNB9iifjb0ObHHLv0MQlW9I/qlyLujqCIjoPhg92ojqUIYRVv1RRgjUL6go+HYh8KLcNbV1cc3vGZ/IGFwKiiwaQL/WGNX2dJ41QSqjk0BIGyjgDCi8lMNvWwWxpfHCJFPOoJf7YvBpCkqKTEdIpXGYTPot+8D+tYYCMQZ91U14RWtr6nZP0rG4ydJ45Wan7X0kUvjZVofruXjy+KJIuV8OToFTNCZVQP3UXjFXPW5JOSZ0dvtWAqFMC5SnOQdLxZrTgVWSHx0tFAeLVLEujAHqjRG706u7vA/FyY7XqyMlwt7S4TxSjlf7MIMiY8Ui6IChElh0tFCSW8JGM0WG3pgqb6BI5ujo5ix4pWxUjl22TpQFBXLF4qZIfIkqbyanwDTMmsKVzYe2WEgL8dsnuhXoeU43Iy1LH1Mc4rvqV2qLIIjIfvUMG0BHLRSXcOBBa+bqa5DjKqh+Jn6DCjVfR3W9z8zNGeL9+b1thdPTfqyBPdUNRBe1WRLJUq+SKLSo23QUcy8pHJUtWKMMWNLxdJ4Oabh4P/JdJUjixkDx2VKo5k+cr5CESuVAd3HlKreqpofB5Ee8Hdh/7cTBn+OCUpze+f6/U38EkAyQUklEfdvPXnUImBRv10jMy/9bglI1VCSfPwvl0J3K07O7zl/OuQG1Aek6ijpuVMPfp5rOm/b2m0d3gttnQHJFCXtOsca+92hoe+JV0/ndbdzegxINVDSp1vPD66tW8jLfvV6+PTwbW8AyQwlrT7aqd6tn7V8jplUOzjJMfM7IJmjJFkOb9U22x7c5AZzWX4tJyUAkgVKmvr1KMPmuGlw7tHuJtcO+KwHpJooKeX0mQEn/rDmbZ/+fH73N8XtAMkSJUn2t3979s1O7tan2yI8nA99AyQrlFT9yOhbNTx+eWa/X/B0t9vgW4BUCyWlTWr54/3tSO/F1iHvP4c4DAEka5SU+KWBUztZZsC6Senmy4tTBwGSDUr68bxFj8vvu/gf8AhtP2ZNxGdAskVJPw+zVg5ZvI6TVbPk2rp70y0AyQ4lNW268uKczs985686n7/b5/tCQKqNkpYFvOPlbevOW7C/XeNVQ/q5AFIdlPR+Xa3GuY/tgndH9BM8cmiWD0h1UZJTzZPt3AM+sg6G/cibX6NBd0Cqh5J+GyZbWafbB7/Fpoesxtj4LQWk+ijp8dvPm+ZMb+C78+ToF3bbl28BpAYoqbA19+y/GX3ZR5az3KImfn0GSPYoafKcTIvzH356p7jcyPl9w5RYQGqIkqLrh34zmTnBe5bJAbnEKSAFkBqhpODMg1MTqwex1o6MqfPOYvq/gPQbSjoX36nz35OSA48+3nDvlkXSFEByQElXui5MWHCqwD+3zqYjzLNT2gJSY5SUOePmge8r41g7PjrZCCRZUKKaYNMhXzSzjn0mN+NvbsdTvN7vAMkRJfW63vTmwlUnWBsmbJ8aN3r8VkBqir3X482DN83oEjwl+vVDBmNRJCAxUdIqUdyivetcuRtqZN09+mvgfkByQkkRA0IbNcirG5g7f3KA0+R33Sz8OCNxyqUZVNp+EoWSL4kS+sSL1HpumvxqjXsnqvme2B8452ke35REo1gEiaJGa15mWLKUSrkoMl6pUv6oVse0l4nBtFdwJWqvTmEHl/7wu8Pe3PdNN9aB60oN7SXb2yTHzDyOm3PHpUvq1LfDNLTXtpwrO6e+fxKwO9Iu4r11XzsN7TVlQNCX8xsTvbdIU31TvJJOaWivF38eWv3Rx88rtV2beQxf5gsN7bUn5+Qv332DeXMc04suLs2z1dBeA8Ian3McVMJadrpzds2wn581tFdYr0ZxM1u8C04PMvk8zTrgu4b2muijlI7a0MHnSLUb05/UOvFJQ3stbxfk6P3viKBdiuXLN7WdsktDe33PTORs9WP47G6Q3vv1tAF/a2ivhSnczgUO473X9ljHfZW/p7mG9iqaXLv21ZmBvst9m+4Na9/mq4b2sgzs+vXayma+Of53+45ocfOyhvYqCPk7t/3rQO6W5msdrTsoXDW0V1q7dUkOITyfjKQsh93X+x/W0F4HluWbO5jLeRsH3XY0v5U/WEN7tdl7//zHL+8CZq/56BY6yH6Rhvaq1nv3gnGHJgUv+adn744pJTc1tNepP0P+/s22bcAyl5UrLTd579DQXl9yBnpb5ngGHGruVjumf98dGtrrwUim6PCt/r4rnG70vz3yyGoN7ZU2ilU8+9Jqv11Jn+pmvwhM1NBejD9iuoXsK/LKaPHxw/DZve5oaC9G6ODXeTfX+e++0ehQjfT7dTS0V/+uvTPrhrZj7R2W6u887/10De01q1GCQ9aeSwHp4/n2+X+OYmpor4HxI9md8pMC9pj3zq33Wd5cQ3vxrjQ8u/Jgbe9VeZOj6+/pWKKhvT53WMj1+Fjku4edffjm8BZxGtqrxl+p8azBab4p/VhDL0t9PTW01/ZPwRu7Fbfg7LPc9ffJKQvlGtqr+dff//R0Oumzwmw7c0a4aV0N7eXR9ijPjd3Ne9c5v66s0bvnAVIzlDTau8MAsz2rvaZYz5g96dEF6B00xx4+bPqwbStMvZdFft1of2RcX0BqgZKOOX1YEjGrIWvmuUV3e+88dgKQWqKkZOeMrc0d53sdaXM4bOmQZw0BqRVKmsTbN+Rc3GbvA3Hdls8d1NQekFqjpPYPmMsExb256d1W2vcYpIDf5Yw94aDrNsvHtvHP2mTX6k1+3zRAaoOSFtcuCeoqmBC48l2zTw8Ugf0AqS1KWtc+d+Fd11TPOcywmSH58+4DUjuU5Liu9+8X42K9967beW8lowsbkFxQ0haTfi3O80LZM69njTTvZXUBkNqjpLML7Mz6fHwSuHH9yqdBl48dAyRXbOrNXHu2lvUH/439XO3C/Zs5AJIbSvq3UZf1IzqGex5b888fvAsuUkByR0n/FL/YdLlxke/MPpJrGc2ujwekDijpd5fTDS5Wnxt4IvWL0zuLOssBqSNK2jCjm8uqofe8djsq7X53vAltbyeU9GrcgamPLiv8t/Ps/c4LxnkBUmeUtKKH7GnX+0nee8UWB+a92u0GSF0wzXazVbMRp4f5zK29+2LA1wXegNQVJSmqxdsHNbHzX7Dr865Rnw70AqRuKOl5J9O6NR8dCZy7etEo52DfroDUHRPs/o0iuIHN2at4do9f154zFZA8MAFYLLjS9OAF35QjJ1fOX53kD0g9UFLD73endbC28U8/ENvr9xOmUFX2xCZs//03HEKtg2ZFe40qmTIBvnIvlGR6eYsjd1o6d9ur/es+rF2fAUi9McPx+95PvTk9fTZV39FkjU/2W0Dqg02HsY4ZZ8wHcmcUrm91/cJbqL76YgKQGhIcMjPMc3aPiQHZafHRgOSJGY5uTsUPNj0IOOLStce01ENQA7AwBSvbdnnzgXes1G77t7z2Sk4FJC+UdNX6hKTT50esnIWhro9MukBzw8a0zeEbV9JaZ7EXrFx++1eLHVBsOCip+03XQV3rNfVOLSzuHRVx/DwgcbGpx1/7qzhtmeeeMwl/7TZxgxrbGyXFDrjfzT2FycoMXJ+15dJoP0DyQUkZnt96dRS+81/YxCNzsP37Hlr+iy+Dwn+Zsel1OKvVBd8pb87NtrSdaGMA/wXadlL/5fjG2X02/8zx35fXK+z8EUUd3HeZBcXHRQrleAfGHB2KzDVxQz+pYPKZUVKxWBXiQ0clWizlK0WSGKZMKpIomRJkYAXp6xO9FrJH0np/7How8jyqBTAk4DcLBS5VlJCBcmXTs2WNJt7rHnTo6qTYwHYFM6xUZK0QnwCneoXCC3xQgFyCOpuR247LcE8BguILpC+PVSNENFaKjAOtB8OzPXfM4hSuTQiMpxVKoUTJ4Sv59GsLZl5yAEgsQ4Nh2h8yDeErY7FXrz7efaKpn1IYx2CUrkGaqRCGn8FWKKBIouJQnUocjgk3bpX8vMib43Jmj7u8znAc9jXZ8fKxfLhcgZcI6OeZUUhET+5YvjierxQylbFCZhQ2ABQJPvKrkMlXgh8VMmGUKFokFDBlfDn4TqVQ7mrmKxIIhBI1XqTSQnRkKZ5YS2BKSTqyOqQNl5EXD1j9HbA62YvA6pD2gJrAtUKefqRIIotHVjzMUZDJoKnNRl5fKWUKUYxIX3DChzdt/1y01m/2UKuOA9Z+noLXBsgYWi+HXi5rMhDd+XJOBhlA6Gk8OhmKiJOBAaZKwVgcQiZlINQyBJMFJtAiKmkRSOOA4JWJ2oLE5jm9A3oF7Lh1+7B9ZhM5XizU42qLRSmpLPR+DZovLqyV5T2rerJrr4Gz9hoAPSBBNOjlJnJrqdCTxitRATOjga9+CKJr1dCBiTZeOZEULoehCx8u6RDiuc/22W/etwaH4oUMGUdbyFSXtWAiw4GhOw52rqgU9QI4ZBNxSHHjMpLH4nEwKQMHe/VUZ44Fyk8qp0NC8NzCjMdO563x69N9/ceCd/rrkwpBhJlAhwiQGxwi1XRHJEokjxLTysbFQXdKfDeeDNzKF/+VX++5p5EgEpFIhwgjiYvaOrhAQWrrXF9HOv2QFwcsGnzzrtvmrfVw71WLIxorEgiZiCLVNnfmFMC2QW/DbBuYIEBRjYnni5lioSRGGctUCGPg3p9CJ+NGXIqhfkQt9HFUHWGNACqIOR6A95XMxOW5AOpEvUycrdrECZCnIX3JvivjZ917Vct3+qzjW+f65f8yXgOXDPDxhPgwycQury1QXONJDRyVv1xH5bVCbwiTC1KIChJrR7RqpAxaafnqco9xszYRIIKvQwIRcrksiIgxlgEgSp5ABxEQoSp2iOFNTMgRDU5hGpOKU/ahMrFIqeYS1JejRZLRFBHM751MV41v6ndkzvfXDcakDcazKwDep80u1WVDa0rIj7yJdPyImFQl/DCPlErFQr5aATK0XBtMsZixoqKECoXm8KS6Bio8uG2pCjHJObPyId9s853HrLWdarzkCvyP42NLxKHRZg123eC8aY+qk2FkvOnuhqgTLU9HT1iahfElMYCxqOuDSK5AB6T2NRZuXhWQzpoWeCdl8WH/ZzikLNBBtbEqpVQEWohmoUQLaBYtL0hPtJqXRhwwuhDqDBcxGCDsrWOjagOmSasIyJDJTwkZmPyom1SDQeEmrR6/5NZfhaPZm3e0+XnlasdbJOYZ7x9Z0ODbmnKBCAiNUC6KUvlNunlHROtuQMeBuKJaTquYB2PfbRTLRBH92nNHddqOMcKMihGRzjObZ5ke99wX3qLh1ov3GuBe15YjjJICjOTxUUomSx6l7bLWoGBJz/5C8ArCsaoVmki+QsiUifkSoQtTzheI4gGnJALwN0asjr3h2o2EyZdH6bZCQ9wZpH1uLYYRP6BrhAAsW4YMIH6JzJV1B65shlwvV7Yx+G4mCB3ZqngJurSlD0b63o/3J791+DjE+9Cojhnc4PyHuPeuTvauyMWyRJMYjpVTNN0BULkQqGwWgyEjAlXQFgFKr2UHBy+1DCGiosJNFWeSArXuqsnmB+6J3oeb9q3fWrG8CV53IqOFwNG0dacGzdC6s8gFxSWcTHdmgwA0ZIyeyxD9VfNJJ0w4+46eOp7+iJO26HbHSQlW/+AdFdVI2o4Ker0isCgaQ4cFUUbKWoBgsjQVijP4C5UNX6Jog8JDCorFwbN1TT/nsHd+WKl8W/T1KV7hI0NqK3zV5YqAxF1BB0mBAtPoWASopdHdFkxMatLjl/f8AV3SGcsHL8ULfjCYP8FjgScSrq3Mq1PgWpctjQPwg4kHJx+8OVE3JU3M0aB6FO05WErT1SsBOiUvAECXC6B7SoTOHfgs2Ty9VLOVH/yUymEjfbnlr2v/OrNzQPBW+3Md74TyCaubA+F92nKjulyWNiYmDpRTG2fDNQSITSGLZD8ppR2CjV7auFYw8jEadN4JRjeqNaR+8D7Psfc73XiaRVA1QkW8WHt1Abtu8HnVHgWgmAyAQlcEAHReWVDNqzEnRO1EQVvZB44Hi1+/GPoB90ZW/eLBu8DMKVksfmLVZOgVK7TgiBTAyiXB3SuhEuqtpPZY0AD92xj4DaSIE7OeKJ9PC3YcUQv7mqFSuTJYM62MRGKJWUs6Sqx6NALDMpyBbegFGNaADf/iGTYky5kb9qkX1xo7e+AnEQgTseHg/1FW1qRi5buBQTxTt2/sxesuea8J9huCg8qUB1inrRxNKRjmxJYL4U4knykGH2dGCpUJQqGEqUyQopGdbqqSmJim/UhabEOu6uG55gWjnqu7lucK9wL66aUe7eCXM8F7yJWq9yR9qzaNVjw3ebuGO2fY1G2/rPc0xMtkKHI3+T4QjliWviRuNBnAe30KwQohM8MFQF8mh+i15WiDgCUEIQ81VC/29em8t/0Lry3XBvL753rMxm+IcMG95EBpkMqCiegSGwAmIDU0MOX109OsqIRKtRxKilJsXJJv/0f72DtOuFSbMWZWc12nieFNiisqI7ksuAxKdNXcEGhQPWRJpYcuLOfzfnrY+0zd6Gj+tvl4/MKhBQJGKIene9TthddFKJAgpowGvwqYkUmaE9aFqUQX8WAsrtpIcp2ok7IipsqSP7f2Mh5G0RHjgjYA370cBuMhWbgtAxxgHOQYXmmFNbi8I6zvSO6MGKsJbncsvfGOHaKXtB071eVKVlRFcOsIAiQjm4EhIJpI3sfRZ+uoIQIQJhfOApFctZbWhhSoybH2/M28v7npy3zr7m0TYoVXWRzsZm2VVUoqC7CIE8c+ORwZ5j39+ebBNkXdNhoAsLz9dIABiaqSjSTVQjr8TCcG1Z+ivsTNJcxZJQ1gEF6q5jX5iYbr/HN5SQe5h819v6U47bOr4ydRCuWAGdxEmRy4qhpjVWsfjnfgeciw2g48er0sthITtA0xDw7RzoPDVcNWsoS5or4GNorhh6e8/rtFYdDsR8XdGi0ZuKTKjKK7G6qPcsmW/Z66IdMLNYpWDAqjOLBptdGLdtl5HVoj/tBzooUvfmVXnfmnkjTdkygOmahvxeUIRgnlcABmNF+VxCOWSmKYIqUCs4joF6F0BTOKLwFOPlMRL5OJYWZhpBQQRVg2VLwE3goNqgQ5Mi0aBz6CXHRlsmOhXkUWxIcGDS9NSYTLvkppDFy6UkcP4DMwgoiTCoQ6BhDEMyq0sGkviBM+oCPDYZyWVx0wvD6bxEI/hTtFVnpZaB3TFx2OfoqPd7PlTX2za1vSkVsrDbhJc2qU+FrjOfP9jyScqvbFpY5jeXN5AUKepgChuWSqqRCGZWZaJpouZ6AZTh6Z0XDFF8EMBQx8lBQyG7OQuYMO7OXON/X+/UTa1Ijy6fNyKgoElZq0qFgZk8LWJ6mjs180M0weL3RBZjGeWyKFpl5wdnd1Z05idnB1J/evzLcJs7csb+U3fcexemucOxfjl0+D1ANpL59q0CqEdTa0rLOrEtYRcz9M9LKyTVRprcAkQK6VJo7T+E8LHk2pnuFw3H/7oivH+/Pf4bdOKze9FW4NIFrGl4wp7u6IltFrX6kVPsNDL2DcPW52qdfajr3qbs38u6sL8Mv+5ujAWtCoCRUCTk1acKw4em00tVZZqVILrg86gsSli6p3OczbnHvqkU+b5LmGSCI3BEI2tAjZYX5bLQaF38ZltW1X0vsma/Njxy3XV33ohF/rQ2ILmVQMLLq2z2ZBgXMXbD1DAnNesfsFqMFTxsql8TGxpSvl+qy3Es/tUj6t9sqkBlFXv7gV8HzheTE++LuZ6CYxOgCqhE10k7CMFx03DuqVPlYZWUURH681Ctua6D3XNP603/476fjVm4GwXA/4Qu3VGzWlLBcqtKn95cJWFzlrCrPv9+DUPV1OFyoEoucNkGvKJpFO33ZwBZKtjwtVSzV9BcIYuZDcv7ycbdPKImEhN/3cqkUvf31qi3eWOMiN2s4Set3QsxN5/yG07y9gG0H2KyKZejhK8JFFUgGWnkXKiO0Ldrke63GQu3/UH8mHI968xMsqNoC2rKopFcIMCS0zEquEGVqpr5qsqF4GK1wDJFIlMF/8KHia0tm9NwhZQWQR58Ls0DsqVioXuDA79laMkSuRX8i91RRHy5QJq4ZwZl7s8Cw2o+Qs3q7BLwhVJpHkUmiQKoRZU2iZNdMYZg4cSr9DWKqNcsgsSbw8UkEzgzL+qTe9V58i/2nPHSRvpjneL0+oXE525HVAFXlD4GYUENlR1JE7YEAoWy8vFdXkNN5W95yu7sdHXgmc1/9CoL373v5VGvYiAESgANwlAQCqFr08UcyUISlPpAAk7LKK7xrUirthWe3BxVZPigimDLmRxJSprlcIAONpABg4YDobdTStGRSO5n92upwKQYOcLieWejHo6XLi0XUDnC5ntGCTpw3/5due+1bojvHAhooHxpu/TSytY8ClQaIqNQQjZnqRM4IT0J7rnLXKC2WELRUjmDHN96fMSfVaeHo7b9m3Q+Pxr9tfKOYnkTOCEFZQeQZ1WcwEkVzIlMOR0GpQpLgTM4BIHkQLdxNmmZgT88jKiTkD5mj7oyeXkklKKzDsArBtezsqzGuGLh27MX4UJ+d9sbAbcws+drRFY9ZA8I9cxBfrvkPxW2m0GywTSnx4zDh0DN1CWmJ5KNrH0t4BIHxA17xLZwBmWw7Q6ECjFGjlQcA9+m5aOwB0rmgTVb0yOPvhkopAFB0drxAyo2L5EolQTPri99p3eX76Yabn0c0jroxr5X0Bv97EUY2gvd6EEQy+mgIgSYaQbCZbTfGEs759layQ1gDKVaquBPfPP/+U6BM1M/GMgWtd8WK+nBkriokVg7/kauHiyJ9XU05NCdz04+dih1m/TuMDuFB0EO0ATk2pEO640XKnoxFwp6SEUaJPMN2UGydSKETAF4zCsQlTIaTMka7fvur29jUBe2tNeec4/dVRPHNUI5Lkb5RSKoQ5nWmZ080ImAP5o0943Y0VB78S4Ql4HBBny4WSqCTVBlBvplTGHwP3izogv5V+gnxG9ct6IG/i7MCblzr5p2xXz1j88f0wjfG1j+/jqBXCPA9a5vUynk29p7hNPdMyONi7lIOKWJEkSQJcJ8A+wC6JFJ5q6wB+EksTECL81R2S4viJqgvkS1uBd1bcef2P15wdTv8sk5fEENLMYsnSNtDLFcK5PrScY1U15+BNAoae6yR1StdJaBXhKh63n7eTGefg3v0fb4xZXwOvCCl9plKKoTkS4Yb6ENBPPa/lVrkjihD1U2szKPzURqbjQ08d+Rx8wiLnZauu411wb2XDjlcopXFMtI4/3k2FmFanwLQ1SwwkXYFmHsAxkM3sGKE0TqiUJzFlqgEVtn6SKHG8QOgn6S+UoKcHqJ1XYgFTumfV4gOBbgPrtsukcqW3SKwUqkuY64r907YAXQeAfSZZrnwecGmTmVouLV18W9cHw0YpxeDRyaO3qDY559ybVj4zc8Tb6tTttAAvltio2mKpplRysgusJ5UMkfMk0yPJML3SUa981PphGi4McvRMTlXwpYlHVvenDT76HdrgNbxjc0L08x9NYQJWRB1hCKyYtFg1r1Sdi3USMUdDLvgh6Ow8yn5UYiFEPT7sope7V0kNxLYRraoFFhhgH4X/r6Xp9uDvYGDVJOtQqTEjDbeJdZUrLdzOm8elCbcj5mud4zFwuL1u02+Kp+l1fJfNWfPS8u2xZUYQbhdASCidF2ZGlRSjwccMubm5lRBuF67gnngY0dR78ctnB4XKdm+NItyWZdBxJ88YuFMp4fbtf9ba8V+8Z0+1WL1y8sRHIUYRbtvNp2MO0CZVzxxGVYbbhWmvbdcxX7F3fT//duyojmlGFW7n0jKPsaCqi6IZUbid6edx9k6zLl67BtgGu+eNGF3F4XbIAjrOZVc55yo03J59ueWfXW7XZK/72LGWha1NrlGE24gPQRluA0WI+ql1Gf8Hwm1i548qDLdlQN7t5nApwu0QWIh2jpZLWyHh9mCBlVuv4b39pjV5MLhlo117DB5u+zTf3iLn9kHenG9eoz6kT2WXM4TMgL4tRI40hLRrDzyvOXpVDtUj3D5Q4DFNfO2FzxZxJymv7V8jDB5uE3WEAbDKo8XKbm6l6tyqDrfrUakxIw23iQ2JKm93e/8put3txqcqONy2TNl0M2PwIPai4IW/mk0wWWME4TZj9yk6t3PVqaqPGR4/flwJ4XbHTOcN3fu1Dp4X07H6hS5/HjaKcJuRRssdsRFwp1LC7TuZPIddOav9Fr17kPQ8zMnKKMJtBoeWOY2NgDmMqgy3Lf12N7s5yJK1KLnZ49w7v/yNKtxmFJ6kY17myf+F2xgfH3RfZ/frSCv2FPc5u1vYNtlWxeE2w46Wc8l9/y+H27btmjt5tAgPSE87Mr9XkmKLUYTbiA9Bvbvd+BTqp9Zn/B8It4ktM6t6d7vZaZrdbUat05USbnu1Yy8d1T/Jf+7yiBsnnjR6b/Bwm5gKboAdWwbzNN2ObYPTFRRuv17wqK5SGea/507Kv7b7+zwyeLhN1BGGwKoWLVbVTv//FG43oFJjrF9jFX8qJ/ntiWn6K0QekU6Ia9UtlUhKi8KvoSpL2YQj5wM11h+8hJRJGEXHI9LEZr5mPGnUaKFAfRPtk5JE4PgP6HpiCBaUgL0Qs73IKswAdZWXqrU6iNVcJa/XiZyYgvq99ImQqqogGkdKr+oEzi+3RvPH5IrY2UOcg5IYnTrTgmNU/YagAShIoSrbCKcmM1WvVcMmofw4mRh6IQA1hUiZhEVnPpS1ag/2+fBHYZdanIV15L8avV30Oy165hzVsCRrHCjB0P4JhEiWSgcREDoj8BgRGdejJJxNaBRfjNTPpy4j3LLezOhmF+cFbPFP9R2U39KOXrCRAUkceeRyWYJNbAluAMG2S6PjWkSaMXBNxFBbBXsGhVWI/3a00+7ssIBlP8OHpfZclYJ3GDmiGJGSGRolh4fl9Oik2zwoPg45T6dAb0XUoEKElM2nO99I5BStUBAeT6dTX1QT1gIbBV7EbLgZ8gXqo2uwIokZcI6jRYmlX1EDdi1QF4W2QoQvPlrjI2gtdgyyaOwbGSrO6bp51ZLLKE4HMjeOrS1zQ8a15C78mY5tHDakYja79SU3j2lPeNneaz4qPRrhW1VY9xfG8WVM1VlRhe49clur7kO5quoZyGdKhAnwEiIEqkPDOlm7tFGs4tmXVvvtSvpUN/tFYCLNE2qxG0/Wo7Acsy6XorBcMqxXXV+vetU2CLdhiCKHj0PeGPGQPM5nyCWfLZOerkvNPP3YgBX9GaGDX+fdXOe/+0ajQzXS79cxRFU5CM9aMlXXHTjfT+vqZcOtVc9Dd5DcslkXyXkfmc/urwEPBCw3C/wZZ9X92mec0etl4RNy5MZbu0uXeevHrg7p9+14XQPgk1yPDh8gPlVhCiyQKj1jVUD0YhD/6FdpzjqML48RKumY9nV4v52H+tcLODSIO3zuvE/4Yppmqvu1mYZer4jScXn16bgS0cA4uaLXspwtovBkQgGqfEkZE9CvyP/il/u8ReKAATvbLsGf/jELRO7XZgx63dCM8XRD1Qlcj9PqEp3szmW419OvLZGDGgNYCzVKLCoLj+8TTayCLpzhzfn5JYbb4/pHfATAVg2gHQFghIpAhFmfDhG7Bphdb8SgsOu5CwI+D+3Zw2/m559Ki9P38WXS0W/UvQtPL3Vxd7wBZybEiqJimUJJlDROxlcoYKcQphjMIOjno+Zft4Cf8UdMt5B9RV4ZLT5+GD671x2y59WWSdV1PUq6ezbkqkq6a7XpkbUHqDeiTPbRsRJaY9TVgMZepFqlhQV6VU9C+uLit/stnQaEBa9WJuQGtx17DC98VI6NmlDJxh9Wu46AGLp7kXSzCWmHYKiXxuqFxQWqsi+4MsRiaYJQoeoRAPfC4c+lPiVzfBB5e2+iPa/SqjOwvQkCWEMywOBmBAAMncy/UU1moym0QZQmAxXa+A87+FAuAMNWZg50hTZyHTDMHYwec2K9egNhbm36feX+IB/W0q+rJ9snJP1hAMzzTnBoMM/Lww6NNqbCPOiA95ULjHx28pBGPUVv/WvjQ/tAuN8oE4uikCqT2saLCmmHQOCDAZdACe4UM+Nwo+hkm2Y1SnDI2nMpIH083z7/z1FMusfS3kHD03XtmQQ0qedpAOdssp2ybLiHcZZjra7KinmrmA23RBrI4XgJv8kcuewnwGRgsOD8XJMTNTmH/7IPtG5XtwCjm1DQrVSt17RkxEJ1nXpg1fMgjws/QhcsN/EWyYGeFwE3GVkhwvOLlD+u5tOFk/Yv9s5aUP9lm7HD8c3kTVjas4OlNTtMCLOjyYeTD5e2WuC3YnTs6J1jtqwtb7sieOASstOdRRJ9wC54efkcDZBMygDJMRS2ahXohVLccucJC568Cd4058+0Dyck+OJUJl7aKHmViVLsgPvd3FOYrMzA9VlbLo32MwBKQKxpUPI8x0FlUC1LdL5FQ1WSAnRGdQCIqBGrtG1gRHtUYmDbQK0eT+GuCFKoPm1CpU+zDj4dPOtFsd/hg/sO7xr9jEeoEs6XCMXaDQOp1KgziymDd2ikJzAlUqVQ1XJCKUxEWzKSu7m8Kw3PrjxY23tV3uTo+ns6lpA8iha2DDJUkTXZ/pCL8KJmoXyCcLJ2xbaybNiYN21k3MbwWwLKFX6LAQqhPAw8Pva1LTnS+EixEEaOUaORdhACkRJ9dzDr4OrA8+SNBD6q14eJWbytuYyQgYBbHmxG8iy2ZSBfHiOS8ITROKGwUl3uD5M9Na/XVF0Pk8o0rxJWeqe25joNGci1RUAMkUtlsFay6qnMsadSZZjCS9jGsRXcpPWTCGBVZfX8rgkvwiULjUuI/RKj+9EqIwlTSEV8MRt2CFGzxixUCYLEOPXvpoPkfFmp5lCJqiOVqBqNu/W5w0Kux8ci3z3s7MM3h7eIM5C7RZR/A7hbyaF0Li4jDHNxmxo95sSeswbCnNhy2hAuroQOc08phjmTCvMO6/ufGZqzxXvzetuLpyZ9wfdLquEjl8bL8JjXwjD3kmr2QTWhmtUkzgKLGQPHhWbQR85XKGKlMqAjUIYoqvlxMMAGxo9kd8pPCthj3ju33md5c0DCXEGi/AJSNZREnDGAVJ1B3kwYkExRUknP1g8+3rJnbavzema1F5frWfhxRuI4AzUqefGiT8EbuxW34Oyz3PX3ySkL5SQQapsSAo8ZGI9V7HKiYpcRWVCPtkd5buxu3rvO+XVljd49z+AWVGv+5Pd8OHwpf6NXrmz00wF/XW1fNRaU0RomDYK/vhVmQS1bc49bNfvvsKDNqETVaLT5aO8OA8z2rPaaYj1j9qRHF+obSJsT5d8A2pzhSKfNkx0xbd7c6DHnhU0ftm2FqfeyyK8b7Y+M62vEC3M9aBfmemCYt6DC/Hvk0HOdLDcFbjhW/Scj9udCsqrquu9sOAYK+QqYhoesN6saZgE7ibbp023v4pjThyURsxqyZp5bdLf3zmMn9Knzrms42JbLKFwOkDtItnfBBMiFr9Cvh7a62V2cCgDSNzs9czE3PGF/cFqnlz6jcwQEZ9iYMguTAUDFEKAiFsk6OzznDQDSr/dlmfX9u5g0+jiHLePs/+IZm3tzTtXW94cNDxEALMg2GmDLaAAAOrdaUs0tI12ATXbO2Nrccb7XkTaHw5YOedawkhZgswvoFmAjbvxvARblz87RLTYvGDuFu3ko58jbA/H9DbAAu7h2SVBXwYTAle+afXqgCOxngKXFpwV0S4vM6xW9AJvu8CTYo89u7raNU+vHDVM0NMACLDGTwwAoAbGmQSn7ZgUuwBIX3at8ARaRGMoFWIAUqk9bUelTo/EPJ/H2DTkXt9n7QFy35XMHNbXXxT8kCR4r3j1EkjOoF7X+xJpStDZ6yEcPum6zfGwb/6xNdq3e5PdNMwzksXFJvv0f7WPvOOFSbcaYWc0NsaYVRLumFYx5Dc5GDznRaBgGcqKbZwjI79HulN/HFEsbKsjrRx/KyTpzgbti+/NxFxtPyMZnDXETZWKpgKTZZQ0KhFuhd2BxjyplWxHHRxL10f7vOmZyLez/dsLgzzFBaW7vXL+/iV9C+mjaCU0oQVf3DOZyMfLhugyJe5YMo/cvWidJdYuHhKoHIX23P+p52wfvvea9f9bgr9+7cZcbMB4y8IFRdwBQcslpBkNAlu9aDKKl5O9aB0bpEn679BcC0UDqYAiEMN1PqhBBOhM8n0jMBJKilhMmXw4b3EvjRFGkKF41+1jNdm2Ad1bqjDN1u8bgJaSm+nu0u/WVkgyeptUGkRg6uIoq9cwolh5cdmdpTKp1zFBsj040QSm7lLF8JTOOP1rIjJch6yCRfFgXiLKt3+bqI1uu2qYIWGa3KSY9fbsdofIMOixJ5RmMYvCMWVdU2Dlk3Dvvhgi7Vg6xnsA5YT1osSOGQiKQpGAtdzkaNX1O/4Cs1/Jwx52z8bsV/1HHW0OA9YUWrKLTqP1py6CwPwObVhu9aJed16E14g89J1rgc/ttuXAbA+YLU63GURXqOmSivhWzREA0wY8ADJgciray54ulkhgQeynQ1RlXfKt7BTOKDxNJmYp4GYg4AIcipYAI7lcNGS+Bt8I9F4m6V73qoiuTHQs7gSP8HRo0XKPNNrAMSmkMPKymmaGqTJAy4+Aivm62sSTi/q0nj1oELOq3a2Tmpd8taWHTPsZM+IAe55kY9fMpzjPBdSOGdb4+trJ2qa1EH4j0ZUd15Np6317hu4PnkHBnZ35tAxpLogYyyJEdgNBcsilRCKtW1MnXx1g2w8kjut8HMUMBo4qAeyt/fB098XrgrlvBh8N79Q6r0hVFBBVbWlSs84206lBZx5c6+0Uzw+SwNBScxXhuiRSaegGpJDUJVpAibz08cMHscbMODuAd2tz9x7qvBTdwLLMMUg+kxTZNWoWwzpKWdRZVwrqy3Rm65aQmIUg3VGASsDp5omio3mnW6OMvXOtgtuqT35SHkkOReSmEjTFkPG0lpLps8FpQrqiW8SVjirs7omX0OunUKgwaK4DIWKHKLuoBTKOS6gWubX/nblk0ibEo/R0hgkQH1g7TMEKFgGNLC451vl7tiVurrFSpBdcHHf95e3JO28b5zan2eHZiJ7vF+BBFveyvHaKUkioEIUtahCzyUb+tHYPCb7uwnM/76WHvM3Wjo/nb5uOP471RHvDRmKEcnu4LB17qg2EwvwHzhEGEGA1+BX5XEhNgK1eq2hgDZYvKK/S9UNdtok6Ok3z8L5dCdytOzu85fzrkBtQnf25tLxqj6HFELNvujGoVUstVkgEOZNuc0WtZAXkADQzIq93s7uXRoy7Hd+vCvwbwj828QqhzAe8mqXOBXC7LUyLqPwOc/0qGAMnIhDDEhct4antGn8PfDRGAMLlwFojkqg7M5Mb2ztYVL2ZbT/FOrssfcrDo+V78tORgN2tPy1JSWYB1cP/cNvjlcv9VK0x2mPy6GG0AwDxt6QADElUlTpTKZsDPdGJQ/dE+E05X4sUK4SWNVpVPP6xsFfnRJ7W+pMG4aact6yBnnwEzuIkyuVBdBgtxalleoc7hbcrnABNYG5ebeiLxjIP3dJvRyy2bK6cYgLUMGzrWRlhXDWvJ/OMM/Q6S1+Jp6HNSZtarae7SOqsVZ3GjWTsHtD6Kb2phyiMrsqm6avC1OzdUJ+WyIC+I8a0bMsVQw+jCoDCMXjftH43ttsdzx9ARDdMHHsMnetaDWwdKuPQJK1sLYa01oR6np93Y0jgAuWoDAxlGUDoMEhyWHpoWACHRySI+d+rBz3NN521bu63De6Gtc9kPrMUO0k/p6o0A4c8bBbyRQrKEpAwg/J4xWosKeh6mZvE0QIHLDTAxE3obUgnTGTsIDNBDDCvyk0qnKeBqtDRBKCA3IjfjU+vdducHHljas/WhrA5t8ToGqalCctQcvV6Wjlnk3bZtQGgf38WvgztcHObRqZw6Jg+aDwizKVlWz/m2CMzlXRJuqcF+9epWlFSiEEbFI+IBsxzIVzcTHjkzfvq381p1LNRvWPLSXjgsrUrH1Q5/cURDq4SQ9ihsw8hgs3BDYENVQnsqlXDRpvmnDl2lgTP//hDgemMyl1h4SCbmRwmZQfFiMYkuoHKY22P3SeB9UGZFkrF8sUigEvIEEcw/BGGKXHdNsOsca+x3h4a+J149ndfdzukxzXOSFUjSIOuaagZrqQwD6FqRbb4VAC/Zc1B5534DaNSQMgpKeOwfKkmIGHlizZXTV7df9/dePPvU+sGfX/vh3WdkIG33WXW5rOk89etRhs1x0+Dco91Nrh3wWV/evV84nSFypFVokHOgg7UWGjH3WUfkHNTIyXGiBkWLPLvu7LNZSQye955z5m1u9k3/ji97jgoI+ZYOnmroWYygNYgWrbBKXcXCHtQiLEkm1MShuca5GtcA4NIKxa7wMwpXH9+R0MmNEcoJlfjgn/Iq7gaIgYSMBUOAoDpJxWpSLhMNU3kmSTn5muGGzoIisjQzWOAGzAK9FsIaqsqhQF8BsVWY6AvIC4QEBrS6sT3Df2f8lDW3o4sJFRWQtyLZmEAuVwgUg2ihCMMMlSvD2PNviNrSMPk3xNw1Q2SZBebTZZkFYJC7GT3kKafPDDjxhzVv+/Tn87u/KW5nGMjH/2gV1OHhhMCjg0yOhmy1LzQE5ItoIV+IQe5OBbneJydtMcgr4eQkMRrTODlJdM80Tk5+uvX84Nq6hbzsV6+HTw/f9kbj5OTqo53q3fpZy+eYSbWDkxwzv2ucnJTl8FZts+3BTW4wl+XXclICINVgkLsrgGSGkoiCAkjmKCmzicT98bRY31kNt7c3eXHzsdZRTCi8pNIn2d/+7dk3O7lbn26L8HA+9M0ARzE7UPG/WUB++0e7LL03mQoib7+xw/O/rmqxny2WKqC7iGzg6F6vtJm3CB7AjIUnFlUDICEljDP1OghU/cjoWzU8fnlmv1/wdLfb4FtlPqIWOGQf0tUrh8tR7cAku0u2do2UjGmu1za/g2q3DemsIEUONUthViB1XlDblKtnn4kkwbnLrGvV/K3u5PLstVXsMjYDJnS1Rc2uVom9Ilj3vRWpH06FVX11SoQmVuTVFwU9bIs6tvZbuHTQCI/oGg+N90wVRAnIDA1Knk21Fx/o/DSXEGxeIZMNwQybcjDUw3LPqLdK4hIsihoxDwXvH5kxKHpgY/sq3M9FSrS0pdqQgyeuGM76ubFt1buHECIVPGihRWCBcLqJvILNqPAG/yr+9VtbT3nn8nW/OCPYtURAakkLUnP99nVbckSqN1cvVZWKjKriJ6WC2nqaefv7cofAw7aL63tMXNICv4uIjau9i6imVAg6TFp0HDHHqCODwjC+GxjEM3X7xl687pL3mmC/IdoL8dqWkKp1hxN+P1ed6pYgRVdZdTOEaZNa/nh/O9J7sXXI+88hDiSPRL43oGv2N1TQfQBsl8gO58GSi54eepk63bZpt5iLr/8WN8dr89YVLS4+HjUVv9iJ7MdSmHUcscxtKoKKK28mONTTECzS1gQFcBWlp162zgYBSwhmGjVUWdUDNu71GOC9ZMGX2p/CTkrwmogL7iUHSoNUyS4BApMHLUxd9TN2ZW+hEfeaq2wLDWoaREbgFprWYbdsNwQaVA91otJDxt9KIPFLA6d2ssyAdZPSzZcXpw6q8FYCMmcuI/vffNiBmMQnz4X5JP/opah0aSXw4cszq2Z9rnjuLt5cx5ZTu7EBWwn8PMxaOWTxOk5WzZJr6+5NtyhvY2wATwSEZzvZnIPdEZnfKZfD/8NWAk2kXZnyGnz/KXXvDegReX+7QVsJ3G7e+iuP1Zm1s0nn/ENv5A8NgM/TYjp8gPgYZdF6A7cSaNU+dXxJ+kbOvMMmpk51Z7Ss0lYCiNR+pZXaL8bElaITGFcM30og7MjJR17mz1izLTyEcd2dn1VpKwGZG6pOSAvn57oDX/ubfgGZ3q0EuvZmn93cbwp33oaZ8xU7GhEOP1Z6KwGICFARNIjkfcHsemcGhV3/b2sl8ON5ix6X33fxP+AR2n7MmojPFdRKIOJjPk0rgewP5d0B17+VwKVhntekgQO5Rzpt3SI4eeEfA7cSMLDxh+lzTIghZSsBgGEVtxIg2vMqbyWAAEbZSgAAhk7mLlST2Wg2rojSZKCKZcRtDkPUWX1Ht3OV/BbDvCsV5kZaValp05UX53R+5jt/1fn83T7fF9I9liHL2lueoamq9NTizP+qKqn4U5CU3/3+4QKfGb072piJ3V8boKrS7eXn5z51ahG84ke1hzkRtuVeM4G+LmQnZb2g5JpnKriq0kLxmuvrLm8M2jl2u2vbztEcA1RVOp01te6+cUKfaTVe3e17bOK/hqg9ZUGHkqfFmYqrqkTMeq/yqkqIxFBWVQJIofq023+ZPl0W8I6Xt607b8H+do1XDennUkn6NKM6nT51r/Y/fYry51lJx69XH6Z5b1raIXnXs8NbDKBP36+r1Tj3sV3w7oh+gkcOzfINoClk1ek0RUG1itanA8fM8xvrFc9J6+JYbW2P9uMNoE+JiwQGQAmINQ1KGSYVqE+JNrTK9SkiMZT6FCCF6tPuVPrUaGIC4nQy2vpdjBLaZLZfWEjgQQW5USezEbdJNJLZiGsrGslsxIBOI5mNGGloJLMRjaZGMhtRGjSS2WZ1KWCmHHrOXhB4WxjG2lCokcxGdN50T2ZzqnmynXvAR9bBsB9582s06G6AZLYeBuO/VSXyn1jBTYP/xAI2GvwnJr9p8J+YDqDFE1Mqnvw2TLayTrcPfotND1mNsfFbagCe9KTiiRH1eihszT37b0Zf9pHlLLeoiV+fkTyKgbslrXWKmym4n8Za7PkiufuapJ1V1y0p+1J+BXdLslx9Kf+/otdDLypRNRqLPXlOpsX5Dz+9U1xu5Py+YUqsgVbxiPJvAJP99BqdyX5agJns3kaPeXT90G8mMyd4zzI5IJc4BaQY78qpZyYd5p5LMcz7UGGut5m0ZlSemXz89vOmOdMb+O48OfqF3fblWzTMJFF+NcwkccZomEkiYzXcpOR9Lk/ON7/I3Xp26ZWers3qabhJe7Z4peUEPebtjP2nzfKNndO1jCvU+qSCFJx5cGpi9SDW2pExdd5ZTP/XAMa1LxUna4YuHbsxfhQn532xsBtzy9/4ynfonmAg+EcOVKXuBQN/w3YTJcxgmVDiw2PGoWPotld4Lr5T578nJQcefbzh3i2LpCm0j6VdkI/wAV17VcCCfL1A0NaQzWAUaK3agKAtr7tWlRm6DIomKtHGClPC6gLxsIJnLF8CjBzpiytEI0OHdBN4zR7DGRGnbPEcv1fIUY2gvVeIEQxe3AhmuvQEkGymyqnw7FkltTRqRAFo1UqjqKioRJ86gEw8Y2DpqXgxX45sQYqh+0LKm8zTOzMTVvUMPJFZ/98uf2/bQ6ivig5CUl8Vo1QEd7J70HGH0cMIuAO0UYk+iUdNuXEiBVLROArHJkyFkDJn7wDZgaKh6cFTTrtzHE5vm4BnjmpEkvXdUkpFMCfCg445QJtUPXMgfzSZg1kmKuZ0Y8XBr0R4Ah5HAW4VSqKSVPUYezOlMv4YWL6xA/Jb6SfIZ9THi+sH70n84bWh21+tn+7pgi+RUCtMY3ztI+44akUwj9mdjnnJ3YynhhC+xqZpGRzsXcpBRaxIkiQBTjBgH2CXRCqBrAM/iaUJCBH+6g5JcfxE1QVSPooWN+3Rb8MfQemnH66WDvQuIBRKiyXLmEYvV4jF6kprsbpWNefgTXCzRa8smjqqpWqRJIZeEbo+iDq+QuTqlxI7vsWbC+2+4BUhpc9USjH4Wrgb6kPAiOO8llvljihC1E/1ZFD4qY1Mx4eeOvI5+IRFzstWXccTNvHYqoWcELlwrEiYgHdTIaZUSW+tWbAgkUJjMQipLRsjlMYJlfIkpkw1oMLWT5Xo5SfpL5Sg8Qu183ql68KEBacK/HPrbDrCPDulLd2zam844uk2A8E/Mqlc6S0SK1VfTObuUx4+bctlyDwB9plkG5F5wKW166vl0mIBMmk07INhg5ypRJ5RJ4/eZWvtlQeSGwdPv3UtbfLbVPyRZAtsVG2xVFPKipMD45vXXLNdxNnXufqa7j173C1vnAw0RQhEzpNMjySDKDq3r14VFeuHabgwTOlYoVwuomhnYW8VMKKW0x3uhlo1zk87vbNu+acwASuijjAAVkCOaLCS9alUnYutY5qjIRf8EHR2HmU/KrEQoh4fdtHL3aukBmLbiFbVAgsMsI/C/9fSdHvwd6jDbRaVGvtfff7/qD5/5oybB76vjGPt+OhkI5BkfaeFzZD1+Yu4Z2jq8xex9So6q2N9/sPszFFTH53yP1w9uM1qRpMXBjyIbmAdCcuZF0CEKMuZu3O1dGRF1OdvUnv3/iMPlrOnjbLflXYoLqDK6/NncOhQAXJjNLGDfmeCDFeff0ps37rr5tT23ea+kvXGf/two6nPH8KmY12uV5WwrtLr89d4NW3L+eP1OMuKLja+evJ9L8JOZ2XX50e0DGWBdaBlKq0+/8wR5388bJzss8PrsMeKOan4bISqqc+PKBtKcICyqbz6/MduuZ86vvWs1+YaKwK3fbl1zwgqXUCEkDlNiRCY06jf5sWg8Nu4rLbtSnrfZG1+7Ljl+qoP+Cp9Vsj5PplUDCy6ts9mQYFzl9ItElHp/WiZDIC4XBofEwt8OIUQWarRp8zDwnzRzDr2mdyMv7kdT/F6v6N8Wu2CCBpEXdP+WnEZyUMBvnw2XHQh4MvoAIL/cMoQU8czV/VKHwtcRbEgfXXztm03PZsU6rdY4Tdtw1m3wvK39SK4UL7pD2RjpszzzehR0m+4R4s15XShQgB6ERC9pmwS6fSFq8RD9HKh0PboAmGMXEjuX1rPtFqYFf7Zf/qV27WsDt9sSjg8hdxIcnhKdd3gFYHB+zOH0L1/8uCqdpbUkqmHowQfWSQViKJoyt6ETYi0av9jf8CUhlMWPevqUQMvq9gA2rKqplQEM8BkpWGGZ7hRuD8MfXYsXAMkUiUwX/wouHbq7N4bhKwgsohzYXboHRUrlQtcmB17K8bIlcgv5N7qtW6vbXJnP/Oae0F2LZnlOw1v1+AXhCqTxCStMUtJFcGs7EF0zGIMMoaZA4fSy1utX7rQLYmXRypoZlC7C10PMge6s+fnLzk0Zvqdf8oTKpeTHXkdUEUOT4EWaJWM6sjdljZEPy8V1eQ03lZgeB2eWbO5wbuGPdn3u+zm7ioNeyEAeYNRAO6SAABVi16eKGbKqOtPJP0w9Yn46srbcrXnvw4N+s6u0nPAEAC7cBoABnYZhDmabMZ/Vz5Or+tNby5cdYK1YcL2qXGjx2+ttHwcOwFdPk5BREXn4yS8ql3/auROz71f/56/IiEjwAjycYqi6HY3Q6KMIKng9u3blZCPM3n9e5b13R2Bq58HCjqVjO5hFPk4uZF03LGLNALuVEo+zt18k9bnLRW8RZNKWg5q/eKIUeTjyPh0zAHapOqZw6jKfJxd5t1MFvwRwdrj0JD1h0Pf5kaVj+MeQce8jJFV7ewaUT6ONGP3wE/RPYMPzgmJHnF3qEMV5+MUjaC1WCOqmnMVmo+zNC4wi/2mg9880aTrXu4XCo0iHwfxISjzcYAiRP1UDuP/QD7O5MebB2+a0SV4SvTrhwzGosgqzsdxj6XLxymIrpx8nOgmgQuV9kM9p3/MvOM1PzLD4Pk4xNjcEDkmsbQ5JjEVlY/Dm5zJG2sb73loWWBgy2a1qhs8H4eoIwyAFZAjGqzco/+/ysfhUqmxMSdE7URBW9kHjgeLX78Y+gG/U9IvHp6d9JHzZbHaJ0z12L5owREpZPD0mHo3J6m96pQpkw/L6cXAbyCVvFWiuEV717lyN9TIunv018D9lM+nvZOjSdSSv5qhQIUFax7FIpFK4rknHaVSPRpJPg3zVT6D0YAN/xLOf2Y5cy2bvsq3DhWKAcOEAj+g1xOx4RC2qljpTcVKvc+kOatlu+LPpNnOTuoxvUttr+P5tge6B1VL1ziTNvvTp8bJ9+75TI99NbRJc/NgjTNp8zp85Htt9Qna5vpvaztTp6UaZ9Iuhh8OuO+yxGtfQfQc58tu6Rpn0ubZBbZZ6pPhvbbFvZFZHY+VaJxJuzI84iG3xdfgrd8mpdbh3HfTOLrfI+j6uSWt8n0zBvWTL20yK0fj6P68Z/yzYfdl3Bxxgx6HQ7d0ACQLlLSsyTOH6Fm9vLYmSR+tzHaGZ+1qoqSOV9f92hQdwN1UL33ompr3ZwKSJUo6objxON7yZmDqqoJJHc7V3Q1IVihpgUf8y4Xjn/jN5y/oXreVwhuQaqGkOnWatexswvTPmfH6hl/0iFRAskZJMy3DRvcNEPhsfZz/m4LjcQ2QbFDSyJHMTS9DO3nPn5s96e3YqwsAyRYleVwKODorICQopZ3Mfvj4k2MAyQ4ltdkRHX2v02X/nGpm/qvDfwUCUm2U5Hrm6bEWHU57zh4XFnljxfLLgFQHJRU0aZuyf/RD72l9in+7PttyAiDVRUm+h30TlxXF+OY8i2+SWe3+IUCqh5JkTTtaB13by8o8UXR92OAGMYBUHyW9DD1R8uBGTdYRR1GHb/7HRwBSA5QUdfl2zTZrs7jHmr5vM+Mvj2mAZI89/I0X0X4zf/LS+nRjcIafGQhIDTFhC6+XdnyZOevAriuvzvaLfglIjVBS5wHBVqOPeQbtmfxr7copWXxA+g0lWUetq3dpUqTP8ak7Ly4wbTMDkBxQ0ttORd8i3j0NWjPl8YFzIXO7A1JjlOQl7Vy86l0sZ0pG870fvu2OBKQmGJfvC79dm5fntcp80rtJeefTAMkRJXW4btMg8cPh4HVn20/8rdbrvwCpKUra3tH+3elbNbwymnWW2H+5CN+LiZIK2fn1Cs8s8dreY9SravWPybUOWzoxKA5bLqvTpUlhw9fsWZ71fvsw5PIIAxy29KFSUfWjD+VknbnAXbH9+biLjSdk4xcTuYkysVRAkkFA1bO0FXqHOucTqcKuiOOLxUAJoQXudUwZICoo0kfTXudECbqWxYJd6iecgfqVxPtNhjXIxuuVUWlXmlGpehDSd+tYo9Z+F4dCXvqnS1GW/cb8MmBCpYGdXHdYvxYCJCBz3Iphe43xemUDdOkPHCY5snYnEMIKvlKFCEmhAM8nEsN+zGo5YQIPismHIVcUKYovoxpf6TN4KXuak3Wbux6Tm+G3QNXfo70FWkoyeOXVNojE0MCVPM4o9qu10/X07CjaHp1oglJ2KWP5ShC/jBYygQOi7tBEvVf664Wj9ODtDQGLvvzzzKnvmUTCajk6LMlqOUYxNPc8XVFh55Bx77wbIuxaO6Z6AueEJfZgi9ZCIpCkYPWvv2//l6zrXrOb5I1bM744tvxpRAYACxF1SrCAqKP2x5fxv9MHhjx9QPTQK+30wd1kutMHuZMr4vTBk+mJGxNvpfjur9HKsWnLhpMMaCyJGsgApw/OJ9MlaycmV8rpgzXzRG1XrxMF7ZvZIfx5/Y6rq/z0gTMtKkBujHSnpPJOH8y4n+Ny4EWS/7x1i2xWXw5daTSnD+wm07FONslI3RkDnz543eCsZOm2Vuw0v1M1Fq87da2KTx8gWoYyfRxomUo7fXBuWta2wB8WnIX3P7dwfx3eyghOHzjTggOUTeWdPhg1cGObQUnfvVYlmj2u1fNPfA2Qqjt9gMxpSoTAnEb9Nj8Ghd92YTmf99PD3mfqRkfzt83HH8d7o0g7u1AOT/eFAy98N0nUEwYRYjT4FfhdSZotF4GyReUV+l6o6zZRJ8eJuH5J/tzaXjRG0aPrS+b+M6quL1qukgxwIHOffssKOrWdlM6Y1cqht9Rrw8E/mq5nbmpN2GSHd5NssiOXy/KUiPrPAC1dUiBAMjIhDHHhMrrv12vvrCECECYXzgKRHIgvoJMb24tDtk2xnODKzRiaH/mw5Ul8+eCaHOxm7WlZSioLsL8Gzj1zaHCG95QbTcW3WweU90A7BKxwHx1gQKKqxIlS2Qz4mU4Mqj/aRzotaHhphfCSRqt6pe/6M6NLIveIU8zJLXuj/6mDHMYBzOAmyuRC9dYd4tSyvEKdw9uUzwEmsFZuO2/Oq0apgXM7vRp+vV/uEQOw1peWtcV7jcc/ztCvN1zZrU193K3v1Hjl4pViW8O3uOOg5Cprberuhuok2NpUphXfuiFTDDWM/gwKw+h10/7R2G57PHcMHdEwfeAxfGngerDkphIufcJsXCHcHxbq0RDNjS2NA5CrCn8iwwhKh0GCw9I+aAIgJDpZROK2XdkPrMUO0k/p6o0A4c9IB6AXepH0R8sAws9ML+9ZPRZPAxS43ABL+UJvQyphOmO9vQB6qkN88CeVTlPA1WhpgpDiBM4Nb2eHTuGLvec2zUkT7wu0xesYpE0qSfc49HqZ+Rc2A+27WPRi7+rh8nO9vHPHcuqYPLjPAWE29SLpCHa+LQJzeZeEW2qwX726FSWVKIRR8Yh4wO4S5Kub1bfGJfYfcdon5xZ7wHz+5Sh8VkHpuNrhL45o8BNN7VHYhpHBZuGGwIaqhAAqlXDRpvmnDl2lgTP//hDgemMyl9hLWCbmRwmZQfFiMYkuoHKY22P3SeB9UGZFkrF8sUigEvIEkTKWKQVhilx3TUDcpad5TrKexxpkXVPPYLGOVICuFdnmWwFcX04t79xvAI0a0hlRCTv5QSUJESMFYPep9WNjCm8ELXg/zuf8c7M8vPuMDKTtPqsulzWdiVkJ5U2nAtM5DyK3lsxlgI1NZKmU7rOOyDmokZPjRA2KFil8i73XxD+9fMXvaD1XXsLJ92/xqdqogJBv6eCphp7FEC0mLVoFKZXqYGEPahGWJBNq4tBcI2fHNQC4tEKxK/yMwtXHdyR0cmOEckKWMPxTXsXdADGQkLFgCBBUJ6lYTZ48TDBM5Zkk5W2v7IbOgiIWWVKhOzIL9FoIa6jqcAp9BcRWYaIvIIViKqej5UNLb/bBo3vlMUsnmhI2JuBbkWxMIJcrAgomLRRAxFFDxWNQGCqjqVtP1JaG6e5TAWXr785Ck9ZJy9ZnzsIgDzR6yIm5cYaBvOGR9q1vlkQHrL6bWq/jt0svDAB594V0kBcvwCAPooLcqBsqkSRRYlmZJEmUWFYmSRIllpVJkkSpzsrUTqLEsjJJkiixrEySJEosK3OEb7O39Y+88two4PEH1Zs7S/eGSsT0SwOkvAVT8b9ZQH77R7ssvTeZCiJvv7HD87+uarGfLZYqoLuIbOBoO+VmFLOtmbcItuyJhT1uVAMgISWMM9E0BN2294kpp2U+ohY4ZB/S1SuHa9fTwCS7S7Z2DTtFZk7Va+3aQbXbhpwGkULWADzAL9R5QU+8Jl93WpTqOWsJP+LcqUsby7PXVrHL2AwQOKdMQ81ukdYBe0C1m0bqh1NhVV+dEqGJFSlK92rmzHjysBl3Bm/8y7iPuxgGTIuYMiDoy/mNid5bpKm+KV5JpwyAEpAZGpSYU7UXH+j8NJcQbF4hkw3BDJtyMNTDcs+ot0pm/jjcky98wl3uFHfObpXyXhXu58LOjIgQkW7IFYEwuPs0/dzYturdQwhRlEbNCmiBcLqJPLGS9fbM1RXbfWfwT163nVg03wh2LSFIhVPpQMqcqt++bkuOSPXm6qWqUpFBNhapFZTVr3PHbo296rdsqc8fN5jr8BX3LLBxtXcR1ZSKQMeXFp3iKZhjFMKgMIzvBgbxTN2+sRevu+S9JthviPZCvLYlNKUA1wm/n6tOdUuQ6lU2jnjAQte9AV2zv6GCnglgu0R29tEdZoPOqIBt2qSOg+qaJe3xOjLbdO+NtvNO4Rc7kf1YCrOOI5alxYkqrryZ4AAsBgQrhEzGCtpxGbkz9LJ1NghYQjDTqKH62ejizUX2uZ5LXtUNXN5XjO/ZXpML7iUHSoNUyS4BhAlIDQ1MdjP0M3Zlb6ER95qrbAsNahpERuAWmlaT4Ww3BBpUD/Wj0kPs1pfcPKY94WV7r/mo9GjUhLgOHceXMVXrNCTr5VSueWvVfdhuD3Iuhc+UCBPgJaFcFIUaSJ3UEvFwF80Tkq2Ua5B1xFUGUyh3nIFVk0h88lyY87RdL0Vlg2xDqRZ3weOQvuW4djnnrp/d4Ze9ofXFpZu6ueNdJGQAbRdJdbmsOUc851bOOQczkxtCeLZTVXQ4v12vbBJr1fPQFfqauHzmrmsXF7OOJHPPXgmvPhi/+6e6X3v3D71eFj43N1+YJFya6n2syZuuKS8kYgPgk7idDh8gPlWRYWCBJG6MVQHRi0H8o18lcOswvjxGqKRjWpeVjbL69lsXeMC+9toE7hFCWojqfm2modcNvmYL8+m30XElZZsxcaXoBMYVvcyXLaLwZEIBqnxJGdP2Su8H+76t8J3TMGSVw3T/FXjGBCL3azMGvW5oxsjcUHUClxm14tVcdy4je7t+AZmDGgMksBCLysLj/OmmQ4I/judMbVhTJntVfSw+q5atGkA7qxYjVAQiztvpEMndhtn1/gwKu567IODz0J49/GZ+/qm0OH3/E57Hqm/UPRmmlzrCwBtwZkKsKCoWuJXwbCFfoYAVDdRZMaj51y34IJ7TJntebZlUXdcnT3Qrmieqlf0iA1Gd89by7oA3Rl0NaOxFqiI18AiT6knIu72u9Laa8VcJJ3uw26VjW9Pwht+cyrFREyrZ+COppBBDd7IcjZB2CIZ6aaxeQahEqcpy4g5qwXwghWp9AJYChD+X+pTM8UETSREl2vMqrQoK41oEsIZkgMFaTAAwdDKHUk1mo9m4IkqTgXpcE7c5DLBzxdxCt3P1dDOGeRgV5kEHvK9cYOSzk4c06il6618bXzUK6ScvE4uikGNh2oqUCmmHQOAPAPOkBHeKmXG4UXTSk8TKFHSPpV3MCk/XdeEGzOqIPQDO2WQLN3CPInf3GWv1aiTmOWH2xNIP6lIcL+E3mSOX/QSYDAwWnJ9rcqIm5/Bf9oHW7eoWYHQTCrpVMKJetGTEQnWdemDV8yCPCz9CF7g18RbJgc6B2QlIMhOeX6T8eZE5/Ebolzy/Gav8Ike/moxv/mfC0p4dLK3ZYUKYHd1rhfc67d7Db0uPUQtiXrVSlnfNBNbcg+x0J8tegAk6jD1nNEAqa2XJMVQYJQUaWh+UBjunHf/+NZ6z1ff7p+xty67jUfLSRsmrTJTeFBUe/tx2peeiIVt+s/iZP8QAKAGxpkEpYvcZVAbVskSb7aKqFwgdIx0AIma9422YaihtG4Zer4gFb0RiiskWmsJdEaRQfTrgv0yfEsv5VJI+tcil06fhOf/Tpyh/6licOpTWJDVo7dd+vVbejik0gD4llmkygKYozqHTFJtzKlqfruFtnNbo5jvW6peZSw6eGLzCAPqUuEhgAJTCaVGyyKlAfUq0oVWuTxGJodSnAClUnw6k0qdGExMQp5Nhktm6mDT6OIct4+z/4hmbe3NOfwOEBIyddCFB3g4M8kFUkOudzGaDQV4JyWwkNfAwVU9SAw9LZiOpgYcls5HUwMOS2Uhq4GHJbCQ18LBkNqKHppWxBrUiqYgRq+cZIGMt3GBMtqpEJv9ndSRJiipiTCbu+WvxxJSKJ8SyhQbgyWAqnmQdfDp41otiv8MH9x3eNfoZ/pxfjRC+RCjWLtBKpdicWUwZvEOjyjRTIlUKVcWFlMJEJVNVnJX0tYl1F0keRRdtZxUaJZeKxf2hxYIXNRuyEjTh/gdTb/MHj/I68fsZjwE/qn2n0oQWAxRCeRh4fOxrW3Kk8ZFimKsFK8HCwj8CkRJ9d+BhwF2O58kbCSzBSvVqNWNpDazSGqBAPdiM5Flsy0C+PEYk4QmjcQbQSnW5P+zZoXm9pup6mFSmeZVQAnZqa25SyJoztgiIIXJ4blApUj2VOfZUZBNKzk/wkwhg2S0MXpOa8CLcetG4hPjqYrSssCoggJ1ARHwxG9aC0jBESrmQH6f+3XSQnC9T34OK6hAqUTUas0ysAmqgpTqi/BvALh9cS2eXE9didnmo0WNOLK9qvMujskV0mLsvwjAfRoW53mbSmlF5ZpKkbi5mJknq5mJmkqRuLmYmSermYr7Qu1q1syL7rPKd24gf3nTgmJsavhBvyaLMZmHNfNf9M3QAe6mzh5ZxhVqfVJCIxXgNYFyHU3HSSFuOEYsOV1rLMcYlupZjEb9XdMux0HZnUk69aBeYNbZ+630HpuMLrVZRy7GLdA1csi8aQd+kwsLCSmg59ub9nsj5Ob/5LO0+f+Txot27jKLlWAgtdxjGwJ1KaTkmux7Wp+kPF1aWWRbfzfHnJaNoOZb7Ox1zgDapeuYwqrLl2KFPc99MV7xjHxw1puHXRZfwOcdV3XLMjpZ5eReMp1BQlbccOzmgU6vHF5exdzbaeTTGLx2/o1f5LcdkF+g4x6xyzsGbKqzlWN/9jV7/dm4c++imvHotuuzAV6arspZjF+lajgFFiPqpIxgUfup/U8sxYluMKm451v0KXcuxlMuV1HLsy+Jebve++a3jJluetUj5avCWY6HRU6Y9GNmKnbajJGJe9ssfBmij5XyFro3W3csV1XJswscDXgsajQmcvjL+QcSSpq8N3nKMqCMMgBWQIxqsul/+/6rl2EgqNfa/Ivz/URF+YjehSivCX1xAV4S/+GpFFOHfX1vRuMfWWQFpMS2b3ZxRx8uAp80NrCNhzfLCArqa5ZkFlVKEv+bC2ZzVmx/7b2VMvXl/bIxrlRfh96VFBciN0cQO+h38MVwR/r9+NDnWyPGPwPQbvdsvtrpwzmiK8G++Sse68KphXaUX4bd/KKqjOLbXZ27kL8cmN/reqeIi/IiWoayiDrRMpRXh93GwyXpwsp/PdvGkQzdtvuG1c9UU4felBQcom8orwm9i86ikntQvYHaznMRLjkP3GUE5C4gQMqcpEQJzGvXbIhgUfhuX1bZdSe+brM2PHbdcX/WhE76OAHKITyYVA4uu7bNZUODcpXSLRFR6P1oLAyAul8bHxDLVTWP1qeVA7LBI+bTaVQ80iLrm9rXiMkIeAXz5bLjoQsCX0YHLYDws78GqeqWPBa6iWJC+eq1rlwNGcY555w5fw7+8YrF9+Xt3EVwoRcPq48ISElhpcY/2dV1znl9OFyoEoOcJ0WvKJpFOXxBYFT3Uy4WqpZq+AmGMXEjuX9799+rSL9/FgTnzdu5JWdFTQjghhdxIckJKdd3gZX/B+2c/pHv/kIdV7SypJVMPRwk+skgqEEXR1LYZv3vZNOfX1oFLp3+6NepwoRAvq9gA2rKqplQEMxi0zMh9YBTuD0OfHQvXAIlUCcwXPwqunTq79wYhK4gs4lyYHXpHxUrlAhdmx96KMXIl8gu5t5qVs7Vgldub4E2d8g+1jGm3DW/X4BeEKpPEJP0vS0kVwayIB3TMsqsaZhFmDhxKL2+1fulCtyReHqmgmUH3GcvMbF6ZBB1/f8Jlf7FzWnlC5XKyI68DqsjhUc8CrbpQHbkDbj3Uz0tFNTmNt3Wed0TcoOdan40ba4y/JwkdX6VhLwRA9hAF4C4JAFC16OWJYqaMusjEzgc97a/fd/NZ9HN4YNYEZWuCKavcw74QgMwHNABsbfsAczT5jP+ufBxiY+5Ky8fxfUaXj7P5SUXn4/zzKnLEv4V9gw7YjjXhHZ/bzwjycbo/o9vdLHxqBEkFV69erYR8nIw7e5cN9Y7y2xgyuEu9S5eCjSIfJ/MpHXd8jYE7lZKP0+KfxYMkK0w8F2a7nfO2jt5lFPk4xU/omAO0SdUzh1GV+Ti1pfv6xdS08d1ywTfW9FKf4UaVjxNOyzyLqmGecebjPFncv53jiaPe83bs7rN43M1uVZyPc/AxHediH1c15yo0Hye1m+BIYq/nvM1WbjEzZ6ZuMYp8HMSHoMzHAYoQ9VMjGf8H8nG2d7R/d/pWDa+MZp0l9l8uDqzifJzwP+jycTY/r5x8nLrbLG6FPw4MWN77T/vNT1rMN3g+DjE2N0COie8fdDkmxc8rKh/HfdmMO+HzMjmrd2etHLq74d8Gz8ch6ggDYAXkiAar8Of/X+XjRFGpsTEnRO1EQVvZB44Hi1+/GPoBv1PSLx6enfSR82Wx2idM9di+aMERKWTw9Jh6NyepveqUKZMPa+bFwG8glbxCdn69wjNLvLb3GPWqWv1jcsrn097J0SRqyV/NUKDCgjWPYpFIJfHck45SqR6NJJ8meROQygZs+Jdw/jPLmTs+cdMZ61ChGDBMKPADej0RGw5hq4qVAipW6n0mzVkt2xV/Jq1BhuO1ll9e8qbebxXiUjz1b40zaU3nBY1s42btv6VuZ9v3m1v+0jiTdrvk50fPjru5m+QmUctDM45rnElTDORfqW2eH3CkX3DkqsKEcRpn0vbc9pUOOdw5cNWoezHs7kF8jTNpTzbO8Sl2eR887YkPM2n1sz81zuePZUgPfLUZwtubXq1hjd/X7NFoNtNj8YWWLzfP9Nzx0mxL/cRFAYBkgZIWBfe5F3vjjffiQwUHo4JPzQGkmijpZt2l3NXDONwVh0ZY9xtz7S0gWaKkwKML/x71ODho41f5o/UXQ5wAyQol+VqWyPnufO6cdfJ2HqP/XgNItVCSZZ3hi/7NjQjYe4ozNT/u3iZAskZJ0yc+mDS63yKvLbsb5I+f/hwew7PBnjBqjll47QOcdeLatT58T7YGJFuU1DZl8LCY5rsD1ieemeu7uuN4QLJDSamDlY8CFAuC01869rc57woxrI2SHizvMSZ665CADfbD2s9abpkJSHVQ0qnzo460OjjYb6Mikekhvge5XBclDUro0vwHr7Fvcn0f07k+ds0BqR521/5noWt+DvRe8yhs6ObrSoh8fZT0yDXC/PYyBmfhup5p/7ZcPB2QGqCkefOWPu7wT6OAnTbuqeLC0QmAZI+SDhSnpj0/38tnzeGwwKlDt80CpIYo6Vq71Kby306xDz9/ywv6f+x9B1gT2fd23EUFEbCggqDGjoiAfS0oEEJvggWxRhIgGkgMUVBREbugYkdERextxYaICq4Fu+Ja1t57RcVdu9+9k5mQqSTLkGT/34/n8XlkDjOZvOfec8+95z3nnDmZBkTWqGiCS1KD46Lf3A8GtTm1Lu52byBqiIpmvAi26zLyg8ecLKce2xu8uQVENqjonIc05MaPfM+ltWw2ZO33bAlEtqhoR//szD/nvHLNnNS077Ol5+Bga4SNqGqS+Q9uxblOq9/n228/7BOAqDEqyn620qXztOY+2+v84z5h0jQZEDVBRU/WXI9O4H8O3Gcf4bIgOxlWl+CiIrNumxMdbl3h54+rH1Uw9PlbUrJlUw5NsuWWOSte32qaEJg8ZPn8u/cX32Uh2VJEZ6LqRe7fkXH8FD9z24PxZ2wTs/CHifwEmUQqpGAQVKVZVlqhd6g4n0ip9bgYgUQCjBBaxV5DygDRQFG+GvmcExVoWvsKdod8fhzaVwrvN6kdnyN7pl0TiDJGpfJFKL9bNZfn+Y6rHHhrz2/v0LTxATYJlSw7uc4AoFoQICGV4/YJbB4OP9OKDdA5BDhMcuTsTiiCZXqlcWKEQgHeTyyBTZdV44QLPCiuAG65IihRtBuQE37n6F33vKXRjSa0+rUUHwJVfQ45BFomYr28ahtkxDDAxX1mEPFqMl1Py7ah7dCJJixTlyJaoAD7l1EiLnBAVG2Y6GOlifXPPZv+oWdAzowWdZ8M8rAknJajj6U4LcckbGvP1REd7B5U2jvphAx2UsRUS+CaYsQe7NBaRASSEqzNPz6F/x522j9l11n+qbzmORWnEbEAFjLUacECQx1dfyI5NOvP/7IP/lX2AdFD11n2Qd5LpuyDvBeVkX3Qbly9R+6KBT55V1rXsSv19GFxsSRaIBayDza9ZCRrv9RJ9oHVQs/uB22nue5PDnvjs/h7sN6zD4wZUQHjxkAjJbrLPphy3/7rjrb73HPljVotbDSgt8FkH0S/YFKdlX5Up/PsA6HfNucaSZd8Zsqf5LR5IZyi5+wDxMrQ08df6i774NLA8b4ZXxr7ZhXtfXqsU/NDBpB9YMwIDjA2uss+cAyr0VF4Ya7X5rnhu762K8H3NtZf9gEyp2kRAnMa9duiODR+26kVAv/v3Rp4JW9oXP1F8wkFeG8U6VkX6uGv+cGBO75lJOoJgx1iJPgV+F3j1PsqAmOLjlfoe6Gu20SNHCfi+SX1e5O9aEyiRWsXo7pFytYuJFdJBjQwrU4R+70lN2ZPP/4t7VngtKTfrs/LP/+WEGSHd1ME2ZHL5XlKRPvHQt+Wb3UAQDKqQRjswOdcxgNUXuzMCgEIGxd2QrEcDF8gp15s+w7tXbKvYyff+bb/NP9nnG0Gflp6YDeTp2WZqDzAdp7/ND5xUXPPWXdezCotbGTNAmDbGAEDI0ovTpRyzYB/05FD90NO6TRm0KUpoksGq+pfnDjynf3NoOVvik9Pznr4vA6SjAOUwU+QyUWq0B3i1Lq5h9qFtamYA0xQ7dqbhbNXHjkYkPxqW/2JP/vuZEG1gxlV20lPqqXyj9O0awBXfv/S52m/eG2v98Fz/9aBPV4+l5vrrX+psxNqk2D/Uhlpf+uETDF0YYzm0CyM7pcb3B7bdbfr9kFDrVL6H8KXBraEJTcV8OgTsnFFMD4s0qLrmRNPGgMgVxb+RB4jLHsMsjksa3YmBINEoxWRGLYr/4VJ6qD8K029EXhg+jfwRp65UzRBS4Nl0v+uaK6em78aKPC4AZbyhd6GNJZrhzXwAugpk/jg/5Q2LQ6eRkvjRTQZOPcnTV87qksePz+p5sjTF1Ov4W0M0guVokUcer08G9PC4mPbYd+6uq+7PrfxwX1rrSpoYw4DmIdDmI3cKdp+nbRHYK7okXBLNfWrTrcipLFxoogxyPCALSSoTze39Flc+/BDC6/ZRlnz+j3n4Cuqm5Y9l7z9xQlZz2hqh8I2mAo2YycENtQkiOlMwhnz5h/ad5EGzHj/1s/x0mQ+sWGwTCKIEHEDx0gkFLaAzmFuh90XC++DY1YcO1YgEQuVgzxerIjmSsE2Ra65JSBG6Rnek6qxsZpYU+oZrEdYCtA1pQq+FcN20qUVnfv14aKGtD9UwHZ90EhCxGh6Pp4L7nzLxG16k8ARXVcFvsa7z8iDyO6z8nJ505nISqgonQpM5yyIXDaVywC7lwSX0lLPNETORoWcHDfU4NCihC/5r3Y1ZoX8GbjltvWA+AYdF+Gp2ugAoQ7p4KVsz2KIFocRrZwPOj3Fwl7UuO84mUgdh+ZqnB1HP+DSiiSO8G/iHL28h0EnN0okJ7CE4U9FDXd9ZIGEigWPAJvqcUpVU2dREBamikySivZQdkJnQYkbFanQGZkFWh2EWSnbmEJfAVmrsKEvpITC2Gxp3I/A5/4HRLuDb1o+v08ITMBvRRGYQC5XBhQcRijAEEcXqpEcmoXKYOrWE60lOy18KqFsfd57xlYB7zHIRxk85ERuHDuQtzg7+XNsnR+8KXenZN1/kNiEBcitfjBBfu07BrmEDnKtWZkWGOQ6YGVSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxVubMX2d6CbZc8Sj4vbh2vUfnh5Aob3DwUo4+Iv2SBcpbDJ3+m/kda3d7Zw3PjUbCEVef18Lrv67ysJ8nkcZBdxEJ4JCd8mo0s62Zpxi27ImGPW6UD0C2lHCfidIQNAvvEymn5b4iCRyqP9LUKwfeUsIbMMmuUZ1dw3aQCa+1CvPbKKNtSDaIFKoG4AF+oecFWcv7b0kZHOe669mxSfUHOfWsSKytco+xOWDjHP0GXXZLSAn2QFrymtIPp8OqnooSoY4VJUqmF74GG/UP4y3KrTN/VdUMWxZpEVP6BX48uSHBc7N0tvcs93FHWEAJjBkGlDivtWvS7hCMzStksiGYYVMObvUw7hlDqORbp7E/kgt8cj06Js/kio/pMZ4L2y8ig4gyIFcCtsFWb7RzY+1V0UMIUYRazQq4AuFsEyU48yd1b5nxcp3bQrFlM65N3WEGELWEIJ18zQRSwmvt4rotPcTKb646qiobMkhgkd5AxTd80n+F6S3/WRFhF+f9sfw8PoqIPZccRVRJKgMdO0Z0rr3CHKNYDs3C+LJ/oL+R02fekrVnPdcE+YSTD+LJK6ERDbhN8fFcFdUtXqpV2ThigoWmsQFN2d/QQJcA2M5S5T46A9hcS7Rjf2sUpj3fbXpQgeOAwGVXHtfpYdSSULoPicfSLOs4YXlWnGjiKsoEB2Ddg2AFU42x4rZ8TlqJVmudOQKWCMw0eqhcTZbEhHuf8F/nf2FsvmN2P7wl4oN7qYFSE+nYJYAwuTLCVPJWu8Wu/BAaMdastxAatDTIGIEhNFIn4SwnBBrUDknp7BCv9VmnblPv+md5rnmn6GbdiHgOHSOQcZXnNBTn5XSueWvlfVi0B8lLEXBjRfHwkkgujkAXSI3MEjG5i+ENqU7K1cQa4iqz43P8zYtg1SQKnzwHoH7WTCs+iTkShlIe7oLXoS4T4FJvsdH37ryZtaP2ePcahP+WVZEHkF0k5eXy5hwxz62Ccw4ykz0gPNvoKjrYmmvFJjFTvg9ToS/7/j+3PX3e2G1x8ah+Lftlr8RH/5T3k6N/6PXy8KnbsIGxy6Nz/uvzvw2ymNnLmQV8Ss2Y8AHDRx8MA2OEuDFWCURPDvFHu0rgZn0F8iiRgklpEtfj27tf++maZ/Th+6ZqbQjV2ZT3k5WGXmf9zBZoZR2jVhINSislhZhWtFq+LBCDJxMJUeNLqRjFknqF4y3n+Bz6dn/N1awRNnjFBCD3kxWDXmdbMTIn1JzAY0bSfjXHmc8xNi/SakNmo8IA2VhIxOXhYR4deX700rNu2ziC46/588fhWbU85QPIrFpMUBmInDVjQiTNDKPGyDg063rOQr/SQT26+8wo/a4wPnrjA17Hyk/UnAzTU7XDwC/g3PhocUQ0cCthbqEgLg5WNFCxYtDlX7PNBzFPm+p9yWNSeV0bnqgZyhMlsV9kYFd3tiZpXdcyAm6LuhpwsRcri9TAFCblm1B+8UleE5N8fXy8NlrfvzHophU+kFudzrFRCXS8+CNU0ppFcANHwdEIbotgqJXF6hmIjihlWU5cohbkA8UpzwdgKUD4/zKfkjshcCJ1aRvCeq7XqqBwX4sAZkUFGKzFBABDJ/NouslsMIEr4mhiqcc1MczBQuTKu2YRQ+TKToW5nA7zwH2e509xjvGSwq17iF/41sZXjUL6ycsk4ggkLYxsSOmQtgkA/gBYnhTgTgk3BvcUjewksTIF02uRi1nh5Zoe3MAibbUBnKlUBzcwRlGrdpGZ6jQS85yw9aSGD7SlOF3CT6qOXPYRYmNgoPDkvCqFJh75bxoEmLWtW4zJq9DITYMQ80IaI8bK6/QPVr4P8rrwT5g2bo08xXJgcyA7ASEz4fVFqZ9Dx5udO/ohxHODfOFqK6sJeEpqFTfy7HAjzY4qhNnRJbd+nzTfbgFzbJvN8D7cJbGiZyaw9SxUpzMVewESdH6rXaQGUnknS41DRRFSYKG1Qcl5+7os0+713bcVTPfrcWFLLzxK7mSU3MtF6WU/+YZ1ke3cfy/2E55b/KeMBZRqMaL0rFYROgZVY4mR7aKsFwgdIw0AIrLe8WuY8lHkNQy9XhkH3siI+UR10BTmiCCF2tO4/5g9JZbz0ZU9tWC0pxb/s6eoftrvM3me3+Gc25aMgdmzr9k2ZcGeEss0sWFPLRjtqUVl29P0uo+mbd210Huf3LrayE1V2rBgT4mHBGzYU0aUnplXoj0lrqH6t6cWjPbUArOnCjp7ajB7AuJ0YofM1rmK9bu5PJlH7kfX6JzLc0PY4A+aM20J0s0xyMfQQa41mc0cg1wHZDaKGniYqaeogYeR2Shq4GFkNooaeBiZjaIGHkZmo6iBh5HZiB4aibEGrSLlECNWz2OBsTaWNSWb6lDJ/66OJEVRRUzJxJg/SSdGdDohli1kQSfxdDrJyLs3cOajTz75eXvzd466j99UVQ0WxIok5AKtdIbNzo0rg3eoVZnmxkoVImVxIYUoQcFVFmelZusQ6i5SvIom1s40NEIulUhC4IoFL6o3ZCVYQocrjZPsbv3mNWvW26l+A1bT5jYb94sTyfuC18c+tqWHdMwICeRqwUqwsPCPUKxAvzvwMGCU40HSBoJKsFK9pGYsrfmcwcbAgHbjcZJm8moECORR4lh/USRuATRVXg6BPTvUr5sor/eVytSvEkrAJrfmDxtoXGSBgBgsh3mDCrHyrapjb0U1oeSCeJ9YISy7hcFbxQRehKEXtUuIry5ByworNwSwE4hYIOHBWlBqC5FCLhLEqH43GiAXyFT3oEM1gW6oGsyyTKwCytJRHXH8s7AuW5owrculxti6PM7gMSeWVzXc49Hgn0zE/lo/Md7IeDrMtV4mzTi6WyYp6uZiyyRF3VxsmaSom4stkxR1czFf6FrWcpfSmbvdf0+taxQjqP6bmi/UqURe29R0s8eBkh2j8mz++oW0uEKrT90aklCMl4XFdQKdJg205Rix6LDOWo55NC5iaDmmaEQKEbLccuzDSvPSrqf2BKV2Gvx1S3J4tgG0HOsJIaFt4GLZWC/ECXzfpHv37umg5diKxQFDjs1Pd8v0ejkm/3HCV4NoOfaqEZN2jjUyAO3opOXY/i91k95G/h6wp+aLq316tcHTV/XVciyTUTkKQ1AOR58tx6704h/es+8Xt4zpc3/uiPLeY1Atx/wZlddCP8ozzJZj3wpiLjS7PCNg467g9lnnI5P13HLsmy2T5i7b6ltz8KZKazm2Y0iz5X+c+9tn9/BGT/d+yDEyiJZjiA9B23IMGELUT03k0Pip/6WWY8S2GHpuOTa8SRFDyzHjJrSsN1ZbjrVfcjpEWjOInz8tr/u8y7E3WG85VuP0ZnGr3BDX3Ysf1Q5O4xqz0EYrDCJH20bLuYlWRHctWo6Fr8g167OhbtBMY4eh9dZnb2C95RjRRrCAlTEjVvd0u0vQd8uxiXRm7H9F+P9VEX5iNyGdFeE/zC1iKMLvytUqE0jDIvxFC9rcda8W47nv1ahPa/rOx7dbr1i2Ocs2EtYsz4MI0dYsT+OSbGRlFOHvP9v+VP31dbxn9xHWqJPS00LvRfijGVEB48Zg9g7aJf6wV4S/juncTX18fPnbYrZYj1oXjT+212cRfitG1ZU00YvqdF6Ev2NfW37UoOCAZJNVpXUOjeDpuQg/YmVoq6gDK6OzIvwLMvxtEh9leOeHV/u8tPZlfMEs/RThj2YEx5UATnnFGipUhN9yRrPPtfqtCJwbfPFjR/kzfDkd/RXht2JECMxp1G+bxKHx2/hu9m1/ulx223Sn8eY/V70l1BFAkvhkUglY0ck+mzENzp3LQiTisvvRWhgAcbl0TFQ0V9U0VptaDsQOi7RvS656oCbUlNvXis/5rTXAV8CDhy4EfDntwfRsVdHEKsuy1wJXUSwov/rntavrWoh7+Cx5Hn3gcnE/PKP3X/XuIrhQXccO2uacvN/1gHXu2U+1DvevoAsVDNBzhug14VGMTm+4sWqtlQtVUzl9haIouYjavzyV3P3Iu2uPedmz6hXcWFviRciQQm6kyJBSXme97C/4/vdaMX3/vFb6dpZUI1MLRwm+slgqFEcw1Lbptcln6uzAUN/FloqApK2LU/BjFXsAeayqJJWhjDRGZUTrRxlE94ejTcTC0S9WqgDLlyACnp3aObuALSvYWcQ4cNu7RERL5UIHbgeXuNFyBfILtbcaOvXKtaJTzfkLBj59XnL9lBS/rsEPCFWMk1D0vywTVYayXBmVZWUQMwc+SitvtV7ZQXfsGPmIOIYZlHzbtJ7TiCDetANZi4Lfd2lZka1yBdVxuD1qyGGqZzGpLlQH/tYvrbTzUlFLzuBtHak/W2hs8sBtX+r03B7en6brddsLATjZCgXgGgUA0LRo5YliSxl9kQmPwke1ZhwI8kjZfT18V6M+DfWa7AsBGMwEQP+WrTBHczLnv8XHITbm1hkfp1MbJj6O0K6y+TjcrfET9hZec1/7+I9Xb69NPGoAfByHNkzRTaM2BkAqOHHihA74ODeGVcnr0m+ox/abit01o94kGAQf55Ydk3b22BmAdnTCxykM4gxvFWTmndIkKafp8iHhBsHHSWVUjtAQlMPRJx+nz8W0x4dP8PySsjqm7M/53dig+Dg9GZVnqR/lGSYfx6mmzROLbUX+Ux8+bjrnYLfueubjvGrNyFFsrW/NVSofx2GD8Crvr1VeS7bMW5k2ZHemQfBxEB+Clo8DDCHqpyZx/g/wcZ6suR6dwP8cuM8+wmVBdnKinvk4Pe2Z+DiP2uiGj5N0IXPS4hNZXqkJiwdK9nXYzDofh7g3Z4Fj0smeiWNS076y+DjzjvmteDBmsGfuuqjWP349vIl1Pg7RRrCA1aM2TFgd1O0uQd98nCl0Zmx0obitOHALb19BkOTpo0H4Nr6mfcbA3EkvuUAWTc4w1SJ80cJDHCeD2WOqaM64dsosU64A1syLgp9AOfLMum1OdLh1hZ8/rn5UwdDn9O9HjuSoC0njzyQUmLAg9VQsilFJzHvScFSqnkbBp5GYglFZnwf/EfI/M+z4w8SmRWahIglQmEjoA+x6AvY4RK1KVSbTqVLrnDQ71diu/Jy0RaO/xP/aqH/gitRVvaZMPtFbLSftZOeFB+9W93Lb3qXe2649Nr9Ry0mziJxtbnz6rNvs7k5pzzu2SFLLSfPs/vOPV1+2B6yss2/e7Sm949Ry0u41ODM8Zo+925Y/Wth9Wr54l1pOWktpj3e/TJ3slrUgTxxR+PCFWn5+ix1PjC79fdpr7syCb8WXu69VazZTL+NS0JQrw3xnHvD7saXgcwcgMkZFB2qOLclzOcXf0/uhnX/8uE5AZIKKXk62dFrUqIvrrJn/THH7uHUdENVARV+nfvrm3WUxb9H+dk/2/+MdAUSmqKjO8cYlU3I3+qcYXfHq3e/670BUExWdzlhU/WtHofc8UfVDr7M6/QpEZqjos+8t3wGTt/jurL5z8+kTe84AkTkqSst6du24/Ip39izhvVdm2+8CkQUqMhGvW5Vc8C1o9Z7dj3dfug1foxYqetPQc8O8w8m+WUNvVXu43AF+Vm1U1Pqp8TaLgi2+izpOEy1LuxMNRHVQ0fFQ879KOp123Vxb8iy8eHkMENVFRcNS18/huLRzP1j4du6dELu/gMgSFcm9zt7ZHjjdfaefxdKQz3VrAVE9VHTq7JFMxemWPmkPCtu+XJ01Aojqo6KqMT0KS9JyvDZZNc4fW9AjEogaoKLBdrNXDF26ImjNshuxDY6XngQiK1T0cdnaPp/efwxatc27Xcgg22dAZI2KvO4NOOJ3ZZPPjLtdT3zstqcHEDVERRtLnKbsnL3Oa8rKH8ud20TAu2xQ0fw8U+MO2y4ETn088rehg0+aA5EtKnon3v/2ZY/T/OQ5HTus/z7bC4gaoaKHNuaNb1wpcZ/Rtunu3i/rHAaixtj3aj+1+8djyW57nKbVsw+LWgpETVBRV+fbA2zirQIXTOjx8sbtG8uAiIuK3B/HJMlXnA2aPnmr/YGbTc6Rki2bcmiSLTNLOtytN/ee24KIJh2eLfngQGE2tE22nEpnoupF7t+RcfwUP3Pbg/FnbBOz8IeJ/ASZRCqkYBDQNSZthd6h4nwipdbjYgQSCTBCaBV7DSkDRANF+Wrkc05UoGntqzZ8To5TEbSvFN5vUjs+J8xJK0ZlrTJGpfJFqPn4aUtqrM/vFvj7hQsxGdkvclkkVLLs5DoDgDZBgIRUjtsnsHlIctKKDdA5BDhMcuTsTiiCZXqlcWKEQgHeTyyBTZdV44QLPCiuAG65IihR3OrWbf1KG3lgfqfq+enXE2/iQ6CqzyGHQMtErJdXbYOMGAa4nJ0MIl5Nputp2Ta0HTrRhGXqUkQLFGD/MkrEBQ6Iqg0Tfay0aLr/qT/sst12PHHPeufusYxwWo4+luK0HJOwrT1XR3Swe1Bp76QTMthJEVMtgWuKEXuwQ2sREUhKsH5ZUMvhZtVqAcuDOHlXzwmqVpxGxAJYYYxggaGOrj/TODTrz/+yD/5V9gHRQ9dZ9sE3Z6bsg0Tnysg+OPe4xOqmSbOAVV96dm1U84w5i4sl0QKxkH1Q6sxE1j7rrJPsg2u258c96yTxWmEvGXDkdcwRvWcfrGNEBYwbA42U6C77YOn6BX+Xfgz3XPww47D0azz+XEWf2Qd9GVXnoB/V6Tz7IDyjfpzEq6r/7ObhNVK2Pf1Nz9kHiJWhpY8DK6Oz7IOWjf1rp8b5ux4ae/Nnzf7GEgPIPljHCE6isw6zD+rHO7WfeOuW14JOe8+aLjA6ZCDZB30ZEQJzGvXbpnNo/LZTKwT+37s18Ere0Lj6i+YTCvDeKNKzLtTDX/ODA3d8y0jUEwY7xEjwK/C7xqn3VQTGFh2v0PdCXbeJGjlOxPNL6vcme9GYRIvWLsX+aGsXkqskAxoI9tfuWEGj3pIP3CdLrozeGji96skVQ/PfWxGC7PBuiiA7crk8T4lo/1jo23ISAiSjGoTBDnxOlr9WsTMrBCBsXNgJxXIwfIGcerHdcoKfO2XiRN70P/wurr15YyJ+WnpgN5OnZZmoPMAOXQi99bUqz29lt8a7hjnbW7IAWAIjYGBE6cWJUq4Z8G86cuh+yCmdxgy6NEV0yWBV4+ophs164ui+Y43NtW8Xn7ytgyTjAGXwE2RykSp0hzi1bu6hdmFtKuYAE1Qb6r2ZM6Rnvt/uq572sTMCXFlQrR2jajl6Ui2Vf5ymXQO48vuXfqgeujjT1MNrmqtTs+U19wXprX+psxNqk2D/Uhlpf+uETDF0YZzBoVkY3S83uD22627X7YOGWqX0P4QvDWwJS24q4NEnZOOKYHxYpEXXMyeeNAZAriz8iTxGWPYYZHNY1uxMCAaJRisiMWxX/guT1EH5V5p6I/DAtAsA/Zk7RRO0NDD4uV0qmqvn5q8GCjxugKV8obchjeXaYQ28AHrKJD74P6VNi4On0dJ4EU0Gzumj6xO5p1J9V1wUrW7rN+wx3sYgvVApWsSh18uzMdW//TASfQn3mO/2rueD+/yK8i8OA5iDIcxG7hRtv07aIzBX9Ei4pZr6VadbEdLYOFHEGGR4wBYS1KebfnWfH63HW+e7upaQ7zhrcF08q6DsueTtL07IekZTOxS2wVSwGTshsKEmYSadSThj3vxD+y7SgBnv3/o5XprMJzYMlkkEESJu4BiJhMIW0DnM7bD7YuF9cMyKY8cKJGKhcpDHixXRXCnYpsg1twTEKD3De1I1NlYTa0o9swM+TWeArilV8K0YeMnczhWd+/Xhooa0P1TAdn3QSELEqElVQStdX60d6La0ys/DXxuLn+DdZ+RBZPdZebm86UxkJVSUTgWmswwil03lMsDuJd6dad1nDZGzUSEnxw01OLSo+xxOffjg8ZWpXgtvhX50+5n/BU/VRgcIdUgHL2V7FkO0uIxofeqkUwcLe1HjvuNkInUcmqtxdhz9gEsrkjjCv4lz9PIeBp3cKJGcwBKGPxU13PWRBRIqFjwCbKrHKVVNqWXiwlSRSVLRHspO6CwocaMiFTojs0CrgzArZRtT6CsgaxU29IWUULTJMopZL53uszw3L3RywuodhMAE/FYUgQnkcmVAwWWEAgxxdKGaxaFZqAymbj3RWrLTwqcSytYndmJqFTBYBflsg4ecyI1jB/K3ksWrTIwH8vY8+DK8tdOgUhYgd+jOBHnN7hjkc+gg15qVaYFBrgNWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKFVdk8gkSoyV6Xivt8vc0dc8cwbNSLLuE+BGorzBwUs5+oj0SxYobyl0+m/md6zd7Z01PDcaCUdcfV4Lr/+6ysN+nkQaB91FJIBDdsqr0cy2Zp5i2LInGva4UT4A2VLCfSZKQ9AsvE+knJb7iiRwqP5IU68ceEuDO4BJdo3q7Bq2g7zVXquzaxtltA3JBpFC1QA8wC/0vKDJexqdHnbMPDDZe0eT3Qe3Lq5IrK1yj7E5YOPctwO67JaQEuyB1KoDpR9Oh1U9FSVCHStqDkj2zty2fhs955wc/86nu8lkFmkRU/oFfjy5IcFzs3S29yz3cUdYQAmMGQaUstpr16TdIRibV8hkQzDDphzc6mHcM/pQSf+006vOtZ7vtf3OaB+b5/ff6jGeC9svIoOIMiBXArbBDh20c2PtVdFDCFGEWs0KuALhbBMlOCu7+v/1vsfhwPQrSXP5q3+baQBRSwiSESNIt9prF9dt6SFWfnPVUVXZkEECi/QG6vBy8f085xifvL8PWqaePz8JH0XEnkuOIqoklYHOnvZM6KS2xxyjVA7Nwviyf6C/kdNn3pK1Zz3XBPmEkw/iySuhEQ24TfHxXBXVLV6qVdk4YoKFprEBTdnfwPSkdwSwnaXKfXQGsLl2rIQwbUoX3w1nRwn911wIvtzNg7sKf9iJxGNplnWcsDwrTjRxFWWCw+K5EKxgqjFWDEtxddRqrTNHwBKBmUYPVVhG055zg/p7JN8bvjeteVc869WED+6lBkpNpGOXAMLkygiTVUftFrvyQ2jEWLPeQmjQ0iBjBIbQSJ2Es5wQaFA7NJfODvFan3XqNvWuf5bnmneKbtaNiOfQMQIZV3lOQ3FeTueat1beh0V7kLwUATdWFA8vieTiCHSB1MgsEZO7GN6Q6qRcTawhrjJYBdi7CFZNovDJcwDq6V5aGSpzJAylPNwFr0NdaOjTxLNRy/92X2t+RrJknUsdvIuEPIDsIikvlzfniHluFZxzkJlcC8Kzja6iwzMvrdgkZsr3YSr05Xi/dMbGNvc9Nq7YYzRqW50L+Oif8n5y9A+9Xh4+u4e98yn57aJ3kv+4oTMXif5hAZ/DXkz4gOGjD4aBMULcGKsEoieH+KNdJXCzvgJ5lEjBpDQvE3FcwPirboV3ZU6dzy0oxitNeT9Zaeh11s9sgVZkjFrxNiitlBRiWtFq+bJADJ5MJESNL/V2rGnhLy1GmbitHn711sJl1fDx32oByP1kxaDX2VaMzAk1J/CYkbRfzXHmcy57abchs1FhgGwsJOLy8HhSNFy6/1Vt/1nmL01adf0Nn9pWnad8AJlViwkqA5F0LyZEBnth6/o8Ds26nrPQr3RQj+4+M0q/K4yP3viA17HyEzUnw/RU7TDwCzg3PlocEQ3cSphbKIiLgxUNVKwYdPnXbPNBzNOmel/ymFRe14Yn6onyREnsFxnY1aV7VjQCbou6GnCxFyuL1MAUJuWbUH5xm9nXW+xbv8Z/1k/Zp9yaa/Fc9+p0jo1KoOPFH6GSQgydqTgawW0RDLWyWD0D0RGlLMuJS9SCfKA45fkALAUI/1/mU3InBE6kRJS4nuu1Kijc1yKAWVEBBmsxAcDQyTyfbjIbTOCKOJpY6nFNDHOw0VfckylyVcrHME+jwzxwn+f5U5xjvKRw6x7iF7618VWjkH7yMok4AkkLIxtSOqRtAoA/AJYnBbhTwo3BPUUjO0msTMH0WuRiVni5pgc3sPSSH4AzlergBolR+BaZqU4jMc8JW09q+EBbitMl/KTqyGUfITYGBgpPzqtSaOKR/6ZBgFnbusWYvAqN3DQIMS+kMWKsvE7/YOX7IK8L/4Rp49bIUywHNgeyExAyE15flPrZIKixscaqJ557NxabTHGUdMHpp4obeXa4kWZHFcLsOO7zz+Oa84zcC3bPMd7Zpii1omcmQJ0OUJ3OVOwFSNAx8itSA6m8k6XGoaIIKbDQ2qDUfr1r8ozJy3y2j8xZkimYPgKPkjsZJfdyUfrbvEdz3qerHsu/rbpQfaJNAgsogWHNgNIe3yJ0DKrGEiPbRVkvEDpGGgBEZL3j1zDlo8hrGHq9Mg68kRHzieqgKcwRQQq1pwv+Y/aUWM5HR/Z0lg+TPXX2+Z89RfUz57DP6pLz/XxyVtt41vt4pSUb9pRQpokFS5Hkw2Qpwnwq255OE6993bP9ZK8lD63r1fNu340Fe0o8JGABJWdGlIx9KtGeEtdQvdtTZMTQ2lOAFGpPF9LZU4PZExCnEztkts5VrN/N5ck8cj+6RudcnhvCwpZgmjfTlkDojUG+iA5yrcls5hjkOiCzUdTAw0w9RQ08jMxGUQMPI7NR1MDDyGwUNfAwMhtFDTyMzEb00EiMNWgVKYcYsXoeC4y1xawp2VSHSv53dSQpiipiSibG/Ek6MaLTCbFsIQs6WUKnk4y8ewNnPvrkk5+3N3/nqPv4PL+qwYJYkYRcoJXOsNm5cWXwDrUq09xYqUKkLC6kECUouMrirJRfm1h3keJVNLF2pqERcqlEEgJXLHhRvSErwRK+OVX3bIt7fh6LF/z5zfm0Ay2T2rhfnEjeF7w+9rEtPaRjRkggVwtWgoWFf4RiBfrdgYcBoxwPkjYQVIKV6iUdSrcGewB3YEC78ThJM3k1AgTyKHGsvygStwCaKi+HwJ4d6tdNlNf7SmXqV/FW2Gh8a36enXuRBQJisBzmDSrEyreqjr0V1YSSC+J9YoWw7BYGbxUTeBGGXtQuIb66BC0rrNwQwE4gYoGEB2tBqS1ECrlIEKP63WiAXCBT3YMO1aV0Q9VglmViFVCWjuqI45+FdfmeO9O6fNgdW5eXGTzmxPKqhns8epmR2L9HRexPp8Nc62XSjKO7ZZKibi62TFLUzcWWSYq6udgySVE3F/OFjBcWvshYstt9zruP5zs+ut5QzReyH5mS+0fRG9+8RyF9YovftiAtrtDqU4fOCcV4WVhcl9Np0kBbjhGLDuus5di0/kwtx/b0q+yWY+mtrhiHb5zuvatL6Kh5j5qsNICWY4n9mRq49O1vAH2Trl+/roOWY0HxIX81lbwPmvbHytnjpTNMDaLlmAOjdowMQTs6aTm25Je8sIuTzvsVfOt8ITr0xiiDaDl2qx9jP7h+BqAcjj5bjsVUKckMFeYHFD5fOD560f6pBtVyLJVReUL9KM8wW45duv3A+9tX76BcyY2/L6ydsFrPLcd6MmrOUu+agzdVWssxt4gs075tFV6zfnZva2ndn2cQLccQH4K25RgwhKifmsGh8VP/Sy3HiG0x9NxyLGsAU8sx7wG6aTnGrR0y+p+E/fwdXzieIf7DlrPecqxlV5Pgk0+f8gsGHsh4YfpHhWMGkM02gKmNlmxAZbUcK/xxt4XXi5aey0s2Di727reC9ZZjRBvBAlbejFhxB/x/1XJsBZ0Z+18R/n9VhJ/YTUhnRfg5A5mK8CeFVUYR/tF2P/d/q9c3YE7bv44/j9yMJ5FVLNucZRsJa5Z/CmOqWV4cppMi/A++t4nMdbAM2G02dUqAxYbWei/Cv4kRFTBuDGbvoF3iD3tF+Ac9XG3N6RXtmxu+a1ezqg5tDaYIfxij6pz1ozqdF+GPTY9rWH1uTdcFg27uX9XpQLqei/AjVoa2ijqwMjorwu9UtLr1vT/D3Bcunrx+4djcagZQhH8TIzhJYToswv+mhuXgBeJrrgXxLgUbJ17abgDlLCBCYYwIgTmN+m2ZHBq/je9m3/any2W3TXcab/5z1duO+DoCSBKfTCoBKzrZZzOmwblzWYhEXHY/WgsDIC6XjomK5qqaxmpTy4HYYZH2bclVD9SEmnL7WvE5aUMBvgIePHQh4Mtpz+c8G1LRxCrLstcCV1EsKL/6Hx0/VWt74iFv4cjzAe2rb8V3WfxXvbsILlTbHXbxba/U9tnzMtf7o3t4RYvNBwP0ZkH0mvAoRqc32FgNH6qVC1VTOX2Foii5iNq/rNfuxr0n/Cz3maYb/sh/mpJNyJBCbqTIkFJeZ73sL/j+vzF+/1pD9e0sqUamFo4SfGWxVCiOYKhts2zLY//8pE8BmSK/B03e92+KH6vYA8hjVSWpDGWAycqgjMNDDML94WgTsXD0i5UqwPIliIBnp3bOLmDLCnYWMQ7c9i4R0VK50IHbwSVutFyB/ELtrZpsz73uO3aO67RhbWcajffpg1/X4AeEKsZJKPpflokqQ1npjMqS6UdZhJkDH6WVt1qv7KA7dox8RBzDDBrzo0nboTPWBB6oYvLij7+63avIVrmC6jjcHjXkMNWzmFQXqgN/a8hQ7bxU1JIzeFuHxEbj17fa4HOo3vUmTTOT+ut12wsB4GIAXKMAAJoWrTxRbCmjLzLRLHb55Kj6VV1TnOscE/rbP9Jrsi8EYM8QBgD6TxyCOZorOf8tPg6xMbfO+Dipw5n4OAeHVTYf5/rLohHbb4R4Z71utLd+zvg6BsDHmTacKbo5eLgBkAoKCwt1wMcZ1exQxpIJEf75L4Bb/jKryCD4OJ0YtVPTELSjEz5Osu2suteDTnrs9hSv3u2/39gg+DiPhjEpB1gT/SuHo08+DufRP9F/fRoasOrlrSpii8HzDYqPs5hReRL9KM8w+Tj9nX9Lnn5A4ZVbaJbwvYfjCz3zcTwYNWerd81VKh+nXkynnqOL8l1Xh43tdUHUU2AQfBzEh6Dl4wBDiPqpqzj/B/g4XZ1vD7CJtwpcMKHHyxu3byzTMx9nsYCJj9NToBs+zoX6v9/xWL/TZ1ZhfursAfKzrPNxiHtzFjgmqQImjolQUFl8nPCDVxs4bJjjs8r2+l9d7308xTofh2gjWMCqJyNWloL/r/g4q+nM2OhCcVtx4BbevoIgydNHg/C16U37jIG5k15ygSyanGGqRfiihYc4Tgazx1TRnHHtlFmmXAGsmRcFP4Fy5Lk/jkmSrzgbNH3yVvsDN5uco30/ciRHXUgafyahwIQFqadiUYxKYt6ThqNS9TQKPo2QD0ZlfR78hx+V4Rl2/CYj+EVmoSIJUJhI6APsegL2OEStSlVm0alS65w0O9XYrvyctMERtXs+jTzOX3Dvw5m1HdYK1HLSuF8vBd8preO12rr9Fp+v8/ap5aSZmU6Jv/pD4bZ68Mgu5tMaKtRy0n4/Wu/Wj8xr3ouycxpPOhIWopaTZj3swG+je2Z6zeyeeEAsaVaolpPmFiZ7dnsN33fuA8e9k7oej1LPz3eQbUwak+ixuHHXqiMXjuWrNZsZYP7y9bYOL3yXDwjLu75wwlUgMkZFxju+nd1TReyXb53UaGNB2FcgMkFF1Qb2+4e3poC/58mJWSP77ogFohqoqM3twFWPZ8cHrc/68W3Qm7YngMgUFTVq8+XD+3cjPKetdB1mZv72NRDVREV3HrxfH/dPBH9ZqOnQnXc6wOICZqjI//HTwZvXTQvcdmb90l/ORt8EInNUNDPI3PmmV5Fb/hKj2BWlVS8BkQUqGl/t+NLkToc9Mxec4+4dtNseiGqhoq7Pi8aNDI0I3LDr2Zc23Zx8gag2Kqpiwd92u+F2ryleDa5dfrC5CIjqoKKW3gMf1PKcE5QR29o3ML/2dSCqi4pudhlX2LF/PG/G8JAUh+YrTwORJSp6vD9j+vH5Zj5TXjc9+m5V1b1AVA8V7bywd0bDWZ34y5e+TO5Z7Rn8yvVRUZ9TW55NUzT13Zuw7uXxRP92QNQAFT3sMraH618B/F02My1N2uydDERWqOjlhb7eI37t456/uvUP17NSONisUVHNxPfP0/tMDphz2H7k2dwZ64GoISrKWVpndNyFjX7Thhmt+ZBcH4psUFGT6Fvde5l1CFzTfun0I1eOw8+yRUVe0/a32n3DO2CeTb3dJlWzjYCoESqy2hH1ZuuRtX5bcj6dalivRzoQNUZFvIezE9ZP28Zbb9XOZV/t3juBqAkq2qCoX/vjsnm+aYrlzer+sgm+BhcVbd714tYPfph/9twUu17Z3Y+Rki2bcmiSLYWWVmbOF+4GLBw+ZPO5/k7RFGZD22TLNXQmql7k/h0Zx0/xM7c9GH/GNhEfnK7OT5BJpEIKBgFdY9JW6B0qzidSaj0uRiCRACOEVrHXkDJANFCUr0Y+50QFmta+asPn9BUVQftK4f0mteNzvgm1awJRxqhUvgjldxvq7h/SQPiL27q77nVbu7R8ySKhkmUn1xkA5A8BElI5bp/A5qGFSCs2QOcQ4DDJkbM7oQiW6ZXGiREKBXg/sQQ2XVaNEy7woLgCuOWKoEQx4uFH15zjxoHpRUOeud76FowPgao+hxwCLROxXl61DTJiGOC6LDSIeDWZrqdl29B26EQTlqlLES1QgP3LKBEXOCCqNkz0sdLQNmuPfKtX5Pd78ZWwRQ+O9CKclqOPpTgtxyRsa8/VER3sHlTaO+mEDHZSxFRL4JpixB7s0FpEBJK65lCtxIXVNvzjlns+gxPW/0laxWlELICFDHVasMBQR9efbM7/sg/YzD4geug6yz7IimTKPuBGVkb2QckdxcgVP997H7DZVKd63KBoFhdLogViIfsgPZKJrC2L1En2gc+D9wv6rPzLY8/cCS2Pjhcu0ysNA6LizYgKGDcGGinRXfbBjGmPtvSx2hWQ1K+0966Y90cMJvvgk4gxnUZkoO4My9kHrYM+f5iYae2Z33GFTfHb1UP0nH2AWBla+jiwMjrLPlj7PaZZ6cbfeXMbmWfa3knEnwfqJ/vAmxEcbqQOsw86NPw891TXdV4HplhZVgsc9cNAsg+QOU2fvCLC/La1HBq/7dQKgf/3bg28kjc0rv6i+YQCvDeK9KwL9fDX/ODAHd8yEvWEwQ4xEvwK/K5x6n0VgbFFxyv0vVDXbaJGjhPx/JL6vcleNCbRorVL3yloaxeSqyQDGrCcUgm9JZ9H2P38vfNS76m+rzrPr/HlNCHIDu+mCLIjl8vzlIj2j4W+LcEQIBnVIAx24HN6TtEqdmaFAISNCzuhWA6GL5BTL7b33K9f3VP6l/8mf8HUatOi3+CnpQd2M3lalonKA2zf0avpHS+lBEyvst/5zeGGEhYAs2MEDIwovThRyjUD/k1HDt0POaXTmEGXpoguGazqyZUnJvlPOxq0e+rlRbNrSgvrIMk4QBn8BJlcpArdIU6tm3uoXVibijnABNUOmHa7rm3kU36mx5HeU588+8SCajmMqn2VZDj+cZp2DeDK71/6YnKr9NadbvjMHqII2TE3Jklv/UudnVCbBPuXykj7WydkiqEL4zoOzcLofrnB7bFdd7tuHzTUKqX/IXxpYEtYclMBjz4hG1cE48MiLbqeOfGkMQByZeFP5DHCsscgm8OyZmdCMEg0WhGJYbvyX5ikDsq/0tQbgQemowDoz9wpmqClgcF/bFRFc/Xc/NVAgccNsJQv9DaksVw7rIEXQE+ZxAf/p7RpcfA0WhovosnAsYlzOryz/UH3xTUKvw836i/G2xikFypFizj0enk2JsX/eum3sR3csh++u71sa69BFbQxhwHMpRBmI3eKtl8n7RGYK3ok3FJN/arTrQhpbJwoYgwyPGALCerTzayjv5q9KZ7tufnAgbnF04Z1xrMKyp5L3v7ihKxnNLVDYRtMBZuxEwIbahLW05mEM+bNP7TvIg2Y8f6tn+OlyXxiw2CZRBAh4gaOkUgobAGdw9wOuy8W3gfHrDh2rEAiFioHebxYEc2Vgm2KXHNLQIzSM7wnVWNjNbGm1DM7PscWomtKFXwrBl7ysZEVnfv14aKGtD9UwHZ90EhCxKi5xu4n16X/6OS/5PanE/ece7nh3WfkQWT3WXm5vOlMZCVUlE4FprMlRC6bymWA3UtejaR1nzVEzkaFnBw31ODQooRv4FQb54b3dwWljEhdkzijVTyeqo0OEOqQDl7K9iyGaIGRxIBW5kidOljYixr3HScTqePQXI2z4+gHXFqRxBH+TZyjl/cw6ORGieQEljD8qajhro8skFCx4BFgUz1OqWpKLRMXpopMkor2UHZCZ0GJGxWp0BmZBVodhFkp25hCXwFZq7ChL6RetB7nvk/aftUzzXR942P3HqcQAhPwW1EEJpDLlQEFMsRpoQBDHF2oNnBoFiqDqVtPtJbstPCphLL13JFMZes5Ksg3GjzkRG4cO5CLfhm6p+6XEq9ko+Ii59xfdrEAebGUCfIcKQb5JjrItWZlWmCQ64CVSUGixFiZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZizLPXEn3H+L1+/hPAZLQ0bVJlDc4eClHH5F+yQLlbTOd/pv5HWt3e2cNz41GwhFXn9fC67+u8rCfJ5HGQXcRCeCQnfJqNLOtmacYtuyJhj1ulA9AtpRwn4nSEDQL7xMpp+W+Igkcqj/S1CuHx1HRYJJdozq7hu0gk6K0Oru2UUbbkGwQKVQNwAP8Qs8LGlC7ZFKIu3vA1pv7Y4Oy/r5WkVhb5R5jc8DG+VMUuuyWkBLsgfRgFKUfTodVPRUlQh0rSpSOGUmm3HVcGLTl+9ZakR0e2LJIi5jSL/DjyQ0Jnpuls71nuY87wgJKSYwoeURp16TdIRibV8hkQzDDphzc6mHcM/pQSUrMIfslvjz/5FtjRImx0xz1GM+F7ReRQUQZkCsB2+DiKO3cWHtV9BBCFKFWswKuQDjbRAmOxbRT3Xsl/eRtyLrTYEUDX1MDiFpCkDYxgpQUpV1ct6WHWPnNVUdVZUMGCSzSGyiHqDUuwdd6e62rPWBljj3fCB9FxJ5LjiKqJJWBThgjOs5RmGO0hUOzML7sH+hv5PSZt2TtWc81QT7h5IN48kpoRANuU3w8V0V1i5dqVTaOmGChaWxAU/Y3MD09xQC2s1S5j84AtkfRlRCmvS041qeKp8Rzd8IrxbDcWXXxh51IPJZmWccJyz1CJpi4ijLBAVidIFjBVGOsGJaSEGu11pkjYInATKOHKsHvF+/EZ6v5ha03tqnVZsIwvCXig3upgVIT6dglgDA9imaC6WC0dotd+SE0YqxZbyE0aGmQMQJDaKROwllOCDSoHdpKZ4d4rc86dZt61z/Lc807RTfrRsRz6BiBjKs8p6E4L6dzzVsr78OiPUheioAbK4qHl0RycQS6QGpklojJXQxvSHVSribWEFeZHZ9TMrEIVk2i8MlzAOqyiVoZKnMkDKU83AWvQ/ktvzzvNmujdZzX0gWO7e/u/EHo2Ig8gOwiKS+XN+eIeW4VnHOQmfwMwrONrqLD4YlasUnMlO/DVOhrVOboKZtS1vkuvhBrXJDSdjQ++qe8nxz9Q6+Xh8/Mn45P12/64bHo+qOlgTf6b2ABn3RGfMDw0QfDwBghboxVAtGTQ/zRrhK4WV+BPEqkYFLaTds3I+zvZwYs3ui0j/e6+Sa80pT3k5WGXmf9zBbyohm1wjUorZQUYlrRavmyQAyeTCREjS+lYhZMufdXi6hh/luXLBuyaV7DMXjFBCD3kxWDXmdbMTIn1JzAY0bSfjXHmc/ZNlG7DZmNCgNkYyERl4fHs8hHXT1fF7pPL3K/5jTmT1c8q5anfACZVYsJKgMRGSMinSZi6/o2Ds26nrPQr3RQj+4+M0q/K4yP3viA17HyEzUnw/RU7TDwCzg3PlocEQ3cSphbKIiLgxUNVKwYdPnXbPNBzNOmel/ymFRe14InuikR5YmS2C8ysKuTJVY0Am6LuhpwsRcri9TAFCblm1B3i7rf0nrMDzPPjMmPFq3PsTyEH3x0jo1KoOPFH9LnsiCGzlQcjeC2CIZaWayegeiIUpblxCVqQT5QnPJ8AJYChP8v8ym5EwInUg8lwnqu16qgcF+LAGZFBRisxQQAQyfzdrrJbDCBK+JoYqnHNTHMwULk6tUEpsjV2QkY5r/TYR64z/P8Kc4xXlK4dQ/xC9/a+KpRSD95mUQcgaSFkQ0pHdI2AcAfAMuTAtwp4cbgnqKRnSRWpmB6LXIxK7xc04MbMKtnJAE4U6kObmCMIjypyEx1Gol5Tth6UsMH2lKcLuEnVUcu+wixMTBQeHJelUITj/w3DQLM2tYtxuRVaOSmQYh5IY0RY+V1+gcr3wd5XfgnTBu3Rp5iObA5kJ2AkJnw+qLUT9+FHpuWVlnhN23fsZMTIm3ww6aKG3l2uJFmRxXC7Fg177H1wdP2QfmDLjceaDQ8qKJnJkCdyVCdzlTsBUjQiU0qUgOpvJOlxqGiCCmw0Nqg9KD1yI8FNts95q1YlPui+IUZHiV3Mkru5aL0ySzndoko2HPtidnHYzaWjGIBpXBGlDyTitAxqBpLjGwXZb1A6BhpABCR9Y5fw5SPIq9h6PXKOPBGRswnqoOmMEcEKdSe7viP2VNiOR8d2dPhk5nsqfHk/9lTVD+J6wf87vNhl9+SW8MmfLNPfMSCPSWWaWLBUoRNZrIUzpMr257GjG6e2bygl/vSq7LYay7tfmfBnhIPCVhAyZgRpXuTKtGeEtdQvdtTZMTQ2lOAFGpPc+jsqcHsCYjTiR0yW+cq1u/m8mQeuR9do3Muz61wO19gVQdPYtoS9JyEQb6TDnKtyWzmGOQ6ILNR1MDDTD1FDTyMzEZRAw8js1HUwMPIbBQ18DAyG0UNPIzMRvTQSIw1aBWpT5IJ1fNYYKztYk3JpjpU8r+rI0lRVBFTMjHmT9KJEZ1OiGULWdDJbjqdLH32cWW7fqn++08H/eH1M6sZvlxHWR4qXjFMMaf6ZSWLYmFNKPQBNcg5rbU9g0IC3PraNZvg3D1kYjOHoDYa+ZXE0o3V/KURo0RC1U10X4FccaRMpmmoozWf8ygO2LouPJpzzm1xFP6lEQoXhX+JuCwE/zL9e1L+mgVhPrkbNwe6Pm57ky3/kbHadRkW3LECuVgwQkLNGeoj63x62cJ819xVPNPOT0/lM6PfH30UN4jsKAWV6ygRa2pWtKwR0N6tONRRImfB2SHaIzpKTP6kZZmjVDbQKVG7Msq62YcxHI9dE1vdurrz7/eMqNE5TVTHfRUNiHRAITnsSgFJVgcEEtSG7KGzIRl59wbOfPTJJz9vb/7OUffxucJVgwWxIgm5yDOd+bBz48rgHWqV6rmxUoVIWaBMIUpQcJUFnqlHJ6F2K8WraOIxmYZGyKUSSQj0euHFsrTxkt6EMRroVO+i9e4I15wF2e7dJuzZTTdGjfvFieR9wetjH9vSQzoGzowICawmDYuHCcUK9LuDXQqMlD5I2kDQI1bum9TQCQzt0nigx248TtJMXo0AgTxKHOsvisQNClPl5RDY90f9uonyel+pTP0qoYx0cmv+9JL4IgsExGA5zD1WiJVvVR17K6pFWS6I94kVwtJ9qtFuAi/C8K3aJWS/L0FLkyuNP+wmJBZIeLCenEo11UIVcpEgRvW70QC5QFZmQJRDdS/dUDUY155YSZil437i+GfBt89LYPLt0xMw85Br8JgTlxPDDbEkyJgwD5NhmO+jw1xrV9uMoztXm6L2NuZqU9TexlxtitrbmKtNUXsb20/VTxrVoXMfO+/cjGzbBo0bVlPbT43//GLLg7VT/Q/c63Tx1EafzSQHHVp9yoFELOjNgoOeR6dJA21bSCxcrrO2hbkzmNoWBs6o7LaFwpZWnaaeeBu0rUP1vrc6/yoygLaFu2YwNYFaNcMAeq9dvHhRB20LW4evyBVOqxuQaRn23tYqY6ZBtC2cw6idsYagHZ20LaxZ+tjl17tH+dP/TLm7f7kRvtGzvtoWjmBUTqAhKIejz7aFyaebdvo+hBNYcNwxu3bmenx9RH23LezOqLxW+lGeYbYtlF46t6ak2IJX0ED0MbiFVWs9ty2sw6i5H9P1rTl4U6W1LXz0V8qZD/PvB+z1TZ0yaezIywbRthDxIWjbFgJDiPqp+zk0fup/qW0hsbWOntsWesxkaltoNVM3bQvb1vPntfX9yt+UEmHVOYuL78fNRttCC7F937kmr3lLGs6ZHT40sSYLrfhcZzK14nOYWVltC/ftzb4XcX2hx8ETv5UYN5YaVXwKE7Ai2ggWsLJixMpo5v9XbQvz6czY/xp5/KtGHsSOZDpr5FE6k6mRxx6y7WShkcfL+4dPvf/ym19uZO/U0+9WPWCxYgXLNhL2PSiZydT34BbZRlZGIw++75ugL6/mux56ve16QZ0W+Prx+mjkcZIRlT26tYaMewftkgfZa+SR+Sn19NwzVQJTpyR+PtBw0HiDaeSRxai6VP2oTueNPCacqNPe7OsF/+RGQ2WmMxPN9dzIA7EytJ0YgJXRWSOPKWkWl3bsm+KzweiZfY1zbrcMoJHHSUZw9szUYSMPzsg+bz7P3uyxuleud9qEBrkGUBIHIpTFiBCY06jfdoBD47fx3ezb/nS57LbpTuPNf6562xFfiwRJBJZJJWBFJ/tsxjQ4dy4LkYjL7kfr6QDE5dIxUdFcVeNpberBELu00r4tuXKKmlBTfnArPufsHICvgAcPXQj4ctrzOQlzKpqcaVn2WpBBpMSC8qv3OBTZbmXyXV5Bdvy1DtI/8MVG/1X/P4IL9cKuhe3Zus8DVvguF0zo1mtSBV2oYIDeSYheEx7F6PQGG6s9c7RyoWoqp69QFCUXUfuXwU/bz3rw6ld+5teS8J6Ob44TsiyRGymyLJXXWS8dDr5/FuP3T52jb2dJNTK1cJTgK4ulQnEEQ32sg+3ObS1wnhU01Xvt+3Hjhljjxyr2APJYVUkqQxkJjMoQ6kcZRPeHo03EwtEvVqoAy5cgAp6d2jm7gC0r2FnEOHDbu0RES+VCB24Hl7jRcgXyC7W3eju1V9SjEXv52wemjPHdXvMAfl2DHxCqGCeh6KFbJqoMZQUzKqunQcwc+CitvNV6ZQfdsWPkI+IYZtDz3HdPhyQu9J3Se+2OFym7DlVkq1xBdRxujxpymC5eTKot14Hfb/sc7bxU1JIzeFslXD+vI3bbguacnsjfeD90ul63vRCAxRgA1ygAgKZFK08UW8roC9Vs2/Et+0LTnfwM2+g3xa3e1CUsZbotGAABGMoEwBb3OZijeZDz3+Lj8B7OTlg/bRtvvVU7l321e+/UGR/ndAoTH2dESmXzcTb+CHjhbV7Vb6GvY4d3tT5EGAAfpyiFKbq5K8UASAV5eXk64OM86P9ZHr78WuDKhH5PMz8HWBgEH2cVo3bmGIJ2dMLH6VjCSw1+c9Bv/ZIj12L+3j3OIPg4YxmVM8IQlMPRJx9nXej5rb8HJvosaJSd7hqTfd+g+DiBjMrrrh/lGSYf53XeAWnVoW1ckx8ceb2ty88sPfNxWjFqro7eNVepfBxuqjT58Sh/95W1mxYO9bVONwg+DuJD0PJxgCFE/dRDnP8DfJwNivq1Py6b55umWN6s7i+b1uuZjxOYysTHaZaqGz5Onzs1/ljc+zZ/0+ii3v1d/Aewzsch7s1Z4Jj4pjJxTLqkVhYf56Nb48n1B5wOmLvk7eKIb5lbWOfjEG0EC1g1Y8TKPPX/Kz5OAZ0ZG10obisO3MLbVxAkefpo0Ft8pKTPGJg76SUXyKLJGaZahC9aeIjjZDB7TBXNGddOmWXKFcC6m1HwEyhH3uZdL2794If5Z89NseuV3f0Y7fuRIznqQtL4MwkFJixIPRWLYlT+y/xo1dMo+DRGsLhffR78R8j/zLDjT+dMKDILFUmAwkRCH2DXE7DHIWpVqrKQTpVa56TZqcZ25eekbeR3srF0vMxbIpsYsa+KR6ZaTtrV9NydiX/K+Xv2uic8EM56oJaTdqXWXMkc69ceB9+J5L0yj7mo5aQFtH8YmmW/mL9837Tt4Q/yGqnlpM0at2rywKncgNSTjsM6lvb8qpaT1uj58aXiIht+4QGTm1NebCtWq/HRZckSjn/z3T6bD4XNLX7v5a7WsGpuQfh47mmvwO0TlkWNP3CjFIiMsQdGrv2t+eZsrxzbpu+Ta/x6F4hMMJF0Rb5t46muCzKu1HE71EQCRDWwl7ceWhzzODZgo3PfzYqZN2sBkSkq+j30lefHP8YFzlo/7GuvL4NSgKgmKhowVDrvU268W7bA/7f10j2wGIYZKlqzssWtyWv7e0xd2rZ1QMM60UBkjopuBaTF73M55D99+NU7tTrP7wVEFqiowe6Tl5OCr3unDNp2p8PhTXWBqBYqktbMOHTU5Te3dW2imn/caVsfiGqjonexLrVWjgn3XLv7jW+dWte3AlEdVMRJtwu41rea5/qjx1KCBswYAkR1UdHWKosnyKqXBu20aeW9I/dxCyCyREXdV9c+Pt8+NXDurcjzXyYGPASiethr3O/NjX/d2GPPrOoRN10O5ABRfVT0M9LubcuRm9xmzEj0fT1U4g1EDVDRIQFnWfaZzt5zQpo8CeyW9AmIrFDRqMmJo3bsH+M3Myd1yL3HV7oDkTUq6vz49Y4k38KAOeEzOqw58uw5EDVERSmjFYGDp9b2nx4+ZtvC5PQgILJBRX9Ue3GhepKl/65OX41r5I2+BkS2qMhyuG+zjt22eB78fk/eVOyxGIgaoaJJhZPylqZJfBcdPWZ9+t5piHxjTF9i23XN1/3lc/DXEz/d7vnBAdAEFZ3zDj4qKf0ncFaz0dbSvrOWAREXFT2c+jxh0gsTt5UnzxY0S7nhSUq2bMqhSbbMPL/CtF3yFN+tN74OvvDT7D2F2dA22fIwnYmqF7l/R8bxU/zMbQ/Gn7FNxG/LqvMTZBKpkIJBQNfcuBV6h4rzibRriIsRSCTACKGdMDSkDBANFOWrkc85UYGm9fPa8DnX5hZB+0rh/SbB+iZztWskU8aoVL4Itf9vv2jod0GdgOnp3GHcfX/1YpFQybKT6wwAugwBElI5bp/A5uHwXK3YAJ1DgMMkR87uhCJY6lsaJ0YoFOD9xBLYuF01TrjAg+IK4JYrghJFQebzI/zNH3npkjvSqjdsl+NDoKrPIYdAy0Ssl2hug4wYBrjS5xpEvJpM19Oy9XA7dKIJy9SliBYowP5llIgLHBBVKzeGblz7LUMGfL3pcahTv7ZdH93iE07L0cdSnJZjEra15+qIDnYPKu2ddEIGOyliqiVwTTFiD3ZoLSICSd2zuH9jzrYuqwJT71rc7d70hVvFaUQsgLWNESww1NH15w/O/7IP2Mw+IHroOss+SJ7HlH3gPq8ysg8+/D084cPlK4ELrlzyOtC8zjMWF0uiBWIh+2DSPCay9sh5Osk+kPNq+qQ8CeTPv1k9clHw7OZ6zz7oz4gKGDcGGinRXfbBjzVjFo7sbc7LNb+99/6K+S0MJvvAkVF1DfWjOp1nH1zqZzvQOG6s98E0J/utZ+ZN03P2AWJlaOnjwMroLPtg3jKe0cqBM90LuIMknZeuwhdM0E/2QX9GcNzn6TD7oGfjsYEpV3Z5zjEaWP1N/4TBBpJ94MiIEJjTqN92hEPjt51aIfD/3q2BV/KGxtVfNJ+A17ox0vcy1MNf84MDd3zbWdQTBjvESPAr8LvGqfdmBcYWHa/Q90Jdt4kaOU7E80vq9yZ70ZhEi/ZQeZloeyiSqyQDGkjIrIT+tHWqO5wRx+a4rz25ekl+1eDahCA7vJsiyI5cLs9TIto/Fno/7YEAyagGYbADn5OVqVXszAoBCBsXdkKxHAxfIKdebH2OH+r1fF2O28qOzwpPe2QewU9LD+xm8rQsE5UH2O4/WjWI6dsjaIFxzmmzLoUVrXkPAUtlBAyMKL04Uco1A/5NRw7dDzml05hBl6aILhmsqtuTm0GD+x/zSvdxWNg48UFpHSQZByiDXHK5mpt7qF1Ym4o5wATV7vn2Y/WbJ26eGQW9kq6Mb3GOBdUKGVUbrCfVUvnHado1kSy/B7Ki2cOR4c2svVYbh2xo5ppfqLceyM5OqE2CPZBlpP2tEzLF0IXxKIdmYXS/3OD22K67XbcPGmqV0v8QvjSwJSy5qYBHn5CNK4LxYZEWnROdeNIYALmy8CfyGGHZY5DNYVnDRCEYJBqtiMSwXfkvTFIH5V9p6o2Awe+8AID+zJ2iwHgaGPyWCyqaq+fmrwYKPG6ApXyhtyGN5dphTQABesokPvg/pU2Lg6fR0ngRTQaOj+9f/LYxCW5LrRMUHzq+xbdZrob0U6ZoM4leL8/G/D3u0LmYbzN4i12cR7T+tvxDBW3MYQCzA4TZyJ2i7PVJewTmih4Jt1RTv+p0K0IaGyeKGIMMD9iGhvp0M7Jnt65NLL8ErVy9YqJpUQG+FZ1p2XPJ21+ckPWMpnYobIOpYDN2QmBDTcIxOpNwxrz5h/ZdpAEz3r/1c7w0GX/MbRYikkkEESJu4BiJhMIW0DnM7bD7YuF9cMyKY8cKJGKhcpDHixXRXCnYpsg1twTEKD3De1I1R1cTa0o9s+NzDqcBdE2pgm/FwEtenFbRuV8fLmpIC1UFbPkJjSREjDqlxNTq9KPSX/z3f7oeOUM0tgPefUYeRHaflZfLm85EVkJF6VRgOh+EyGVTuQywA9KmNFr3WUPkbFTIyXFDDQ4tSviW1vHKqp9W1W/Zlv19XcK3DMFTtdEBQh3SwUvZnsUQrcWMaCWl6dTBwl7UuO84mUgdh+ZqnB1HP+DSiiSO8G/iHL28h0EnN0okJ7CE4U9FDXd9ZIGEigWPAJvqcUpVU2qZuDBVZJJUtA+7EzoLStyoSIXOyCzQ6iDMStkKGfoKyFqFDX0hJRRvC2YsiQ14473v3b3ntrUuNiEEJuC3oghMIJcrA4rFjFCAIY4uVMc5NAuVwdStJ1pLdtqAVULZevc0prL1HVSQFxk+5ARuHDuQd3o3InPC/jq+K1f3Lj1tIaroqRGEvOEiJshrLMIgP0EHudasTAsMch2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQqViaZRImxMilIlBgrUxJ8stikRkPeGt/YGQ0/+ZeSKG9w8FJvQgn0SxYobyfp9N/M71i72ztreG40Eo64+rwWXv91lYf9PIk0DrqLSACH7JRXo5ltzTzFsGVPNOxxo3wAsqWE+0yUhqBZeJ9IOS33FUngUP2Rpl458JY6zAeT7BrV2TVsKfteuzC/jTLahmSDSKFqAB7gF3pe0JfIakdXS1t45B0c8duR2JLwisTaKvcYmwM2zo7z0WW3hJRgD6S15lP64XRY1VNRItSxokRpUOn4wgtV5G75DzNbBe078AuLtIgp/QI/ntyQ4LlZOtt7lvu4Iyyg9H4eE0qX55EPH5j8NIdgbF4hkw3BDJtycKuHcc/oQyVR31v3LshszU++0HmFqV8LCz3Gc2ELV2QQUQbkSsA2uOF87dxYe1X0EEIUoVazAq5AONtEnawZ6NT165+7fPNabV1dxX/sfAOIWkKQqjGC9F7LuG5LD7Hym6uOqsqGDBJYpDdQY+v2GTXwz0UBWzvsS/nGb4dvZmeMPZccRVRJKgOdO7QxXYjOaVVM9xSHZmF82T/Q38jpM2/J2rOea4J8wskH8eSV0IgG3Kb4eK6K6hYv1apsHDHBQtPYgKbsb2B6iuGgOkuV++gMYFs3vxLCtAUpgy5dvf7Ec7djvzirxQ418YedSDyWZlnHCcuz4kQTV1EmOADrLAQrmGqMFbflc/K0W+vMEbBEYKbRQ3V35J7h1S2LfFYdH/bw97+L0vCWiA/upQZKTaRjlwDCtI4RprT52i125YfQiLFmvYXQoKVBxggMoZG6kWc5IdCgdug0nR3itT7r1G3qXf8szzXvFN2sGxHPoWMEMq7ynIbivJzONW+tvA+L9iB5KQJurCgeXhLJxRHoAqmRWSImdzG8IdVJuZpY066ldnzO4IwiWDWJwifPAajbZmhlqMyRMJTycBe8DuW3HH/Bqb7ntbWuc0dXWZm/fcdovIuEPIDsIikvlzfniHluFZxzkJkcBuHZRlfRwSNDKzaJmfJ9mAp98ScGC4oXrfEviBgr8mw261d89E95Pzn6h14vD59uAaMffM/8GLDf5daZ9CMv37GAjzMjPmD46INhYIwQN8YqgejJIf5oVwncrK9AHiVSMCnty7hFQTvyPAMWhHwyy0x/hqeSV1PeT1Yaep31M1ugFWNGrZQuNyStlBRiWtFq+bJADJ5MJESNL3VJkvRxYV1ifN2nZlcLM+vEOYhXTAByP1kx6HXWe0Q7oeYEHjOS9qs5znxO9wztNmQ2KgyQjYVEXB4enz92MQtzM/eb9eNju8ZOnZriWbU85QPIrFpMUBmI2DIi8mM5tq6f4dCs6zkL/UoH9ejuM6P0u8L46A185Aj9RM3JMD1VOwz8As6NjxZHRAO3EuYWCuLiYEUDFSsGXf4123wQ87Sp3pc8JpXXteGJLkd5oiT2iwzs6jKXVzQCbou6GnCxFyuL1MAUJuWbUG9vH3+u6vimpteWULdPt5avw5/GVqdzbFQCHS/+CJUUYuhMxdEIbotgqJXF6hmIjihlWU5cohbkA8UpzwdgKUD4/zKfkjshcCIlosT1XK9VQeG+FgHMigowWIspUzWZz9JNZoMJXBFHE0s9rolhDhYiV+HLmSJXvirMz9FhHrjP8/wpzjFeUrh1D/ELXzy92xzpJy+TiCOQtDCyIaVD2iYA+ANgeVKAOyXcGNxTNLKTxMoUTK9FLmaFl2t6cANm9YsVAM5UqoMbGKMoWFFkpjqNxDwnbD2p4QNtKU6X8JOqI5d9hNgYGCg8Oa9KoYlH/psGAWZt6xZj8io0ctMgxLyQxoix8jr9g5Xvg7wu/BOmjVsjT7Ec2BzITkDITHh9UepnVJcGRVUvPvFP63fT+snezCk4/VRxI88ON9LsqEKYHa1rrHnLaTI6YNXt3hGFF0qOVvTMBKjzCVSnMxV7ARJ0/lxRpAZSeSdLjUNFEVJgobVBqe9aB8suQX8Hzl98Natj3EUPPEruZJTcy0Vp9juHd1dWpvglt2u3adC28RXNLoUoFTCitGVFEToGVWOJke2irBcIHSMNACKy3vFrmPJR5DUMvV4ZB97IiPlEddAU5ogghdrT8/8xe0os56Mje2rJaE+fZfzPnqL66ed5bOT0xr957vMcW+vCsIFyFuwpsUwTC5aiFqOl+JZR2fa0u+nKdml/TfTLiB60qccqo1gW7CnxkIAFlJ5lMKF0OaMS7SlxDdW7Pa3FaE8BUqg9vUBnTw1mT0CcTuyQ2TpXsX43lyfzyP3oGp1zeW4IC1uChRlMW4JkFeTFdJBrTWYzxyDXAZmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKxdZE3JpjpU8r+rI0lRVBFTMjHmT9KJEZ1OiGULWdDJn3Q6yci7N3Dmo08++Xl783eOuo/P86saLIgVScgFWukMm50bVwbvUKsyzY2VKkTK4kIKUYKCqyzOSvm1iXUXKV5FE2tnGhohl0okIXDFghfVG7ISLOG0NksD77c4Gpi6cO7CQ/fePaWzhMb94kTyvuD1sY9t6SEdM0ICuVqwEiws/CMUK9DvDjwMGOV4kLSBoBKsVC+pGUtrPmfdMmBAu/E4STN5NQIE8ihxrL8oErcAmiovh8CeHerXTZTX+0pl6lfxVrja1Nb8+2uXFVkgIAbLYd6gQqx8q+rYW1FNKLkg3idWCMtuYfBWMYEXYehF7RLiq0vQssLKDQHsBCIWSHiwFpTaQqSQiwQxqt+NBsgFMtU96FC9RDdUDWZZJlYBZemojjj+WViXDy9jWpdzlmHr8mWDx5xYXtVwj0djGYn9Q1XE/it0mGu9TJpxdLdMUtTNxZZJirq52DJJUTcXWyYp6uZivtBSz88NeyS68fYccBu0aPAeNzVfqLeXq09JeIpn/uUHDTJWR60lLa7Q6lMOJGIxXhYW16t0mjTQlmPEosM6azkmW8PUcsx4TWW3HNvbOu1QcWKg96KQkwrpgFSuAbQck6xhauAStsYA+iadOnVKBy3Hnr/i1bBY98o3/1Sf9H0TO9gZRMsxD0btOBuCdnTScuzb490+TsfMPXdalPQWpefjqYz6ajlmy6gcY0NQDkefLceyz1xJDFndJ2D5L5eWRv8zq71BtRwrzWJS3r0swykUpPeWY5Ofp6RWG3iXP/XHwKfNVxZx9Nxy7Cyj5vL0rjl4U6W1HDt83KuFjU0Vn8Ks0Sua+L/qZhAtxxAfgrblGDCEqJ/6F4fGT/0vtRwjtsXQc8uxH2uYWo79SXZpK6XlmJFT/UdzNh51S66/ed/abU/wfGA2Wo5N+Dtk7/hLC73z2l2fdPFDqZiFNlpf1jC10XqyprJajr2o1T/F4qHUd+MN8wcLNu+ayXrLMaKNYAGrPxmxKtCtq6PvlmPX6MzY/4rw/6si/MRuQjorwv97NlMR/tjsyijCL+vl0/Z06wt+ufvaSnMKfXaxmG3Oso2ENcu3ZDPVLF+arZMi/Ic+2RbUcGvpt8Wii/3y/bn4IrP6KMKfzIgKGDcGs3fQLvGHvSL8Y+6Ofz1E4uC/+uLUQe2bD8AX3tBnEf5wRtV56kd1Oi/C33HFm7oDasz2XFQoiIqc1d1Kz0X4EStDW0UdWBmdFeFP2Vj9Rv0qFv6rr6bdM8lzqWcARfiTGcGJzdZhEf4p0nX3F//SyCtp/451vWvFnTCAchYQoXBGhMCcRv226xwav43vZt/2p8tlt013Gm/+c9Xbjvg6AkgSn0wqASs62WczpsG5c1mIRFx2P1oLAyAul46JiuaqmsZqU8uB2GGR9m3JVQ/UhJpy+1rxOavWA3wFPHjoQsCX057P8V1f0cQqy7LXAldRLCi/evG7yE5RvpuC9p441SL+5EV8o7p/1buL4ELtfXfz2hWzZW4Le5uEhvQYtqaCLlQwQC8DoteERzE6vcHGasZ6rVyomsrpKxRFyUXU/mVcw87dq0Xedc0/c3f/qA3V8Ucp1TyQGykypJTXWS/7C76/nPH7D12vb2dJNTK1cJTgK4ulQnEEQ20b4yND4x1iPwWutbz46vSEFrfxYxV7AHmsqiSVoQxfRmV00Y8yiO4PR5uIhaNfrFQBli9BBDw7tXN2AVtWsLOIceC2d4mIlsqFDtwOLnGj5QrkF2pv9ZeX+bWqjd3ovUPx6w3540M8/LoGPyBUMU5C0f+yTFQZymrGqCxzg5g58FFaeav1yg66Y8fIR8QxzKAU000/8j784revcy2Hle5Hm1Vkq1xBdRxujxpymOpZTKoL1YHfb/J67bxU1JIzeFvnHF8+rZPnF5QaES47YtnERK/bXghAJAbANQoAoGnRyhPFljL6IhPnCg90bHrjlG/e1Gpfm30sWE5YynSb7AsBcGYCYIvleszRvMH5b/FxiI25dcbHydzAxMfptKGy+Th3jM6dbzi/m+fGTW83OO8ZG2kAfJz0DUzRzWkbDIBUkJOTowM+jsXfLa6/tegesPHzLM+IyJFPDIKPI2PUzmBD0I5O+DhxE946rTu2JihzQ+dBPf8xtjcIPo43o3I6GYJyOPrk4+TfXJU33PGN68y6prVKnuUkGxQfh8uovJr6UZ5h8nFeGQV9TTKt4zE9s/63M+tNSvXMx/m0nklzjwxim1JpfJzXvoOijyec9k2x3P8gvdSlo0HwcRAfgpaPAwwh6qfe5Pwf4OOc8w4+Kin9J3BWs9HW0r6zlumZj8PdyMTHKSW7tJXCx2m1vCjUYfIw/tKrbR8d2/VrLut8HOLenAWOie1GJo6J8cbK4uP0MW31euCb7r4F1rO67TNxK2Wdj0O0ESxgVbqBCat7ul0t9c3HuUVnxkYXituKA7fw9hUESZ4+GvQWHynpMwbmTnrJBbJocoapFuGLFh7iOBnMHlNFc8a1U2aZcgWwZl4U/ATKkfdw6vOESS9M3FaePFvQLOWGJ+37kSM56kLS+DMJBSYsSD0Vi2JUEvOeNByVqqdR8GkepINRWZ8H/+FHZXiGHf/d/fQis1CRBChMJPQBdj0BexyiVqUqb9OpUuucNDvV2K78nLTcS3ZNv1+Z5LnGcenZj2+XjFLLSVvd65hDg7Rf3Q8Imm17aOtnpZaTNmlsMrdrte4+s907/J7v31eilpP24qnpfvvFX712vxT6TihtVaKWkzZ4dataXOvNfnO+//og8NwrsVpOmtePE8vF40uCUq/V2RJg+XCkWn7+9a5L5QteVPdPCQ/Zlskbk6HWbGbLw9lrAnN2ue0YkODcKi7oEBAZoyKXmE1TJ71/4ZWd+OfxlrWM0oHIBBUtGZt1vG9Tc/dCeabDt8FBG4CoBirybLBxs1PWV8/0GSkXt91ZEgREpqiokeL/sXcdYE0sXTsgKoode40dC8XelSSEGoqA2EuEANGQxATsBRv23jtYAb1iwQIoYgG7cm3X3nvFdu36z2x2A7s7uyQSkvx+1+e536d72GX3PTPnPTPnzDlVW7/9R8WbfqtIpWSvtvAgeylc1L7KRQvbCyrRLtuuykqP51cEotK4qPsc15wBymPC/T2Xfd3yq/t0ICpDfFftCyvcPW77JJyybFDxeeVWQFQWF428bbdJOL4Kb/+9xd8eL9hzDIjK4aILq8b9Kr1vuuv00uJA295OMUBUHheVu9p5jGS+pe+hPaFRkaWOPQCiCrjozZvHZZ5utBYsaJNT+e3aOj+AyBYX+XiGx07YqvaJuxzxdN7FA+eAqCIucm4k9H3cYhkvqX//tlahgdeAqBIuelH+0bxWFeZ5xH+66H3p3yq/gKgyLqqQPfH57GeHfRf2vDVFesCrCBBVwUWLt3TMTOnQVBRX6S/LAaUt1gFRVVzkMGX2hsFHf7nPfLOf3/7HhU1AVA0X9e72qmVkvVauS2bf/DHnYCWo5eq4aLJ/mZYVdlV0T+y7zO5iycgvQFQDF7kvUp048XidW8wr62k3a546CUQ1cVFgg7JlFO89efv+STlQmVMVYlgLFy0rk9W1fUxrt/0f56XJwqqHAVFtXOQR2/HlsvTWvgty0v2HD9i+AIjq4KL7xcqOrxjuwVsZadm38YGI0UDExUVnLwxc0r3oQ++tvDS33csSQmiHLetyGA5bNpBcebLV4axPdP+DF3sfejXTAIctbzOZqEqhKUkrM08KV2+7P/p0zbGx5M1E4UilTBGCyCBgakzaCL9Dm/OJlVpXR4hlMmCE8Cr2OqYMUA0U8tXo+5y4QNfaV7DfUXwWtK8I7zca9h2J168JRG5GpeZFkN+2ZtTrASqLIc5LIxaNbTSmarmCRIkK18l1AgA5QIBCUI7bZ7B4qB6vVzZAG3/gMKmwvbsQCSzTq1BLsRQK8H5SGWy6rB0nXOBBccVwyRWMPuOzSZlxRvSav2b8YXH9zkOvk0Og2t9DD4HmigxeXrUJNmJY4Hq3xSzi1fR0PT3bhtrjEy0kV12R4eJIsH4ZKuECB0Tbhok5Vnqq2LWoYaJmHrteNKhcvYcjl7Jbjj8WsVtOSAytPWcHfLC7oLR3whEb7LSIqZ7A1SUSe4hNawkVSHTr1bvJVWwn7HM52GvZZqutfdYXPI3IAGAVYwULDHWcf+5wGPjnv9MHv3X6gOqhG+30wdV4ttMHy/XjSh1PH1hMn3hlbHIcL3mNKLWn3aadBiRLqgUywOmDS/FsydoZ+pHl754+yFhm27D/u8rCyUFbuvT4OXukyU8fbGNFBYwbM42UGO/0QfZe4bBL4TO9Dtz8vurFvGs7zOb0wRRW1SlNozqjnz7Y0jP0Q8rEUcKk8Y8WTV82n9IPyeinDzArw5g+noHwUgrr9EEnjnTw3kkdRBNzkqNb1T9Njqqb5vTBNlZwlscb8fTBorJvuKH8MK/k8mXHnPepaGUmpw+msCIE5jTut93lMPhtJ1eJRT86VHGbtLl28ef1x6STvVGsZ12Ai0j3jQM+uWUk7gmDFWIo+Cfwu0bl7asIjC0+XqHvhbtu43Q7h0DZv0S/N92LJiR6tHbJ2Iu3dqG5Skqggei9hdBb8uTT7nVsm113nmlR9EIjcZV2lCA7vBsRZMcu5+cpUe2fAfq2HIAAKVGD0K+5kBO/V6/YWVUMIGJc2IVIVWD4AjmabJ0EXc9UfB/leWBhnRd+Xf3nkqelC3EzfVrmivIDzG/0VcmkQZn8xDI1VlTjv1tkAMAWswIGRpRJnCgNZ8CfacVh+kM/0mnNoksbTJcsVvWS74Xa2b8auCxQrY/6VKf2kwrYYRygDOFIpUqiDd1hTi2PH2DXq0nBHGCKannDyrUa1qeWcP6ndbMjBz/yMYBqZayq7WUi1aL84/n6NYDLv3/p+/4nRsSMzBFua9l0XlE/+5Ym61/q5IjbJNi/VElb3zpiUwwnxnscBmLkX6pya3i73c5/9R1QdVbQQXJp4Iqw5GYk3PqE2bgSGB+W6NH1zFGgiACQawp/Yo8JyX0MtjjMbXYWAgaJToxIDdvl/8I0dSB/SldvBAz+mK0A9Kd8RBO0+WDwD9la0LN6PFEeUOB2AyzlC70NhZxrRzTwAuhpDvHBv2lsmhruRitGSBhO4PT52nDRl2oJvAWW3zN7nrt+k2xjsF6oiBZx+PV8bcyVqY9exe9x3rr/ZqmJtUcmFtDGZACYJ0GYrfiItl8nmmIwF3RLuGEe9Wt3t4IVcrUkOAobHrCFBEPXuUZXAizbtfeOz5LcuX9nSBtyVkHuc+nLX5LQ4Cea7HHY+qFgs3bEYMNNwn0mk3C6TP33LdoqvGPevfFyuDhBSG0YrJSJgyVcnyiZDGELmBxme+I+ObwPjlmpfLhYJg3RDPIR0shwrgIsU1S6WwJqlJ7lPVGNjfOIdU09sxNyKkN0bVDBt2zgJT9PLOjcrwxJDWt/GAnb9UEjCRFDAtD+mlvPEl0X8hLLl9vjU6Z2fbL7jD2I7j5rLuc3nalZCQVNpwLTuQJEbj3KZYDdS34mMrrPOiJXQ4ucijTU4NBCx60T3w69t4brE2M5cojDB78J5FRtfICgQzpkqaFnMUQLjCQWtK4kGtXBIl7UOnCUUpIXh/p5cnYcvIBLK5E5wJ9RO7i5D4RObphERckShn8KargrYwQJFQseARbVozSqRmqZSkwFmSQF7aHsiM+CHB4qqdAJmwV6bYRV1bQxhb4CxlXE0A9BQnG+apkyE26oeAunXXXpcaLoT0pgAn4VIjCBXS4MKLAhzggFGOI4UT3gMBCV2dStp1pLw7TwKYSy9csT2crWT9dC/tDsIafmxhkGcnHdX951hk5w2+perGqNFs6XDQC58i82yAf9RUD+iAlyvbMyyxKQGyErE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREViYiiZLIykQkURJZmfdX1fnWcldT7419w07P3OPtQEt5g4MXOfqo6ZcGSHl7zKT/el7H7G/tLOm6xSpk8JVn5cj6t9Vs9gtkCjV0F7EADt0pL8Yw2+q5SmHLnnDY40bzAGxJCdeZeBqCbuF9asppvq9IAwf1Q7p65cBbmp4AJtlV1N41bAfpnqDX3nUNTbQNOw2igKoBeIB/MOcFfT2p9uwVX9V9812nMY88M/sXJNZWuNvYHLBwnpKA024O7YA9kIYmIP1wJqwqaVMi8mKFRCkizf35q21/Cfbbutm2755Q14BpERN7+Hw8sXmka4Jihvt0/qgjBkDJnRWlpgn6NWlv7kfMK2yyYZgRUw4u9YjcM+ZQSeDFYytc3g5xXz4gNKbXy5tjTBjPhe0XsUGEDMjlgGWwMkE/N7apNnoIIQrOU7MCMhDJNqGjll4BLrenlhBNbOIy71ynhJ9mELWEIPVjBck9Qb+4bkMXqebLtVtVuUMGCywyG6hH3b82HfqoqXeSrfvf39eujSZHEYnn0qOIWklhoNOaFR1uAuEYPeEwEOOLIB+RleMXwZINZ1zjfD360Dfi6UxoxQBuXXI8V5vqNkKhV9k46gELXWMDumZ/A9PTCLrwZ1BnH50AbF/1ozrdwrRLj+VExrSd7LZ2ZZ9qootXbpM3O7F4LAOtk4T5WXGqiStoJjgAqx4Eyw81xrJhdSf0nhMTWGUwsCRgpjFD1SNzRfkDa3u5Hozc5s49aUcmuRJCcC8aqDwiI7sEEKavCWwwPdaT7PIPoVFjzSYLoUFLg40RGEKjdRKOdcSgwe3QUyY7JGh8xrHD5DuiWNe4t5EdqtWi7kNHiJVczT4NYr+cyTVvrLmPiPZg51LEXLlkBLwkUUmDcYLUySxRD3exvCFqpzyPWEdclXZCTkhyFqyahPDJdwDUGyTrZajKYGEozeYueB3kV9aus67fIvtPHjEBRxT/DLqxmuwiYQ+gu0iay/nNOeo5twLOOZiZPAjCs42pooMoWa9sktKa92Er9DW7yIyg9c/Ge+32f97C9d5oC3L0T3M/PfqHX88PH2W30X+vbb3PZZat56o9de9FGACf9qz4gOFjigwDayxxY7gGiM4c6h/9KoGXDhSrwiSRbErreGRk4xtHi3knXIhSrekx4RVZaZr76UrDrxt8zxZopRyrVr7vNiet5BwitKIXfZXFDJ5SEoIbX6Ri2s7c+khYZCF/n03qlrsZQ8RkxXhj99MVg183tGKUjrg5gduMtPXqDichh5+s34KshhYDbGEhk+aHx8m0O1+Xujx3Pfglc1iFJj8dyVm1As0D6Fm1hKAwEGnAikixZILXn3EYeH3HQq8PfTt19Ij58CPS+uj192Qda36j7skwnbUrDDKBc0eES4PDgVsJzxaK1WpY0UCbFYPTv26LD+o5bdT70sek5ro+eaK78TxRWvaLEqzqNu4uaAS8Ju5qQLKXaorUwCNMmjdBfrjw5oObQ0JeOs9/Xf2folVSyK3UizM5NlqBkckfSyWFGDqhcjT8mmEY6mWxOvvgI0pTlpN0UAvmA6k1+wOwFCD8e65PyR3jMw7dQIXC5yatCgrXtRhgVVGAwVpMADB8Mj9nmsxmE7iijiYD9bimhjkMELkavJstcuWvxfwFE+Y++1zPneQcE0T3qdZJ+tyzPLlqFNZPXimTBmPHwuiGlAnpGt7AHwD0FAnulHEjSE/RyU5SK1OwvRa9mBVZruvGDZjV7/YAOGejNm5gjCJrT1Zp7W4k4TkRfFLSA9pSki7hbyqOXfYIIcZA75ATcy0OlXBJfV3Fu3Qz22xCbsEgt/HFzAttjFhrrjM/WPM+2OvCH2FbuNVylaqAzYHZCVgyE1lfSP0Ef3WOrVGxnXecqPuDLL8dM0j6seDRZwePNjssKLOj9xTLVtvnWnvtqxgV5NF/5quC7pkAdb6G6nRCZS/ABJ3re7LygJTfzlLtAEmwAlhofVA6sGjtrrrvfjnPn9xg7HlBLDkD0YJPR4mfL0r17r1MK13yi+Bg7b2PhzxxuWMAlLJYUdq1Jwsfg9qxxJrtoqkXCB0jHQCiZr2TOUzzKDqH4dcLY8MbGzGfURtNvRwwpHB7+vL/mT2llvMxkj2tyWpPc5L/s6e4fjYNb7CglR1XNPN054YK6cshBrCn1DJNBrAUVVkthVWh29NnK4XSueOmixa2nDyiWmbiDAPYU+omgQFQyklmQ+lmciHaUyqHmtyeVmW1pznaBf4rJntqNmsC6nQyTDJbG4tqb+cIlC57PzqH77g0x98AS4KVyWxLgplayF8zQa53MlsZAnIjJLMhauARph5RA49IZkPUwCOS2RA18IhkNkQNPCKZDVEDj0hmo3potIw1aBWRQ4xaPc8AGWtvDKZkGyMq+ffqSCKKKhJKpsb8aTqxYtIJtWyhAXSSw6STlfvv9p728LNH6v49qTuH3iOf8yvqJ5ZLZPQCrUyGzY7HVcI78lSZ5soVkRJNcaFIychIrqY4K/KzqXUXEa+ii7WzCQhWKWQyf8hY8GLehqwUS+h11dneuvgk/rxto+4fcepuy2QJrXuoJapA8PrEr23ooogaLIO5WrASLCz8EyKNxL8deBgwynE/ejNFJUSpXlozlsZCTsxOYEA7CDjR0wQlvcWqMKlcJAklEaCN5rI/7NmR93oJzfVAhTLvVUoJ2EmNhdun7swqi4Hop4LnBiOlmrcqTrwVakKpxCM85CGw7BYBr0UJeBGGXvJcwnx1GV5WWLMggJ1ApGKZANaCykNEkSqJOEL7b6ueKrFSew8+VN8yDVWzoWVqFVADbdVRx78BePnETjZe3r+T4OV3Zo85tbyq+W6PJrMm9m/UJva/Z8Jcb5oszTEeTSLq5hI0iaibS9Akom4uQZOIurmEL5TmcOr66UYf3KdPbTxewC27MI8vtHFpHUf1Gr5rSnApP+sF4Tk0coVWH71coRTjNQC5fmDSpJm2HKMWHTZayzHLNLaWYytTC7vlmOfPZ7b3soN4a9fMdqhrvy7KDFqO/Uxla+DyPNUM+iYdOXLECC3H3LZWO7L8cwX+tuOJWV2HuVGauZio5dgVVu0cMQftGKXl2Hilw449H664bnMam5T5MyXELFqObWdVzkpzUA7HlC3HKs1dcfz74b2u6RsPnLrY8vtAs2o5FsOqPJVplGeeLcc6TMu8Yv3SjTcv+5/mH9SXM0zccmwAq+Y8Ta45eFOhtRwb3arzzJyrPX02zhv7pM6jsOJm0XIM8yEYW44BQ4j7qR85DH7q/6eWY9S2GCZuOTY/ja3lWEiacVqOtWn9ZR3/aIjPknnLtm54fYEc0zZEy7G+w9pJHlrtdZ+6fE7pMR1cmhmgjdbsNLY2WiPTCqvlWGblhqIGH2JcN0ZYFj1cZNumgk9hClZUG2EArEJYsfJL+59qOfYvkxn7rwj/bxXhp3YTMloRfucDbEX4OQcKowj/riMnRk0LbOc88azb3QmTMpcY8LS5gW0krFne+QBbzXK7A0Ypwn+juX3gxJEezim1hqz9OXMsubKiKYrwV2RFBYwbs1k76Hfwx3BF+GtFHVzbz22D9wzV8iZeky6OMJsi/C/T2FR31bhERqjO6EX4H5V9WG/imD782UeKrVm/y7+riYvwY1aGsYo6sDJGK8L/86W639iAL25L7jevdiT7n0NmUIS/Iis4nANGLMJfxLXu8lcDXH3jFnaLLb9AnmIG5SwgQticZkQIzGncb/vEYfDbhLymzX51ucSLv1074cLaN+StXxvsEJ9SIQOMTvfZrBlwbpMbIpHm3o/XwgCIqxRRYeFcbdNYfWo5UDssMr4tvepBHqGuuX2NhJzKhwC+YgHcdKHgy2kh5BxJL+jBqoq5rwWu4lggP33Grqpny559zY85Y51k8bzE64L37qK4UPf7NG70c/1G38mHebIxZ8p+K6AL5QfQqwDRqyNAjE53WF40XS8XqpRm+oZIwlQStH/5c0umhZcdz2tDR3Xsqk9OpyknpLAbESekNNcNXvYXfP/zdLbvv5JuamdJOzL1cJTgK0sVIdJglto2VwO4RzZlWXgf9Jx2zG6/Yz/yWCUeQB+rWklhKOMIqzK2m0YZVPeHo0/EwsFLrogE9CUOhnundk5dwJIVrCwimnNbdAkOV6hCmnNbdlEPU0Vi/0B7q+Jlywa+bV/SZ/kE3wd1TlwNIPMa/AUBkaNkiP6XuaLCUNZKVmXFmMXMgY/Sy1utlLvRLY9SDVazzKB9mdOdi74575b0cn3No/f+LVOQpXIB1ZHRAjfk8KhnNq0uVEthj0/p+nmpuCVn8baWSKq8OeUUxz+UcsCve/suN0y67IUA3E7HAbiKAACaFr08UYLKmItMiC5fTLowZrnPnsSiD088uhBk0sO+EIB4NgASZ6cTjuZnzv+vfBxqY26j5eNUzGDLx9l2qLDzcRafv5J5uoK9R7KT21Bfj6F1zCAfp1wGW3Tz+yEzSCqIj483Qj7OumXlVgV093dPu7zae/O9LkfNIh/n6SE27VwyB+0YJR/Hd8yolkkjb3ns7vdpZsa7TnvMIh8ng1U528xBORxT5uNcP5JSZwUn1X1GVsb9KN+EILPKx1nOqrwpplGeeebjuPw771P66iDnfYN7uWbdnLnExPk4SlbN9TO55go1Hydg2qv70p4rnJc2rJ42oFyfn2aRj4P5EIz5OMAQ4n7qF84fkI9zv1jZ8RXDPXgrIy37Nj4QMdrE+TjLM9jycWQZxsnHadY3J6jjxCTR6n6ptmOrWY4yeD4OdW1ugByTxRlsOSbRGYWVjzMjLvvm/mtLePMvbOx/8NOCIwbPx6HaCANgJWPFqlfG/1Q+zlcmMzbskLSZ1CdRsC/dV/bkYd835EhJ9yh4dtJNJVaG00+Y6hG+aOAiVSvh6TFtNGeUveaUKVcMa+aFwd+AHHlnLwxc0r3oQ++tvDS33csSQhjfjx7JySukjb8SAcCE+eY9ioUYldRzTzqOSu3TEPk0z3eBUVlZAP+jnP9caSds/2xXVukAiQwoTBLiAez6SOJxmFo1qvzGpMpWyT78js16u6cnRXvPzEn6h2LlgfpUCpmmULUezf/aCkeC8RWsCYHi25H4o/AeljAfaqhcAbtZhnL16j2ywX7HoqsOM5zncANj/I7Nu872xgheIsn1KJl9N1bI4RzjI3KacoBluBsnLIScpsDLm2s/WC8TpCX+lA/m+IcZMKfJwB00/ABCORAh2EGD1poW+qsAoYJ2gasrII8hfEHtA8eXPYxNOCBRrDl2zOcqjV/zk1/su/10SSVy0/FiDAOFuG7wXBl7HCguimRgeXJnClAW+gNVvacEbv9gCJHnHRqhn1U2HsxqcddjgfDQfGGx6VfJ23X4w+jbdYSgMDCaH8eGEXUwWf4GRlh8C09lATjlO4omdVuStPqGS8KK1+NLecd/J89F+DBEW0HN5cLAx2k9Gz7R64W44f/OZPib/KhSdTu3iHAPP+ebpHYY2fDbYP0WmfJpmdYhtbwlYnWUSpPPqgnAaKw7rG6rm3GvvaHLqdMR4a7JG7ZfW8NpI2B8Kzpz5xHqYdYHrQM4HuEjits6A7OevY5m1vXMwSjBhz1bIADI751VN/DQ9EWnfTapD3qsVzdzoTZGUNOTojRX87PvVKNnAPuuhFAt5yFKssIUPwAVo31HJqdQO1lK5VwREqODEyfHfhvr4jkj5emupQ3Cd1XA0lrAtwtHgqWb1gnG3Ode9i1MGs7j2OM4wbQpGk7lHDCc8Kn5A59KtKlp1eIDr8zxbPcNbdtet0iqf7SISDqYkMU9XVNzYIsgUVKxedKfT0uSV+V46E+TdKL7vOW6STSemib9RVPKRW+/LMGie4MTogBBzIWVA4t3tjnJ/Gb0XdC8Uj1GZPQGmKiHmrzlIM1u0Msn42p9sjA0HOg66O1ujz46xl64ac+HmnY5HFsDumjSn73Xdm/yr+eW2j3HVm5xcVABp7ASHmragLto9KrKzTDA9NrLq+ZCGS/aXmfopqklzm46IbrFSxzt3u/M4sNhlLCzcTOosu1xNMqhJirkUIAGPlF/chg4dOnTj2vse8wWpZzyPez2K7YeORs71zzRt/KYtlcq555IkXMl2geUpJu6ojx7frMWOs3MkjHrs0qVfuO5ubtDuV6e9WowvSY9aTxXpkdvxkFrhJrejMg6neXWCgtcp3P5j+jUuAW9PPZuSfBxftTsBrVOJ1VujDqdtrlYgQmhkooHy9DT4NKTST7fRwu95y5wON+g+KttZG0E4bdyf6tMJ5UqDdAXUQm1iSxA2QtIM9YI9SjTqTNGHMdiK/p/dPeMmZz4t7w7vz0DRr9VpJNqhgyAERjTLBgNWivUp0hnxdwinbkGAInSlnsrqo271t4n5fz4cO9m2VNNWqBzvgM+VpAFOqc7YijhBvUXk0GtfH+OS4WO5wVxbR4cSjoxguwOW/DR24nlNbEGBJSckhoRqeQPHpqglQIyWF3ZnKepH5qucV7cJ6G69Y9jfSjfoMuQ1VUX2qAcNVYFyFy5MxPuxEByw1GHYP2xqL/oodq8MdSevz3bK+Ts4gtKE6Heq1wWBXWLPxn1f8t0qi/4fMVlxfe154uPqzHSVKh7UlG3/JNR/1x6x60ciZ/rhuMzMiO25Aw1EerloqmoF/mTUZ/xtvnby2tmeU2yt4/vu2200ESoy1ZRUbf6k1GnFkA2EeryPVTUizKh/nPqro22Dlb8vf2qrtys9EYVtCQjX7Lwkde5Gqf1wkPPVy7ZzZ/59uO5Vg+vVTdQNc6PyzZ0//zuo+/abe72/n1rPtXR52bTSGwnqkaK/ZEaqRw9tGWb7nbue1eur1mldvViBtLIi/OB7oOLdOenrmv80/mMYp8BNCIaRtVI8T9SI0tdv1TvNJYnSE7j9V3UL5lnII0MnTB2aFJKlNe0HbP73310uaMBNJK9iKoR6z9SI9R6sgbSyG9mcrD6TNupGinBpJHuD+74Fpedc1uXkm45YW9dcvWWkgHh0tBILgwFkdUC02aZsjJq+IaGwkwasUyWG3PBo3NIXJfXkjvdnhzuPq3qNnuLh5duM70CAlxddw0AJhnTjnE4gajMilh7IJ18rIAhuNJYZDBSATN/Q9EDyPbSpO7bZkR4J58/bN01rTo5hoQOw+kwfkbcsuP88GzGX3swwKNf9LLOBa0bA7CKhlgtR+00uTcXcpxjjul16FmjQQU2KpC4bIsqs7DjsGDB5spJNo4vx1yhZUSH6gZMQQPe4Ms5U9m+HIwSM8iGxkagHkdEbGCZfLbOCU0/dfq0pVxX9/WT9ndo7HiOvKuBFdk3FvzRk1gH3kSTwE874FzQDCPNjIDFOpgC9mO+N/JpcXOs94GeFgf8Eqs8/U1LUdBkdAfcFGQ4I9Kt4FYsmBA4wZQ0Y4IZ4F7veaW0x86bQ0TinhXnTiscgvk8L5OFYD7PzSx8gim6Zqlt9V+egnltLv418u/qdQ1DMEUSI0b6DzjqlnRZ0GOB+GywAQjmKcSKcZ4vn5dpWIKZ0TfMc2iQyjOpaI/F6U8W7jchwbizfjkYJX8iwbi9ulZ09e0q3rMHChTHFhVvajqCiZ/LBn8v08BvAoKpmmbf+NKvUK91V2dUbPnlzEPTEQxmChgJBkwInGBszJhgphWZ5iZOvOySvj27fKWH5/oXDsH4fWMjGL+vRiCYPY1qlb6/p43znJajnIpsiPjHMAST2H1x+YwHZd1mWMXO7fGMk2IAgnH+xjbPc74amGBe/+rWaVqfb7ydnueOf0oJfW1Cgon9yvblYJT8iQRTUhzT/J7rdJ8UJ/ngsq0STEgwHFb4d3z5XyGYBmcmfJFX+CmYeGdi7L37Y+uYjmAwU8BIMGBC4ARTiolgYhfMiXrp+dlt6bDK6pUzm5OtezFXWPE0Uvfcu3aaG7hqRYSEGwJGADdKDc8pK2XiYEm4QhYChgd2bikU+znsDHOkOEytUw7er06Nb7y9XIW3tcKTGMuHZysWEymCh0pCtDehXp2eu6O5rmt6exMhhysFA99SgDq1BCDmDkXk4kGIIAcjcvHgf9RcPJ+pt7sGHH/hPOV0crT1W99L1Fy8yT3jJlxX9nNfnhG74vHy2V0JuSWngD21qb8YkavHaLVgy0dcjehskv2lI0SOXVzS/13S4FWzdcMKoi3DlzADenWGel2NOv6RAc9aSYXGNGbEi9rIo2SygWrwDfIw7ccWy/03RrljnDr6j0PkDDLpqoJr7mwLjpJFRqnQKYMHfHfmnNs91y0meubFJb6X4lhVVlygeRL9TBMhKAylRQ9hUxqYjKZgICuRQGNQ4S0TtPMe0w0xR5nIph58S+iXSuVqiQorlQx+BclgInU1tlfAC86ZdOGSvwZ6XSpbtSVVV8W9oyJhgqcWfEqqOPytTnSWcso397Po6xlRvN4z3ad35/U9q3B3LuipGKDUjKFsSh0ko+V+siXIlsEHu0TTVBcJHm9neKOSVWuKJg+M2Nzrcsg61oFuBS0d/QgRdtXgTpYjbpcyeAhKVzphQxyn9NJ/AKVvmtqu+dq+1/i7akeWO1X70nQjUfqg1myUPqjtf5SOTpauvmn0gn2TXGLqZLhldt3b1ewoPbo1Kzu0+d+j9GjewyWTR3NF649bzj+y6ZbIDCk9ow2r9W/7P0PpxV5G1nFu31ww0X70zOV7110yGqWLAqf027raynXF4H83V0kb3c0AlM5px6bU2HYGp/RjnW72XybezN+hHHq3x+vz9mZF6ZhdYqR0MMRxSi/zB1D67gT+zCSf26Lt4Z+arNrcepaRKD0j/hgLpWdsPPYfpSPL6379JRT0lvhuEl9MP7E0eYH5UTrUK6Mhcd5i1KQJs6D0fiM3Tyhfc5zr1gtFM+b0E5U3Q0rnbGZTGpiM/yuUPmZGn7WpmS28pr/wfdGUY9PPaJQeWingi0XMWNdpFvtU8rpe0w1A6dEbWGfi+mOGpvT1dSNiQq7P5C1xfhjdPm7UdvOidGiXGCkdDHGc0sv+AZQuWrp4eb3Aeu4bPvXtIVhm18FIlO60PJOF0p2WZf5H6ShtxahLP7g62dZnQ7cn8y8qB3YzO0rnQr0yGpLsZUaNIpoFpV9vGTfknO0k/vovVtO8hdcamiGlRy9jU5qTcZVmSkoPHvFR3ryYpWjKkqvNrkbMv2w0Sp/dq+LM9BXFeft2nnuc1T30kQEo/e5SNqXOX5ppaErfe2PSFXHvIfxDpzI79Phu+dWsKB2zS4yUDoY4Tunl/gBKb52jKm9jk+CSlpM0dH+NfyyNROlVLbNYKH25RdZ/lI7SVk78wYND7h73Wu7vNTZzXNsKZkfp5aBeGQ3JUwuj1nw2C0q/MlvtIswo5rrgtKdqxe3TH82Q0jMs2JS23LhKMyWlV2l4NClp/zX3GPHgnv/KVl8zGqX/3WxGHVX1I4LU+89FPqdPzDcApStZlepukWVoSm9+uXa03c32btOnv5ns1XNdNbOidMwuMVI6GOI4pZf/Ayi96ZBZew9nvfbc/9C/uzz7TQMjUbpLFzZKP9b5P0pHaqtsQ8WOUTmNRfNa7K8UWvnCKrOj9M5d2AxJxS7/e5RebmLLztZ7G/KnSW4PK93Nr74ZUvrLzmxKA5Pxf4XS22UsmVj3mcJ3523p551T+1Y3GqX/ZpkWNqWuZlVqZGeDU/rrk7ZnGtz1clm84MJ3p1PNn5sVpWN2iZHSwRDHKb3CH0Dpo788T7y/YbIo7W7rv09u8UgwEqUfULFRemfVf5SOdsBWDLr5dcEm/iLbyi5FjqvY+cEUlJ6sYjMks1X/e5TucNWv3s+vU9w39m0+4JvL8+5mSOkhrErrbFylmZLSh91MGP+Tc987pp18y/4lXesZjdJ/s84Xm1Irsir15TCDU7qPY6W/q+0Odt6xYD2/w5jk3WZF6ZhdYqR0MMRxSrf9Ayi9m5uzR06fWa6pl+5XWbkubIORKD11MRulj178H6UjtbUv7di7hx3bOk8dYtev06gbB8yO0vcuZjMk6xf/71G6uMW555PELvxZY8cu4B1pxH5K1DSUPpdVaaONqzRTUvqqlqNvbXy31SfVk1f7UnDqDKNR+m8WimRTaiirUv0XG5zSpzRZ6nOvwVGf2QvnLDx49+0Ts6J0zC4xUjoY4jilV/wDKH3j0jqO6jV815TgUn7WC8JzjETpd7ezUXrs9v8oHaktiax24Jbsve7pbodbvKmVMsfsKP3mdjZDcmL7/x6lR8q6t7Hredhl90yHYj/s+/U1Q0pPZlVarHGVZkpK/zv9he3BJ7Eesw7+8/pUrweljUbpv1lpmE2ps1mVOnK7wSnd66qzvXXxSfx520bdP+LU3dasKB2zS4yUDoY4TumVmCi9xUb/zL5JCa7xG8uePjL+41JyHSk3lSJKSWZ0O+10UORtGI5dEihk4IvgJaIdO7JdAo8bBp8LO0G5qcRqdbhCqYQdM7E3VVt6uBDDp3HKhO1DM3u7TF5Q2Sqtyc0BQETQ3K5W46OXXkgT7W0t86iR9dMdiIjZs1ve8aHoUUPB+kUlJyyN+9oMiIrgoqcnv7y3fh/mPiUtu3nbsx9kQGSFi9Y36N9JGPPWJe7l+6Fjvh2vA0RFcdHjMb7T01o28Zzf8YHtxo51Y4GoGC5aUG1Sp4Q9Rbx2qj2LB3Y7egiIiuOifodrtLh+x94zdkN65UfS/o5AZI2Ljg65Pix5zzf+wc/lnpxxHvo3EJXARROrd77Q+chXwc5mlvJ7scJ+QFQSF6VccFw8LrOP67S7iuia62ZANGxw0f5Kzxc8Ee9znl+h7Jl5Da9ZA1EpXNQxW7WLd0AlWBb02SZl8MmTQFQaF90ZcuzdTfeRzhuLLr49dV3D0UBUBhcJjt9qXuQvG58NcVtmtT9aoQoQlcVFW+Zu/fK42nffuJMLz4tjV+wDonK4yHWlZVajAx7eKd93bforbgT85PK46ET87DdrZCeck2VtzrZf2+MlEFXARacP+yx9NvSS77S+Dbc8Ejj2ACJbXOQxp0a1VNe+bos/tLlz+9/HF4CoIi46K5yW9I9lY9HMt7K02o0PNQaiSrjoRflH81pVmOcR/+mi96V/q/wCosq4yG3qwd0Tn7rxFrcuWmf37c9QlVVw0cKa0ruf/EcLZ/UJ2i9r6HceiKrionXzHg1PrZHsvHNa9Z8lEm0CgKgaLqpz4cbw6FJePnP6dbk1qt/5SUBUHRct6fR4cMfK/4p29Z/VKbHapVNAVAMXXXiwznnAoUTPuWGC1ycfbocPrImLXiXGVv8xsqhL6rxDHco7nZwMRLVw0eZ73Uck/+XD33up6CSuSxc4emvjonGnB0lW3enFn8xvUnm5dOs7IKqDi94//rW5WucEXnypjmdeLsuMAyIuLnp2emn3i3uEvCWXEtN6pwdZW3u4DCRZo7rgP3TX6JbndkvauHvNXlpRFJaUVhZhNmhWkGrXOIRd05ioykwmqlJoStLKzJPC1dvujz5dc2ws2bMQjlTKFCGIrrBMtRYb4Xdw8S6wgExhBcIIsUwGjJBaEhYhgQ3FdVplUA0U8tXoTg8u0NHOl4PHbo5kQfuK6D0ZbS/kWB3J0qcjbDltR1iJ5kWQ33bIdklQ5UFdvZd6HfyWWeWftgbsALsvc7pz0Tfn3ZJerq959N6/ZQroFsCFV3MIUAjKLfjcVMipSgYIIysOsw/cxl8ChoZaOhz2yg1WRCgVaimUc8H7SWVYlU5inHDFKjCSIhUR0mAkikOz1z2T9Tnks63x7fPOAweRCwGX0P4eGpJ5RIb2GyBcVqxw5Rw2iWtMLRpoUdCigfb4RAvJVVdkOHCaI8RDJVzggMC+voNhH3Pm5r4pmz5YV4+5Lly9qfSCm/zDnUj6sw7AH0tTX67E0NpzdsAHuwtKeyccscFOAs5Cf+DqBoHlhRT8JNH9WEIFEgnW+3UvP2zqvV0wu/2SmAmSww3IYBHPpIOllRQGWFasYIGhjvNPFSb+CapjOXTxznL8lDjZm07jrN1JX1VW29hY03mdzkPFGTBOscjtiYwzERia4K8ADPAAbqg4OFKhAsZGAVbiUjB0ZdgvcMB/ES5Xc4PFcu5gCVcdpVTKpEBDgxVACO7XPDJKDm+Fu2hyuNSRSUeDH8EuOnAF4WJ5mATTb1+f/lwlsTMFmSFSERYmA7NDEjlCIpFjPxM5QsGNAINAR26keuissNHGBPUHdK1abCfkXIEKr4Tag7sLuHKpflxZPpcr8RdC9046lrU6ouZk14Pr49ZaOBaJMyBZUi1QQWsVA4QuQITmoqbEU2D90/Ujy3qk8Yj1v9MMPRwwKUMHPP5mS77LukRe9OeDLVMtFnPJew4Mw4K4bvC1NEAlkRUVMG5MXMe4GIf4c7ebPrWMW3uEcgNVUZLm2Cwma0uqzmsX7JwcnLjjuS0cnJogVZYVXv3WhnPhHqu3zhs2fkD9RuSq4z7aB9EbrueRFYbqJrGqTm4a1eXvzrC1y67lpwALE0gJUGtqpSRYGgrNu4YFkOoZ2Wh16I0WK90O/lW0wrpxR0qSjRD2PLoR0lw2tFJiHXAr445SipMTZmVoXgobHo0CIVkBRIZLNLyoBzDHJhd7fWTxDd+UViN+LJtxfTV5mYY/mL5MIwSFAU4iKzhLKeBY5gNOYw1L5TK4Pug0qFDywy7pCffoll98bnT+NZe8RNHGq+hLlFxRYSA0iRUhMKdxv60qk992cpVY9KNDFbdJm2sXf15/TDrZGxUBH40b4CKixyuZNg74ApVE463J4L24JwxWiKHgn8DvGsUF2KoiuUo4o4Cxxccr9L1w122cbsW6KPuXrBvO2u+ge9WEREfMs8GyMD0bYH6Tj3CdlEAj47NprhPR8AG5zYC9QB5MkF87r/Xfc64m9XOPDuy9bN7xG9NYv7ZoAHwa3YhpLufnSVHtYwE9qRyYwpWN9z2kDVK/5kLO5myaJwUBYyLqqhhgxLixC5GqwPAGcjQZh+9RLXseMclny+y2TTeFXQ5lBa6EC/Ew+jTOFeXbl6nq/ku7jrznr/lQrUhQy/UFrXYAAVzICiAYcSZxujQcA3+mFYfpTw7NCSvBolsbTLcsVvhSqd02P9LsPVJ7vBl7fmrg5QoecmBZgTKEI5UqsGTP86xiPH6AXa8m7EFyfR1oiqq3ZI4dtWjVW/6e1AqBI2s6PjaAqoewqjrIRKpG+dfzuzHuPCF7U4jy8AFSua9m5kyYn+7uHZ2xwe2c+Fo2ewwRPo4eQ8SuGnwv0BG3YTtQMcS7jtgUxIm2GhPR8i9VuTW83W7nv/oOqDor6KCI9DUVYZvaSLiV6iINDZWoJAAaNX2XpAgDto4CRQRQgaZZLvaYkNzHYItNTZskuFEFc4h0YlhqGDD/F6apA/lTuno3YDJMyQSgPwWT4S51MswHkyE8k5FpddzB44nygAK3LxRKiQp6Lwo5104z5tVcgB5GzNjfNDZPDXe3FSMkIWjS2b6kf5Vg6xyfA6G14hImbKhPtjlBWL8cus3Br+dnc5q+eFOk7IEf7lNcGwx6fXj25QLanAxYIQnCbMWHMXLq5l9TDOaCbjE3zKN+7W5ZsEKulgRHYcMDa+eFxHJR1NYkpyO+rouODaux/4nbTRKWNrnPpS+nSUKDZ87Y47D1Q8Fm7YjBhpuE6kwm4XSZ+u9btFV4x7x74+VwcYKQ9G2l/SVYygrXJ0omQ9gCJgfcnrgP5j1hY1YqHy6WSUM0g3yENDKcqwDLHpXuloAa9Wd5T5oWyGId0b1rJ+RUhOjaoIJ52bA93bGCzv3KHlgLObiLK1FjeXcYYkgAdu7+/mP0pmTP6AjfO4Gv5RR3G3sQ3d3WXM5vOlOzHAo4nTmwpA1Ebj3KhZjeTMj5fozmbhOZbjoiV0OLnIo01ODQQsJnddYquefVR8K0GpZFUxSbMkjwlcIHCDpERJYaehZDtMBIYkHr0jGTJC1aB45SSvLiUD9PDpCDF3B5JTIH+DNqBzf3gdAJDpOoKN3c4J+CGu7KGEFCxYJHgEX6KI2q0YdIKcRUkElSQL3Od8RnQQ4PoddoJ2wW6LWxVtUHwxb6CprWk/jQD0G3myjbd+nRVbs94uuP31LHocFgSqADfhUi0IFdLgwosCHOCAUY4jhR1WAiKm5Y/b3T58zgLzq6TbTiS8oY8vdAJ28UmaAYbDHTus+WB8aYSuO+jsJT3JDAUq0l4kXoGTX52uAlw2MzA+uW4R9SrW7+vZ/v5oLaYOCbLoWQc+EeERVyZ+A5xGghr2n2kFNz7QwDuYfVpp9dx8Xy1h8J+ris+JI7BoBcfpwN8gHHCchrMUGud5ZnWQJyI2R5IpIyLTiMSZnERgsiKZPI8kQkZRJZnoikTCLLE5GUSWR5IpIyiSzPa8VrOqTuELtMvtblwfai+5vRUujg4EVnllDSOQ2QQlebSf/1vI7Z39pZ0nWLVcjgK8/KkfVvqwkeCGQKNXQXsYAQ3SkvxjDb6rlK5SFYsCEYfwC2pITrTDytQbd0AWoKa76vSAMH9UO6euXAW4o5CibZVdTedyyYgq5H9UobqKGJ3gFHUqlSQNUAPMA/mPOM2m2r2zf8UXFeeoPX96qLY3YUJHZXuNveHLBwnnQUp90cqkHKAdKQo0g/nAmrStoUi7xYIVF6+LakZasnvr5rZlzzCD5+JsGAaRYTe/h8PLF5pGuCYob7dP6oIwZAyZUVJbuj9M0HNj+tuR8xr7DJhmFGTDm41CNy2ZhDLd3etLT7WOSl85LsrePOlztqZ8L48CB7fBAhA3zwrJz8qH5ubFNtNBJCpIEnRBEBM6kAA5FsE9oZeL3v73/KDvNcd+p4+U3vxn43gygoBKkPK0iuR/WLEzd0kWq+XLtVlTtksEAls4HinWi5fdDn7W67ji7d5cr71oQchSSeS49CaiWFgU5LVnRqHyUcozpMxPgiyEdk5fhFsGTDGdc4X48+9I14OhNaMYBblxwf1qbOjVDgu6y6ESH1wIausQFds8mB6WkAXfgzfMQGlBOA7bN+VKdbmPfV8hjbkxd7eCzpPeCG3/IzM8mbnVj8loHWScL8rDjVxBU0sxyAxYVg+aHGWHYzIacUes+JCawyGFgSMNOYoTof+91nzv5X7hvHLRvRt28UeSVYQgjuRQOVR2RklwDC9PkoG0wP9SS7/ENq1Fi0yUJoWMPxY3gIjUvzHR0xaHA7xGWyQ4LGZxw7TL4jinWNexvZoVot6j50hFjJ1ezTIPbLmVzzxpr7iGgPds5FzJVLRsBLEpU0GCdIncwS9bAYyxuidsrziHXEVWkn5Aw+B3Ctjkrl3QFQr3dOL0NVBgtDaTZ3wesgv7L0LvWPJeLuPsmJvWp5flNakV0k7AF0F0lzOd+IOuXcXAHnHMx0HgDh2Yaac85gznmeY9wOR8FTWvM++JhAojPVpkH/aekNfVPE725NGTE/nhz909xPj/7h1/PD50ql+q2TM9x806vua3XhbmhBbRLEpy0rPmD4mCLjwBpL7BiuAaIzh/qHnlbClttbOlCsCpNEsimtgjxpX/EVA73ndy7Z6sL7OPI5rmKa++lKw68bfM8WaKUMq1a+njUnreQcIrSiF32VxQyeUhKCG1+kYgadbHx7ZL1q3skz35/us79vClkx3tj9dMXg1w2tGKUjbk7gNiNtvbrDSchxPqffgqyGFgNsYSGT5odH3PH5K1r3shVtiq/4s3enlTUoFSQ0D0BUkMAFhYFIPVZErM4RvF6Xidd3LPT60LdTR4+YDz8irY9ef0/WseY36p4M01m7wiATOHdEuDQ4HLiV8KyiWA1WunmyYnD6123xQT33jXpf+pjUXNcnz/QsnmdKy35RglXd+rMFjYDXxF0NTa2MYFlUCDzmy9W8CfLDP41oPr6xxynnKdPP39l2/V0WefAxOTZagZHJH0s9hRg6oXI0/JphGOplsTr74CPKRTOi8h78gvlAas3+QLg0LBz+Pden5I7xGYdutkLhc0pNEezX0IcSft3geW4OOGBVUYANcsQAwydzPbMPXFFHky6BKwtu/luglDCHASJXg86yRa78tJjXZ8LcZ5/ruZOcY4LoPtU6SZ97lid9ahnvKFmkVCmTBmPHzOiGlAnpGt7AHwD0FAnulHEjSE/RyU5SK12wvRZNFRS5rhs3YFbnnAdwzkZt3MAYxbHziPJiBJ8gyovB30QtL0YtD0YtL/bb5cOoNyLKhzHZplquUhWwOTA7AUtmIusLqZ/Vjf468fPYGI8dHVKabW5fYRBJPxY8+uzg5VvLaH3o/kNL3lThp16vlTqk41m3gu6ZwJrCUJ1OqOwFmKBz9XwWom4XE0i1AyTBCmCh9UHpSuVWZYJbTOIvVj5Xjqg4gFycwIJPR4mfL0rjBqa3XdRlkM+qXg6xFcKP/jIASsdYUdpxnlbxiTXbxV+iBsBAx0gHgKhZ8GQO0zyKzmH49cLY8MZGzGfURlMvBwwp3J42+H9mT6nlgYxkT6uz2tPX5/6zp7h+nh4QJQet3uc6bVAH8dUHdeYawJ5Syz4ZwFJUZrUUloVuT1tVtyzdYFVftxVbEpYd+Hy+pAHsKXWTwAAovT7HhtL1c4VoT6kcanJ7WpnVnr7WLvAbmv2agDqdDJPM1sai2ts5AqXL3o/O4TsuzfE3wJJg+Tm2JcF0LeSNDJbMVoaA3AjJbIiaeoSpR9TUI5LZEDX1iGQ2RE09IpkNUVOPSGZD1NQjktmoHhotYw1aReQQo1bjM0DGWmODKdnGiEr+vbqUiCKNhJKpMX+aTqyYdEItg2gAndgx6WTl/ru9pz387JG6f0/qzqH3yOf8ivqJ5RIZWSdsB2LteFwlvAMvGKOOVERw5YpIiaZYEazGyh2OHRtDfja1jiPiVXSxdjYBwSqFTOYPGQtezD0CmtONYgkTProcSVi6zX1pYvD3xK6XHzJZQuseaokK1nslfm1DF0XUYBnM1QLvgxUSCpFG4t8OPAwY5bgfvZmikqIMBlTZWMiJPg0MaAcBJ3qaoKS3WBUmlYskoSQCtNFc9peGhZOul9BcD1Qo814lW+HjoxoLEyacziqLgeingucGI6WatypOvBVqQqnEIzzkIbCMFwGvRQl4EYZe8lzCfHWYIKO9VCoAVqkQywSwtlQeIopUScQR2n9b9VSJldp78KHaxOxpmVpV1EBbddTxbwBezjrNxst7TxO83NTsMaeWazXf7dFdrIn967WJ/c0MRpOlOcajSUQdXoImEXV4CZpE1OElaBJRh5fwhZYvujE95hSXP3X33+2VrhZl8/hCPyYEfZxo29w1vtw0m4eDIi7SyBVafeRAohb3NQC5NmfSZImAZcM3Rw1xSXr1WdKOm/COXC4PD/x5g/9RAVOpe5XB6kTIUM71VUrkbiJuBP4M3QKC1CLGrK9Fr+JH+QEdp0a0nZCT+jeM1gg4nGza1gxYmfn/TQsRsqVJ1NIMbaKaJSwhEAXLfoaL5YDkkB8+t8uhJpZ9h/OX9L3yZHmr6cPIAUEXzRPoAUFCYPCKSACSvRCSeKbEifV/myRxomgwgFZrNFJTU3/pUzyQS1YMrFcVJROrsDijDLov6MyJxm3beA0d5L6m59L+PfY/JW8jWAfgD0EUZSUkhaGduazaGW0O2gHW6Jc+2UV1hBFSNVYGOZikJsKEIJVTcfrKXrKOTb1Sd3q82Dv9pQtZOZonIjZxcyWFoZxQVuX4m4NyoH7yKodgJibltONFwF+J6QS8jhrcKpEHj9IUcezCVSjFw2DNxxbYv3J/Aj2j2jX/ujWh7D+8lDaP5uye9c9O8jn2wDzPp59jJ0kLQ3ldWZXX1DTK06Ewp1U+GuySq0F1uFQ+Sg6cYKA+oC65Qg5VB/4mU4zAhPCfTlAUIR6puYDU4/NzNVVKnyL8fSeCTq+a9vc/lOpp4ai0aPxyYWiuMqvmLE2uOXgTjKjolSpTQbMfDRsksRrCccE8u13P1ntseHYyZFV6YjLZEDL6TLkSg294O+I+BFxxnKC5VU6YIcT9VHsmP7Wa1ZiAI2kffA9ZJz1q1HZMc3KkTqDZyPFTSYZLJSPotRWZMtsa82DVIXWezSCsIG2YRBEhiVSN4io1D1SX9dBkc3nI/SVyfP3C7LxS22ywvSs9qkiWlwkC/6NUqCJdpbJIzS9GufuMJ0ybCjnuFwD2y1HRxgzg0ta8oFd1RVs3Ahvs4CT2jjp59IlLn10ot7e1x/zISnZpQyt8IA9L4qn0YamV5LdOphY7K+g6GVgKF4icM8qORINVtNMFvRLdKwXmcWG4iuESlUrK0APjslvVVU187vETHk4682mG0/WCT2FqugTFRhgAq5qsWFlfMKrNJfYxi+NLLvhD0Nm5FXvrl7UE9/iIi3wn/q+iGLdRWdWaWBgQPwr/v1Ret4d8h3a57cBkxv4r6v9bRf2p3YmMVtT/8wW2ov776bbTAEX931Z+uOLQjyHOf3mUTR7zfAL5uEvBTpsb2EbCGugfLrDVQL9Lt5GFUdTfruu7M/Zxdt4rn1epb/FQ7Gzyov5nWFHZb1xryLp20O/gj+GK+mfEVOhQfFU3twPH585qUnwDOUJhyqL+G1lVN980qjN6Uf+64ss7z87JFs5/cGbWCIcr80xc1B+zMoxV2YGVMVpR/+NvPa4IXhb3nTF/inW7Zx9WmUFR/zOs4Oy/YMSi/qIx/f5SDLPi7y9uU0aQtIVcT8Z0Rf03siIE5jTutzky+W1CXtNmv7pc4sXfrp1wYe2bVuQ6AtghPqVCBhid7rNZM+DcJjdEIs29H6+FARBXKaLCwoEPp5ZgWzX61HKgdmxkfFt61YM8Ql1z+xoJOacuAnzFArjpQsGX00LIGX6xoAerKua+FriKY4H89KLzp7+/1Pux29ygpoOPlgtXF7wXGMWFohrGgvYWBuhlQfTqCBCj0x0srHZd1MuFKqWZviGSMJUE7V82nju/R4NJtYRTHh6/XqJulgflhBR2I+KElOa6wcv+gu9fy/r9My+a2lnSjkw9HCX4ylJFiDSYpbbNo5y3ZV/EbhbGlHae1Sl+Azn73Jp4AH2saiWFoYzhrMoYbBplUN0fjj4RCwcvuSIS0Jc4GO6d2jl1AUtWsLKIaM5t0SU4XKEKac5t2UU9TBWJ/QPtrY7sbP/m8OtU0aq2V9+O2HlqI5nX4C8IiBwlQ/TTzBUVhrJ8WJXV0SxmDnyUXt5qpdyNbnmUarCaZQbVuBUwR3xnm8fk04s9nh+/3rQgS+UCqiOjBW7I4VHPbFpdqJbCHlsv6uel4pacxdsKtW3Vo/znevz41HE9g3+Mq2HSZS8EYCEBwFUEANC06OWJElTGXGRi9cJx8m3FX7j9teVp56uSFBcKlRn3sC8EoB8bAInOFwlH0+n/WT4OtdG30fJxTlxiy8cZdKmw83EqrXRL21PFwXdxj9oOa/2vljGDfJxjl9iimzsumUFSQVxcnBHycdqvWu0xe9A5YfKicur2qVw/s8jHWc2qnenmoB2j5ONkdyrapMjRx+6LSo8uEjdvbSuzyMeJZFXOIHNQDseU+TjHLsVtsQtx9dybLQ5KWLgjzazycUSsymtvGuWZZz7OHeXWsCIvO/gkT/rid2Nrl8UmzsdpwKq5cibXXKHm4/wda+9x5n0T57kXA+X3OVm9zSIfB/MhGPNxgCHE/dQWf0I+zvvHvzZX65zAiy/V8czLZZlxJs7HEV1my8fhXjZOPg636Kjlj72a8/969r1UROYrtcHzcahrcwPkmLhfZssxaX25sPJxHoTwOM/mVPGe26nSP2utHt03eD4O1UYYACsuK1alLv9P5eO0ZDJjww5Jm0l9EgX70n1lTx72fUOOlHSPgmcn3VRiZTj9hKke4YsGLlK1Ep4e00ZzRtlrTplyxbBmXhj8DciR9+z00u4X9wh5Sy4lpvVOD7JmfD96JCevkDb+SgQAE+ab9ygWYlRSzz3pOCq1T0Pk0zw8A0ZlZQH8j3L+c4GdsNWDM1mlAyQyoDBJiAew6yOJx2Fq1aiyFZMqK9+f41Kh43lBXJsHh5JOjCDvBVnw0Qosr7HuCJ1xSmpEpENWOBnQDl8ZqpIH9ZD8b1Ty0NU7sGDQ0iBgO2SwPAVsmZvBw1FvzYT6z6m7Nto6WPH39qu6crPSe1O+py9LFj7yOp/YpJ7eM9CJzd+cN2waKXOCqpE2TBqJXTAn6qXnZ7elwyqrV85s3p+8J+oKk2ci6R4Z4/JScwNXDVhf0+8ySg1dXqxXW7hCFgLLMcKUwFDs5zB3OFIcptbJB6EekWRvLa15E/p2rua6rtHqJkLObQimJSqpDxZVX3sCUX4JQgTXcYjyS/A/avkln6m3uwYcf+E85XRytPVb30vU8kuTe8ZNuK7s5748I3bF4+WzuxJy4jDqb5dnov5iRHkmJk3bwOoBuBqR2pq1+2iHYVtDRdE+Y7JLZgXaF0Rbho+GAb1eh3pdjXJ5MsAUyjphksaTNrC/40A1+AZ5WK7ByP03ZmrGOHX0H4eoEsWkqwquubMNOESRUSoGx/X+yIYNRw73SS21ldesf/ZaVpUVF2iehKh1jAsKQ2m7WJW21rhKI0ywlUigMajwlgnaeY/phpijTM5ePRe89bVUrpaosKw78CtIBhOpq5XdW77q3/ii56Ic62fPX4bMouqquHdUpHiwTFvAgkMJdsHf6kSnK6d8a339Jl2xKXUmq1KHn6DV+mJtoIAPdommPgsSPGqZFPZO99DS0dt0YFcNnlHqiNulDB6i073SCRviOKW3ZaL07g/u+BaXnXNbl5JuOWFv3RhyrmxAuDQ0kgv7ypJpHfIVU0/rGr6hoXApIpbJ8ParUtg4DxbvdkAC7HC3W5c5w6667ugbE12tuzeP6RUQ/pKu6fZgZCxuD5AK5KOa4dkLORXbFzSPrDTWfRfMTTV8YXTxhSme+/2LNPWJvlBt2bVvVetSG7wgPzFfl9DL9tnRSoKNnuvKhQgdpvezLWjiPcBqNsRqOQ+V+wEW+CHt9csa02hQgY0KJC5e6lYNvUvf9d4p3X5kS1aDO7Qt5VDdgCnofAJf3pn1y8EoMYPtZGwE6hFjs4F1hthKTx1xEDsIPvG9Z63p1/uX5e0X5HEJ7zYW/C/bscF/rJ15ZIgVtFG3ZkbAbGfwJUiNvJEtXlvCurcg+f7XQY0d+374TUtR0N18B9wUZDgjCGa+AzYhcIJpZ8YEs2j16cvLRf3dto/+7C0LGFa+cAimopyNYBZHGIFgzh9Th1ideOQ+eUqxRzP2fnMwDMHEHi1S+nX2DNeEtLQ52VMGtjEAwZSSs83zhxEGJpg5Kyuv+/UtyG2Gt9fpsQMHepmQYA5EsH05GCV/IsFUX/mx6L//3nCb7tTpVtfj9waYjmBkrPC7mAZ+ExCMxHJAsu3XHLdJVtlZTnstd5mOYDBTwEgwYELgBNPejAlG5nciu0TJ6oI4T3lM9c+iD4VDMIMXshFMvYVGIJgKya0P2dVO9kw8Hzj0u70ozjAEE9q5Q7s6Fb/6rlm3apxNVrqnAQhmwEK2ee650MAEM6Nia8Hdi9vdlq3rs7WYz4WVJiSYtqxfDkbJn0gwS8RVBq/NeOUR3313wwU5JZ6bjmDKsML/dcH/CsG0fjt49ZiUCp5r1nX7cKqsZIrpCAYzBYwEAyYETjAdzJhg7q+q863lrqbeG/uGnZ65x9uhcAgmcRsbwQzZZgSCSfXODKg9urnHkhFF5jTd+TTZMAQzvNGVAMt27b3jsyR37t8ZYogVzOZtbPN84TYDE0zXoUHHOnc447Oy6OjX63z7fTAhwYxn/XIwSv5Egum+ucns1VdthIdadOu4teKsfqYjmCBW+Pmmgd8EBCOu+8u7ztAJblvdi1Wt0cL5sukIBjMFjAQDJgROMB3NmGCuFa/pkLpD7DL5WpcH24vub1Y4BLM5i41gQrOMQDBbxzUPPDF+itfCta93fn2x/JZhCGZR1NYkpyO+rouODaux/4nbTQMQzPostnk+N8vABDNI+annv15TnbfV/HCvwu2FLiYkmNGsXw5GyZ9IMKPfNWho8fm0cMOtNU+u/VrtZjqC8WeFv6tp4DcBwXhYbfrZdVwsb/2RoI/Lii+5YzqCwUwBI8GACYETTCcmgtG7p4KdVnuF31Ohxu3abw+PnCha+v3dp2VR6el5eio4HE16IKxcVzSLZ197bkvezDw9FaaN313zijrIc2nQ9h7Vkm7MztNT4XZ4i2f9V931SuUUic0qH7IwT0+FJm73Ql5wKrjMfbwhqqI06HOengqPx/hOT2vZxHN+xwe2GzvWjc3TX2pBtUmdEvYU8dqp9iwe2O3oISAqjov6Ha7R4vode8/YDemVH0n7w15W1rjIpbfdor6Ogz027E9VBt9cBztglcBFrZ4kToy96u2cmq1a4PTBzQeISuKiz7OPpPXv34L/18T+NYK2zYK9ImxwEbf3rwbCppc9lu2eMOHKsynbgKgULmouS0i5vfC4R+LWB8mLDnpnAVFpXDRlxdpNmQuLCObHl2/h3tz1IRCVwUXZ81outHy6xnf6lnh7v1pd2wJRWVx0a5Ojz3eLk257Plv1/nZ+CweIyuGioC5v515/38o72rdVudJfux4GovK4aHGFfxPviN+5bWhevtmX7CKDgagCAW+Q5fLy+9S+S2cm3I53agWRtyUeOL9E0ugFKzwTrng8/56WVB+IKuKihU2qzPp2r7xwec+HsxqdqFsCiCpxGFtxVCYeOH6C8pi3HT/p0o/aRRvlTACiKrhIIfqyav3iG54r//71qKF10YlAVJVQit3n7gOXXPNd2uu5Re/dlzsAUTVcFFp1UclW05q7z3SN3Tx8VmBJIKqOi17Ve1M6otp61x3tNz5JfLRyOBDVwEVV1Hcz2rfZ7BU9WJy04XuxSkBUExclWmd/u+A71GW3z9cPjXuHBQFRLVzkX9pCGWWzRbju3+YtrK4KRgFRbVy0/VtgXBOn087bO5ze+7LI2VlAVAcXrR3n4PPhVqho078vToZ9ajoSiLi4aGOdM+mn/o3lrSqzSLw0adVbWrOQuhyGZiEHJVmzy55bJ9holb66hv+1nQizoW+zkM5MJqpSaErSysyTwtXb7o8+XXMsuf1VceFIpUwRgqiAxeQAN8Lv4BI1S6Vy6BZGAIcYGCG1JCxConPJK6qBQr4aPbMRF+jauxUmD1/NgvYVcXorGrjHu67qVRG0XG5FUM2LIL8t+mTW9+Hc7r4T91jwnvDeLjJgQVADH9KC2dXXIUAhqNy/z02FnKyrevnEbfwlYGhgZ89DJMGKCKVCLcVKgIH3k8qwpRMxTrhiFax6q4iQBqNHyP3VvzrF+3jt+TXv8CjZuEByCR/t76GX8MkVGdpvgHDtYoVr7VWz8OTo5Sb19OTs8YkWkquuyHBxJDdCPFTCBQ4ILCcwWAxrcTDW+mn25Or1Hkfe8bd0tR5xamWnvynVHvDHIqo9EBJDa8/ZAR/sLijtnXDEBjut4o+ewNUlCtMRRRckVCDRLYGLlz16p0MFwc6ng4Lq9ZzwtOBl8AwA1i5WsMBQx/mnCxP//Fc9+7eqZ1M9dKNVz55yja16tsu1wqieffxLs3My53L8XeVD72zrmRFsQLKkWiADVM+OvsZWbFh2zSjVs1Ou3v3k0y7Abe/khZxeH7z6mLx6di9WVMC4MdNKH/ltMBmuevbCa84VhnDvuKZdGnLo2s71e82merYTq+pqmkZ1Rq+e3VCaeJR34avbnIz0R1G35nFNXD0bszKM5Y+BlTFa9exP6+0qS2K8eOsmyzI6nrUihzBMUz27Fys4LteMWD27zIfvy9rEvvJNmHfO32WN9xAzqZ7txIoQmNO439aVyW87uUos+tGhitukzbWLP68/hrw4txYBH40b4CLSfeOAT1Qz5MKOzoQnDFaIoeCfwO8axQXYqiI1daKBscXHK/S9cNdtnE6OE3X/Ev3edC+akOiIcTZYBsqeAIxvoqJuSqCB5k/021bAXiAPBmhPqWX5+0X68lz2Ja0KlA6Y3YoSTYJ3I4pEYZfz85So9q+AnlIOACj8CX4CnjYI/ZoLOYFP9Kr9UhUDiBgXdiFSFRi+QI4m2wh5pbpBqxw9l2Q8+R5x+4SUPC1diJvp0zJXlG9DpivXRa8qLHNb8ir2yYITV98bADBnVsDAiDKJE6XhDPgzrThMf+gtSaxZdGmD6ZLFqj6Pc+8RfV/hsav39Hob3bJqV8CKyQNlCEcqVRJt6RnMqeXxA+x6NSmYA0xRbZllMzaNdzvFXzHkUnrHy5HeBlBtVVbVWplItSj/eH43vVytUqI89hypzPIeC26F/lPMa7Xb9FPDJzcMoQb8EIXtNFcNvnfniNukHTxEzO+uIzbFcGLsxkSM/EtVbg1vt9v5r74Dqs4KOigifU1FWIAkEm59wmqyEljfSKKmk2QRBiwdBYoIALmmDAr2mJDcx2CLQ02uCdxYgoU9dGJEatgu/xemqQP5U7p6I2Dwt7wJQH8KBv9d6uCfDwZ/5ZsFzU/hifKAArcbFEqJCnobCjnXTjPG1VyAnqYJBfybxqap4W60YoSEoYJ8qVWZ9jy3Pq7zg0r0EAzuYUO2MUFY0gHdxuDX87Mx1ytm+C18+chrU7Qvb7nPxsgC2pgMALMDhNmKDw+uUzfrmmIwF3RLuGEe9Wt3t4IVcrUkOAobHlhOFHoV8bnLMJ/rs4RT+g/hJYy0I5e3tMl9Ln35SxIavJyFPQ5bPxRs1o4YbLhJcGYyCafL1H/foq3CO+bdGy+HixOEpG8r7S/B6khwfaJkMoQtYHKY7Yn7YDESbMxK5cPFMmmIZpCPkEaGcxVgmaLS3RJQo/Qs70nTAlmsa+lEOyHnyA2Arg0q+JYNvOSlNwo69yt7YHl4cNdVosaK4WCIIQHwKVrPwrtYM8+5Xwe/+jV3chey+4w9iO4+ay7nN52pWQkFLQcIpnM6RG49ymWYDpPKbzC6zzoiV0OLnIo01ODQQsL3T+eFnkWDH7pNLXt/56tPbyitv/EBgg7pkKWGnsUQraWsaE26YZJKQtaBo5SSvDjUz5Oz4+AFXFqJzAH+jNrBzX0gdHLDJCpKShz8U1DDXRkjSKhY8AiwqB6lUTVSy1RiKsgkKaBe5zvisyAHlTYX7YTNAr02wqr6YNhCX0GTv4sP/RAkFLUmfC96reFX/r7AFPmF5j3bUgIT8KsQgQnscmFAsZQVCjDEcaLiMREVN6z+3ulzZvAXHd0mWvElZUy+lf8YbDHTuk7nKn5Ua6lLFT9OvjZ4YvXOFzof+SrY2cxSfi9W2K+gNhieXL6BF12OppXBBp5Day3kfLOHnJobZxjIs7bFRPq/OOky/0fND6OrzbtiAMhr3maDvNRtAnKBwbIyyxKQGyErE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREViYiiZLIykQkURJZmW3L3It+d2WZ66os61cPvBra0FLe4OBFjj5q+qUBUt5cmPRfz+uY/a2dJV23WIUMvvKsHFn/tprNfoFMoYbuIhbAoTvlxRhmWz1XqTwECw4E4w/AlpRwnYmnIegW3qemnOb7ijRwUD+kq1cOvKXW18Eku4o8MQKm4Af9wvw1NNE2rJq5AqoG4AH+wZwX1DRQniKoOdMzTpX5YEvw8o4FibUV7jY2Byycna7jtJtDaxAFpBWuI/1wJqwqaVMi8mKFRKm2JLF1rUadfdKuVLzyo+b78wZMi5jYw+fjic0jXRMUM9yn80cdMQBKH66xoXTlGn3zgc1Pa+5HzCtssmGYEVMOLvWI3DPmUMnUD5s+9Jc58Ofb+8lqj5wmMmE8d5A9PoiQATlYwLbmdf3c2Kba6CGEKDhPzzXIQCTbhATn18KEj1P21uDvXVUuPCR0q8AMopYQJGtWkD7oGddt6CLVfLl2qyp3yGCBRWYDpf7YPeH2/afey/YlP/zsbn+AHEUknkuPImolhYHOXcaYLkTnjDamK2QixhdBPiIrxy+CJRvOuMb5evShb8TTmdCKAdy65HiuNtVthEKvtsfUAxa6xgZ0zf4GpucCHFRn+IgNKCd4yPR6IYRphc9HbpKsjXdezeUMPeXVldyBzgaLxzLQOkmYnxWnmriCZoIDsM5BsPxQYyy7mZCTqh/XlcHAkoCZxgxVg66SloPWBAo2Vh/9eFHtkm3IlkgI7kUDlUdkZJcAwrSZFaaF1/Uju/xDaNRYs8lCaNDSYGMEhtC4NN/REYMGt0OuTHZI0PiMY4fJd0SxrnFvIztUq0Xdh44QK7mafRrEfjmTa95Ycx8R7cHOpYi5cskIeEmikgbjBKmTWaIe7mJ5Q9ROeR6xjrgq7YScco+yYNdPhE++A6Ce/VAvQ1UGC0NpNnfB6yC/UvSz25czVWbz0uv8lOw7OIhyDgl7AN1F0lzOb85Rz7kVcM7BzORSEJ5tqDkHO5J9fqhXNklpzfuwNard0DXKyXvie96Sa2ltNmbOTSJH/zT306N/+PX88Dl/vM7OiJP2LguH7k5fJCvfzQD4PHzIhg8YPqbIMLDGEjeGa4DozKH+oaeNsOXilg4Uq8IkkWxKe3NtT3VXr/Xuk4YOCV3c/mQDstI099OVhl83+J4t0MoBVq3Em5VWcg4RWtGLvspiBk8pCcGNL1Ixo7oNr5XQeIbH5uRZz/d4bLAkK8Ybu5+uGPy6oRWjdMTNCdxmpK1XdzgJOa8f6rcgq6HFAFtYyKT54THZbmktxxnl3A+lDG1VtewzR0pbB80DEG0dcEFhIJL9kA2RXQ8JXndj4vUdC70+9O3U0SPmw49I66PXyV4K/ht1T4bprF1hkAmcOyJcGhwO3Ep4tlCsVsOOXNqsGJz+dVt8UM9po96XPiY11/XJE32I54nSsl+UYFXnR+d1PSPgNXFXQ9PAAmuyCI8wad4E+eG70l5Mu7XzoE/Cq5teEyZcW0UefEyOjVZgZPLHUkkhhk6oHA2/ZhiGelmszj74iNK0lScd1IL5QGrN/gBsZQ3/nutTcsf4jENXiKbwuUm72sN1LQZYVRRgsJeon3Yyu5t94Io6mgzU8Ysa5jBA5KrMQ7bI1c8HBOYeTJj77HM9d5JzTBDdp1on6XNPckH1Mt6kZnR0Q8qEdA1v4A8AeooEd8ooLe10spPUyhRsr0VvxkqW67pxAxsJPQZwzkZt3MAYheoxoucXwSeInl/wN1F7flF7dlF7fv12Ty/qjYieXky2qZarVAVsjj4tCBc6bhlU92k5nyXiQ5u2LrMZT25ByKPPDl6+DYa+H1g1vcP4zp4LH1ge31JS+q6geyZAnSuhOp1Q2QswQSfmcRaimRYTSL/TqHF1o5gDkY2LOB9yED//WUJM3mrUrVEjFaXJzx/0/tb9q+us64vm3Js11hAoqVhRGvCY1oaJNdtF0+8aOkY6AETNeidzmOZRdA7DrxfGhjc2Yj6jNpp6OWBI4fbU8/+ZPaWW8zGSPT3xiM2ern70nz3F9dNkq8DBfsNOn7jrs0IPv0w9ZwB7Si3TZABLcewRm6XY8aiw7WmHSp6LxzWt7xyzpcLmMW03ZBrAnlI3CQyA0mpWlKY/KkR7SuVQk9tTbMQw2lOAFG5Pvcx+TUCdToZJZmtjUe3tHIHSZe9H5/Adl+b4G2BJ4PqIbUnQVgu5yGDJbGUIyI2QzIaogUeYekQNPCKZDVEDj0hmQ9TAI5LZEDXwtCUG6TXwiGQ2qodGy1iDVhG96KFUzzNAxpq3wZRsY0Ql/14dSURRRULJ1Jg/TSdWTDqhli00gE58mHSycv/d3tMefvZI3b8ndefQe9T8IbFcIqP3p2cybHY8rhLegRd4gW3RuXJFpERTXAi2SGWrYUutu4h4FV2snU1AsEohk/lDxoIXc4985nSjWMINNq9vVVc2cUl1lag3Wc5TMVlC6x5qiQo2YSV+bUMXRdRgGczVAu+DFf4JkUbi3w48DBjluB+9maKSogwGVNlYyGl6HxjQDgJO9DRBSW+xKkwqF0lCSQRoo7nsLw0LJ10vobkeqFDmvUq2wnXHNhZ+a3I/qywGop8KnhuMlGreqjjxVqgJpRKP8JCHwLJbBLwWJeBFGHrJcwnz1WGCjPZSqQBYVUIsE8BaUHmIKFIlEUdo/40VJtbegw9VX7OnZWoVUANt1VHHvwF4OfI+Gy+H3Cd42c/sMaeWVzXf7dFBrIn9ftrE/u4Go8nSHOPRJKJuLkGTiLq5BE0i6uYSNImom0v4QvdTBj1td7eqaPnMDl04i68+zOMLDVx4+FyCV6bnviEPGjcUjQuhkSu0+siBRC3GawBy9WfSZImAZcM3Rw1xSXr1WdKOm0BeGpXFA3/e4H9UwFTqXhWwOhEylHN9lRK5m4gbgT9Dt4Agtegw62vRq+5RfkDHqRFtJ+SEP4XRGgFwm2lbM2BlxnlKCxGypUnU0gxtovokLCEQBct0hovlgOSQH55VPWrvhiv2vLULu5ze+tS2CDkg6KJ5Aj0gSAgMXsEIQBICIYlnSpzwe2qSxImiwQBardHYtWvXL32K/XHJioH1paJkYhUWZ5RB9wWpm4A3ng/2e43xXrK4svXnjeKblCKq+EMQRVQJSWFopzOrduzMQTvAGv3SJ7uojjBCqsbKFgeT1ESYEHQi/SHBtWZ7T3nueCBd/2HnBnJozFrzRMQmbq6kMJRTkVU5HHNQDoQur3IIZmJSTjteBPyVmE7A66jBrRJ58ChN0cUuXIVSPAzWaGyB/Sv3JxjSs/8RdxZt68r7a8WXRNsFSyLI59gD8zyffo6dJC0M5b18wqa8q2ZUKIhcSNMqHw12ydWgOlwqHyUHTjBQH1CXXCGHqgN/kylGYEL4TycoihCP1FxA1xTJVjfe9qqEx/qpFjtqZGwYQeutg0iLxi8XhuaOsWpuh8k1B2+CERW9UmUqaPajpfIwdkN4O+ST074TbXzjSw0YbZEykew9WjP6TLkSg294O+I+BFxxnKC5VU6YIcT91AAmP7Wa1ZiAI2kffA9ZJz1q1HZMc3KkTqDZyPFTSYZLJSPIbirElCmzrTEPVh1S59kMwgrIhkkUEZJI1SiuUvNAdVkPTTaXh9xfIsfXL8zOK7UtBtu70qOKZHmZIPA/SoUq0lUqi9T8YpS7z3jCtKmQ8y/Efjkq2pgBXNpTdJeWWCAjV8NuBDbYwUnsHXXy6Mt23tWsfq2OHlvqOWWNOGlBrj1mTTyVPiy1kvzWydTiZgVdJwNL8Q4i54yyI9FgFX37qV6J7pUC87gwXMVwiUolZehZwdnjMUohGe22aP7Af8vPet+i4FOYghXVRhgAq1OsWO01rqtD7GMWx5dc8Iegs3Mr9tYvawnu8REX+U78X0UxbqOyqjWxMCB+FP5/qbxuD/kO7XI7kMmM/VeE/7eK8FO7CRmtCP/mZ2xF+EOfFUYR/omx/k8ryoe7722xLN2vV/wmA542N7CNhDXL1z9jq1k+95lRivAveBXk1/NdvHAhN/vR2xVjT5q8CP9oVlTAuDGbtYN+B38MV4S/dBX125WjOc4bWg/Z1i/UYbnZFOH3Z1VdV9OozuhF+Jf/E3pv3roevlsDtsz/4Dnju4mL8GNWhrGKOrAyRivCX2JDXOnt3cLdpsz2Cm37j+iiGRThH80KTugzIxbhX1NtcvGad6q7TrN9XXdVTLjCDMpZQIT8WRECcxr323ow+W1CXtNmv7pc4sXf/j/2vgOsieT9P3ooXRQFsWHsgFLUs2E5IITeFMvZjSRANBBMgooVe8VesHcQFMWu2LD3ep563tmwl7P3+p/Z7AZ2d3ZJyJLkfv8vz+PzyL7sZvN5Z955Z+Yzn9c56/Lyl2S5d2vsEF+SXAZGdHrOZsGAc4vCLRJp4f24FgZAXCFPjosHORysci2P1UnLgVphkfFt6aoHRYzacvsaCnlDnwJ8RQK46ELBl9dUyKv/VN+DVVUKXwtcxbFAfvWTQ3tL5o71DVp4MnLTp6CLZvrX7qKkUNTAqGcKFQXQU0H0agtQ9YjBxKrfU90KYau7r1gSp5Cg88uQX/1tVt3bFZ66usqJfY1+LKSckMJuRJyQUl/nXPYXfP8w1u/f+qmxkyVNy9QhUYKvLJWLpTEs2jbz7/LyK/Lmhm6XF/T03PKBUmeOeAC9rWospeGM+qzOqGgcZ9CKY+uyY+ERmihXgeFLFAPXTl282oMpK5hZJDThN20fEy9XiJvwm7VXDlKosF/Q2erDjk4R10LuCjMn39x60Fv1lTyuwQ+IVqXIEPUvC02l4axvT9ic9djo0wyCV6NTtupQuNCdmKzor2TpQdnvo7psn74y5ECUeKryXY8O+kyV9XRHflM8kMOjnhdpulDNhF26P9UtS8UjOUu2lfx89vznaRMj59p9jbfO8woz6rQXAuBDAHAdAQAMLTplosRQxiwyMeHmjOzy7t+Eq7NPu47r+rIpZSgz7GFfCIAVGwDZLzSJZtf/GB+HWpjbYHycwc/Y+DgVnpU2Hyf372UD7tq+Ct09t2efi/dfHTMBPo7iGdvuZp9nJkAqWLRokQH4OA96ZirNmvmHrL15qVWdOY/umwQfJ4TVOy1NwTsG4eNMi3QOfbutSfCWUfffL3ugmGESfJy6rM6pYArO4RmTj1MhoeLEWpde+qTbvBqXaWGfalJ8nC9P2Zz30OjTRBPi48S5luFVHlU/fPX9WWkuCZP+MTIf5zKr5w4Y3XOlysfx+d7q5fh63oFZtyo/bPR17zWT4ONgOQQjHwcEQjxP7fZ/gY+zfKRHxLubsWHrPjw7FffRbaiR+ThfnrHxcc7TU9pS4ePsFdlfO1m5cuDm3w7kPx2fKeWcj0Odm3PAMfnwjI1jUvCstPg4quuPoiqPjvBZaBbX7uunJwmc83GoMYIDrM6zYpVn2FTH2Hyc35nC2KCD0sbSiGzBrgORskf3e74k75R0TIZnJwMVoqR4+glTHbYv6vtLlUnw9JhmNyfFXX3KlC+Cmnlx8BOQLW9t7bMHTn9Y6bukwlzRgs1LXjO+H30np6iR1v4so0EIiyx6FAvRKqnnnrRslZqnIfg0M+6BVukogP8o5z/nuQgnpN07bhstkQGHScTBIK4PJR6HuVXtyu5MrnQsSPO3974gWNXi3sHNJ4f4U1Qw0A6spI7uCJ/xrNQm0iErfDCgHb7iSsmDeki+BEoe2mYHZRi81A/EjupQ7geWyM33xVHvwYT6jwlb11b2MPPb2ctpcUZSOIWshDh9aVX6yGt9YpN6eo+rE5sl6zdsHtl3i+qRnkweWTk7Lfl5yKfABYMclYunNulNXhMNgOQZFT0jY5xeqm/gK8Gor653mayEKS9Wqy1eLhNDOUZICYzF/g5Lh1WiOKVWOQj1iGT5MHnMQIlYcxPq1enLuerr2u5Wuwp5028DMMuiSH1QVD3sNkJ+CUIE53EI+SX4jyq/FDHhVofoE898xp/ZnmrxOvIKVX5pXLdVo28k9QpKz1+56GH69A6EnTiMWmJ5JuoHI+SZmDxtDdUDcDei98AsP65tM2dJyA65b+tbuw+00sdb3O+GAb9Ohn5dikp58kEXUt02SuFJa1jfsa8SfIfEuMKAUfg7FmqGe3l3GolQiWLylX1AYW8DCZEqWYFOXJ8Gnvq1s80Zn8nx4w971OxwjdVl5gL1kxBax7ihNJzWj9VpYYZ1GhGCzcIE6oAKbxmt6feYb4g+ypTs1fXHS19LE5USBca6Ax9BCphIXw3suL3PiMfLfffV2t8sJLTqOqqvzMOTVaL+Mo2ABY+y2QU/1Ys+XHkVq/VVwuGKzamtWZ1a/zZN64u1gALe2CVqfRZ0iQCKTAprQzeDkY5epgO7yjmj1BOPS/m+iEr3SV5YE8eH9F5MQ3rHe7cjzWXnA1fsOVB29M46E8lc2eh4aayKD+vKkod1OF4x1bSuERkbC6ciIpkML78qhYXzoHi3BxJgasFBpldA5Eva0u1By+h8EyDV2Q9VDM9dyKtyU18emS1WfRf0TSV8YbQ8fp3NW78ezg+ZPTrr6SPzVznUAi/Ir1hsSkgtuq4v8R4evIdYpfuiuB9ggt/upm6sMbUH5VirQOLSMyi99e1JmwVp/0TFTJi5wZW2pByrHTD69id4qJ31m4NWYgLLyVgL1GGPzRrqDLFJT3WJ3JJa/ZfxgnG95dVP7riRS26X8G5Dwc9jhf/5P6bBENO3ULe6R0C2M/gmaKkOSsXdEkYKfVfzPfBQkO+DGGBmeWAdAh9gejMNMDrr+bhovFf6ej6q2fmj+p9s7bu/ZlrKoiF1hhfR82m65JzPvKXVwtOPjn/87/bJ9kX0fE55TPr9ROy6yNktZgw809c6vIiez9GK++oPcpJGri8jmPTmtnBJET2fPTXKBSbVLPDdtXnV5MTef84sqm1Ir/xLaBsiKv8ShXoRlX8tcNOiqn169clb6Zfa5e/gh39+hMKMlrip/P4K6+wTO4ctq3v27ceI0ArAZIWb6toEbHyxf27ontEJY0V21ROByRo3+Xc8Fj2y0UnfWTWzv/hN2vAdmGxwU+6dYa6O7S4HZEX/dlc2v3d7YLLFTXevTKiaav0+eIXnvNPjqz0LAqYKuKlZgPyD575lfsuGDckPPBK4DZjscFNm/KjqaSeqhq6xzxxdf1aPisBUETf9krDjWC2758LlX/us7HnI3A+YKuGmN/9sv7w+doBg2b8JL8uu374BmOxx04fnEzrvrNE+aJeo08AJsZYKYKqMm2p3eLEj82S6YO2HWU2HX1mZBkxViO81eEGtYRNVkassrzRfNO1JDDA58BhloBxx04Yvw+IbzAoRZFf67dTfoilOwFQVN91J3t8htldAwKwnTmMO9vtWE5iccNOYO/ll7ri19FnRtWHLEw6DBwFTNdz0fckGt+wmQ3329j/+142vr7OBqTpuuv9GlXHXe3LIhAXV3/YY9ucyYKqBm5o7Hd597+XrsCVTBsyNzjkCgaqJm+Lv/Fg+fsRB36yF7er/1eS5KzDVwk2SVvXmvu3iF75leA/7NY33NwAmZ8JfO9qYX7/51W/dpZg3dWsmQdHO2rjpnrBRyLCHCuGSFXk57T4smg5MfKI7RL9dkhIdFL7Lq9a4jT1GNaIJVdXhMQhV3Zd1F9U+bxM0//M/Lt4zrS5yIFTVhylEOcTu2bz42Cnh0o0Fw87UHLGSPHUVDk2SycWI0xdMCXBD/A4+cV4WK1OnTAAJMQhCeAVALY9bUAMU8tXos2rcoK1uOJxWvTgO4yti5zAVFmR/oVsBzcLTqOoXQX63RzUXt33yID5o1cUvR+yH1t7E4WFUjjcI4crerxAgMWre+clNyOO/0CknbtFJApoGxnsSS2CJI7lSih0/Ae8nlWFTJ6Kd8EUKeOJaniCNQTPVhg13K1NnZEjm0tZ3JPk7V5Hp45rPodPHC02cl6ZxxVoMC1yf/jWJTI5+1FHHTM4d72jiQnep4kUqfoJooIQPEhBNCWtmnrlFrvzQyNpbAjfvNzsWEy6rTWEa4o9FMA0JC9fe8/HAG7s/ynsnPbHGTmOb6whcHeJQFEH4k1CBRILl1bK3UFGjSdhUN/+TJzvPJkfqEh3B4gAsG1awQFPHx5++TOPP/5QbSqTcQM3QDabccOsFm3LDct3GSi2VG162//1vu/zKwXnzxcOqfTh3j8PBkhqBOFBuuPGC7aD7cd0Gy5IqN3Rxzm6889KA8PGf65g1dsxMNrpyw1ZWVEC7MVGWqeGUG/zul2sxJ/Gez2r3cmHi+95xJqPcMJXVdYON4zqDKzfwy2RslE/tKdjs9D1GfnjKCyMrN2BRhvHo/XFEllJayg0nhvLtBs/fGTFhZ/WgNTMKsk1AuWErKzjLXxhQuaHhBMs7LmvEIdM/vI259fEQuSib8ZQbprIiBPo0nrf1Y8rbTi0RhX1vUzVwbIaz+dN6ww+Qs9EwkKPxo/3DtF848NMUw4XVBIhMGMwQY8GvIO9K4QNsFSq1RgEItnh7hbkXnrqN1Cpxoq5fot+bnkUTFh3K4h7/hpfFpaVKScADE7/ptqyAvUARDJDfLoP3R59DZ28GTPx3vvf2YW/7U3aT4N2IAwrY5eIyJWr846Dm7eFvOPuK1gijmgh5m77pxDt2wgAi2oWLWKoAzRfY0YOthac1f9uax+Frqz5XWNUYQZY1tvQnbqZ3y0JTcYCNtTu34rLNM+G23A/mBzu3asABYItZAQMtyihJlHrMgH/TnMf0Q5fDsmDxpTXmS5ao6ml+Zv5TUdngTelb1qbevPbTHhMyAc4QDk1SSDS0Zyyp9fWLdvndVb8EmOLavVHp9YQDO4Vubv363bjMXBcOXKtgdW0fI7kWlR/P+k2nVMsmrEg8Rzpz1J2ut4JODfVJr32h0/Cs6/uoG36IQ1Xqq5yv3XniMSkXRSq544l1MXxgFDENjH5Xqt4c3GqbT07PPk7Tuu4niwdUgeRXFVz6hCeZJZBbL9GhYrynQJ4AIFdTcLHHiAsfg00OCwvFQ1KpViMidduu+BemuQP5V9pmI5A5+hqA/tgPUUB+Fmj8Sa/15af4hhUBBS43wDJIMNuQJ/JdiOLnAD21ABL8nzqmKeFqtHyIhEG95M+sLmkt3Z4Jlh+z/6em11LyaFu+K0Y6oMcY/HpxMab6p1uuQz4GRGxf7N3QummXLXrGmHxI5IQwm/khSqafdMNg1ndJuEER92tWt2LkiUpJTDLWPDBOFFpbi3/nn52XjwTtHufoE/zhLrngoXXhc+nTX5KRcyqlOw5bLxRsFp4YbHhI6M8UEs5UqPe2aUt5+MQ3L0M9/hgtJH03204SjMPIj0iWyRCxgClhdifug0RYrM1KEweLZFKxupEPkari+XIwTVFoHwmou/Qs70nzAtms7bE9FyGvJkTXGrX5dhFkya9e6dv3HYMxHh5cdZUoMSI2hhgSgKEeE797dx4TOX3H0zJ1T17vQU6fsQfR02f15eK6M5WVoO9RNNCdnSByq1EpA6z8avaaMX3WErkaGuQUpKYGmxYSvg+bB9vNXVfZb1zrF79/8fcmJ9U2eANBb+mQrVz3YogWaEksaP3zyigsdovOKUmSojjUK8LZ8QgFKa1E5gH/RukRGNQXJrlxEgWFEgd/9A3cjtgACR0LHgEm1SlqVyO9TB2Y9Okkevp1lifeC16haHOpXlgv0GkhzCkCwxbmCmr+Lt70xUgo3EYtGbbuRnbkuFZW5Q8OjrxB2ZiA3wqxMYFdLg0osCbOCAVo4vhAFcM0UJlMzT9qtOSm/HEplPxb/oqt5N8MDeRik4ecyo3jBvIxZuWbz/GODV6iart637Mav3EA+eC3bJDHviUgl3DGyrQjIDcAKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBltk+TfDBbKghYMP2Q6oi1xTIa5Q02XmTro9IvOaC8xTL5v27oUfebW6wCMs3E/a8+qUj2f2X1Yr9AJlfCdBHbwKEn5eUZelvdACksdxwP6wOrH4BNKeE8E6chaLe9T6WcFvuKNHBQf6RtVg6ypRkvQSe7jjwxArpgxEud1q5rqHfbMCUNOXQNwAP8wswL6jzjx7CHHZ+HpSe4ZNSeXLBdn7220l3G5oGJ89SX+LD7iiZOCKyyl8g8nAkrBw0loihWSJTmLuwa++hqI59s17fzs+PGB3FIixjTJeL9yYyhAVnyKUGT/VIOc4BSBCtKXi/piw9seVqTKKJfYZ0Nw4zocnCqR3DPmLdK3KZ9KrOpw79hY63P1lL0sX1jxP3cfu54I0JuyMHD04Nf6pbGuml2DyFEMUX0PuEIRIpNSHCODffP6//UIWh21LbZqVfH9TSBXUsIUn9WkCJe6rav28Bfqv7mmqWqwiaDbSwyB6iXfbJbuATkhGT6WK91iehCIS4Sz6XvImospYGONys6DV8SiVEc08D4rGtEmJnnZ8H8NWcDVkUG96AvxNNHQjMGcOuQ93M1VLchcp0k96kHLLTdG9CW/Q1CTxOYwp/1QyxAecHSxPQFKP23aX+tYdfzr36Lfce7xVYKafacXIbZGtuPZRjWScbiojg1xOnLBAdguUCwolBt7GJjIa/KK53GugoYWBLQ05ihUnWvn1lupzJw+l+ttnazq3uWHImE4F40UEVMBk4JIEw8Vpie6zjYFb+FRt1rNtoWGow0WBuBW2h8Wu7oiUGDx6F4pjgkaHTWs82422ErA1a9VrWpVou6Dp0gSuKr12kQ6+VMqXkj9X3Ebg92LkXET5QMgZckCmkMPkBqFZaoh7tY3hC1Ul7ErCWuSS5C3oAvx6HiNCInzwWou33RKVBVwLah1Iu74HXQy+E/R6au933vt/u1t7PQ+xa55Gk57AH0FEl9ubg+Rz3npmefg8zkWAjPRlSfg2qYnb7oxCaxVb8Pm0j6by9ujHd3ah2c2vDY3yGLKmaRd//U99N3//DrxeFT7UrB08HNN4ePCXSz6Nmn5wAO8OnAig9oPsZgGFhgxI3BaiDa8ag/ulVRs+0sUsRJVGxOe7pVXPdLZlZkboeBV5zlPTqRnaa+n+40/Drna7bAK46sXilrUl55dZDwik7Dlx0W8JIkYjz4Ih1zc8jSKftabRIsd2o2OLTV6Atkx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQF/RFtwlZDQ0G2MRCJi0Oj6j1tU+6D5oWlrUjfOs+M/u9FEkh9QMQkkK4oTQQcWNFxOYLMa5Lmcb13Dmh73q29Q6e+O67yuLIjbdkH6s/UXsyTDvNDIM8gPOHxEtj4kFaCc8WipRKqAapYcXgw792kw/qOW3U+9LbpPq6LjzRzzhPlMZ+SQKzuuzP+u6A18RTDbV4EibwC48wqd8E+cU9ns+KSpDfDZ/vvPF9oHnnFuTGx5TYaAwGHvwxKinE0AvF0YhqjGGoU8RqF4G3KHVJE9JBLcgHUqrXB2AZBfj/wpySPzxiJBJR6nhu1IoqcF6LAeaEAgzqWAPA8M48wOQ3rqitiSO1Seo2Bwc7V/Gf2XauftdgPpAJ84hdAedP8Y4KUntUayt9GlKJrLgdThJCpQdSJqRrhIN8AAxPKnCnjCKnqlWcpCpTsL0WXQicbNd24Qb06k9fAZzTUQs3cI/i7FeE3iQxniD0JuEnUfUmqXqRVL3JEutJUm9E6EkyxaZaAVIFiDm6yN8+r/TduaGlh++MPq7H2uc1+Issf+tL7x2+xYrbfekQX86t1fPIpa9GFNzNd16h75oJcOc76E4vFHsBEnTufD2OEHJkAqkkIsHfT93OaV+3Vvj027arQ6fVJZ+v1k4kmIrSndb1Rj34Jg7OO/FUVt/th74cTojSWVaUdn+lSQCysl3UtRZgYqQFQFTWO3kMUz+KPobh10tjwRtrMZ9QC02/e2BI4fFU9h+Lp1Q5HwPF07qs8fTDl//FU9w/Ej+RwwTV85A5G2KzXMt7LOcgnlJlmjiIFM6skcKq1OPpC9s5wkWvw0JXNO34tkLW5VEcxFPqIgEHKH34woZSwZdSjKfUMdTo8dSZNZ5+0EzwE0x+TkDtTtyQ2VqUqfY6TZDkv/O9T3zulbROHEwJVn5hmxLM0kCeyBmZrQIBuQHIbAgNPCLUIzTwCDIbQgOPILMhNPAIMhtCA48gsyE08AgyGzVDozHWYFRENjGqeh4HjDU5Z062NqCTS6YjiRBVJJxM3fOn+cSMySdU2UIOfJLE5JPFu+90n3T/U3De7h15WwbeJZ/zKxclSpTI6LVRmAKbiy8/Cd5RpEIXP1GukqjFhaA8N5uGLVV3EfEq2kQ76+gYhVwm6wRHLHix8Mjnq98okXBHzx+vb2eVj5ytPD3oxaRqjExqiy5KiQIKgBMf28BfntxfBrlasIoOFP4RS1X4dwcZBtzlKEjNoLiEKHNEW5RuJOSN/QgCaBsBL3WSwCpcpIiTJoZJYkkDoLX6cidY77TodUv19c7ypKJXyVG4yqhGwstjPh63w0CMUsBzgyqp+q3MibdCdSiFaEhwohjKbhHwlrGEF+HWS5FLWK4uw0syqScEsIqqVCQTQC2oIgORSiERJWh+x4SJNffgTXWQyQ/LVBVQjpbqqO2fg3H5/Ee2cfnAR2JcVpg85lR5VdNdHs1jJfZna4j9Ss6GSVue4YZJhG4uMUwidHOJYRKhm0sMkwjdXCIXiu1QOfruxLqCvROGfVt3uHZkkVzo8LiUg9d3jvOd0ON8H7sRj2/RBlcY9dHrYxQxXg4GVxWTJ020XDtVdNhg5doPf2cr197je2mXaz8+cPH79DYRAbOPmLsd79891gTKtR/4zlb8Nvu7CdSc3rBhgwHKtQefc/Z+3j09cvn++6uj2yyhVBw1Urn2BazeGWsK3jFIufZfoi4VKLfG+yzjJUzbMSRjqUmUa09kdU4PU3AOz5jl2s9Gnr+Sd7qn767Yh+U7DTxGrktr7HLtAazOa2Yc55lmufYDNjl1nbyW+k7dt17y12ULcrUqw5drd2b1nJXRPQdvKrVy7W0kHx1We9QI2zF3zbgOUZvJ2hDGKteO5RCM5dpBIMTz1GSmPPW/VK6dWhbDyOXao36wlWuv/8Mw5dorfwhfdWh2ePC+D4EJjdaWG8h5uXaquBkHJcjDfrCVIG/9o7TKtVccl1t1/sTFEWs7tm6e4jxgN+fl2qkxggOs6rNiVfHH/1fl2gczhbH/ifCXSISfWk3IYCL8vJ9sIvz59NjJgQj/nx18vWbXbR2walSNJMm6dLI8uX6nzTmOkVCz/NsPNs3yx/QYWRoi/Gtenc26fr1x0BqPZ2081gjbGF2E/worKvmGjYascwfdDv5wJ8Ifa3vlt7f7m4ZPqLd0T8PtzuTS9cYU4d/I6rp047jO4CL8HeYM+v1zzSr+G4dMfN7J5iplV8XgIvxYlGFUUQdRxmAi/Lknr54WtReE5tZ0/XbxQkPyzppxRPivsIKT/8OAIvzex34e3P/nbP+Nn5b3tM3yIk/TjCfCv5EVIdCn8bxtCFPeJvR1a/yz/RXf9becsy4vf9mcrCOAHeJLksvAiE7P2SwYcG5RuEUiLbwf18IAiCvkyXHxIIeDVa7lsTppOVArLDK+LV31oIhRW25fQyHvMkyTRAK46ELBl9dUyBv1U9+DVVUKXwtcxbFAfvWlyp5103NfCZYftvN06JNElrguUe0uSgpFDYz6FpsH6J2H6NUWoOoRg4lV3k/dCmGru69YEqeQoPPLBpmLeb4jK4VNv77RacuRWD7lhBR2I+KElPo657K/4PtnsH7/OT+NnSxpWqYOiRJ8ZalcLI1h0baJamG2KOXidv/tlyvdU+VcaEVuq8QD6G1VYykNZ4xidcYA4ziDVhxblx0Lj9BEuQoMX6IYuHbq4tUeTFnBzCKhCb9p+5h4uULchN+svXKQQoX9gs5Wb8RcfFotIjJoyePdITPzm68lj2vwA6JVKTJE/ctCU2k4qyurs/xMoufAR+mUrToULnQnJiv6K1l60LgpqqzggoUhu91uDVv5sdJ+fabKerojvykeyOFRz4s0Xahmwi7bfuqWpeKRnCXbymx1J+PEMZlgzerTJ4Kfd1ho1GkvBGAxAcB1BAAwtOiUiRJDGbPIRINmQUctW2zw2WvZe/D00ap9lKHMsId9IQBiNgCyg34SiebQ/xgfh1qY22B8nHjeCRY+zq+8E6XMx1m9JarOl0mPIyaNmb1tXYvUTBPg48RCSBh3N3vxThifVDB79mwD8HGup7/aYt84y29StTLNvtukLTcJPk4nVu8EmYJ3DMLHaVt7+un3V/iRu3b/earN544XTYKP04HVOb+agnN4xuTjxMdfzWgTuCZi7taQKWfaR5w3KT6OG6vz+MZxnmnycRZt92i92vV9wMbYQ0sHf23RwMh8HEdWz9kY3XOlysdZPbdb01P2/PAFu3Ye8563+qpJ8HGwHIKRjwMCIZ6npvxf4OPcEzYKGfZQIVyyIi+n3YdF043Mx8mG2DPycebRU9pS4eN8TRt3qrIiODzj4qaTr6ueFXDOx6HOzTngmKyHyDFyTJaTkeOQj/PeQfkhyGx5xPbOi5qWb7gshXM+DjVGcIDVPFaspho25hqbjzOMKYwNOihtLI3IFuw6ECl7dL/nS/JOScdkeHYyUCFKiqefMNVh+6K+v1SZBE+PaXZzUtzVp0z5IqiZFwc/AV0yMvrtkpTooPBdXrXGbewxqhHj+9F3cooaae3PMhqEsMiiR7EQrZJ67knLVql5GoJP8/DTcR7PUQD/Uc5/LnAR9nrw6bhttEQGS8qIg0FcH0o8DnOr2pXDmVzpWJDmb+99QbCqxb2Dm08O8aeoYKAdWEkd3RE+41mpTaRDVvhgQDt8xZWSB/WQfAmUPLTNDsoweKkfiB2qr3iJ3HxfHPURTKj/mLB1bWUPM7+dvZwWZySFryv29KVV6SOv9YlN6uk9jk5slrDfsHnE8R3VIyOZPLJydlry85BPgQsGOSoXT23Sm7wmGgDJMyp6RsY4vVTfwFeCUV9d7zJZCVNerFZbvFwmhnKMkBIYi/0dlg6rRHFKrXIQ6hHJ8mHymIESseYm1KvTl3PV17XdrXYFQQiCWRZF6oOi6hnvEPJLECI4j0PIL8F/VPmliAm3OkSfeOYz/sz2VIvXkVeo8kvjuq0afSOpV1B6/spFD9OndyDsxGHUEsszUT8YIc/E5GlrqB6AuxHpLatn7dL+yfKM2B//asiVgZUK9PEW97thwK8F0K9LUSlPPuhC598ZpfCkNazv2FcJvkNiXGHAKPwdCzXDvbw7jUSoRDH5yj6gsLeBhEiVrEAnrq0u1295rl1q6Por1araSF7dZ3WZuUD9JITWMW4oDaflsTotw7BOI0KwWZhAHVDhLaM1/R7zDdFHmZK9uv546WtpolKiwFh34CNIARPpqxWREveOIxeHZiQ8Nx+w5FY/qq/Mw5NVov4yjYAFj7LZBT/Viz5ceRWr9VXC4YrNqXNYnTrqHU3ri7WAAt7YJWp9FiR4VJkU1oZuBiMdvUwHdpVzRqknHpfyfRGV7pO8sCaOD+mjmIb0jvduR5rLzgeu2HOg7OiddSaSubLR8dJYFR/WlSUP63C8YqppXSMyNhZORUQyGV5+VQoL50Hxbg8kwNSCg0yvgMiXtKXbg5ax6Q1AqrMfqhieu5CX+EZfHpktVn0X9E0lfGHkF/Wzs3+x5NbTkBnT9w2yP/4lilrgBfkVi00JqUXX9SXew4P3EKt0XxT3A0zwF7zRjTWm9qAcaxVIXBxd3j0b0c0udG/carFb928/aEvKsdoBo29/gofaWb85aCUmsJyMtUAd9tisoc4Qm/RUK9nudJ8rcwRzg2b93NEqvBe5XcK7DQV/D1b4A4wDP40hpm+hbnWPgGxn8E3Qej+UirsljBT6ruZ74KEg3wcxwMzywDoEPsCMZhpgdNbzcdF4r/T1fLo5d26ccniP76p/R3d0ePtbWBE9nyvfrv791WWQME/sarMj2OphET2fUblXFyzP/j1klqrSlBdNXw0qoucT05jX98mPf3yXX7ki3d631x9F9Hzm5DRuNCvpUsjCs0EVDt1t+LqIng+i8i+hbYio/EsU6kVU/rXATbePVm9q13V62JjPG/6tdvrBEWCyxE0Ww8ut+iB9Hp61rp80a5cMomGFm+62OVSt3S83fNIqqIKiBz5pAUzWuOmPgc+W/dO1QJA2KKT3/mvO54HJBjfd3DL3dJMVF0I2BP7Ka/73ldvAZIubcob/XOATKfUb06T5mZ9zg1KAqQJuCopqJfY6rxQcED/NmnqtQyYw2eGm4Z4WsiG3ZwTltft2Lz1XOhuYKuKmVtvEfzx6uzEs9U7iojvHztQCpkq4aerrc85PJOXDVp46809B/+u2wGSPm86233Hxa55DRHrzFhcTX/b7FZgqE/A2GFVmzbFLIQfOLKj/fvvjo8BUBTeVf3nnQYusgYIdVa9v+XS1WQ9gcuAxykA54qbJ6x+83NJpavDm3kf6XBfX6gdMVXFTwOwrA367Mzd4osuK4TUWtT0FTE64aXya8ui6Ox18J18K6qc4cmIvMFXDTR5Tt8RGrBzgv8697MbePRtdBabquEm4dce597InYZPqeNsIpnSFClE1cFOnymbZ5/+5JJh1xvXMjZYNnwJTTdxUxbm1l0p+ym+F5wyHXd+ewLZRCzd9WT6iw+s+3/zSdj3m7zTLXQ1MzripTa600x3XYf7TxKMcFrR2zAem2rjJpqyrcHOFYQETpyXeyF9UGX4WHzd9dvY+M2d2g4DMmTZBX3ZeiKIJVdXhMQhVWa1ocK5bV0+fVX1VMxfsz5NzIFSVyhSiHGL3bF587JRw6caCYWdqjiCLxpsLhybJ5GLE6QumBLghfgefOC+LlalTJoCEGAQhvAKglsctqAEK+Wr0WTVu0FY3HEyrXpU5AeMrYucwFaTHN8rQdg5ZC2gWnkZVvwjyu5V5G6hc2M1DsP5150Edl0wsx+FhVI43COHK3gsIkBg17/zkJuTdL0PbIGRLyVp0koCmgfGexBJY4kiulGLHT8D7SWXY1IloJ3yRAp64lidIY9AV7Jx2Hp66riBywtHIewOWishlSC01n0OnjxeaOC9N44q1GBa4LpYxCi+j+KOOOmZy7nhHExe6SxUvUvETRAMlfJCAaEpYM/PM29xLeF1p6cfwjS9O5y0245OL2VlE449FMA0JC9fe8/HAG7s/ynsnPbHGTmOb6whcHeJQFEH4k1CBRII1ffXk3+xfCCLmlHkwYbt/Y/IJyRIdweIArBusYIGmjo8/Y5jGn/8pN5RIuYGaoRtMuUFQ9gSLckO9sjqNlVoqN9R4n/q9n/sZQd66Mz2mHbJw4XCwpEYgDpQbfCFCjAfdW5XVabAsqXIDr97w7fNH3fRZc6jx2Ky+q/8wunKDOysqoN2YKMvUcMoNFf/t8f7o9feRG3MWuPM+dCZv+RtTuaEaq+vsjOM6gys3VO2T4+6ZlOO76Jb51eZ9KMd7Da/cgEUZxqP3IMoYTLnhQsbB3NlxrSJzfjwIvb6OT9bVMY5ygzsrOPUo4JSqckOix+eA+2mHI5d77/7qMK7MBxNRbqjGihDo03jeNpYpbzu1RBT2vU3VwLEZzuZP6w0/QM5Gw0COxo/2D9N+4cBPUwwXVhMgMmEwQ4wFv4K8K4UPsFWo1BoFINji7RXmXnjqNlKrxIm6fol+b3oWTVh0KIvbyvKEuiwuLVVKAh6oaqnbsgL2AkUwQH67fx3jWqXt7RC5stOirRO/mfWj7CbBuxEHFLDLxWVK1PjHQc3bFhCgJFQjjGoi5DW21Il37IQBRLQLF7FUASs5yxPRg+2U9zte3v92zGdbZWkVt22BZB0eS3/iZnq3LDQVB1heo2uz/u7Xyz/37i+TW586ks8BYHVYAQMtyihJlHrMgH/TnMf0Q5fDsmDxpTXmS5aoavfi/tZap7yDssd3afF658Mce0zIBDhDODRJIdHQnrGk1tcv2uV3V/0SYIprT21KPX134N/heafdXZoMtPXjwLW2rK79xUiuReXHs37TKdWyCSsSz5HOXOD/dojF8zaBy0Qb772J2OVH3fBDHKpSX+V87c4Tj0m5KFLJHU+si+ED4zimgdHvStWbg1tt88np2cdpWtf95FXrKpD8qoJLn/AkswRy6yU6VIz3FMgTAORqCi72GHHhY7DJYWGheEgq1WpEpG7bFf/CNHcg/0rbbAQ0/sW/ANAf+yEKyM8CjX/6L4xHd7RccfMNKwIKXG6AZZBgtiFP5LsQxc8BemoBJPg/dUxTwtVo+RAJg3pJ1Vo5P76ongqnyq9+vjv9PXnvpHxXjHRAjzH49eJiTK3Am3YDNm0SrEt8/kLsNnO5njEmH8CcDmE280OUTD/phsGs75JwgyLu16xuxcgTlZKYZKx5YJwoJJZN3+VfmfZie+CWCrzaPS62vEY+kVH4XPr0l2TknErpjsPWCwWbhScGGx4SxjOFhDMV6r1t2lIePvHNy1CPP0YLSd/NtpME4zDyI5JlMkQsYEqY3Yn7IBEWa7PSxMEimVSsbuRDpKp4vhxMUxTaRwLqLj3Le9K8QDZre2zPRcjrD9G1Rm2+XQRZcpjefd8xGOPhwVVXiRIjYmOIoRuhKKq9IKNWwPwrE5MDF8+oRU6fsQfR02f15eK6M5WVoO9RNNCd+0HkVqNSBlj5tesvjOmzlsjV0CCnIDU12LSQ8L2dtiavVsNNQbvnvoqr8qN8d/Ixd7yBoLd0yFauezFEK4wVLb9fDJpgES9q0TklSVIUh3pFODseoSCllcg84N8oPQKD+sIkN06ioFDi4I++gdsRGyChY8EjwKQ6Re1qpJepA5M+nURPv87yxHvBKxRtLtUL6wU6LYQ5RWDYwlxBzd/Fm74YLcuZbzml9VtPv9kVb/31/aPDBcrGBPxWiI0J7HJpQBHGCoWfZqCawDRQmUzNP2q05Kb8cSmU/Kv3C37gH1nyr4YG8okmDzmVG8cN5LHzanSTTt3nk9bh48PH5sKPHEA+04wN8klmBOSTOGNl2hGQG4CViSBREqxMBImSYGUiSJQEKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIn7Q+rZzelScCcBX81i/q8ezmN8gYbL7L1UemXHFDeJjP5v27oUfebW6wCMs3E/a8+qUj2f2X1Yr9AJlfCdBHbwKEn5eUZelvdACksdxwP6wOrH4BNKeE8E6chaLe9T6WcFvuKNHBQf6RtVg6ypSVwf+A68sQI6ILDddvmr6HebcOUNOTQNQAP8AszL+hoSGfHpFlzIqY/d23vOb7taX322kp3GZsHJs6LyuLD7iuaOCGwTqVv+LNh5aChRBTFColS+hGXKfvy3ofvKLugefVrY89wSIsY0yXi/cmMoQFZ8ilBk/1SDnOA0nBWlGRl6YsPbHlakyiiX2GdDcOM6HJwqkdwz5i3Sn7ar6y2cHO/sD0uyqvncr1VRtzP7eeONyLkhhw8PD1Tx/1cN83uIYQopojeJxyBSLEJCc7GtzPzIz79EphXrsmiq4PHepnAriUEaQIrSMN13Ndt4C9Vf3PNUlVhk8E2FpkD1KecRvNkSQVBGVnPfEIC/qFw8Yjn0ncRNZbSQGcQKzpxmj3dKUwD47OuEWFmnp8F89ecDVgVGdyDvhBPHwnNGMCtQ97P1VDdhsh1ktynHrDQdm9AW/Y3CD1PIWxn/RALUF6wCIRuQ51227Szb+x68rj8mohx37tHNx16cBd5sRPbj2UY1knG4qI4NcTpywSHhYcgWFGoNnaxsZB3S7exrgIGlgT0NGaoniY/DKuaHhg0vumb4RPPDyOLuVsKwb1ooIqYDJwSQJiusMJ0WsfBrvgtNOpes9G20GCkwdoI3ELj03JHTwwaPA5NZYpDgkZnPduMux22MmDVa1WbarWo69AJoiS+ep0GsV7OlJo3Ut9H7PZg51JE/ETJEHhJopDG4AOkVmGJeriL5Q1RK+VFzFrimuQi5FlanICK04icPBeg/sRcp0BVAduGUi/ugtdBfsuQsjNPTPu5JXjitrq73sbnuJFTJOwB9BRJfbm4Pkc956Znn4PMZHMIz0ZUn4NqmN/NdWKT2Krfh00kffPAAn5WfWu/jVsuHSk7+cQ98u6f+n767h9+vTh8Hp5o5hpVeYrP3uFZ/hb/Ntd33QTi89acDR/QfIzBMLDAiBuD1UC041F/dKuiZttZpIiTqNictq9HucnH5m0OzIxckjuoxbdQstPU99Odhl/nfM0WeOU2q1f+NCmvvDpIeEWn4csOC3hJEjEefNE1F57k8La0X+U3I+/U9JYOkc5kx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQ98lctwlZDQ0G2MRCJi0Oj+XDhftap/8aPP1Fj7ojChaKKZJC6gcgJIVwQ2kg8sScDZEb5sS4Po1pXM+dE/quZ1vv4Invvqssjtx4S/ax+hO1J8O008wwyAM4f0i8NCYepJXwbKFIqYRqkBpWDD78azf5oJ7TRr0vvU2qr+vAE91ljvNEaeyXJDCry6KP6zrugNfEUw21eBIm8AuPMKnfBPnFLTcqoye9c/Xdm5DQrI60H3loM2dKbDQGAw/+kD63A2LoheJoRDXGMNQpYrWLwFuUuqQJ6aAW5AMp1esDsIwC/H9hTskfHjESiSh1PDdqRRU4r8UAc0IBBnWsszSdebrJb1xRWxNHapPUbQ4Odq4mm7PtXKVqME9jwjxiV8D5U7yjgtQe1dpKn4ZUIituh5OEUOmBlAnpGuEgHwDDkwrcKaPIqWoVJ6nKFGyvRRcCJ9u1XbgBvfoiHKGnoxZu4B5FnsUJut4kMZ4g9CbhJ1H1Jql6kVS9yRLrSVJvROhJMsWmWgFSBYg5usjfdp50KO/m8cOCxfFv9x79ZaMDWf7Wl947fIsVt3uldB5lFj4gcvm/5t8jjz04oe+aCRSShO70QrEXIEHnqMUJhJAjE0glEQm+GXZc0n9OeNBsy9Odmji3zi6BSDAVpZTud9NsKq0NPjjoc5NeDhJ9OZwQpTxWlHItTlAlAFnZLupaCzAx0gIgKuudPIapH0Ufw/DrpbHgjbWYT6iFpt89MKTweDrjPxZPqXI+BoqnEtZ4Gvm/eEr4Z9ruDaFNm//rt2pmRTPlX/ducBBPqTJNHESKGNZI0b3U4+nwWb06vJ7iHrYq8F7eqLV7G3AQT6mLBBygFMmKkrA04yl1DDV6PI1hjaeRmng60+TnBNTuxA2ZrUWZaq/TBEn+O9/7xOdeSdNXLAJOCepbsE0Jamogn8UZma0CAbkByGwIDTwi1CM08AgyG0IDjyCzITTwCDIbQgOPILMhNPAIMhs1Q6Mx1mBURO/hUtTzOGCszebMydYGdHLJdCQRooqEk6l7/jSfmDH5hCpbyIFP5jD5ZPHuO90n3f8UnLd7R96WgXfJ5/zKRYkSJTJ6bRSmwObiy0+CdxSp0MVPlKskanEhKM/NpmFL1V1EvIo20c46OkYhl8k6wRELXiw88vnqN0okbOtZ7WT1yXV8ZtWN5z2unsyou2zRRSlRQAFw4mMb+MuT+8sgVwtW0YHCP2KpCv/uIMOAuxwFqRkUlxBljmiFbBsJeXPLgwDaRsBLnSSwChcp4qSJYZJY0gBorb7cCdY7LXrdUn29szyp6FVyFK4wppHQdk75E3YYiFEKeG5QJVW/lTnxVqgOpRANCU4UQ9ktAt4ylvAi3HopcgnL1WV4SSb1hABWUZWKZAKoBVVkIFIpJKIEze+YMLHmHrypzjX5YZmqAsrRUh21/XMwLu8tzzYubytPjMvzTB5zqryq6S6PbmEl9mdpiP3zORsmbXmGGyYRurnEMInQzSWGSYRuLjFMInRziVwo76zXmXnrzwi3/Dl+2DVexwZFcqElf21f5PukdfDsConN14WOHEUbXGHURzYkqhgvB4PrAiZPmmi5dqrosMHKte+wZCvXPoYuJcNxufYHPSqWLZs6Mjw9xTNt/q4+HUygXPs2S7bit1nGEcwg15xes2aNAcq193VvEB079bRw8aQJ3QbXEi40iXLtK1i9M98UvGOQcu2XjtfMXqya6jPle6xZpzcWD0yiXPs0VueMMQXn8IxZrn2NxU3Z3l15Ptsk1w/fllW0M6ly7UNYnZdgQkJBRi/X7nijB7/coFuC+bd/OX0oZGwNI5drj2H1XHejew7eVGrl2vmS7hXd9rsHLG6XZJZZ4d4lkyjXjuUQjOXax2jEnhYy5an/pXLt1LIYRi7X/s2SrVz7Q3pKWyrl2uX+F3pNXfKn/7S6saH/Wmbu5LxcO1XcjIMS5F8s2UqQv9JNNlGHcu1/V2pedlXfbf5b26SXcW0hmah/F6ZgRY0RHGD1kBWrfwwbc41drj2dKYz9T4S/RCL81GpCBhPh72zFJsL/q1VpiPC35Y9ueJi/TjD/0N3vO8063uLwtDnHMRJqlneyYtMsD7IyiAj/o6M3vAfkfovMLPct+ciRPsFGF+HvwIoKaDcmM3fQ7eAPdyL8IafP3Bzuc87n4HyLGh51vpw1GRF+N1bX8Y3jOoOL8Fdvu0yWt/998JRmvfcPunb1A2Wn09Ai/FiUYVRRB1HGYCL8Q2Wr/vr8OD9y9c8YqzGRMZNNQIS/Ays4v1oZUIT/H8+eltt//RGy5GL5lV8OpZCnPsYT4XdjRQj0aTxvW8SUtwl93Rr/bH/Fd/0t56zLy182J+sIYIf4kuQyMKLTczYLBpxbFG6RSAvvx7UwAOIKeXJcPMjhYJVreaxOWg7UCouMb0tXPShi1Jbb11DI2w/xFQngogsFX15TIW8uPU3S8WBVlcLXAldxLNBkoT7zP15qViU0+8jNzsNPW1AKnZWkdhclhaIGRn2LzQP09kL0agtQ9YjBxGqLbimUjbr7iiVxCgk6vxSP9FB8+1rHb+eyI8+SN+UlUk5IYTciTkipr3Mu+wu+fybr919m9GRJ0zJ1SJTgK0vlYmkMi7bNqFp1szf9wQuYEpPvuLzzyPrktko8gN5WNZbScMZcVmdMMY30h6fLjoVHaKJcBYYvUQxcO3Xxag+mrGBmkdCE37R9TLxcIW7Cb9ZeOUihwn5BZ6tjP47irY5dELpqYHrAvFV9V5DHNfgB0aoUGaL+ZaGpNJw1mtVZySbRc+CjdMpWHQoXuhOTFf2VLD2oxoxZk0c4/hO8d8GgZXOrTBiiz1RZT3fkN8UDOTzqeZGmC9VMuCFHxywVj+Qs2dYOZVSSm7NTYOqKvYH+zSqeMuq0FwKwigDgOgIAGFp0ykSJoYxZZOLYyzvpaWKzoDl/1rvbZ+adFMpQZtjDvhCAiWwAdB2qSTQX/8f4ONTC3Abj47SzZuPjWFiXNh/n7xedhYN6fA+bK9nYO753I4UJ8HG8rdl2N72sTYBUMHXqVAPwcaym753s1+6G34qJjZL/qS06ZxJ8nIas3qlpCt4xCB/nwABhQp97XYOn9H0nqPNBmWASfBx7VudYmIJzeMbk4yyPj3bOrJsUljZ96llXO+ePJsXH+WHF5rx3Rk92TYiPU/DHOq/hvjP8tkz1TRx0vFpjI/NxnrJ67o7RPVeqfJyfHw8EujZs5TvXvnXKVPGVzSbBx8FyCEY+DgiEeJ665P8CH8emrKtwc4VhAROnJd7IX1TZ2HycUdZsfJx4ekpbKnycsaMPxX98OVywd45P0/F2jd5wzsehzs054JiMsGbjmCisS4uPU2nHG7nZrxK/xevOe9u1jR7DOR+HGiM4wCqeFas+hk11jM3HWcoUxgYdlDaWRmQLdh2IlD263/MleaekYzI8OxmoECXF00+Y6rB9Ud9fqkyCp8c0uzkp7upTpnwR1MyLg5+AbHmfnb3PzJndICBzpk3Ql50Xohjfj76TU9RIa3+W0SCERRY9ioVoldRzT1q2Ss3TEHwafyjM5SiA/yjnPxe5CC8LzE/YRktkwGEScTCI60OJx2FuVbtyGZMrHQvS/O29LwhWtbh3cPPJIf4UFQy0AyupozvCZzwrtYl0yAofDGiHr7hS8qAeki+Bkoe22UEZBi/1A7FjhgVeIjffF0d9ORPqPyZsXVvZw8xvZy+nxRlJ4euKPX1pVfrIa31ik3p6j6MTmyXsN2weuW1G9cgKJo+snJ2W/DzkU+CCQY7KxVOb9CaviQZA8oyKnpExTi/VN/CVYNRX17tMVsKUF6vVFi+XiaEcI6QExmJ/h6XDKlGcUqschHpEsnyYPGagRKy5CfXq9OVc9XVtd6tdhbzAcgDMsihSHxRVb1QOIb8EIYLzOIT8EvxHlV+KmHCrQ/SJZz7jz2xPtXgdeYUqvzSu26rRN5J6BaXnr1z0MH16B8JOHEYtsTwT9YMR8kxMnraG6gG4G9Hig1+eDmv0arNw/tv8c1+67N2lj7e43w0DfhVCvy5FpTz5oAu1LWeUwpPWsL5jXyX4DolxhQGj8Hcs1Az38u40EqESxeQr+4DC3gYSIlWyAp24nnQTLll9r1J47ps/ZQNbZ/3L6jJzgfpJCK1j3FAaTmvK6rRGhnUaEYLNwgTqgApvGa3p95hviD7KlOzV9cdLX0sTlRIFxroDH0EKmEhfDXn9+cW4zA8R036tn5G7dBSP6ivz8GSVqL9MI2DBo2x2wU/1og9XXsVqfZVwuGJzai1Wp1YuR9P6Yi2ggDd2iVqfBc2ZpsiksDZ0Mxjp6GU6sKucM0o98biU74uodJ/khTVxfEhfyTSkd7x3O9Jcdj5wxZ4DZUfvrEM+D2IVHS+NVfFhXVnysA7HK6aa1jUiY2PhVEQkk+HlV6WwcB4U7/ZAAkwtOMj0Coh8SVu6PWgZjWGa09kPVQzPXcizNtOXR2aLVd8FfVMJXxj5RUO99i3KWHowYkLHvPoTuownqw2ZMXzFYlNCatF1fYn3ACtXiFW6L4r7ASb4tc10Y42pPSjHWgUSl1yvxndcnc/6Tay8sUV2wRc72pJyrHbA6NufwDd3YP3moJWYwHIy1gJ12GOzhjpDbNJT+Tv6DK08WRI0pzl/8O3t7Y6R2yW821Dwl2GF/6Nh63sT8NMYYvoW6lb3CMh2Bt8E6RFqxd0SRgp9V/M98FCQ74MYYGZ5YB0CH2BWMQ0wOuv5uGi8V/p6PoK0bT18XL6H7GoQNKbb+fLKIno+7i8a8FLS1kesuWD3j2qBY1YRPZ+WDduNSlh10GfbxRqP89c3KldEz+dU+PBpWQ8rhcx59nK1aGfUP0X0fNaeW/24xqhZoet3NB13r/LxlkX0fBCVfwltQ0TlX6JQL6LyrwVuarawSvCGbT8EU2v9OORzN3UtMFnipoXmAcmt/aTBM/zn1Tv98fxcYLLCTVYz1kVE9fUNXzh+372o0VN9gMkaNxUMjViR/HFJ+C679N7tXn6A6os2uGlW5uqDwyNt/Q9Mn5rUv0ezYGCyxU3ev1wLqPTheeiUcucuZDTrdwKYKhAPXHfv4uTEGxHZ6xxavxS3sgQmO9wU36R7F3dF05BFV8u+Teg5aRgwVcRNrklWDn35BwJzhN8tRt1OnAxMlXCToqlPFM/9cuCBsucCR/ndSQMme9zU6tuYMf7lhaFjV4T5fBnbciEwVcZNT7JltuKknuErp3w6Z/Zv13fAVAU3xR59Yr534Bf/8Um33l3vPfsRMDnwGGWgHHHTHz3dvtu8nueTu3Z1zIL1D7YBU1Xc9PrZ0SOhVqNDF/b3W2rXdC4UUnTCTSN2To8Ps+0YuOVworibt9gCmKrhpu1O5R42uJUcvjDnas1RFxceAqbquMl61N+dBy66FrqlUcO9zQOmKICpBm5yfPDE9czsl5FzlVaVOvlUnAVMNXHTpB4WYRNSfhPOTxv0OnHUZzNgqoWb6ka7n9r7dKjfit4fds91ag1Nzrjpd8GM7iNc/grfPoxfsWKe0yJgqo2bglxV8+4Ore43b+Cl5jmVU54AE5/oRHsOHv0jY0R4TqsrfgneTmdoQlV1eAxCVfGv5ftaVD8buVwytcHGSfVOIcKGrkJVq5lClEPsns2Lj50SLt1YMOxMzREryVNX4dAkmVyMOH3BlAA3xO/gE+dlsTJ1ygSQEIMghFcA1PK4BTVAIV+NPqvGDdrqhoNp1W2bEzC+InYOU0F6fMpGtwKahadR1S+CLlZvc3fK9V+jApaO+fWj56l7ZCl6/Q6jcrxBCFf2bkKAxKh55yc3Ie8PG51y4hadJKBpYLwnsQSWOJIrpdjxE/B+Uhk2dSLaCV+kgCeu5QnSGCSKfZ682jgxnB+8pP6yN+2jkx6S6eOaz6HTxwtNnJemccVaDAtcB21MIpOjH3XUMZNzxzuauNBdqniRip8gGijhgwREU8KamWdu9ceOw/MDzgvS419vfvOrb1UK0xB/LIJpSFi49p6PB97Y/VHeO+mJNXYa21xH4OoQh6IIwp+ECiQSrKUR1Qfsf7nUf/4yy/snf9tG1sEs0REsDsA6xQoWaOr4+LOGafz5n3JDiZQbqBm6wZQbmtmyKTfY25aGcoOTxcUVx48lRKxYuqXO2+X5zTkcLKkRiAPlBi9btoPuDW0Notyw3Pzy+gknHQV5OQ3vVGli2dLoyg01WVEB7cZEWaaGU264EGoT3PJrYsj6yrtS10yY1tNklBssWF33w1TTGY6VG6xGrutx2mJ+5MofR78su+1BrhFneOUGLMowHr0HUcZgyg0ta8xNffH9q3DhfJH5v1ljfpqAckNNVnDsbQ2o3LDk9woFo1a4BS5zythXr1P2cxNRbrBgReiHJm9by5S3nVoiCvvepmrg2Axn86f1hh8gZ6NhIEfjR/uHab9w4KcphgurCRCZMJghxoJfQd6VwgfYKlRqjQIQbPH2CnMvPHUbqVXiRF2/RL83PYsmLDqUxW1YBS+LS0uVkoAHylfRbVkBe4EiGKBJ8fO2/XNbMjpw+5Jqee0GxL+m7CbBuxEHFLDLxWZKlPjHQc3b+lVw9hWtEUY1EfKqV9GJd+yEAUS0CxexVAGaL7CjB9sj0XuyGp76PWx1cs/JWcMf/iB3S3/iZnq3LDQVB9jjE3fq10maHTH1If/Zno473DgArCIrYKBFGSWJUo8Z8G+a85h+6HJYFiy+tMZ8yRJVxz9/d7HihMDw/Q5dXmWs3trTHhMyAc4QDk1SSDS0Zyyp9fWLdvndVb8EmOLa/oqU+t9nvQ/a9mxKtdsKxzAOXPutMptr31Q2nfx41m86pVo2YUXiOVqybLWF/RSfuT47Jiwd8dfyD3uoG36IQ1Xqq5yv3XniMSkXRSq544l1MXxgXMc0MPpdqXpzcKttPjk9+zhN67qfTHSoAsmvKrj0CU8ySyC3XqJDxXhPgTwBQK6m4GKPERc+BpscFhaKh6RSrUZE6rZd8S9Mcwfyr7TNRkDjn1IBgP7YD1FAfhZo/MMr6MtP8Q0rAgpcboBlkGC2IU/kuxDFzwF6agEk+D91TFPC1Wj5EAmDekn/DV6HK4/f45c74dDCyOO1yWWJy3fFSAf0GINfLy7GjAz760TaOZ+gqYM3hTbj3dqjZ4zJBzBPgjCb+SFKpp90w2DWd0m4QRH3a1a3YuSJSklMMtY8ME4UEss9f6/+02/0Z5/pPhefXd44rjr5REbhc+nTX5KRcyqlOw5bLxRsFp4YbHhIyGAKCWcq1HvbtKU8fOKbl6Eef4wWkr6bbScJxmHkRyTLZIhYwJQwuxP3QSIs1maliYNFMqlY3ciHSFXxfDmYpii0jwTUXXqW96R5gWzW9tiei5DXEaJrjdp8uwiy5LZ6933HYIyHB1ddJUqMiI0hhgSgwej3k88K+wcs+3eyxeT4vhQyFvYgevqsvlxcd6ayEvQ9iga6cyREbjUqZcAqv1ZgTJ+1RK6GBjkFqanBpoUu5NJo2III/0HB655Vn/RFvqQv+Zg73kDQWzpkK9e9GKLVlhWtphWMwmK36JySJCmKQ70inB2PUJDSSmQe8G+UHoFBfWGSGydRUChx8EffwO2IDZDQseARYFKdonY10svUgUmfTqKnX2d54r3gFYo2l+qF9QKdFsKcIjBsYa6g5u/iTV+MhCKuYLxzn0uXfLI9m22O+rbyPGVjAn4rxMYEdrk0oGjLCkVTzUCVyTRQmUzNP2q05Kb8cSmU/LOvwFbyz0oD+XqTh5zKjeMG8m/SP55YNezov/6hfGEQf2Q+B5CPsmODfLAdAXkWZ6xMOwJyA7AyESRKgpWJIFESrEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJVuaC4zm1Gsk+B+xsJcsxz83dTKO8wcaL3l2h0C85oLxlM/m/buhR95tbrAIyzcT9rz6pSPZ/ZfViv0AmV8J0EdvAoSfl5Rl6W90AKSx3HA/rA6sfgE0p4TwTpyFot71PpZwW+4o0cFB/pG1WDrKlqXB/4DryxAjoggN02+avod5tw5Q05NA1AA/wCzMvaNyiq19nmKcJsn75++Qrz8xJ+uy1le4yNg9MnCfb4sPuK5o4IbCm0Df82bBy0FAiimKF3sq4a+c1Ofibz7jWNXKuPbiwgENaxJguEe9PZgwNyJJPCZrsl3KYA5QGsKLU05a++MCWpzWJIvoV1tkwzIguB6d6BPeMeask5NTNvzu0eBC5d/Sj7HsZDo+MuJ/bzx1vRMgNOXh4epSO+7lumt1DCFFMEb1POAKRYhMSnJwGUfV/dd4TljZZmaEYt1JuAruWECQVK0gDdNzXbeAvVX9zzVJVYZPBNhaZA1TL52lWjzb/FTAjze1oi6p7WpN3EYnn0ncRNZbSQKcfKzpdbYnEaAPTwPisa0SYmednwfw1ZwNWRQb3oC/E00dCMwZw65D3czVUtyFynST3qQcstN0b0Jb9DULPXxC2s36IBSgvANsR3YY67bZpp7c8b70h7e+AHZc2PLj0KbAfebET249lGNZJxuKiODXE6csEB2Bdg2BFodrYxcZC3jndxroKGFgS0NOYoRo16OrYG1a3ArPtD3dM7+HsTY5EQnAvGqgiJgOnBBCmI6ww7dFxsCt+C42612y0LTQYabA2ArfQ+LTc0RODBo9DG5nikKDRWc82426HrQxY9VrVplot6jp0giiJr16nQayXM6XmjdT3Ebs92LkUET9RMgRekiikMfgAqVVYoh7uYnlD1Ep5EbOWuCa5CHmf7E9AxWlETp4LUL9ur1OgqoBtQ6kXd8HrIL/lted9r9c/PDQ4p1/rY18vFIwkp0jYA+gpkvpycX2Oes5Nzz4HmckfIDwbUX0OqmE+t9eJTWKrfh82kfScDWl7j0yrKdhUI+vsj8QwssoR/nXpu3/49eLwGbjti/TiJbuAtBsXkgtszfkc4FPAig9oPsZgGFhgxI3BaiDa8ag/ulVRs+0sUsRJVGxO+zSp+f7mj7oHpvZzvBNd5WYzstPU99Odhl/nfM0WeOU8q1eOmpRXXh0kvKLT8GWHBbwkiRgPvmgl/KBDNgFvnSMXDNx4cFjWoPJkx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQ98hetwlZDQ0G2MRCJi0Oj8Flr58dO+eW/8bfFh2q+qVtN4qkkPoBCEkh3FAaiFxnReSUPTGu5zCN67lzQt/1bOsdPPHdd5XFkRtvyT5Wf6L2ZJh2mhkGeQDnD4mXxsSDtBKeLRQplVANUsOKwYd/LVfhKOe0Ue9Lb5Pq6zrwRDPscZ4ojf2SBGZ16fRxXccd8Jp4qqEWT8IEfuERJvWbIL/4LxOqTQ5Z8CN0TPlnq/3Ltq1JbnxMiY3GYODBH9Ln1kIMvVAcjajGGIY6Rax2EXiLUpc0IR3UgnwgpXp9AJZRgP8vzCn5wyNGIhGljudGragC57UYYE4owKCOdbqmM28y+Y0ramviSG2Sus3Bwc7VEHu2nSu5BvPNTJhH7Ao4f4p3VJDao1pb6dOQSmTF7XCSECo9kDIhXSMc5ANgeFKBO2UUOVWt4iRVmYLttehC4GS7tgs3oFcfhJTZ6aiFG7hHkVUZoTdJjCcIvUn4SVS9SapeJFVvssR6ktQbEXqSTLGpVoBUAWKOLvK3vh5XCrYOEweOqX1/1sftn5+Q5W996b3Dt1hxuyi30OsDHp71zQtMfVjnUgtPfddMgDv3Q3d6odgLkKCzrfIJhJAjE0glEQl27y0fvdy7UfDKA2lrpy+sM6IEIsFUlOpn9VZm3jstnC9ueahB/xFWHKCUxYrSiso0CUBWtou61gJMjLQAiMp6J49h6kfRxzD8emkseGMt5hNqoel3DwwpPJ7m/sfiKVXOx0DxtDNrPO3wv3hK+Cfr/biVVa7djNi/70TvakMUJzmIp1SZJg4iRSfWSBFU6vG0Vszh1gvW3w5YJ332b0j3TS04iKfURQIOUOrAitKvpRlPqWOo0eNpJ9Z42kETT7eY/JyA2p24IbO1KFPtdZogyX/ne5/43CtpnTiYElSuzDYlsNZAvpUzMlsFAnIDkNkQGnhEqEdo4BFkNoQGHkFmQ2jgEWQ2hAYeQWZDaOARZDZqhkZjrMGoiGxiVPU8Dhhr2zhzsrUBnVwyHUmEqCLhZOqeP80nZkw+ocoWcuCT7Uw+Wbz7TvdJ9z8F5+3ekbdl4F1yNlwuSpQokdFrozAFNhdffhK8o0iFLn6iXCVRiwtBeW42DVuq7iLiVbSJdtbRMQq5TNYJjljwYuGRz1e/USJhhS4XQsSebyJzvtaut25Gq0pMkdCii1KigALgxMc28Jcn95dBrhasogOFf8RSFf7dQYYBdzkKUjMoLiHKHNEK2TYS8lIrgQDaRsBLnSSwChcp4qSJYZJY0gBorb7cCdY7LXrdUn29szyp6FVyFJ4JPuLt6Eon7DAQoxTw3KBKqn4rc+KtUB1KIRoSnCiGslsEvGUs4UW49VLkEpary/CSTOoJAayiKhXJBFALqshApFJIRAma3zFhYs09eFPdYfLDMlUFlKOlOmr752Bczq7ENi6vrkSMyztNHnOqvKrpLo+uZCX2p2uI/bs4GyZteYYbJhG6ucQwidDNJYZJhG4uMUwidHOJXGjLvkauJ9YvCN5+wdla+UPRpEgudPnI9cMNZr4MSxsSdTXhoOwQbXCFUR/ZkKhivBwMrruZPGmi5dqposMGK9e+tgpbufYkupQMx+Xa7Zx2zjsmfR6+5vKfY5tnHDaFcu2rq7AVv003jhYKueb00qVLDVCufercgZYhqQlhi706/THxz1NDTKJc+wxW74w3Be8YpFz7F1nDaPsGq4XbFbXuta8WRd5JN1a59mGszkkyBefwjFmufY51bpJqsyho8au/Gw3/eJwsS2zscu2xrM7rZSQNKJMs137EsUtqT+85YemhE3e4H0zOMHK59k6sngsyuufgTaVWrn14dfO6qXUTw+cE2J5NsZ9KLmxurHLtWA7BWK49SSP2tIcpT/0vlWunlsUwcrn2Z1XYyrX/SU9pS6VcO2/cX23Xn74RuKvPwr9ryqZs5rxcO1XcjIMS5E+qsJUgv62bbKIO5do/rRieq9xeJXLz6ILJNf/ua8N5uXZqjOAAqz9ZsTpj2Jhr7HLteUxh7H8i/CUS4adWEzKYCL/AgU2Ev55DaYjwd5taS/Viwq8BG9cPuHz4nM89Dk+bcxwjoWa5rwObZnkrB4OI8Odcepxw9mLNgPmhh+z2jVHuMLoIvzsrKqDdmMzcQbeDP9yJ8JefGLPdMfJKUO65tSNi4px6mYwIfzVW19kZx3UGF+G/+rBDXuj78JAFgy5mPI5L32lkEX4syjCqqIMoYzAR/ofi1NV/uAb4Tu6WFGXWoOpMExDhd2cFp56DAUX4dz61aJ+f3zlo26Hdx5vX++ulCchZQISqsSIE+jSet+1lytuEvm6Nf7a/4rv+lnPW5eUvyYVxrLFDfElyGRjR6TmbBQPOLQq3SKSF9+NaGABxhTw5Lh7kcLDKtTxWJy0HaoVFxrelqx4UMWrL7Wso5G2E+IoEcNGFgi+vqZA3lp4m6Xiwqkrha4GrOBboqdNosd/GHZmBORYdxt2pvJRc07ZEtbsoKRQ1MOpbbB6glw3Rqy1A1SMGE6uVuqVQNuruK5bEKSTo/HLjnem5P87OD9xQLdjzn3YZZC3F8v7YjYgTUurrnMv+gu+/gPX7Tzd6sqRpmTokSvCVpXKxNIZF28bt02zHHElF/yy3qKS22ZmUtko8gN5WNZbScMZYVmcMNY30h6fLjoVHaKJcBYYvUQxcO3Xxag+mrGBmkdCE37R9TLxcIW7Cb9ZeOUihwn5BZ6sP2jnu7jCum2/Gmz2b2ydUIi/pWcIPiFalyBD1LwtNpeGsRFZniU2i58BH6ZStOhQudCcmK/orWXrQ8dkeZ/p0Pho0bnOVrT0szZ7qM1XW0x35TfFADo96XqTpQjUTbliqY5aKR3KWbCv5yUzfXW9cgrL8z6zg5X8Zb9RpLwRgFgHAdQQAMLTolIkSQxmzyESbcj82/pO6KSCvy6/Orcv1GGPUw74QgGQ2ALrGaRLNff8xPg61MLfB+DiNHdn4OB/pmSXHfJyAlpGTn1t0DN3QU9L/4trzf5oAH8fVkW13s7ajCZAKxo4dawA+zsg2o3/On702dMUevz9WCguemgQfx4HVO9am4B2D8HGWOM1/Lruy3G/H1j7ffZJPVDYJPk4ZVud8NE6+ZEJ8nJjT7XcdDWvok+P3wKZmTtmnJsXH+deBzXn3jJ7smhAfxzlvbY/nV7oFpp75WnOH/7n6Rubj/MXquQtG91yp8nEc2hzcsUo+LnjSs3WLWpadMskk+DhYDsHIx/moyVP3/1/g4wS5qubdHVrdb97AS81zKqc8MTIfJ8GRjY/TzdEwfJxKd8ZKlNdO+a55NdRl5j735Zzzcahzcw44JgMd2TgmIsfS4uOcS1vczctjS/iml60enLt+9RznfBxqjOAAq26sWIUbNg81Nh/nAFMYG3RQ2lgakS3YdSBS9uh+T/J+lXXHZHh2MlAhSoqnnzDVYfuivr9UmQRPj2l2c1Lc1adM+SKomRcHPwEtlbPn4NE/MkaE57S64pfg7XSG8f3oOzlFjbT2ZxkNQlhk0aNYiFZJPfekZavUPA3Bp2kGhbkcBfAf5fxnuotwZ1P7E7bREhlwmEQcDOL6UOJxmFvVrjzI5ErHgjR/e+8LglUt7h3cfHKIP0UFA+3ASurojvAZz0ptIh2ywgcD2uErrpQ8qIfkS6DkoW12UIbBS/1A7BhJlMjN98VRz2dC/ceErWsre5j57ezltDgjKXxdsacvrUofea1PbFJP73F0YrOE/YbNI+ftqB45xOSRlbPTkp+HfApcMMhRuXhqk97kNdEASJ5R0TMyxuml+ga+Eoz66nqXyUqY8mK12uLlMjGUY4SUwFjs77B0WCWKU2qVg1CPSJYPk8cMlIg1N6Fenb6cq76u7W61q5DXsiIAsyyK1AdF1R0rIuSXIERwHoeQX4L/qPJLERNudYg+8cxn/JntqRavI69Q5ZfGdVs1+kZSr6D0/JWLHqZP70DYicOoJZZnon4wQp6JydPWUD0AdyO6QMCvzltXlSkInOedMSBz0vEW+niL+90w4NdfoV+XolKefNCF3CoapfCkNazv2FcJvkNiXGHAKPwdCzXDvbw7jUSoRDH5yj6gsLeBhEiVrEAnrubL+D/fdT8tWBF781Cys/1KVpeZC9RPQmgd44bScBqf1WmOhnUaEYLNwgTqgApvGa3p95hviD7KlOzV9cdLX0sTlRIFxroDH0EKmEhf3Rg67Mxcaa5wm82mHyMf9Xah+so8PFkl6i/TCFjwKJtd8FO96MOVV7FaXyUcrticasPq1LIVaVpfrAUU8MYuUeuzIMGjyqSwNnQzGOnoZTqwq5wzSj3xuJTvi6h0n+SFNXF8SD/MNKR3vHc70lx2PnDFngNlR++sM5HMlY2Ol8aq+LCuLHlYh+MVU03rGpGxsXAqIpLJ8PKrUlg4D4p3eyABphYcZHoFRL6kLd0etIzqMM3p7Icqhucu5H3Ru0S1LVZ9F/RNJXxh5BcdtOz9k78SfhPOelSlY1zOVrJyihnDVyw2JaQWXdeXeA+wcoJYpfuiuB9ggl/BTjfWmNqDcqxVIHFp28/hF/uFiREb48s/a2p99jxtSTlWO2D07U/gm5uxfvMvhi0wzbCcjLVAHfbYrKHOEJv01IHsKtVlE60CJpW7/e9zWVfyGhSmUmQo+F9VYIP/oXHgpzHE9C3Ure4RkO0MvgnSI9SKuyWMFPqu5nvgoSDfBzHAzPLAOgQ+wBxhGmB01vNx0Xiv9PV89r9SmLUZcTFoe8HUyGEL6vOL6PnYd7Pw7Xhsa/Cqigsdx2fK7hXR8zkyZNON020uBK+UXn+WHhPctIiez5F7A2b3XqII3bP4vWXdYc1vFdHz+XA3c+0uxSCf+SG2sQ797I8X0fNBVP4ltA0RlX+JQr2Iyr8WuGmiZeuQPaNqRawcc2D4vXZPrIHJEje92PPX8CT/P0O2TQvb7e7SYiwwWeGm63MWZOx61cln8drVC3uNaPkbMFnjJov6d7sdudozdOeIOark4bsFwGSDm9qOsWki3ve7f+qFMxLXzff3ApMtbnpcJirzW6fHIdsbXF04aGsVX2CqQKDxm2WXAZGDfRb/6NW1099b5wGTHW5yP9rV8ePEP/xW3bradfYeUSAwVcRNZUaYh5fl8/yXF9QveDjr2GpgqoSbyrYOjD36yMtn/5/VbccPazIRmOxx084RNm2yzt/x3X40cvXyB837AVNl3DTGI2J/p9+/Beek3nrXueLeOcBUBTcNCakpLbPzeOjBq10f23362waYHHiMMlCOuGn75r+a8BTggY931Zj6NPYaMFXFTQOGPSub8qYgeOad7E/DFM92A5MTbhqbXK374qfjgzaViVFlfE7xAqZquGnWuCM2Hd9fiVx+afEvMxs1HglM1XGT/45zPLOXbSMneb2pcfhKfn1gqoGbAtKeX5/8dVPIGB9/Zev8pdDLNXGT99UFBbUefgvfKVyREvJLeagrVQs3Va2/8Z6gjDJgZ4Ci8l77WjHA5IybGjXa+2bJ5keCeS+fzP99cgUpMNXGTe1TL8uHBDT02T7y2ZibPRZCgVA+bqo7dkevzz+dIg92v/VxinvIYppQVR0eg1BVm8erBzfPzPTZM2PDtRV7P6zkQKjqKFOIcojds3nxsVPCpRsLhp2pOYL8WebCoUkyuRhx+oIpAW6I38EnzstiZeqUCSAhBkEIrwCo5XELaoBCvhp9Vo0btNUNB9Oq01VPwPiK2DlMBenx9qq6FdAsPI2qfhF0/b1KMRFn2nQIXX/y2bX5gZOnc3gYleMNQriydxICJEbNOz+5CXkHquqUE7foJAFNA+M9iSWwxJFcKcWOn4D3k8qwqRPRTvgiBTxxLU+QxiBRPP0ksVoby4Uhs4NPbFw4qsJ8Mn1c8zl0+nihifPSNK5Yi2GBK7uqSWRy9KOOOmZy7nhHExe6SxUvUvETRAMlfJCAaEpYM/PMeQ0nXp3UfpBf5sV5Oy497tKTwjTEH4tgGhIWrr3n44E3dn+U9056Yo2dxjbXEbg6xKEogvAnoQKJBGvxkNDaLSseDJ1isdc6JKg3eaZYoiNYHIC1nRUs0NTx8ecY0/jzP+WGEik3UDN0gyk31HJiU274rttYqaVyg+pli7lTHlz3WX8r7sLvz2dO43CwpEYgDpQbajixHXSv5GQQ5Ya6nex3Z7muFSy5/Xdrs/utVxhducGcFZXvxhkTtWCZGk65wePc/YvXVp4RLpC7ri17ZM0mk1FueFuVzXVPTDWd4Vi5YfTyxDvvFvcLXLe2fe/pT66dNbJyAxZlGI/egyhjMOWG2U1u/WLtdTw8q2mliz6zG5BJ0cZRbjBnBed7VQMqN/zskvez5/ft/vODVgywXP6ILOFoPOUGrE8zIvREk7cdZ8rbTi0RhX1vUzVwbIaz+dN6ww+Qs9EwkKPxo/3DtF848NMUw4XVBIhMGMwQY8GvIO9K4QNsFSq1RgEItnh7hbkXnrqN1Cpxoq5fot+bnkUTFh3K4laqjZfFpaVKScADr511W1bAXqAIBugDCi+S5vj39/BZ4Rxcrf0foX9QdpPg3YgDCtjl4jIlavzjoOatXW2cfUVrhFFNhLxytXXiHTthABHtwkUsVYDmC+zowVbZdP6Ek5feREybM0r+72jX9uRu6U/cTO+WhabiAAuWBT3pW9AidKbsVEi30WccOADsqzMbYKBFGSWJUo8Z8G+a85h+6HJYFiy+tMZ8yTbmHFt0f2WHDz65LRs8e5RsV8keEzIBzhAOTVJINLRnLKn19Yt2+d1VvwSY4tpjb34W+PfpGHCg0c3Zn0e39ObAtY9YXXvTSK5F5cezftMp1bIJKxLPkc5sNz07s82M30JyVE9zRvXn+1A3/BCHqtRXOV+788RjUi6KVHLHE+ti+MB4gmlg9LtS9ebgVtt8cnr2cZrWdT+5rFIVSH5VwaVPeJJZArn1Eh0qxnsK5AkAcjUFF3uMuPAx2OSwsFA8JJVqNyJStu2Kf2GaO5B/pW02Ahq/qhoA/bEfooD8LND4Y6vpy0/xDSsCClxugGWQYLYhT+S7EMXPAXpqAST4P3VMU8LVaPkQCYN6SWZPeYW6/IzwrZnN/xQJx5EPsZfvipEO6DEGv15cjPFbdD5p4xErn61O22YO/H1pbT1jTD6AWQFhNvNDlEw/6YbBrO+ScIMi7tesbsXIE5WSmGSseWCcKDRNL/PBzdlfAsOWjOk69/n9iUvIJzIKn0uf/pKMnFMp3XHYeqFgs/DEYMNDwkmmkHCmQr23TVvKwye+eRnq8cdoIem72XaSYBxGfkSyTIaIBUwJsztxHyTCYm1WmjhYJJOK1Y18iFQVz5eDaYpC+0hA3aVneU+aF8hmbY/tuQh57SC61qjNt4sgS26od993DMZ4eHDVVaLEiNgYYkgALmSfmf2ioJz/tg7t++4+d3IXOX3GHkRPn9WXi+vOVFaCvkfRQHf2hsitRqUMsPKrVzXG9FlL5GpokFOQmhpsWkj43mx0nbzg88Tw7Ft7ag3OFtmSj7njDQS9pUO2ct2LIVoNWdGqWc0oLHaLzilJkqI41CvC2fEIBSmtROYB/0bpERjUFya5cRIFhRIHf/QN3I7YAAkdCx4BJtUpalcjvUwdmPTpJHr6dZYn3gteoWhzqV5YL9BpIcwpAsMW5gpq/i7e9MVIKGpIB1e/tvK5f978W/fmRG9pRdmYgN8KsTGBXS4NKBqyQlFTM1CdYhqoTKbmHzVaclP+uBRK/n13Yiv5996JgPy0yUNO5cZxA7lV3IcrDTYnhi7cESGs/S73NQeQS6uzQS6qTkB+hjNWph0BuQFYmQgSJcHKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBlIkiUBCtzkF/oiL51O4bM2j34wnDfgtM0yhtsvMjWR6VfckB5O8vk/7qhR91vbrEKyDQT97/6pCLZ/5XVi/0CmVwJ00VsA4eelJdn6G11A6Sw3HE8rA+sfgA2pYTzTJyGoN32PpVyWuwr0sBB/ZG2WTnIlpJhXLuOPDECumAXJ53Wrmuod9swJQ05dA3AA/zCzAu6fGvicIt2Nv6Tkl7vd1/lMUGfvbbSXcbmgYmz0gkfdl/RxAmBVUzf8GfDykFDiSiKFRKlhb/cfhC6M9p32ddRL7aZf63LIS1iTJeI9yczhgZkyacETfZLOcwBSl1YUQpwoi8+sOVpTaKIfoV1NgwzosvBqR7BPWPeKolvs+WMS/cfEWMyV/5Zu/fUAUbcz+3njjci5IYcPDwt/X/sfQdYE8n7f1ROUcQuoqgEKyDNggUbIQm9KCjWUyMEiAaCSRCxnCh2xY4iVuy998rZsJ1n7w3r2fU8z3Kn/me2BHZ3dklgSXK//5fn8Xlkh012P+/M+74z85nPa+B+rrNu9xBCFFVA7xNGIIpvQoIz1Pv+PfuAl9J1ATG9gn+vFWAGu5YQpP6cIHW3NWxft7FEgb+5bqkqv8tgG4vsDirqxo+k3EeNJONbeW1wPmE5mbqLSH4ucxdR11IS6ARxoiPS5aK/sQXGl5GhwRbuX8QZK875ZocF9GYuxDMjoQULuA7U/Vwd1S1ZZZDkPv2Ahb57A/qyv4HrOQ5hO+eDWIDyALBtNizU6bdNW3ur7+krwmXB84Y+GOG+cjR1c8oK249lCeuUxsK8ON3FFZcJDsA6CsHqgupjF5pJBXsNi3WVMLDkYKSxQ/XObkr0u+wG/ptTa1981XvGDqonkoJ70UAVaDJySgBh2swJ00oDg13hW2j0vWaTbaFBT4P1EbiFJmTkju4YNIQfOs/mh8RNz7m3S7sfvMw3+722Xe169HXoeFmiEF+nQayXs6XmTfH7yN0e7FyKTJggT4aX5GpFFBEg9XJL9MNdHE+IWikv0KwnromOUsGjerlQcRqRk28FqB+rZ5CjqoRtQ+GLu+BxkG+5auq0mS1HHvDfJS2z735KeCtqioR9ADNFwi8XNubo59yKOeYgMzkPwrMRNeagGub1egaxSazx5+ESST9a6kmfdvu6eWf/U26b1Q9xEHX3D7+fuftHXC8Mn/Jru118a+UfvNu54TlZ4FobHvD5jRMf0H1MwTCwxIgbQ3EgOgjoP4ZVUbPuJlPHyrVcRnv89d2AUrk7gqe1juiw7uTd1lSj4fczjUZc533NFlhlH6dVtpiVVd4dIa1iUPiqjDm8RHk04XyRhhk7tU34sOP3Q7Y+cnvhUKE5dVGmbAh2P9MwxHW+DZPoTrgTuMzImK9u9ZAKLtUzbEJmp8MAm1goFYXh8aBU6fd7Pu3zOyIq5dI4agR1ObacGP8AhKQQ0VASiBzjRGRnPTKu/84W17fODvqrT3uvgAl/fdNaHrv1gWpj/Bv1J8N00M0wqAFcmByniIoDaSU8WyjTaKAapI4VQ4R//SYf9HPaqOdl9kn8ugE80Vn1CJ4og/2SCGZ1acy4buAOeF0i1cDFkzCBX3iECX8SdP2X6tP8OrY4F7RD1neiy+FTMmrnY0tsdA1GDv6QPjcDYuiB4mh0aYZhaJDH6hBK9Ci8pAnloBbkA2nw9QFYRgH+Pz+nFI4IHYVElB7PTVpRBc5rMcBsUYBBHes03WC+YPYbV/TexJPaJH2bg4edq4H1uHaueuswv8iGeege3/OnBcfFqb1rt1e8CKxKVdwOoQihMh0pG9J2ISAfAOFJC+5U0uRU9fKTdGUKrsdiCoFT2/VduAGjej2kzE5DLdzAPYq59RF6k2Q8QehNwm+i603S9SLpepNF1pOk34jQk2TzTfV8FWrgcwyRv5X5r/M4PVDpv7+Os1+IrH06Vf5WxBwdokLF7Qb9fvtjz1Ie3rNKzZvfbkiflsVdMwHmXAvN6YFiL0CCzpL6uQghRzaQiiISfKbvzo1VLu2XZl5P6ZY49Fl4EUSC6ShFpK3afvq5PHSdIOFrjP/8RjygNJcTpSn1GRKAnGwXvNYCTIz0AIjOeqfGMPyjmDGMuF4SC95Yj/mMWmjq6YYhRfjTS/8xf0qX8zGSP+3M6U+d/udPSfu0Tju6v9QvQZJt+499inwRKePBn9JlmnjwFB05PUXLEvenV36Z1vbYgISgPbVatTvy6G4ED/6UvkjAA0pOnCjZl6Q/pcdQk/vTjpz+1EnnTy+b/ZyAPpz4IbN5lqr9Pl2cKNn90Ttu65X0cB6mBN85pwR/66YEV3gjs1UiITcCmQ2hgacjszE18EgyG0IDjySzITTwSDIbQgOPJLMhNPBIMhs9Q2Mw1qBXRHYxunoeD4y1q7wZ2cqIRi6ajiRCVJE0Mn3Pn2ETCzab0GULebDJNTabZO190Gvi488B+/fu2r9tcB71nN9PXWQJciWzNgqbY3MUCRPhHQUqdAkTVFo5Li4E5bm5NGzpuouIR9HH21lFRKlVSmU4jFjwYv6Rz3edaZ5wxfCQvAlvD4fsi1woTZFYD2PzhJbdNXI1FAAnv7axRJU0UAm5WrCKDhT+iVZoiXcHGQbc5XiYuppmErLMEaOQbVOpQFEXONB2YkHqRHGFEJk6VpEQLI+hBEAr/HI4rHda8Hp5/Ho3VWLBq1QvvGR8U+m6uLq5lTEQu6jhuUGtAn+qcuRToQaUWpYckBANZbdIeEuVhxfh1kuBS1iuriRKMuETAlhFVSFTiqEWVIFApFXLZfG63zFhYt09RFe9bvZhma4CytNSHb3/8xCXM+pyxeX0umRcvmH2mNPlVc13eXQqJ7E/TUfsv8lbmLQWGC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIX+i3z25gVp3/2nhD/+s9/l/uOLpALdXn6vsrS9Aq+aZsnnOzT9XESI7hCr4/sSHQxXh6C6y02S5ppuXa66LDRyrXPsOcq197HvqTLtZ/V7glZWy5KujLw7oGAub9S51OmKdeebs9V/DbN3gxqTs+dO9cI5doHncpw7vdbNb9tG9dsTe35KdMsyrWncFpHZQ7WMUq59jNvfi89v56dd/r3X5Nkh2pTtU1MVa5dzmmcPuZgHIEpy7U7r309N2qfJPBI17mWtYMPXTOrcu1dOY3nZxrjmWe59s77//iR7b8kYGl5ZeMyC9/+ZOJy7R05LdfS5JaDN5VYufYllbwChEdWBqx9umNsuTed/jGLcu1YDsFarh04QiJPvc2Wp/6XyrXTy2KYuFz7NXuucu05zJS2RMq120Rst1C4OPlt+JS3+MKPfsN5L9dOFzfjoQT5FXuuEuRnDJNNNKBcuzb4+Ph1yfvFO6JWdJeNXl+z+EOYhhXdR/CAVQ4nVruN63NNXa79Dpsb+58If5FE+OnVhIwmwu8m5BLhryQsCRH+XfvvTr//daQk+/pB377nWpfj8bQ5zz4Sapa7CLk0yxsIjSLC33JKSKfDu2qErfacN3LkxEoSk4vw23KiAvqN2cwdDDv4w58I/zz102rldrX1mzagXpK2dk2qGKYpRfgtOE331TSTB6OL8FftpK1d/qBWvKb/jA8zfzzKNbEIP+ZlWFXUgZcxmgj/3eWLB1vWXBJw6HS3VR1Ov+5hBiL8tpzgVBIaUYR/9ocWC1IqdAxZ1Dyosf2Yv8eYgZwFRMiCE6GvuunnXba8TSpybvaj4xXR2nv1111a8pbKILPCDvElqpQgojNzNksWnD3zt0gU+fcTWhgAcbUqKTYO5HCwyrUqxiAtB3qFRdanZaoeFGjUl9vXRCqYD/GVieGiCw1fQXOpIJ6ZJhl4sKpG/mOBqwQWaLl5F6/Wa3OzgyfJzjZZuHjhmuLX7qKlUHTHWNxi8wC9DIievRhVjxhMrKYalkJVxIdvtDxWLUfnlxdmNbxrffC5aPa8uqJpLkeW0E5IYTciTkjh13mX/QXvP4bz/ZNNnizpeqYBiRJ8ZIUqWhHFoW3Te+PXH3Gtw0QZW04/OvIxuDK1r5IfwOyrupaSMEY8pzGiTGMMRnFsQ3Ys3IISVFoQvmRRcO3U0aMjmLKCmUW8i7B5x6g4lTraRdiio2aIWov9gs5Wy+XER7vIvkg29l+yu5pnHnVLvjz8gghtihJR/zK/qSSM1YvTWGFmMXLgRxmUrdbMX+hOSFIP1HCMoN8zqx6xUdX0X2U/aOylA6l3ijNVLqY5cpoTjhwe9bzA0IVqId0w0cAslfDkHNnWeW/5Z3XXbUEHanuG3H+2d69Jp70QgBEkADcQAEDXYlAmSoYydpGJqo9OBltnRQbNrV9jVxXZ468mPewLARjABUBkuJBMNO/9x/g49MLcRuPj2Dhw8XEeMjNLnvk4P70TOfYWZgZkOP+68e59u5/NgI9Tw4Frd7OCgxmQCoYPH24EPs6DJaNivyXHe89f3bpfjeVvnpoFH0fAaZ2/TROSTcDHGXPcQRzXsqHvgWqTf6vj8dLPLPg4r4RcxnloDsYRmJKPk+avWdB30enghUeazL0/7PRms+Lj3OA03nmTJ7tmxMexnj+qvtvR64FTyzye5BW/5LWJ+TjHOS233+SWK1E+zvadovqLF7uH7dzR+0HG1cAEs+DjYDkEKx/noS5Pvf9/gY/TMfWSKtm3iffOUS/H3O09P9fEfJyeDlx8HB8H4/Bx2julfCiVcD0kNbp7q386rlzNOx+HPjfngWMS6cDFMQl2KCk+zqk+7y6PdzklyQx2fWzV4Go873wcuo/gASsfTqzaGneWYGo+zgM2NzbkiKKZInS9eM/hMOWzx33eUndKuibBs5N+alliHPOEqQHbF40kCk0iPD2m281JccVPmQplUDMvFn4Dsuc1GLur75cftmFHet37NNk1MIv1+Zg7OQUbGf2vfARwYWEFj2IheiX93JOevVL3aQg+jR08hW8jhv9o5z8XO0qVderlWkfIlcBg8ugA4NeHkR+HmRU3ZR6bKW0epkuqef0uzvZ8dGTLqWQqB6SUD9qAVXHvjrCZoALeRDlkRQQDxuErvpQ86Ifki6DkoW92UIrFSgOA74gjS+TmiAjUH7Kh/n389pXV3Sx8dve1zVqdGLKq0NOXFUoeeb1PbNJP7/F0YrOI44bLIvvq0C3yiM0iy2alJ70K/Ow3b4iNJmuKC3XFqqwvJM9omRkZ6/QSv0GoAVEfr3eZpIEpL1arLU6ljIZyjJASGIP9HZYOa2WxGr1yEPoRybLBqqjB8mjdTahHZy7n4tf13a12kgoc7ACYpVGkPiiqXsoOIb8EIYLzOIT8EvxHl18KHX+vU0TuS+9xZ3emWr4Pu0KXX0rrkT36VmJf/8ycZQueZk7rRLaTh1GLLM9E/2KEPBObpa2gegBhRnQVnGz7maWTb4g3O8Z93HcvqnFxrMX/bhiwqz206yJUypMDhlBNO5MUnrSC9R37a8A7JMTmO4z83zFXM8LDK3wUQiWKzVbVfPNHG0iItElqdOK6xaVC7MKb630OjLp1sWZ8VSGnycqJ8U9CaB0TDSVhNCtOo5UyrtFIF2wRLMYdKrxltG7cY7YhxyhbstdAQpS+ViRo5GqMdQe+guIwkbaKfPS5bNl1aUHjtu4YsjJ70Fm6rcqFJGllA5U6AQsBbbMLfqsHM1x5FK71VbRwxWXUT3W4jPq6DkPri7OAAtHZ5bg+CxI8ukwKZ0e3gJ6OWaYDu8o7o9Sd8Es5IkSl+0QPrIsTIf0xW0jv+uh+WDnleb+l+w6XHr3bgSpTWCEiThGjFcK6stSwDuMVW01ru7CYGDgVkSmVRPlVBSycB8W73ZAA0wsOsj0CIl/Sl24PesZPsN9080EVw3OVCp4Uu0S1NVZ9F4xNDXxgNL8zd/iL5Rm53lkjfreJcAulFkS1YHnFQlNCetH14hLvAVZlIFaZIhT3A0zwvzCLUnOyxnALqrBegS4bf3pFy+Fz/hTvXLmo8QrFrzLGknKMfsAUdzyBN39bm+vNnxi3wDTLcjLWAw3YY7OCOkNc0lMLGtqMOf96ku/ctDf1TqW3DKX2S3i3seC/zQn/RdPAz2CIFbdQNz4iINsZvAnSIvSKu0X0FMVdzXcjXEGONyLAzHTDBgQRYJ6wBRiD9XwcddYreT2fmhfcnZb+fk206VZuo5w3GbkF9Hza/r1gQDXRQNEi5RfxpyiP5wX0fLx+u3zpUN1lohlzen3+dGLP1QJ6PuoHVxZHH10t2V/m1rl5eTN+KqDnk/PN8nre/kP+R6L+CAm5Gfe2gJ4PovIvqW2IqPxLFupFVP61JJrWr2h8s2KHcL8pVvGb3WrY/AGayhNN7T5OG/7o+VFRWu/jX29YLCoDmioQTTO7PHO4PPVl4PZeod/ed/5wAjRZEU31A5vsfDLnu296B2fNt1XWT0FTRaLpbua4akvadvbLDhx0vG5dgRo0WZNARbUf3aH1at+0rUN+vvrbyiGgqRLRJHy48uiyyRWkm3Z2UbTYLUkBTZWJpineDSo4tbH33b392rNSLimeoKkK0dQl4+ix2v/c8d/W1WtMj5aj7EFTVaLpkPXnzKPyyd7TRlicqmx3ACopVSOaYuOeDBL6VwlI/fq0sn/5yFjQVJ1oWlst7+9mTad4p9bJy5tw2g9+YA2iaUOm5+JlPW4G7xma7bvzsXo4aKopYJWBsiGavpy0GXk6Z51kRebMxhleR1uDplpEk+xlu24uXkG+mQ3uVr80P+QCaLIlmn4kph13cPOSbBKXr3qwUaw3aKpNNLlU98ntJF7tM83asty3X56+BE11iKbzk6vtulUjymfqisTfOs9tEQma7IimMs3ahAlujQrZ4VGmVbUFaqjnWJdoylj79ZyzV5mgw+2GT+59Zdti0FSP7AC/zvl+qoVt6LZHe+/WvW4XBJrqE03pp4I6Vnm0wXfG4oApNVq9ygFN9kRT1/cVmwY5qL1nuB8Nb/5BXA80CYmm1jv2ri8fERCwePWJssfyylkyhKocBCxCVe3rXqn5dLl18KpMu+tPeh+KQrgNQ4WqnrK5qJox+7ZknTgtXbTx4fCzdUcuo05dpcMSlapoxOkLtgS4CXGHkDwvi5Wp08SDhBg4IaICoJ7HLegOCvlozFk10aCvbjiYVgka5kL/itg5TAXp8YsGhhXQzD+Nij8I8t0G3J3RQft6aOiGE7UdZokDs3k8jMrzBiFc2fveAAAUjZp3fnaWCv5qYFBO7BkuB10D4z1Fy2GJI5VGgR0/Ac+nUGJTJ7KfCGVqeOJaFa+IQit0b7ItM6SOVdj+axUXRx6c0J1KH9d9D5M+nt/Ee2kaJ6zHcMD1oIFZZHLMo44GZnKuxECLzjeXNk6mFcbLBsuFIAHRlbBm55l/Pzx4aN26YeK5gssnunVc2YnGNCQ+FsE0JFv4tp63G9HZJSjrnXLHOjuDbW4gcA7koSiS8CenA4kES10rcl3E/XGSWdNEPd4IfDsW/wgWD2C94AQLdHUi/jxjiz//U24oknIDPUM3mnJDREMu5YaWDUtCucF154nEFq8n+a93rhE5etb8NTwGS7oH4kG5oWtDroPufg2NotwwcfTspC1he/zmtU2NPNDtznmTKzd05EQF9BszZZkaT7nh9Hptqe0fOvnMGbT5asWdB6+ajXKDE6fp7E1jOqMrN7yoUftFpcn3Qtb6nnyeW2W2o4mVGzAvw3r0HngZoyk3qL2GtplQJcV3smL1il8f16LNIE2i3NCRE5yWDY2o3JC0d86NANWZwLHrj20536P3AzNRbnDiRAiMaSJv+4Mtbzu9UBb8rV0tv7Gr65d70XDEYWo2GgxyNGGEJFj/hQMfXTFcWE2AzITBDDEG/AryrhQhwFatxTUKgLMl+ivMvYjUbZR+kle09Uv0czOzaLLFgLK4fs5EWVxGqpQILNDU2bBlBewBCmCAfLs24qjAmd/+laSdr3Xl379a0TKlCHg34oACdrmwTInu/3ioeSt1JthXjE7YxUUqaO9sEO/YFgOI7BeO0Qo16L6gHR1su1wOL3PoalnvSfuW+nZdq6BW/CwvIW9mDsv8psIAG1Rnc9v6D+wka2yEMuc+1xU8ANacEzDQo0ySROExA/5NSwHbD1MOy5LDllaYLTm86rTjx0/OvjhCsj32Wv+jmtdZ1TAhE2AM6bBEtVxHe8aSWpFPhGNPp+IlwPSymF3aVB2Q+4f/pLRJTucfTOnJg2nrcZq2uolMi8qPZ3Y2KNWqGFzAn6PZuS+mVRgY9tF3y/wGH+Y86m5P3/BDHKrCr/K+dudO+KStKFLJA3dsiBGB8TlbYPS5Uuvu0DY7vDf16Wc7NfIQtaxSDUh+1cKlT3iSWQ659XIDKsa7i1XxAHKcgot9THT+x2CTw/xC8ZBUqldEpG/bFf7ADHMg/0rfbAR0/vWNAOh/+CAKyM8EnX9Ro+LyU0TBBUCByw2wDBLMNlQJQkey+DlADxdAgv/DfZoGrkarkuUs6iUD77jffJKxXrIj0r38IMVeOdXHRGKkA6aPIa4X5mN+Fg9Y6Pqwsfc8bXa3CQN67C6mj8kBMK+FMFv4IEqmn3LGYC7uknDjAubXrW5FqRI08qgkrHtgnCgklgkDtRcbDJ7mu/pzsz03X363pZ7IyP9c5vSX0sg7ldKVgK0vCjZLdww2wiW8YHMJZys1/NC8tSpkwp9vg9wuj5ZS3s06XI5xGIWhSUolwhewJcyu5H2QCIv1WUXCUJlSEY138mSFNk6oAtMUtf6egL5Lz/GcDCtQm/U9tucoFaghulaozbcLIEvuW+yxbxOA8fDgqqtcgxGxMcSQADy8O2rzy6q3RKl9rq/8MabxMWr6jH0QM33GLxc2nOmshOIeRQPDOREitxyVMsDKrzGNWNNnPZGz0yGnpnQ12LWQ8C0+O3bIJ4sn/msH15MndK27kXrMnegg6C0daivfoxii1ZcTrfBGJmGxW3ZLSZQXxKFhAc6OWxBIaeVKN/g3Gjc///4wyY2Vq2mUOPhTXMdtgwVIaFjwEWBSnYKbGmllemAqziAppl1nuhOj4B2KNpfqgY0CgxbCbEMxbGGugPN3ia4fjYSizBjn8yNOHfFbf6jK9IBZo2n+AnsrxMYEdrkkoOjLCUW4LlC9ZAtUZlPzj+4t+Sl/XAIl/1o24ir510wH+Suzh5zOjeMHcmGnf0KqtpglSbfZ4lLpQPhyHiBf2pgL8vmNSchf88bKrExCbgRWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycr8bFHjQ9uRuX4r+9cqJevy7DcG5Q12XnRtRhr9kgfK2xs2+zcIOu56d1sF3zUW0QOvPa9CtX91fLFfrFRpYLqIbeAwk/KyLKOtga8CljuOg/WB8Q/AppRwnknQEPTb3qdTTgt9RAY4qD/SNysH2dIGuD9wA3liBBY6NWyb3w7fbcOUNFTQNAAP8As7L8i5z5vbt+9V9d+yaNiPOhNu+xZnr61kl7EFYOK8riERdt8xxAlBaxZzw58Lq5o6SkRBrNBHahxdtjz+3DhwVq+ch3VearQ80iLGdA/9eGr1MN91qsn+k3xSjvKA0lROlEY2ZC4+cOVpLl3IcYUNNgwzcsjBqR7JPWPfKvHtE7Wy3D/+0kWWnlPGysekmHA/d4Ar0YmQG3Lw8PRSA/dznXW7hxCiqAJ6nzACUXwTeiVgqHPYqdJh0o03EyY3PfP6tBnsWkKQMjhBmmrgvm5jiQJ/c91SVX6XwTYW2R2U7RCFpVWjJ8ELq9j+kz3wUx3qLiL5ucxdRF1LSaAzhhOdZN2e7lu2wPgyMjTYwv2LOGPFOd/ssIDezIV4ZiS0YAHXgbqfq6O6JasMktynH7DQd29AX/Y3LD0CYTvng1iA8gCwPTYs1Om3TfuqQp39k7KWBu5aVzH56dsXbaiLndh+LEtYpzQW5sXpLq64THAA1mcIVhdUH7vQTCp4Y1isq4SBJQcjjR2qXSPPXXuWstB//YT4nX94fqIW/SsvBfeigSrQZOSUAML0mBOmWwYGu8K30Oh7zSbbQoOeBusjcAtNyMgd3TFoCD/0js0PiZuec2+Xdj94mW/2e2272vXo69DxskQhvk6DWC9nS82b4veRuz3YuRSZMEGeDC/J1YooIkDqxyKhHe7ieELUSnmBZj1xTXSUCmo75ULFaUROvhWg/sXRIEdVCduGwhd3weMg37L5wRdeyvIT/LZ8sB8WsP1qU2qKhH0AM0XCLxc25ujn3Io55iAzuRaEZyNqzEE1TGsng9gk1vjzcImkh6b0b/e9a8fADc97jm3z6gZ1kkK8LnP3j7he6MH2dt9OOqXUC968Jer1v+Nr9uABnzKc+IDuYwqGgSVG3BiKA9FBQP8xrIqadTeZOlau5TLaqdJHxrT6tbdozskRPxp//JV6tK4sfj/TaMR13tdsgVXeOnJZ5YlZWeXdEdIqBoWvypjDS5RHE84XXXNhSESA3HdAwJhQ0YIedRbepRomBLufaRjiOt+GSXQn3AlcZmTMV7d6SAWWToZNyOx0GGATC6WiMDzm9+v6jyS4Y+hy4Yq6y/8eN4AmKYR/AEJSiGgoCUS+OHIh8sKRjOvv2eL61tlBf/Vp7xUw4a9vWstjtz5QbYx/o/5kmA66GQY1gAuT4xRRcSCthGcLZRoNVIPUsWKI8K/f5IN+Thv1vMw+iV83gCea60jwRBnsl0Qwq9vHjOsG7oDXJVINXDwJE/iFR5jwJ0G++N9zPyQ//Pdb4NoFjx3zPrWgkufKsSU2ugYjB39InzsBMfRAcTS6NMMwNMhjdQglehRe0oRyUAvygTT4+gAsowD/n59TCkeEjkLLvNDiuUkrqsB5LQaYLQowqGO9TzeY/zT7jSt6b+JJbZK+zcHDzlWmI9fO1Uwd5h/YMA/d43v+tOC4OLV37faKF4FVqYrbIRQhVKYjZUPaLgTkAyA8acGdSpqcqn56kzRlCq7HYgqBU9v1XbgBo/oBjNDTUAs3cI/ijBNCb5KMJwi9SfhNdL1Jul4kXW+yyHqS9BsRepJsvqmer0INfI4h8rfrpb+dH7P1uf/s19v/Ue+InkOVvxUxR4eoUHG7macjqpR+stR/862T0hZpM4t7btIDmPMeNKcHir0ACTpXnHIRQo5sIBVFJDhp0ljvh5vsRfOPzJ47wnJd6yKIBNNR2vOh1oo/xr/wPbJu76eKq44Vl3AAUTrDiVKOE0MCkJPtgtdagImRPirKNNY7NYbhH8WMYcT1kljwxnrMZ9RCU083DCnCn/71H/OndDkfI/nTJE5/2v9//pS0z4I+8vBHFhu9V97p/+Zct6W7ePCndJkmHjyFhtNTKErcnx7a+dRrf53IwDnBDzelLhv0igd/Sl8k4AGl/pwodS9Jf0qPoSb3pxpOf9pf508/mv2cgD6c+CGzeZaq/T5dnCjZ/dE7buuV9HAepgStnLimBC46yP/mjcxWiYTcCGQ2hAYe6eoRGngkmQ2hgUeS2RAaeCSZDaGBR5LZEBp4JJmNnqExGGvQKyK7GF09jwfG2ifejGxlRCMXTUcSIapIGpm+58+wiQWbTeiyhTzY5DObTbL2Pug18fHngP17d+3fNjiPes7vpy6yBLmSWRuFzbE5ioSJ8I4CFbqECSqtHBcXgvLcXBq2dN1FxKPo4+2sIqLUKqUyHEYseDH/yOe7zjRPuMhuQUaNPqP8MkpPqBEw2/E0mye07K6Rq6EAOPm1jSWqpIFKyNWCVXSg8E+0Qku8O8gw4C7Hw9TVNJOQZY4YhWybSgWLmgIH2k4sSJ0orhAiU8cqEoLlMZQAaIVfDof1TgteL49f76ZKLHiV6oUjxzaVtlzYNLcyBmIXNTw3qFXgT1WOfCrUgFLLkgMSoqHsFglvqfLwItx6KXAJy9WVREkmfEIAq6gqZEox1IIqEIi0arksXvc7Jkysu4foql/MPizTVUB5Wqqj938e4vLZplxx+VhTMi5/NXvM6fKq5rs8+isnsX+fjtj/D29h0lpgvDCJ0M0lwyRCN5cMkwjdXDJMInRzyVxoXKv5i6o/milZk9phY/S4P48VyIWub4g8NPD3BqErUpOlXa8kr2UEV+j1kR2JLsbLQ3D9l82SZlqunS46bLRy7Secucq1z2JKyfBcrv2Kdv+Qj5KH4iNT50199tThnRmUaz/mzFX8dp9pBDOoNaenTZtmhHLtT/5Mr1ohdIbPntiArTu1KdTVQlOVa9/CaZ1V5mAdo5Rrj6pa70fHoPbiGdfaBh5rG0xdYTZVufaFnMaZZQ7GEZiyXHvVq2Ve9ro3OHB+WJv2VY9EljOrcu0TOY03yoyEgkxern16g0muYyWVfQ9Uu/zXgN3ykSYu167htJzC5JaDN5VYufZyX/bMjbmnEq0YnfVZuPzLR7Mo147lEKzl2mfpxJ6+seWp/6Vy7fSyGCYu116xGVe59r+ZKW2JlGsfFHFncOiCZX5LFD8/X/7zbpocJA/l2uniZjyUIK/QjKsEuaBZSZVrf3lQVPpfn4shG8/3H9l12puTvJdrp/sIHrD625kLq1fG9bmmLtf+nc2N/U+Ev0gi/PRqQkYT4Y9uxiXCL2lWEiL8L/9K2HvotW3Awje7vs92qdeAx9PmPPtIqFk+sBmXZnlPpo8sCRH+SuO2pAbsahW6uU7F818f+WWaXIQ/lBMV0G/MZu5g2MEf/kT4q8+13RwQU0a8t1PV3r3rfK1sNiL8Xpym8zCN6Ywuwv/b9fv/Jmxr6z1jTLfwHesrVqbtdBpbhB/zMqwq6sDLGE2EP/2g7ZekX+eJZnpnfs9zuV3LDET4QznBkTQzogj/nY1u58c1XOGzouLOj8fW1p9hBnIWECEvToTAmCbyth9seZtU5NzsR8crorX36q+7tORtS6qOAHaIL1GlBBGdmbNZsuDsmb9Fosi/n9DCAIirVUmxcSCHg1WuVTEGaTnQKyyyPi1T9aBAo77cviZSwW8QX5kYLrrQ8BU0lwpWMNMkAw9W1ch/LHCVwAL56sPeX5JUrREpmTe9w8LVvr2peipFqt1FS6HojrG4xeYBemchevZiVD1iMLH61bAUqiI+fKPlsWo5Or8MqFbWp7xX+5DMe1ktN1/b8Jh2Qgq7EXFCCr/Ou+wveP89nO+/yeTJkq5nGpAowUdWqKIVURzaNqHtH1c49+sDnwXfmqnz/g1XUvsq+QHMvqprKQljrOA0xgLzSH8EhuxYuAUlqLQgfMmi4Nqpo0dHMGUFM4t4F2HzjlFxKnW0i7BFR80QtRb7BZ2tendeduVv4TG/cbZdd33bMIvK7SgPvyBCm6JE1L/MbyoJY83gNNZ4sxg58KMMylZr5i90JySpB2o4RtD6Xd69pk0qFzzrXo2aAdfGPi7OVLmY5shpTjhyeNTzAkMXqoV0wyEDs1TCk3NkW2UU3xrufT7Cf4OyrGhzE/ttJp32QgC2kQDcQAAAXYtBmSgZythFJm7kfQlupOogOjh58vbmLwPHm/SwLwRgHhcAkZN0iSYcFf8lPg69MLfR+DjBLlx8HFuXkubjjIwdHPWLdV7I/J0Zk65VTxtgBnycQBeu3U1vFzMgFWhASl/yfJy7PX6bvqbr8MCMfWkOdy1vlDcLPk5rTuu4mIN1jMLHSUzbUmdb6jnf+bd7PVj9Ne2kWfBxGnAax9YcjCMwJR8nr87d7/dWWIWuygtb/3Xv1Byz4uNU4jSehWmMZ558nEllljn6l/pFPH/ZFZfUaw98TMzH+dqMy3LvzGKaUmJ8nIkfel2fe3WeaN3CPY9elW8uMQs+DpZDsPJxgCMk8tRSbHnqf4mP0/V9xaZBDmrvGe5Hw5t/ENczMR9nugsXH2cYM6UtET5O81dd9g6e9NJ/a8QX+2bbb/rxzsehz8154JhMc+HimIx1KSk+jnWce8LgNZ/FaVmB7SxqJ+Twzseh+wgesBrGiVWCcaOlqfk4pdnc2JAjimaK0PXiPYfDlM8e96EWYrPqmgTPTvqpZYlxzBOmBmxfNJIoNInw9JhuNyfFFT9lKpRBzbxY+A3Intd6x9715SMCAhavPlH2WF45S9bnY+7kFGxk9L/yEcCFhRU8ioXolfRzT3r2St2nIfg0IVCYy0YM/9HOf2Y5Sv8Odsy1jpArgcHk0QHArw8jPw4zK27KMmymtHmYLqnm9bs42/PRkS2nkqlxtpQP2oBVce+OsJmgAt5EOWRFBAPG4Su+lDzoh+SLoOShb3ZQisVKA4DvWOJElMjNERGoW7Ch/n389pXV3Sx8dve1zVqdGLKq0NOXFUoeeb1PbNJP7/F0YrOI44bLIm8b0y3yE5tFls1KT3oV+Nlv3hAbTdYUl5+pa6K+kDyjZWZkrNNL/AahBkR9vN5lkgamvFittjiVMhrKMUJKYAz2d1g6rJXFavTKQehHJMsGq6IGy6N1N6Eenbmci1/Xd7faSSro0QSAWRpF6oOi6m2aIOSXIERwHoeQX4L/6PJLoePvdYrIfek97uzOVMv3YVfo8ktpPbJH30rs65+Zs2zB08xpnch28jBqkeWZ6F+MkGdis7QVVA8gzIjWfHDZc1BZXR089+nQr4mVz58rjrX43w0Ddu0O7boIlfLkgCEU1MQkhSetYH3H/hrwDgmx+Q4j/3fM1Yzw8AofhVCJYrNVNd/80QYSIm2SGp24Dok9/GFRly3+mSlHBdfXxy/lNFk5Mf5JCK1joqEkjCbiNFob4xqNdMEWwWLcocJbRuvGPWYbcoyyJXsNJETpa0WCRq7GWHfgKygOEy2Yvifv+rAbb0XbDyRvq936zkS6rcqFJGllA5U6AQsBbbMLfqsHM1x5FKr1VcRwxWVUV06jNmzC0PriLKBAdHY5rs+CBI8uk8LZ0S2gp2OW6cCu8s4odSf8Uo4IUek+0QPr4kRIL8sW0rs+uh9WTnneb+m+w6VH73aYQOXKRsQpYrRCWFeWGtZhvGKraW0XFhMDpyIypZIov6qAhfOgeLcbEmB6wUG2R0DkS/rS7UHPaA/TnG4+qGJ4rlKBXePi8sisseq7YGxq4AMjXzTs5b2xW5tmiFdkXqi4dnjcIXqBF+QrFpoS0ouuF5d4D7BqB7HKFKG4H2CC797YMNYYbkEV1iuQuFgNCyuVtX5x2BaRMrLTz7KyjCXlGP2AKe54Am/emPPNQS8xg+VkrAcasMdmBXWGuKSnekRJHYZNF3vPKN+/1r2sBeup/RLebSz4q3LCX8408DMYYsUt1I2PCMh2Bm+CLlpAq7hbRE9R3NV8N8IV5HgjAsxMN2xAEAGmHFuAMVjPx1FnvZLX84mzmxB6b1Yb/0kHM2onr2ldUNvwc8bZc+/DFJIZl/dPzPkq2FpAz6evtFFeqX6DvLfGHWkac6eVbQE9n3GJb+c0O1UzdPa1yV/9Tg5tXUDPp1TYk1U1Yg+ID9a4NFTYWNSvgJ4PovIvqW2IqPxLFupFVP61JJrKLLOedWF1dtjBg/tFPnl5DUBTeaJpWVLyiLkbr/nMXDriW0v5qDqgqQLRtGNdZe/eg4ZIjrwefe6zx3f4gVZE09ChbiOWPlZ6Z34YUjv1W1ot0FSRaOryy7rjtv+Ul6Q/HDHxV9/sJNBkTTS5vbW5ND3iaNjs07eXP431mQmaKhFN/d2PhdyqfSp4054Nts0D7otAU2XSKF9Xztrx603/gy2C1x3bMwg+RhWiqWID35Fue+0km1uW29Y9u78TaKpKNJ1eKnz0PUvtm5q8Jf2Pkd4/g6ZqRJPl3b8O9raq678tzLeTU2L3zqCpOtFk0/FjrwPjGwfN9e038rfx8i2gqQbRtCo15lXzQ5e9j7Tt3ybAP7c6aKopYJWBsiGa7h/PEtVesMz7UJke/d5ro7xAUy2iyTql/IFKc6tKs1yXP3GqewZ2AFuiKejDQnVy89l+Gd0P9rn4JgF+V23Syr32BvnXSfKe0Dp09ZTM2O6gqQ7RdCGr95Fqkrnee8sE3Wxff/oM0GRHNB3wa+xcs8JKvyUZ1zJWxbnKQFNdoun33y4+vVc71D+756XxcdZLd4GmekTT9sEZdsKpJ6XL7wT1Unw/+xA01SeaLKy6elTfMFI689LNwaL3lW6DJnuiybfVTg/769Eh2avSukWc8LwBmoRE08PzrrJ/38wVjblz4di7yjdPM4SqHAQsQlWxW554Vez1d9jB+0nnqsZ+seZBqMqSzUXVjNm3JevEaemijQ+Hn607chl16iodlqhURSNOX7AlwE2IO4TkeVmsTJ0mHiTEwAkRFQD1PG5Bd1DIR2POqokGfXXDwbRqiVsu9K+IncNUkB5PcjOsgGb+aVT8QZDv1ivev0f0msq+44+uOfLzFOV1Hg+j8rxBCFf2FkGAolHzzs/OUsFsN4NyYs9wOegaGO8pWg5LHKk0Cuz4CXg+hRKbOpH9RChTwxPXqnhFFBLFPm+qVKzTwCZo9soW95tN2zGLSh/XfQ+TPp7fxHtpGiesx3DA9YubWWRyzKOOBmZyrsRAi843lzZOphXGywbLhSAB0ZWwZueZr63fxc8lq7N4+7x/+k5bXvkGjWlIfCyCaUi28G09bzeis0tQ1jvljnV2BtvcQOAcyENRJOFPTgcSCdY7q07/jp/tKd6yrsLIzIsVo4t/BIsHsCZxggW6OhF/yrPFn/8pNxRJuYGeoRtNueG9G5dyw0XDYqWeyg1JU0qrxYeOiibedZRd8fpwn8dgSfdAPCg3vHXjOuj+xLBgWVTlhhrjyzTYPbddwJHVcUfGH51H7R+mUG64zYnKRdPERD1YpoUtMPGn3HDm27NqAyY8DlnVMmeWq8/R9maj3JDLabpD5prO8KzckGRd3eNl9RUhkzd8zDxZtfRXEys3YF6G9ej9E0SWUlLKDfVOZm6qsVUQtje9/Meq9T5TCUKmUW64zQnORTcjKjdMKmc3dUN6l7DU2BGlJZIurcxEuSGXE6FDurytAlvednqhLPhbu1p+Y1fXL/ei4YjD1Gw0GORowghJsP4LBz66YriwmgCZCYMZYgz4FeRdKUKArVqLaxQAZ0v0V5h7EanbKL0SJ/r6Jfq5mVk02WJAWdwnnkRZXEaqlAjrl3oatqyAPUABDJBv1yi2zKTEGZdC949yD67iNZ12cDcC3o04oIBdLixTovs/HmrePvIk2FeMTtjFRSq46WkQ79gWA4jsF47RCjXovqAdHWx797BsM/laU++9dx4/nj5CMJE6LCXkzcxhmd9UGGDPrkY3G5/5tzhdXjdlRwPlQR4A+50TMNCjTJJE4TED/k1LAdsPUw7LksOWVpgtObxqyCqX1JD2BwL2TZn1pkfZqW7VMCETYAzpsES1XEd7xpJakU+EY0+n4iXANNOeqffhjw7Th4szsp3evJybXVy9N2jaA5ym3WYi06Ly45mdDUq1KgYX8OfoI432f+yKHfNAsuSc3aAoT58r9A0/xKEq/Crva3fuhE/aiiKVPHDHhhgRGK3YAqPPlVp3h7bZ4b2pTz/bqZGHqGWVakDyqxYufcKTzHLIrZcbUDHeXayKB5DjFFzsY6LzPwabHOYXioekUr0iIn3brvAHZpgD+Vf6ZiOg8/t7AND/8EEUkJ8JOr+XR3H5KaLgAqDA5QZYBglmG6oEoSNZ/Byghwsgwf/hPk0DV6NVyXIW9ZKHmtKVv8z2CMsadCx7ibg1tUhf2UiMdMD0McT1wnyMPO9qdl/vlb7jEx3VE76FpxXTx+QAmH0hzBY+iJLpp5wxmIu7JNy4gPl1q1tRqgSNPCoJ6x4YJwqJ5fxJbt/F2d6S3Wl5g+NmBdymnsjI/1zm9JfSyDuV0pWArS8KNkt3DDbCJVRkcwlnKzX80Ly1KmTCn2+D3C6PllLezTpcjnEYhaFJSiXCF7AlzK7kfZAIi/VZRcJQmVIRjXfyZIU2TqgC0xS1/p6AvkvP8ZwMK1Cb9T225ygVVIHoWqE23y6ALPmre3HHvk0AxsODq65yDUbExhBDAnC2344tKQ8F/tkP3gvTfM+2o6bP2Acx02f8cmHDmc5KKO5RNDCcK0HklqNSBlj51cKDNX3WEzk7HXJqSleDXQsJn7TL1O3V7pQPmmr/7miL9AFU4a2KRAdBb+lQW/kexRAt0JM40HrnbhIWu2W3lER5QRwaFuDsuAWBlFaudIN/o3Hz8+8Pk9xYuZpGiYM/xXXcNliAhIYFHwEm1Sm4qZFWpgem4gySYtp1pjsxCt6haHOpHtgoMGghzDYUwxbmCjh/l+j60UgoNNPDjl5d3i1g3LO+Fz+8VdL4XdhbITYmsMslAQXWxVmhAF2cCFTWbIHKbGr+0b0lP+WPS6Dk30V3rpJ/p3WQVzJ7yOncOH4gP3bijqzxBJuglYMuPpif8zGGB8g7NueC3LM5CXll3liZlUnIjcDKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCsTQaIkWZnlz3t2e1N5qzizSdmMsdP2JTEob7DzInsfnX7JA+WtCpv9GwQdd727rYLvGovogdeeV6Havzq+2C9WqjQwXcQ2cJhJeVmW0dbAVwHLHcfB+sD4B2BTSjjPJGgI+m3v0ymnhT4iAxzUH+mblYNsKQD6tRvIEyNgCDoxs3KutWs7fLcNU9JQQdMAPMAv7Lyg+i3qjHsyd2bA9J8Wh/g510sozl5byS5jC8DE2Y8Mu+8Y4oSgta07Mg9nw6qmjhJRECskSv/+c6Rvze6XpfNWDpp5UDv2CY+0iDHdQz+eWj3Md51qsv8kn5SjPKDkxIlSHXfm4gNXnubShRxX2GDDMCOHHJzqkdwz9q2SgTm5eS1zIgNnez8JEawdIzfhfu4AV6ITITfk4OHpju6GpbHOut1DCFFUAb1PGIEovgldJ1a4xvLRojzRxOu3V76tEDfFDHYtIUgtOUFycjdsX7exRIG/uW6pKr/LYBuLHA7q1Mgn7w8dDxm34PnPZX6c2kzdRSQ/l7mLqGspCXTsOdGpqctFq7IFxpeRocEW7l/EGSvO+WaHBfRmLsQzI6EFC7gO1P1cHdUtWWWQ5D79gIW+ewP6sr+B68mEsJ3zQSxAeQDYxhoW6vTbpo21G/S3+50y0lTvlI/b3j45Q13sxPZjWcI6pbEwL053ccVlggOw5kGwuqD62AUoJGVYrKuEgSUHI40dqlmjXx+Y5l5eOjmqkdOLjfs6UD2RFNyLBqpAk5FTAgjTWE6YhhkY7ArfQqPvNZtsCw16GqyPwC00ISN3dMegIfxQNTY/JG56zr1d2v3gZb7Z77Xtatejr0PHyxKF+DoNYr2cLTVvit9H7vZg51JkwgR5MrwkVyuiiACpl1uiH+7ieELUSnmBZj1xTXSUCva0yoWK04icfCtAfX4rgxxVJWwbCl/cBY+DfMv7vQ/nNjg/Sbo+ZcS/3U62taGmSNgHMFMk/HJhY45+zq2YYw4yk3dBeDaixhxUw9zQyiA2iTX+PFwi6XWTXsmu9O8nznTdG7bae8VG6u4ffj9z94+4Xhg+OTN2142/Oj905aDse82zNl7gAZ9sTnxA9zEFw8ASI24MxYHoIKD/GFZFzbqbTB0r13IZ7dC2y6lTwweLF58c7HtxY0wg1Wj4/UyjEdd5X7MFVknntEqaWVnl3RHSKgaFr8qYw0uURxPOF2mYNmWzNCPjrvjNyN50+1nnvdTDfmVDsPuZhiGu822YRHfCncBlRsZ8dauHVLC6lWETMjsdBtjEQqkoDI8VfRQ7B7+6FbI4vdbkhMxzHjRJIfwDEJJCRENJIDKfE5FJrci4Xp0trm+dHfRXn/ZeARP++qa1PHbrA9XG+DfqT4bpoJthUAO4MDlOERUH0kp4tlCm0UA1SB0rhgj/+k0+6Oe0Uc/L7JP4dQN4ovJWBE+UwX5JBLO6Hsy4buAOeF0i1cDFkzCBX3iECX8S5Iu/aDzyhO+gVr4rbi+fFxK5itb52BIbXYORgz+kz0VBDD1QHI0uzTAMDfJYHUKJHoWXNKEc1IJ8IA2+PgDLKMD/5+eUwhGho5CI0uO5SSuqwHktBpgtCjCoY91DN5hrmP3GFb038aQ2Sd/m4GHnqnUrrp0rNx3mNdkwD93je/604Lg4tXft9ooXgVWpitshFCFUpiNlQ9ouBOQDIDxpwZ1KmpyqXn6SrkzB9VhMIXBqu74LN2BU/wKpmtNQCzdwjyLOE6E3ScYThN4k/Ca63iRdL5KuN1lkPUn6jQg9STbfVM9XoQY+xxD52za2EZ8vSMQ+e889X67ddVVFlb8VMUeHqFBxu+FV3adWrnhZsjtAuXGYutXA4q6ZAHOOhOb0QLEXIEFH7ZmLEHJkA6koIsFbh+18f2fBBJ8FUx/vPutw6HIRRILpKMl7hAfeX9c+bMbmo4c9xlzYyQNKcZwo9fNkSABysl3wWgswMdIDIDrrnRrD8I9ixjDiekkseGM95jNqoamnG4YU4U9t/mP+lC7nYyR/Wp3Tn35r9T9/StjnZekN0XVH/SzJPOT2WeFnUYEHf0qXaeLBU1Tl9BTlStyfnhYf3lrHbXLIkkkHo2svERVFdJ2OEn2RgAeUvrXiQulDqxL0p/QYanJ/WpXTn37T5ae1zH5OQB9O/JDZPEvVfp8uTpTs/ugdt/VKejgPU4JLnFOCMzrIbXkjs1UiITcCmQ2hgUe6eoQGHklmQ2jgkWQ2hAYeSWZDaOCRZDaEBh5JZqNnaAzGGvSKyC5GV8/jgbFWmzcjWxnRyEXTkUSIKpJGpu/5M2xiwWYTumwhDzapw2aTrL0Pek18/Dlg/95d+7cNzqOe8/upiyxBrmTWRmFzbI4iYSK8o0CFLmGCSivHxYWgPDeXhi1ddxHxKPp4O6uIKLVKqQyHEQtezD/y+a4zzRP+3txv6/WEUSFzmm574NvlgSubJ7TsrpGroQA4+bWNJaqkgUrI1YJVdKDwT7RCS7w7yDDgLsfD1NU0k5BljhiFbJtKBe1aAgfaTixInSiuECJTxyoSguUxlABohV8Oh/VOC14vj1/vpkoseJXqhd9NbCq1btsytzIGYhc1PDeoVeBPVY58KtSAUsuSAxKioewWCW+p8vAi3HopcAnL1ZVESSZ8QgCrqCpkSjHUgioQiLRquSxe9zsmTKy7h+iqdmYflukqoDwt1dH7Pw9xWdGSKy7LWpJxua7ZY06XVzXf5dH+nMT+Hjpifz3ewqS1wHhhEqGbS4ZJhG4uGSYRurlkmETo5pK5ULONI+Z0Xj9eMs5zTdBP41xvFciFlPdmdzpZKS9wl8NdF1HWWhEjuEKvj1ZOoYnx8hBc67NZ0kzLtdNFh41Wrj2qNVe5dvfWJV2u/Vht4agtmtPSdbN92soW1aWe7DRNuXZZa67itz1am0HN6fHjxxuhXPvaljO1B5ZlhG6/kTTmfkQ0dffFVOXaQzitIzYH6xilXHudDhnWDqIPPhOfzT1Q6kan3WZRrr0dp3HczcE4AlOWaz8afEYxuE6QaN/U/v0aVhlLVdo1dbn2xpzGszON8cyzXLt44ZhaXatppUsy+p48WTN4n4nLtVfltFw5k1sO3lRi5dorvO993LrVYO8lVhl1z5TeKDaLcu1YDsFarh04QiJPtWfLU/9L5drpZTFMXK59fWuucu1zmSltiZRr/5Ta/NHo/t/9tsxO+qPvliyqYCIf5drp4mY8lCBf25qrBPmS1iVVrv2uzeVg31V9/cZ0PCz0ll/M471cO91H8IDVXE6sphjX55q6XLuQzY39T4S/SCL89GpCRhPhL92GS4T/IdN38iDCX/bXv8faV+kUMOfRpAO77h17yuNpc559JNQsF7Th0iz/m+kjS0KE392z993XM3r7LBKH7tjksY9aB90UIvyvWnOh8tDkGWjBHSfTiPDXqhuvtAzfL1lYq1batlX9F5qNCP8NTtOdN43pjC7CX+6j0+hH/lk+K7fOTjrl3u6NiUX4MS/DqqIOvIzRRPgfX3iR5vD5fkCGk0dTaZi0mRmI8GPOhhWch62NKMI/bPmO+WnOT8Szm6zbUrrRrrtmIGcBEbrBidB53fTTgS1vk4qcm/3oeEW09l79dZeWvG1J1RHADvElqpQgojNzNksWnD3zt0gU+fcTWhgAcbUqKTYO5HCwyrUqxiAtB3qFRdanZaoeFGjUl9vXRCoYDIenTAwXXWj4CppLBaI2xT1YVSP/scBVAgvkq7et2C3oaNKCsL27ps05WCflePFrd9FSKLpjLG6xeYCeAqJnL0bVIwYTq/5tDCuEjQ/faHmsWo7OL4fM71K9xYK3YVtsmqtHJ9WlFmIuK8FuRJyQwq/zLvsL3r875/sHtTF1sqTrmQYkSvCRFapoRRSHts0f+46uW1dnms/YyMNvBGlfqHrgluQHMPuqrqUkjCHiNEYb0xiDURzbkB0Lt6AElRaEL1kUXDt19OgIpqxgZhHvImzeMSpOpY52EbboqBmi1mK/oLPVhg9GKXZ8mey9KOCRz/aAYdR0qDz8gghtihJR/zK/qSSM5cpprIZmMXLgRxmUrdbMX+hOSFIP1HCMoGzPYRUnxb/02RcRPDzdKu9tcabKxTRHTnPCkcOjnhcYulAtpBv6tDEsSyU8OUe2NWGaw+A346qELGiaMMqmQeZlk057IQBhJAA3EABA12JQJkqGMnaRidaptTZsbPAkZO2d8GrDtwfXo4Uy4x72hQC04gIgskkbMtFs8B/j49ALcxuNj/OiDRcfZzczs+SZj2N5dOiY7aHjghcMW/PLYM2bsWbAx/mjDdfu5j3TOH0qqWDw4MFG4OMk15q1ummdKuLt9Xu3+C36vtAs+DhXOK1zxhysYxQ+Tu/vr2vFPAsPOrJm4L30CRs/mgUfJ4fTOLvNwTgCU/JxSo+eHNchLdlnnsfnxJwf38LMio+zkdN4y02e7JoRH+dz0qj01okx4rQ6c6Z96L2hjon5OJmclptucsuVKB/H9Te7xfOS14VuWnX251m/Kt+aBR8HyyFY+Ti7dXlqw/8LfBzfVjs97K9Hh2SvSusWccLzhon5OC5tufg4Nm2Nw8epo/ix4ohPb8nmU1uaTxdcqsc7H4c+N+eBY+LclotjImxbUnwch+gatoFvl4VMybmy/KGk6kre+Th0H8EDVjacWFVs+/8VH6cRmxsbckTRTBG6XrzncJjy2eM+VOds1TUJnp30U8sS45gnTA3YvmgkUWgS4ekx3W5Oiit+ylQog5p5sfAb0IUPz7vK/n0zVzTmzoVj7yrfPM36fMydnIKNjP5XPgK4sLCCR7EQvZJ+7knPXqn7NASf5gU87Wcjhv9o5z+XOkp/f94y1zpCrgQGk0cHAL8+jPw4zKy4KRuzmdLmYbqkmtfv4mzPR0e2nEqmVkcv5YM2YFXcuyNsJqiAN1EOWRHBgHH4ii8lD/oh+SIoeeibHZRisdIA4Ds6kCVyc0QE6k3YUP8+fvvK6m4WPrv72matTgxZVejpywolj7zeJzbpp/d4OrFZxHHDZZH05nSLNGWzyLJZ6UmvAj/7zRtio8ma4kLVNCrrC8kzWmZGxjq9xG8QakDUx+tdJmlgyovVaotTKaOhHCOkBMZgf4elw1pZrEavHIR+RLJssCpqsDxadxPq0ZnLufh1fXernaSCjxDM0ihSHxRVv9ocIb8EIYLzOIT8EvxHl18KHX+vU0TuS+9xZ3emWr4Pu0KXX0rrkT36VmJf/8ycZQueZk7rRLaTh1GLLM9E/2KEPBObpa2gegBhRqS1Bqj/2rSxoUfInIzDxx/Y7wspjrX43w0Ddv0A7boIlfLkgCH0vLlJCk9awfqO/TXgHRJi8x1G/u+Yqxnh4RU+CqESxWarar75ow0kRNokNTpxPW/7vHOD4N7Bs9d3Pf30WdWGnCYrJ8Y/CaF1TDSUhNHucxrtqnGNRrpgi2Ax7lDhLaN14x6zDTlG2ZK9BhKi9LUiQSNXY6w78BUUh4k+8uweZe++qXTQnpmlHzosndCEbqtyIUla2UClTsBCQNvsgt/qwQxXHoVqfRUxXHEZ9SynUX9tztD64iygQHR2Oa7PgiaI02RSODu6BfR0zDId2FXeGaXuhF/KESEq3Sd6YF2cCOmObCG966P7YeWU5/2W7jtcevRuhwlUrmxEnCJGK4R1ZalhHcYrtprWdmExMXAqIlMqifKrClg4D4p3uyEBphccZHsERL6kL90e9IybsMRsNx9UMTxXqWBfscvTW2PVd8HY1MAHRr5o5IGGG9fmLAzdN7fSgHHLVyjoBV6Qr1hoSkgvul5c4j3A6jrEKlOE4n6ACf5vzKLUnKwx3IIqrFcgcZk2ftLX49k/SXcM9/Tc6OpQlrGkHKMfMMUdT+DNj3G+OeglZrCcjPVAA/bYrKDOEJf0VIDbu5eH7tQIPLD63u2W789PovZLeLex4N/CCf8q08DPYIgVt1A3PiIg2xm8CVqqg1Zxt4ieorir+W6EK8jxRgSYmW7YgCACjBNbgDFYz8dRZ72S1/O5JayxZ43GQnKo3ROLMh0uBhXQ8/nwtELIkaxBwYt29y5nIz2gKqDnE6oNvRkUsjxozV/eSX6B6WsL6PlEVo96OMTxrM+siKm3Lc7UCymg53OvQ9ZH6y4DpYdbf7aq4r5EXkDPB1H5l9Q2RFT+JQv1Iir/WhJNTVpZNe9rkx2w+KfX2cod0X+DpvJE0/PSeY1O7EiUzu0Zda3T0fo+oKkC0dS0zqt1Ea1SwpZmBM1t6/97K9BkRTTd3rQu7pbrIFG27MbFYZdu1wZNFYmm2eU1JxY83i3annDVJm7fmnjQZE00TRvb8WlWh5vB030HZP2rmR8JmioRTdcGOUT519EGLkyua3dCXe0maKpMAmU1vt6fr4J8dtjtq7PPQtgdNFUhmrxuW16qbpUYuNb3qHiURcvDoKkq0VSpm2deN5skn91jhw14OWJGH9BUjWhqGZb274ttY8WT97XMu9y3kTVoqk40nbx6Pnz/T899Nm3zbvi9Tc9ToKkG0dSjwof3dl8C/FYPdi01Iji4DWiqKWCVgbIhmvwOH7/RPmR8SMbOKxnjM6/vBU21iKb49z3tstfdkmzs6mln7zXOBTTZEk2KPcv9518pJZqw0bHXOduZb0BTbaJpmKuy6zepQ8COP5rXHXrZegloqkM0DZ9y8spAmdhntveNj4svHBkImuyIpn3PHrbKWv6P/4wpUVeG3Bn4HDTVJZqaW8RtW7v1uij9g80z5+0z3oOmekTTuJ5rZ/xi1T54qbJ6s+al+0F71SeaYo6crumSc8J7zI6T3ZNdJj4ETfYk8ieuh6ZP8fab/PXumf2SEQtAk5C8a16ni8uXtBRtCHaqOr3e7koMoSoHAYtQ1dy9wuV9bCcFr9tXt1OK2O4wD0JVzmwuqmbMvi1ZJ05LF218OPxs3ZHLqFNX6bBEpSoacfqCLQFuQtwhJM/LYmXqNPEgIQZOiKgAqOdxC7qDQj4ac1ZNNOirGw6mVV5eudC/InYOU0F63MjLsAKa+adR8QdBvtuothO98pzWBEyrNDzz8LLe5Xk8jMrzBiFc2WsLAYpGzTs/O0sFbl4G5cSe4XLQNTDeU7QcljhSaRTY8RPwfAolNnUi+4lQpoYnrlXxiii0hG3e9rXXymwXj8tY+mZ1zKG1VPq47nuY9PH8Jt5L0zhhPYYDrjpeZpHJMY86GpjJuRIDLTrfXNo4mVYYLxssF4IERFfCmp1nHt6hYcOQyI/i6T0eTXALlvxDYxoSH4tgGpItfFvP243o7BKU9U65Y52dwTY3EDgH8lAUSfiT04FEgrWr2zKbk+O6SaZfntU14/KnQcU/gsUDWI04wQJdnYg/zdjiz/+UG4qk3EDP0I2m3JDuxaXcEG9YrNRTucFywlXZ2NUOfsvG7LVVb9vixmOwpHsgHpQbpnpxHXQfY1iwLKpyw54/h1y4ePti8Jp+F+76T8mjlQk1gXJDMicq8aaJiXqwTAtbYOJPueGJUJwUO6KuZFarIRXvLHtBPXVkSuWGKE7T9TLXdIZn5Ya8VvdmuHlGBc75p8/hB7X7WphYuQHzMqxH78cgspSSUm6Y9Lrp910zNos3uD19FfSlzGAzUG5I5gQn3suIyg2Tfil7cIOtt2TStljXk3dePTcT5YYoToR66fI2F7a87fRCWfC3drX8xq6uX+5FwxHUNQrLYJCjCSMkwfovHPjoiuHCagJkJgxmiDHgV5B3pQgBtmotrlEAnC3RX2HuRaRuo/RKnOjrl+jnZmbRZIsBZXHHiIiyuIxUKRFYQCYybFkBe4ACGKCPvi+JmR/2VOG9f37SmYHKMg9pu0nwbsQBBexyYZkS3f/xUPN2tIhgXzE6YRcXqSBJZBDv2BYDiOwXjtEKNei+oB0dbMcvrK4WqM+FrrzeIuul6/T71GEpIW9mDsv8psIAu9KvfOjUh5ZBqz2Wj79nf68FD4AN5gQM9CiTJFF4zIB/01LA9sOUw7LksKUVZksOr9qq9PF3I1df9Z+WFXh44ZyLLaphQibAGNJhiWq5jvaMJbUinwjHnk7FS4Bppj3bb2f9xA3zvdMcPt1SPK3ZngfT9uA0bYiJTIvKj2d2NijVqhhcwJ8jjblp5SD/JqE/iRbOjTnhGLe1Pn3DD3GoCr/K+9qdO+GTtqJIJQ/csSFGBEZXtsDoc6XW3aFtdnhv6tPPdmrkIWpZpRqQ/KqFS5/wJLMccuvlBlSMdxer4gHkOAUX+5jo/I/BJof5heIhqVSviEjftiv8gRnmQP6VvtkI6PyP2wPQ//BBFJCfCTr/tfbF5aeIgguAApcbYBkkmG2oEoSOZPFzgB4ugAT/h/s0DVyNViXLWdRL7tiP2LFlUdnAfX++2evsu5aqXlU2EiMdMH0Mcb0wH7O/dF6DsBtS8USNS+eLtxyzi+ljcgDMDyHMFj6IkumnnDGYi7sk3LiA+XWrW1GqBI08KgnrHhgnCu0E6n9esXzo9pCxX2et/f3tL+epJzLyP5c5/aU08k6ldCVg64uCzdIdg41wCW5sLuFspYYfmrdWhUz4822Q2+XRUsq7WYfLMQ6jMDRJqUT4AraE2ZW8DxJhsT6rSBgqUyqi8U6erNDGCVVgmqLW3xPQd+k5npNhBWqzvsf24PFjiK4VavPtAsiS5xV77NsEYDw8uOoq12BEbAwxJACar9qtG+9NDV11Z9n7XUEjr1DTZ+yDmOkzfrmw4UxnJRT3KBoYzushcstRKQOs/LqsPWv6rCdydjrk1JSuBrsWEr4+f+8dE9veWjz/ztXsN6Os+lCPuRMdBL2lQ23lexRDtOZxojWtvUlY7JbdUhLlBXFoWICz4xYEUlq50g3+jcbNz78/THJj5WoaJQ7+FNdx22ABEhoWfASYVKfgpkZamR6YijNIimnXme7EKHiHos2lemCjwKCFMNtQDFuYK+D8XaLrRyOhqBzntfZZyk+iuaXWljs03X4CbWMCvhViYwK7XBJQzOOEYpouULmzBSqzqflH95b8lD8ugZJ/8e25Sv7JdZB7mD3kdG4cP5C/ifgwtm/p2T77ejsc2/pxlxMPkN/swAX5xQ4k5M15Y2VWJiE3AisTQaIkWZkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZcaPKi86GHbeb2a/SgMiBzy8yqC8wc6L7H10+iUPlLcWbPZvEHTc9e62Cr5rLKIHXntehWr/6vhiv1ip0sB0EdvAYSblZVlGWwNfBSx3HAfrA+MfgE0p4TyToCHot71Pp5wW+ogMcFB/pG9WDrKlJ3B/4AbyxAgYgicM2+a3w3fbMCUNFVbHQwVZgey8oCHHKsulA8LEm9vMjV6+v9b64uy1lewytgBMnB95EWH3HUOcELReYW74c2FVU0eJKIgVEqW9h+7smr/YMyBjUpVrC1yly3mkRYzpHvrx1OphvutUk/0n+aQc5QGlE5wo7fZiLj5w5WkuXchxhQ02DDNyyMGpHsk9Y98q6Xz5/K6TOw74L9n2odX66K/fTbifO8CV6ETIDTl4ePqmgfu5zrrdQwhRVAG9TxiBKL4JCc6rVT9NSrC/H7Y39VRqzwM/NpvBriUE6XdOkE4YuK/bWKLA31y3VJXfZbCNRXYHlXx/YM4iz2qhMx99Ck8qc6UHdReR/FzmLqKupSTQOcCJzjbdnm5LtsD4MjI02ML9izhjxTnf7LCA3syFeGYktGAB14G6n6ujuiWrDJLcpx+w0HdvQF/2N3A9rWAKf84HsQDlAWCrz1yAKv42rVNf+8Qf2xeIVyV/ULZZuW0NdbET249lCeuUxsK8ON3FFZcJDsBqAcHqgupjF5pJBY7oNSc2sCphYMnBSGOHKmZ13bQbT8uE7nY8M39O9sx/qZ5ICu5FA1WgycgpAYSpPidMNRAr7cXbQqPvNZtsCw16GqyPwC00ISN3dMegIfxQKzY/JG56zr1d2v3gZb7Z77Xtatejr0PHyxKF+DoNYr2cLTVvit9H7vZg51JkwgR5MrwkVyuiiACpl1uiH+7ieELUSnmBZj1xTXSUCiK8c6HiNCIn3wpQb+ltkKOqhG1D4Yu74HGQb+m4e8yZm5GjvVdcL5O+scsFqmzpT9gHMFMk/HJhY45+zq2YYw4yk7tCeDaixhxUw/TzNohNYo0/D5dI+sIDyxuFrLEL3vhV09PjQXA56u4ffj9z94+4Xhg+yY+W/tuy9pygPS9Hu2SMmL+OB3w6cuIDuo8pGAaWGHFjKA5EBwH9x7AqatbdZOpYuZbLaCvXdZ69bvOvflNmne9wclvsHarR8PuZRiOu875mC6zixGkVe7OyyrsjpFUMCl+VMYeXKI8mnC/SMJOj/o3uUK+bZF+fPofnrjtrQzVMCHY/0zDEdb4Nk+hOuBO4zMiYr271kAp8vA2bkNnpMMAmFkpFYXiU8R0TM+7g+7CDfzWfYzdrdGmapBD+AQhJIaKhJBBpyYlII28yrnuyxfWts4P+6tPeK2DCX9+0lsdufaDaGP9G/ckwHXQzDGoAFybHKaLiQFoJzxbKNBqoBqljxRDhX7/JB/2cNup5mX0Sv24AT7SUN8ETZbBfEsGs7kPn4u6A1yVSDVw8CRP4hUeY8CdBvnjQlfep9dc88TvYb97VT9sGd6R2PrbERtdg5OAP6XM/OufCCRyCo9GlGYahQR6rQyjRo/CSJpSDWpAPpMHXB2AZBfj//JxSOCJ0FHrBgBbPTVpRBc5rMcBsUYBBHWsAGDGYW5v9xhW9N/GkNknf5uBh5+pSZ66dqzM6zNuwYR66x/f8acFxcWrv2u0VLwKrUhW3QyhCqExHyoa0XQjIB0B40oI7lTQ5Vb38JF2ZguuxmELg1HZ9F27AqK4DqZrTUAs3cI/CQoTQmyTjCUJvEn4TXW+SrhdJ15sssp4k/UaEniSbb6rnq1ADn2OI/O3mkX818Du8K3Di/bZVPPvMqUKVvxUxR4eoUHG7jVOeJbernCLaPK3/uf6nzxd7aQmY0xaa0wPFXoAEnUqiXISQIxtIRREJflJm+9n4oP6hk0eFaNwmvZhcBJFgOkonx/0tFirq+o85P8VjXpP0hjygZMGJ0ldvhgQgJ9sFr7UAEyM9AKKz3qkxDP8oZgwjrpfEgjfWYz6jFpp6umFIEf607X/Mn9LlfIzkT7d4c/nTBd7/86eEfS7JBTnpQ9r7L5JNXrL+kv9gHvwpXaaJB0+xyZvLU6zwLml/2slqS+uHM4+FZf48pfOzMac68OBP6YsEPKC0gBOlGSXpT+kx1OT+FOsxrP50gW6C387s5wT04cQPmc2zVO336eJEye6P3nFbr6SH8zAlSPDmmhLE6CD34o3MVomE3AhkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxlp73oxsZUQjF01HEiGqSBqZvufPsIkFm03osoU82KQDm02y9j7oNfHx54D9e3ft3zY4j3rO76cusgS5klkbhc2xOYqEifCOAhW6hAkqrRwXF4Ly3FwatnTdRcSj6OPtrCKi1CqlMhxGLHgx/8jnu840T7io1cPzsrUR0nGdepXd0OHiaTZPaNldI1dDAXDyaxtLVEkDlZCrBavoQOGfaIWWeHeQYcBdjoepq2kmIcscMRalm0oFlzoBB9pOLEidKK4QIlPHKhKC5TGUAGiFXw6H9U4LXi+PX++mSix4leqFM0c2lY6/2Cm3MgZiFzU8N6hV4E9Vjnwq1IBSy5IDEqKh7BYJb6ny8CLceilwCcvVlURJJnxCAKuoKmRKMdSCKhCItGq5LF73OyZMrLuH6KodzT4s01VAeVqqo/d/HuLyT5xLdd86kXG5k9ljTpdXNd/l0X84if0fdMT+zryFSWuB8cIkQjeXDJMI3VwyTCJ0c8kwidDNJXOhOeOd19t+8JXuv6nNnT+lxpYCuZBbr+Q5g55/CFkzpIx7GUnPAEZwhV4f2ZHoYrw8BFdvNkuaabl2uuiw0cq1/xBxlWs/y5SS4blce1cLh9pdN1+QLH9VdXXb8W7U3XnTlGv/JuIqfvvBNIIZ1JrTo0aNMkK59jMjG4pbHRsinVip05i/GlWjni43Vbn255zWuW8O1jFKufa/3v721vN0T8nctRcb7d/Q77hZlGu/ymmcs+ZgHIEpy7W3q+/7qUXp2KAZMzJy489Ezzarcu2/chpvjxkJBZm8XPvtge9LXw+qFbRy8bMzhy5IK5i4XPsmTsutMLnl4E0lVq79bfnt9SrmvvPbZj/xwYOHz1+ZRbl2LIdgLdd+VreBKGLLU/9L5drpZTFMXK7d14erXLuHj3HKtfcYc+fB9GdLAre+qOXzsP5Gb97LtdPFzXgoQS7x4SpB7uVTUuXaR91KXpA5PMN3Z57KstGhXd94L9dO9xE8YOXBiVUTn/+vyrX7sLmx/4nwF0mEn15NyGgi/Et8uET4f2H6Th5E+KN6un88pnALTW2kTjhWocdUHk+b8+wjoWb5Ih8uzfLZTB9ZEiL8lyteGCLY6SzdO/rp/EuTxCKTi/BP4kTlF+N6Q865g2EHf/gT4T+h2ZW48/2OkFUWz36f2P7xJrMR4ddymm6QaUxndBH+oDqi8F9SKgeutHv6T2fPh6YUbYALr5iXYVVRB17GaCL8E0Vfbrxwrhy46dP2nW3Vx6j91jQi/JM4wfnFx4gi/H/231EpoMoO8ez27zwH16l81QzkLCBCWk6EwJgm8jYxW94mFTk3+9HximjtvfrrLi15SxWgtcIO8SWqlCCiM3M2SxacPfO3SBT59xNaGABxtSopNg7kcLDKtSrGIC0HeoVF1qdlqh4UaNSX29dEKignBvjKxHDRhYavoLlUcJd9iqnnwaoa+Y8FrhJYoJOnfh+/9h92wm9pxNWtvn+IaXohRandRS82T3OMxS02D9D7CaJnL0bVIwYTq38MS6Eq4sM3Wh6rlqPzy2u2P2dNa7jAP+vS9wX+rx2pZX/LSrAbESek8Ou8y/6C93/vw/X+z0yeLOl6pgGJEnxkhSpaEcWhbVNXdEqq9ZkkyVzVqPuyWZNzqX2V/ABmX9W1lIQx7nIa47J5pD8CQ3Ys3IISVFoQvmRRcO3U0aMjmLKCmUW8i7B5x6g4lTraRdiio2aIWov9gs5Wf3M4O3DqutDA8ZN3H+1Z1X0hNa7BL4jQpigR9S/zm0rCWKc5jXXELEYO/CiDstWa+QvdCUnqgRqOERTaxSJA0viFdKZkUbOpns36FmeqXExz5DQnHDk86nmBoQvVQrrhk4FZKuHJObKtnhMyuo+/Fxq26P2cPKdZTexNOu2FALz0IQC4gQAAuhaDMlEylLGLTHj96+Juv2hawM4U6dQHdf2OmvSwLwTgAhcAkUd1iabkP8bHoRfmNhofZ4KYi48TLi5pPk7lWy2e96mRGDjvSJc0yzdLX5gBH2ecmGt3c7jYDEgFUVFRRuDjTK50bvTje6mBO+99nvHHsA9JZsHHSeS0Tow5WMcofJxjiVtP2U5aLllR79XF8M67bc2Cj9OX0zjh5mAcgSn5OPVT//py/Fkf/7m1a/z68lPIDLPi4/hzGq+TaYxnnnycO3vmPP39r8rehxY4HzpR7/sLE/NxWnFaztnklitRPs68Kyd/2O6LDljbeNeKClUGpJgFHwfLIVj5OMAREnmq9P8CH6fSieuh6VO8/SZ/vXtmv2TEAhPzcU6Jufg425kpbYnwccT9e5UOn/bWe9bkt8PabItfxTsfhz4354FjclLMxTE5KC4pPk5s5f6/lB0QFLrw1uZ3F1r6N+Gdj0P3ETxgtZ0Tq7XG9bmm5uP4srmxIUcUzRSh68V7Docpnz3u85a6U9I1CZ6d9FPLEuOYJ0wN2L5oJFFoEuHpMd1uToorfspUKIOaebHwG9Dz7nmdLi5f0lK0Idip6vR6uyuxPh9zJ6dgI6P/lY8ALiys4FEsRK+kn3vSs1fqPg3BpxkHT/vZiOE/2vnPuY5S/7TOudYRciUwmDw6APj1YeTHYWbFTenHZkqbh+mSal6/i7M9Hx3ZcipZQlPBQBuwKu7dETYTVMCbKIesiGDAOHzFl5IH/ZB8EZQ89M0OSrFYaQDwHTe8iRK5OSICdX821L+P376yupuFz+6+tlmrE0OoYQR1+rJCySOv94lN+uk9nk5sFnHccFnEqSPdIgFsFlk2Kz3pVeBnv3lDbDRZU1x+pq6J+kLyjJaZkbFOL/EbhBoQ9fF6l0kamPJitdriVMpoKMcIKYEx2N9h6bBWFqvRKwehH5EsG6yKGiyP1t2EenTmci5+Xd/daiepYBYEszSK1AdF1Yd0RMgvQYjgPA4hvwT/0eWXQsff6xSR+9J73NmdqZbvw67Q5ZfSemSPvpXY1z8zZ9mCp5nTOpHt5GHUIssz0b8YIc/EZmkrqB5AmBFprVunP39L6rktdM249otE3WQdi2Mt/nfDgF1nQLsuQqU8OWAIje9oksKTVrC+Y38NeIeE2HyHkf875mpGeHiFj0KoRLHZqppv/mgDCZE2SY1OXBfX2pt9NP6D776bO168+flLS06TlRPjn4TQOiYaSsJoIziNNsS4RiNdsEWwGHeo8JbRunGP2YYco2zJXgMJUfpakaCRqzHWHfgKisNE2ur0vO/h4QtHibfUSPUNuNmeMbzKhSRpZQOVOgELAW2zC36rBzNceRSq9VXEcMVl1FhOo/7ckaH1xVlAgejsclyfBQkeXSaFs6NbQE/HLNOBXeWdUepO+KUcEaLSfaIH1sWJkB7IFtK7ProfVk553m/pvsOlR+92oFY/rRARp4jRCmFdWWpYh/GKraa1XVhMDJyKyJRKovyqAhbOg+LdbmhBEVrBQbZHQORL+tLtQc9IgsIU3XxQxfBcpYLuHYrLI7PGqu+CsamBD4x80d4d0wW/JAnFU3c08O2uuXmIXuAF+YqFE+9pRdeLS7wHWGkgVpkiFPcDTPAVHQxjjeEWVGG9AolLdLVJYVt23PDO0Lj9rOifN5+xpByjHzDFHU/gzftzvjnoJWawnIz1QAP22KygzhCX9JS6VlTtyzOb+m49k/P6+6mKDtR+Ce82FvxBnPCLTAM/gyFW3ELd+IiAbGfwJkiL0CvuFtFTFHc1341wBTneiAAz0w0bEESACWILMKcXyoK/tavlN3Z1/XIvGo6g6opbYkWxIiTBTLoJW3jxodakIwpqCaPlMeDXaOHAlIKF21zAhBGn48N5JHEybZReE8hFXokPWt9K8d2ptNwz4+l2d/RzMxdmyRZ997BASiOoBP79gQxNAGNBFSn/xevspi+5+XlhPb9NPaZdqxD5eTLN5cK7Ebt42OXC4tHiO7Kya6/fEy1v+dMTaXTg4WLGoxwAkBACNA6V88FKbDmVpIYszttiAJH9wjFaoQbdF7Sj2Zmiyj8iR9nniQ9Xutb347CP1JrG5SXkzUx2Zn5TYYDtqitfuyRoqigt5PqkjP2BeTwANqAyF2CgR5kkjOFHYuDftBSw/Rh2ZswKsyUHjfHY94zRspOlgzK+JX9+cXXUSdPSGIFlllXhsox3VdNYBnl67wjP9Q37bht+8LBPJ+9M/8bdPy09EGqy+oZwlxpzKVtRE6cqHtgIIeJaMFtcE+6/vlv7+yzRmsgGNisSPKjlP8uGq7SMEztckyZ7/AYQ1chzY2r4zJBUKRum0KAnTt2uNGnQ71hfv+lVt58N+nu2L+oRENrT2HUDyogLBFK8tBEjPF0AMydBacPCUyT+frBmIfYgyDd7unf813qyfwLG9It4POF1Xlfqm+EfwXwz4nph/jb6/7V3JWAxtW14KCQhCkUYlRat9l2zttekhSiUlErUVyH7VEqLEkqbVqESZYkWLZaSPWT5rNkpS7bPzn/e0+SvmXNOTZ3TTPiu6/+u758z5zTnfp/3ud/nee73fR6IdTWmhxqnGEybkPamshaHvthkABEDaVaLQevWUhIiQaFGkvAIgc1IYOgR8Tk0b1p6v8QAhu/xx1kXdWOati0UpUK38U4l+NPmsOGeozhgY9cJCxsu8wEPEiNhtGX4PzZLwMZ/FZclnP1IXsj8/TVriM6bL2uMCt4o+0YO3Tqv6UKHCh7Cu9Cp/7g5rMwLrlwIUY6jb0mIv/ZDce8gVKysvBzrtzj9/9BYPvBL7oyFH0VEeBiDT5VTr3pPtIDj8hCHz66k6N2gQlvd9Q/SZ/WqG7+rbY6gra0eNTkzXZSGwBsxWrA1c3jDBI03ZpzOfhWuNFg33OtVl/KP6k3Thz3rjwgm1yuAWt6tZHj9DaDg7+Du5la/8ARiAHhSQdEAeGrLCmenIy1fraj1YKaq3Xjy8m2dHsbv4+2K2+RySyMgsCKdzyCR4pAoRhJEQK6MNpfNPPInaTIDCnX93eT6PLbvcaG5riW4lc1a0NUEbVSlYaECfCotWBvUjyLydr9HD7emrXhivGewn5jBm8Kmu3VE9ZDWAfWfNufjVkwsStvpxKL7bV9dM/bpw41tjU2gsWaDsa5AyvEEAT5wZAhBio1EalKXaTAShBwP2tgNMGg080ChxgUeS23E4dM6q/xjwYta1rZNW/IXrj1Shl2PEePMslZVZKwLfJ++VXxmuvHOp/Gy22Zsw2NAF2IOqCsDpcLVNiRHIiIpv3P6tLzVadTE8IgrR/eHT28ZkiN5kRzZLJIam6N1XD+XU4rVvEW2rpaQwQNJN0wk3RnctS0+zxvvXe+YIcrF8CXHXd0uyYVtNixcfrzzB/W+Q5opDtZDyOteLFS0VXFn4EpNjv9ALHlFaMHmxmFgUzQG/tDXetG4Qm+T6G+zh2otZ2o0rTeZLXVzI8O7A3mVLKIouMrBNzUcj+Ve35Xea6mnk72DY8s2wZ0zWbP3WoqYXsCLIprWCOdkzCJjo9/Ie4TN/6/xky/KAJgi6YZJUIhHzmLwoxvu+essKg/otyC3lVKYrjfP4QJlQ8qMTdce7qVivm7bzqXC2eGBgDgZoCWDtCIHHdiqMxnc0R4WWn0t6u2E7O0M+TaAGHLIF9rDPqHm8SW9cD+rKW6h6YbYegvOQ3n1Fg0XmoOthP1Jhv4vw+jA67rrYv3KwnGADTIjDNjs9jJQ6yrIGy7rz5KBAIP8GTzn4P199e+HrHj9rhR7KP0kK9VV7tTbpQnr8LS6tqYGNThmVUcl8XbuytGE0eM4NlZHDS3SxtSpKIkbUCLLaKSQgyXuhIcWpVD4bB3FRAkttCHMrbcx/4YWmKFF0rPMO6+mRTM33dn0epfqsIvCGlqA7S/OYKwR10/pkIfJixJ0qkQAocX470dTT9/cyUq8/XX/fqrtbAJDC50e287ssbxsED9kEPVdn9C+OAyo2DasAYUmbzuGFiKdixZ8/8k0jL4xMynMW1qNwNCiE0322N7E/frRcutfO+esSMMByXRMJD9tY7ZHaJHn4uv1zcfDKFPPoOeCwdJpwhRa1Glw/AdiaAEYGDI3DgOb4RtaAPolLrQ4cnF8YGLyWoMw5fdJh5+9fUVgKKENGdqNaCZKKOEBIRwUw1e1qAWhBL17Xq8bX2RNN5pWOTiPq8vBMXTA2aGZQeg8A+ggroHZ0DScEMNXoailocMO8372s8ZONd5y+BzbLv50d+EOFQBMkJlgwHQjhsnfGaX8hwrcHliAoYG2JsdsEEMDshaMFscxTUetVgtNJ7sfsxKnq/5nuHvIzNX9R16xw6epr6+V6YeKXT66Ge7B+kG0FcdxaGQns4tJQm9kZ72rAXJzoYec240JJeR1YF7HokEOQjWZuAbILYQecj2FLMXsa3nGYZ9prq9D/ej4QM69fMIBckokFuTsyAbILdEgF+quxtwJh0btGrlXRY3aNXLPl0btGrnHteVdjfVf+XiRhwRRU5c8qouf6jMLh8aLVmhjkrRq29VXzxbR0/eqfr9wcdRVBPJC3rKMfGZz/Td5E0ALHaHbG04hbVkG6L25rB3TRIGeaCx592mfML9uJvYeHpzdag0TD8cF3J4zh95NZUzW2y2yd3CKXnINDmcf6O+HJkwIDYQJTSfMyHIN5p09+xsmzAy0wen13fTUw3UaxhsTVG1neH6VaiooNQVLbpBBaLl0TNnS0Qs05IB30P7aEQ62BpLByflLltm7uSxw8V6BOCAKXTeaxJfvNvJ3OmxzOWTgKZRfwytv/XWJnyrDE2hmViOl4sgQ4drV8FQZsBa/EuCPwy1AHFFE9E7bhxkn7Zc1LgzZLnrq+JfBTTNXiK9V/2lz4TkBufHkJ2hFreQRMDR8LXilQR8FsotTvTm4eJFN0aKnWSL7J/7IzKPsLJ0xP3OF+BquVglgkHXd7BfyyskaX8N7xVutzgHEA3GbH7Qern7K4Ou80wHcgBjUTwtETE4d8swwos6mxKwMuXs3sLbpmT49OXeiwMJ1mQhkyM+xkOE2lc7NIKNKhXc+LrV3Iy/4/9WGY/jqKRXsJkARar7sH9B1TGyyae6taUd0zswpbHqISKO/x3uISOOLhFhQLaYFvWgop8xE89RT1qifPURdbLyraMvYIpXpTd9NDM6bm7ojbIwUQYFa0czRE+yBJ3P2E5GXOC6s1zKqmLIsydB/O6oiC321HWSuF03MNNjySnmpqvubz8i/BOFAJc6VFqIGynDkexBqGyHUqrlRS4Ywra7my0f3pHHeFN58hrz5M/WdQa+P6YwCN7ebRaMdq5seS0LlzZ5Sm2V9bp/WRvesDYqTABVtKi/rk4LUYFT4Ez5CTsLR08sRzLJV1DWIuHBXR7i03fD5cAja7vrPcRfMa3Ag+IQEgbUmDAFnOll31Oqk66DH/vqrJ1C3qqaMGetn7U14dRIYVqVmGUp1EuxKrlQv+1udxKxOjnmxcku3FQcogQ5u8e9Tds8X1uqkGTTWOWCsEUswMpBrldQs+/Oqk0F25LggD2PTop/zEs7M3LuOwOqkdPdu6spxSowo2Q37rJSPLsJhQD00sAYUmrztWJ28dSR05LqRavrFNWOuflv48A6B1cmod5aKhlNTdfe/fFb+n3KJGA5IaqtjIRmhVtYe1UmTpQrdU7JcGLljRFImTJ50Q5iqk2ArNuw/EGNEUASAzI3DwLM6kvDRa/8I15TLvkabrqR9GHzrqlU7Ch8jQGTdvwylWgnvbetXhrPwcevNtzNyH7gap58oZ5NyV94lUPiIs8PLgdCiALQQy3LV0CRObooWXsLHQ3l91PudWaOX+Nb4ZHVF5caOJXwEsEFmhAGbnXQZ0cLHlXFFCz3kUvSS5fcvv+39eZAQCR/BnirYrBCrm2wtGD2OY5vdUUOLhzdyynoNf2SY/cIweN4z8ceEhxaVkNWxd9FRQgtQwGQfpv8NLTBDC5MBd33OF7uZbtgpF2mUMSVcWEOLOjDWu+ko66c8sK0ki/7nhRblgTuGeC6zogQUdppSNveaCoGhxZY7viIRg4oNsyIvFJvb1/bHY0D3Yw7oYXo7hhYO83XvHzacrn/UP7z045hvZgSGFlcnsxcGeRzTT556R8ciyCIZDyQLMZEspbdHaGExdMD5Z0pnGSnPkm9OYkidEKbQgqTJ8R+IoQXIlUPmxmFgGzQGvhksH3FbxYgZU5X3KVOB2R9h2Q53cOYNLeCyJt3N3cvRy5u1xG3FL9NA7K7MiTfgg43IcLSxzN7TxdF7RX1Bur5/QMsiD/nlkpELnKtN04bt2Kh9qeIu2k9GiTTga3z0/mb/SwcvihBpREAhLvsRnZ/EurRZAwBejvaeDs5kJ093ZMvL/6//8G3HljFK1siZ6L/OPNCWZtvEur1KANJNOkpnAaAKZN+jowUYLTx5rVFLC+ygIy9TZ6hT3G2DAxkrht7coMfVWQWHFhY4hxkweI8wwXtO56tIMajexKAlr43eHLJD/QQFFmdjNgcRMm7f3XSRy5nhKFOK6zLuhwFrcExrNRI6+lqwafFVUNZmuNQjQJ7v6L3c0XEJgAU+ZM7F24vs4enu2hAvgPgMQhARMol+1zTuypxnJQ+8fmbBP4mUplbW8Cd4rezXFUKAeoQJ1PMGLrDtqNGY//yvpZUOL6klwSfE1yfnaBEejYH9FznT0Qo9APMc1t9CD3Y0NvPb5ZvyMiYmxWxVxqkTsk+ENRoDGrGI6WjZ7Aroap3ZH1joeZA7+sup23sNY1Z/OqTSQzWRwGisyxP/jIpiaUZs3Vm5i8deTsFhQM3MsAYUmrztGI290zv7n5rsCua+6253Fz+MDicwGvs++K2Zo5IkZYMyO11r0Eo1HJCUZGEh6WHaLoUe/dBbHv/4btKPmPRz+pyJiinCFI2B845g/4EYjYHzLyBz4zDwnN8oGjsR0VN6ctZcvT2Xfc68mz1iA4HRWB20VjYzLkOJxiqhaKzOkKfug1M0Nv+hUb+VXoap/5WZPz2fnIBjNIaz25NUZZK0AUiIAQUonUUYoZZ78I7GqkdR1xzpOsuEPahXzPCx468KezQGwINsCAM8M0Peog+u0Ri37xaiaCxCg2NaiEFGkBZsWgKIxtLDem1xEJtBL1T6Wdz3jcxVgUdjACjYjFCBgsyIwwVzO2o0VpjvtLjznCVG/k/t7Gy6JBYTHo1JgoMiytGiMdDB0rnsbzSGHY3FlVSFxmU4UYq/Dt4Q/83xmLBGY2BDunU52pLzEzhhovwPjMbUpv0c8iHhnFG4ZkXXQx9LvxAYjelp97ze5Yk6Lah3F/1Po2aycRjQvDKsAYUmbztGYyeer/r3xpsw3axH2V/nlClqExiNxQb9s1Nki4xBzri1y5SUdnbDAUkZTCQrTrZLNGbh5Ot/a54SPWTvT7tNyY+/CVM0Bm/1LkeLxkDlDDI3DgPP60iyO1/tKZ26mucaZ2UqXvG+4GDUjrI7Cpik+WiyOzaEeF4e3rI79cXrbOKX6JvkizloSWeXpBAou8PZ4dkBBstH04+BxmZi+YTI7nKNte/1uXbBKHvyc7sJnuMedizZHYANMiMM2JzzCJfdSTzeGLyuuoqeMkXC9fnXPtVCJLujaHLMClF2p60Fo8dxbHYdNbSYp7B59oKs3azDL2ZKb7ddepr4o8yB2PMGWmghCRTF1/+GFtihhW7x6a/vZ15k5hRvthJJ8HkhrKEFOFuy7jra+glsC0y+/geGFpXRL+UfZr5nJPv5DGOf2mZIYGgx4LZLX6+iQ3rh838MGXxF5zoOA2qGOaDQ5G3H0GIMLaxiVt12xsa5myUiZ46+S2Bo8Vjy+2HDmw6G20k0Gn1mp5c4IJlzDQtJu2vtElp4yYistFy+nBqy+E7uuJQKe2EKLcD+Eth/IB9lrgmbG4eB7X+jQg8tyuKxU2m2bvKtJVFr3kilEyy7M7uKVugBsrvkKoIKPVI71oyYLk+lRk/QclBVq1iOY6EHZ7cHlGOUq2i1CqAcq6tqt0LP3fz73wu/nTQ+wtyj79d5lYewF3oAeJANYYBnVkVwoYfbdwtRoQcom2DTQlWT1VUJotBD+ep/y/WVDSu4RkEtcbylhcALPQAo2IxQgYLMiMMF89G44EfAgTQpTVHaYVuZuF0eJjubvNVwupX5TCYZ/JtqaWXOJFvqG5gzyAwDXaY505QOXWGZ0Cya0oQ456/0oS/18nZfjBSrteip4vX38/9zenFu5BqHlt2MGFu26E7kU3RtxGwokRP0Nuaenju692GlVqDLY1AtvK05nyZ+JsNF6bA55WDkoz5mEeSW7sfuhGKM5OFMkqRcOYnkB+8J4JidQ0dNAmw4+M/96jXf9TfYWhebzjx6tl3UnuqDyjHUnlkDy/8mATCTAAOLq1iZGlf0sgJWDe8UMHuSsCYBgKRNEYw1qqTt28DyPy8JEPvQdq3KzW6mScyDUt8m6ksRmAR4HtFZb2+/d7r5e2ZNrn3u2QuHAa0aiDWg0ORtxyTA9FmJSv9ZjGb5Zk5nbzocUENgEuCLbbK71GxPg0MnXw3tp3/mHg5IrsdE0nZgeXskAbjpUZiSAEDtCfsPVLUnZG4cBl7QkeqLSZqbbaeNoumtzxHtVh4u87idj/WIkS7HONaDIl2Oc33Rm3rvsZPuMBpbmlRecvuftQTWF3F2eOB8igiAFur5FM5N0cKrvlhoPiWwXCnOOOT4++ckb4nOHau+CJ+GggmbjHQ50fXFkBFfLOVvlLOCZ15JqmVFaQhRfRHkL2GzQj3WA0KP49gcO2pocUpH01Rh12FmSu0sizEZbNF26Wf2XhEttAAntnsr/g0tsEOL4ykbFPrqOJhu6n33cbw821xYQwsQRr5QRFs/gaZNJxX/wNDCWUQnWknhECM89cezMDURfQJDi9GWcsyFNmYmft0T3/ctmk/HYUC3Yw4oNHnbMbS4370o5bTTVYO9n7pvuniyRxSBoYXl1sF7lHYtYu7xf/388eW6OhyQNMZEUlGxXUKL8ctssrT98imFsofPfZIsnSFMoQXoZwb7D9R+ZpC5cRjY6TeqL67wWPtzV5q4yf7yrh+SwhkGBG8ks1Qox9hI9k2eJ9LAp75oELJwV3zORwNf9h2jAJF5q3GsL+Ls9sBeKGMAEupeKEUF1AAD7/pi9o/F4vKPb7FSC0rSr+3cnCTs9UUAHmRDGOBVyfOGGbjWF7l9txDVF8H+KNi0UPdHQaYlgPriyKF2SQE9a3T3KWSPPz+/UlHg9UUAFGxGqEBBZsThgoWtqi8qcZeyLJh0lmmbC4wtfCxChbGFd6KUGFt4NyKXtexWRMPZLl2S07niOTX0WN5nLYPi3q2BmMesWnpfc66Ne59GG8uMpYpMUt2pMsj8GpcZndGsr/+DMEbfSRfpKWMflmRXLGc0bTRS/4oGpmZWlsidrdBNrPG9CHbU+DKKsTT+CpJFNL6OOOzcbapQ3423iUrji631GmgjBDZKsg8wSaQztEYj5NIq/yBR/0NZVpY8Q9S8F2hyM8IYNbmOMkhNvoPYT6rxFxCHKSr00mKzQBvT2BMDNCbmmh1Gf0GecWp6laA+f6gzDVpEmGUz61tv/RpH11bNNJn6FzFjGZhakk2tTGhM89ZNO9QHIYwv6ndRxhr1+0jjjvplRBuYuGxIRFm3GcyAZ2lKl0/XRLYMHB57QP8m3pM4R5lJuuEPDf6oxm52EdrgF+/aOC39e7ZhbukUy4pCr6a9QruawpmfpkONlZXTQu0d6OTmbu/tsmQhJ+SrTykhr9kPjh/26dbuW0aF6uMm+Qfnk5F+Em8nHM7nzU017vFsa1lAjUnK84PQ1qfxNspRNdVg9pLzZwo4adeV1PBPBIVjDm6t8umyCEbcOgeP/iQEb4D+ZRR3gH4Dks2ifxt5v4PHnvPpR2qpweMPZzylsYNbiBCPwWJ8tTkb5p4gbaQLM8hjJLMhG57a2GMsxtdjoAVguHgM84IrF0KU4+hbEuKv/VDcOwhXjzGhSnPmOOmhusHPPk11sCuuwMFjkLujeIx1NA3mi9fdG3qKLmkVZY/iXv/Dy32yJcvcwoBlSjZnWVItwX9QTfWMW7mGbsWfQJjYrXgKyoxvxZOQjLEVj0G0R26Taevw8Nhua56B90IjQp5JkuwBRQyZjd2Ge6uYZTRf79M6zmnN30Aw2tY8BsVqW/MoJLNtzXMQ7bbIPvXHp5BYysGy5a8OdNIqaPMY8Rhuqx7SnIfmdv9t5EMKZNjVXSAPndPYsD1a5YulTah6pkxLsoWVuS6V3kpvi/gQBNNE/B6K7SF+F7FEgfRFROu5UGsy0nBElOHuRJbkjPhJSc0DwWMeyN/C23NpqzBJdt8YJJJc4wH+p1Weqx/XL26db0J+CsIQI38RZYyRv4w0yMjfRBxl+0edSxdXxFLZivN8Ri4asaQFaPAMM8rXCKq1oJkB2MtVWscAHe8bmYEnmhlYBGbfVbEKpLFXT32Wd/O6L6JerenAY8nmVFEXvgsdodtdHBqUYC2TJnFjg7Oajntut3ERnAw6cXxiIC+Cga7putSXhv6yXq1yvGQkoiEbG5gyLcgWdKoxk18n3OwDEWZrs/egTNxm70MyqGZvQpbXWN0crx1EpsaYpMVlnFtkwB+IPAbV/B14O/PS4UwS5SxkSs6NZ7F3q5z5MMRfD/9uRv1L8OvYm38igtk0fxOK3TR/I5LhNH8XouVEUD5PGeVYa7h18MSYWQNeTuITSR7TacEtzXmp73eNXtBmrqGklEYzZWrnxbZ1Y5wStAg0hEzLvbFpLUUzLfJChcNBYcG0rSeyjGM/569qKtEwd3SzX4FMDy1UKElRyctdPB3JnuBJZHf4xyAfBcsFA8IP4UGf1Cy4x13dLsmFbTYsXH688wf1vkPaqnRQh9jXkgHEwiQSm2cntQZ0dUYDBSxrFQVocxuUroG5hSVXGbQtlMD3H0CY63w/A2Xq8/0cRDUEvw9BPiIxzk8qd6Wjnn+XJzd0itZ8bdug8Fgq/0/APfOhAALEMhIpqbFfWN4qyhnZordpCwXx/xcQzJT/h6DYKf8PQjJU/p+CaKl2Vhay/UulTHI2rzMatq52fBtHhsdUW/GI5rwwd8/qNlJcDmTKpaPKSOzUxqbsg2bKoVWFfcQLB7F8F35RXRoxsWdTrSVzyYJ64ZcX7+4MtJ1n8kwfb097B29474sj9AA42+8F4iDOdrSWqUB7KiXdUpd5St2j/aR/wOgz/6L9Ml4V6P+vtfQgVXDUVwLEXOlI+82ADNcumcGPCrTPr/1mjsvs3ZbaeyPv/qlw2S53fHsdK35pzy9vhx9sKsxr2x4z6wLfp28Vn5luvPNpvOy2Gdtw6PBeDRBC3AxEUYcR4kvFyIEIAsXTu95EECFy/1I60WJ6mX7snNglLxPEm+716GIB7uaFqP5jvCV4QHANY1CJpFkHG6LISQy+tIq96zH4NUkQEXhht+tHnHsXk5DH4j16FGiWN0FABLJ1nveHPyTi7aExxnj75JSG1d0KNG9TO8PUWFTrMz1qxzndFJbB7KY7d4wh99JyPzOM7ukINgrZk92gr/9Se3ovd+d4nJa5GfXBL6VWz+tMTTAOrTnzIHsC70/iVfuDT/lo41zNhmA7h+haIFCT/flyLZLgjzc7bWKGPrEVMelrGJapZufRXT+nqR4Nnh8ogt8mF5vzMuRoyQcPIi2MInoWLGWtYSnh0OyV7AuBZYaolQZexo/BLTTHAqsXDBb2/Ko9sqjv7SfXGJFqd7stvzyv6RGj3X9xCQ9QjS41B5NB6Nq4WxMe0TZdd8w6NHjNDBxggqwGA6bq9fw5Y4l6o3JcuNgRBSWNzdE6rp/LKcVq3iJbV0vItHSa4O+HtDg2koPERHbaMDQcP7TyN9oU4/9+2cpLTBGDkpUF8kPqxu0hcFOMhyqTRApmoGyKgQP5UL58Vss3xUS+ilH4KWbOiN2f7/X9clQEjptiuFcSbZyEERBIFAAS4r4OSZAOD+HxVURtillifNJj4dR83eS+g088OZvxQ9g3xQDwIBvCAI8Uxp8H43tTDDd1CdGmGHCkCGxaiHs9xLRh0xLAphj9g1r7bucMYURZ7xkbV7NW8L1uAVCwGaECBZkRhwtW/UZcYPgpMr7rsX2MqPQ3duHjurwlmAvIW7G4oDqKIC5wsJ4U01l1mknu0v82yvwriycXcMdUOLgzu61Y7iw5st24YE3ksJk9zZKYmXUq9tUL7gd2BC6AbAgDPHI0wVzAvT4XMi6ATQvVxUGmJQAuULoj5TzWM8yEPS/YTW7pks5CwQWwGaECBZkRhwtWd7xsqNvzkPyUXZamWV/mBHhP6ZVJYDYUnHksObAMJRsKWmDkyPB15nYLs6HrLXdXZJ6fpRfyvVCnWFT7Fo7ZUOnu3dSV45QYUbIb9lkpH13URpflAY7UlkVrvWKnBiNERDZ0vu+7+SZLB7NiFjP8qj1vrxBgNhQ+/B5ggJgPTIZmo5ksfydDtygbWmb94a3V9xmG8Vf0lj+SiK0TUDa0sn4WYLy9pEzDcc9rOlA2dAdTY13ChSza/iU9jOeaV+zFORsK9jGSVMpQsqHV4AxtJb5cS8uyoRcuOVVKb7Y0Cn4edT1LfRJR2dBri4aIdq3YZrK7dPzWpM26b9p6Rg5YGCmXoaT52JCXoSjzHOvf1mwoq+SAuvWdA6yI+XWsnTsefSMgG/q58NZ6nTwt4003CpU9bV+dwAEmyGowYCIp8eeMm8+GRr2zVDScmqq7/+Wz8v+US8QElg0Fnga2EcRsqJkWDA3HD639jSJgZcmJdpuODGBFX59sFx0l5ktgBJysAhGdAloLEtBsOEKeoBYkSerjROqy3pmEyFTflLHQWYBjBMy9kmhrvyAIpEoFtC4aoF+ktkK7tSDRz/26nbZ8oVHBovgexxOGhQh7BAzAg2wIA7y6YQS3IOGmLiGKgEEDV9i0EAO7CVqwaQkgAn46STmz4NkO3V1XJQ6dF7WaIfAIGAAFmxEqUJAZcbhg3W/EBQ8kfOga4acN9/Qo+zg0SXEvwVxAGorFBcmDCeKCUQ+tpusOdDQ8Mt1DbeOPxKE4cgF3TIWDO6seguXOKEPajQvsZA/ELlgkbrTj0/1LY4u2CP1xcQA8yIYwwCMNJpgLuNfnQsYFsGmhujjItATABT5ayxQfOM4zDbl++pVXkhVbKLgANiNUoCAz4nABG40LRqaZl9lkZ+imp/U+e3zth21NXY6ep/tSj6Y00KNhEtPcPRf8/3xh+CO6uxv0RuAjRej/wt9GGI4hVPJC8Fz4GGhPey8vZ3cPD0dPzt4Ir84GjIZ5xy0PhS514lzilnRBlzpzLnGrKKBLIpxL3EU1MQPGvCbwg9QL4uif3nTI9mCvHrSAj1ovXl90zEbAiXd3BtdAkhoGsn5MfDvkmHAnqRuNCXdiqdGYcMdyjcaEm9pbPiYlE3ueYJ3VMtzl9U2BElf5BYcx8et4VYNuJ69a+90ezcg8c6tsw4ctwwisGoCj5iSPolUNwEm6doVEVA1uDJxxT3KTEj1z9kdXJ9OQ8zhWDfS0e17v8kSdFtS7i/6nUTPZbaR2bUDeR9GqBmQ1GCEiqgYy2p20xEauMCxefO6eYjcttgCrBuAYUxgDxLy5nSaTlFNIQNXAW6rXqNPib2jJe6gzdny+wRRQ1QC8PTTGGG8vWdjAyv4dqGqgIXJg2grpPrTtMusvHj8aOgfnqgFblUkSO4FWNUiGQLU+TkDVYNO4L6X5eo9MQweE31c/tUeVoKrB+6fPk/v0v6R/1OdUxMok+bY2A06GwPp0HC0dToG8TPpx3KsGRk7OSp51EnrZK2jrnkW9iSWgajAylJZgtXIcY9MCqatdVmzdiwNM1pgwiR3Hu2oQG/TPTpEtMgY549YuU1La2U1gVQPgaWAbQawaSGrB0HD80PrfKFP0YXZ3hR/mxvTwYAkbmQDxRQRmiuxApugYWqYIbJgyKyUoUzRPYct8xmtH3TTm8v4nT+iMwTFTxL2SaOMkZIPSSilasoMEtjmUtlumqPfrtYsdDj9ibl4rtpNKCwoT9kwRAM8MEzxSKcGZIm7qEqJMEUmDY1qICZBPmrBpCSBTJDf/9qN02ZW0Q1VLLlmsf3ZX4JkiAJQZJlCQGXG4IOA34gKr6ca7v4i40TL2LxEJ3zn0K8FcEFSMxQU3igjigj02IflvxqwxyO49X8XTId0RRy7gjqlwcGc+xVjuTKW43bhA0sLLfku+pF7hscHdshVMX3UELoBsCAO8oCKCuYB7fS5kXACbFqqLg0xLAFww2c3v0YbUvrRN4+7NyHWbrCMUXACbESpQkBlxuCCwQ2aouROijTLU3EmMRhlq7rihUYaam0ZanqHu1HnppefbxUxjAlJGvF4W/ByHDPWGjpehtjF9Im7Lpurm3Bx9szraZyWBGWqwFf99v3KUDDXIzW3vx1evtxZmqB/JymV2n7XYZMN0275JDyNdhLeTNNhY/qIfWstf0BIZQoiIDPXd87QqZeu3psVDvxytrJ6XIcAMtZkmBwPEHC1Zi0k62Y+/jmQtylDPV7P7UjBXUS92ufKFk6cTrgsoQw3efjvm23v3a2gzFtSBMtST5t5/5BP2zGSzzdriS+soLT6+oKXldmjieMiWo2SoQbpNRpYv19KyDPXnqrN9LdzemuyVMT5VceXDW4Iy1E+GMxXGqYbq7r/Q/b1mqr1sG72MHQSWMwALMfVKgsIhiixPO8m2ZqglB1vsXeQ3jp79Jt5//fBnawnIUOeSjly6OdGCFeKql3/yx2oJHGCSwYSpToY/Z9x8hvqLbbK71GxPg0MnXw3tp3/mnsAy1MDTwDaCmKGu1IKh4fih4N8oK7FqlOn3Y+/zDQ/qr5nH2nFel8CsBFmVSXKTQWt9C0IBaRmCWt+OlDqanHR0Iq3glUHtNcZMcRyzEtwriTZOQgoE0gIZtO6tpdAUnSLTbq1v71QOWJH8OJAW2ilPYpXBY1dhz0oA8KQxwXsxgODWt9zUJURZiVINjmkhBtt5WrBpCSArId2vZ/Dls7X0wHPDJcRKHK4KPCtRqsExI1SgIDPicEHIb8QFMeF0H/eCESb5wU+nWDK2fiGYC7QHYHHBjf4EccGrF2U/nUfXmR4yefY9IeLTNDz3OHHFVDi4M5UBWO6MNKDduKDAJcLejNZfN2jtpwcHVA+rdAQugGwIA7yc/gRzAff6XMi4ADYtVBdHGiAILlD0tjSbefStaVhi+odEa51FQsEFsBmhAgWZEYcLQjtkhpo7IdooQ82dxGiUoeaOGxplqLlppOUZavl0PbVxhbl6+/xmXrqy/8VAHDLUG9HGZMbp7FfhSoN1w71edSn/qN6p6eS08PZ0tF9M1nVx8+ZuRQnouTPKJBhefwNvQx7YPZO94Ke2rBvPtXW7vc9LvDHIserjTFL/Jxvj9/E6jyaX+cjFylhClh4HWTqbJ6UEzYMYi/KeZsAlOEJPbWhD25UzoOIG4BWbjDP4Xzf4Y4MFDdbmkT9JkxlQqOvvJtfnsX2PCw3XG0xu1oKK8E4l3RkFrwaY9FSTqmy43hnleg8W7J14WEKs/vP//2HuG+t/L/w64CtYLYmlDZYscPSBZxLIDNaPIuKg7Tof9nxcmaFeYM0SxT0KRmpN0xngbt50Bvxpc+S4YmJR2k4nFt1v++qasU8fbmxr5ww1JkkSjHUFUtb1BnT1mUW5gHsO/3LU/x+oBiNBWN+gjd0Ag0YzjwytcFzgsdRGHD6JrrcVJJwXU7M2BxqtFXn8tJvJUm/7+W6Ov0alKR1xZpk2z5h20uYZ0E5cA/qum0Xk9h4MvfUULflYiSMsHAa01AJrQKHJ2wjJzrghORIRybE/PlH3FogxEr4q9Hhx0rlHy5AcyYvkyGaRpOge1FKmJ7IS++v75PRWaKssBCDpgYmkvkU5x+v88h58tuHpXe+YHRdg+ZLh47ubVTx9yiyeVRhX0+OYOTaEXesh5HUvFiraqvhnSzU5/qMUAsmDp26nCZsbh4HDOioDT7kSeqHv9U6MaIaPV8WxxXsIZ+BqFSbJ2xaNgUFHhPc2fxkYm4Gnddv+ZvPq+4xM96QeG76GdhNWBiaBZLgtmpupgK4ybP9ABo4S/1Cu8mKZYVpNklJYl7QgAhl4SYzXwG5hEpTNNrfyE8cUxuAwoHKYAwpN3nZk4KIp78o1snayoislgjXVAqwIZGBHo/knI+amUCKCJ+lvLZnTHQckz9lgIZlm0y4MrJatslztah+DQ7WH9T/QZksLEwOD3new/0BkYLD7FTI3DgOH/0Y56i1efUTWyPc1yq5TlKDI0ojsSgA0rmI2aDlqOwjinNkE5ahv7KNP6ewbphe6ybsr9aDrQRxz1Di7PfiAGhu0NCt5BJN0Y3a75ajnjVmkFHmwHyvf+b2Ij8iug8KeowbgQTaEAV7QbIJz1Ny+W4hy1GQNjmkhpl5ltGDTEkCOOiFwvXqml51uRrjfYyXvlDKB56gBULAZoQIFmRGHCzZ1PMVut+69jvbc5mRaIhmudM314gq0X4aDYhdIoCxN0RS7AOdvJkQodl9P3J5oPNabkvvh1BCa8ToNHBW7OCea2BBCxqZoil0PNRghIhS7Z54q6qzTolCCEgK3bnbU5CrbtqtiFxwbDGOAqFkFfesUTQlQ7MrQVmem7lNjBf6z6Y1UmmmpgBS71fWzAOPtq0wavE1EB1LsGs28MmSliTRlw0uWd/6h44dwVuzmAOmWOZpitxKC7dF0AhS7pQ++VZ5QNGAlXjq6feX9iyUEKXZXXb8plu3MpiXGnTvo0OfNmjZ6GbBzYow5mhTVA1p6S5jjrthNunYtJeikhHFiuBu7T5yFNwGK3V2R02ZMdpVl+jrIffyqcZ6OA0yQ1WDAdHQ63opd7nS7wBS7EVocG0FU7FK0YWg4fmjzbxQBG4/zz92VucogN5aU/WS391QCI2BtVYjKpqNFwKAxxzkzgiLgZ1vF3oqndDXxLXK//KNLPJ4nUXOvJNraqRgk/qajBXHwHjCzdouAVQ5J3dwT3Ysecuk7/czMp+uEPQIG4EE2hAFemhnBETA3dQlRBAyafsCmhRjYVWjBpiWACPjsvI8x8bXD9ItsnH5u3n9+vMAj4EoNjhmhAgWZEYcLtvxGXCAre3fss14LDQ7LnKG83DW2N4FcAGZqHguNC7TBQXMsgriAdqr/6qXLqxjRg8aqjZjd/yee5wtxxVRt7dMEgZTDQnNnQGEVxGo/Lqj2OPW8X7heyucBvR+z9uULOxcA8OwwwZvAIpgLuNfnQsQFdRoc00J0cc+0YNMSABcMv6wzr6TqLjXwfoWEQnD4DoFzQZ0Gx4xQgYLMiMMFWzukYpc7IdpIscudxGik2OWOGxopdrlppOWK3YlS3U/3rDnKijsS7rnh66gMBJz4VexGdlS9kGhVlyrpxH6U0OOfT9QkVpYTrhcCff8+rUfTC4E1Ud76v3ohbL1QhtQo8Z7nXIx35r1dez1zCNc+feHRC4G2Yu/Xo4ki9NWZpOr1f6BeSHyUddKNl7N1t7xdNethzIlYAvVCNeuUYpTH3DQInuNtnh22uM1HUUIDeg5zQKHJ2456oYSxBp8MDtWaJC32dZjtPdiZQL2Qm0iuxVzZRP3UEWXetno/1XBAMg0TyYj17aIX6u0ywjKs+0t61MCQ4NlzV0sIk14oQpPjPxD1QqBvH2RuHAaO6qgM/Hib1Y1Xx38a+V7ud1A7YVQx4QwMguItwWgMXAoZpnnwXwbGZmDVSz4OJZvUdA93W2txiLX7iLAyMAhPw4PR3MwEKDxdGfwHMvB/J3v0yvQ+Td/9/sezLrWJVQQy8KpTfUf2/HrR2G/wXI8eG1a39fAxMKBOmAMKTd52ZOBP0b2tvbttpfq/WXPe3lRqAYEMnBJ1yc1IZZ3JBk/bCRPDKKk4IDkNE8kRwe3CwDUqinLnpJ6bxBvG2q+aOG2tMDEwaNYH+w9EBgb9syBz4zDwtt8oR32iJDVv2WY1Znh/7XcaStI6BOao61SYpNtBaDlqIIrOCSIoR63i023O/LMjdDMuJ7za/L42DcccNc5uTxIcjBCElmaNgCbryaB2y1Gzh8R5Fm61Zx5IsLszXm58oLDnqAF4OZjgbQ8iOEfN7buFKEcNjjSFTQsx9RqkBZuWAHLU/T8P/O/gEBnqvnXzl/6rvjhO4DlqAFQOJlCQGXG4ILrjKXZFQ8dcTOzyip5bXCSeun+pJMFn7Pb3wzpjt8aXCMVu9Huqw3SKNvPgMsupokM+ueGo2MU50QQKZ339sM7YhRAiQrGrWeI40GJcnemO/3ppl6ytbWqf7X/GLowB6imzP3wJUOz+fDA0N8O11rjkore8WN87/gI8YxcaY4y3v+bb4G1iOpBid+PrhBuiTjIm4YWyQ8Ml99rgrNgFDRLF16MpdikQbHf9CVDsPv5+5VpQzW5G6qwZX5zZ76YTpNj9NvOV48Bz/5qE9D8yeWevmEdtPW4LAqvrejQpajW09H7rj7tiV9S6SEbjxEhW3mrGmbzgUU13huCj2D3/uet/omaDmXseloqqpV6NxQEmyGowYDrjj7dilzvdLjDFLkmbYyOIit0cbRgajh+K/Y0i4D7uj+W9Ml4Y+94/ZfaMXq1KYAQMugyu9UeLgNkgycCfz2p5BDxGTNfPetYQ44iHQUfcUsfewTEC5l5JtLXlPQTSSn+0IA5MUSdeX0VUBGwjH7jbTKWzQaTUTQWlzB2XhD0CBuCZY4I3jU8PxncEzE1dQhQBUzQ5poUY2E3Qhk1LABHwvxKbX1wX/9dkLztkaP4x/TsCj4ABUOaYQE37xQVxvxEXVP+0e5GUMpQWfO7NpUitM4MI5AIwUyv80LgAdDHe7kcQFzyK15eT321umGq45/mQd+SJOHIBd0zVRndWDYF00g/NnQGFVY5fu3HB0RSH4ird3ZSklOqNTiL3o4WdCwB42zHBC/IjmAu41+dCxAWgCwtsWoguzlobNi0BcMGtiVuZsUfv6RUEzP3S2/D2bYFzAQBqOyZQkBlxuCC+o2pT3k2LnjXx7haTzLIuAXc++s8lXJsCMqOrk9G0KaDeOCX5rzYFW5uSEHMzZG6KC3XPk7quZl91mzpkIdKmgByvTzJaAT4PcsQLkv9AbcpD1RHLu1p904tfm1EZ8b54KYHaFG/5h66z5WX1ksTMd8lTCkpwGFAzzAGFJm87alOmWYzdZuV62ijthpVy6bp7TAK1KeTXuYHdlS4Z7z7QdfOIUwVtPc8VIKmCiaR0crtoU1b9Z5678soW/TyNf9deevfeRZi0KSRNjv9A1KaUasLmxmHg7R2VgbP+CX3Te4m10cZUySmOAwputAsDh6RhMbBh2l8GxmZgvT3XMk5dITGPjntpo3XsRxdhZuDANCw345n2BzJweM+RHk7ecXqH4lc/H/pzvxmBDDw6/pXUTPFg3a0l9gudgibJ4DCgczEHFJq87cjAe43PPiYf7klPv0bqOnv+6U4EMrBvZmfnW7L7TQIfjtd/s/XIZhyQHIeJpHxauzBw7ptbN672jKZu0eluYT55XoqwMTDsP1AZGDI3DgMn/Eb50JB5Oodic8OMNz25+vmsXbYUgflQcLx61Q60fGipOpOUvoOgfKjT2747P2rcpEVpRF48bvwhBMd8KM5uDxy+XLkDLaUHTv87uqPd8qFxQW7jpHfb0g+UvVbU3fCou7DnQwF46ZjgRe4gOB/K7buFKB8Kqs+waSGm+Xy0YNMSQD60srayMndbbwY7SPqtRMqkdIHnQwFQ6ZhAQWbE4YLEjqcOPaxS7PrRQI2yUVxnjUoJYzraL8NBHZoMTbm4BDR1KOhptSSBCHXo8qnHNsmJvdIPc71v86zLzqZ7HtqmDsU50QQaIW5LQFOH5qjBCBGhDh15akWPrJoYauaLpB4/KPsfCFAdCrrZwBgg6iProKt+CQSoQ3UPLLO98P603vbj9y+fkZAcLSB1KHj7JZhvPzuhwdskdSB16NjzX7se3fNBN6qw2vUta6E4709qkzpUEpo44Ulo6lBtCLb5SQSoQxVHbNgkulPZNOlV2u2J1XODCVKHbh95NzZ6C5Oan/LSKctPr18bvYw2yIQlockeKyEvsywJd3XorTnBe6i1cxh59zSrfXz2PSVAHerd480k86+JelH7LCde6Na1rZ1PAEzzMWEyTcJbHcqdbheYOhR4GthGENWhyVowNBw/lPwbRcDh3wvczq+20E8dfSvgjui/KwiOgDsnYUXA1xIJioCtMuzXrxlz3yBL3WzT9ewnoThGwNwrCRyCuB+JWEFcTWK7RcBBS5dY3BnKNCraIRZqIek0uSNEwNcwwTueSHAEzE1dQhYBw6aFGtjVJAoiAhZLdhunXbmNHjV97KhTLol0oYiAr2ECBZkRhwtSfiMu6LQ8dKxo6TBKfFonqa1LTTUI5gLjRCwuIBPFBZsuF6qM0plNKXyyQ3KudcBQHLmAO6bCwZ3pY7qzMe3HBSKrXI906bpeL7iPuOwQzaEvOgIXkDHBkyCaC7jX50LGBfqYLm6MQLggt+sWtu2/sQy2+IgjigeywoSCC8iYQEn84oLUjqpNUSDfiWffm03LT6VFFse7H8L4ffhoUzymMEmjCtC0KdXTmKS3+X+1KdjalMzeRdLPu+kyDpx/kyA/rfKjsGpTIqCx1ixAK8BbT2WSBhb8gdqUjEF6ZkaWkyhhzkcnqA8fSKQ25d2ciuWBPnXMrFEjNnUx0xiFw4B2xRxQaPK2ozblOVnpslZJKo0doVU5mKx9jEBtygjpr6YHJn5j7PI5cMnXijYQByTv5mMheSa/XbQpNv+Md3wkelg/ICas56qJDDVh0qYk63D8B6I2xY4CmxuHgXd0VAauS59PPl2ymRYYuX+NTvn9eMIZuBrC7UcRGgOb0Zmk4qK/DIzNwP3KFqi4kvVMDtI82eW91wYKKwOTqEzSlyI0N1MBXX1S9AcycP5lC3M1ZWndRJvk+8Xag2wJZODHvR/J+66aTdt4vGtC6gHztjb9AgN6GXNAocnbjgzcy3Ks89qAKfoHdkqsvyT2YBKBDJxhrW5c4z+Psv3bh+sMjwM3cEAyExPJbUXtwsAPZisr/UhNY/kfo7qtOtf7qzAxsCSD4z8QGbiSAZsbh4HTfqN8KMO0i5RtiSgr3atqHWtyYBWRZ4dCIa9+EerZoTQmSa6IoHzo/BMh4yJEU+jho24XyDjd1cAxH4qz25OEVoKMItTjL6EVjXZRu+VDjw2xXRxA1qSFvNfIXxNQFirs+VAAnhwmeGJFBOdDuX23EOVDI+gc00I+EpMJm5YA8qHF6q4J1f9+0d0gX3Vx3spvcgLPhwKg5DCBEvvFBTs7njqUXGs79srYr4ZFirPer57mvJFAdSgFCv7NjqCpQ0nQdFU8QoQ6dO2iTnWX1qroxieVj46IkFPBUR2Kc6LJDkLI+AiaOtRsKowQEepQixvfOolGiNJ2FHx4dDdxOUOA6tBSHQ4GiPpI4LYnHCFAHWoftXpS4I8xrN2bz5y/80DZVkDq0NL6WYDx9pJHGrzNrg6kDq1NSaub5FJhkH3roUNNr5qdOKtDcyZDbJaPpg6thECVySdAHTq3bvDIDZFnqRmqJ47dO1CgTpA69ETGrtKMoOfMLYdYPVRmrmO1tY09BBYlH0326AF5GfV83NWhjkM9k7zoakb5garz+pkbjSNAHdq5/3BHsfuirAOLj96TpmtG4wCTDCZMovl4q0O50+0CU4cCTwPbCKI6lEKFoeH4od2/UQQckqWt/DI8i5YW3++CpM3mOAIjYPYkJikvDy0CtoPi4415BEXArnetVNe9nmwclqdRq3Za4yCOETD3SqKNkzAZAulQHloQR4bWS8l57RYBr18ec6VyrKduZIJcrbP2MTdhj4ABeBsxwfPJIzgC5qYuIYqAyToc00IM7GSosGkJQhF0wn+6N1OdFbOlWxV1eflVgUfAAKiNmEBBZsThgvTfiAuGVPk/GHx3J6Noy9C8R2/+cSSYCzpjcsE1/kLjlnNBsMh6tsv+XkbpqU6xH4bHrMCRC7hjKhzc2Y8jWO6s5ki7cYH3i8DQ9LNfjENq9839YD28piNwwTVM8I7zmVrgmwu41+dCxgWwaaG6uBo+kw74cEHKuHsHn8yYwQzw+6H9Onr+MaHggmuYQEFm9D8=
+ 7H0HXBNZ13dQBAQpVnRRDFZUBOxiJSShhqKgYieQANGQxCQIWLFTLNgRG/Yu2LuiYlsb9l7XgrquuJZFV+W7dzITMpOZIXkIkOf9HvenC3MyNzP/c+4p9557jgVHGhUfJ5QoS8AfEwaDUQP8tZGJ42NEkpFjhXKFSCqBpBBwGZLhH3P4Eew+XyFfIJTDj9RAyZYYyY8DL9cEl0a5i/p72Y7zT+m8K33xt/pHzUPkwrEiYQKkWwK6WWgsGEVgi14OFCpiw5JkQkiujn6xNUoLksrj+GJIaQGurlmzpgS7K1QoFkYphQKMJhKJSupxhNEiiUgJ3iJELpUJ5UqRUIENC/+acvhK5HsswC97nsWlzZ/1wMKKI1REyUUyJfry8BEZpkH8OCH22/vq4b4+rq7P9y17uyoV/Pt8aQ7499nSXc+W7kV+QH7duwH+O38u8m/Gs/mL1Z8syAyCPy+cDkdYAm95vmK9+udnixY+W7RY/bFnS7eoR1N9TDXI26V74PVlU3Bfjd2LPhJK3YJ/vJWl35uWhXx4Nt3PWVvVA6L/oldo70J+Rt8I+UaNB9iifjb0ObHHLv0MQlW9I/qlyLujqCIjoPhg92ojqUIYRVv1RRgjUL6go+HYh8KLcNbV1cc3vGZ/IGFwKiiwaQL/WGNX2dJ41QSqjk0BIGyjgDCi8lMNvWwWxpfHCJFPOoJf7YvBpCkqKTEdIpXGYTPot+8D+tYYCMQZ91U14RWtr6nZP0rG4ydJ45Wan7X0kUvjZVofruXjy+KJIuV8OToFTNCZVQP3UXjFXPW5JOSZ0dvtWAqFMC5SnOQdLxZrTgVWSHx0tFAeLVLEujAHqjRG706u7vA/FyY7XqyMlwt7S4TxSjlf7MIMiY8Ui6IChElh0tFCSW8JGM0WG3pgqb6BI5ujo5ix4pWxUjl22TpQFBXLF4qZIfIkqbyanwDTMmsKVzYe2WEgL8dsnuhXoeU43Iy1LH1Mc4rvqV2qLIIjIfvUMG0BHLRSXcOBBa+bqa5DjKqh+Jn6DCjVfR3W9z8zNGeL9+b1thdPTfqyBPdUNRBe1WRLJUq+SKLSo23QUcy8pHJUtWKMMWNLxdJ4Oabh4P/JdJUjixkDx2VKo5k+cr5CESuVAd3HlKreqpofB5Ee8Hdh/7cTBn+OCUpze+f6/U38EkAyQUklEfdvPXnUImBRv10jMy/9bglI1VCSfPwvl0J3K07O7zl/OuQG1Aek6ijpuVMPfp5rOm/b2m0d3gttnQHJFCXtOsca+92hoe+JV0/ndbdzegxINVDSp1vPD66tW8jLfvV6+PTwbW8AyQwlrT7aqd6tn7V8jplUOzjJMfM7IJmjJFkOb9U22x7c5AZzWX4tJyUAkgVKmvr1KMPmuGlw7tHuJtcO+KwHpJooKeX0mQEn/rDmbZ/+fH73N8XtAMkSJUn2t3979s1O7tan2yI8nA99AyQrlFT9yOhbNTx+eWa/X/B0t9vgW4BUCyWlTWr54/3tSO/F1iHvP4c4DAEka5SU+KWBUztZZsC6Senmy4tTBwGSDUr68bxFj8vvu/gf8AhtP2ZNxGdAskVJPw+zVg5ZvI6TVbPk2rp70y0AyQ4lNW268uKczs985686n7/b5/tCQKqNkpYFvOPlbevOW7C/XeNVQ/q5AFIdlPR+Xa3GuY/tgndH9BM8cmiWD0h1UZJTzZPt3AM+sg6G/cibX6NBd0Cqh5J+GyZbWafbB7/Fpoesxtj4LQWk+ijp8dvPm+ZMb+C78+ToF3bbl28BpAYoqbA19+y/GX3ZR5az3KImfn0GSPYoafKcTIvzH356p7jcyPl9w5RYQGqIkqLrh34zmTnBe5bJAbnEKSAFkBqhpODMg1MTqwex1o6MqfPOYvq/gPQbSjoX36nz35OSA48+3nDvlkXSFEByQElXui5MWHCqwD+3zqYjzLNT2gJSY5SUOePmge8r41g7PjrZCCRZUKKaYNMhXzSzjn0mN+NvbsdTvN7vAMkRJfW63vTmwlUnWBsmbJ8aN3r8VkBqir3X482DN83oEjwl+vVDBmNRJCAxUdIqUdyivetcuRtqZN09+mvgfkByQkkRA0IbNcirG5g7f3KA0+R33Sz8OCNxyqUZVNp+EoWSL4kS+sSL1HpumvxqjXsnqvme2B8452ke35REo1gEiaJGa15mWLKUSrkoMl6pUv6oVse0l4nBtFdwJWqvTmEHl/7wu8Pe3PdNN9aB60oN7SXb2yTHzDyOm3PHpUvq1LfDNLTXtpwrO6e+fxKwO9Iu4r11XzsN7TVlQNCX8xsTvbdIU31TvJJOaWivF38eWv3Rx88rtV2beQxf5gsN7bUn5+Qv332DeXMc04suLs2z1dBeA8Ian3McVMJadrpzds2wn581tFdYr0ZxM1u8C04PMvk8zTrgu4b2muijlI7a0MHnSLUb05/UOvFJQ3stbxfk6P3viKBdiuXLN7WdsktDe33PTORs9WP47G6Q3vv1tAF/a2ivhSnczgUO473X9ljHfZW/p7mG9iqaXLv21ZmBvst9m+4Na9/mq4b2sgzs+vXayma+Of53+45ocfOyhvYqCPk7t/3rQO6W5msdrTsoXDW0V1q7dUkOITyfjKQsh93X+x/W0F4HluWbO5jLeRsH3XY0v5U/WEN7tdl7//zHL+8CZq/56BY6yH6Rhvaq1nv3gnGHJgUv+adn744pJTc1tNepP0P+/s22bcAyl5UrLTd579DQXl9yBnpb5ngGHGruVjumf98dGtrrwUim6PCt/r4rnG70vz3yyGoN7ZU2ilU8+9Jqv11Jn+pmvwhM1NBejD9iuoXsK/LKaPHxw/DZve5oaC9G6ODXeTfX+e++0ehQjfT7dTS0V/+uvTPrhrZj7R2W6u887/10De01q1GCQ9aeSwHp4/n2+X+OYmpor4HxI9md8pMC9pj3zq33Wd5cQ3vxrjQ8u/Jgbe9VeZOj6+/pWKKhvT53WMj1+Fjku4edffjm8BZxGtqrxl+p8azBab4p/VhDL0t9PTW01/ZPwRu7Fbfg7LPc9ffJKQvlGtqr+dff//R0Oumzwmw7c0a4aV0N7eXR9ijPjd3Ne9c5v66s0bvnAVIzlDTau8MAsz2rvaZYz5g96dEF6B00xx4+bPqwbStMvZdFft1of2RcX0BqgZKOOX1YEjGrIWvmuUV3e+88dgKQWqKkZOeMrc0d53sdaXM4bOmQZw0BqRVKmsTbN+Rc3GbvA3Hdls8d1NQekFqjpPYPmMsExb256d1W2vcYpIDf5Yw94aDrNsvHtvHP2mTX6k1+3zRAaoOSFtcuCeoqmBC48l2zTw8Ugf0AqS1KWtc+d+Fd11TPOcywmSH58+4DUjuU5Liu9+8X42K9967beW8lowsbkFxQ0haTfi3O80LZM69njTTvZXUBkNqjpLML7Mz6fHwSuHH9yqdBl48dAyRXbOrNXHu2lvUH/439XO3C/Zs5AJIbSvq3UZf1IzqGex5b888fvAsuUkByR0n/FL/YdLlxke/MPpJrGc2ujwekDijpd5fTDS5Wnxt4IvWL0zuLOssBqSNK2jCjm8uqofe8djsq7X53vAltbyeU9GrcgamPLiv8t/Ps/c4LxnkBUmeUtKKH7GnX+0nee8UWB+a92u0GSF0wzXazVbMRp4f5zK29+2LA1wXegNQVJSmqxdsHNbHzX7Dr865Rnw70AqRuKOl5J9O6NR8dCZy7etEo52DfroDUHRPs/o0iuIHN2at4do9f154zFZA8MAFYLLjS9OAF35QjJ1fOX53kD0g9UFLD73endbC28U8/ENvr9xOmUFX2xCZs//03HEKtg2ZFe40qmTIBvnIvlGR6eYsjd1o6d9ur/es+rF2fAUi9McPx+95PvTk9fTZV39FkjU/2W0Dqg02HsY4ZZ8wHcmcUrm91/cJbqL76YgKQGhIcMjPMc3aPiQHZafHRgOSJGY5uTsUPNj0IOOLStce01ENQA7AwBSvbdnnzgXes1G77t7z2Sk4FJC+UdNX6hKTT50esnIWhro9MukBzw8a0zeEbV9JaZ7EXrFx++1eLHVBsOCip+03XQV3rNfVOLSzuHRVx/DwgcbGpx1/7qzhtmeeeMwl/7TZxgxrbGyXFDrjfzT2FycoMXJ+15dJoP0DyQUkZnt96dRS+81/YxCNzsP37Hlr+iy+Dwn+Zsel1OKvVBd8pb87NtrSdaGMA/wXadlL/5fjG2X02/8zx35fXK+z8EUUd3HeZBcXHRQrleAfGHB2KzDVxQz+pYPKZUVKxWBXiQ0clWizlK0WSGKZMKpIomRJkYAXp6xO9FrJH0np/7How8jyqBTAk4DcLBS5VlJCBcmXTs2WNJt7rHnTo6qTYwHYFM6xUZK0QnwCneoXCC3xQgFyCOpuR247LcE8BguILpC+PVSNENFaKjAOtB8OzPXfM4hSuTQiMpxVKoUTJ4Sv59GsLZl5yAEgsQ4Nh2h8yDeErY7FXrz7efaKpn1IYx2CUrkGaqRCGn8FWKKBIouJQnUocjgk3bpX8vMib43Jmj7u8znAc9jXZ8fKxfLhcgZcI6OeZUUhET+5YvjierxQylbFCZhQ2ABQJPvKrkMlXgh8VMmGUKFokFDBlfDn4TqVQ7mrmKxIIhBI1XqTSQnRkKZ5YS2BKSTqyOqQNl5EXD1j9HbA62YvA6pD2gJrAtUKefqRIIotHVjzMUZDJoKnNRl5fKWUKUYxIX3DChzdt/1y01m/2UKuOA9Z+noLXBsgYWi+HXi5rMhDd+XJOBhlA6Gk8OhmKiJOBAaZKwVgcQiZlINQyBJMFJtAiKmkRSOOA4JWJ2oLE5jm9A3oF7Lh1+7B9ZhM5XizU42qLRSmpLPR+DZovLqyV5T2rerJrr4Gz9hoAPSBBNOjlJnJrqdCTxitRATOjga9+CKJr1dCBiTZeOZEULoehCx8u6RDiuc/22W/etwaH4oUMGUdbyFSXtWAiw4GhOw52rqgU9QI4ZBNxSHHjMpLH4nEwKQMHe/VUZ44Fyk8qp0NC8NzCjMdO563x69N9/ceCd/rrkwpBhJlAhwiQGxwi1XRHJEokjxLTysbFQXdKfDeeDNzKF/+VX++5p5EgEpFIhwgjiYvaOrhAQWrrXF9HOv2QFwcsGnzzrtvmrfVw71WLIxorEgiZiCLVNnfmFMC2QW/DbBuYIEBRjYnni5lioSRGGctUCGPg3p9CJ+NGXIqhfkQt9HFUHWGNACqIOR6A95XMxOW5AOpEvUycrdrECZCnIX3JvivjZ917Vct3+qzjW+f65f8yXgOXDPDxhPgwycQury1QXONJDRyVv1xH5bVCbwiTC1KIChJrR7RqpAxaafnqco9xszYRIIKvQwIRcrksiIgxlgEgSp5ABxEQoSp2iOFNTMgRDU5hGpOKU/ahMrFIqeYS1JejRZLRFBHM751MV41v6ndkzvfXDcakDcazKwDep80u1WVDa0rIj7yJdPyImFQl/DCPlErFQr5aATK0XBtMsZixoqKECoXm8KS6Bio8uG2pCjHJObPyId9s853HrLWdarzkCvyP42NLxKHRZg123eC8aY+qk2FkvOnuhqgTLU9HT1iahfElMYCxqOuDSK5AB6T2NRZuXhWQzpoWeCdl8WH/ZzikLNBBtbEqpVQEWohmoUQLaBYtL0hPtJqXRhwwuhDqDBcxGCDsrWOjagOmSasIyJDJTwkZmPyom1SDQeEmrR6/5NZfhaPZm3e0+XnlasdbJOYZ7x9Z0ODbmnKBCAiNUC6KUvlNunlHROtuQMeBuKJaTquYB2PfbRTLRBH92nNHddqOMcKMihGRzjObZ5ke99wX3qLh1ov3GuBe15YjjJICjOTxUUomSx6l7bLWoGBJz/5C8ArCsaoVmki+QsiUifkSoQtTzheI4gGnJALwN0asjr3h2o2EyZdH6bZCQ9wZpH1uLYYRP6BrhAAsW4YMIH6JzJV1B65shlwvV7Yx+G4mCB3ZqngJurSlD0b63o/3J791+DjE+9Cojhnc4PyHuPeuTvauyMWyRJMYjpVTNN0BULkQqGwWgyEjAlXQFgFKr2UHBy+1DCGiosJNFWeSArXuqsnmB+6J3oeb9q3fWrG8CV53IqOFwNG0dacGzdC6s8gFxSWcTHdmgwA0ZIyeyxD9VfNJJ0w4+46eOp7+iJO26HbHSQlW/+AdFdVI2o4Ker0isCgaQ4cFUUbKWoBgsjQVijP4C5UNX6Jog8JDCorFwbN1TT/nsHd+WKl8W/T1KV7hI0NqK3zV5YqAxF1BB0mBAtPoWASopdHdFkxMatLjl/f8AV3SGcsHL8ULfjCYP8FjgScSrq3Mq1PgWpctjQPwg4kHJx+8OVE3JU3M0aB6FO05WErT1SsBOiUvAECXC6B7SoTOHfgs2Ty9VLOVH/yUymEjfbnlr2v/OrNzQPBW+3Md74TyCaubA+F92nKjulyWNiYmDpRTG2fDNQSITSGLZD8ppR2CjV7auFYw8jEadN4JRjeqNaR+8D7Psfc73XiaRVA1QkW8WHt1Abtu8HnVHgWgmAyAQlcEAHReWVDNqzEnRO1EQVvZB44Hi1+/GPoB90ZW/eLBu8DMKVksfmLVZOgVK7TgiBTAyiXB3SuhEuqtpPZY0AD92xj4DaSIE7OeKJ9PC3YcUQv7mqFSuTJYM62MRGKJWUs6Sqx6NALDMpyBbegFGNaADf/iGTYky5kb9qkX1xo7e+AnEQgTseHg/1FW1qRi5buBQTxTt2/sxesuea8J9huCg8qUB1inrRxNKRjmxJYL4U4knykGH2dGCpUJQqGEqUyQopGdbqqSmJim/UhabEOu6uG55gWjnqu7lucK9wL66aUe7eCXM8F7yJWq9yR9qzaNVjw3ebuGO2fY1G2/rPc0xMtkKHI3+T4QjliWviRuNBnAe30KwQohM8MFQF8mh+i15WiDgCUEIQ81VC/29em8t/0Lry3XBvL753rMxm+IcMG95EBpkMqCiegSGwAmIDU0MOX109OsqIRKtRxKilJsXJJv/0f72DtOuFSbMWZWc12nieFNiisqI7ksuAxKdNXcEGhQPWRJpYcuLOfzfnrY+0zd6Gj+tvl4/MKhBQJGKIene9TthddFKJAgpowGvwqYkUmaE9aFqUQX8WAsrtpIcp2ok7IipsqSP7f2Mh5G0RHjgjYA370cBuMhWbgtAxxgHOQYXmmFNbi8I6zvSO6MGKsJbncsvfGOHaKXtB071eVKVlRFcOsIAiQjm4EhIJpI3sfRZ+uoIQIQJhfOApFctZbWhhSoybH2/M28v7npy3zr7m0TYoVXWRzsZm2VVUoqC7CIE8c+ORwZ5j39+ebBNkXdNhoAsLz9dIABiaqSjSTVQjr8TCcG1Z+ivsTNJcxZJQ1gEF6q5jX5iYbr/HN5SQe5h819v6U47bOr4ydRCuWAGdxEmRy4qhpjVWsfjnfgeciw2g48er0sthITtA0xDw7RzoPDVcNWsoS5or4GNorhh6e8/rtFYdDsR8XdGi0ZuKTKjKK7G6qPcsmW/Z66IdMLNYpWDAqjOLBptdGLdtl5HVoj/tBzooUvfmVXnfmnkjTdkygOmahvxeUIRgnlcABmNF+VxCOWSmKYIqUCs4joF6F0BTOKLwFOPlMRL5OJYWZhpBQQRVg2VLwE3goNqgQ5Mi0aBz6CXHRlsmOhXkUWxIcGDS9NSYTLvkppDFy6UkcP4DMwgoiTCoQ6BhDEMyq0sGkviBM+oCPDYZyWVx0wvD6bxEI/hTtFVnpZaB3TFx2OfoqPd7PlTX2za1vSkVsrDbhJc2qU+FrjOfP9jyScqvbFpY5jeXN5AUKepgChuWSqqRCGZWZaJpouZ6AZTh6Z0XDFF8EMBQx8lBQyG7OQuYMO7OXON/X+/UTa1Ijy6fNyKgoElZq0qFgZk8LWJ6mjs180M0weL3RBZjGeWyKFpl5wdnd1Z05idnB1J/evzLcJs7csb+U3fcexemucOxfjl0+D1ANpL59q0CqEdTa0rLOrEtYRcz9M9LKyTVRprcAkQK6VJo7T+E8LHk2pnuFw3H/7oivH+/Pf4bdOKze9FW4NIFrGl4wp7u6IltFrX6kVPsNDL2DcPW52qdfajr3qbs38u6sL8Mv+5ujAWtCoCRUCTk1acKw4em00tVZZqVILrg86gsSli6p3OczbnHvqkU+b5LmGSCI3BEI2tAjZYX5bLQaF38ZltW1X0vsma/Njxy3XV33ohF/rQ2ILmVQMLLq2z2ZBgXMXbD1DAnNesfsFqMFTxsql8TGxpSvl+qy3Es/tUj6t9sqkBlFXv7gV8HzheTE++LuZ6CYxOgCqhE10k7CMFx03DuqVPlYZWUURH681Ctua6D3XNP603/476fjVm4GwXA/4Qu3VGzWlLBcqtKn95cJWFzlrCrPv9+DUPV1OFyoEoucNkGvKJpFO33ZwBZKtjwtVSzV9BcIYuZDcv7ycbdPKImEhN/3cqkUvf31qi3eWOMiN2s4Set3QsxN5/yG07y9gG0H2KyKZejhK8JFFUgGWnkXKiO0Ldrke63GQu3/UH8mHI968xMsqNoC2rKopFcIMCS0zEquEGVqpr5qsqF4GK1wDJFIlMF/8KHia0tm9NwhZQWQR58Ls0DsqVioXuDA79laMkSuRX8i91RRHy5QJq4ZwZl7s8Cw2o+Qs3q7BLwhVJpHkUmiQKoRZU2iZNdMYZg4cSr9DWKqNcsgsSbw8UkEzgzL+qTe9V58i/2nPHSRvpjneL0+oXE525HVAFXlD4GYUENlR1JE7YEAoWy8vFdXkNN5W95yu7sdHXgmc1/9CoL373v5VGvYiAESgANwlAQCqFr08UcyUISlPpAAk7LKK7xrUirthWe3BxVZPigimDLmRxJSprlcIAONpABg4YDobdTStGRSO5n92upwKQYOcLieWejHo6XLi0XUDnC5ntGCTpw3/5due+1bojvHAhooHxpu/TSytY8ClQaIqNQQjZnqRM4IT0J7rnLXKC2WELRUjmDHN96fMSfVaeHo7b9m3Q+Pxr9tfKOYnkTOCEFZQeQZ1WcwEkVzIlMOR0GpQpLgTM4BIHkQLdxNmmZgT88jKiTkD5mj7oyeXkklKKzDsArBtezsqzGuGLh27MX4UJ+d9sbAbcws+drRFY9ZA8I9cxBfrvkPxW2m0GywTSnx4zDh0DN1CWmJ5KNrH0t4BIHxA17xLZwBmWw7Q6ECjFGjlQcA9+m5aOwB0rmgTVb0yOPvhkopAFB0drxAyo2L5EolQTPri99p3eX76Yabn0c0jroxr5X0Bv97EUY2gvd6EEQy+mgIgSYaQbCZbTfGEs759layQ1gDKVaquBPfPP/+U6BM1M/GMgWtd8WK+nBkriokVg7/kauHiyJ9XU05NCdz04+dih1m/TuMDuFB0EO0ATk2pEO640XKnoxFwp6SEUaJPMN2UGydSKETAF4zCsQlTIaTMka7fvur29jUBe2tNeec4/dVRPHNUI5Lkb5RSKoQ5nWmZ080ImAP5o0943Y0VB78S4Ql4HBBny4WSqCTVBlBvplTGHwP3izogv5V+gnxG9ct6IG/i7MCblzr5p2xXz1j88f0wjfG1j+/jqBXCPA9a5vUynk29p7hNPdMyONi7lIOKWJEkSQJcJ8A+wC6JFJ5q6wB+EksTECL81R2S4viJqgvkS1uBd1bcef2P15wdTv8sk5fEENLMYsnSNtDLFcK5PrScY1U15+BNAoae6yR1StdJaBXhKh63n7eTGefg3v0fb4xZXwOvCCl9plKKoTkS4Yb6ENBPPa/lVrkjihD1U2szKPzURqbjQ08d+Rx8wiLnZauu411wb2XDjlcopXFMtI4/3k2FmFanwLQ1SwwkXYFmHsAxkM3sGKE0TqiUJzFlqgEVtn6SKHG8QOgn6S+UoKcHqJ1XYgFTumfV4gOBbgPrtsukcqW3SKwUqkuY64r907YAXQeAfSZZrnwecGmTmVouLV18W9cHw0YpxeDRyaO3qDY559ybVj4zc8Tb6tTttAAvltio2mKpplRysgusJ5UMkfMk0yPJML3SUa981PphGi4McvRMTlXwpYlHVvenDT76HdrgNbxjc0L08x9NYQJWRB1hCKyYtFg1r1Sdi3USMUdDLvgh6Ow8yn5UYiFEPT7sope7V0kNxLYRraoFFhhgH4X/r6Xp9uDvYGDVJOtQqTEjDbeJdZUrLdzOm8elCbcj5mud4zFwuL1u02+Kp+l1fJfNWfPS8u2xZUYQbhdASCidF2ZGlRSjwccMubm5lRBuF67gnngY0dR78ctnB4XKdm+NItyWZdBxJ88YuFMp4fbtf9ba8V+8Z0+1WL1y8sRHIUYRbtvNp2MO0CZVzxxGVYbbhWmvbdcxX7F3fT//duyojmlGFW7n0jKPsaCqi6IZUbid6edx9k6zLl67BtgGu+eNGF3F4XbIAjrOZVc55yo03J59ueWfXW7XZK/72LGWha1NrlGE24gPQRluA0WI+ql1Gf8Hwm1i548qDLdlQN7t5nApwu0QWIh2jpZLWyHh9mCBlVuv4b39pjV5MLhlo117DB5u+zTf3iLn9kHenG9eoz6kT2WXM4TMgL4tRI40hLRrDzyvOXpVDtUj3D5Q4DFNfO2FzxZxJymv7V8jDB5uE3WEAbDKo8XKbm6l6tyqDrfrUakxIw23iQ2JKm93e/8put3txqcqONy2TNl0M2PwIPai4IW/mk0wWWME4TZj9yk6t3PVqaqPGR4/flwJ4XbHTOcN3fu1Dp4X07H6hS5/HjaKcJuRRssdsRFwp1LC7TuZPIddOav9Fr17kPQ8zMnKKMJtBoeWOY2NgDmMqgy3Lf12N7s5yJK1KLnZ49w7v/yNKtxmFJ6kY17myf+F2xgfH3RfZ/frSCv2FPc5u1vYNtlWxeE2w46Wc8l9/y+H27btmjt5tAgPSE87Mr9XkmKLUYTbiA9Bvbvd+BTqp9Zn/B8It4ktM6t6d7vZaZrdbUat05USbnu1Yy8d1T/Jf+7yiBsnnjR6b/Bwm5gKboAdWwbzNN2ObYPTFRRuv17wqK5SGea/507Kv7b7+zwyeLhN1BGGwKoWLVbVTv//FG43oFJjrF9jFX8qJ/ntiWn6K0QekU6Ia9UtlUhKi8KvoSpL2YQj5wM11h+8hJRJGEXHI9LEZr5mPGnUaKFAfRPtk5JE4PgP6HpiCBaUgL0Qs73IKswAdZWXqrU6iNVcJa/XiZyYgvq99ImQqqogGkdKr+oEzi+3RvPH5IrY2UOcg5IYnTrTgmNU/YagAShIoSrbCKcmM1WvVcMmofw4mRh6IQA1hUiZhEVnPpS1ag/2+fBHYZdanIV15L8avV30Oy165hzVsCRrHCjB0P4JhEiWSgcREDoj8BgRGdejJJxNaBRfjNTPpy4j3LLezOhmF+cFbPFP9R2U39KOXrCRAUkceeRyWYJNbAluAMG2S6PjWkSaMXBNxFBbBXsGhVWI/3a00+7ssIBlP8OHpfZclYJ3GDmiGJGSGRolh4fl9Oik2zwoPg45T6dAb0XUoEKElM2nO99I5BStUBAeT6dTX1QT1gIbBV7EbLgZ8gXqo2uwIokZcI6jRYmlX1EDdi1QF4W2QoQvPlrjI2gtdgyyaOwbGSrO6bp51ZLLKE4HMjeOrS1zQ8a15C78mY5tHDakYja79SU3j2lPeNneaz4qPRrhW1VY9xfG8WVM1VlRhe49clur7kO5quoZyGdKhAnwEiIEqkPDOlm7tFGs4tmXVvvtSvpUN/tFYCLNE2qxG0/Wo7Acsy6XorBcMqxXXV+vetU2CLdhiCKHj0PeGPGQPM5nyCWfLZOerkvNPP3YgBX9GaGDX+fdXOe/+0ajQzXS79cxRFU5CM9aMlXXHTjfT+vqZcOtVc9Dd5DcslkXyXkfmc/urwEPBCw3C/wZZ9X92mec0etl4RNy5MZbu0uXeevHrg7p9+14XQPgk1yPDh8gPlVhCiyQKj1jVUD0YhD/6FdpzjqML48RKumY9nV4v52H+tcLODSIO3zuvE/4Yppmqvu1mYZer4jScXn16bgS0cA4uaLXspwtovBkQgGqfEkZE9CvyP/il/u8ReKAATvbLsGf/jELRO7XZgx63dCM8XRD1Qlcj9PqEp3szmW419OvLZGDGgNYCzVKLCoLj+8TTayCLpzhzfn5JYbb4/pHfATAVg2gHQFghIpAhFmfDhG7Bphdb8SgsOu5CwI+D+3Zw2/m559Ki9P38WXS0W/UvQtPL3Vxd7wBZybEiqJimUJJlDROxlcoYKcQphjMIOjno+Zft4Cf8UdMt5B9RV4ZLT5+GD671x2y59WWSdV1PUq6ezbkqkq6a7XpkbUHqDeiTPbRsRJaY9TVgMZepFqlhQV6VU9C+uLit/stnQaEBa9WJuQGtx17DC98VI6NmlDJxh9Wu46AGLp7kXSzCWmHYKiXxuqFxQWqsi+4MsRiaYJQoeoRAPfC4c+lPiVzfBB5e2+iPa/SqjOwvQkCWEMywOBmBAAMncy/UU1moym0QZQmAxXa+A87+FAuAMNWZg50hTZyHTDMHYwec2K9egNhbm36feX+IB/W0q+rJ9snJP1hAMzzTnBoMM/Lww6NNqbCPOiA95ULjHx28pBGPUVv/WvjQ/tAuN8oE4uikCqT2saLCmmHQOCDAZdACe4UM+Nwo+hkm2Y1SnDI2nMpIH083z7/z1FMusfS3kHD03XtmQQ0qedpAOdssp2ybLiHcZZjra7KinmrmA23RBrI4XgJv8kcuewnwGRgsOD8XJMTNTmH/7IPtG5XtwCjm1DQrVSt17RkxEJ1nXpg1fMgjws/QhcsN/EWyYGeFwE3GVkhwvOLlD+u5tOFk/Yv9s5aUP9lm7HD8c3kTVjas4OlNTtMCLOjyYeTD5e2WuC3YnTs6J1jtqwtb7sieOASstOdRRJ9wC54efkcDZBMygDJMRS2ahXohVLccucJC568Cd4058+0Dyck+OJUJl7aKHmViVLsgPvd3FOYrMzA9VlbLo32MwBKQKxpUPI8x0FlUC1LdL5FQ1WSAnRGdQCIqBGrtG1gRHtUYmDbQK0eT+GuCFKoPm1CpU+zDj4dPOtFsd/hg/sO7xr9jEeoEs6XCMXaDQOp1KgziymDd2ikJzAlUqVQ1XJCKUxEWzKSu7m8Kw3PrjxY23tV3uTo+ns6lpA8iha2DDJUkTXZ/pCL8KJmoXyCcLJ2xbaybNiYN21k3MbwWwLKFX6LAQqhPAw8Pva1LTnS+EixEEaOUaORdhACkRJ9dzDr4OrA8+SNBD6q14eJWbytuYyQgYBbHmxG8iy2ZSBfHiOS8ITROKGwUl3uD5M9Na/XVF0Pk8o0rxJWeqe25joNGci1RUAMkUtlsFay6qnMsadSZZjCS9jGsRXcpPWTCGBVZfX8rgkvwiULjUuI/RKj+9EqIwlTSEV8MRt2CFGzxixUCYLEOPXvpoPkfFmp5lCJqiOVqBqNu/W5w0Kux8ci3z3s7MM3h7eIM5C7RZR/A7hbyaF0Li4jDHNxmxo95sSeswbCnNhy2hAuroQOc08phjmTCvMO6/ufGZqzxXvzetuLpyZ9wfdLquEjl8bL8JjXwjD3kmr2QTWhmtUkzgKLGQPHhWbQR85XKGKlMqAjUIYoqvlxMMAGxo9kd8pPCthj3ju33md5c0DCXEGi/AJSNZREnDGAVJ1B3kwYkExRUknP1g8+3rJnbavzema1F5frWfhxRuI4AzUqefGiT8EbuxW34Oyz3PX3ySkL5SQQapsSAo8ZGI9V7HKiYpcRWVCPtkd5buxu3rvO+XVljd49z+AWVGv+5Pd8OHwpf6NXrmz00wF/XW1fNRaU0RomDYK/vhVmQS1bc49bNfvvsKDNqETVaLT5aO8OA8z2rPaaYj1j9qRHF+obSJsT5d8A2pzhSKfNkx0xbd7c6DHnhU0ftm2FqfeyyK8b7Y+M62vEC3M9aBfmemCYt6DC/Hvk0HOdLDcFbjhW/Scj9udCsqrquu9sOAYK+QqYhoesN6saZgE7ibbp023v4pjThyURsxqyZp5bdLf3zmMn9Knzrms42JbLKFwOkDtItnfBBMiFr9Cvh7a62V2cCgDSNzs9czE3PGF/cFqnlz6jcwQEZ9iYMguTAUDFEKAiFsk6OzznDQDSr/dlmfX9u5g0+jiHLePs/+IZm3tzTtXW94cNDxEALMg2GmDLaAAAOrdaUs0tI12ATXbO2Nrccb7XkTaHw5YOedawkhZgswvoFmAjbvxvARblz87RLTYvGDuFu3ko58jbA/H9DbAAu7h2SVBXwYTAle+afXqgCOxngKXFpwV0S4vM6xW9AJvu8CTYo89u7raNU+vHDVM0NMACLDGTwwAoAbGmQSn7ZgUuwBIX3at8ARaRGMoFWIAUqk9bUelTo/EPJ/H2DTkXt9n7QFy35XMHNbXXxT8kCR4r3j1EkjOoF7X+xJpStDZ6yEcPum6zfGwb/6xNdq3e5PdNMwzksXFJvv0f7WPvOOFSbcaYWc0NsaYVRLumFYx5Dc5GDznRaBgGcqKbZwjI79HulN/HFEsbKsjrRx/KyTpzgbti+/NxFxtPyMZnDXETZWKpgKTZZQ0KhFuhd2BxjyplWxHHRxL10f7vOmZyLez/dsLgzzFBaW7vXL+/iV9C+mjaCU0oQVf3DOZyMfLhugyJe5YMo/cvWidJdYuHhKoHIX23P+p52wfvvea9f9bgr9+7cZcbMB4y8IFRdwBQcslpBkNAlu9aDKKl5O9aB0bpEn679BcC0UDqYAiEMN1PqhBBOhM8n0jMBJKilhMmXw4b3EvjRFGkKF41+1jNdm2Ad1bqjDN1u8bgJaSm+nu0u/WVkgyeptUGkRg6uIoq9cwolh5cdmdpTKp1zFBsj040QSm7lLF8JTOOP1rIjJch6yCRfFgXiLKt3+bqI1uu2qYIWGa3KSY9fbsdofIMOixJ5RmMYvCMWVdU2Dlk3Dvvhgi7Vg6xnsA5YT1osSOGQiKQpGAtdzkaNX1O/4Cs1/Jwx52z8bsV/1HHW0OA9YUWrKLTqP1py6CwPwObVhu9aJed16E14g89J1rgc/ttuXAbA+YLU63GURXqOmSivhWzREA0wY8ADJgciray54ulkhgQeynQ1RlXfKt7BTOKDxNJmYp4GYg4AIcipYAI7lcNGS+Bt8I9F4m6V73qoiuTHQs7gSP8HRo0XKPNNrAMSmkMPKymmaGqTJAy4+Aivm62sSTi/q0nj1oELOq3a2Tmpd8taWHTPsZM+IAe55kY9fMpzjPBdSOGdb4+trJ2qa1EH4j0ZUd15Np6317hu4PnkHBnZ35tAxpLogYyyJEdgNBcsilRCKtW1MnXx1g2w8kjut8HMUMBo4qAeyt/fB098XrgrlvBh8N79Q6r0hVFBBVbWlSs84206lBZx5c6+0Uzw+SwNBScxXhuiRSaegGpJDUJVpAibz08cMHscbMODuAd2tz9x7qvBTdwLLMMUg+kxTZNWoWwzpKWdRZVwrqy3Rm65aQmIUg3VGASsDp5omio3mnW6OMvXOtgtuqT35SHkkOReSmEjTFkPG0lpLps8FpQrqiW8SVjirs7omX0OunUKgwaK4DIWKHKLuoBTKOS6gWubX/nblk0ibEo/R0hgkQH1g7TMEKFgGNLC451vl7tiVurrFSpBdcHHf95e3JO28b5zan2eHZiJ7vF+BBFveyvHaKUkioEIUtahCzyUb+tHYPCb7uwnM/76WHvM3Wjo/nb5uOP471RHvDRmKEcnu4LB17qg2EwvwHzhEGEGA1+BX5XEhNgK1eq2hgDZYvKK/S9UNdtok6Ok3z8L5dCdytOzu85fzrkBtQnf25tLxqj6HFELNvujGoVUstVkgEOZNuc0WtZAXkADQzIq93s7uXRoy7Hd+vCvwbwj828QqhzAe8mqXOBXC7LUyLqPwOc/0qGAMnIhDDEhct4antGn8PfDRGAMLlwFojkqg7M5Mb2ztYVL2ZbT/FOrssfcrDo+V78tORgN2tPy1JSWYB1cP/cNvjlcv9VK0x2mPy6GG0AwDxt6QADElUlTpTKZsDPdGJQ/dE+E05X4sUK4SWNVpVPP6xsFfnRJ7W+pMG4aact6yBnnwEzuIkyuVBdBgtxalleoc7hbcrnABNYG5ebeiLxjIP3dJvRyy2bK6cYgLUMGzrWRlhXDWvJ/OMM/Q6S1+Jp6HNSZtarae7SOqsVZ3GjWTsHtD6Kb2phyiMrsqm6avC1OzdUJ+WyIC+I8a0bMsVQw+jCoDCMXjftH43ttsdzx9ARDdMHHsMnetaDWwdKuPQJK1sLYa01oR6np93Y0jgAuWoDAxlGUDoMEhyWHpoWACHRySI+d+rBz3NN521bu63De6Gtc9kPrMUO0k/p6o0A4c8bBbyRQrKEpAwg/J4xWosKeh6mZvE0QIHLDTAxE3obUgnTGTsIDNBDDCvyk0qnKeBqtDRBKCA3IjfjU+vdducHHljas/WhrA5t8ToGqalCctQcvV6Wjlnk3bZtQGgf38WvgztcHObRqZw6Jg+aDwizKVlWz/m2CMzlXRJuqcF+9epWlFSiEEbFI+IBsxzIVzcTHjkzfvq381p1LNRvWPLSXjgsrUrH1Q5/cURDq4SQ9ihsw8hgs3BDYENVQnsqlXDRpvmnDl2lgTP//hDgemMyl1h4SCbmRwmZQfFiMYkuoHKY22P3SeB9UGZFkrF8sUigEvIEEcw/BGGKXHdNsOsca+x3h4a+J149ndfdzukxzXOSFUjSIOuaagZrqQwD6FqRbb4VAC/Zc1B5534DaNSQMgpKeOwfKkmIGHlizZXTV7df9/dePPvU+sGfX/vh3WdkIG33WXW5rOk89etRhs1x0+Dco91Nrh3wWV/evV84nSFypFVokHOgg7UWGjH3WUfkHNTIyXGiBkWLPLvu7LNZSQye955z5m1u9k3/ji97jgoI+ZYOnmroWYygNYgWrbBKXcXCHtQiLEkm1MShuca5GtcA4NIKxa7wMwpXH9+R0MmNEcoJlfjgn/Iq7gaIgYSMBUOAoDpJxWpSLhMNU3kmSTn5muGGzoIisjQzWOAGzAK9FsIaqsqhQF8BsVWY6AvIC4QEBrS6sT3Df2f8lDW3o4sJFRWQtyLZmEAuVwgUg2ihCMMMlSvD2PNviNrSMPk3xNw1Q2SZBebTZZkFYJC7GT3kKafPDDjxhzVv+/Tn87u/KW5nGMjH/2gV1OHhhMCjg0yOhmy1LzQE5ItoIV+IQe5OBbneJydtMcgr4eQkMRrTODlJdM80Tk5+uvX84Nq6hbzsV6+HTw/f9kbj5OTqo53q3fpZy+eYSbWDkxwzv2ucnJTl8FZts+3BTW4wl+XXclICINVgkLsrgGSGkoiCAkjmKCmzicT98bRY31kNt7c3eXHzsdZRTCi8pNIn2d/+7dk3O7lbn26L8HA+9M0ARzE7UPG/WUB++0e7LL03mQoib7+xw/O/rmqxny2WKqC7iGzg6F6vtJm3CB7AjIUnFlUDICEljDP1OghU/cjoWzU8fnlmv1/wdLfb4FtlPqIWOGQf0tUrh8tR7cAku0u2do2UjGmu1za/g2q3DemsIEUONUthViB1XlDblKtnn4kkwbnLrGvV/K3u5PLstVXsMjYDJnS1Rc2uVom9Ilj3vRWpH06FVX11SoQmVuTVFwU9bIs6tvZbuHTQCI/oGg+N90wVRAnIDA1Knk21Fx/o/DSXEGxeIZMNwQybcjDUw3LPqLdK4hIsihoxDwXvH5kxKHpgY/sq3M9FSrS0pdqQgyeuGM76ubFt1buHECIVPGihRWCBcLqJvILNqPAG/yr+9VtbT3nn8nW/OCPYtURAakkLUnP99nVbckSqN1cvVZWKjKriJ6WC2nqaefv7cofAw7aL63tMXNICv4uIjau9i6imVAg6TFp0HDHHqCODwjC+GxjEM3X7xl687pL3mmC/IdoL8dqWkKp1hxN+P1ed6pYgRVdZdTOEaZNa/nh/O9J7sXXI+88hDiSPRL43oGv2N1TQfQBsl8gO58GSi54eepk63bZpt5iLr/8WN8dr89YVLS4+HjUVv9iJ7MdSmHUcscxtKoKKK28mONTTECzS1gQFcBWlp162zgYBSwhmGjVUWdUDNu71GOC9ZMGX2p/CTkrwmogL7iUHSoNUyS4BApMHLUxd9TN2ZW+hEfeaq2wLDWoaREbgFprWYbdsNwQaVA91otJDxt9KIPFLA6d2ssyAdZPSzZcXpw6q8FYCMmcuI/vffNiBmMQnz4X5JP/opah0aSXw4cszq2Z9rnjuLt5cx5ZTu7EBWwn8PMxaOWTxOk5WzZJr6+5NtyhvY2wATwSEZzvZnIPdEZnfKZfD/8NWAk2kXZnyGnz/KXXvDegReX+7QVsJ3G7e+iuP1Zm1s0nn/ENv5A8NgM/TYjp8gPgYZdF6A7cSaNU+dXxJ+kbOvMMmpk51Z7Ss0lYCiNR+pZXaL8bElaITGFcM30og7MjJR17mz1izLTyEcd2dn1VpKwGZG6pOSAvn57oDX/ubfgGZ3q0EuvZmn93cbwp33oaZ8xU7GhEOP1Z6KwGICFARNIjkfcHsemcGhV3/b2sl8ON5ix6X33fxP+AR2n7MmojPFdRKIOJjPk0rgewP5d0B17+VwKVhntekgQO5Rzpt3SI4eeEfA7cSMLDxh+lzTIghZSsBgGEVtxIg2vMqbyWAAEbZSgAAhk7mLlST2Wg2rojSZKCKZcRtDkPUWX1Ht3OV/BbDvCsV5kZaValp05UX53R+5jt/1fn83T7fF9I9liHL2lueoamq9NTizP+qKqn4U5CU3/3+4QKfGb072piJ3V8boKrS7eXn5z51ahG84ke1hzkRtuVeM4G+LmQnZb2g5JpnKriq0kLxmuvrLm8M2jl2u2vbztEcA1RVOp01te6+cUKfaTVe3e17bOK/hqg9ZUGHkqfFmYqrqkTMeq/yqkqIxFBWVQJIofq023+ZPl0W8I6Xt607b8H+do1XDennUkn6NKM6nT51r/Y/fYry51lJx69XH6Z5b1raIXnXs8NbDKBP36+r1Tj3sV3w7oh+gkcOzfINoClk1ek0RUG1itanA8fM8xvrFc9J6+JYbW2P9uMNoE+JiwQGQAmINQ1KGSYVqE+JNrTK9SkiMZT6FCCF6tPuVPrUaGIC4nQy2vpdjBLaZLZfWEjgQQW5USezEbdJNJLZiGsrGslsxIBOI5mNGGloJLMRjaZGMhtRGjSS2WZ1KWCmHHrOXhB4WxjG2lCokcxGdN50T2ZzqnmynXvAR9bBsB9582s06G6AZLYeBuO/VSXyn1jBTYP/xAI2GvwnJr9p8J+YDqDFE1Mqnvw2TLayTrcPfotND1mNsfFbagCe9KTiiRH1eihszT37b0Zf9pHlLLeoiV+fkTyKgbslrXWKmym4n8Za7PkiufuapJ1V1y0p+1J+BXdLslx9Kf+/otdDLypRNRqLPXlOpsX5Dz+9U1xu5Py+YUqsgVbxiPJvAJP99BqdyX5agJns3kaPeXT90G8mMyd4zzI5IJc4BaQY78qpZyYd5p5LMcz7UGGut5m0ZlSemXz89vOmOdMb+O48OfqF3fblWzTMJFF+NcwkccZomEkiYzXcpOR9Lk/ON7/I3Xp26ZWers3qabhJe7Z4peUEPebtjP2nzfKNndO1jCvU+qSCFJx5cGpi9SDW2pExdd5ZTP/XAMa1LxUna4YuHbsxfhQn532xsBtzy9/4ynfonmAg+EcOVKXuBQN/w3YTJcxgmVDiw2PGoWPotld4Lr5T578nJQcefbzh3i2LpCm0j6VdkI/wAV17VcCCfL1A0NaQzWAUaK3agKAtr7tWlRm6DIomKtHGClPC6gLxsIJnLF8CjBzpiytEI0OHdBN4zR7DGRGnbPEcv1fIUY2gvVeIEQxe3AhmuvQEkGymyqnw7FkltTRqRAFo1UqjqKioRJ86gEw8Y2DpqXgxX45sQYqh+0LKm8zTOzMTVvUMPJFZ/98uf2/bQ6ivig5CUl8Vo1QEd7J70HGH0cMIuAO0UYk+iUdNuXEiBVLROArHJkyFkDJn7wDZgaKh6cFTTrtzHE5vm4BnjmpEkvXdUkpFMCfCg445QJtUPXMgfzSZg1kmKuZ0Y8XBr0R4Ah5HAW4VSqKSVPUYezOlMv4YWL6xA/Jb6SfIZ9THi+sH70n84bWh21+tn+7pgi+RUCtMY3ztI+44akUwj9mdjnnJ3YynhhC+xqZpGRzsXcpBRaxIkiQBTjBgH2CXRCqBrAM/iaUJCBH+6g5JcfxE1QVSPooWN+3Rb8MfQemnH66WDvQuIBRKiyXLmEYvV4jF6kprsbpWNefgTXCzRa8smjqqpWqRJIZeEbo+iDq+QuTqlxI7vsWbC+2+4BUhpc9USjH4Wrgb6kPAiOO8llvljihC1E/1ZFD4qY1Mx4eeOvI5+IRFzstWXccTNvHYqoWcELlwrEiYgHdTIaZUSW+tWbAgkUJjMQipLRsjlMYJlfIkpkw1oMLWT5Xo5SfpL5Sg8Qu183ql68KEBacK/HPrbDrCPDulLd2zam844uk2A8E/Mqlc6S0SK1VfTObuUx4+bctlyDwB9plkG5F5wKW166vl0mIBMmk07INhg5ypRJ5RJ4/eZWvtlQeSGwdPv3UtbfLbVPyRZAtsVG2xVFPKipMD45vXXLNdxNnXufqa7j173C1vnAw0RQhEzpNMjySDKDq3r14VFeuHabgwTOlYoVwuomhnYW8VMKKW0x3uhlo1zk87vbNu+acwASuijjAAVkCOaLCS9alUnYutY5qjIRf8EHR2HmU/KrEQoh4fdtHL3aukBmLbiFbVAgsMsI/C/9fSdHvwd6jDbRaVGvtfff7/qD5/5oybB76vjGPt+OhkI5BkfaeFzZD1+Yu4Z2jq8xex9So6q2N9/sPszFFTH53yP1w9uM1qRpMXBjyIbmAdCcuZF0CEKMuZu3O1dGRF1OdvUnv3/iMPlrOnjbLflXYoLqDK6/NncOhQAXJjNLGDfmeCDFeff0ps37rr5tT23ea+kvXGf/two6nPH8KmY12uV5WwrtLr89d4NW3L+eP1OMuKLja+evJ9L8JOZ2XX50e0DGWBdaBlKq0+/8wR5388bJzss8PrsMeKOan4bISqqc+PKBtKcICyqbz6/MduuZ86vvWs1+YaKwK3fbl1zwgqXUCEkDlNiRCY06jf5sWg8Nu4rLbtSnrfZG1+7Ljl+qoP+Cp9Vsj5PplUDCy6ts9mQYFzl9ItElHp/WiZDIC4XBofEwt8OIUQWarRp8zDwnzRzDr2mdyMv7kdT/F6v6N8Wu2CCBpEXdP+WnEZyUMBvnw2XHQh4MvoAIL/cMoQU8czV/VKHwtcRbEgfXXztm03PZsU6rdY4Tdtw1m3wvK39SK4UL7pD2RjpszzzehR0m+4R4s15XShQgB6ERC9pmwS6fSFq8RD9HKh0PboAmGMXEjuX1rPtFqYFf7Zf/qV27WsDt9sSjg8hdxIcnhKdd3gFYHB+zOH0L1/8uCqdpbUkqmHowQfWSQViKJoyt6ETYi0av9jf8CUhlMWPevqUQMvq9gA2rKqplQEM8BkpWGGZ7hRuD8MfXYsXAMkUiUwX/wouHbq7N4bhKwgsohzYXboHRUrlQtcmB17K8bIlcgv5N7qtW6vbXJnP/Oae0F2LZnlOw1v1+AXhCqTxCStMUtJFcGs7EF0zGIMMoaZA4fSy1utX7rQLYmXRypoZlC7C10PMge6s+fnLzk0Zvqdf8oTKpeTHXkdUEUOT4EWaJWM6sjdljZEPy8V1eQ03lZgeB2eWbO5wbuGPdn3u+zm7ioNeyEAeYNRAO6SAABVi16eKGbKqOtPJP0w9Yn46srbcrXnvw4N+s6u0nPAEAC7cBoABnYZhDmabMZ/Vz5Or+tNby5cdYK1YcL2qXGjx2+ttHwcOwFdPk5BREXn4yS8ql3/auROz71f/56/IiEjwAjycYqi6HY3Q6KMIKng9u3blZCPM3n9e5b13R2Bq58HCjqVjO5hFPk4uZF03LGLNALuVEo+zt18k9bnLRW8RZNKWg5q/eKIUeTjyPh0zAHapOqZw6jKfJxd5t1MFvwRwdrj0JD1h0Pf5kaVj+MeQce8jJFV7ewaUT6ONGP3wE/RPYMPzgmJHnF3qEMV5+MUjaC1WCOqmnMVmo+zNC4wi/2mg9880aTrXu4XCo0iHwfxISjzcYAiRP1UDuP/QD7O5MebB2+a0SV4SvTrhwzGosgqzsdxj6XLxymIrpx8nOgmgQuV9kM9p3/MvOM1PzLD4Pk4xNjcEDkmsbQ5JjEVlY/Dm5zJG2sb73loWWBgy2a1qhs8H4eoIwyAFZAjGqzco/+/ysfhUqmxMSdE7URBW9kHjgeLX78Y+gG/U9IvHp6d9JHzZbHaJ0z12L5owREpZPD0mHo3J6m96pQpkw/L6cXAbyCVvFWiuEV717lyN9TIunv018D9lM+nvZOjSdSSv5qhQIUFax7FIpFK4rknHaVSPRpJPg3zVT6D0YAN/xLOf2Y5cy2bvsq3DhWKAcOEAj+g1xOx4RC2qljpTcVKvc+kOatlu+LPpNnOTuoxvUttr+P5tge6B1VL1ziTNvvTp8bJ9+75TI99NbRJc/NgjTNp8zp85Htt9Qna5vpvaztTp6UaZ9Iuhh8OuO+yxGtfQfQc58tu6Rpn0ubZBbZZ6pPhvbbFvZFZHY+VaJxJuzI84iG3xdfgrd8mpdbh3HfTOLrfI+j6uSWt8n0zBvWTL20yK0fj6P68Z/yzYfdl3Bxxgx6HQ7d0ACQLlLSsyTOH6Fm9vLYmSR+tzHaGZ+1qoqSOV9f92hQdwN1UL33ompr3ZwKSJUo6objxON7yZmDqqoJJHc7V3Q1IVihpgUf8y4Xjn/jN5y/oXreVwhuQaqGkOnWatexswvTPmfH6hl/0iFRAskZJMy3DRvcNEPhsfZz/m4LjcQ2QbFDSyJHMTS9DO3nPn5s96e3YqwsAyRYleVwKODorICQopZ3Mfvj4k2MAyQ4ltdkRHX2v02X/nGpm/qvDfwUCUm2U5Hrm6bEWHU57zh4XFnljxfLLgFQHJRU0aZuyf/RD72l9in+7PttyAiDVRUm+h30TlxXF+OY8i2+SWe3+IUCqh5JkTTtaB13by8o8UXR92OAGMYBUHyW9DD1R8uBGTdYRR1GHb/7HRwBSA5QUdfl2zTZrs7jHmr5vM+Mvj2mAZI89/I0X0X4zf/LS+nRjcIafGQhIDTFhC6+XdnyZOevAriuvzvaLfglIjVBS5wHBVqOPeQbtmfxr7copWXxA+g0lWUetq3dpUqTP8ak7Ly4wbTMDkBxQ0ttORd8i3j0NWjPl8YFzIXO7A1JjlOQl7Vy86l0sZ0pG870fvu2OBKQmGJfvC79dm5fntcp80rtJeefTAMkRJXW4btMg8cPh4HVn20/8rdbrvwCpKUra3tH+3elbNbwymnWW2H+5CN+LiZIK2fn1Cs8s8dreY9SravWPybUOWzoxKA5bLqvTpUlhw9fsWZ71fvsw5PIIAxy29KFSUfWjD+VknbnAXbH9+biLjSdk4xcTuYkysVRAkkFA1bO0FXqHOucTqcKuiOOLxUAJoQXudUwZICoo0kfTXudECbqWxYJd6iecgfqVxPtNhjXIxuuVUWlXmlGpehDSd+tYo9Z+F4dCXvqnS1GW/cb8MmBCpYGdXHdYvxYCJCBz3Iphe43xemUDdOkPHCY5snYnEMIKvlKFCEmhAM8nEsN+zGo5YQIPismHIVcUKYovoxpf6TN4KXuak3Wbux6Tm+G3QNXfo70FWkoyeOXVNojE0MCVPM4o9qu10/X07CjaHp1oglJ2KWP5ShC/jBYygQOi7tBEvVf664Wj9ODtDQGLvvzzzKnvmUTCajk6LMlqOUYxNPc8XVFh55Bx77wbIuxaO6Z6AueEJfZgi9ZCIpCkYPWvv2//l6zrXrOb5I1bM744tvxpRAYACxF1SrCAqKP2x5fxv9MHhjx9QPTQK+30wd1kutMHuZMr4vTBk+mJGxNvpfjur9HKsWnLhpMMaCyJGsgApw/OJ9MlaycmV8rpgzXzRG1XrxMF7ZvZIfx5/Y6rq/z0gTMtKkBujHSnpPJOH8y4n+Ny4EWS/7x1i2xWXw5daTSnD+wm07FONslI3RkDnz543eCsZOm2Vuw0v1M1Fq87da2KTx8gWoYyfRxomUo7fXBuWta2wB8WnIX3P7dwfx3eyghOHzjTggOUTeWdPhg1cGObQUnfvVYlmj2u1fNPfA2Qqjt9gMxpSoTAnEb9Nj8Ghd92YTmf99PD3mfqRkfzt83HH8d7o0g7u1AOT/eFAy98N0nUEwYRYjT4FfhdSZotF4GyReUV+l6o6zZRJ8eJuH5J/tzaXjRG0aPrS+b+M6quL1qukgxwIHOffssKOrWdlM6Y1cqht9Rrw8E/mq5nbmpN2GSHd5NssiOXy/KUiPrPAC1dUiBAMjIhDHHhMrrv12vvrCECECYXzgKRHIgvoJMb24tDtk2xnODKzRiaH/mw5Ul8+eCaHOxm7WlZSioLsL8Gzj1zaHCG95QbTcW3WweU90A7BKxwHx1gQKKqxIlS2Qz4mU4Mqj/aRzotaHhphfCSRqt6pe/6M6NLIveIU8zJLXuj/6mDHMYBzOAmyuRC9dYd4tSyvEKdw9uUzwEmsFZuO2/Oq0apgXM7vRp+vV/uEQOw1peWtcV7jcc/ztCvN1zZrU193K3v1Hjl4pViW8O3uOOg5Cprberuhuok2NpUphXfuiFTDDWM/gwKw+h10/7R2G57PHcMHdEwfeAxfGngerDkphIufcJsXCHcHxbq0RDNjS2NA5CrCn8iwwhKh0GCw9I+aAIgJDpZROK2XdkPrMUO0k/p6o0A4c9IB6AXepH0R8sAws9ML+9ZPRZPAxS43ABL+UJvQyphOmO9vQB6qkN88CeVTlPA1WhpgpDiBM4Nb2eHTuGLvec2zUkT7wu0xesYpE0qSfc49HqZ+Rc2A+27WPRi7+rh8nO9vHPHcuqYPLjPAWE29SLpCHa+LQJzeZeEW2qwX726FSWVKIRR8Yh4wO4S5Kub1bfGJfYfcdon5xZ7wHz+5Sh8VkHpuNrhL45o8BNN7VHYhpHBZuGGwIaqhAAqlXDRpvmnDl2lgTP//hDgemMyl9hLWCbmRwmZQfFiMYkuoHKY22P3SeB9UGZFkrF8sUigEvIEkTKWKQVhilx3TUDcpad5TrKexxpkXVPPYLGOVICuFdnmWwFcX04t79xvAI0a0hlRCTv5QSUJESMFYPep9WNjCm8ELXg/zuf8c7M8vPuMDKTtPqsulzWdiVkJ5U2nAtM5DyK3lsxlgI1NZKmU7rOOyDmokZPjRA2KFil8i73XxD+9fMXvaD1XXsLJ92/xqdqogJBv6eCphp7FEC0mLVoFKZXqYGEPahGWJBNq4tBcI2fHNQC4tEKxK/yMwtXHdyR0cmOEckKWMPxTXsXdADGQkLFgCBBUJ6lYTZ48TDBM5Zkk5W2v7IbOgiIWWVKhOzIL9FoIa6jqcAp9BcRWYaIvIIViKqej5UNLb/bBo3vlMUsnmhI2JuBbkWxMIJcrAgomLRRAxFFDxWNQGCqjqVtP1JaG6e5TAWXr785Ck9ZJy9ZnzsIgDzR6yIm5cYaBvOGR9q1vlkQHrL6bWq/jt0svDAB594V0kBcvwCAPooLcqBsqkSRRYlmZJEmUWFYmSRIllpVJkkSpzsrUTqLEsjJJkiixrEySJEosK3OEb7O39Y+88two4PEH1Zs7S/eGSsT0SwOkvAVT8b9ZQH77R7ssvTeZCiJvv7HD87+uarGfLZYqoLuIbOBoO+VmFLOtmbcItuyJhT1uVAMgISWMM9E0BN2294kpp2U+ohY4ZB/S1SuHa9fTwCS7S7Z2DTtFZk7Va+3aQbXbhpwGkULWADzAL9R5QU+8Jl93WpTqOWsJP+LcqUsby7PXVrHL2AwQOKdMQ81ukdYBe0C1m0bqh1NhVV+dEqGJFSlK92rmzHjysBl3Bm/8y7iPuxgGTIuYMiDoy/mNid5bpKm+KV5JpwyAEpAZGpSYU7UXH+j8NJcQbF4hkw3BDJtyMNTDcs+ot0pm/jjcky98wl3uFHfObpXyXhXu58LOjIgQkW7IFYEwuPs0/dzYturdQwhRlEbNCmiBcLqJPLGS9fbM1RXbfWfwT163nVg03wh2LSFIhVPpQMqcqt++bkuOSPXm6qWqUpFBNhapFZTVr3PHbo296rdsqc8fN5jr8BX3LLBxtXcR1ZSKQMeXFp3iKZhjFMKgMIzvBgbxTN2+sRevu+S9JthviPZCvLYlNKUA1wm/n6tOdUuQ6lU2jnjAQte9AV2zv6GCnglgu0R29tEdZoPOqIBt2qSOg+qaJe3xOjLbdO+NtvNO4Rc7kf1YCrOOI5alxYkqrryZ4AAsBgQrhEzGCtpxGbkz9LJ1NghYQjDTqKH62ejizUX2uZ5LXtUNXN5XjO/ZXpML7iUHSoNUyS4BhAlIDQ1MdjP0M3Zlb6ER95qrbAsNahpERuAWmlaT4Ww3BBpUD/Wj0kPs1pfcPKY94WV7r/mo9GjUhLgOHceXMVXrNCTr5VSueWvVfdhuD3Iuhc+UCBPgJaFcFIUaSJ3UEvFwF80Tkq2Ua5B1xFUGUyh3nIFVk0h88lyY87RdL0Vlg2xDqRZ3weOQvuW4djnnrp/d4Ze9ofXFpZu6ueNdJGQAbRdJdbmsOUc851bOOQczkxtCeLZTVXQ4v12vbBJr1fPQFfqauHzmrmsXF7OOJHPPXgmvPhi/+6e6X3v3D71eFj43N1+YJFya6n2syZuuKS8kYgPgk7idDh8gPlWRYWCBJG6MVQHRi0H8o18lcOswvjxGqKRjWpeVjbL69lsXeMC+9toE7hFCWojqfm2modcNvmYL8+m30XElZZsxcaXoBMYVvcyXLaLwZEIBqnxJGdP2Su8H+76t8J3TMGSVw3T/FXjGBCL3azMGvW5oxsjcUHUClxm14tVcdy4je7t+AZmDGgMksBCLysLj/OmmQ4I/judMbVhTJntVfSw+q5atGkA7qxYjVAQiztvpEMndhtn1/gwKu567IODz0J49/GZ+/qm0OH3/E57Hqm/UPRmmlzrCwBtwZkKsKCoWuJXwbCFfoYAVDdRZMaj51y34IJ7TJntebZlUXdcnT3Qrmieqlf0iA1Gd89by7oA3Rl0NaOxFqiI18AiT6knIu72u9Laa8VcJJ3uw26VjW9Pwht+cyrFREyrZ+COppBBDd7IcjZB2CIZ6aaxeQahEqcpy4g5qwXwghWp9AJYChD+X+pTM8UETSREl2vMqrQoK41oEsIZkgMFaTAAwdDKHUk1mo9m4IkqTgXpcE7c5DLBzxdxCt3P1dDOGeRgV5kEHvK9cYOSzk4c06il6618bXzUK6ScvE4uikGNh2oqUCmmHQOAPAPOkBHeKmXG4UXTSk8TKFHSPpV3MCk/XdeEGzOqIPQDO2WQLN3CPInf3GWv1aiTmOWH2xNIP6lIcL+E3mSOX/QSYDAwWnJ9rcqIm5/Bf9oHW7eoWYHQTCrpVMKJetGTEQnWdemDV8yCPCz9CF7g18RbJgc6B2QlIMhOeX6T8eZE5/Ebolzy/Gav8Ike/moxv/mfC0p4dLK3ZYUKYHd1rhfc67d7Db0uPUQtiXrVSlnfNBNbcg+x0J8tegAk6jD1nNEAqa2XJMVQYJQUaWh+UBjunHf/+NZ6z1ff7p+xty67jUfLSRsmrTJTeFBUe/tx2peeiIVt+s/iZP8QAKAGxpkEpYvcZVAbVskSb7aKqFwgdIx0AIma9422YaihtG4Zer4gFb0RiiskWmsJdEaRQfTrgv0yfEsv5VJI+tcil06fhOf/Tpyh/6licOpTWJDVo7dd+vVbejik0gD4llmkygKYozqHTFJtzKlqfruFtnNbo5jvW6peZSw6eGLzCAPqUuEhgAJTCaVGyyKlAfUq0oVWuTxGJodSnAClUnw6k0qdGExMQp5Nhktm6mDT6OIct4+z/4hmbe3NOfwOEBIyddCFB3g4M8kFUkOudzGaDQV4JyWwkNfAwVU9SAw9LZiOpgYcls5HUwMOS2Uhq4GHJbCQ18LBkNqKHppWxBrUiqYgRq+cZIGMt3GBMtqpEJv9ndSRJiipiTCbu+WvxxJSKJ8SyhQbgyWAqnmQdfDp41otiv8MH9x3eNfoZ/pxfjRC+RCjWLtBKpdicWUwZvEOjyjRTIlUKVcWFlMJEJVNVnJX0tYl1F0keRRdtZxUaJZeKxf2hxYIXNRuyEjTh/gdTb/MHj/I68fsZjwE/qn2n0oQWAxRCeRh4fOxrW3Kk8ZFimKsFK8HCwj8CkRJ9d+BhwF2O58kbCSzBSvVqNWNpDazSGqBAPdiM5Flsy0C+PEYk4QmjcQbQSnW5P+zZoXm9pup6mFSmeZVQAnZqa25SyJoztgiIIXJ4blApUj2VOfZUZBNKzk/wkwhg2S0MXpOa8CLcetG4hPjqYrSssCoggJ1ARHwxG9aC0jBESrmQH6f+3XSQnC9T34OK6hAqUTUas0ysAmqgpTqi/BvALh9cS2eXE9didnmo0WNOLK9qvMujskV0mLsvwjAfRoW53mbSmlF5ZpKkbi5mJknq5mJmkqRuLmYmSermYr7Qu1q1syL7rPKd24gf3nTgmJsavhBvyaLMZmHNfNf9M3QAe6mzh5ZxhVqfVJCIxXgNYFyHU3HSSFuOEYsOV1rLMcYlupZjEb9XdMux0HZnUk69aBeYNbZ+630HpuMLrVZRy7GLdA1csi8aQd+kwsLCSmg59ub9nsj5Ob/5LO0+f+Txot27jKLlWAgtdxjGwJ1KaTkmux7Wp+kPF1aWWRbfzfHnJaNoOZb7Ox1zgDapeuYwqrLl2KFPc99MV7xjHxw1puHXRZfwOcdV3XLMjpZ5eReMp1BQlbccOzmgU6vHF5exdzbaeTTGLx2/o1f5LcdkF+g4x6xyzsGbKqzlWN/9jV7/dm4c++imvHotuuzAV6arspZjF+lajgFFiPqpIxgUfup/U8sxYluMKm451v0KXcuxlMuV1HLsy+Jebve++a3jJluetUj5avCWY6HRU6Y9GNmKnbajJGJe9ssfBmij5XyFro3W3csV1XJswscDXgsajQmcvjL+QcSSpq8N3nKMqCMMgBWQIxqsul/+/6rl2EgqNfa/Ivz/URF+YjehSivCX1xAV4S/+GpFFOHfX1vRuMfWWQFpMS2b3ZxRx8uAp80NrCNhzfLCArqa5ZkFlVKEv+bC2ZzVmx/7b2VMvXl/bIxrlRfh96VFBciN0cQO+h38MVwR/r9+NDnWyPGPwPQbvdsvtrpwzmiK8G++Sse68KphXaUX4bd/KKqjOLbXZ27kL8cmN/reqeIi/IiWoayiDrRMpRXh93GwyXpwsp/PdvGkQzdtvuG1c9UU4felBQcom8orwm9i86ikntQvYHaznMRLjkP3GUE5C4gQMqcpEQJzGvXbIhgUfhuX1bZdSe+brM2PHbdcX/WhE76OAHKITyYVA4uu7bNZUODcpXSLRFR6P1oLAyAul8bHxDLVTWP1qeVA7LBI+bTaVQ80iLrm9rXiMkIeAXz5bLjoQsCX0YHLYDws78GqeqWPBa6iWJC+eq1rlwNGcY555w5fw7+8YrF9+Xt3EVwoRcPq48ISElhpcY/2dV1znl9OFyoEoOcJ0WvKJpFOXxBYFT3Uy4WqpZq+AmGMXEjuX9799+rSL9/FgTnzdu5JWdFTQjghhdxIckJKdd3gZX/B+2c/pHv/kIdV7SypJVMPRwk+skgqEEXR1LYZv3vZNOfX1oFLp3+6NepwoRAvq9gA2rKqplQEMxi0zMh9YBTuD0OfHQvXAIlUCcwXPwqunTq79wYhK4gs4lyYHXpHxUrlAhdmx96KMXIl8gu5t5qVs7Vgldub4E2d8g+1jGm3DW/X4BeEKpPEJP0vS0kVwayIB3TMsqsaZhFmDhxKL2+1fulCtyReHqmgmUH3GcvMbF6ZBB1/f8Jlf7FzWnlC5XKyI68DqsjhUc8CrbpQHbkDbj3Uz0tFNTmNt3Wed0TcoOdan40ba4y/JwkdX6VhLwRA9hAF4C4JAFC16OWJYqaMusjEzgc97a/fd/NZ9HN4YNYEZWuCKavcw74QgMwHNABsbfsAczT5jP+ufBxiY+5Ky8fxfUaXj7P5SUXn4/zzKnLEv4V9gw7YjjXhHZ/bzwjycbo/o9vdLHxqBEkFV69erYR8nIw7e5cN9Y7y2xgyuEu9S5eCjSIfJ/MpHXd8jYE7lZKP0+KfxYMkK0w8F2a7nfO2jt5lFPk4xU/omAO0SdUzh1GV+Ti1pfv6xdS08d1ywTfW9FKf4UaVjxNOyzyLqmGecebjPFncv53jiaPe83bs7rN43M1uVZyPc/AxHediH1c15yo0Hye1m+BIYq/nvM1WbjEzZ6ZuMYp8HMSHoMzHAYoQ9VMjGf8H8nG2d7R/d/pWDa+MZp0l9l8uDqzifJzwP+jycTY/r5x8nLrbLG6FPw4MWN77T/vNT1rMN3g+DjE2N0COie8fdDkmxc8rKh/HfdmMO+HzMjmrd2etHLq74d8Gz8ch6ggDYAXkiAar8Of/X+XjRFGpsTEnRO1EQVvZB44Hi1+/GPoBv1PSLx6enfSR82Wx2idM9di+aMERKWTw9Jh6NyepveqUKZMPa+bFwG8glbxCdn69wjNLvLb3GPWqWv1jcsrn097J0SRqyV/NUKDCgjWPYpFIJfHck45SqR6NJJ8meROQygZs+Jdw/jPLmTs+cdMZ61ChGDBMKPADej0RGw5hq4qVAipW6n0mzVkt2xV/Jq1BhuO1ll9e8qbebxXiUjz1b40zaU3nBY1s42btv6VuZ9v3m1v+0jiTdrvk50fPjru5m+QmUctDM45rnElTDORfqW2eH3CkX3DkqsKEcRpn0vbc9pUOOdw5cNWoezHs7kF8jTNpTzbO8Sl2eR887YkPM2n1sz81zuePZUgPfLUZwtubXq1hjd/X7NFoNtNj8YWWLzfP9Nzx0mxL/cRFAYBkgZIWBfe5F3vjjffiQwUHo4JPzQGkmijpZt2l3NXDONwVh0ZY9xtz7S0gWaKkwKML/x71ODho41f5o/UXQ5wAyQol+VqWyPnufO6cdfJ2HqP/XgNItVCSZZ3hi/7NjQjYe4ozNT/u3iZAskZJ0yc+mDS63yKvLbsb5I+f/hwew7PBnjBqjll47QOcdeLatT58T7YGJFuU1DZl8LCY5rsD1ieemeu7uuN4QLJDSamDlY8CFAuC01869rc57woxrI2SHizvMSZ665CADfbD2s9abpkJSHVQ0qnzo460OjjYb6Mikekhvge5XBclDUro0vwHr7Fvcn0f07k+ds0BqR521/5noWt+DvRe8yhs6ObrSoh8fZT0yDXC/PYyBmfhup5p/7ZcPB2QGqCkefOWPu7wT6OAnTbuqeLC0QmAZI+SDhSnpj0/38tnzeGwwKlDt80CpIYo6Vq71Kby306xDz9/ywv6f+x9B1gT2fd23EUFEbCggqDGjoiAfS0oEEJvggWxRhIgGkgMUVBREbugYkdERextxYaICq4Fu+Ja1t57RcVdu9+9k5mQqSTLkGT/34/n8XlkDjOZvOfec8+95z3nnDmZBkTWqGiCS1KD46Lf3A8GtTm1Lu52byBqiIpmvAi26zLyg8ecLKce2xu8uQVENqjonIc05MaPfM+ltWw2ZO33bAlEtqhoR//szD/nvHLNnNS077Ol5+Bga4SNqGqS+Q9uxblOq9/n228/7BOAqDEqyn620qXztOY+2+v84z5h0jQZEDVBRU/WXI9O4H8O3Gcf4bIgOxlWl+CiIrNumxMdbl3h54+rH1Uw9PlbUrJlUw5NsuWWOSte32qaEJg8ZPn8u/cX32Uh2VJEZ6LqRe7fkXH8FD9z24PxZ2wTs/CHifwEmUQqpGAQVKVZVlqhd6g4n0ip9bgYgUQCjBBaxV5DygDRQFG+GvmcExVoWvsKdod8fhzaVwrvN6kdnyN7pl0TiDJGpfJFKL9bNZfn+Y6rHHhrz2/v0LTxATYJlSw7uc4AoFoQICGV4/YJbB4OP9OKDdA5BDhMcuTsTiiCZXqlcWKEQgHeTyyBTZdV44QLPCiuAG65IihRtBuQE37n6F33vKXRjSa0+rUUHwJVfQ45BFomYr28ahtkxDDAxX1mEPFqMl1Py7ah7dCJJixTlyJaoAD7l1EiLnBAVG2Y6GOlifXPPZv+oWdAzowWdZ8M8rAknJajj6U4LcckbGvP1REd7B5U2jvphAx2UsRUS+CaYsQe7NBaRASSEqzNPz6F/x522j9l11n+qbzmORWnEbEAFjLUacECQx1dfyI5NOvP/7IP/lX2AdFD11n2Qd5LpuyDvBeVkX3Qbly9R+6KBT55V1rXsSv19GFxsSRaIBayDza9ZCRrv9RJ9oHVQs/uB22nue5PDnvjs/h7sN6zD4wZUQHjxkAjJbrLPphy3/7rjrb73HPljVotbDSgt8FkH0S/YFKdlX5Up/PsA6HfNucaSZd8Zsqf5LR5IZyi5+wDxMrQ08df6i774NLA8b4ZXxr7ZhXtfXqsU/NDBpB9YMwIDjA2uss+cAyr0VF4Ya7X5rnhu762K8H3NtZf9gEyp2kRAnMa9duiODR+26kVAv/v3Rp4JW9oXP1F8wkFeG8U6VkX6uGv+cGBO75lJOoJgx1iJPgV+F3j1PsqAmOLjlfoe6Gu20SNHCfi+SX1e5O9aEyiRWsXo7pFytYuJFdJBjQwrU4R+70lN2ZPP/4t7VngtKTfrs/LP/+WEGSHd1ME2ZHL5XlKRPvHQt+Wb3UAQDKqQRjswOdcxgNUXuzMCgEIGxd2QrEcDF8gp15s+w7tXbKvYyff+bb/NP9nnG0Gflp6YDeTp2WZqDzAdp7/ND5xUXPPWXdezCotbGTNAmDbGAEDI0ovTpRyzYB/05FD90NO6TRm0KUpoksGq+pfnDjynf3NoOVvik9Pznr4vA6SjAOUwU+QyUWq0B3i1Lq5h9qFtamYA0xQ7dqbhbNXHjkYkPxqW/2JP/vuZEG1gxlV20lPqqXyj9O0awBXfv/S52m/eG2v98Fz/9aBPV4+l5vrrX+psxNqk2D/Uhlpf+uETDF0YYzm0CyM7pcb3B7bdbfr9kFDrVL6H8KXBraEJTcV8OgTsnFFMD4s0qLrmRNPGgMgVxb+RB4jLHsMsjksa3YmBINEoxWRGLYr/4VJ6qD8K029EXhg+jfwRp65UzRBS4Nl0v+uaK6em78aKPC4AZbyhd6GNJZrhzXwAugpk/jg/5Q2LQ6eRkvjRTQZOPcnTV87qksePz+p5sjTF1Ov4W0M0guVokUcer08G9PC4mPbYd+6uq+7PrfxwX1rrSpoYw4DmIdDmI3cKdp+nbRHYK7okXBLNfWrTrcipLFxoogxyPCALSSoTze39Flc+/BDC6/ZRlnz+j3n4Cuqm5Y9l7z9xQlZz2hqh8I2mAo2YycENtQkiOlMwhnz5h/ad5EGzHj/1s/x0mQ+sWGwTCKIEHEDx0gkFLaAzmFuh90XC++DY1YcO1YgEQuVgzxerIjmSsE2Ra65JSBG6Rnek6qxsZpYU+oZrEdYCtA1pQq+FcN20qUVnfv14aKGtD9UwHZ90EhCxGh6Pp4L7nzLxG16k8ARXVcFvsa7z8iDyO6z8nJ505nISqgonQpM5yyIXDaVywC7lwSX0lLPNETORoWcHDfU4NCihC/5r3Y1ZoX8GbjltvWA+AYdF+Gp2ugAoQ7p4KVsz2KIFocRrZwPOj3Fwl7UuO84mUgdh+ZqnB1HP+DSiiSO8G/iHL28h0EnN0okJ7CE4U9FDXd9ZIGEigWPAJvqcUpVU2dREBamikySivZQdkJnQYkbFanQGZkFWh2EWSnbmEJfAVmrsKEvpITC2Gxp3I/A5/4HRLuDb1o+v08ITMBvRRGYQC5XBhQcRijAEEcXqpEcmoXKYOrWE60lOy18KqFsfd57xlYB7zHIRxk85ERuHDuQtzg7+XNsnR+8KXenZN1/kNiEBcitfjBBfu07BrmEDnKtWZkWGOQ6YGVSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxVubMX2d6CbZc8Sj4vbh2vUfnh5Aob3DwUo4+Iv2SBcpbDJ3+m/kda3d7Zw3PjUbCEVef18Lrv67ysJ8nkcZBdxEJ4JCd8mo0s62Zpxi27ImGPW6UD0C2lHCfidIQNAvvEymn5b4iCRyqP9LUKwfeUsIbMMmuUZ1dw3aQCa+1CvPbKKNtSDaIFKoG4AF+oecFWcv7b0kZHOe669mxSfUHOfWsSKytco+xOWDjHP0GXXZLSAn2QFrymtIPp8OqnooSoY4VJUqmF74GG/UP4y3KrTN/VdUMWxZpEVP6BX48uSHBc7N0tvcs93FHWEAJjBkGlDivtWvS7hCMzStksiGYYVMObvUw7hlDqORbp7E/kgt8cj06Js/kio/pMZ4L2y8ig4gyIFcCtsFWb7RzY+1V0UMIUYRazQq4AuFsEyU48yd1b5nxcp3bQrFlM65N3WEGELWEIJ18zQRSwmvt4rotPcTKb646qiobMkhgkd5AxTd80n+F6S3/WRFhF+f9sfw8PoqIPZccRVRJKgMdO0Z0rr3CHKNYDs3C+LJ/oL+R02fekrVnPdcE+YSTD+LJK6ERDbhN8fFcFdUtXqpV2ThigoWmsQFN2d/QQJcA2M5S5T46A9hcS7Rjf2sUpj3fbXpQgeOAwGVXHtfpYdSSULoPicfSLOs4YXlWnGjiKsoEB2Ddg2AFU42x4rZ8TlqJVmudOQKWCMw0eqhcTZbEhHuf8F/nf2FsvmN2P7wl4oN7qYFSE+nYJYAwuTLCVPJWu8Wu/BAaMdastxAatDTIGIEhNFIn4SwnBBrUDknp7BCv9VmnblPv+md5rnmn6GbdiHgOHSOQcZXnNBTn5XSueWvlfVi0B8lLEXBjRfHwkkgujkAXSI3MEjG5i+ENqU7K1cQa4iqz43P8zYtg1SQKnzwHoH7WTCs+iTkShlIe7oLXoS4T4FJvsdH37ryZtaP2ePcahP+WVZEHkF0k5eXy5hwxz62Ccw4ykz0gPNvoKjrYmmvFJjFTvg9ToS/7/j+3PX3e2G1x8ah+Lftlr8RH/5T3k6N/6PXy8KnbsIGxy6Nz/uvzvw2ymNnLmQV8Ss2Y8AHDRx8MA2OEuDFWCURPDvFHu0rgZn0F8iiRgklpEtfj27tf++maZ/Th+6ZqbQjV2ZT3k5WGXmf9zBZoZR2jVhINSislhZhWtFq+LBCDJxMJUeNLqRjFknqF4y3n+Bz6dn/N1awRNnjFBCD3kxWDXmdbMTIn1JzAY0bSfjXHmc8xNi/SakNmo8IA2VhIxOXhYR4deX700rNu2ziC46/588fhWbU85QPIrFpMUBmInDVjQiTNDKPGyDg063rOQr/SQT26+8wo/a4wPnrjA17Hyk/UnAzTU7XDwC/g3PhocUQ0cCthbqEgLg5WNFCxYtDlX7PNBzFPm+p9yWNSeV0bnqgZyhMlsV9kYFd3tiZpXdcyAm6LuhpwsRcri9TAFCblm1B+8UleE5N8fXy8NlrfvzHophU+kFudzrFRCXS8+CNU0ppFcANHwdEIbotgqJXF6hmIjihlWU5cohbkA8UpzwdgKUD4/zKfkjshcCJ1aRvCeq7XqqBwX4sAZkUFGKzFBABDJ/NouslsMIEr4mhiqcc1MczBQuTKu2YRQ+TKToW5nA7zwH2e509xjvGSwq17iF/41sZXjUL6ycsk4ggkLYxsSOmQtgkA/gBYnhTgTgk3BvcUjewksTIF02uRi1nh5Zoe3MAibbUBnKlUBzcwRlGrdpGZ6jQS85yw9aSGD7SlOF3CT6qOXPYRYmNgoPDkvCqFJh75bxoEmLWtW4zJq9DITYMQ80IaI8bK6/QPVr4P8rrwT5g2bo08xXJgcyA7ASEz4fVFqZ9Dx5udO/ohxHODfOFqK6sJeEpqFTfy7HAjzY4qhNnRJbd+nzTfbgFzbJvN8D7cJbGiZyaw9SxUpzMVewESdH6rXaQGUnknS41DRRFSYKG1Qcl5+7os0+713bcVTPfrcWFLLzxK7mSU3MtF6WU/+YZ1ke3cfy/2E55b/KeMBZRqMaL0rFYROgZVY4mR7aKsFwgdIw0AIrLe8WuY8lHkNQy9XhkH3siI+UR10BTmiCCF2tO4/5g9JZbz0ZU9tWC0pxb/s6eoftrvM3me3+Gc25aMgdmzr9k2ZcGeEss0sWFPLRjtqUVl29P0uo+mbd210Huf3LrayE1V2rBgT4mHBGzYU0aUnplXoj0lrqH6t6cWjPbUArOnCjp7ajB7AuJ0YofM1rmK9bu5PJlH7kfX6JzLc0PY4A+aM20J0s0xyMfQQa41mc0cg1wHZDaKGniYqaeogYeR2Shq4GFkNooaeBiZjaIGHkZmo6iBh5HZiB4aibEGrSLlECNWz2OBsTaWNSWb6lDJ/66OJEVRRUzJxJg/SSdGdDohli1kQSfxdDrJyLs3cOajTz75eXvzd466j99UVQ0WxIok5AKtdIbNzo0rg3eoVZnmxkoVImVxIYUoQcFVFmelZusQ6i5SvIom1s40NEIulUhC4IoFL6o3ZCVYQocrjZPsbv3mNWvW26l+A1bT5jYb94sTyfuC18c+tqWHdMwICeRqwUqwsPCPUKxAvzvwMGCU40HSBoJKsFK9pGYsrfmcwcbAgHbjcZJm8moECORR4lh/USRuATRVXg6BPTvUr5sor/eVytSvEkrAJrfmDxtoXGSBgBgsh3mDCrHyrapjb0U1oeSCeJ9YISy7hcFbxQRehKEXtUuIry5ByworNwSwE4hYIOHBWlBqC5FCLhLEqH43GiAXyFT3oEM1gW6oGsyyTKwCytJRHXH8s7AuW5owrculxti6PM7gMSeWVzXc49Hgn0zE/lo/Md7IeDrMtV4mzTi6WyYp6uZiyyRF3VxsmaSom4stkxR1czFf6FrWcpfSmbvdf0+taxQjqP6bmi/UqURe29R0s8eBkh2j8mz++oW0uEKrT90aklCMl4XFdQKdJg205Rix6LDOWo55NC5iaDmmaEQKEbLccuzDSvPSrqf2BKV2Gvx1S3J4tgG0HOsJIaFt4GLZWC/ECXzfpHv37umg5diKxQFDjs1Pd8v0ejkm/3HCV4NoOfaqEZN2jjUyAO3opOXY/i91k95G/h6wp+aLq316tcHTV/XVciyTUTkKQ1AOR58tx6704h/es+8Xt4zpc3/uiPLeY1Atx/wZlddCP8ozzJZj3wpiLjS7PCNg467g9lnnI5P13HLsmy2T5i7b6ltz8KZKazm2Y0iz5X+c+9tn9/BGT/d+yDEyiJZjiA9B23IMGELUT03k0Pip/6WWY8S2GHpuOTa8SRFDyzHjJrSsN1ZbjrVfcjpEWjOInz8tr/u8y7E3WG85VuP0ZnGr3BDX3Ysf1Q5O4xqz0EYrDCJH20bLuYlWRHctWo6Fr8g167OhbtBMY4eh9dZnb2C95RjRRrCAlTEjVvd0u0vQd8uxiXRm7H9F+P9VEX5iNyGdFeE/zC1iKMLvytUqE0jDIvxFC9rcda8W47nv1ahPa/rOx7dbr1i2Ocs2EtYsz4MI0dYsT+OSbGRlFOHvP9v+VP31dbxn9xHWqJPS00LvRfijGVEB48Zg9g7aJf6wV4S/juncTX18fPnbYrZYj1oXjT+212cRfitG1ZU00YvqdF6Ev2NfW37UoOCAZJNVpXUOjeDpuQg/YmVoq6gDK6OzIvwLMvxtEh9leOeHV/u8tPZlfMEs/RThj2YEx5UATnnFGipUhN9yRrPPtfqtCJwbfPFjR/kzfDkd/RXht2JECMxp1G+bxKHx2/hu9m1/ulx223Sn8eY/V70l1BFAkvhkUglY0ck+mzENzp3LQiTisvvRWhgAcbl0TFQ0V9U0VptaDsQOi7RvS656oCbUlNvXis/5rTXAV8CDhy4EfDntwfRsVdHEKsuy1wJXUSwov/rntavrWoh7+Cx5Hn3gcnE/PKP3X/XuIrhQXccO2uacvN/1gHXu2U+1DvevoAsVDNBzhug14VGMTm+4sWqtlQtVUzl9haIouYjavzyV3P3Iu2uPedmz6hXcWFviRciQQm6kyJBSXme97C/4/vdaMX3/vFb6dpZUI1MLRwm+slgqFEcw1Lbptcln6uzAUN/FloqApK2LU/BjFXsAeayqJJWhjDRGZUTrRxlE94ejTcTC0S9WqgDLlyACnp3aObuALSvYWcQ4cNu7RERL5UIHbgeXuNFyBfILtbcaOvXKtaJTzfkLBj59XnL9lBS/rsEPCFWMk1D0vywTVYayXBmVZWUQMwc+SitvtV7ZQXfsGPmIOIYZlHzbtJ7TiCDetANZi4Lfd2lZka1yBdVxuD1qyGGqZzGpLlQH/tYvrbTzUlFLzuBtHak/W2hs8sBtX+r03B7en6brddsLATjZCgXgGgUA0LRo5YliSxl9kQmPwke1ZhwI8kjZfT18V6M+DfWa7AsBGMwEQP+WrTBHczLnv8XHITbm1hkfp1MbJj6O0K6y+TjcrfET9hZec1/7+I9Xb69NPGoAfByHNkzRTaM2BkAqOHHihA74ODeGVcnr0m+ox/abit01o94kGAQf55Ydk3b22BmAdnTCxykM4gxvFWTmndIkKafp8iHhBsHHSWVUjtAQlMPRJx+nz8W0x4dP8PySsjqm7M/53dig+Dg9GZVnqR/lGSYfx6mmzROLbUX+Ux8+bjrnYLfueubjvGrNyFFsrW/NVSofx2GD8Crvr1VeS7bMW5k2ZHemQfBxEB+Clo8DDCHqpyZx/g/wcZ6suR6dwP8cuM8+wmVBdnKinvk4Pe2Z+DiP2uiGj5N0IXPS4hNZXqkJiwdK9nXYzDofh7g3Z4Fj0smeiWNS076y+DjzjvmteDBmsGfuuqjWP349vIl1Pg7RRrCA1aM2TFgd1O0uQd98nCl0Zmx0obitOHALb19BkOTpo0H4Nr6mfcbA3EkvuUAWTc4w1SJ80cJDHCeD2WOqaM64dsosU64A1syLgp9AOfLMum1OdLh1hZ8/rn5UwdDn9O9HjuSoC0njzyQUmLAg9VQsilFJzHvScFSqnkbBp5GYglFZnwf/EfI/M+z4w8SmRWahIglQmEjoA+x6AvY4RK1KVSbTqVLrnDQ71diu/Jy0RaO/xP/aqH/gitRVvaZMPtFbLSftZOeFB+9W93Lb3qXe2649Nr9Ry0mziJxtbnz6rNvs7k5pzzu2SFLLSfPs/vOPV1+2B6yss2/e7Sm949Ry0u41ODM8Zo+925Y/Wth9Wr54l1pOWktpj3e/TJ3slrUgTxxR+PCFWn5+ix1PjC79fdpr7syCb8WXu69VazZTL+NS0JQrw3xnHvD7saXgcwcgMkZFB2qOLclzOcXf0/uhnX/8uE5AZIKKXk62dFrUqIvrrJn/THH7uHUdENVARV+nfvrm3WUxb9H+dk/2/+MdAUSmqKjO8cYlU3I3+qcYXfHq3e/670BUExWdzlhU/WtHofc8UfVDr7M6/QpEZqjos+8t3wGTt/jurL5z8+kTe84AkTkqSst6du24/Ip39izhvVdm2+8CkQUqMhGvW5Vc8C1o9Z7dj3dfug1foxYqetPQc8O8w8m+WUNvVXu43AF+Vm1U1Pqp8TaLgi2+izpOEy1LuxMNRHVQ0fFQ879KOp123Vxb8iy8eHkMENVFRcNS18/huLRzP1j4du6dELu/gMgSFcm9zt7ZHjjdfaefxdKQz3VrAVE9VHTq7JFMxemWPmkPCtu+XJ01Aojqo6KqMT0KS9JyvDZZNc4fW9AjEogaoKLBdrNXDF26ImjNshuxDY6XngQiK1T0cdnaPp/efwxatc27Xcgg22dAZI2KvO4NOOJ3ZZPPjLtdT3zstqcHEDVERRtLnKbsnL3Oa8rKH8ud20TAu2xQ0fw8U+MO2y4ETn088rehg0+aA5EtKnon3v/2ZY/T/OQ5HTus/z7bC4gaoaKHNuaNb1wpcZ/Rtunu3i/rHAaixtj3aj+1+8djyW57nKbVsw+LWgpETVBRV+fbA2zirQIXTOjx8sbtG8uAiIuK3B/HJMlXnA2aPnmr/YGbTc6Rki2bcmiSLTNLOtytN/ee24KIJh2eLfngQGE2tE22nEpnoupF7t+RcfwUP3Pbg/FnbBOz8IeJ/ASZRCqkYBDQNSZthd6h4nwipdbjYgQSCTBCaBV7DSkDRANF+Wrkc05UoGntqzZ8To5TEbSvFN5vUjs+J8xJK0ZlrTJGpfJFqPn4aUtqrM/vFvj7hQsxGdkvclkkVLLs5DoDgDZBgIRUjtsnsHlIctKKDdA5BDhMcuTsTiiCZXqlcWKEQgHeTyyBTZdV44QLPCiuAG65IihR3OrWbf1KG3lgfqfq+enXE2/iQ6CqzyGHQMtErJdXbYOMGAa4nJ0MIl5Nputp2Ta0HTrRhGXqUkQLFGD/MkrEBQ6Iqg0Tfay0aLr/qT/sst12PHHPeufusYxwWo4+luK0HJOwrT1XR3Swe1Bp76QTMthJEVMtgWuKEXuwQ2sREUhKsH5ZUMvhZtVqAcuDOHlXzwmqVpxGxAJYYYxggaGOrj/TODTrz/+yD/5V9gHRQ9dZ9sE3Z6bsg0Tnysg+OPe4xOqmSbOAVV96dm1U84w5i4sl0QKxkH1Q6sxE1j7rrJPsg2u258c96yTxWmEvGXDkdcwRvWcfrGNEBYwbA42U6C77YOn6BX+Xfgz3XPww47D0azz+XEWf2Qd9GVXnoB/V6Tz7IDyjfpzEq6r/7ObhNVK2Pf1Nz9kHiJWhpY8DK6Oz7IOWjf1rp8b5ux4ae/Nnzf7GEgPIPljHCE6isw6zD+rHO7WfeOuW14JOe8+aLjA6ZCDZB30ZEQJzGvXbpnNo/LZTKwT+37s18Ere0Lj6i+YTCvDeKNKzLtTDX/ODA3d8y0jUEwY7xEjwK/C7xqn3VQTGFh2v0PdCXbeJGjlOxPNL6vcme9GYRIvWLsX+aGsXkqskAxoI9tfuWEGj3pIP3CdLrozeGji96skVQ/PfWxGC7PBuiiA7crk8T4lo/1jo23ISAiSjGoTBDnxOlr9WsTMrBCBsXNgJxXIwfIGcerHdcoKfO2XiRN70P/wurr15YyJ+WnpgN5OnZZmoPMAOXQi99bUqz29lt8a7hjnbW7IAWAIjYGBE6cWJUq4Z8G86cuh+yCmdxgy6NEV0yWBV4+ophs164ui+Y43NtW8Xn7ytgyTjAGXwE2RykSp0hzi1bu6hdmFtKuYAE1Qb6r2ZM6Rnvt/uq572sTMCXFlQrR2jajl6Ui2Vf5ymXQO48vuXfqgeujjT1MNrmqtTs+U19wXprX+psxNqk2D/Uhlpf+uETDF0YZzBoVkY3S83uD22627X7YOGWqX0P4QvDWwJS24q4NEnZOOKYHxYpEXXMyeeNAZAriz8iTxGWPYYZHNY1uxMCAaJRisiMWxX/guT1EH5V5p6I/DAtAsA/Zk7RRO0NDD4uV0qmqvn5q8GCjxugKV8obchjeXaYQ28AHrKJD74P6VNi4On0dJ4EU0Gzumj6xO5p1J9V1wUrW7rN+wx3sYgvVApWsSh18uzMdW//TASfQn3mO/2rueD+/yK8i8OA5iDIcxG7hRtv07aIzBX9Ei4pZr6VadbEdLYOFHEGGR4wBYS1KebfnWfH63HW+e7upaQ7zhrcF08q6DsueTtL07IekZTOxS2wVSwGTshsKEmYSadSThj3vxD+y7SgBnv3/o5XprMJzYMlkkEESJu4BiJhMIW0DnM7bD7YuF9cMyKY8cKJGKhcpDHixXRXCnYpsg1twTEKD3De1I1NlYTa0o9swM+TWeArilV8K0YeMnczhWd+/Xhooa0P1TAdn3QSELEqElVQStdX60d6La0ys/DXxuLn+DdZ+RBZPdZebm86UxkJVSUTgWmswwil03lMsDuJd6dad1nDZGzUSEnxw01OLSo+xxOffjg8ZWpXgtvhX50+5n/BU/VRgcIdUgHL2V7FkO0uIxofeqkUwcLe1HjvuNkInUcmqtxdhz9gEsrkjjCv4lz9PIeBp3cKJGcwBKGPxU13PWRBRIqFjwCbKrHKVVNqWXiwlSRSVLRHspO6CwocaMiFTojs0CrgzArZRtT6CsgaxU29IWUULTJMopZL53uszw3L3RywuodhMAE/FYUgQnkcmVAwWWEAgxxdKGaxaFZqAymbj3RWrLTwqcSytYndmJqFTBYBflsg4ecyI1jB/K3ksWrTIwH8vY8+DK8tdOgUhYgd+jOBHnN7hjkc+gg15qVaYFBrgNWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKFVdk8gkSoyV6Xivt8vc0dc8cwbNSLLuE+BGorzBwUs5+oj0SxYobyl0+m/md6zd7Z01PDcaCUdcfV4Lr/+6ysN+nkQaB91FJIBDdsqr0cy2Zp5i2LInGva4UT4A2VLCfSZKQ9AsvE+knJb7iiRwqP5IU68ceEuDO4BJdo3q7Bq2g7zVXquzaxtltA3JBpFC1QA8wC/0vKDJexqdHnbMPDDZe0eT3Qe3Lq5IrK1yj7E5YOPctwO67JaQEuyB1KoDpR9Oh1U9FSVCHStqDkj2zty2fhs955wc/86nu8lkFmkRU/oFfjy5IcFzs3S29yz3cUdYQAmMGQaUstpr16TdIRibV8hkQzDDphzc6mHcM/pQSf+006vOtZ7vtf3OaB+b5/ff6jGeC9svIoOIMiBXArbBDh20c2PtVdFDCFGEWs0KuALhbBMlOCu7+v/1vsfhwPQrSXP5q3+baQBRSwiSESNIt9prF9dt6SFWfnPVUVXZkEECi/QG6vBy8f085xifvL8PWqaePz8JH0XEnkuOIqoklYHOnvZM6KS2xxyjVA7Nwviyf6C/kdNn3pK1Zz3XBPmEkw/iySuhEQ24TfHxXBXVLV6qVdk4YoKFprEBTdnfwPSkdwSwnaXKfXQGsLl2rIQwbUoX3w1nRwn911wIvtzNg7sKf9iJxGNplnWcsDwrTjRxFWWCw+K5EKxgqjFWDEtxddRqrTNHwBKBmUYPVVhG055zg/p7JN8bvjeteVc869WED+6lBkpNpGOXAMLkygiTVUftFrvyQ2jEWLPeQmjQ0iBjBIbQSJ2Es5wQaFA7NJfODvFan3XqNvWuf5bnmneKbtaNiOfQMQIZV3lOQ3FeTueat1beh0V7kLwUATdWFA8vieTiCHSB1MgsEZO7GN6Q6qRcTawhrjJYBdi7CFZNovDJcwDq6V5aGSpzJAylPNwFr0NdaOjTxLNRy/92X2t+RrJknUsdvIuEPIDsIikvlzfniHluFZxzkJlcC8Kzja6iwzMvrdgkZsr3YSr05Xi/dMbGNvc9Nq7YYzRqW50L+Oif8n5y9A+9Xh4+u4e98yn57aJ3kv+4oTMXif5hAZ/DXkz4gOGjD4aBMULcGKsEoieH+KNdJXCzvgJ5lEjBpDQvE3FcwPirboV3ZU6dzy0oxitNeT9Zaeh11s9sgVZkjFrxNiitlBRiWtFq+bJADJ5MJESNL/V2rGnhLy1GmbitHn711sJl1fDx32oByP1kxaDX2VaMzAk1J/CYkbRfzXHmcy57abchs1FhgGwsJOLy8HhSNFy6/1Vt/1nmL01adf0Nn9pWnad8AJlViwkqA5F0LyZEBnth6/o8Ds26nrPQr3RQj+4+M0q/K4yP3viA17HyEzUnw/RU7TDwCzg3PlocEQ3cSphbKIiLgxUNVKwYdPnXbPNBzNOmel/ymFRe14Yn6onyREnsFxnY1aV7VjQCbou6GnCxFyuL1MAUJuWbUH5xm9nXW+xbv8Z/1k/Zp9yaa/Fc9+p0jo1KoOPFH6GSQgydqTgawW0RDLWyWD0D0RGlLMuJS9SCfKA45fkALAUI/1/mU3InBE6kRJS4nuu1Kijc1yKAWVEBBmsxAcDQyTyfbjIbTOCKOJpY6nFNDHOw0VfckylyVcrHME+jwzxwn+f5U5xjvKRw6x7iF7618VWjkH7yMok4AkkLIxtSOqRtAoA/AJYnBbhTwo3BPUUjO0msTMH0WuRiVni5pgc3sPSSH4AzlergBolR+BaZqU4jMc8JW09q+EBbitMl/KTqyGUfITYGBgpPzqtSaOKR/6ZBgFnbusWYvAqN3DQIMS+kMWKsvE7/YOX7IK8L/4Rp49bIUywHNgeyExAyE15flPrZIKixscaqJ557NxabTHGUdMHpp4obeXa4kWZHFcLsOO7zz+Oa84zcC3bPMd7Zpii1omcmQJ0OUJ3OVOwFSNAx8itSA6m8k6XGoaIIKbDQ2qDUfr1r8ozJy3y2j8xZkimYPgKPkjsZJfdyUfrbvEdz3qerHsu/rbpQfaJNAgsogWHNgNIe3yJ0DKrGEiPbRVkvEDpGGgBEZL3j1zDlo8hrGHq9Mg68kRHzieqgKcwRQQq1pwv+Y/aUWM5HR/Z0lg+TPXX2+Z89RfUz57DP6pLz/XxyVtt41vt4pSUb9pRQpokFS5Hkw2Qpwnwq255OE6993bP9ZK8lD63r1fNu340Fe0o8JGABJWdGlIx9KtGeEtdQvdtTZMTQ2lOAFGpPF9LZU4PZExCnEztkts5VrN/N5ck8cj+6RudcnhvCwpZgmjfTlkDojUG+iA5yrcls5hjkOiCzUdTAw0w9RQ08jMxGUQMPI7NR1MDDyGwUNfAwMhtFDTyMzEb00EiMNWgVKYcYsXoeC4y1xawp2VSHSv53dSQpiipiSibG/Ek6MaLTCbFsIQs6WUKnk4y8ewNnPvrkk5+3N3/nqPv4PL+qwYJYkYRcoJXOsNm5cWXwDrUq09xYqUKkLC6kECUouMrirJRfm1h3keJVNLF2pqERcqlEEgJXLHhRvSErwRK+OVX3bIt7fh6LF/z5zfm0Ay2T2rhfnEjeF7w+9rEtPaRjRkggVwtWgoWFf4RiBfrdgYcBoxwPkjYQVIKV6iUdSrcGewB3YEC78ThJM3k1AgTyKHGsvygStwCaKi+HwJ4d6tdNlNf7SmXqV/FW2Gh8a36enXuRBQJisBzmDSrEyreqjr0V1YSSC+J9YoWw7BYGbxUTeBGGXtQuIb66BC0rrNwQwE4gYoGEB2tBqS1ECrlIEKP63WiAXCBT3YMO1aV0Q9VglmViFVCWjuqI45+FdfmeO9O6fNgdW5eXGTzmxPKqhns8epmR2L9HRexPp8Nc62XSjKO7ZZKibi62TFLUzcWWSYq6udgySVE3F/OFjBcWvshYstt9zruP5zs+ut5QzReyH5mS+0fRG9+8RyF9YovftiAtrtDqU4fOCcV4WVhcl9Np0kBbjhGLDuus5di0/kwtx/b0q+yWY+mtrhiHb5zuvatL6Kh5j5qsNICWY4n9mRq49O1vAH2Trl+/roOWY0HxIX81lbwPmvbHytnjpTNMDaLlmAOjdowMQTs6aTm25Je8sIuTzvsVfOt8ITr0xiiDaDl2qx9jP7h+BqAcjj5bjsVUKckMFeYHFD5fOD560f6pBtVyLJVReUL9KM8wW45duv3A+9tX76BcyY2/L6ydsFrPLcd6MmrOUu+agzdVWssxt4gs075tFV6zfnZva2ndn2cQLccQH4K25RgwhKifmsGh8VP/Sy3HiG0x9NxyLGsAU8sx7wG6aTnGrR0y+p+E/fwdXzieIf7DlrPecqxlV5Pgk0+f8gsGHsh4YfpHhWMGkM02gKmNlmxAZbUcK/xxt4XXi5aey0s2Di727reC9ZZjRBvBAlbejFhxB/x/1XJsBZ0Z+18R/n9VhJ/YTUhnRfg5A5mK8CeFVUYR/tF2P/d/q9c3YE7bv44/j9yMJ5FVLNucZRsJa5Z/CmOqWV4cppMi/A++t4nMdbAM2G02dUqAxYbWei/Cv4kRFTBuDGbvoF3iD3tF+Ac9XG3N6RXtmxu+a1ezqg5tDaYIfxij6pz1ozqdF+GPTY9rWH1uTdcFg27uX9XpQLqei/AjVoa2ijqwMjorwu9UtLr1vT/D3Bcunrx+4djcagZQhH8TIzhJYToswv+mhuXgBeJrrgXxLgUbJ17abgDlLCBCYYwIgTmN+m2ZHBq/je9m3/any2W3TXcab/5z1duO+DoCSBKfTCoBKzrZZzOmwblzWYhEXHY/WgsDIC6XjomK5qqaxmpTy4HYYZH2bclVD9SEmnL7WvE5aUMBvgIePHQh4Mtpz+c8G1LRxCrLstcCV1EsKL/6Hx0/VWt74iFv4cjzAe2rb8V3WfxXvbsILlTbHXbxba/U9tnzMtf7o3t4RYvNBwP0ZkH0mvAoRqc32FgNH6qVC1VTOX2Foii5iNq/rNfuxr0n/Cz3maYb/sh/mpJNyJBCbqTIkFJeZ73sL/j+vzF+/1pD9e0sqUamFo4SfGWxVCiOYKhts2zLY//8pE8BmSK/B03e92+KH6vYA8hjVSWpDGWAycqgjMNDDML94WgTsXD0i5UqwPIliIBnp3bOLmDLCnYWMQ7c9i4R0VK50IHbwSVutFyB/ELtrZpsz73uO3aO67RhbWcajffpg1/X4AeEKsZJKPpflokqQ1npjMqS6UdZhJkDH6WVt1qv7KA7dox8RBzDDBrzo0nboTPWBB6oYvLij7+63avIVrmC6jjcHjXkMNWzmFQXqgN/a8hQ7bxU1JIzeFuHxEbj17fa4HOo3vUmTTOT+ut12wsB4GIAXKMAAJoWrTxRbCmjLzLRLHb55Kj6VV1TnOscE/rbP9Jrsi8EYM8QBgD6TxyCOZorOf8tPg6xMbfO+Dipw5n4OAeHVTYf5/rLohHbb4R4Z71utLd+zvg6BsDHmTacKbo5eLgBkAoKCwt1wMcZ1exQxpIJEf75L4Bb/jKryCD4OJ0YtVPTELSjEz5Osu2suteDTnrs9hSv3u2/39gg+DiPhjEpB1gT/SuHo08+DufRP9F/fRoasOrlrSpii8HzDYqPs5hReRL9KM8w+Tj9nX9Lnn5A4ZVbaJbwvYfjCz3zcTwYNWerd81VKh+nXkynnqOL8l1Xh43tdUHUU2AQfBzEh6Dl4wBDiPqpqzj/B/g4XZ1vD7CJtwpcMKHHyxu3byzTMx9nsYCJj9NToBs+zoX6v9/xWL/TZ1ZhfursAfKzrPNxiHtzFjgmqQImjolQUFl8nPCDVxs4bJjjs8r2+l9d7308xTofh2gjWMCqJyNWloL/r/g4q+nM2OhCcVtx4BbevoIgydNHg/C16U37jIG5k15ygSyanGGqRfiihYc4Tgazx1TRnHHtlFmmXAGsmRcFP4Fy5Lk/jkmSrzgbNH3yVvsDN5uco30/ciRHXUgafyahwIQFqadiUYxKYt6ThqNS9TQKPo2QD0ZlfR78hx+V4Rl2/CYj+EVmoSIJUJhI6APsegL2OEStSlVm0alS65w0O9XYrvyctMERtXs+jTzOX3Dvw5m1HdYK1HLSuF8vBd8preO12rr9Fp+v8/ap5aSZmU6Jv/pD4bZ68Mgu5tMaKtRy0n4/Wu/Wj8xr3ouycxpPOhIWopaTZj3swG+je2Z6zeyeeEAsaVaolpPmFiZ7dnsN33fuA8e9k7oej1LPz3eQbUwak+ixuHHXqiMXjuWrNZsZYP7y9bYOL3yXDwjLu75wwlUgMkZFxju+nd1TReyXb53UaGNB2FcgMkFF1Qb2+4e3poC/58mJWSP77ogFohqoqM3twFWPZ8cHrc/68W3Qm7YngMgUFTVq8+XD+3cjPKetdB1mZv72NRDVREV3HrxfH/dPBH9ZqOnQnXc6wOICZqjI//HTwZvXTQvcdmb90l/ORt8EInNUNDPI3PmmV5Fb/hKj2BWlVS8BkQUqGl/t+NLkToc9Mxec4+4dtNseiGqhoq7Pi8aNDI0I3LDr2Zc23Zx8gag2Kqpiwd92u+F2ryleDa5dfrC5CIjqoKKW3gMf1PKcE5QR29o3ML/2dSCqi4pudhlX2LF/PG/G8JAUh+YrTwORJSp6vD9j+vH5Zj5TXjc9+m5V1b1AVA8V7bywd0bDWZ34y5e+TO5Z7Rn8yvVRUZ9TW55NUzT13Zuw7uXxRP92QNQAFT3sMraH618B/F02My1N2uydDERWqOjlhb7eI37t456/uvUP17NSONisUVHNxPfP0/tMDphz2H7k2dwZ64GoISrKWVpndNyFjX7Thhmt+ZBcH4psUFGT6Fvde5l1CFzTfun0I1eOw8+yRUVe0/a32n3DO2CeTb3dJlWzjYCoESqy2hH1ZuuRtX5bcj6dalivRzoQNUZFvIezE9ZP28Zbb9XOZV/t3juBqAkq2qCoX/vjsnm+aYrlzer+sgm+BhcVbd714tYPfph/9twUu17Z3Y+Rki2bcmiSLYWWVmbOF+4GLBw+ZPO5/k7RFGZD22TLNXQmql7k/h0Zx0/xM7c9GH/GNhEfnK7OT5BJpEIKBgFdY9JW6B0qzidSaj0uRiCRACOEVrHXkDJANFCUr0Y+50QFmta+asPn9BUVQftK4f0mteNzvgm1awJRxqhUvgjldxvq7h/SQPiL27q77nVbu7R8ySKhkmUn1xkA5A8BElI5bp/A5qGFSCs2QOcQ4DDJkbM7oQiW6ZXGiREKBXg/sQQ2XVaNEy7woLgCuOWKoEQx4uFH15zjxoHpRUOeud76FowPgao+hxwCLROxXl61DTJiGOC6LDSIeDWZrqdl29B26EQTlqlLES1QgP3LKBEXOCCqNkz0sdLQNmuPfKtX5Pd78ZWwRQ+O9CKclqOPpTgtxyRsa8/VER3sHlTaO+mEDHZSxFRL4JpixB7s0FpEBJK65lCtxIXVNvzjlns+gxPW/0laxWlELICFDHVasMBQR9efbM7/sg/YzD4geug6yz7IimTKPuBGVkb2QckdxcgVP997H7DZVKd63KBoFhdLogViIfsgPZKJrC2L1En2gc+D9wv6rPzLY8/cCS2Pjhcu0ysNA6LizYgKGDcGGinRXfbBjGmPtvSx2hWQ1K+0966Y90cMJvvgk4gxnUZkoO4My9kHrYM+f5iYae2Z33GFTfHb1UP0nH2AWBla+jiwMjrLPlj7PaZZ6cbfeXMbmWfa3knEnwfqJ/vAmxEcbqQOsw86NPw891TXdV4HplhZVgsc9cNAsg+QOU2fvCLC/La1HBq/7dQKgf/3bg28kjc0rv6i+YQCvDeK9KwL9fDX/ODAHd8yEvWEwQ4xEvwK/K5x6n0VgbFFxyv0vVDXbaJGjhPx/JL6vcleNCbRorVL3yloaxeSqyQDGrCcUgm9JZ9H2P38vfNS76m+rzrPr/HlNCHIDu+mCLIjl8vzlIj2j4W+LcEQIBnVIAx24HN6TtEqdmaFAISNCzuhWA6GL5BTL7b33K9f3VP6l/8mf8HUatOi3+CnpQd2M3lalonKA2zf0avpHS+lBEyvst/5zeGGEhYAs2MEDIwovThRyjUD/k1HDt0POaXTmEGXpoguGazqyZUnJvlPOxq0e+rlRbNrSgvrIMk4QBn8BJlcpArdIU6tm3uoXVibijnABNUOmHa7rm3kU36mx5HeU588+8SCajmMqn2VZDj+cZp2DeDK71/6YnKr9NadbvjMHqII2TE3Jklv/UudnVCbBPuXykj7WydkiqEL4zoOzcLofrnB7bFdd7tuHzTUKqX/IXxpYEtYclMBjz4hG1cE48MiLbqeOfGkMQByZeFP5DHCsscgm8OyZmdCMEg0WhGJYbvyX5ikDsq/0tQbgQemowDoz9wpmqClgcF/bFRFc/Xc/NVAgccNsJQv9DaksVw7rIEXQE+ZxAf/p7RpcfA0WhovosnAsYlzOryz/UH3xTUKvw836i/G2xikFypFizj0enk2JsX/eum3sR3csh++u71sa69BFbQxhwHMpRBmI3eKtl8n7RGYK3ok3FJN/arTrQhpbJwoYgwyPGALCerTzayjv5q9KZ7tufnAgbnF04Z1xrMKyp5L3v7ihKxnNLVDYRtMBZuxEwIbahLW05mEM+bNP7TvIg2Y8f6tn+OlyXxiw2CZRBAh4gaOkUgobAGdw9wOuy8W3gfHrDh2rEAiFioHebxYEc2Vgm2KXHNLQIzSM7wnVWNjNbGm1DM7PscWomtKFXwrBl7ysZEVnfv14aKGtD9UwHZ90EhCxKi5xu4n16X/6OS/5PanE/ece7nh3WfkQWT3WXm5vOlMZCVUlE4FprMlRC6bymWA3UtejaR1nzVEzkaFnBw31ODQooRv4FQb54b3dwWljEhdkzijVTyeqo0OEOqQDl7K9iyGaIGRxIBW5kidOljYixr3HScTqePQXI2z4+gHXFqRxBH+TZyjl/cw6ORGieQEljD8qajhro8skFCx4BFgUz1OqWpKLRMXpopMkor2UHZCZ0GJGxWp0BmZBVodhFkp25hCXwFZq7ChL6RetB7nvk/aftUzzXR942P3HqcQAhPwW1EEJpDLlQEFMsRpoQBDHF2oNnBoFiqDqVtPtJbstPCphLL13JFMZes5Ksg3GjzkRG4cO5CLfhm6p+6XEq9ko+Ii59xfdrEAebGUCfIcKQb5JjrItWZlWmCQ64CVSUGixFiZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZizLPXEn3H+L1+/hPAZLQ0bVJlDc4eClHH5F+yQLlbTOd/pv5HWt3e2cNz41GwhFXn9fC67+u8rCfJ5HGQXcRCeCQnfJqNLOtmacYtuyJhj1ulA9AtpRwn4nSEDQL7xMpp+W+Igkcqj/S1CuHx1HRYJJdozq7hu0gk6K0Oru2UUbbkGwQKVQNwAP8Qs8LGlC7ZFKIu3vA1pv7Y4Oy/r5WkVhb5R5jc8DG+VMUuuyWkBLsgfRgFKUfTodVPRUlQh0rSpSOGUmm3HVcGLTl+9ZakR0e2LJIi5jSL/DjyQ0Jnpuls71nuY87wgJKSYwoeURp16TdIRibV8hkQzDDphzc6mHcM/pQSUrMIfslvjz/5FtjRImx0xz1GM+F7ReRQUQZkCsB2+DiKO3cWHtV9BBCFKFWswKuQDjbRAmOxbRT3Xsl/eRtyLrTYEUDX1MDiFpCkDYxgpQUpV1ct6WHWPnNVUdVZUMGCSzSGyiHqDUuwdd6e62rPWBljj3fCB9FxJ5LjiKqJJWBThgjOs5RmGO0hUOzML7sH+hv5PSZt2TtWc81QT7h5IN48kpoRANuU3w8V0V1i5dqVTaOmGChaWxAU/Y3MD09xQC2s1S5j84AtkfRlRCmvS041qeKp8Rzd8IrxbDcWXXxh51IPJZmWccJyz1CJpi4ijLBAVidIFjBVGOsGJaSEGu11pkjYInATKOHKsHvF+/EZ6v5ha03tqnVZsIwvCXig3upgVIT6dglgDA9imaC6WC0dotd+SE0YqxZbyE0aGmQMQJDaKROwllOCDSoHdpKZ4d4rc86dZt61z/Lc807RTfrRsRz6BiBjKs8p6E4L6dzzVsr78OiPUheioAbK4qHl0RycQS6QGpklojJXQxvSHVSribWEFeZHZ9TMrEIVk2i8MlzAOqyiVoZKnMkDKU83AWvQ/ktvzzvNmujdZzX0gWO7e/u/EHo2Ig8gOwiKS+XN+eIeW4VnHOQmfwMwrONrqLD4YlasUnMlO/DVOhrVOboKZtS1vkuvhBrXJDSdjQ++qe8nxz9Q6+Xh8/Mn45P12/64bHo+qOlgTf6b2ABn3RGfMDw0QfDwBghboxVAtGTQ/zRrhK4WV+BPEqkYFLaTds3I+zvZwYs3ui0j/e6+Sa80pT3k5WGXmf9zBbyohm1wjUorZQUYlrRavmyQAyeTCREjS+lYhZMufdXi6hh/luXLBuyaV7DMXjFBCD3kxWDXmdbMTIn1JzAY0bSfjXHmc/ZNlG7DZmNCgNkYyERl4fHs8hHXT1fF7pPL3K/5jTmT1c8q5anfACZVYsJKgMRGSMinSZi6/o2Ds26nrPQr3RQj+4+M0q/K4yP3viA17HyEzUnw/RU7TDwCzg3PlocEQ3cSphbKIiLgxUNVKwYdPnXbPNBzNOmel/ymFRe14InuikR5YmS2C8ysKuTJVY0Am6LuhpwsRcri9TAFCblm1B3i7rf0nrMDzPPjMmPFq3PsTyEH3x0jo1KoOPFH9LnsiCGzlQcjeC2CIZaWayegeiIUpblxCVqQT5QnPJ8AJYChP8v8ym5EwInUg8lwnqu16qgcF+LAGZFBRisxQQAQyfzdrrJbDCBK+JoYqnHNTHMwULk6tUEpsjV2QkY5r/TYR64z/P8Kc4xXlK4dQ/xC9/a+KpRSD95mUQcgaSFkQ0pHdI2AcAfAMuTAtwp4cbgnqKRnSRWpmB6LXIxK7xc04MbMKtnJAE4U6kObmCMIjypyEx1Gol5Tth6UsMH2lKcLuEnVUcu+wixMTBQeHJelUITj/w3DQLM2tYtxuRVaOSmQYh5IY0RY+V1+gcr3wd5XfgnTBu3Rp5iObA5kJ2AkJnw+qLUT9+FHpuWVlnhN23fsZMTIm3ww6aKG3l2uJFmRxXC7Fg177H1wdP2QfmDLjceaDQ8qKJnJkCdyVCdzlTsBUjQiU0qUgOpvJOlxqGiCCmw0Nqg9KD1yI8FNts95q1YlPui+IUZHiV3Mkru5aL0ySzndoko2HPtidnHYzaWjGIBpXBGlDyTitAxqBpLjGwXZb1A6BhpABCR9Y5fw5SPIq9h6PXKOPBGRswnqoOmMEcEKdSe7viP2VNiOR8d2dPhk5nsqfHk/9lTVD+J6wf87vNhl9+SW8MmfLNPfMSCPSWWaWLBUoRNZrIUzpMr257GjG6e2bygl/vSq7LYay7tfmfBnhIPCVhAyZgRpXuTKtGeEtdQvdtTZMTQ2lOAFGpPc+jsqcHsCYjTiR0yW+cq1u/m8mQeuR9do3Muz61wO19gVQdPYtoS9JyEQb6TDnKtyWzmGOQ6ILNR1MDDTD1FDTyMzEZRAw8js1HUwMPIbBQ18DAyG0UNPIzMRvTQSIw1aBWpT5IJ1fNYYKztYk3JpjpU8r+rI0lRVBFTMjHmT9KJEZ1OiGULWdDJbjqdLH32cWW7fqn++08H/eH1M6sZvlxHWR4qXjFMMaf6ZSWLYmFNKPQBNcg5rbU9g0IC3PraNZvg3D1kYjOHoDYa+ZXE0o3V/KURo0RC1U10X4FccaRMpmmoozWf8ygO2LouPJpzzm1xFP6lEQoXhX+JuCwE/zL9e1L+mgVhPrkbNwe6Pm57ky3/kbHadRkW3LECuVgwQkLNGeoj63x62cJ819xVPNPOT0/lM6PfH30UN4jsKAWV6ygRa2pWtKwR0N6tONRRImfB2SHaIzpKTP6kZZmjVDbQKVG7Msq62YcxHI9dE1vdurrz7/eMqNE5TVTHfRUNiHRAITnsSgFJVgcEEtSG7KGzIRl59wbOfPTJJz9vb/7OUffxucJVgwWxIgm5yDOd+bBz48rgHWqV6rmxUoVIWaBMIUpQcJUFnqlHJ6F2K8WraOIxmYZGyKUSSQj0euHFsrTxkt6EMRroVO+i9e4I15wF2e7dJuzZTTdGjfvFieR9wetjH9vSQzoGzowICawmDYuHCcUK9LuDXQqMlD5I2kDQI1bum9TQCQzt0nigx248TtJMXo0AgTxKHOsvisQNClPl5RDY90f9uonyel+pTP0qoYx0cmv+9JL4IgsExGA5zD1WiJVvVR17K6pFWS6I94kVwtJ9qtFuAi/C8K3aJWS/L0FLkyuNP+wmJBZIeLCenEo11UIVcpEgRvW70QC5QFZmQJRDdS/dUDUY155YSZil437i+GfBt89LYPLt0xMw85Br8JgTlxPDDbEkyJgwD5NhmO+jw1xrV9uMoztXm6L2NuZqU9TexlxtitrbmKtNUXsb20/VTxrVoXMfO+/cjGzbBo0bVlPbT43//GLLg7VT/Q/c63Tx1EafzSQHHVp9yoFELOjNgoOeR6dJA21bSCxcrrO2hbkzmNoWBs6o7LaFwpZWnaaeeBu0rUP1vrc6/yoygLaFu2YwNYFaNcMAeq9dvHhRB20LW4evyBVOqxuQaRn23tYqY6ZBtC2cw6idsYagHZ20LaxZ+tjl17tH+dP/TLm7f7kRvtGzvtoWjmBUTqAhKIejz7aFyaebdvo+hBNYcNwxu3bmenx9RH23LezOqLxW+lGeYbYtlF46t6ak2IJX0ED0MbiFVWs9ty2sw6i5H9P1rTl4U6W1LXz0V8qZD/PvB+z1TZ0yaezIywbRthDxIWjbFgJDiPqp+zk0fup/qW0hsbWOntsWesxkaltoNVM3bQvb1vPntfX9yt+UEmHVOYuL78fNRttCC7F937kmr3lLGs6ZHT40sSYLrfhcZzK14nOYWVltC/ftzb4XcX2hx8ETv5UYN5YaVXwKE7Ai2ggWsLJixMpo5v9XbQvz6czY/xp5/KtGHsSOZDpr5FE6k6mRxx6y7WShkcfL+4dPvf/ym19uZO/U0+9WPWCxYgXLNhL2PSiZydT34BbZRlZGIw++75ugL6/mux56ve16QZ0W+Prx+mjkcZIRlT26tYaMewftkgfZa+SR+Sn19NwzVQJTpyR+PtBw0HiDaeSRxai6VP2oTueNPCacqNPe7OsF/+RGQ2WmMxPN9dzIA7EytJ0YgJXRWSOPKWkWl3bsm+KzweiZfY1zbrcMoJHHSUZw9szUYSMPzsg+bz7P3uyxuleud9qEBrkGUBIHIpTFiBCY06jfdoBD47fx3ezb/nS57LbpTuPNf6562xFfiwRJBJZJJWBFJ/tsxjQ4dy4LkYjL7kfr6QDE5dIxUdFcVeNpberBELu00r4tuXKKmlBTfnArPufsHICvgAcPXQj4ctrzOQlzKpqcaVn2WpBBpMSC8qv3OBTZbmXyXV5Bdvy1DtI/8MVG/1X/P4IL9cKuhe3Zus8DVvguF0zo1mtSBV2oYIDeSYheEx7F6PQGG6s9c7RyoWoqp69QFCUXUfuXwU/bz3rw6ld+5teS8J6Ob44TsiyRGymyLJXXWS8dDr5/FuP3T52jb2dJNTK1cJTgK4ulQnEEQ32sg+3ObS1wnhU01Xvt+3Hjhljjxyr2APJYVUkqQxkJjMoQ6kcZRPeHo03EwtEvVqoAy5cgAp6d2jm7gC0r2FnEOHDbu0RES+VCB24Hl7jRcgXyC7W3eju1V9SjEXv52wemjPHdXvMAfl2DHxCqGCeh6KFbJqoMZQUzKqunQcwc+CitvNV6ZQfdsWPkI+IYZtDz3HdPhyQu9J3Se+2OFym7DlVkq1xBdRxujxpymC5eTKot14Hfb/sc7bxU1JIzeFslXD+vI3bbguacnsjfeD90ul63vRCAxRgA1ygAgKZFK08UW8roC9Vs2/Et+0LTnfwM2+g3xa3e1CUsZbotGAABGMoEwBb3OZijeZDz3+Lj8B7OTlg/bRtvvVU7l321e+/UGR/ndAoTH2dESmXzcTb+CHjhbV7Vb6GvY4d3tT5EGAAfpyiFKbq5K8UASAV5eXk64OM86P9ZHr78WuDKhH5PMz8HWBgEH2cVo3bmGIJ2dMLH6VjCSw1+c9Bv/ZIj12L+3j3OIPg4YxmVM8IQlMPRJx9nXej5rb8HJvosaJSd7hqTfd+g+DiBjMrrrh/lGSYf53XeAWnVoW1ckx8ceb2ty88sPfNxWjFqro7eNVepfBxuqjT58Sh/95W1mxYO9bVONwg+DuJD0PJxgCFE/dRDnP8DfJwNivq1Py6b55umWN6s7i+b1uuZjxOYysTHaZaqGz5Onzs1/ljc+zZ/0+ii3v1d/Aewzsch7s1Z4Jj4pjJxTLqkVhYf56Nb48n1B5wOmLvk7eKIb5lbWOfjEG0EC1g1Y8TKPPX/Kz5OAZ0ZG10obisO3MLbVxAkefpo0Ft8pKTPGJg76SUXyKLJGaZahC9aeIjjZDB7TBXNGddOmWXKFcC6m1HwEyhH3uZdL2794If5Z89NseuV3f0Y7fuRIznqQtL4MwkFJixIPRWLYlT+y/xo1dMo+DRGsLhffR78R8j/zLDjT+dMKDILFUmAwkRCH2DXE7DHIWpVqrKQTpVa56TZqcZ25eekbeR3srF0vMxbIpsYsa+KR6ZaTtrV9NydiX/K+Xv2uic8EM56oJaTdqXWXMkc69ceB9+J5L0yj7mo5aQFtH8YmmW/mL9837Tt4Q/yGqnlpM0at2rywKncgNSTjsM6lvb8qpaT1uj58aXiIht+4QGTm1NebCtWq/HRZckSjn/z3T6bD4XNLX7v5a7WsGpuQfh47mmvwO0TlkWNP3CjFIiMsQdGrv2t+eZsrxzbpu+Ta/x6F4hMMJF0Rb5t46muCzKu1HE71EQCRDWwl7ceWhzzODZgo3PfzYqZN2sBkSkq+j30lefHP8YFzlo/7GuvL4NSgKgmKhowVDrvU268W7bA/7f10j2wGIYZKlqzssWtyWv7e0xd2rZ1QMM60UBkjopuBaTF73M55D99+NU7tTrP7wVEFqiowe6Tl5OCr3unDNp2p8PhTXWBqBYqktbMOHTU5Te3dW2imn/caVsfiGqjonexLrVWjgn3XLv7jW+dWte3AlEdVMRJtwu41rea5/qjx1KCBswYAkR1UdHWKosnyKqXBu20aeW9I/dxCyCyREXdV9c+Pt8+NXDurcjzXyYGPASiethr3O/NjX/d2GPPrOoRN10O5ABRfVT0M9LubcuRm9xmzEj0fT1U4g1EDVDRIQFnWfaZzt5zQpo8CeyW9AmIrFDRqMmJo3bsH+M3Myd1yL3HV7oDkTUq6vz49Y4k38KAOeEzOqw58uw5EDVERSmjFYGDp9b2nx4+ZtvC5PQgILJBRX9Ue3GhepKl/65OX41r5I2+BkS2qMhyuG+zjt22eB78fk/eVOyxGIgaoaJJhZPylqZJfBcdPWZ9+t5piHxjTF9i23XN1/3lc/DXEz/d7vnBAdAEFZ3zDj4qKf0ncFaz0dbSvrOWAREXFT2c+jxh0gsTt5UnzxY0S7nhSUq2bMqhSbbMPL/CtF3yFN+tN74OvvDT7D2F2dA22fIwnYmqF7l/R8bxU/zMbQ/Gn7FNxG/LqvMTZBKpkIJBQNfcuBV6h4rzibRriIsRSCTACKGdMDSkDBANFOWrkc85UYGm9fPa8DnX5hZB+0rh/SbB+iZztWskU8aoVL4Itf9vv2jod0GdgOnp3GHcfX/1YpFQybKT6wwAugwBElI5bp/A5uHwXK3YAJ1DgMMkR87uhCJY6lsaJ0YoFOD9xBLYuF01TrjAg+IK4JYrghJFQebzI/zNH3npkjvSqjdsl+NDoKrPIYdAy0Ssl2hug4wYBrjS5xpEvJpM19Oy9XA7dKIJy9SliBYowP5llIgLHBBVKzeGblz7LUMGfL3pcahTv7ZdH93iE07L0cdSnJZjEra15+qIDnYPKu2ddEIGOyliqiVwTTFiD3ZoLSICSd2zuH9jzrYuqwJT71rc7d70hVvFaUQsgLWNESww1NH15w/O/7IP2Mw+IHroOss+SJ7HlH3gPq8ysg8+/D084cPlK4ELrlzyOtC8zjMWF0uiBWIh+2DSPCay9sh5Osk+kPNq+qQ8CeTPv1k9clHw7OZ6zz7oz4gKGDcGGinRXfbBjzVjFo7sbc7LNb+99/6K+S0MJvvAkVF1DfWjOp1nH1zqZzvQOG6s98E0J/utZ+ZN03P2AWJlaOnjwMroLPtg3jKe0cqBM90LuIMknZeuwhdM0E/2QX9GcNzn6TD7oGfjsYEpV3Z5zjEaWP1N/4TBBpJ94MiIEJjTqN92hEPjt51aIfD/3q2BV/KGxtVfNJ+A17ox0vcy1MNf84MDd3zbWdQTBjvESPAr8LvGqfdmBcYWHa/Q90Jdt4kaOU7E80vq9yZ70ZhEi/ZQeZloeyiSqyQDGkjIrIT+tHWqO5wRx+a4rz25ekl+1eDahCA7vJsiyI5cLs9TIto/Fno/7YEAyagGYbADn5OVqVXszAoBCBsXdkKxHAxfIKdebH2OH+r1fF2O28qOzwpPe2QewU9LD+xm8rQsE5UH2O4/WjWI6dsjaIFxzmmzLoUVrXkPAUtlBAyMKL04Uco1A/5NRw7dDzml05hBl6aILhmsqtuTm0GD+x/zSvdxWNg48UFpHSQZByiDXHK5mpt7qF1Ym4o5wATV7vn2Y/WbJ26eGQW9kq6Mb3GOBdUKGVUbrCfVUvnHado1kSy/B7Ki2cOR4c2svVYbh2xo5ppfqLceyM5OqE2CPZBlpP2tEzLF0IXxKIdmYXS/3OD22K67XbcPGmqV0v8QvjSwJSy5qYBHn5CNK4LxYZEWnROdeNIYALmy8CfyGGHZY5DNYVnDRCEYJBqtiMSwXfkvTFIH5V9p6o2Awe+8AID+zJ2iwHgaGPyWCyqaq+fmrwYKPG6ApXyhtyGN5dphTQABesokPvg/pU2Lg6fR0ngRTQaOj+9f/LYxCW5LrRMUHzq+xbdZrob0U6ZoM4leL8/G/D3u0LmYbzN4i12cR7T+tvxDBW3MYQCzA4TZyJ2i7PVJewTmih4Jt1RTv+p0K0IaGyeKGIMMD9iGhvp0M7Jnt65NLL8ErVy9YqJpUQG+FZ1p2XPJ21+ckPWMpnYobIOpYDN2QmBDTcIxOpNwxrz5h/ZdpAEz3r/1c7w0GX/MbRYikkkEESJu4BiJhMIW0DnM7bD7YuF9cMyKY8cKJGKhcpDHixXRXCnYpsg1twTEKD3De1I1R1cTa0o9s+NzDqcBdE2pgm/FwEtenFbRuV8fLmpIC1UFbPkJjSREjDqlxNTq9KPSX/z3f7oeOUM0tgPefUYeRHaflZfLm85EVkJF6VRgOh+EyGVTuQywA9KmNFr3WUPkbFTIyXFDDQ4tSviW1vHKqp9W1W/Zlv19XcK3DMFTtdEBQh3SwUvZnsUQrcWMaCWl6dTBwl7UuO84mUgdh+ZqnB1HP+DSiiSO8G/iHL28h0EnN0okJ7CE4U9FDXd9ZIGEigWPAJvqcUpVU2qZuDBVZJJUtA+7EzoLStyoSIXOyCzQ6iDMStkKGfoKyFqFDX0hJRRvC2YsiQ14473v3b3ntrUuNiEEJuC3oghMIJcrA4rFjFCAIY4uVMc5NAuVwdStJ1pLdtqAVULZevc0prL1HVSQFxk+5ARuHDuQd3o3InPC/jq+K1f3Lj1tIaroqRGEvOEiJshrLMIgP0EHudasTAsMch2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQqViaZRImxMilIlBgrUxJ8stikRkPeGt/YGQ0/+ZeSKG9w8FJvQgn0SxYobyfp9N/M71i72ztreG40Eo64+rwWXv91lYf9PIk0DrqLSACH7JRXo5ltzTzFsGVPNOxxo3wAsqWE+0yUhqBZeJ9IOS33FUngUP2Rpl458JY6zAeT7BrV2TVsKfteuzC/jTLahmSDSKFqAB7gF3pe0JfIakdXS1t45B0c8duR2JLwisTaKvcYmwM2zo7z0WW3hJRgD6S15lP64XRY1VNRItSxokRpUOn4wgtV5G75DzNbBe078AuLtIgp/QI/ntyQ4LlZOtt7lvu4Iyyg9H4eE0qX55EPH5j8NIdgbF4hkw3BDJtycKuHcc/oQyVR31v3LshszU++0HmFqV8LCz3Gc2ELV2QQUQbkSsA2uOF87dxYe1X0EEIUoVazAq5AONtEnawZ6NT165+7fPNabV1dxX/sfAOIWkKQqjGC9F7LuG5LD7Hym6uOqsqGDBJYpDdQY+v2GTXwz0UBWzvsS/nGb4dvZmeMPZccRVRJKgOdO7QxXYjOaVVM9xSHZmF82T/Q38jpM2/J2rOea4J8wskH8eSV0IgG3Kb4eK6K6hYv1apsHDHBQtPYgKbsb2B6iuGgOkuV++gMYFs3vxLCtAUpgy5dvf7Ec7djvzirxQ418YedSDyWZlnHCcuz4kQTV1EmOADrLAQrmGqMFbflc/K0W+vMEbBEYKbRQ3V35J7h1S2LfFYdH/bw97+L0vCWiA/upQZKTaRjlwDCtI4RprT52i125YfQiLFmvYXQoKVBxggMoZG6kWc5IdCgdug0nR3itT7r1G3qXf8szzXvFN2sGxHPoWMEMq7ynIbivJzONW+tvA+L9iB5KQJurCgeXhLJxRHoAqmRWSImdzG8IdVJuZpY066ldnzO4IwiWDWJwifPAajbZmhlqMyRMJTycBe8DuW3HH/Bqb7ntbWuc0dXWZm/fcdovIuEPIDsIikvlzfniHluFZxzkJkcBuHZRlfRwSNDKzaJmfJ9mAp98ScGC4oXrfEviBgr8mw261d89E95Pzn6h14vD59uAaMffM/8GLDf5daZ9CMv37GAjzMjPmD46INhYIwQN8YqgejJIf5oVwncrK9AHiVSMCnty7hFQTvyPAMWhHwyy0x/hqeSV1PeT1Yaep31M1ugFWNGrZQuNyStlBRiWtFq+bJADJ5MJESNL3VJkvRxYV1ifN2nZlcLM+vEOYhXTAByP1kx6HXWe0Q7oeYEHjOS9qs5znxO9wztNmQ2KgyQjYVEXB4enz92MQtzM/eb9eNju8ZOnZriWbU85QPIrFpMUBmI2DIi8mM5tq6f4dCs6zkL/UoH9ejuM6P0u8L46A185Aj9RM3JMD1VOwz8As6NjxZHRAO3EuYWCuLiYEUDFSsGXf4123wQ87Sp3pc8JpXXteGJLkd5oiT2iwzs6jKXVzQCbou6GnCxFyuL1MAUJuWbUG9vH3+u6vimpteWULdPt5avw5/GVqdzbFQCHS/+CJUUYuhMxdEIbotgqJXF6hmIjihlWU5cohbkA8UpzwdgKUD4/zKfkjshcCIlosT1XK9VQeG+FgHMigowWIspUzWZz9JNZoMJXBFHE0s9rolhDhYiV+HLmSJXvirMz9FhHrjP8/wpzjFeUrh1D/ELXzy92xzpJy+TiCOQtDCyIaVD2iYA+ANgeVKAOyXcGNxTNLKTxMoUTK9FLmaFl2t6cANm9YsVAM5UqoMbGKMoWFFkpjqNxDwnbD2p4QNtKU6X8JOqI5d9hNgYGCg8Oa9KoYlH/psGAWZt6xZj8io0ctMgxLyQxoix8jr9g5Xvg7wu/BOmjVsjT7Ec2BzITkDITHh9UepnVJcGRVUvPvFP63fT+snezCk4/VRxI88ON9LsqEKYHa1rrHnLaTI6YNXt3hGFF0qOVvTMBKjzCVSnMxV7ARJ0/lxRpAZSeSdLjUNFEVJgobVBqe9aB8suQX8Hzl98Natj3EUPPEruZJTcy0Vp9juHd1dWpvglt2u3adC28RXNLoUoFTCitGVFEToGVWOJke2irBcIHSMNACKy3vFrmPJR5DUMvV4ZB97IiPlEddAU5ogghdrT8/8xe0os56Mje2rJaE+fZfzPnqL66ed5bOT0xr957vMcW+vCsIFyFuwpsUwTC5aiFqOl+JZR2fa0u+nKdml/TfTLiB60qccqo1gW7CnxkIAFlJ5lMKF0OaMS7SlxDdW7Pa3FaE8BUqg9vUBnTw1mT0CcTuyQ2TpXsX43lyfzyP3oGp1zeW4IC1uChRlMW4JkFeTFdJBrTWYzxyDXAZmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKxdZE3JpjpU8r+rI0lRVBFTMjHmT9KJEZ1OiGULWdDJn3Q6yci7N3Dmo08++Xl783eOuo/P86saLIgVScgFWukMm50bVwbvUKsyzY2VKkTK4kIKUYKCqyzOSvm1iXUXKV5FE2tnGhohl0okIXDFghfVG7ISLOG0NksD77c4Gpi6cO7CQ/fePaWzhMb94kTyvuD1sY9t6SEdM0ICuVqwEiws/CMUK9DvDjwMGOV4kLSBoBKsVC+pGUtrPmfdMmBAu/E4STN5NQIE8ihxrL8oErcAmiovh8CeHerXTZTX+0pl6lfxVrja1Nb8+2uXFVkgIAbLYd6gQqx8q+rYW1FNKLkg3idWCMtuYfBWMYEXYehF7RLiq0vQssLKDQHsBCIWSHiwFpTaQqSQiwQxqt+NBsgFMtU96FC9RDdUDWZZJlYBZemojjj+WViXDy9jWpdzlmHr8mWDx5xYXtVwj0djGYn9Q1XE/it0mGu9TJpxdLdMUtTNxZZJirq52DJJUTcXWyYp6uZivtBSz88NeyS68fYccBu0aPAeNzVfqLeXq09JeIpn/uUHDTJWR60lLa7Q6lMOJGIxXhYW16t0mjTQlmPEosM6azkmW8PUcsx4TWW3HNvbOu1QcWKg96KQkwrpgFSuAbQck6xhauAStsYA+iadOnVKBy3Hnr/i1bBY98o3/1Sf9H0TO9gZRMsxD0btOBuCdnTScuzb490+TsfMPXdalPQWpefjqYz6ajlmy6gcY0NQDkefLceyz1xJDFndJ2D5L5eWRv8zq71BtRwrzWJS3r0swykUpPeWY5Ofp6RWG3iXP/XHwKfNVxZx9Nxy7Cyj5vL0rjl4U6W1HDt83KuFjU0Vn8Ks0Sua+L/qZhAtxxAfgrblGDCEqJ/6F4fGT/0vtRwjtsXQc8uxH2uYWo79SXZpK6XlmJFT/UdzNh51S66/ed/abU/wfGA2Wo5N+Dtk7/hLC73z2l2fdPFDqZiFNlpf1jC10XqyprJajr2o1T/F4qHUd+MN8wcLNu+ayXrLMaKNYAGrPxmxKtCtq6PvlmPX6MzY/4rw/6si/MRuQjorwv97NlMR/tjsyijCL+vl0/Z06wt+ufvaSnMKfXaxmG3Oso2ENcu3ZDPVLF+arZMi/Ic+2RbUcGvpt8Wii/3y/bn4IrP6KMKfzIgKGDcGs3fQLvGHvSL8Y+6Ofz1E4uC/+uLUQe2bD8AX3tBnEf5wRtV56kd1Oi/C33HFm7oDasz2XFQoiIqc1d1Kz0X4EStDW0UdWBmdFeFP2Vj9Rv0qFv6rr6bdM8lzqWcARfiTGcGJzdZhEf4p0nX3F//SyCtp/451vWvFnTCAchYQoXBGhMCcRv226xwav43vZt/2p8tlt013Gm/+c9Xbjvg6AkgSn0wqASs62WczpsG5c1mIRFx2P1oLAyAul46JiuaqmsZqU8uB2GGR9m3JVQ/UhJpy+1rxOavWA3wFPHjoQsCX057P8V1f0cQqy7LXAldRLCi/evG7yE5RvpuC9p441SL+5EV8o7p/1buL4ELtfXfz2hWzZW4Le5uEhvQYtqaCLlQwQC8DoteERzE6vcHGasZ6rVyomsrpKxRFyUXU/mVcw87dq0Xedc0/c3f/qA3V8Ucp1TyQGykypJTXWS/7C76/nPH7D12vb2dJNTK1cJTgK4ulQnEEQ20b4yND4x1iPwWutbz46vSEFrfxYxV7AHmsqiSVoQxfRmV00Y8yiO4PR5uIhaNfrFQBli9BBDw7tXN2AVtWsLOIceC2d4mIlsqFDtwOLnGj5QrkF2pv9ZeX+bWqjd3ovUPx6w3540M8/LoGPyBUMU5C0f+yTFQZymrGqCxzg5g58FFaeav1yg66Y8fIR8QxzKAU000/8j784revcy2Hle5Hm1Vkq1xBdRxujxpymOpZTKoL1YHfb/J67bxU1JIzeFvnHF8+rZPnF5QaES47YtnERK/bXghAJAbANQoAoGnRyhPFljL6IhPnCg90bHrjlG/e1Gpfm30sWE5YynSb7AsBcGYCYIvleszRvMH5b/FxiI25dcbHydzAxMfptKGy+Th3jM6dbzi/m+fGTW83OO8ZG2kAfJz0DUzRzWkbDIBUkJOTowM+jsXfLa6/tegesPHzLM+IyJFPDIKPI2PUzmBD0I5O+DhxE946rTu2JihzQ+dBPf8xtjcIPo43o3I6GYJyOPrk4+TfXJU33PGN68y6prVKnuUkGxQfh8uovJr6UZ5h8nFeGQV9TTKt4zE9s/63M+tNSvXMx/m0nklzjwxim1JpfJzXvoOijyec9k2x3P8gvdSlo0HwcRAfgpaPAwwh6qfe5Pwf4OOc8w4+Kin9J3BWs9HW0r6zlumZj8PdyMTHKSW7tJXCx2m1vCjUYfIw/tKrbR8d2/VrLut8HOLenAWOie1GJo6J8cbK4uP0MW31euCb7r4F1rO67TNxK2Wdj0O0ESxgVbqBCat7ul0t9c3HuUVnxkYXituKA7fw9hUESZ4+GvQWHynpMwbmTnrJBbJocoapFuGLFh7iOBnMHlNFc8a1U2aZcgWwZl4U/ATKkfdw6vOESS9M3FaePFvQLOWGJ+37kSM56kLS+DMJBSYsSD0Vi2JUEvOeNByVqqdR8GkepINRWZ8H/+FHZXiGHf/d/fQis1CRBChMJPQBdj0BexyiVqUqb9OpUuucNDvV2K78nLTcS3ZNv1+Z5LnGcenZj2+XjFLLSVvd65hDg7Rf3Q8Imm17aOtnpZaTNmlsMrdrte4+s907/J7v31eilpP24qnpfvvFX712vxT6TihtVaKWkzZ4dataXOvNfnO+//og8NwrsVpOmtePE8vF40uCUq/V2RJg+XCkWn7+9a5L5QteVPdPCQ/Zlskbk6HWbGbLw9lrAnN2ue0YkODcKi7oEBAZoyKXmE1TJ71/4ZWd+OfxlrWM0oHIBBUtGZt1vG9Tc/dCeabDt8FBG4CoBirybLBxs1PWV8/0GSkXt91ZEgREpqiokeL/sXcdYE0sXTsgKoode40dC8XelSSEGoqA2EuEANGQxATsBRv23jtYAb1iwQIoYgG7cm3X3nvFdu36z2x2A7s7uyQSkvx+1+e536d72GX3PTPnPTPnzDlVW7/9R8WbfqtIpWSvtvAgeylc1L7KRQvbCyrRLtuuykqP51cEotK4qPsc15wBymPC/T2Xfd3yq/t0ICpDfFftCyvcPW77JJyybFDxeeVWQFQWF428bbdJOL4Kb/+9xd8eL9hzDIjK4aILq8b9Kr1vuuv00uJA295OMUBUHheVu9p5jGS+pe+hPaFRkaWOPQCiCrjozZvHZZ5utBYsaJNT+e3aOj+AyBYX+XiGx07YqvaJuxzxdN7FA+eAqCIucm4k9H3cYhkvqX//tlahgdeAqBIuelH+0bxWFeZ5xH+66H3p3yq/gKgyLqqQPfH57GeHfRf2vDVFesCrCBBVwUWLt3TMTOnQVBRX6S/LAaUt1gFRVVzkMGX2hsFHf7nPfLOf3/7HhU1AVA0X9e72qmVkvVauS2bf/DHnYCWo5eq4aLJ/mZYVdlV0T+y7zO5iycgvQFQDF7kvUp048XidW8wr62k3a546CUQ1cVFgg7JlFO89efv+STlQmVMVYlgLFy0rk9W1fUxrt/0f56XJwqqHAVFtXOQR2/HlsvTWvgty0v2HD9i+AIjq4KL7xcqOrxjuwVsZadm38YGI0UDExUVnLwxc0r3oQ++tvDS33csSQmiHLetyGA5bNpBcebLV4axPdP+DF3sfejXTAIctbzOZqEqhKUkrM08KV2+7P/p0zbGx5M1E4UilTBGCyCBgakzaCL9Dm/OJlVpXR4hlMmCE8Cr2OqYMUA0U8tXo+5y4QNfaV7DfUXwWtK8I7zca9h2J168JRG5GpeZFkN+2ZtTrASqLIc5LIxaNbTSmarmCRIkK18l1AgA5QIBCUI7bZ7B4qB6vVzZAG3/gMKmwvbsQCSzTq1BLsRQK8H5SGWy6rB0nXOBBccVwyRWMPuOzSZlxRvSav2b8YXH9zkOvk0Og2t9DD4HmigxeXrUJNmJY4Hq3xSzi1fR0PT3bhtrjEy0kV12R4eJIsH4ZKuECB0Tbhok5Vnqq2LWoYaJmHrteNKhcvYcjl7Jbjj8WsVtOSAytPWcHfLC7oLR3whEb7LSIqZ7A1SUSe4hNawkVSHTr1bvJVWwn7HM52GvZZqutfdYXPI3IAGAVYwULDHWcf+5wGPjnv9MHv3X6gOqhG+30wdV4ttMHy/XjSh1PH1hMn3hlbHIcL3mNKLWn3aadBiRLqgUywOmDS/FsydoZ+pHl754+yFhm27D/u8rCyUFbuvT4OXukyU8fbGNFBYwbM42UGO/0QfZe4bBL4TO9Dtz8vurFvGs7zOb0wRRW1SlNozqjnz7Y0jP0Q8rEUcKk8Y8WTV82n9IPyeinDzArw5g+noHwUgrr9EEnjnTw3kkdRBNzkqNb1T9Njqqb5vTBNlZwlscb8fTBorJvuKH8MK/k8mXHnPepaGUmpw+msCIE5jTut93lMPhtJ1eJRT86VHGbtLl28ef1x6STvVGsZ12Ai0j3jQM+uWUk7gmDFWIo+Cfwu0bl7asIjC0+XqHvhbtu43Q7h0DZv0S/N92LJiR6tHbJ2Iu3dqG5Skqggei9hdBb8uTT7nVsm113nmlR9EIjcZV2lCA7vBsRZMcu5+cpUe2fAfq2HIAAKVGD0K+5kBO/V6/YWVUMIGJc2IVIVWD4AjmabJ0EXc9UfB/leWBhnRd+Xf3nkqelC3EzfVrmivIDzG/0VcmkQZn8xDI1VlTjv1tkAMAWswIGRpRJnCgNZ8CfacVh+kM/0mnNoksbTJcsVvWS74Xa2b8auCxQrY/6VKf2kwrYYRygDOFIpUqiDd1hTi2PH2DXq0nBHGCKannDyrUa1qeWcP6ndbMjBz/yMYBqZayq7WUi1aL84/n6NYDLv3/p+/4nRsSMzBFua9l0XlE/+5Ym61/q5IjbJNi/VElb3zpiUwwnxnscBmLkX6pya3i73c5/9R1QdVbQQXJp4Iqw5GYk3PqE2bgSGB+W6NH1zFGgiACQawp/Yo8JyX0MtjjMbXYWAgaJToxIDdvl/8I0dSB/SldvBAz+mK0A9Kd8RBO0+WDwD9la0LN6PFEeUOB2AyzlC70NhZxrRzTwAuhpDvHBv2lsmhruRitGSBhO4PT52nDRl2oJvAWW3zN7nrt+k2xjsF6oiBZx+PV8bcyVqY9exe9x3rr/ZqmJtUcmFtDGZACYJ0GYrfiItl8nmmIwF3RLuGEe9Wt3t4IVcrUkOAobHrCFBEPXuUZXAizbtfeOz5LcuX9nSBtyVkHuc+nLX5LQ4Cea7HHY+qFgs3bEYMNNwn0mk3C6TP33LdoqvGPevfFyuDhBSG0YrJSJgyVcnyiZDGELmBxme+I+ObwPjlmpfLhYJg3RDPIR0shwrgIsU1S6WwJqlJ7lPVGNjfOIdU09sxNyKkN0bVDBt2zgJT9PLOjcrwxJDWt/GAnb9UEjCRFDAtD+mlvPEl0X8hLLl9vjU6Z2fbL7jD2I7j5rLuc3nalZCQVNpwLTuQJEbj3KZYDdS34mMrrPOiJXQ4ucijTU4NBCx60T3w69t4brE2M5cojDB78J5FRtfICgQzpkqaFnMUQLjCQWtK4kGtXBIl7UOnCUUpIXh/p5cnYcvIBLK5E5wJ9RO7i5D4RObphERckShn8KargrYwQJFQseARbVozSqRmqZSkwFmSQF7aHsiM+CHB4qqdAJmwV6bYRV1bQxhb4CxlXE0A9BQnG+apkyE26oeAunXXXpcaLoT0pgAn4VIjCBXS4MKLAhzggFGOI4UT3gMBCV2dStp1pLw7TwKYSy9csT2crWT9dC/tDsIafmxhkGcnHdX951hk5w2+perGqNFs6XDQC58i82yAf9RUD+iAlyvbMyyxKQGyErE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREViYiiZLIykQkURJZmfdX1fnWcldT7419w07P3OPtQEt5g4MXOfqo6ZcGSHl7zKT/el7H7G/tLOm6xSpk8JVn5cj6t9Vs9gtkCjV0F7EADt0pL8Yw2+q5SmHLnnDY40bzAGxJCdeZeBqCbuF9asppvq9IAwf1Q7p65cBbmp4AJtlV1N41bAfpnqDX3nUNTbQNOw2igKoBeIB/MOcFfT2p9uwVX9V9812nMY88M/sXJNZWuNvYHLBwnpKA024O7YA9kIYmIP1wJqwqaVMi8mKFRCkizf35q21/Cfbbutm2755Q14BpERN7+Hw8sXmka4Jihvt0/qgjBkDJnRWlpgn6NWlv7kfMK2yyYZgRUw4u9YjcM+ZQSeDFYytc3g5xXz4gNKbXy5tjTBjPhe0XsUGEDMjlgGWwMkE/N7apNnoIIQrOU7MCMhDJNqGjll4BLrenlhBNbOIy71ynhJ9mELWEIPVjBck9Qb+4bkMXqebLtVtVuUMGCywyG6hH3b82HfqoqXeSrfvf39eujSZHEYnn0qOIWklhoNOaFR1uAuEYPeEwEOOLIB+RleMXwZINZ1zjfD360Dfi6UxoxQBuXXI8V5vqNkKhV9k46gELXWMDumZ/A9PTCLrwZ1BnH50AbF/1ozrdwrRLj+VExrSd7LZ2ZZ9qootXbpM3O7F4LAOtk4T5WXGqiStoJjgAqx4Eyw81xrJhdSf0nhMTWGUwsCRgpjFD1SNzRfkDa3u5Hozc5s49aUcmuRJCcC8aqDwiI7sEEKavCWwwPdaT7PIPoVFjzSYLoUFLg40RGEKjdRKOdcSgwe3QUyY7JGh8xrHD5DuiWNe4t5EdqtWi7kNHiJVczT4NYr+cyTVvrLmPiPZg51LEXLlkBLwkUUmDcYLUySxRD3exvCFqpzyPWEdclXZCTkhyFqyahPDJdwDUGyTrZajKYGEozeYueB3kV9aus67fIvtPHjEBRxT/DLqxmuwiYQ+gu0iay/nNOeo5twLOOZiZPAjCs42pooMoWa9sktKa92Er9DW7yIyg9c/Ge+32f97C9d5oC3L0T3M/PfqHX88PH2W30X+vbb3PZZat56o9de9FGACf9qz4gOFjigwDayxxY7gGiM4c6h/9KoGXDhSrwiSRbErreGRk4xtHi3knXIhSrekx4RVZaZr76UrDrxt8zxZopRyrVr7vNiet5BwitKIXfZXFDJ5SEoIbX6Ri2s7c+khYZCF/n03qlrsZQ8RkxXhj99MVg183tGKUjrg5gduMtPXqDichh5+s34KshhYDbGEhk+aHx8m0O1+Xujx3Pfglc1iFJj8dyVm1As0D6Fm1hKAwEGnAikixZILXn3EYeH3HQq8PfTt19Ij58CPS+uj192Qda36j7skwnbUrDDKBc0eES4PDgVsJzxaK1WpY0UCbFYPTv26LD+o5bdT70sek5ro+eaK78TxRWvaLEqzqNu4uaAS8Ju5qQLKXaorUwCNMmjdBfrjw5oObQ0JeOs9/Xf2folVSyK3UizM5NlqBkckfSyWFGDqhcjT8mmEY6mWxOvvgI0pTlpN0UAvmA6k1+wOwFCD8e65PyR3jMw7dQIXC5yatCgrXtRhgVVGAwVpMADB8Mj9nmsxmE7iijiYD9bimhjkMELkavJstcuWvxfwFE+Y++1zPneQcE0T3qdZJ+tyzPLlqFNZPXimTBmPHwuiGlAnpGt7AHwD0FAnulHEjSE/RyU5SK1OwvRa9mBVZruvGDZjV7/YAOGejNm5gjCJrT1Zp7W4k4TkRfFLSA9pSki7hbyqOXfYIIcZA75ATcy0OlXBJfV3Fu3Qz22xCbsEgt/HFzAttjFhrrjM/WPM+2OvCH2FbuNVylaqAzYHZCVgyE1lfSP0Ef3WOrVGxnXecqPuDLL8dM0j6seDRZwePNjssKLOj9xTLVtvnWnvtqxgV5NF/5quC7pkAdb6G6nRCZS/ABJ3re7LygJTfzlLtAEmwAlhofVA6sGjtrrrvfjnPn9xg7HlBLDkD0YJPR4mfL0r17r1MK13yi+Bg7b2PhzxxuWMAlLJYUdq1Jwsfg9qxxJrtoqkXCB0jHQCiZr2TOUzzKDqH4dcLY8MbGzGfURtNvRwwpHB7+vL/mT2llvMxkj2tyWpPc5L/s6e4fjYNb7CglR1XNPN054YK6cshBrCn1DJNBrAUVVkthVWh29NnK4XSueOmixa2nDyiWmbiDAPYU+omgQFQyklmQ+lmciHaUyqHmtyeVmW1pznaBf4rJntqNmsC6nQyTDJbG4tqb+cIlC57PzqH77g0x98AS4KVyWxLgplayF8zQa53MlsZAnIjJLMhauARph5RA49IZkPUwCOS2RA18IhkNkQNPCKZDVEDj0hmo3potIw1aBWRQ4xaPc8AGWtvDKZkGyMq+ffqSCKKKhJKpsb8aTqxYtIJtWyhAXSSw6STlfvv9p728LNH6v49qTuH3iOf8yvqJ5ZLZPQCrUyGzY7HVcI78lSZ5soVkRJNcaFIychIrqY4K/KzqXUXEa+ii7WzCQhWKWQyf8hY8GLehqwUS+h11dneuvgk/rxto+4fcepuy2QJrXuoJapA8PrEr23ooogaLIO5WrASLCz8EyKNxL8deBgwynE/ejNFJUSpXlozlsZCTsxOYEA7CDjR0wQlvcWqMKlcJAklEaCN5rI/7NmR93oJzfVAhTLvVUoJ2EmNhdun7swqi4Hop4LnBiOlmrcqTrwVakKpxCM85CGw7BYBr0UJeBGGXvJcwnx1GV5WWLMggJ1ApGKZANaCykNEkSqJOEL7b6ueKrFSew8+VN8yDVWzoWVqFVADbdVRx78BePnETjZe3r+T4OV3Zo85tbyq+W6PJrMm9m/UJva/Z8Jcb5oszTEeTSLq5hI0iaibS9Akom4uQZOIurmEL5TmcOr66UYf3KdPbTxewC27MI8vtHFpHUf1Gr5rSnApP+sF4Tk0coVWH71coRTjNQC5fmDSpJm2HKMWHTZayzHLNLaWYytTC7vlmOfPZ7b3soN4a9fMdqhrvy7KDFqO/Uxla+DyPNUM+iYdOXLECC3H3LZWO7L8cwX+tuOJWV2HuVGauZio5dgVVu0cMQftGKXl2Hilw449H664bnMam5T5MyXELFqObWdVzkpzUA7HlC3HKs1dcfz74b2u6RsPnLrY8vtAs2o5FsOqPJVplGeeLcc6TMu8Yv3SjTcv+5/mH9SXM0zccmwAq+Y8Ta45eFOhtRwb3arzzJyrPX02zhv7pM6jsOJm0XIM8yEYW44BQ4j7qR85DH7q/6eWY9S2GCZuOTY/ja3lWEiacVqOtWn9ZR3/aIjPknnLtm54fYEc0zZEy7G+w9pJHlrtdZ+6fE7pMR1cmhmgjdbsNLY2WiPTCqvlWGblhqIGH2JcN0ZYFj1cZNumgk9hClZUG2EArEJYsfJL+59qOfYvkxn7rwj/bxXhp3YTMloRfucDbEX4OQcKowj/riMnRk0LbOc88azb3QmTMpcY8LS5gW0krFne+QBbzXK7A0Ypwn+juX3gxJEezim1hqz9OXMsubKiKYrwV2RFBYwbs1k76Hfwx3BF+GtFHVzbz22D9wzV8iZeky6OMJsi/C/T2FR31bhERqjO6EX4H5V9WG/imD782UeKrVm/y7+riYvwY1aGsYo6sDJGK8L/86W639iAL25L7jevdiT7n0NmUIS/Iis4nANGLMJfxLXu8lcDXH3jFnaLLb9AnmIG5SwgQticZkQIzGncb/vEYfDbhLymzX51ucSLv1074cLaN+StXxvsEJ9SIQOMTvfZrBlwbpMbIpHm3o/XwgCIqxRRYeFcbdNYfWo5UDssMr4tvepBHqGuuX2NhJzKhwC+YgHcdKHgy2kh5BxJL+jBqoq5rwWu4lggP33Grqpny559zY85Y51k8bzE64L37qK4UPf7NG70c/1G38mHebIxZ8p+K6AL5QfQqwDRqyNAjE53WF40XS8XqpRm+oZIwlQStH/5c0umhZcdz2tDR3Xsqk9OpyknpLAbESekNNcNXvYXfP/zdLbvv5JuamdJOzL1cJTgK0sVIdJglto2VwO4RzZlWXgf9Jx2zG6/Yz/yWCUeQB+rWklhKOMIqzK2m0YZVPeHo0/EwsFLrogE9CUOhnundk5dwJIVrCwimnNbdAkOV6hCmnNbdlEPU0Vi/0B7q+Jlywa+bV/SZ/kE3wd1TlwNIPMa/AUBkaNkiP6XuaLCUNZKVmXFmMXMgY/Sy1utlLvRLY9SDVazzKB9mdOdi74575b0cn3No/f+LVOQpXIB1ZHRAjfk8KhnNq0uVEthj0/p+nmpuCVn8baWSKq8OeUUxz+UcsCve/suN0y67IUA3E7HAbiKAACaFr08UYLKmItMiC5fTLowZrnPnsSiD088uhBk0sO+EIB4NgASZ6cTjuZnzv+vfBxqY26j5eNUzGDLx9l2qLDzcRafv5J5uoK9R7KT21Bfj6F1zCAfp1wGW3Tz+yEzSCqIj483Qj7OumXlVgV093dPu7zae/O9LkfNIh/n6SE27VwyB+0YJR/Hd8yolkkjb3ns7vdpZsa7TnvMIh8ng1U528xBORxT5uNcP5JSZwUn1X1GVsb9KN+EILPKx1nOqrwpplGeeebjuPw771P66iDnfYN7uWbdnLnExPk4SlbN9TO55go1Hydg2qv70p4rnJc2rJ42oFyfn2aRj4P5EIz5OMAQ4n7qF84fkI9zv1jZ8RXDPXgrIy37Nj4QMdrE+TjLM9jycWQZxsnHadY3J6jjxCTR6n6ptmOrWY4yeD4OdW1ugByTxRlsOSbRGYWVjzMjLvvm/mtLePMvbOx/8NOCIwbPx6HaCANgJWPFqlfG/1Q+zlcmMzbskLSZ1CdRsC/dV/bkYd835EhJ9yh4dtJNJVaG00+Y6hG+aOAiVSvh6TFtNGeUveaUKVcMa+aFwd+AHHlnLwxc0r3oQ++tvDS33csSQhjfjx7JySukjb8SAcCE+eY9ioUYldRzTzqOSu3TEPk0z3eBUVlZAP+jnP9caSds/2xXVukAiQwoTBLiAez6SOJxmFo1qvzGpMpWyT78js16u6cnRXvPzEn6h2LlgfpUCpmmULUezf/aCkeC8RWsCYHi25H4o/AeljAfaqhcAbtZhnL16j2ywX7HoqsOM5zncANj/I7Nu872xgheIsn1KJl9N1bI4RzjI3KacoBluBsnLIScpsDLm2s/WC8TpCX+lA/m+IcZMKfJwB00/ABCORAh2EGD1poW+qsAoYJ2gasrII8hfEHtA8eXPYxNOCBRrDl2zOcqjV/zk1/su/10SSVy0/FiDAOFuG7wXBl7HCguimRgeXJnClAW+gNVvacEbv9gCJHnHRqhn1U2HsxqcddjgfDQfGGx6VfJ23X4w+jbdYSgMDCaH8eGEXUwWf4GRlh8C09lATjlO4omdVuStPqGS8KK1+NLecd/J89F+DBEW0HN5cLAx2k9Gz7R64W44f/OZPib/KhSdTu3iHAPP+ebpHYY2fDbYP0WmfJpmdYhtbwlYnWUSpPPqgnAaKw7rG6rm3GvvaHLqdMR4a7JG7ZfW8NpI2B8Kzpz5xHqYdYHrQM4HuEjits6A7OevY5m1vXMwSjBhz1bIADI751VN/DQ9EWnfTapD3qsVzdzoTZGUNOTojRX87PvVKNnAPuuhFAt5yFKssIUPwAVo31HJqdQO1lK5VwREqODEyfHfhvr4jkj5emupQ3Cd1XA0lrAtwtHgqWb1gnG3Ode9i1MGs7j2OM4wbQpGk7lHDCc8Kn5A59KtKlp1eIDr8zxbPcNbdtet0iqf7SISDqYkMU9XVNzYIsgUVKxedKfT0uSV+V46E+TdKL7vOW6STSemib9RVPKRW+/LMGie4MTogBBzIWVA4t3tjnJ/Gb0XdC8Uj1GZPQGmKiHmrzlIM1u0Msn42p9sjA0HOg66O1ujz46xl64ac+HmnY5HFsDumjSn73Xdm/yr+eW2j3HVm5xcVABp7ASHmragLto9KrKzTDA9NrLq+ZCGS/aXmfopqklzm46IbrFSxzt3u/M4sNhlLCzcTOosu1xNMqhJirkUIAGPlF/chg4dOnTj2vse8wWpZzyPez2K7YeORs71zzRt/KYtlcq555IkXMl2geUpJu6ojx7frMWOs3MkjHrs0qVfuO5ubtDuV6e9WowvSY9aTxXpkdvxkFrhJrejMg6neXWCgtcp3P5j+jUuAW9PPZuSfBxftTsBrVOJ1VujDqdtrlYgQmhkooHy9DT4NKTST7fRwu95y5wON+g+KttZG0E4bdyf6tMJ5UqDdAXUQm1iSxA2QtIM9YI9SjTqTNGHMdiK/p/dPeMmZz4t7w7vz0DRr9VpJNqhgyAERjTLBgNWivUp0hnxdwinbkGAInSlnsrqo271t4n5fz4cO9m2VNNWqBzvgM+VpAFOqc7YijhBvUXk0GtfH+OS4WO5wVxbR4cSjoxguwOW/DR24nlNbEGBJSckhoRqeQPHpqglQIyWF3ZnKepH5qucV7cJ6G69Y9jfSjfoMuQ1VUX2qAcNVYFyFy5MxPuxEByw1GHYP2xqL/oodq8MdSevz3bK+Ts4gtKE6Heq1wWBXWLPxn1f8t0qi/4fMVlxfe154uPqzHSVKh7UlG3/JNR/1x6x60ciZ/rhuMzMiO25Aw1EerloqmoF/mTUZ/xtvnby2tmeU2yt4/vu2200ESoy1ZRUbf6k1GnFkA2EeryPVTUizKh/nPqro22Dlb8vf2qrtys9EYVtCQjX7Lwkde5Gqf1wkPPVy7ZzZ/59uO5Vg+vVTdQNc6PyzZ0//zuo+/abe72/n1rPtXR52bTSGwnqkaK/ZEaqRw9tGWb7nbue1eur1mldvViBtLIi/OB7oOLdOenrmv80/mMYp8BNCIaRtVI8T9SI0tdv1TvNJYnSE7j9V3UL5lnII0MnTB2aFJKlNe0HbP73310uaMBNJK9iKoR6z9SI9R6sgbSyG9mcrD6TNupGinBpJHuD+74Fpedc1uXkm45YW9dcvWWkgHh0tBILgwFkdUC02aZsjJq+IaGwkwasUyWG3PBo3NIXJfXkjvdnhzuPq3qNnuLh5duM70CAlxddw0AJhnTjnE4gajMilh7IJ18rIAhuNJYZDBSATN/Q9EDyPbSpO7bZkR4J58/bN01rTo5hoQOw+kwfkbcsuP88GzGX3swwKNf9LLOBa0bA7CKhlgtR+00uTcXcpxjjul16FmjQQU2KpC4bIsqs7DjsGDB5spJNo4vx1yhZUSH6gZMQQPe4Ms5U9m+HIwSM8iGxkagHkdEbGCZfLbOCU0/dfq0pVxX9/WT9ndo7HiOvKuBFdk3FvzRk1gH3kSTwE874FzQDCPNjIDFOpgC9mO+N/JpcXOs94GeFgf8Eqs8/U1LUdBkdAfcFGQ4I9Kt4FYsmBA4wZQ0Y4IZ4F7veaW0x86bQ0TinhXnTiscgvk8L5OFYD7PzSx8gim6Zqlt9V+egnltLv418u/qdQ1DMEUSI0b6DzjqlnRZ0GOB+GywAQjmKcSKcZ4vn5dpWIKZ0TfMc2iQyjOpaI/F6U8W7jchwbizfjkYJX8iwbi9ulZ09e0q3rMHChTHFhVvajqCiZ/LBn8v08BvAoKpmmbf+NKvUK91V2dUbPnlzEPTEQxmChgJBkwInGBszJhgphWZ5iZOvOySvj27fKWH5/oXDsH4fWMjGL+vRiCYPY1qlb6/p43znJajnIpsiPjHMAST2H1x+YwHZd1mWMXO7fGMk2IAgnH+xjbPc74amGBe/+rWaVqfb7ydnueOf0oJfW1Cgon9yvblYJT8iQRTUhzT/J7rdJ8UJ/ngsq0STEgwHFb4d3z5XyGYBmcmfJFX+CmYeGdi7L37Y+uYjmAwU8BIMGBC4ARTiolgYhfMiXrp+dlt6bDK6pUzm5OtezFXWPE0Uvfcu3aaG7hqRYSEGwJGADdKDc8pK2XiYEm4QhYChgd2bikU+znsDHOkOEytUw7er06Nb7y9XIW3tcKTGMuHZysWEymCh0pCtDehXp2eu6O5rmt6exMhhysFA99SgDq1BCDmDkXk4kGIIAcjcvHgf9RcPJ+pt7sGHH/hPOV0crT1W99L1Fy8yT3jJlxX9nNfnhG74vHy2V0JuSWngD21qb8YkavHaLVgy0dcjehskv2lI0SOXVzS/13S4FWzdcMKoi3DlzADenWGel2NOv6RAc9aSYXGNGbEi9rIo2SygWrwDfIw7ccWy/03RrljnDr6j0PkDDLpqoJr7mwLjpJFRqnQKYMHfHfmnNs91y0meubFJb6X4lhVVlygeRL9TBMhKAylRQ9hUxqYjKZgICuRQGNQ4S0TtPMe0w0xR5nIph58S+iXSuVqiQorlQx+BclgInU1tlfAC86ZdOGSvwZ6XSpbtSVVV8W9oyJhgqcWfEqqOPytTnSWcso397Po6xlRvN4z3ad35/U9q3B3LuipGKDUjKFsSh0ko+V+siXIlsEHu0TTVBcJHm9neKOSVWuKJg+M2Nzrcsg61oFuBS0d/QgRdtXgTpYjbpcyeAhKVzphQxyn9NJ/AKVvmtqu+dq+1/i7akeWO1X70nQjUfqg1myUPqjtf5SOTpauvmn0gn2TXGLqZLhldt3b1ewoPbo1Kzu0+d+j9GjewyWTR3NF649bzj+y6ZbIDCk9ow2r9W/7P0PpxV5G1nFu31ww0X70zOV7110yGqWLAqf027raynXF4H83V0kb3c0AlM5px6bU2HYGp/RjnW72XybezN+hHHq3x+vz9mZF6ZhdYqR0MMRxSi/zB1D67gT+zCSf26Lt4Z+arNrcepaRKD0j/hgLpWdsPPYfpSPL6379JRT0lvhuEl9MP7E0eYH5UTrUK6Mhcd5i1KQJs6D0fiM3Tyhfc5zr1gtFM+b0E5U3Q0rnbGZTGpiM/yuUPmZGn7WpmS28pr/wfdGUY9PPaJQeWingi0XMWNdpFvtU8rpe0w1A6dEbWGfi+mOGpvT1dSNiQq7P5C1xfhjdPm7UdvOidGiXGCkdDHGc0sv+AZQuWrp4eb3Aeu4bPvXtIVhm18FIlO60PJOF0p2WZf5H6ShtxahLP7g62dZnQ7cn8y8qB3YzO0rnQr0yGpLsZUaNIpoFpV9vGTfknO0k/vovVtO8hdcamiGlRy9jU5qTcZVmSkoPHvFR3ryYpWjKkqvNrkbMv2w0Sp/dq+LM9BXFeft2nnuc1T30kQEo/e5SNqXOX5ppaErfe2PSFXHvIfxDpzI79Phu+dWsKB2zS4yUDoY4Tunl/gBKb52jKm9jk+CSlpM0dH+NfyyNROlVLbNYKH25RdZ/lI7SVk78wYND7h73Wu7vNTZzXNsKZkfp5aBeGQ3JUwuj1nw2C0q/MlvtIswo5rrgtKdqxe3TH82Q0jMs2JS23LhKMyWlV2l4NClp/zX3GPHgnv/KVl8zGqX/3WxGHVX1I4LU+89FPqdPzDcApStZlepukWVoSm9+uXa03c32btOnv5ns1XNdNbOidMwuMVI6GOI4pZf/Ayi96ZBZew9nvfbc/9C/uzz7TQMjUbpLFzZKP9b5P0pHaqtsQ8WOUTmNRfNa7K8UWvnCKrOj9M5d2AxJxS7/e5RebmLLztZ7G/KnSW4PK93Nr74ZUvrLzmxKA5Pxf4XS22UsmVj3mcJ3523p551T+1Y3GqX/ZpkWNqWuZlVqZGeDU/rrk7ZnGtz1clm84MJ3p1PNn5sVpWN2iZHSwRDHKb3CH0Dpo788T7y/YbIo7W7rv09u8UgwEqUfULFRemfVf5SOdsBWDLr5dcEm/iLbyi5FjqvY+cEUlJ6sYjMks1X/e5TucNWv3s+vU9w39m0+4JvL8+5mSOkhrErrbFylmZLSh91MGP+Tc987pp18y/4lXesZjdJ/s84Xm1Irsir15TCDU7qPY6W/q+0Odt6xYD2/w5jk3WZF6ZhdYqR0MMRxSrf9Ayi9m5uzR06fWa6pl+5XWbkubIORKD11MRulj178H6UjtbUv7di7hx3bOk8dYtev06gbB8yO0vcuZjMk6xf/71G6uMW555PELvxZY8cu4B1pxH5K1DSUPpdVaaONqzRTUvqqlqNvbXy31SfVk1f7UnDqDKNR+m8WimRTaiirUv0XG5zSpzRZ6nOvwVGf2QvnLDx49+0Ts6J0zC4xUjoY4jilV/wDKH3j0jqO6jV815TgUn7WC8JzjETpd7ezUXrs9v8oHaktiax24Jbsve7pbodbvKmVMsfsKP3mdjZDcmL7/x6lR8q6t7Hredhl90yHYj/s+/U1Q0pPZlVarHGVZkpK/zv9he3BJ7Eesw7+8/pUrweljUbpv1lpmE2ps1mVOnK7wSnd66qzvXXxSfx520bdP+LU3dasKB2zS4yUDoY4TumVmCi9xUb/zL5JCa7xG8uePjL+41JyHSk3lSJKSWZ0O+10UORtGI5dEihk4IvgJaIdO7JdAo8bBp8LO0G5qcRqdbhCqYQdM7E3VVt6uBDDp3HKhO1DM3u7TF5Q2Sqtyc0BQETQ3K5W46OXXkgT7W0t86iR9dMdiIjZs1ve8aHoUUPB+kUlJyyN+9oMiIrgoqcnv7y3fh/mPiUtu3nbsx9kQGSFi9Y36N9JGPPWJe7l+6Fjvh2vA0RFcdHjMb7T01o28Zzf8YHtxo51Y4GoGC5aUG1Sp4Q9Rbx2qj2LB3Y7egiIiuOifodrtLh+x94zdkN65UfS/o5AZI2Ljg65Pix5zzf+wc/lnpxxHvo3EJXARROrd77Q+chXwc5mlvJ7scJ+QFQSF6VccFw8LrOP67S7iuia62ZANGxw0f5Kzxc8Ee9znl+h7Jl5Da9ZA1EpXNQxW7WLd0AlWBb02SZl8MmTQFQaF90ZcuzdTfeRzhuLLr49dV3D0UBUBhcJjt9qXuQvG58NcVtmtT9aoQoQlcVFW+Zu/fK42nffuJMLz4tjV+wDonK4yHWlZVajAx7eKd93bforbgT85PK46ET87DdrZCeck2VtzrZf2+MlEFXARacP+yx9NvSS77S+Dbc8Ejj2ACJbXOQxp0a1VNe+bos/tLlz+9/HF4CoIi46K5yW9I9lY9HMt7K02o0PNQaiSrjoRflH81pVmOcR/+mi96V/q/wCosq4yG3qwd0Tn7rxFrcuWmf37c9QlVVw0cKa0ruf/EcLZ/UJ2i9r6HceiKrionXzHg1PrZHsvHNa9Z8lEm0CgKgaLqpz4cbw6FJePnP6dbk1qt/5SUBUHRct6fR4cMfK/4p29Z/VKbHapVNAVAMXXXiwznnAoUTPuWGC1ycfbocPrImLXiXGVv8xsqhL6rxDHco7nZwMRLVw0eZ73Uck/+XD33up6CSuSxc4emvjonGnB0lW3enFn8xvUnm5dOs7IKqDi94//rW5WucEXnypjmdeLsuMAyIuLnp2emn3i3uEvCWXEtN6pwdZW3u4DCRZo7rgP3TX6JbndkvauHvNXlpRFJaUVhZhNmhWkGrXOIRd05ioykwmqlJoStLKzJPC1dvujz5dc2ws2bMQjlTKFCGIrrBMtRYb4Xdw8S6wgExhBcIIsUwGjJBaEhYhgQ3FdVplUA0U8tXoTg8u0NHOl4PHbo5kQfuK6D0ZbS/kWB3J0qcjbDltR1iJ5kWQ33bIdklQ5UFdvZd6HfyWWeWftgbsALsvc7pz0Tfn3ZJerq959N6/ZQroFsCFV3MIUAjKLfjcVMipSgYIIysOsw/cxl8ChoZaOhz2yg1WRCgVaimUc8H7SWVYlU5inHDFKjCSIhUR0mAkikOz1z2T9Tnks63x7fPOAweRCwGX0P4eGpJ5RIb2GyBcVqxw5Rw2iWtMLRpoUdCigfb4RAvJVVdkOHCaI8RDJVzggMC+voNhH3Pm5r4pmz5YV4+5Lly9qfSCm/zDnUj6sw7AH0tTX67E0NpzdsAHuwtKeyccscFOAs5Cf+DqBoHlhRT8JNH9WEIFEgnW+3UvP2zqvV0wu/2SmAmSww3IYBHPpIOllRQGWFasYIGhjvNPFSb+CapjOXTxznL8lDjZm07jrN1JX1VW29hY03mdzkPFGTBOscjtiYwzERia4K8ADPAAbqg4OFKhAsZGAVbiUjB0ZdgvcMB/ES5Xc4PFcu5gCVcdpVTKpEBDgxVACO7XPDJKDm+Fu2hyuNSRSUeDH8EuOnAF4WJ5mATTb1+f/lwlsTMFmSFSERYmA7NDEjlCIpFjPxM5QsGNAINAR26keuissNHGBPUHdK1abCfkXIEKr4Tag7sLuHKpflxZPpcr8RdC9046lrU6ouZk14Pr49ZaOBaJMyBZUi1QQWsVA4QuQITmoqbEU2D90/Ujy3qk8Yj1v9MMPRwwKUMHPP5mS77LukRe9OeDLVMtFnPJew4Mw4K4bvC1NEAlkRUVMG5MXMe4GIf4c7ebPrWMW3uEcgNVUZLm2Cwma0uqzmsX7JwcnLjjuS0cnJogVZYVXv3WhnPhHqu3zhs2fkD9RuSq4z7aB9EbrueRFYbqJrGqTm4a1eXvzrC1y67lpwALE0gJUGtqpSRYGgrNu4YFkOoZ2Wh16I0WK90O/lW0wrpxR0qSjRD2PLoR0lw2tFJiHXAr445SipMTZmVoXgobHo0CIVkBRIZLNLyoBzDHJhd7fWTxDd+UViN+LJtxfTV5mYY/mL5MIwSFAU4iKzhLKeBY5gNOYw1L5TK4Pug0qFDywy7pCffoll98bnT+NZe8RNHGq+hLlFxRYSA0iRUhMKdxv60qk992cpVY9KNDFbdJm2sXf15/TDrZGxUBH40b4CKixyuZNg74ApVE463J4L24JwxWiKHgn8DvGsUF2KoiuUo4o4Cxxccr9L1w122cbsW6KPuXrBvO2u+ge9WEREfMs8GyMD0bYH6Tj3CdlEAj47NprhPR8AG5zYC9QB5MkF87r/Xfc64m9XOPDuy9bN7xG9NYv7ZoAHwa3YhpLufnSVHtYwE9qRyYwpWN9z2kDVK/5kLO5myaJwUBYyLqqhhgxLixC5GqwPAGcjQZh+9RLXseMclny+y2TTeFXQ5lBa6EC/Ew+jTOFeXbl6nq/ku7jrznr/lQrUhQy/UFrXYAAVzICiAYcSZxujQcA3+mFYfpTw7NCSvBolsbTLcsVvhSqd02P9LsPVJ7vBl7fmrg5QoecmBZgTKEI5UqsGTP86xiPH6AXa8m7EFyfR1oiqq3ZI4dtWjVW/6e1AqBI2s6PjaAqoewqjrIRKpG+dfzuzHuPCF7U4jy8AFSua9m5kyYn+7uHZ2xwe2c+Fo2ewwRPo4eQ8SuGnwv0BG3YTtQMcS7jtgUxIm2GhPR8i9VuTW83W7nv/oOqDor6KCI9DUVYZvaSLiV6iINDZWoJAAaNX2XpAgDto4CRQRQgaZZLvaYkNzHYItNTZskuFEFc4h0YlhqGDD/F6apA/lTuno3YDJMyQSgPwWT4S51MswHkyE8k5FpddzB44nygAK3LxRKiQp6Lwo5104z5tVcgB5GzNjfNDZPDXe3FSMkIWjS2b6kf5Vg6xyfA6G14hImbKhPtjlBWL8cus3Br+dnc5q+eFOk7IEf7lNcGwx6fXj25QLanAxYIQnCbMWHMXLq5l9TDOaCbjE3zKN+7W5ZsEKulgRHYcMDa+eFxHJR1NYkpyO+rouODaux/4nbTRKWNrnPpS+nSUKDZ87Y47D1Q8Fm7YjBhpuE6kwm4XSZ+u9btFV4x7x74+VwcYKQ9G2l/SVYygrXJ0omQ9gCJgfcnrgP5j1hY1YqHy6WSUM0g3yENDKcqwDLHpXuloAa9Wd5T5oWyGId0b1rJ+RUhOjaoIJ52bA93bGCzv3KHlgLObiLK1FjeXcYYkgAdu7+/mP0pmTP6AjfO4Gv5RR3G3sQ3d3WXM5vOlOzHAo4nTmwpA1Ebj3KhZjeTMj5fozmbhOZbjoiV0OLnIo01ODQQsJnddYquefVR8K0GpZFUxSbMkjwlcIHCDpERJYaehZDtMBIYkHr0jGTJC1aB45SSvLiUD9PDpCDF3B5JTIH+DNqBzf3gdAJDpOoKN3c4J+CGu7KGEFCxYJHgEX6KI2q0YdIKcRUkElSQL3Od8RnQQ4PoddoJ2wW6LWxVtUHwxb6CprWk/jQD0G3myjbd+nRVbs94uuP31LHocFgSqADfhUi0IFdLgwosCHOCAUY4jhR1WAiKm5Y/b3T58zgLzq6TbTiS8oY8vdAJ28UmaAYbDHTus+WB8aYSuO+jsJT3JDAUq0l4kXoGTX52uAlw2MzA+uW4R9SrW7+vZ/v5oLaYOCbLoWQc+EeERVyZ+A5xGghr2n2kFNz7QwDuYfVpp9dx8Xy1h8J+ris+JI7BoBcfpwN8gHHCchrMUGud5ZnWQJyI2R5IpIyLTiMSZnERgsiKZPI8kQkZRJZnoikTCLLE5GUSWR5IpIyiSzPa8VrOqTuELtMvtblwfai+5vRUujg4EVnllDSOQ2QQlebSf/1vI7Z39pZ0nWLVcjgK8/KkfVvqwkeCGQKNXQXsYAQ3SkvxjDb6rlK5SFYsCEYfwC2pITrTDytQbd0AWoKa76vSAMH9UO6euXAW4o5CibZVdTedyyYgq5H9UobqKGJ3gFHUqlSQNUAPMA/mPOM2m2r2zf8UXFeeoPX96qLY3YUJHZXuNveHLBwnnQUp90cqkHKAdKQo0g/nAmrStoUi7xYIVF6+LakZasnvr5rZlzzCD5+JsGAaRYTe/h8PLF5pGuCYob7dP6oIwZAyZUVJbuj9M0HNj+tuR8xr7DJhmFGTDm41CNy2ZhDLd3etLT7WOSl85LsrePOlztqZ8L48CB7fBAhA3zwrJz8qH5ubFNtNBJCpIEnRBEBM6kAA5FsE9oZeL3v73/KDvNcd+p4+U3vxn43gygoBKkPK0iuR/WLEzd0kWq+XLtVlTtksEAls4HinWi5fdDn7W67ji7d5cr71oQchSSeS49CaiWFgU5LVnRqHyUcozpMxPgiyEdk5fhFsGTDGdc4X48+9I14OhNaMYBblxwf1qbOjVDgu6y6ESH1wIausQFds8mB6WkAXfgzfMQGlBOA7bN+VKdbmPfV8hjbkxd7eCzpPeCG3/IzM8mbnVj8loHWScL8rDjVxBU0sxyAxYVg+aHGWHYzIacUes+JCawyGFgSMNOYoTof+91nzv5X7hvHLRvRt28UeSVYQgjuRQOVR2RklwDC9PkoG0wP9SS7/ENq1Fi0yUJoWMPxY3gIjUvzHR0xaHA7xGWyQ4LGZxw7TL4jinWNexvZoVot6j50hFjJ1ezTIPbLmVzzxpr7iGgPds5FzJVLRsBLEpU0GCdIncwS9bAYyxuidsrziHXEVWkn5Aw+B3Ctjkrl3QFQr3dOL0NVBgtDaTZ3wesgv7L0LvWPJeLuPsmJvWp5flNakV0k7AF0F0lzOd+IOuXcXAHnHMx0HgDh2Yaac85gznmeY9wOR8FTWvM++JhAojPVpkH/aekNfVPE725NGTE/nhz909xPj/7h1/PD50ql+q2TM9x806vua3XhbmhBbRLEpy0rPmD4mCLjwBpL7BiuAaIzh/qHnlbClttbOlCsCpNEsimtgjxpX/EVA73ndy7Z6sL7OPI5rmKa++lKw68bfM8WaKUMq1a+njUnreQcIrSiF32VxQyeUhKCG1+kYgadbHx7ZL1q3skz35/us79vClkx3tj9dMXg1w2tGKUjbk7gNiNtvbrDSchxPqffgqyGFgNsYSGT5odH3PH5K1r3shVtiq/4s3enlTUoFSQ0D0BUkMAFhYFIPVZErM4RvF6Xidd3LPT60LdTR4+YDz8irY9ef0/WseY36p4M01m7wiATOHdEuDQ4HLiV8KyiWA1WunmyYnD6123xQT33jXpf+pjUXNcnz/QsnmdKy35RglXd+rMFjYDXxF0NTa2MYFlUCDzmy9W8CfLDP41oPr6xxynnKdPP39l2/V0WefAxOTZagZHJH0s9hRg6oXI0/JphGOplsTr74CPKRTOi8h78gvlAas3+QLg0LBz+Pden5I7xGYdutkLhc0pNEezX0IcSft3geW4OOGBVUYANcsQAwydzPbMPXFFHky6BKwtu/luglDCHASJXg86yRa78tJjXZ8LcZ5/ruZOcY4LoPtU6SZ97lid9ahnvKFmkVCmTBmPHzOiGlAnpGt7AHwD0FAnulHEjSE/RyU5SK12wvRZNFRS5rhs3YFbnnAdwzkZt3MAYxbHziPJiBJ8gyovB30QtL0YtD0YtL/bb5cOoNyLKhzHZplquUhWwOTA7AUtmIusLqZ/Vjf468fPYGI8dHVKabW5fYRBJPxY8+uzg5VvLaH3o/kNL3lThp16vlTqk41m3gu6ZwJrCUJ1OqOwFmKBz9XwWom4XE0i1AyTBCmCh9UHpSuVWZYJbTOIvVj5Xjqg4gFycwIJPR4mfL0rjBqa3XdRlkM+qXg6xFcKP/jIASsdYUdpxnlbxiTXbxV+iBsBAx0gHgKhZ8GQO0zyKzmH49cLY8MZGzGfURlMvBwwp3J42+H9mT6nlgYxkT6uz2tPX5/6zp7h+nh4QJQet3uc6bVAH8dUHdeYawJ5Syz4ZwFJUZrUUloVuT1tVtyzdYFVftxVbEpYd+Hy+pAHsKXWTwAAovT7HhtL1c4VoT6kcanJ7WpnVnr7WLvAbmv2agDqdDJPM1sai2ts5AqXL3o/O4TsuzfE3wJJg+Tm2JcF0LeSNDJbMVoaA3AjJbIiaeoSpR9TUI5LZEDX1iGQ2RE09IpkNUVOPSGZD1NQjktmoHhotYw1aReQQo1bjM0DGWmODKdnGiEr+vbqUiCKNhJKpMX+aTqyYdEItg2gAndgx6WTl/ru9pz387JG6f0/qzqH3yOf8ivqJ5RIZWSdsB2LteFwlvAMvGKOOVERw5YpIiaZYEazGyh2OHRtDfja1jiPiVXSxdjYBwSqFTOYPGQtezD0CmtONYgkTProcSVi6zX1pYvD3xK6XHzJZQuseaokK1nslfm1DF0XUYBnM1QLvgxUSCpFG4t8OPAwY5bgfvZmikqIMBlTZWMiJPg0MaAcBJ3qaoKS3WBUmlYskoSQCtNFc9peGhZOul9BcD1Qo814lW+HjoxoLEyacziqLgeingucGI6WatypOvBVqQqnEIzzkIbCMFwGvRQl4EYZe8lzCfHWYIKO9VCoAVqkQywSwtlQeIopUScQR2n9b9VSJldp78KHaxOxpmVpV1EBbddTxbwBezjrNxst7TxO83NTsMaeWazXf7dFdrIn967WJ/c0MRpOlOcajSUQdXoImEXV4CZpE1OElaBJRh5fwhZYvujE95hSXP3X33+2VrhZl8/hCPyYEfZxo29w1vtw0m4eDIi7SyBVafeRAohb3NQC5NmfSZImAZcM3Rw1xSXr1WdKOm/COXC4PD/x5g/9RAVOpe5XB6kTIUM71VUrkbiJuBP4M3QKC1CLGrK9Fr+JH+QEdp0a0nZCT+jeM1gg4nGza1gxYmfn/TQsRsqVJ1NIMbaKaJSwhEAXLfoaL5YDkkB8+t8uhJpZ9h/OX9L3yZHmr6cPIAUEXzRPoAUFCYPCKSACSvRCSeKbEifV/myRxomgwgFZrNFJTU3/pUzyQS1YMrFcVJROrsDijDLov6MyJxm3beA0d5L6m59L+PfY/JW8jWAfgD0EUZSUkhaGduazaGW0O2gHW6Jc+2UV1hBFSNVYGOZikJsKEIJVTcfrKXrKOTb1Sd3q82Dv9pQtZOZonIjZxcyWFoZxQVuX4m4NyoH7yKodgJibltONFwF+J6QS8jhrcKpEHj9IUcezCVSjFw2DNxxbYv3J/Aj2j2jX/ujWh7D+8lDaP5uye9c9O8jn2wDzPp59jJ0kLQ3ldWZXX1DTK06Ewp1U+GuySq0F1uFQ+Sg6cYKA+oC65Qg5VB/4mU4zAhPCfTlAUIR6puYDU4/NzNVVKnyL8fSeCTq+a9vc/lOpp4ai0aPxyYWiuMqvmLE2uOXgTjKjolSpTQbMfDRsksRrCccE8u13P1ntseHYyZFV6YjLZEDL6TLkSg294O+I+BFxxnKC5VU6YIcT9VHsmP7Wa1ZiAI2kffA9ZJz1q1HZMc3KkTqDZyPFTSYZLJSPotRWZMtsa82DVIXWezSCsIG2YRBEhiVSN4io1D1SX9dBkc3nI/SVyfP3C7LxS22ywvSs9qkiWlwkC/6NUqCJdpbJIzS9GufuMJ0ybCjnuFwD2y1HRxgzg0ta8oFd1RVs3Ahvs4CT2jjp59IlLn10ot7e1x/zISnZpQyt8IA9L4qn0YamV5LdOphY7K+g6GVgKF4icM8qORINVtNMFvRLdKwXmcWG4iuESlUrK0APjslvVVU187vETHk4682mG0/WCT2FqugTFRhgAq5qsWFlfMKrNJfYxi+NLLvhD0Nm5FXvrl7UE9/iIi3wn/q+iGLdRWdWaWBgQPwr/v1Ret4d8h3a57cBkxv4r6v9bRf2p3YmMVtT/8wW2ov776bbTAEX931Z+uOLQjyHOf3mUTR7zfAL5uEvBTpsb2EbCGugfLrDVQL9Lt5GFUdTfruu7M/Zxdt4rn1epb/FQ7Gzyov5nWFHZb1xryLp20O/gj+GK+mfEVOhQfFU3twPH585qUnwDOUJhyqL+G1lVN980qjN6Uf+64ss7z87JFs5/cGbWCIcr80xc1B+zMoxV2YGVMVpR/+NvPa4IXhb3nTF/inW7Zx9WmUFR/zOs4Oy/YMSi/qIx/f5SDLPi7y9uU0aQtIVcT8Z0Rf03siIE5jTutzky+W1CXtNmv7pc4sXfrp1wYe2bVuQ6AtghPqVCBhid7rNZM+DcJjdEIs29H6+FARBXKaLCwoEPp5ZgWzX61HKgdmxkfFt61YM8Ql1z+xoJOacuAnzFArjpQsGX00LIGX6xoAerKua+FriKY4H89KLzp7+/1Pux29ygpoOPlgtXF7wXGMWFohrGgvYWBuhlQfTqCBCj0x0srHZd1MuFKqWZviGSMJUE7V82nju/R4NJtYRTHh6/XqJulgflhBR2I+KElOa6wcv+gu9fy/r9My+a2lnSjkw9HCX4ylJFiDSYpbbNo5y3ZV/EbhbGlHae1Sl+Azn73Jp4AH2saiWFoYzhrMoYbBplUN0fjj4RCwcvuSIS0Jc4GO6d2jl1AUtWsLKIaM5t0SU4XKEKac5t2UU9TBWJ/QPtrY7sbP/m8OtU0aq2V9+O2HlqI5nX4C8IiBwlQ/TTzBUVhrJ8WJXV0SxmDnyUXt5qpdyNbnmUarCaZQbVuBUwR3xnm8fk04s9nh+/3rQgS+UCqiOjBW7I4VHPbFpdqJbCHlsv6uel4pacxdsKtW3Vo/znevz41HE9g3+Mq2HSZS8EYCEBwFUEANC06OWJElTGXGRi9cJx8m3FX7j9teVp56uSFBcKlRn3sC8EoB8bAInOFwlH0+n/WT4OtdG30fJxTlxiy8cZdKmw83EqrXRL21PFwXdxj9oOa/2vljGDfJxjl9iimzsumUFSQVxcnBHycdqvWu0xe9A5YfKicur2qVw/s8jHWc2qnenmoB2j5ONkdyrapMjRx+6LSo8uEjdvbSuzyMeJZFXOIHNQDseU+TjHLsVtsQtx9dybLQ5KWLgjzazycUSsymtvGuWZZz7OHeXWsCIvO/gkT/rid2Nrl8UmzsdpwKq5cibXXKHm4/wda+9x5n0T57kXA+X3OVm9zSIfB/MhGPNxgCHE/dQWf0I+zvvHvzZX65zAiy/V8czLZZlxJs7HEV1my8fhXjZOPg636Kjlj72a8/969r1UROYrtcHzcahrcwPkmLhfZssxaX25sPJxHoTwOM/mVPGe26nSP2utHt03eD4O1UYYACsuK1alLv9P5eO0ZDJjww5Jm0l9EgX70n1lTx72fUOOlHSPgmcn3VRiZTj9hKke4YsGLlK1Ep4e00ZzRtlrTplyxbBmXhj8DciR9+z00u4X9wh5Sy4lpvVOD7JmfD96JCevkDb+SgQAE+ab9ygWYlRSzz3pOCq1T0Pk0zw8A0ZlZQH8j3L+c4GdsNWDM1mlAyQyoDBJiAew6yOJx2Fq1aiyFZMqK9+f41Kh43lBXJsHh5JOjCDvBVnw0Qosr7HuCJ1xSmpEpENWOBnQDl8ZqpIH9ZD8b1Ty0NU7sGDQ0iBgO2SwPAVsmZvBw1FvzYT6z6m7Nto6WPH39qu6crPSe1O+py9LFj7yOp/YpJ7eM9CJzd+cN2waKXOCqpE2TBqJXTAn6qXnZ7elwyqrV85s3p+8J+oKk2ci6R4Z4/JScwNXDVhf0+8ySg1dXqxXW7hCFgLLMcKUwFDs5zB3OFIcptbJB6EekWRvLa15E/p2rua6rtHqJkLObQimJSqpDxZVX3sCUX4JQgTXcYjyS/A/avkln6m3uwYcf+E85XRytPVb30vU8kuTe8ZNuK7s5748I3bF4+WzuxJy4jDqb5dnov5iRHkmJk3bwOoBuBqR2pq1+2iHYVtDRdE+Y7JLZgXaF0Rbho+GAb1eh3pdjXJ5MsAUyjphksaTNrC/40A1+AZ5WK7ByP03ZmrGOHX0H4eoEsWkqwquubMNOESRUSoGx/X+yIYNRw73SS21ldesf/ZaVpUVF2iehKh1jAsKQ2m7WJW21rhKI0ywlUigMajwlgnaeY/phpijTM5ePRe89bVUrpaosKw78CtIBhOpq5XdW77q3/ii56Ic62fPX4bMouqquHdUpHiwTFvAgkMJdsHf6kSnK6d8a339Jl2xKXUmq1KHn6DV+mJtoIAPdommPgsSPGqZFPZO99DS0dt0YFcNnlHqiNulDB6i073SCRviOKW3ZaL07g/u+BaXnXNbl5JuOWFv3RhyrmxAuDQ0kgv7ypJpHfIVU0/rGr6hoXApIpbJ8ParUtg4DxbvdkAC7HC3W5c5w6667ugbE12tuzeP6RUQ/pKu6fZgZCxuD5AK5KOa4dkLORXbFzSPrDTWfRfMTTV8YXTxhSme+/2LNPWJvlBt2bVvVetSG7wgPzFfl9DL9tnRSoKNnuvKhQgdpvezLWjiPcBqNsRqOQ+V+wEW+CHt9csa02hQgY0KJC5e6lYNvUvf9d4p3X5kS1aDO7Qt5VDdgCnofAJf3pn1y8EoMYPtZGwE6hFjs4F1hthKTx1xEDsIPvG9Z63p1/uX5e0X5HEJ7zYW/C/bscF/rJ15ZIgVtFG3ZkbAbGfwJUiNvJEtXlvCurcg+f7XQY0d+374TUtR0N18B9wUZDgjCGa+AzYhcIJpZ8YEs2j16cvLRf3dto/+7C0LGFa+cAimopyNYBZHGIFgzh9Th1ideOQ+eUqxRzP2fnMwDMHEHi1S+nX2DNeEtLQ52VMGtjEAwZSSs83zhxEGJpg5Kyuv+/UtyG2Gt9fpsQMHepmQYA5EsH05GCV/IsFUX/mx6L//3nCb7tTpVtfj9waYjmBkrPC7mAZ+ExCMxHJAsu3XHLdJVtlZTnstd5mOYDBTwEgwYELgBNPejAlG5nciu0TJ6oI4T3lM9c+iD4VDMIMXshFMvYVGIJgKya0P2dVO9kw8Hzj0u70ozjAEE9q5Q7s6Fb/6rlm3apxNVrqnAQhmwEK2ee650MAEM6Nia8Hdi9vdlq3rs7WYz4WVJiSYtqxfDkbJn0gwS8RVBq/NeOUR3313wwU5JZ6bjmDKsML/dcH/CsG0fjt49ZiUCp5r1nX7cKqsZIrpCAYzBYwEAyYETjAdzJhg7q+q863lrqbeG/uGnZ65x9uhcAgmcRsbwQzZZgSCSfXODKg9urnHkhFF5jTd+TTZMAQzvNGVAMt27b3jsyR37t8ZYogVzOZtbPN84TYDE0zXoUHHOnc447Oy6OjX63z7fTAhwYxn/XIwSv5Egum+ucns1VdthIdadOu4teKsfqYjmCBW+Pmmgd8EBCOu+8u7ztAJblvdi1Wt0cL5sukIBjMFjAQDJgROMB3NmGCuFa/pkLpD7DL5WpcH24vub1Y4BLM5i41gQrOMQDBbxzUPPDF+itfCta93fn2x/JZhCGZR1NYkpyO+rouODaux/4nbTQMQzPostnk+N8vABDNI+annv15TnbfV/HCvwu2FLiYkmNGsXw5GyZ9IMKPfNWho8fm0cMOtNU+u/VrtZjqC8WeFv6tp4DcBwXhYbfrZdVwsb/2RoI/Lii+5YzqCwUwBI8GACYETTCcmgtG7p4KdVnuF31Ohxu3abw+PnCha+v3dp2VR6el5eio4HE16IKxcVzSLZ197bkvezDw9FaaN313zijrIc2nQ9h7Vkm7MztNT4XZ4i2f9V931SuUUic0qH7IwT0+FJm73Ql5wKrjMfbwhqqI06HOengqPx/hOT2vZxHN+xwe2GzvWjc3TX2pBtUmdEvYU8dqp9iwe2O3oISAqjov6Ha7R4vode8/YDemVH0n7w15W1rjIpbfdor6Ogz027E9VBt9cBztglcBFrZ4kToy96u2cmq1a4PTBzQeISuKiz7OPpPXv34L/18T+NYK2zYK9ImxwEbf3rwbCppc9lu2eMOHKsynbgKgULmouS0i5vfC4R+LWB8mLDnpnAVFpXDRlxdpNmQuLCObHl2/h3tz1IRCVwUXZ81outHy6xnf6lnh7v1pd2wJRWVx0a5Ojz3eLk257Plv1/nZ+CweIyuGioC5v515/38o72rdVudJfux4GovK4aHGFfxPviN+5bWhevtmX7CKDgagCAW+Q5fLy+9S+S2cm3I53agWRtyUeOL9E0ugFKzwTrng8/56WVB+IKuKihU2qzPp2r7xwec+HsxqdqFsCiCpxGFtxVCYeOH6C8pi3HT/p0o/aRRvlTACiKrhIIfqyav3iG54r//71qKF10YlAVJVQit3n7gOXXPNd2uu5Re/dlzsAUTVcFFp1UclW05q7z3SN3Tx8VmBJIKqOi17Ve1M6otp61x3tNz5JfLRyOBDVwEVV1Hcz2rfZ7BU9WJy04XuxSkBUExclWmd/u+A71GW3z9cPjXuHBQFRLVzkX9pCGWWzRbju3+YtrK4KRgFRbVy0/VtgXBOn087bO5ze+7LI2VlAVAcXrR3n4PPhVqho078vToZ9ajoSiLi4aGOdM+mn/o3lrSqzSLw0adVbWrOQuhyGZiEHJVmzy55bJ9holb66hv+1nQizoW+zkM5MJqpSaErSysyTwtXb7o8+XXMsuf1VceFIpUwRgqiAxeQAN8Lv4BI1S6Vy6BZGAIcYGCG1JCxConPJK6qBQr4aPbMRF+jauxUmD1/NgvYVcXorGrjHu67qVRG0XG5FUM2LIL8t+mTW9+Hc7r4T91jwnvDeLjJgQVADH9KC2dXXIUAhqNy/z02FnKyrevnEbfwlYGhgZ89DJMGKCKVCLcVKgIH3k8qwpRMxTrhiFax6q4iQBqNHyP3VvzrF+3jt+TXv8CjZuEByCR/t76GX8MkVGdpvgHDtYoVr7VWz8OTo5Sb19OTs8YkWkquuyHBxJDdCPFTCBQ4ILCcwWAxrcTDW+mn25Or1Hkfe8bd0tR5xamWnvynVHvDHIqo9EBJDa8/ZAR/sLijtnXDEBjut4o+ewNUlCtMRRRckVCDRLYGLlz16p0MFwc6ng4Lq9ZzwtOBl8AwA1i5WsMBQx/mnCxP//Fc9+7eqZ1M9dKNVz55yja16tsu1wqieffxLs3My53L8XeVD72zrmRFsQLKkWiADVM+OvsZWbFh2zSjVs1Ou3v3k0y7Abe/khZxeH7z6mLx6di9WVMC4MdNKH/ltMBmuevbCa84VhnDvuKZdGnLo2s71e82merYTq+pqmkZ1Rq+e3VCaeJR34avbnIz0R1G35nFNXD0bszKM5Y+BlTFa9exP6+0qS2K8eOsmyzI6nrUihzBMUz27Fys4LteMWD27zIfvy9rEvvJNmHfO32WN9xAzqZ7txIoQmNO439aVyW87uUos+tGhitukzbWLP68/hrw4txYBH40b4CLSfeOAT1Qz5MKOzoQnDFaIoeCfwO8axQXYqiI1daKBscXHK/S9cNdtnE6OE3X/Ev3edC+akOiIcTZYBsqeAIxvoqJuSqCB5k/021bAXiAPBmhPqWX5+0X68lz2Ja0KlA6Y3YoSTYJ3I4pEYZfz85So9q+AnlIOACj8CX4CnjYI/ZoLOYFP9Kr9UhUDiBgXdiFSFRi+QI4m2wh5pbpBqxw9l2Q8+R5x+4SUPC1diJvp0zJXlG9DpivXRa8qLHNb8ir2yYITV98bADBnVsDAiDKJE6XhDPgzrThMf+gtSaxZdGmD6ZLFqj6Pc+8RfV/hsav39Hob3bJqV8CKyQNlCEcqVRJt6RnMqeXxA+x6NSmYA0xRbZllMzaNdzvFXzHkUnrHy5HeBlBtVVbVWplItSj/eH43vVytUqI89hypzPIeC26F/lPMa7Xb9FPDJzcMoQb8EIXtNFcNvnfniNukHTxEzO+uIzbFcGLsxkSM/EtVbg1vt9v5r74Dqs4KOigifU1FWIAkEm59wmqyEljfSKKmk2QRBiwdBYoIALmmDAr2mJDcx2CLQ02uCdxYgoU9dGJEatgu/xemqQP5U7p6I2Dwt7wJQH8KBv9d6uCfDwZ/5ZsFzU/hifKAArcbFEqJCnobCjnXTjPG1VyAnqYJBfybxqap4W60YoSEoYJ8qVWZ9jy3Pq7zg0r0EAzuYUO2MUFY0gHdxuDX87Mx1ytm+C18+chrU7Qvb7nPxsgC2pgMALMDhNmKDw+uUzfrmmIwF3RLuGEe9Wt3t4IVcrUkOAobHlhOFHoV8bnLMJ/rs4RT+g/hJYy0I5e3tMl9Ln35SxIavJyFPQ5bPxRs1o4YbLhJcGYyCafL1H/foq3CO+bdGy+HixOEpG8r7S/B6khwfaJkMoQtYHKY7Yn7YDESbMxK5cPFMmmIZpCPkEaGcxVgmaLS3RJQo/Qs70nTAlmsa+lEOyHnyA2Arg0q+JYNvOSlNwo69yt7YHl4cNdVosaK4WCIIQHwKVrPwrtYM8+5Xwe/+jV3chey+4w9iO4+ay7nN52pWQkFLQcIpnM6RG49ymWYDpPKbzC6zzoiV0OLnIo01ODQQsL3T+eFnkWDH7pNLXt/56tPbyitv/EBgg7pkKWGnsUQraWsaE26YZJKQtaBo5SSvDjUz5Oz4+AFXFqJzAH+jNrBzX0gdHLDJCpKShz8U1DDXRkjSKhY8AiwqB6lUTVSy1RiKsgkKaBe5zvisyAHlTYX7YTNAr02wqr6YNhCX0GTv4sP/RAkFLUmfC96reFX/r7AFPmF5j3bUgIT8KsQgQnscmFAsZQVCjDEcaLiMREVN6z+3ulzZvAXHd0mWvElZUy+lf8YbDHTuk7nKn5Ua6lLFT9OvjZ4YvXOFzof+SrY2cxSfi9W2K+gNhieXL6BF12OppXBBp5Day3kfLOHnJobZxjIs7bFRPq/OOky/0fND6OrzbtiAMhr3maDvNRtAnKBwbIyyxKQGyErE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREViYiiZLIykQkURJZmW3L3It+d2WZ66os61cPvBra0FLe4OBFjj5q+qUBUt5cmPRfz+uY/a2dJV23WIUMvvKsHFn/tprNfoFMoYbuIhbAoTvlxRhmWz1XqTwECw4E4w/AlpRwnYmnIegW3qemnOb7ijRwUD+kq1cOvKXW18Eku4o8MQKm4Af9wvw1NNE2rJq5AqoG4AH+wZwX1DRQniKoOdMzTpX5YEvw8o4FibUV7jY2Byycna7jtJtDaxAFpBWuI/1wJqwqaVMi8mKFRKm2JLF1rUadfdKuVLzyo+b78wZMi5jYw+fjic0jXRMUM9yn80cdMQBKH66xoXTlGn3zgc1Pa+5HzCtssmGYEVMOLvWI3DPmUMnUD5s+9Jc58Ofb+8lqj5wmMmE8d5A9PoiQATlYwLbmdf3c2Kba6CGEKDhPzzXIQCTbhATn18KEj1P21uDvXVUuPCR0q8AMopYQJGtWkD7oGddt6CLVfLl2qyp3yGCBRWYDpf7YPeH2/afey/YlP/zsbn+AHEUknkuPImolhYHOXcaYLkTnjDamK2QixhdBPiIrxy+CJRvOuMb5evShb8TTmdCKAdy65HiuNtVthEKvtsfUAxa6xgZ0zf4GpucCHFRn+IgNKCd4yPR6IYRphc9HbpKsjXdezeUMPeXVldyBzgaLxzLQOkmYnxWnmriCZoIDsM5BsPxQYyy7mZCTqh/XlcHAkoCZxgxVg66SloPWBAo2Vh/9eFHtkm3IlkgI7kUDlUdkZJcAwrSZFaaF1/Uju/xDaNRYs8lCaNDSYGMEhtC4NN/REYMGt0OuTHZI0PiMY4fJd0SxrnFvIztUq0Xdh44QK7mafRrEfjmTa95Ycx8R7cHOpYi5cskIeEmikgbjBKmTWaIe7mJ5Q9ROeR6xjrgq7YScco+yYNdPhE++A6Ce/VAvQ1UGC0NpNnfB6yC/UvSz25czVWbz0uv8lOw7OIhyDgl7AN1F0lzOb85Rz7kVcM7BzORSEJ5tqDkHO5J9fqhXNklpzfuwNard0DXKyXvie96Sa2ltNmbOTSJH/zT306N/+PX88Dl/vM7OiJP2LguH7k5fJCvfzQD4PHzIhg8YPqbIMLDGEjeGa4DozKH+oaeNsOXilg4Uq8IkkWxKe3NtT3VXr/Xuk4YOCV3c/mQDstI099OVhl83+J4t0MoBVq3Em5VWcg4RWtGLvspiBk8pCcGNL1Ixo7oNr5XQeIbH5uRZz/d4bLAkK8Ybu5+uGPy6oRWjdMTNCdxmpK1XdzgJOa8f6rcgq6HFAFtYyKT54THZbmktxxnl3A+lDG1VtewzR0pbB80DEG0dcEFhIJL9kA2RXQ8JXndj4vUdC70+9O3U0SPmw49I66PXyV4K/ht1T4bprF1hkAmcOyJcGhwO3Ep4tlCsVsOOXNqsGJz+dVt8UM9po96XPiY11/XJE32I54nSsl+UYFXnR+d1PSPgNXFXQ9PAAmuyCI8wad4E+eG70l5Mu7XzoE/Cq5teEyZcW0UefEyOjVZgZPLHUkkhhk6oHA2/ZhiGelmszj74iNK0lScd1IL5QGrN/gBsZQ3/nutTcsf4jENXiKbwuUm72sN1LQZYVRRgsJeon3Yyu5t94Io6mgzU8Ysa5jBA5KrMQ7bI1c8HBOYeTJj77HM9d5JzTBDdp1on6XNPckH1Mt6kZnR0Q8qEdA1v4A8AeooEd8ooLe10spPUyhRsr0VvxkqW67pxAxsJPQZwzkZt3MAYheoxoucXwSeInl/wN1F7flF7dlF7fv12Ty/qjYieXky2qZarVAVsjj4tCBc6bhlU92k5nyXiQ5u2LrMZT25ByKPPDl6+DYa+H1g1vcP4zp4LH1ge31JS+q6geyZAnSuhOp1Q2QswQSfmcRaimRYTSL/TqHF1o5gDkY2LOB9yED//WUJM3mrUrVEjFaXJzx/0/tb9q+us64vm3Js11hAoqVhRGvCY1oaJNdtF0+8aOkY6AETNeidzmOZRdA7DrxfGhjc2Yj6jNpp6OWBI4fbU8/+ZPaWW8zGSPT3xiM2ern70nz3F9dNkq8DBfsNOn7jrs0IPv0w9ZwB7Si3TZABLcewRm6XY8aiw7WmHSp6LxzWt7xyzpcLmMW03ZBrAnlI3CQyA0mpWlKY/KkR7SuVQk9tTbMQw2lOAFG5Pvcx+TUCdToZJZmtjUe3tHIHSZe9H5/Adl+b4G2BJ4PqIbUnQVgu5yGDJbGUIyI2QzIaogUeYekQNPCKZDVEDj0hmQ9TAI5LZEDXwtCUG6TXwiGQ2qodGy1iDVhG96KFUzzNAxpq3wZRsY0Ql/14dSURRRULJ1Jg/TSdWTDqhli00gE58mHSycv/d3tMefvZI3b8ndefQe9T8IbFcIqP3p2cybHY8rhLegRd4gW3RuXJFpERTXAi2SGWrYUutu4h4FV2snU1AsEohk/lDxoIXc4985nSjWMINNq9vVVc2cUl1lag3Wc5TMVlC6x5qiQo2YSV+bUMXRdRgGczVAu+DFf4JkUbi3w48DBjluB+9maKSogwGVNlYyGl6HxjQDgJO9DRBSW+xKkwqF0lCSQRoo7nsLw0LJ10vobkeqFDmvUq2wnXHNhZ+a3I/qywGop8KnhuMlGreqjjxVqgJpRKP8JCHwLJbBLwWJeBFGHrJcwnz1WGCjPZSqQBYVUIsE8BaUHmIKFIlEUdo/40VJtbegw9VX7OnZWoVUANt1VHHvwF4OfI+Gy+H3Cd42c/sMaeWVzXf7dFBrIn9ftrE/u4Go8nSHOPRJKJuLkGTiLq5BE0i6uYSNImom0v4QvdTBj1td7eqaPnMDl04i68+zOMLDVx4+FyCV6bnviEPGjcUjQuhkSu0+siBRC3GawBy9WfSZImAZcM3Rw1xSXr1WdKOm0BeGpXFA3/e4H9UwFTqXhWwOhEylHN9lRK5m4gbgT9Dt4Agtegw62vRq+5RfkDHqRFtJ+SEP4XRGgFwm2lbM2BlxnlKCxGypUnU0gxtovokLCEQBct0hovlgOSQH55VPWrvhiv2vLULu5ze+tS2CDkg6KJ5Aj0gSAgMXsEIQBICIYlnSpzwe2qSxImiwQBardHYtWvXL32K/XHJioH1paJkYhUWZ5RB9wWpm4A3ng/2e43xXrK4svXnjeKblCKq+EMQRVQJSWFopzOrduzMQTvAGv3SJ7uojjBCqsbKFgeT1ESYEHQi/SHBtWZ7T3nueCBd/2HnBnJozFrzRMQmbq6kMJRTkVU5HHNQDoQur3IIZmJSTjteBPyVmE7A66jBrRJ58ChN0cUuXIVSPAzWaGyB/Sv3JxjSs/8RdxZt68r7a8WXRNsFSyLI59gD8zyffo6dJC0M5b18wqa8q2ZUKIhcSNMqHw12ydWgOlwqHyUHTjBQH1CXXCGHqgN/kylGYEL4TycoihCP1FxA1xTJVjfe9qqEx/qpFjtqZGwYQeutg0iLxi8XhuaOsWpuh8k1B2+CERW9UmUqaPajpfIwdkN4O+ST074TbXzjSw0YbZEykew9WjP6TLkSg294O+I+BFxxnKC5VU6YIcT91AAmP7Wa1ZiAI2kffA9ZJz1q1HZMc3KkTqDZyPFTSYZLJSPIbirElCmzrTEPVh1S59kMwgrIhkkUEZJI1SiuUvNAdVkPTTaXh9xfIsfXL8zOK7UtBtu70qOKZHmZIPA/SoUq0lUqi9T8YpS7z3jCtKmQ8y/Efjkq2pgBXNpTdJeWWCAjV8NuBDbYwUnsHXXy6Mt23tWsfq2OHlvqOWWNOGlBrj1mTTyVPiy1kvzWydTiZgVdJwNL8Q4i54yyI9FgFX37qV6J7pUC87gwXMVwiUolZehZwdnjMUohGe22aP7Af8vPet+i4FOYghXVRhgAq1OsWO01rqtD7GMWx5dc8Iegs3Mr9tYvawnu8REX+U78X0UxbqOyqjWxMCB+FP5/qbxuD/kO7XI7kMmM/VeE/7eK8FO7CRmtCP/mZ2xF+EOfFUYR/omx/k8ryoe7722xLN2vV/wmA542N7CNhDXL1z9jq1k+95lRivAveBXk1/NdvHAhN/vR2xVjT5q8CP9oVlTAuDGbtYN+B38MV4S/dBX125WjOc4bWg/Z1i/UYbnZFOH3Z1VdV9OozuhF+Jf/E3pv3roevlsDtsz/4Dnju4mL8GNWhrGKOrAyRivCX2JDXOnt3cLdpsz2Cm37j+iiGRThH80KTugzIxbhX1NtcvGad6q7TrN9XXdVTLjCDMpZQIT8WRECcxr323ow+W1CXtNmv7pc4sXf/j/2vgOsieT9P3ooXRQFsWHsgFLUs2E5IITeFMvZjSRANBBMgooVe8VesHcQFMWu2LD3ep563tmwl7P3+p/Z7AZ2d3ZJyJLkfv8vz+PzyL7sZvN5Z955Z+Yzn9c56/Lyl2S5d2vsEF+SXAZGdHrOZsGAc4vCLRJp4f24FgZAXCFPjosHORysci2P1UnLgVphkfFt6aoHRYzacvsaCnlDnwJ8RQK46ELBl9dUyKv/VN+DVVUKXwtcxbFAfvWTQ3tL5o71DVp4MnLTp6CLZvrX7qKkUNTAqGcKFQXQU0H0agtQ9YjBxKrfU90KYau7r1gSp5Cg88uQX/1tVt3bFZ66usqJfY1+LKSckMJuRJyQUl/nXPYXfP8w1u/f+qmxkyVNy9QhUYKvLJWLpTEs2jbz7/LyK/Lmhm6XF/T03PKBUmeOeAC9rWospeGM+qzOqGgcZ9CKY+uyY+ERmihXgeFLFAPXTl282oMpK5hZJDThN20fEy9XiJvwm7VXDlKosF/Q2erDjk4R10LuCjMn39x60Fv1lTyuwQ+IVqXIEPUvC02l4axvT9ic9djo0wyCV6NTtupQuNCdmKzor2TpQdnvo7psn74y5ECUeKryXY8O+kyV9XRHflM8kMOjnhdpulDNhF26P9UtS8UjOUu2lfx89vznaRMj59p9jbfO8woz6rQXAuBDAHAdAQAMLTplosRQxiwyMeHmjOzy7t+Eq7NPu47r+rIpZSgz7GFfCIAVGwDZLzSJZtf/GB+HWpjbYHycwc/Y+DgVnpU2Hyf372UD7tq+Ct09t2efi/dfHTMBPo7iGdvuZp9nJkAqWLRokQH4OA96ZirNmvmHrL15qVWdOY/umwQfJ4TVOy1NwTsG4eNMi3QOfbutSfCWUfffL3ugmGESfJy6rM6pYArO4RmTj1MhoeLEWpde+qTbvBqXaWGfalJ8nC9P2Zz30OjTRBPi48S5luFVHlU/fPX9WWkuCZP+MTIf5zKr5w4Y3XOlysfx+d7q5fh63oFZtyo/bPR17zWT4ONgOQQjHwcEQjxP7fZ/gY+zfKRHxLubsWHrPjw7FffRbaiR+ThfnrHxcc7TU9pS4ePsFdlfO1m5cuDm3w7kPx2fKeWcj0Odm3PAMfnwjI1jUvCstPg4quuPoiqPjvBZaBbX7uunJwmc83GoMYIDrM6zYpVn2FTH2Hyc35nC2KCD0sbSiGzBrgORskf3e74k75R0TIZnJwMVoqR4+glTHbYv6vtLlUnw9JhmNyfFXX3KlC+Cmnlx8BOQLW9t7bMHTn9Y6bukwlzRgs1LXjO+H30np6iR1v4so0EIiyx6FAvRKqnnnrRslZqnIfg0M+6BVukogP8o5z/nuQgnpN07bhstkQGHScTBIK4PJR6HuVXtyu5MrnQsSPO3974gWNXi3sHNJ4f4U1Qw0A6spI7uCJ/xrNQm0iErfDCgHb7iSsmDeki+BEoe2mYHZRi81A/EjupQ7geWyM33xVHvwYT6jwlb11b2MPPb2ctpcUZSOIWshDh9aVX6yGt9YpN6eo+rE5sl6zdsHtl3i+qRnkweWTk7Lfl5yKfABYMclYunNulNXhMNgOQZFT0jY5xeqm/gK8Gor653mayEKS9Wqy1eLhNDOUZICYzF/g5Lh1WiOKVWOQj1iGT5MHnMQIlYcxPq1enLuerr2u5Wuwp5028DMMuiSH1QVD3sNkJ+CUIE53EI+SX4jyq/FDHhVofoE898xp/ZnmrxOvIKVX5pXLdVo28k9QpKz1+56GH69A6EnTiMWmJ5JuoHI+SZmDxtDdUDcDei98AsP65tM2dJyA65b+tbuw+00sdb3O+GAb9Ohn5dikp58kEXUt02SuFJa1jfsa8SfIfEuMKAUfg7FmqGe3l3GolQiWLylX1AYW8DCZEqWYFOXJ8Gnvq1s80Zn8nx4w971OxwjdVl5gL1kxBax7ihNJzWj9VpYYZ1GhGCzcIE6oAKbxmt6feYb4g+ypTs1fXHS19LE5USBca6Ax9BCphIXw3suL3PiMfLfffV2t8sJLTqOqqvzMOTVaL+Mo2ABY+y2QU/1Ys+XHkVq/VVwuGKzamtWZ1a/zZN64u1gALe2CVqfRZ0iQCKTAprQzeDkY5epgO7yjmj1BOPS/m+iEr3SV5YE8eH9F5MQ3rHe7cjzWXnA1fsOVB29M46E8lc2eh4aayKD+vKkod1OF4x1bSuERkbC6ciIpkML78qhYXzoHi3BxJgasFBpldA5Eva0u1By+h8EyDV2Q9VDM9dyKtyU18emS1WfRf0TSV8YbQ8fp3NW78ezg+ZPTrr6SPzVznUAi/Ir1hsSkgtuq4v8R4evIdYpfuiuB9ggt/upm6sMbUH5VirQOLSMyi99e1JmwVp/0TFTJi5wZW2pByrHTD69id4qJ31m4NWYgLLyVgL1GGPzRrqDLFJT3WJ3JJa/ZfxgnG95dVP7riRS26X8G5Dwc9jhf/5P6bBENO3ULe6R0C2M/gmaKkOSsXdEkYKfVfzPfBQkO+DGGBmeWAdAh9gejMNMDrr+bhovFf6ej6q2fmj+p9s7bu/ZlrKoiF1hhfR82m65JzPvKXVwtOPjn/87/bJ9kX0fE55TPr9ROy6yNktZgw809c6vIiez9GK++oPcpJGri8jmPTmtnBJET2fPTXKBSbVLPDdtXnV5MTef84sqm1Ir/xLaBsiKv8ShXoRlX8tcNOiqn169clb6Zfa5e/gh39+hMKMlrip/P4K6+wTO4ctq3v27ceI0ArAZIWb6toEbHyxf27ontEJY0V21ROByRo3+Xc8Fj2y0UnfWTWzv/hN2vAdmGxwU+6dYa6O7S4HZEX/dlc2v3d7YLLFTXevTKiaav0+eIXnvNPjqz0LAqYKuKlZgPyD575lfsuGDckPPBK4DZjscFNm/KjqaSeqhq6xzxxdf1aPisBUETf9krDjWC2758LlX/us7HnI3A+YKuGmN/9sv7w+doBg2b8JL8uu374BmOxx04fnEzrvrNE+aJeo08AJsZYKYKqMm2p3eLEj82S6YO2HWU2HX1mZBkxViO81eEGtYRNVkassrzRfNO1JDDA58BhloBxx04Yvw+IbzAoRZFf67dTfoilOwFQVN91J3t8htldAwKwnTmMO9vtWE5iccNOYO/ll7ri19FnRtWHLEw6DBwFTNdz0fckGt+wmQ3329j/+142vr7OBqTpuuv9GlXHXe3LIhAXV3/YY9ucyYKqBm5o7Hd597+XrsCVTBsyNzjkCgaqJm+Lv/Fg+fsRB36yF7er/1eS5KzDVwk2SVvXmvu3iF75leA/7NY33NwAmZ8JfO9qYX7/51W/dpZg3dWsmQdHO2rjpnrBRyLCHCuGSFXk57T4smg5MfKI7RL9dkhIdFL7Lq9a4jT1GNaIJVdXhMQhV3Zd1F9U+bxM0//M/Lt4zrS5yIFTVhylEOcTu2bz42Cnh0o0Fw87UHLGSPHUVDk2SycWI0xdMCXBD/A4+cV4WK1OnTAAJMQhCeAVALY9bUAMU8tXos2rcoK1uOJxWvTgO4yti5zAVFmR/oVsBzcLTqOoXQX63RzUXt33yID5o1cUvR+yH1t7E4WFUjjcI4crerxAgMWre+clNyOO/0CknbtFJApoGxnsSS2CJI7lSih0/Ae8nlWFTJ6Kd8EUKeOJaniCNQTPVhg13K1NnZEjm0tZ3JPk7V5Hp45rPodPHC02cl6ZxxVoMC1yf/jWJTI5+1FHHTM4d72jiQnep4kUqfoJooIQPEhBNCWtmnrlFrvzQyNpbAjfvNzsWEy6rTWEa4o9FMA0JC9fe8/HAG7s/ynsnPbHGTmOb6whcHeJQFEH4k1CBRILl1bK3UFGjSdhUN/+TJzvPJkfqEh3B4gAsG1awQFPHx5++TOPP/5QbSqTcQM3QDabccOsFm3LDct3GSi2VG162//1vu/zKwXnzxcOqfTh3j8PBkhqBOFBuuPGC7aD7cd0Gy5IqN3Rxzm6889KA8PGf65g1dsxMNrpyw1ZWVEC7MVGWqeGUG/zul2sxJ/Gez2r3cmHi+95xJqPcMJXVdYON4zqDKzfwy2RslE/tKdjs9D1GfnjKCyMrN2BRhvHo/XFEllJayg0nhvLtBs/fGTFhZ/WgNTMKsk1AuWErKzjLXxhQuaHhBMs7LmvEIdM/vI259fEQuSib8ZQbprIiBPo0nrf1Y8rbTi0RhX1vUzVwbIaz+dN6ww+Qs9EwkKPxo/3DtF848NMUw4XVBIhMGMwQY8GvIO9K4QNsFSq1RgEItnh7hbkXnrqN1Cpxoq5fot+bnkUTFh3K4h7/hpfFpaVKScADE7/ptqyAvUARDJDfLoP3R59DZ28GTPx3vvf2YW/7U3aT4N2IAwrY5eIyJWr846Dm7eFvOPuK1gijmgh5m77pxDt2wgAi2oWLWKoAzRfY0YOthac1f9uax+Frqz5XWNUYQZY1tvQnbqZ3y0JTcYCNtTu34rLNM+G23A/mBzu3asABYItZAQMtyihJlHrMgH/TnMf0Q5fDsmDxpTXmS5ao6ml+Zv5TUdngTelb1qbevPbTHhMyAc4QDk1SSDS0Zyyp9fWLdvndVb8EmOLavVHp9YQDO4Vubv363bjMXBcOXKtgdW0fI7kWlR/P+k2nVMsmrEg8Rzpz1J2ut4JODfVJr32h0/Cs6/uoG36IQ1Xqq5yv3XniMSkXRSq544l1MXxgFDENjH5Xqt4c3GqbT07PPk7Tuu4niwdUgeRXFVz6hCeZJZBbL9GhYrynQJ4AIFdTcLHHiAsfg00OCwvFQ1KpViMidduu+BemuQP5V9pmI5A5+hqA/tgPUUB+Fmj8Sa/15af4hhUBBS43wDJIMNuQJ/JdiOLnAD21ABL8nzqmKeFqtHyIhEG95M+sLmkt3Z4Jlh+z/6em11LyaFu+K0Y6oMcY/HpxMab6p1uuQz4GRGxf7N3QummXLXrGmHxI5IQwm/khSqafdMNg1ndJuEER92tWt2LkiUpJTDLWPDBOFFpbi3/nn52XjwTtHufoE/zhLrngoXXhc+nTX5KRcyqlOw5bLxRsFp4YbHhI6M8UEs5UqPe2aUt5+MQ3L0M9/hgtJH03204SjMPIj0iWyRCxgClhdifug0RYrM1KEweLZFKxupEPkari+XIwTVFoHwmou/Qs70nzAtms7bE9FyGvJkTXGrX5dhFkya9e6dv3HYMxHh5cdZUoMSI2hhgSgKEeE797dx4TOX3H0zJ1T17vQU6fsQfR02f15eK6M5WVoO9RNNCdnSByq1EpA6z8avaaMX3WErkaGuQUpKYGmxYSvg+bB9vNXVfZb1zrF79/8fcmJ9U2eANBb+mQrVz3YogWaEksaP3zyigsdovOKUmSojjUK8LZ8QgFKa1E5gH/RukRGNQXJrlxEgWFEgd/9A3cjtgACR0LHgEm1SlqVyO9TB2Y9Okkevp1lifeC16haHOpXlgv0GkhzCkCwxbmCmr+Lt70xUgo3EYtGbbuRnbkuFZW5Q8OjrxB2ZiA3wqxMYFdLg0osCbOCAVo4vhAFcM0UJlMzT9qtOSm/HEplPxb/oqt5N8MDeRik4ecyo3jBvIxZuWbz/GODV6iart637Mav3EA+eC3bJDHviUgl3DGyrQjIDcAKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBltk+TfDBbKghYMP2Q6oi1xTIa5Q02XmTro9IvOaC8xTL5v27oUfebW6wCMs3E/a8+qUj2f2X1Yr9AJlfCdBHbwKEn5eUZelvdACksdxwP6wOrH4BNKeE8E6chaLe9T6WcFvuKNHBQf6RtVg6ypRkvQSe7jjwxArpgxEud1q5rqHfbMCUNOXQNwAP8wswL6jzjx7CHHZ+HpSe4ZNSeXLBdn7220l3G5oGJ89SX+LD7iiZOCKyyl8g8nAkrBw0loihWSJTmLuwa++hqI59s17fzs+PGB3FIixjTJeL9yYyhAVnyKUGT/VIOc4BSBCtKXi/piw9seVqTKKJfYZ0Nw4zocnCqR3DPmLdK3KZ9KrOpw79hY63P1lL0sX1jxP3cfu54I0JuyMHD04Nf6pbGuml2DyFEMUX0PuEIRIpNSHCODffP6//UIWh21LbZqVfH9TSBXUsIUn9WkCJe6rav28Bfqv7mmqWqwiaDbSwyB6iXfbJbuATkhGT6WK91iehCIS4Sz6XvImospYGONys6DV8SiVEc08D4rGtEmJnnZ8H8NWcDVkUG96AvxNNHQjMGcOuQ93M1VLchcp0k96kHLLTdG9CW/Q1CTxOYwp/1QyxAecHSxPQFKP23aX+tYdfzr36Lfce7xVYKafacXIbZGtuPZRjWScbiojg1xOnLBAdguUCwolBt7GJjIa/KK53GugoYWBLQ05ihUnWvn1lupzJw+l+ttnazq3uWHImE4F40UEVMBk4JIEw8Vpie6zjYFb+FRt1rNtoWGow0WBuBW2h8Wu7oiUGDx6F4pjgkaHTWs82422ErA1a9VrWpVou6Dp0gSuKr12kQ6+VMqXkj9X3Ebg92LkXET5QMgZckCmkMPkBqFZaoh7tY3hC1Ul7ErCWuSS5C3oAvx6HiNCInzwWou33RKVBVwLah1Iu74HXQy+E/R6au933vt/u1t7PQ+xa55Gk57AH0FEl9ubg+Rz3npmefg8zkWAjPRlSfg2qYnb7oxCaxVb8Pm0j6by9ujHd3ah2c2vDY3yGLKmaRd//U99N3//DrxeFT7UrB08HNN4ePCXSz6Nmn5wAO8OnAig9oPsZgGFhgxI3BaiDa8ag/ulVRs+0sUsRJVGxOe7pVXPdLZlZkboeBV5zlPTqRnaa+n+40/Drna7bAK46sXilrUl55dZDwik7Dlx0W8JIkYjz4Ih1zc8jSKftabRIsd2o2OLTV6Atkx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQF/RFtwlZDQ0G2MRCJi0Oj6j1tU+6D5oWlrUjfOs+M/u9FEkh9QMQkkK4oTQQcWNFxOYLMa5Lmcb13Dmh73q29Q6e+O67yuLIjbdkH6s/UXsyTDvNDIM8gPOHxEtj4kFaCc8WipRKqAapYcXgw792kw/qOW3U+9LbpPq6LjzRzzhPlMZ+SQKzuuzP+u6A18RTDbV4EibwC48wqd8E+cU9ns+KSpDfDZ/vvPF9oHnnFuTGx5TYaAwGHvwxKinE0AvF0YhqjGGoU8RqF4G3KHVJE9JBLcgHUqrXB2AZBfj/wpySPzxiJBJR6nhu1IoqcF6LAeaEAgzqWAPA8M48wOQ3rqitiSO1Seo2Bwc7V/Gf2XauftdgPpAJ84hdAedP8Y4KUntUayt9GlKJrLgdThJCpQdSJqRrhIN8AAxPKnCnjCKnqlWcpCpTsL0WXQicbNd24Qb06k9fAZzTUQs3cI/i7FeE3iQxniD0JuEnUfUmqXqRVL3JEutJUm9E6EkyxaZaAVIFiDm6yN8+r/TduaGlh++MPq7H2uc1+Issf+tL7x2+xYrbfekQX86t1fPIpa9GFNzNd16h75oJcOc76E4vFHsBEnTufD2OEHJkAqkkIsHfT93OaV+3Vvj027arQ6fVJZ+v1k4kmIrSndb1Rj34Jg7OO/FUVt/th74cTojSWVaUdn+lSQCysl3UtRZgYqQFQFTWO3kMUz+KPobh10tjwRtrMZ9QC02/e2BI4fFU9h+Lp1Q5HwPF07qs8fTDl//FU9w/Ej+RwwTV85A5G2KzXMt7LOcgnlJlmjiIFM6skcKq1OPpC9s5wkWvw0JXNO34tkLW5VEcxFPqIgEHKH34woZSwZdSjKfUMdTo8dSZNZ5+0EzwE0x+TkDtTtyQ2VqUqfY6TZDkv/O9T3zulbROHEwJVn5hmxLM0kCeyBmZrQIBuQHIbAgNPCLUIzTwCDIbQgOPILMhNPAIMhtCA48gsyE08AgyGzVDozHWYFRENjGqeh4HjDU5Z062NqCTS6YjiRBVJJxM3fOn+cSMySdU2UIOfJLE5JPFu+90n3T/U3De7h15WwbeJZ/zKxclSpTI6LVRmAKbiy8/Cd5RpEIXP1GukqjFhaA8N5uGLVV3EfEq2kQ76+gYhVwm6wRHLHix8Mjnq98okXBHzx+vb2eVj5ytPD3oxaRqjExqiy5KiQIKgBMf28BfntxfBrlasIoOFP4RS1X4dwcZBtzlKEjNoLiEKHNEW5RuJOSN/QgCaBsBL3WSwCpcpIiTJoZJYkkDoLX6cidY77TodUv19c7ypKJXyVG4yqhGwstjPh63w0CMUsBzgyqp+q3MibdCdSiFaEhwohjKbhHwlrGEF+HWS5FLWK4uw0syqScEsIqqVCQTQC2oIgORSiERJWh+x4SJNffgTXWQyQ/LVBVQjpbqqO2fg3H5/Ee2cfnAR2JcVpg85lR5VdNdHs1jJfZna4j9Ss6GSVue4YZJhG4uMUwidHOJYRKhm0sMkwjdXCIXiu1QOfruxLqCvROGfVt3uHZkkVzo8LiUg9d3jvOd0ON8H7sRj2/RBlcY9dHrYxQxXg4GVxWTJ020XDtVdNhg5doPf2cr197je2mXaz8+cPH79DYRAbOPmLsd79891gTKtR/4zlb8Nvu7CdSc3rBhgwHKtQefc/Z+3j09cvn++6uj2yyhVBw1Urn2BazeGWsK3jFIufZfoi4VKLfG+yzjJUzbMSRjqUmUa09kdU4PU3AOz5jl2s9Gnr+Sd7qn767Yh+U7DTxGrktr7HLtAazOa2Yc55lmufYDNjl1nbyW+k7dt17y12ULcrUqw5drd2b1nJXRPQdvKrVy7W0kHx1We9QI2zF3zbgOUZvJ2hDGKteO5RCM5dpBIMTz1GSmPPW/VK6dWhbDyOXao36wlWuv/8Mw5dorfwhfdWh2ePC+D4EJjdaWG8h5uXaquBkHJcjDfrCVIG/9o7TKtVccl1t1/sTFEWs7tm6e4jxgN+fl2qkxggOs6rNiVfHH/1fl2gczhbH/ifCXSISfWk3IYCL8vJ9sIvz59NjJgQj/nx18vWbXbR2walSNJMm6dLI8uX6nzTmOkVCz/NsPNs3yx/QYWRoi/Gtenc26fr1x0BqPZ2081gjbGF2E/worKvmGjYascwfdDv5wJ8Ifa3vlt7f7m4ZPqLd0T8PtzuTS9cYU4d/I6rp047jO4CL8HeYM+v1zzSr+G4dMfN7J5iplV8XgIvxYlGFUUQdRxmAi/Lknr54WtReE5tZ0/XbxQkPyzppxRPivsIKT/8OAIvzex34e3P/nbP+Nn5b3tM3yIk/TjCfCv5EVIdCn8bxtCFPeJvR1a/yz/RXf9becsy4vf9mcrCOAHeJLksvAiE7P2SwYcG5RuEUiLbwf18IAiCvkyXHxIIeDVa7lsTppOVArLDK+LV31oIhRW25fQyHvMkyTRAK46ELBl9dUyBv1U9+DVVUKXwtcxbFAfvWlyp5103NfCZYftvN06JNElrguUe0uSgpFDYz6FpsH6J2H6NUWoOoRg4lV3k/dCmGru69YEqeQoPPLBpmLeb4jK4VNv77RacuRWD7lhBR2I+KElPo657K/4PtnsH7/OT+NnSxpWqYOiRJ8ZalcLI1h0baJamG2KOXidv/tlyvdU+VcaEVuq8QD6G1VYykNZ4xidcYA4ziDVhxblx0Lj9BEuQoMX6IYuHbq4tUeTFnBzCKhCb9p+5h4uULchN+svXKQQoX9gs5Wb8RcfFotIjJoyePdITPzm68lj2vwA6JVKTJE/ctCU2k4qyurs/xMoufAR+mUrToULnQnJiv6K1l60LgpqqzggoUhu91uDVv5sdJ+fabKerojvykeyOFRz4s0Xahmwi7bfuqWpeKRnCXbymx1J+PEMZlgzerTJ4Kfd1ho1GkvBGAxAcB1BAAwtOiUiRJDGbPIRINmQUctW2zw2WvZe/D00ap9lKHMsId9IQBiNgCyg34SiebQ/xgfh1qY22B8nHjeCRY+zq+8E6XMx1m9JarOl0mPIyaNmb1tXYvUTBPg48RCSBh3N3vxThifVDB79mwD8HGup7/aYt84y29StTLNvtukLTcJPk4nVu8EmYJ3DMLHaVt7+un3V/iRu3b/earN544XTYKP04HVOb+agnN4xuTjxMdfzWgTuCZi7taQKWfaR5w3KT6OG6vz+MZxnmnycRZt92i92vV9wMbYQ0sHf23RwMh8HEdWz9kY3XOlysdZPbdb01P2/PAFu3Ye8563+qpJ8HGwHIKRjwMCIZ6npvxf4OPcEzYKGfZQIVyyIi+n3YdF043Mx8mG2DPycebRU9pS4eN8TRt3qrIiODzj4qaTr6ueFXDOx6HOzTngmKyHyDFyTJaTkeOQj/PeQfkhyGx5xPbOi5qWb7gshXM+DjVGcIDVPFaspho25hqbjzOMKYwNOihtLI3IFuw6ECl7dL/nS/JOScdkeHYyUCFKiqefMNVh+6K+v1SZBE+PaXZzUtzVp0z5IqiZFwc/AV0yMvrtkpTooPBdXrXGbewxqhHj+9F3cooaae3PMhqEsMiiR7EQrZJ67knLVql5GoJP8/DTcR7PUQD/Uc5/LnAR9nrw6bhttEQGS8qIg0FcH0o8DnOr2pXDmVzpWJDmb+99QbCqxb2Dm08O8aeoYKAdWEkd3RE+41mpTaRDVvhgQDt8xZWSB/WQfAmUPLTNDsoweKkfiB2qr3iJ3HxfHPURTKj/mLB1bWUPM7+dvZwWZySFryv29KVV6SOv9YlN6uk9jk5slrDfsHnE8R3VIyOZPLJydlry85BPgQsGOSoXT23Sm7wmGgDJMyp6RsY4vVTfwFeCUV9d7zJZCVNerFZbvFwmhnKMkBIYi/0dlg6rRHFKrXIQ6hHJ8mHymIESseYm1KvTl3PV17XdrXYFQQiCWRZF6oOi6hnvEPJLECI4j0PIL8F/VPmliAm3OkSfeOYz/sz2VIvXkVeo8kvjuq0afSOpV1B6/spFD9OndyDsxGHUEsszUT8YIc/E5GlrqB6AuxHpLatn7dL+yfKM2B//asiVgZUK9PEW97thwK8F0K9LUSlPPuhC598ZpfCkNazv2FcJvkNiXGHAKPwdCzXDvbw7jUSoRDH5yj6gsLeBhEiVrEAnrq0u1295rl1q6Por1araSF7dZ3WZuUD9JITWMW4oDaflsTotw7BOI0KwWZhAHVDhLaM1/R7zDdFHmZK9uv546WtpolKiwFh34CNIARPpqxWREveOIxeHZiQ8Nx+w5FY/qq/Mw5NVov4yjYAFj7LZBT/Viz5ceRWr9VXC4YrNqXNYnTrqHU3ri7WAAt7YJWp9FiR4VJkU1oZuBiMdvUwHdpVzRqknHpfyfRGV7pO8sCaOD+mjmIb0jvduR5rLzgeu2HOg7OiddSaSubLR8dJYFR/WlSUP63C8YqppXSMyNhZORUQyGV5+VQoL50Hxbg8kwNSCg0yvgMiXtKXbg5ax6Q1AqrMfqhieu5CX+EZfHpktVn0X9E0lfGHkF/Wzs3+x5NbTkBnT9w2yP/4lilrgBfkVi00JqUXX9SXew4P3EKt0XxT3A0zwF7zRjTWm9qAcaxVIXBxd3j0b0c0udG/carFb928/aEvKsdoBo29/gofaWb85aCUmsJyMtUAd9tisoc4Qm/RUK9nudJ8rcwRzg2b93NEqvBe5XcK7DQV/D1b4A4wDP40hpm+hbnWPgGxn8E3Qej+UirsljBT6ruZ74KEg3wcxwMzywDoEPsCMZhpgdNbzcdF4r/T1fLo5d26ccniP76p/R3d0ePtbWBE9nyvfrv791WWQME/sarMj2OphET2fUblXFyzP/j1klqrSlBdNXw0qoucT05jX98mPf3yXX7ki3d631x9F9Hzm5DRuNCvpUsjCs0EVDt1t+LqIng+i8i+hbYio/EsU6kVU/rXATbePVm9q13V62JjPG/6tdvrBEWCyxE0Ww8ut+iB9Hp61rp80a5cMomGFm+62OVSt3S83fNIqqIKiBz5pAUzWuOmPgc+W/dO1QJA2KKT3/mvO54HJBjfd3DL3dJMVF0I2BP7Ka/73ldvAZIubcob/XOATKfUb06T5mZ9zg1KAqQJuCopqJfY6rxQcED/NmnqtQyYw2eGm4Z4WsiG3ZwTltft2Lz1XOhuYKuKmVtvEfzx6uzEs9U7iojvHztQCpkq4aerrc85PJOXDVp46809B/+u2wGSPm86233Hxa55DRHrzFhcTX/b7FZgqE/A2GFVmzbFLIQfOLKj/fvvjo8BUBTeVf3nnQYusgYIdVa9v+XS1WQ9gcuAxykA54qbJ6x+83NJpavDm3kf6XBfX6gdMVXFTwOwrA367Mzd4osuK4TUWtT0FTE64aXya8ui6Ox18J18K6qc4cmIvMFXDTR5Tt8RGrBzgv8697MbePRtdBabquEm4dce597InYZPqeNsIpnSFClE1cFOnymbZ5/+5JJh1xvXMjZYNnwJTTdxUxbm1l0p+ym+F5wyHXd+ewLZRCzd9WT6iw+s+3/zSdj3m7zTLXQ1MzripTa600x3XYf7TxKMcFrR2zAem2rjJpqyrcHOFYQETpyXeyF9UGX4WHzd9dvY+M2d2g4DMmTZBX3ZeiKIJVdXhMQhVWa1ocK5bV0+fVX1VMxfsz5NzIFSVyhSiHGL3bF587JRw6caCYWdqjiCLxpsLhybJ5GLE6QumBLghfgefOC+LlalTJoCEGAQhvAKglsctqAEK+Wr0WTVu0FY3HEyrXpU5AeMrYucwFaTHN8rQdg5ZC2gWnkZVvwjyu5V5G6hc2M1DsP5150Edl0wsx+FhVI43COHK3gsIkBg17/zkJuTdL0PbIGRLyVp0koCmgfGexBJY4kiulGLHT8D7SWXY1IloJ3yRAp64lidIY9AV7Jx2Hp66riBywtHIewOWishlSC01n0OnjxeaOC9N44q1GBa4LpYxCi+j+KOOOmZy7nhHExe6SxUvUvETRAMlfJCAaEpYM/PM29xLeF1p6cfwjS9O5y0245OL2VlE449FMA0JC9fe8/HAG7s/ynsnPbHGTmOb6whcHeJQFEH4k1CBRII1ffXk3+xfCCLmlHkwYbt/Y/IJyRIdweIArBusYIGmjo8/Y5jGn/8pN5RIuYGaoRtMuUFQ9gSLckO9sjqNlVoqN9R4n/q9n/sZQd66Mz2mHbJw4XCwpEYgDpQbfCFCjAfdW5XVabAsqXIDr97w7fNH3fRZc6jx2Ky+q/8wunKDOysqoN2YKMvUcMoNFf/t8f7o9feRG3MWuPM+dCZv+RtTuaEaq+vsjOM6gys3VO2T4+6ZlOO76Jb51eZ9KMd7Da/cgEUZxqP3IMoYTLnhQsbB3NlxrSJzfjwIvb6OT9bVMY5ygzsrOPUo4JSqckOix+eA+2mHI5d77/7qMK7MBxNRbqjGihDo03jeNpYpbzu1RBT2vU3VwLEZzuZP6w0/QM5Gw0COxo/2D9N+4cBPUwwXVhMgMmEwQ4wFv4K8K4UPsFWo1BoFINji7RXmXnjqNlKrxIm6fol+b3oWTVh0KIvbyvKEuiwuLVVKAh6oaqnbsgL2AkUwQH67fx3jWqXt7RC5stOirRO/mfWj7CbBuxEHFLDLxWVK1PjHQc3bFhCgJFQjjGoi5DW21Il37IQBRLQLF7FUASs5yxPRg+2U9zte3v92zGdbZWkVt22BZB0eS3/iZnq3LDQVB1heo2uz/u7Xyz/37i+TW586ks8BYHVYAQMtyihJlHrMgH/TnMf0Q5fDsmDxpTXmS5aoavfi/tZap7yDssd3afF658Mce0zIBDhDODRJIdHQnrGk1tcv2uV3V/0SYIprT21KPX134N/heafdXZoMtPXjwLW2rK79xUiuReXHs37TKdWyCSsSz5HOXOD/dojF8zaBy0Qb772J2OVH3fBDHKpSX+V87c4Tj0m5KFLJHU+si+ED4zimgdHvStWbg1tt88np2cdpWtf95FXrKpD8qoJLn/AkswRy6yU6VIz3FMgTAORqCi72GHHhY7DJYWGheEgq1WpEpG7bFf/CNHcg/0rbbAQ0/sW/ANAf+yEKyM8CjX/6L4xHd7RccfMNKwIKXG6AZZBgtiFP5LsQxc8BemoBJPg/dUxTwtVo+RAJg3pJ1Vo5P76ongqnyq9+vjv9PXnvpHxXjHRAjzH49eJiTK3Am3YDNm0SrEt8/kLsNnO5njEmH8CcDmE280OUTD/phsGs75JwgyLu16xuxcgTlZKYZKx5YJwoJJZN3+VfmfZie+CWCrzaPS62vEY+kVH4XPr0l2TknErpjsPWCwWbhScGGx4SxjOFhDMV6r1t2lIePvHNy1CPP0YLSd/NtpME4zDyI5JlMkQsYEqY3Yn7IBEWa7PSxMEimVSsbuRDpKp4vhxMUxTaRwLqLj3Le9K8QDZre2zPRcjrD9G1Rm2+XQRZcpjefd8xGOPhwVVXiRIjYmOIoRuhKKq9IKNWwPwrE5MDF8+oRU6fsQfR02f15eK6M5WVoO9RNNCd+0HkVqNSBlj5tesvjOmzlsjV0CCnIDU12LSQ8L2dtiavVsNNQbvnvoqr8qN8d/Ixd7yBoLd0yFauezFEK4wVLb9fDJpgES9q0TklSVIUh3pFODseoSCllcg84N8oPQKD+sIkN06ioFDi4I++gdsRGyChY8EjwKQ6Re1qpJepA5M+nURPv87yxHvBKxRtLtUL6wU6LYQ5RWDYwlxBzd/Fm74YLcuZbzml9VtPv9kVb/31/aPDBcrGBPxWiI0J7HJpQBHGCoWfZqCawDRQmUzNP2q05Kb8cSmU/Kv3C37gH1nyr4YG8okmDzmVG8cN5LHzanSTTt3nk9bh48PH5sKPHEA+04wN8klmBOSTOGNl2hGQG4CViSBREqxMBImSYGUiSJQEKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIn7Q+rZzelScCcBX81i/q8ezmN8gYbL7L1UemXHFDeJjP5v27oUfebW6wCMs3E/a8+qUj2f2X1Yr9AJlfCdBHbwKEn5eUZelvdACksdxwP6wOrH4BNKeE8E6chaLe9T6WcFvuKNHBQf6RtVg6ypSVwf+A68sQI6ILDddvmr6HebcOUNOTQNQAP8AszL+hoSGfHpFlzIqY/d23vOb7taX322kp3GZsHJs6LyuLD7iuaOCGwTqVv+LNh5aChRBTFColS+hGXKfvy3ofvKLugefVrY89wSIsY0yXi/cmMoQFZ8ilBk/1SDnOA0nBWlGRl6YsPbHlakyiiX2GdDcOM6HJwqkdwz5i3Sn7ar6y2cHO/sD0uyqvncr1VRtzP7eeONyLkhhw8PD1Tx/1cN83uIYQopojeJxyBSLEJCc7GtzPzIz79EphXrsmiq4PHepnAriUEaQIrSMN13Ndt4C9Vf3PNUlVhk8E2FpkD1KecRvNkSQVBGVnPfEIC/qFw8Yjn0ncRNZbSQGcQKzpxmj3dKUwD47OuEWFmnp8F89ecDVgVGdyDvhBPHwnNGMCtQ97P1VDdhsh1ktynHrDQdm9AW/Y3CD1PIWxn/RALUF6wCIRuQ51227Szb+x68rj8mohx37tHNx16cBd5sRPbj2UY1knG4qI4NcTpywSHhYcgWFGoNnaxsZB3S7exrgIGlgT0NGaoniY/DKuaHhg0vumb4RPPDyOLuVsKwb1ooIqYDJwSQJiusMJ0WsfBrvgtNOpes9G20GCkwdoI3ELj03JHTwwaPA5NZYpDgkZnPduMux22MmDVa1WbarWo69AJoiS+ep0GsV7OlJo3Ut9H7PZg51JE/ETJEHhJopDG4AOkVmGJeriL5Q1RK+VFzFrimuQi5FlanICK04icPBeg/sRcp0BVAduGUi/ugtdBfsuQsjNPTPu5JXjitrq73sbnuJFTJOwB9BRJfbm4Pkc956Znn4PMZHMIz0ZUn4NqmN/NdWKT2Krfh00kffPAAn5WfWu/jVsuHSk7+cQ98u6f+n767h9+vTh8Hp5o5hpVeYrP3uFZ/hb/Ntd33QTi89acDR/QfIzBMLDAiBuD1UC041F/dKuiZttZpIiTqNictq9HucnH5m0OzIxckjuoxbdQstPU99Odhl/nfM0WeOU2q1f+NCmvvDpIeEWn4csOC3hJEjEefNE1F57k8La0X+U3I+/U9JYOkc5kx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQ98lctwlZDQ0G2MRCJi0Oj+XDhftap/8aPP1Fj7ojChaKKZJC6gcgJIVwQ2kg8sScDZEb5sS4Po1pXM+dE/quZ1vv4Invvqssjtx4S/ax+hO1J8O008wwyAM4f0i8NCYepJXwbKFIqYRqkBpWDD78azf5oJ7TRr0vvU2qr+vAE91ljvNEaeyXJDCry6KP6zrugNfEUw21eBIm8AuPMKnfBPnFLTcqoye9c/Xdm5DQrI60H3loM2dKbDQGAw/+kD63A2LoheJoRDXGMNQpYrWLwFuUuqQJ6aAW5AMp1esDsIwC/H9hTskfHjESiSh1PDdqRRU4r8UAc0IBBnWsszSdebrJb1xRWxNHapPUbQ4Odq4mm7PtXKVqME9jwjxiV8D5U7yjgtQe1dpKn4ZUIituh5OEUOmBlAnpGuEgHwDDkwrcKaPIqWoVJ6nKFGyvRRcCJ9u1XbgBvfoiHKGnoxZu4B5FnsUJut4kMZ4g9CbhJ1H1Jql6kVS9yRLrSVJvROhJMsWmWgFSBYg5usjfdp50KO/m8cOCxfFv9x79ZaMDWf7Wl947fIsVt3uldB5lFj4gcvm/5t8jjz04oe+aCRSShO70QrEXIEHnqMUJhJAjE0glEQm+GXZc0n9OeNBsy9Odmji3zi6BSDAVpZTud9NsKq0NPjjoc5NeDhJ9OZwQpTxWlHItTlAlAFnZLupaCzAx0gIgKuudPIapH0Ufw/DrpbHgjbWYT6iFpt89MKTweDrjPxZPqXI+BoqnEtZ4Gvm/eEr4Z9ruDaFNm//rt2pmRTPlX/ducBBPqTJNHESKGNZI0b3U4+nwWb06vJ7iHrYq8F7eqLV7G3AQT6mLBBygFMmKkrA04yl1DDV6PI1hjaeRmng60+TnBNTuxA2ZrUWZaq/TBEn+O9/7xOdeSdNXLAJOCepbsE0Jamogn8UZma0CAbkByGwIDTwi1CM08AgyG0IDjyCzITTwCDIbQgOPILMhNPAIMhs1Q6Mx1mBURO/hUtTzOGCszebMydYGdHLJdCQRooqEk6l7/jSfmDH5hCpbyIFP5jD5ZPHuO90n3f8UnLd7R96WgXfJ5/zKRYkSJTJ6bRSmwObiy0+CdxSp0MVPlKskanEhKM/NpmFL1V1EvIo20c46OkYhl8k6wRELXiw88vnqN0okbOtZ7WT1yXV8ZtWN5z2unsyou2zRRSlRQAFw4mMb+MuT+8sgVwtW0YHCP2KpCv/uIMOAuxwFqRkUlxBljmiFbBsJeXPLgwDaRsBLnSSwChcp4qSJYZJY0gBorb7cCdY7LXrdUn29szyp6FVyFK4wppHQdk75E3YYiFEKeG5QJVW/lTnxVqgOpRANCU4UQ9ktAt4ylvAi3HopcgnL1WV4SSb1hABWUZWKZAKoBVVkIFIpJKIEze+YMLHmHrypzjX5YZmqAsrRUh21/XMwLu8tzzYubytPjMvzTB5zqryq6S6PbmEl9mdpiP3zORsmbXmGGyYRurnEMInQzSWGSYRuLjFMInRziVwo76zXmXnrzwi3/Dl+2DVexwZFcqElf21f5PukdfDsConN14WOHEUbXGHURzYkqhgvB4PrAiZPmmi5dqrosMHKte+wZCvXPoYuJcNxufYHPSqWLZs6Mjw9xTNt/q4+HUygXPs2S7bit1nGEcwg15xes2aNAcq193VvEB079bRw8aQJ3QbXEi40iXLtK1i9M98UvGOQcu2XjtfMXqya6jPle6xZpzcWD0yiXPs0VueMMQXn8IxZrn2NxU3Z3l15Ptsk1w/fllW0M6ly7UNYnZdgQkJBRi/X7nijB7/coFuC+bd/OX0oZGwNI5drj2H1XHejew7eVGrl2vmS7hXd9rsHLG6XZJZZ4d4lkyjXjuUQjOXax2jEnhYy5an/pXLt1LIYRi7X/s2SrVz7Q3pKWyrl2uX+F3pNXfKn/7S6saH/Wmbu5LxcO1XcjIMS5F8s2UqQv9JNNlGHcu1/V2pedlXfbf5b26SXcW0hmah/F6ZgRY0RHGD1kBWrfwwbc41drj2dKYz9T4S/RCL81GpCBhPh72zFJsL/q1VpiPC35Y9ueJi/TjD/0N3vO8063uLwtDnHMRJqlneyYtMsD7IyiAj/o6M3vAfkfovMLPct+ciRPsFGF+HvwIoKaDcmM3fQ7eAPdyL8IafP3Bzuc87n4HyLGh51vpw1GRF+N1bX8Y3jOoOL8Fdvu0yWt/998JRmvfcPunb1A2Wn09Ai/FiUYVRRB1HGYCL8Q2Wr/vr8OD9y9c8YqzGRMZNNQIS/Ays4v1oZUIT/H8+eltt//RGy5GL5lV8OpZCnPsYT4XdjRQj0aTxvW8SUtwl93Rr/bH/Fd/0t56zLy182J+sIYIf4kuQyMKLTczYLBpxbFG6RSAvvx7UwAOIKeXJcPMjhYJVreaxOWg7UCouMb0tXPShi1Jbb11DI2w/xFQngogsFX15TIW8uPU3S8WBVlcLXAldxLNBkoT7zP15qViU0+8jNzsNPW1AKnZWkdhclhaIGRn2LzQP09kL0agtQ9YjBxGqLbimUjbr7iiVxCgk6vxSP9FB8+1rHb+eyI8+SN+UlUk5IYTciTkipr3Mu+wu+fybr919m9GRJ0zJ1SJTgK0vlYmkMi7bNqFp1szf9wQuYEpPvuLzzyPrktko8gN5WNZbScMZcVmdMMY30h6fLjoVHaKJcBYYvUQxcO3Xxag+mrGBmkdCE37R9TLxcIW7Cb9ZeOUihwn5BZ6tjP47irY5dELpqYHrAvFV9V5DHNfgB0aoUGaL+ZaGpNJw1mtVZySbRc+CjdMpWHQoXuhOTFf2VLD2oxoxZk0c4/hO8d8GgZXOrTBiiz1RZT3fkN8UDOTzqeZGmC9VMuCFHxywVj+Qs2dYOZVSSm7NTYOqKvYH+zSqeMuq0FwKwigDgOgIAGFp0ykSJoYxZZOLYyzvpaWKzoDl/1rvbZ+adFMpQZtjDvhCAiWwAdB2qSTQX/8f4ONTC3Abj47SzZuPjWFiXNh/n7xedhYN6fA+bK9nYO753I4UJ8HG8rdl2N72sTYBUMHXqVAPwcaym753s1+6G34qJjZL/qS06ZxJ8nIas3qlpCt4xCB/nwABhQp97XYOn9H0nqPNBmWASfBx7VudYmIJzeMbk4yyPj3bOrJsUljZ96llXO+ePJsXH+WHF5rx3Rk92TYiPU/DHOq/hvjP8tkz1TRx0vFpjI/NxnrJ67o7RPVeqfJyfHw8EujZs5TvXvnXKVPGVzSbBx8FyCEY+DgiEeJ665P8CH8emrKtwc4VhAROnJd7IX1TZ2HycUdZsfJx4ekpbKnycsaMPxX98OVywd45P0/F2jd5wzsehzs054JiMsGbjmCisS4uPU2nHG7nZrxK/xevOe9u1jR7DOR+HGiM4wCqeFas+hk11jM3HWcoUxgYdlDaWRmQLdh2IlD263/MleaekYzI8OxmoECXF00+Y6rB9Ud9fqkyCp8c0uzkp7upTpnwR1MyLg5+AbHmfnb3PzJndICBzpk3Ql50Xohjfj76TU9RIa3+W0SCERRY9ioVoldRzT1q2Ss3TEHwafyjM5SiA/yjnPxe5CC8LzE/YRktkwGEScTCI60OJx2FuVbtyGZMrHQvS/O29LwhWtbh3cPPJIf4UFQy0AyupozvCZzwrtYl0yAofDGiHr7hS8qAeki+Bkoe22UEZBi/1A7FjhgVeIjffF0d9ORPqPyZsXVvZw8xvZy+nxRlJ4euKPX1pVfrIa31ik3p6j6MTmyXsN2weuW1G9cgKJo+snJ2W/DzkU+CCQY7KxVOb9CaviQZA8oyKnpExTi/VN/CVYNRX17tMVsKUF6vVFi+XiaEcI6QExmJ/h6XDKlGcUqschHpEsnyYPGagRKy5CfXq9OVc9XVtd6tdhbzAcgDMsihSHxRVb1QOIb8EIYLzOIT8EvxHlV+KmHCrQ/SJZz7jz2xPtXgdeYUqvzSu26rRN5J6BaXnr1z0MH16B8JOHEYtsTwT9YMR8kxMnraG6gG4G9Hig1+eDmv0arNw/tv8c1+67N2lj7e43w0DfhVCvy5FpTz5oAu1LWeUwpPWsL5jXyX4DolxhQGj8Hcs1Az38u40EqESxeQr+4DC3gYSIlWyAp24nnQTLll9r1J47ps/ZQNbZ/3L6jJzgfpJCK1j3FAaTmvK6rRGhnUaEYLNwgTqgApvGa3p95hviD7KlOzV9cdLX0sTlRIFxroDH0EKmEhfDXn9+cW4zA8R036tn5G7dBSP6ivz8GSVqL9MI2DBo2x2wU/1og9XXsVqfZVwuGJzai1Wp1YuR9P6Yi2ggDd2iVqfBc2ZpsiksDZ0Mxjp6GU6sKucM0o98biU74uodJ/khTVxfEhfyTSkd7x3O9Jcdj5wxZ4DZUfvrEM+D2IVHS+NVfFhXVnysA7HK6aa1jUiY2PhVEQkk+HlV6WwcB4U7/ZAAkwtOMj0Coh8SVu6PWgZjWGa09kPVQzPXcizNtOXR2aLVd8FfVMJXxj5RUO99i3KWHowYkLHvPoTuownqw2ZMXzFYlNCatF1fYn3ACtXiFW6L4r7ASb4tc10Y42pPSjHWgUSl1yvxndcnc/6Tay8sUV2wRc72pJyrHbA6NufwDd3YP3moJWYwHIy1gJ12GOzhjpDbNJT+Tv6DK08WRI0pzl/8O3t7Y6R2yW821Dwl2GF/6Nh63sT8NMYYvoW6lb3CMh2Bt8E6RFqxd0SRgp9V/M98FCQ74MYYGZ5YB0CH2BWMQ0wOuv5uGi8V/p6PoK0bT18XL6H7GoQNKbb+fLKIno+7i8a8FLS1kesuWD3j2qBY1YRPZ+WDduNSlh10GfbxRqP89c3KldEz+dU+PBpWQ8rhcx59nK1aGfUP0X0fNaeW/24xqhZoet3NB13r/LxlkX0fBCVfwltQ0TlX6JQL6LyrwVuarawSvCGbT8EU2v9OORzN3UtMFnipoXmAcmt/aTBM/zn1Tv98fxcYLLCTVYz1kVE9fUNXzh+372o0VN9gMkaNxUMjViR/HFJ+C679N7tXn6A6os2uGlW5uqDwyNt/Q9Mn5rUv0ezYGCyxU3ev1wLqPTheeiUcucuZDTrdwKYKhAPXHfv4uTEGxHZ6xxavxS3sgQmO9wU36R7F3dF05BFV8u+Teg5aRgwVcRNrklWDn35BwJzhN8tRt1OnAxMlXCToqlPFM/9cuCBsucCR/ndSQMme9zU6tuYMf7lhaFjV4T5fBnbciEwVcZNT7JltuKknuErp3w6Z/Zv13fAVAU3xR59Yr534Bf/8Um33l3vPfsRMDnwGGWgHHHTHz3dvtu8nueTu3Z1zIL1D7YBU1Xc9PrZ0SOhVqNDF/b3W2rXdC4UUnTCTSN2To8Ps+0YuOVworibt9gCmKrhpu1O5R42uJUcvjDnas1RFxceAqbquMl61N+dBy66FrqlUcO9zQOmKICpBm5yfPDE9czsl5FzlVaVOvlUnAVMNXHTpB4WYRNSfhPOTxv0OnHUZzNgqoWb6ka7n9r7dKjfit4fds91ag1Nzrjpd8GM7iNc/grfPoxfsWKe0yJgqo2bglxV8+4Ore43b+Cl5jmVU54AE5/oRHsOHv0jY0R4TqsrfgneTmdoQlV1eAxCVfGv5ftaVD8buVwytcHGSfVOIcKGrkJVq5lClEPsns2Lj50SLt1YMOxMzREryVNX4dAkmVyMOH3BlAA3xO/gE+dlsTJ1ygSQEIMghFcA1PK4BTVAIV+NPqvGDdrqhoNp1W2bEzC+InYOU0F6fMpGtwKahadR1S+CLlZvc3fK9V+jApaO+fWj56l7ZCl6/Q6jcrxBCFf2bkKAxKh55yc3Ie8PG51y4hadJKBpYLwnsQSWOJIrpdjxE/B+Uhk2dSLaCV+kgCeu5QnSGCSKfZ682jgxnB+8pP6yN+2jkx6S6eOaz6HTxwtNnJemccVaDAtcB21MIpOjH3XUMZNzxzuauNBdqniRip8gGijhgwREU8KamWdu9ceOw/MDzgvS419vfvOrb1UK0xB/LIJpSFi49p6PB97Y/VHeO+mJNXYa21xH4OoQh6IIwp+ECiQSrKUR1Qfsf7nUf/4yy/snf9tG1sEs0REsDsA6xQoWaOr4+LOGafz5n3JDiZQbqBm6wZQbmtmyKTfY25aGcoOTxcUVx48lRKxYuqXO2+X5zTkcLKkRiAPlBi9btoPuDW0Notyw3Pzy+gknHQV5OQ3vVGli2dLoyg01WVEB7cZEWaaGU264EGoT3PJrYsj6yrtS10yY1tNklBssWF33w1TTGY6VG6xGrutx2mJ+5MofR78su+1BrhFneOUGLMowHr0HUcZgyg0ta8xNffH9q3DhfJH5v1ljfpqAckNNVnDsbQ2o3LDk9woFo1a4BS5zythXr1P2cxNRbrBgReiHJm9by5S3nVoiCvvepmrg2Axn86f1hh8gZ6NhIEfjR/uHab9w4KcphgurCRCZMJghxoJfQd6VwgfYKlRqjQIQbPH2CnMvPHUbqVXiRF2/RL83PYsmLDqUxW1YBS+LS0uVkoAHylfRbVkBe4EiGKBJ8fO2/XNbMjpw+5Jqee0GxL+m7CbBuxEHFLDLxWZKlPjHQc3b+lVw9hWtEUY1EfKqV9GJd+yEAUS0CxexVAGaL7CjB9sj0XuyGp76PWx1cs/JWcMf/iB3S3/iZnq3LDQVB9jjE3fq10maHTH1If/Zno473DgArCIrYKBFGSWJUo8Z8G+a85h+6HJYFiy+tMZ8yRJVxz9/d7HihMDw/Q5dXmWs3trTHhMyAc4QDk1SSDS0Zyyp9fWLdvndVb8EmOLa/oqU+t9nvQ/a9mxKtdsKxzAOXPutMptr31Q2nfx41m86pVo2YUXiOVqybLWF/RSfuT47Jiwd8dfyD3uoG36IQ1Xqq5yv3XniMSkXRSq544l1MXxgXMc0MPpdqXpzcKttPjk9+zhN67qfTHSoAsmvKrj0CU8ySyC3XqJDxXhPgTwBQK6m4GKPERc+BpscFhaKh6RSrUZE6rZd8S9Mcwfyr7TNRkDjn1IBgP7YD1FAfhZo/MMr6MtP8Q0rAgpcboBlkGC2IU/kuxDFzwF6agEk+D91TFPC1Wj5EAmDekn/DV6HK4/f45c74dDCyOO1yWWJy3fFSAf0GINfLy7GjAz760TaOZ+gqYM3hTbj3dqjZ4zJBzBPgjCb+SFKpp90w2DWd0m4QRH3a1a3YuSJSklMMtY8ME4UEss9f6/+02/0Z5/pPhefXd44rjr5REbhc+nTX5KRcyqlOw5bLxRsFp4YbHhIyGAKCWcq1HvbtKU8fOKbl6Eef4wWkr6bbScJxmHkRyTLZIhYwJQwuxP3QSIs1maliYNFMqlY3ciHSFXxfDmYpii0jwTUXXqW96R5gWzW9tiei5DXEaJrjdp8uwiy5LZ6933HYIyHB1ddJUqMiI0hhgSgwej3k88K+wcs+3eyxeT4vhQyFvYgevqsvlxcd6ayEvQ9iga6cyREbjUqZcAqv1ZgTJ+1RK6GBjkFqanBpoUu5NJo2III/0HB655Vn/RFvqQv+Zg73kDQWzpkK9e9GKLVlhWtphWMwmK36JySJCmKQ70inB2PUJDSSmQe8G+UHoFBfWGSGydRUChx8EffwO2IDZDQseARYFKdonY10svUgUmfTqKnX2d54r3gFYo2l+qF9QKdFsKcIjBsYa6g5u/iTV+MhCKuYLxzn0uXfLI9m22O+rbyPGVjAn4rxMYEdrk0oGjLCkVTzUCVyTRQmUzNP2q05Kb8cSmU/LOvwFbyz0oD+XqTh5zKjeMG8m/SP55YNezov/6hfGEQf2Q+B5CPsmODfLAdAXkWZ6xMOwJyA7AyESRKgpWJIFESrEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJVuaC4zm1Gsk+B+xsJcsxz83dTKO8wcaL3l2h0C85oLxlM/m/buhR95tbrAIyzcT9rz6pSPZ/ZfViv0AmV8J0EdvAoSfl5Rl6W90AKSx3HA/rA6sfgE0p4TwTpyFot71PpZwW+4o0cFB/pG1WDrKlqXB/4DryxAjoggN02+avod5tw5Q05NA1AA/wCzMvaNyiq19nmKcJsn75++Qrz8xJ+uy1le4yNg9MnCfb4sPuK5o4IbCm0Df82bBy0FAiimKF3sq4a+c1Ofibz7jWNXKuPbiwgENaxJguEe9PZgwNyJJPCZrsl3KYA5QGsKLU05a++MCWpzWJIvoV1tkwzIguB6d6BPeMeask5NTNvzu0eBC5d/Sj7HsZDo+MuJ/bzx1vRMgNOXh4epSO+7lumt1DCFFMEb1POAKRYhMSnJwGUfV/dd4TljZZmaEYt1JuAruWECQVK0gDdNzXbeAvVX9zzVJVYZPBNhaZA1TL52lWjzb/FTAjze1oi6p7WpN3EYnn0ncRNZbSQKcfKzpdbYnEaAPTwPisa0SYmednwfw1ZwNWRQb3oC/E00dCMwZw65D3czVUtyFynST3qQcstN0b0Jb9DULPXxC2s36IBSgvANsR3YY67bZpp7c8b70h7e+AHZc2PLj0KbAfebET249lGNZJxuKiODXE6csEB2Bdg2BFodrYxcZC3jndxroKGFgS0NOYoRo16OrYG1a3ArPtD3dM7+HsTY5EQnAvGqgiJgOnBBCmI6ww7dFxsCt+C42612y0LTQYabA2ArfQ+LTc0RODBo9DG5nikKDRWc82426HrQxY9VrVplot6jp0giiJr16nQayXM6XmjdT3Ebs92LkUET9RMgRekiikMfgAqVVYoh7uYnlD1Ep5EbOWuCa5CHmf7E9AxWlETp4LUL9ur1OgqoBtQ6kXd8HrIL/lted9r9c/PDQ4p1/rY18vFIwkp0jYA+gpkvpycX2Oes5Nzz4HmckfIDwbUX0OqmE+t9eJTWKrfh82kfScDWl7j0yrKdhUI+vsj8QwssoR/nXpu3/49eLwGbjti/TiJbuAtBsXkgtszfkc4FPAig9oPsZgGFhgxI3BaiDa8ag/ulVRs+0sUsRJVGxO+zSp+f7mj7oHpvZzvBNd5WYzstPU99Odhl/nfM0WeOU8q1eOmpRXXh0kvKLT8GWHBbwkiRgPvmgl/KBDNgFvnSMXDNx4cFjWoPJkx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQ98hetwlZDQ0G2MRCJi0Oj8Flr58dO+eW/8bfFh2q+qVtN4qkkPoBCEkh3FAaiFxnReSUPTGu5zCN67lzQt/1bOsdPPHdd5XFkRtvyT5Wf6L2ZJh2mhkGeQDnD4mXxsSDtBKeLRQplVANUsOKwYd/LVfhKOe0Ue9Lb5Pq6zrwRDPscZ4ojf2SBGZ16fRxXccd8Jp4qqEWT8IEfuERJvWbIL/4LxOqTQ5Z8CN0TPlnq/3Ltq1JbnxMiY3GYODBH9Ln1kIMvVAcjajGGIY6Rax2EXiLUpc0IR3UgnwgpXp9AJZRgP8vzCn5wyNGIhGljudGragC57UYYE4owKCOdbqmM28y+Y0ramviSG2Sus3Bwc7VEHu2nSu5BvPNTJhH7Ao4f4p3VJDao1pb6dOQSmTF7XCSECo9kDIhXSMc5ANgeFKBO2UUOVWt4iRVmYLttehC4GS7tgs3oFcfhJTZ6aiFG7hHkVUZoTdJjCcIvUn4SVS9SapeJFVvssR6ktQbEXqSTLGpVoBUAWKOLvK3vh5XCrYOEweOqX1/1sftn5+Q5W996b3Dt1hxuyi30OsDHp71zQtMfVjnUgtPfddMgDv3Q3d6odgLkKCzrfIJhJAjE0glEQl27y0fvdy7UfDKA2lrpy+sM6IEIsFUlOpn9VZm3jstnC9ueahB/xFWHKCUxYrSiso0CUBWtou61gJMjLQAiMp6J49h6kfRxzD8emkseGMt5hNqoel3DwwpPJ7m/sfiKVXOx0DxtDNrPO3wv3hK+Cfr/biVVa7djNi/70TvakMUJzmIp1SZJg4iRSfWSBFU6vG0Vszh1gvW3w5YJ332b0j3TS04iKfURQIOUOrAitKvpRlPqWOo0eNpJ9Z42kETT7eY/JyA2p24IbO1KFPtdZogyX/ne5/43CtpnTiYElSuzDYlsNZAvpUzMlsFAnIDkNkQGnhEqEdo4BFkNoQGHkFmQ2jgEWQ2hAYeQWZDaOARZDZqhkZjrMGoiGxiVPU8Dhhr2zhzsrUBnVwyHUmEqCLhZOqeP80nZkw+ocoWcuCT7Uw+Wbz7TvdJ9z8F5+3ekbdl4F1yNlwuSpQokdFrozAFNhdffhK8o0iFLn6iXCVRiwtBeW42DVuq7iLiVbSJdtbRMQq5TNYJjljwYuGRz1e/USJhhS4XQsSebyJzvtaut25Gq0pMkdCii1KigALgxMc28Jcn95dBrhasogOFf8RSFf7dQYYBdzkKUjMoLiHKHNEK2TYS8lIrgQDaRsBLnSSwChcp4qSJYZJY0gBorb7cCdY7LXrdUn29szyp6FVyFJ4JPuLt6Eon7DAQoxTw3KBKqn4rc+KtUB1KIRoSnCiGslsEvGUs4UW49VLkEpary/CSTOoJAayiKhXJBFALqshApFJIRAma3zFhYs09eFPdYfLDMlUFlKOlOmr752Bczq7ENi6vrkSMyztNHnOqvKrpLo+uZCX2p2uI/bs4GyZteYYbJhG6ucQwidDNJYZJhG4uMUwidHOJXGjLvkauJ9YvCN5+wdla+UPRpEgudPnI9cMNZr4MSxsSdTXhoOwQbXCFUR/ZkKhivBwMrruZPGmi5dqposMGK9e+tgpbufYkupQMx+Xa7Zx2zjsmfR6+5vKfY5tnHDaFcu2rq7AVv003jhYKueb00qVLDVCufercgZYhqQlhi706/THxz1NDTKJc+wxW74w3Be8YpFz7F1nDaPsGq4XbFbXuta8WRd5JN1a59mGszkkyBefwjFmufY51bpJqsyho8au/Gw3/eJwsS2zscu2xrM7rZSQNKJMs137EsUtqT+85YemhE3e4H0zOMHK59k6sngsyuufgTaVWrn14dfO6qXUTw+cE2J5NsZ9KLmxurHLtWA7BWK49SSP2tIcpT/0vlWunlsUwcrn2Z1XYyrX/SU9pS6VcO2/cX23Xn74RuKvPwr9ryqZs5rxcO1XcjIMS5E+qsJUgv62bbKIO5do/rRieq9xeJXLz6ILJNf/ua8N5uXZqjOAAqz9ZsTpj2Jhr7HLteUxh7H8i/CUS4adWEzKYCL/AgU2Ev55DaYjwd5taS/Viwq8BG9cPuHz4nM89Dk+bcxwjoWa5rwObZnkrB4OI8Odcepxw9mLNgPmhh+z2jVHuMLoIvzsrKqDdmMzcQbeDP9yJ8JefGLPdMfJKUO65tSNi4px6mYwIfzVW19kZx3UGF+G/+rBDXuj78JAFgy5mPI5L32lkEX4syjCqqIMoYzAR/ofi1NV/uAb4Tu6WFGXWoOpMExDhd2cFp56DAUX4dz61aJ+f3zlo26Hdx5vX++ulCchZQISqsSIE+jSet+1lytuEvm6Nf7a/4rv+lnPW5eUvyYVxrLFDfElyGRjR6TmbBQPOLQq3SKSF9+NaGABxhTw5Lh7kcLDKtTxWJy0HaoVFxrelqx4UMWrL7Wso5G2E+IoEcNGFgi+vqZA3lp4m6Xiwqkrha4GrOBboqdNosd/GHZmBORYdxt2pvJRc07ZEtbsoKRQ1MOpbbB6glw3Rqy1A1SMGE6uVuqVQNuruK5bEKSTo/HLjnem5P87OD9xQLdjzn3YZZC3F8v7YjYgTUurrnMv+gu+/gPX7Tzd6sqRpmTokSvCVpXKxNIZF28bt02zHHElF/yy3qKS22ZmUtko8gN5WNZbScMZYVmcMNY30h6fLjoVHaKJcBYYvUQxcO3Xxag+mrGBmkdCE37R9TLxcIW7Cb9ZeOUihwn5BZ6sP2jnu7jCum2/Gmz2b2ydUIi/pWcIPiFalyBD1LwtNpeGsRFZniU2i58BH6ZStOhQudCcmK/orWXrQ8dkeZ/p0Pho0bnOVrT0szZ7qM1XW0x35TfFADo96XqTpQjUTbliqY5aKR3KWbCv5yUzfXW9cgrL8z6zg5X8Zb9RpLwRgFgHAdQQAMLTolIkSQxmzyESbcj82/pO6KSCvy6/Orcv1GGPUw74QgGQ2ALrGaRLNff8xPg61MLfB+DiNHdn4OB/pmSXHfJyAlpGTn1t0DN3QU9L/4trzf5oAH8fVkW13s7ajCZAKxo4dawA+zsg2o3/On702dMUevz9WCguemgQfx4HVO9am4B2D8HGWOM1/Lruy3G/H1j7ffZJPVDYJPk4ZVud8NE6+ZEJ8nJjT7XcdDWvok+P3wKZmTtmnJsXH+deBzXn3jJ7smhAfxzlvbY/nV7oFpp75WnOH/7n6Rubj/MXquQtG91yp8nEc2hzcsUo+LnjSs3WLWpadMskk+DhYDsHIx/moyVP3/1/g4wS5qubdHVrdb97AS81zKqc8MTIfJ8GRjY/TzdEwfJxKd8ZKlNdO+a55NdRl5j735Zzzcahzcw44JgMd2TgmIsfS4uOcS1vczctjS/iml60enLt+9RznfBxqjOAAq26sWIUbNg81Nh/nAFMYG3RQ2lgakS3YdSBS9uh+T/J+lXXHZHh2MlAhSoqnnzDVYfuivr9UmQRPj2l2c1Lc1adM+SKomRcHPwEtlbPn4NE/MkaE57S64pfg7XSG8f3oOzlFjbT2ZxkNQlhk0aNYiFZJPfekZavUPA3Bp2kGhbkcBfAf5fxnuotwZ1P7E7bREhlwmEQcDOL6UOJxmFvVrjzI5ErHgjR/e+8LglUt7h3cfHKIP0UFA+3ASurojvAZz0ptIh2ywgcD2uErrpQ8qIfkS6DkoW12UIbBS/1A7BhJlMjN98VRz2dC/ceErWsre5j57ezltDgjKXxdsacvrUofea1PbFJP73F0YrOE/YbNI+ftqB45xOSRlbPTkp+HfApcMMhRuXhqk97kNdEASJ5R0TMyxuml+ga+Eoz66nqXyUqY8mK12uLlMjGUY4SUwFjs77B0WCWKU2qVg1CPSJYPk8cMlIg1N6Fenb6cq76u7W61q5DXsiIAsyyK1AdF1R0rIuSXIERwHoeQX4L/qPJLERNudYg+8cxn/JntqRavI69Q5ZfGdVs1+kZSr6D0/JWLHqZP70DYicOoJZZnon4wQp6JydPWUD0AdyO6QMCvzltXlSkInOedMSBz0vEW+niL+90w4NdfoV+XolKefNCF3CoapfCkNazv2FcJvkNiXGHAKPwdCzXDvbw7jUSoRDH5yj6gsLeBhEiVrEAnrubL+D/fdT8tWBF781Cys/1KVpeZC9RPQmgd44bScBqf1WmOhnUaEYLNwgTqgApvGa3p95hviD7KlOzV9cdLX0sTlRIFxroDH0EKmEhf3Rg67Mxcaa5wm82mHyMf9Xah+so8PFkl6i/TCFjwKJtd8FO96MOVV7FaXyUcrticasPq1LIVaVpfrAUU8MYuUeuzIMGjyqSwNnQzGOnoZTqwq5wzSj3xuJTvi6h0n+SFNXF8SD/MNKR3vHc70lx2PnDFngNlR++sM5HMlY2Ol8aq+LCuLHlYh+MVU03rGpGxsXAqIpLJ8PKrUlg4D4p3eyABphYcZHoFRL6kLd0etIzqMM3p7Icqhucu5H3Ru0S1LVZ9F/RNJXxh5BcdtOz9k78SfhPOelSlY1zOVrJyihnDVyw2JaQWXdeXeA+wcoJYpfuiuB9ggl/BTjfWmNqDcqxVIHFp28/hF/uFiREb48s/a2p99jxtSTlWO2D07U/gm5uxfvMvhi0wzbCcjLVAHfbYrKHOEJv01IHsKtVlE60CJpW7/e9zWVfyGhSmUmQo+F9VYIP/oXHgpzHE9C3Ure4RkO0MvgnSI9SKuyWMFPqu5nvgoSDfBzHAzPLAOgQ+wBxhGmB01vNx0Xiv9PV89r9SmLUZcTFoe8HUyGEL6vOL6PnYd7Pw7Xhsa/Cqigsdx2fK7hXR8zkyZNON020uBK+UXn+WHhPctIiez5F7A2b3XqII3bP4vWXdYc1vFdHz+XA3c+0uxSCf+SG2sQ797I8X0fNBVP4ltA0RlX+JQr2Iyr8WuGmiZeuQPaNqRawcc2D4vXZPrIHJEje92PPX8CT/P0O2TQvb7e7SYiwwWeGm63MWZOx61cln8drVC3uNaPkbMFnjJov6d7sdudozdOeIOark4bsFwGSDm9qOsWki3ve7f+qFMxLXzff3ApMtbnpcJirzW6fHIdsbXF04aGsVX2CqQKDxm2WXAZGDfRb/6NW1099b5wGTHW5yP9rV8ePEP/xW3bradfYeUSAwVcRNZUaYh5fl8/yXF9QveDjr2GpgqoSbyrYOjD36yMtn/5/VbccPazIRmOxx084RNm2yzt/x3X40cvXyB837AVNl3DTGI2J/p9+/Beek3nrXueLeOcBUBTcNCakpLbPzeOjBq10f23362waYHHiMMlCOuGn75r+a8BTggY931Zj6NPYaMFXFTQOGPSub8qYgeOad7E/DFM92A5MTbhqbXK374qfjgzaViVFlfE7xAqZquGnWuCM2Hd9fiVx+afEvMxs1HglM1XGT/45zPLOXbSMneb2pcfhKfn1gqoGbAtKeX5/8dVPIGB9/Zev8pdDLNXGT99UFBbUefgvfKVyREvJLeagrVQs3Va2/8Z6gjDJgZ4Ci8l77WjHA5IybGjXa+2bJ5keCeS+fzP99cgUpMNXGTe1TL8uHBDT02T7y2ZibPRZCgVA+bqo7dkevzz+dIg92v/VxinvIYppQVR0eg1BVm8erBzfPzPTZM2PDtRV7P6zkQKjqKFOIcojds3nxsVPCpRsLhp2pOYL8WebCoUkyuRhx+oIpAW6I38EnzstiZeqUCSAhBkEIrwCo5XELaoBCvhp9Vo0btNUNB9Oq01VPwPiK2DlMBenx9qq6FdAsPI2qfhF0/b1KMRFn2nQIXX/y2bX5gZOnc3gYleMNQriydxICJEbNOz+5CXkHquqUE7foJAFNA+M9iSWwxJFcKcWOn4D3k8qwqRPRTvgiBTxxLU+QxiBRPP0ksVoby4Uhs4NPbFw4qsJ8Mn1c8zl0+nihifPSNK5Yi2GBK7uqSWRy9KOOOmZy7nhHExe6SxUvUvETRAMlfJCAaEpYM/PMeQ0nXp3UfpBf5sV5Oy497tKTwjTEH4tgGhIWrr3n44E3dn+U9056Yo2dxjbXEbg6xKEogvAnoQKJBGvxkNDaLSseDJ1isdc6JKg3eaZYoiNYHIC1nRUs0NTx8ecY0/jzP+WGEik3UDN0gyk31HJiU274rttYqaVyg+pli7lTHlz3WX8r7sLvz2dO43CwpEYgDpQbajixHXSv5GQQ5Ya6nex3Z7muFSy5/Xdrs/utVxhducGcFZXvxhkTtWCZGk65wePc/YvXVp4RLpC7ri17ZM0mk1FueFuVzXVPTDWd4Vi5YfTyxDvvFvcLXLe2fe/pT66dNbJyAxZlGI/egyhjMOWG2U1u/WLtdTw8q2mliz6zG5BJ0cZRbjBnBed7VQMqN/zskvez5/ft/vODVgywXP6ILOFoPOUGrE8zIvREk7cdZ8rbTi0RhX1vUzVwbIaz+dN6ww+Qs9EwkKPxo/3DtF848NMUw4XVBIhMGMwQY8GvIO9K4QNsFSq1RgEItnh7hbkXnrqN1Cpxoq5fot+bnkUTFh3K4laqjZfFpaVKScADr511W1bAXqAIBugDCi+S5vj39/BZ4Rxcrf0foX9QdpPg3YgDCtjl4jIlavzjoOatXW2cfUVrhFFNhLxytXXiHTthABHtwkUsVYDmC+zowVbZdP6Ek5feREybM0r+72jX9uRu6U/cTO+WhabiAAuWBT3pW9AidKbsVEi30WccOADsqzMbYKBFGSWJUo8Z8G+a85h+6HJYFiy+tMZ8yTbmHFt0f2WHDz65LRs8e5RsV8keEzIBzhAOTVJINLRnLKn19Yt2+d1VvwSY4tpjb34W+PfpGHCg0c3Zn0e39ObAtY9YXXvTSK5F5cezftMp1bIJKxLPkc5sNz07s82M30JyVE9zRvXn+1A3/BCHqtRXOV+788RjUi6KVHLHE+ti+MB4gmlg9LtS9ebgVtt8cnr2cZrWdT+5rFIVSH5VwaVPeJJZArn1Eh0qxnsK5AkAcjUFF3uMuPAx2OSwsFA8JJVqNyJStu2Kf2GaO5B/pW02Ahq/qhoA/bEfooD8LND4Y6vpy0/xDSsCClxugGWQYLYhT+S7EMXPAXpqAST4P3VMU8LVaPkQCYN6SWZPeYW6/IzwrZnN/xQJx5EPsZfvipEO6DEGv15cjPFbdD5p4xErn61O22YO/H1pbT1jTD6AWQFhNvNDlEw/6YbBrO+ScIMi7tesbsXIE5WSmGSseWCcKDRNL/PBzdlfAsOWjOk69/n9iUvIJzIKn0uf/pKMnFMp3XHYeqFgs/DEYMNDwkmmkHCmQr23TVvKwye+eRnq8cdoIem72XaSYBxGfkSyTIaIBUwJsztxHyTCYm1WmjhYJJOK1Y18iFQVz5eDaYpC+0hA3aVneU+aF8hmbY/tuQh57SC61qjNt4sgS26od993DMZ4eHDVVaLEiNgYYkgALmSfmf2ioJz/tg7t++4+d3IXOX3GHkRPn9WXi+vOVFaCvkfRQHf2hsitRqUMsPKrVzXG9FlL5GpokFOQmhpsWkj43mx0nbzg88Tw7Ft7ag3OFtmSj7njDQS9pUO2ct2LIVoNWdGqWc0oLHaLzilJkqI41CvC2fEIBSmtROYB/0bpERjUFya5cRIFhRIHf/QN3I7YAAkdCx4BJtUpalcjvUwdmPTpJHr6dZYn3gteoWhzqV5YL9BpIcwpAsMW5gpq/i7e9MVIKGpIB1e/tvK5f978W/fmRG9pRdmYgN8KsTGBXS4NKBqyQlFTM1CdYhqoTKbmHzVaclP+uBRK/n13Yiv5996JgPy0yUNO5cZxA7lV3IcrDTYnhi7cESGs/S73NQeQS6uzQS6qTkB+hjNWph0BuQFYmQgSJcHKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBlIkiUBCtzkF/oiL51O4bM2j34wnDfgtM0yhtsvMjWR6VfckB5O8vk/7qhR91vbrEKyDQT97/6pCLZ/5XVi/0CmVwJ00VsA4eelJdn6G11A6Sw3HE8rA+sfgA2pYTzTJyGoN32PpVyWuwr0sBB/ZG2WTnIlpJhXLuOPDECumAXJ53Wrmuod9swJQ05dA3AA/zCzAu6fGvicIt2Nv6Tkl7vd1/lMUGfvbbSXcbmgYmz0gkfdl/RxAmBVUzf8GfDykFDiSiKFRKlhb/cfhC6M9p32ddRL7aZf63LIS1iTJeI9yczhgZkyacETfZLOcwBSl1YUQpwoi8+sOVpTaKIfoV1NgwzosvBqR7BPWPeKolvs+WMS/cfEWMyV/5Zu/fUAUbcz+3njjci5IYcPDwt/X/sfQdYE8n7f1ROUcQuoqgEKyDNggUbIQm9KCjWUyMEiAaCSRCxnCh2xY4iVuy998rZsJ1n7w3r2fU8z3Kn/me2BHZ3dklgSXK//5fn8Xlkh012P+/M+74z85nPa+B+rrNu9xBCFFVA7xNGIIpvQoIz1Pv+PfuAl9J1ATG9gn+vFWAGu5YQpP6cIHW3NWxft7FEgb+5bqkqv8tgG4vsDirqxo+k3EeNJONbeW1wPmE5mbqLSH4ucxdR11IS6ARxoiPS5aK/sQXGl5GhwRbuX8QZK875ZocF9GYuxDMjoQULuA7U/Vwd1S1ZZZDkPv2Ahb57A/qyv4HrOQ5hO+eDWIDyALBtNizU6bdNW3ur7+krwmXB84Y+GOG+cjR1c8oK249lCeuUxsK8ON3FFZcJDsA6CsHqgupjF5pJBXsNi3WVMLDkYKSxQ/XObkr0u+wG/ptTa1981XvGDqonkoJ70UAVaDJySgBh2swJ00oDg13hW2j0vWaTbaFBT4P1EbiFJmTkju4YNIQfOs/mh8RNz7m3S7sfvMw3+722Xe169HXoeFmiEF+nQayXs6XmTfH7yN0e7FyKTJggT4aX5GpFFBEg9XJL9MNdHE+IWikv0KwnromOUsGjerlQcRqRk28FqB+rZ5CjqoRtQ+GLu+BxkG+5auq0mS1HHvDfJS2z735KeCtqioR9ADNFwi8XNubo59yKOeYgMzkPwrMRNeagGub1egaxSazx5+ESST9a6kmfdvu6eWf/U26b1Q9xEHX3D7+fuftHXC8Mn/Jru118a+UfvNu54TlZ4FobHvD5jRMf0H1MwTCwxIgbQ3EgOgjoP4ZVUbPuJlPHyrVcRnv89d2AUrk7gqe1juiw7uTd1lSj4fczjUZc533NFlhlH6dVtpiVVd4dIa1iUPiqjDm8RHk04XyRhhk7tU34sOP3Q7Y+cnvhUKE5dVGmbAh2P9MwxHW+DZPoTrgTuMzImK9u9ZAKLtUzbEJmp8MAm1goFYXh8aBU6fd7Pu3zOyIq5dI4agR1ObacGP8AhKQQ0VASiBzjRGRnPTKu/84W17fODvqrT3uvgAl/fdNaHrv1gWpj/Bv1J8N00M0wqAFcmByniIoDaSU8WyjTaKAapI4VQ4R//SYf9HPaqOdl9kn8ugE80Vn1CJ4og/2SCGZ1acy4buAOeF0i1cDFkzCBX3iECX8SdP2X6tP8OrY4F7RD1neiy+FTMmrnY0tsdA1GDv6QPjcDYuiB4mh0aYZhaJDH6hBK9Ci8pAnloBbkA2nw9QFYRgH+Pz+nFI4IHYVElB7PTVpRBc5rMcBsUYBBHes03WC+YPYbV/TexJPaJH2bg4edq4H1uHaueuswv8iGeege3/OnBcfFqb1rt1e8CKxKVdwOoQihMh0pG9J2ISAfAOFJC+5U0uRU9fKTdGUKrsdiCoFT2/VduAGjej2kzE5DLdzAPYq59RF6k2Q8QehNwm+i603S9SLpepNF1pOk34jQk2TzTfV8FWrgcwyRv5X5r/M4PVDpv7+Os1+IrH06Vf5WxBwdokLF7Qb9fvtjz1Ie3rNKzZvfbkiflsVdMwHmXAvN6YFiL0CCzpL6uQghRzaQiiISfKbvzo1VLu2XZl5P6ZY49Fl4EUSC6ShFpK3afvq5PHSdIOFrjP/8RjygNJcTpSn1GRKAnGwXvNYCTIz0AIjOeqfGMPyjmDGMuF4SC95Yj/mMWmjq6YYhRfjTS/8xf0qX8zGSP+3M6U+d/udPSfu0Tju6v9QvQZJt+499inwRKePBn9JlmnjwFB05PUXLEvenV36Z1vbYgISgPbVatTvy6G4ED/6UvkjAA0pOnCjZl6Q/pcdQk/vTjpz+1EnnTy+b/ZyAPpz4IbN5lqr9Pl2cKNn90Ttu65X0cB6mBN85pwR/66YEV3gjs1UiITcCmQ2hgacjszE18EgyG0IDjySzITTwSDIbQgOPJLMhNPBIMhs9Q2Mw1qBXRHYxunoeD4y1q7wZ2cqIRi6ajiRCVJE0Mn3Pn2ETCzab0GULebDJNTabZO190Gvi488B+/fu2r9tcB71nN9PXWQJciWzNgqbY3MUCRPhHQUqdAkTVFo5Li4E5bm5NGzpuouIR9HH21lFRKlVSmU4jFjwYv6Rz3edaZ5wxfCQvAlvD4fsi1woTZFYD2PzhJbdNXI1FAAnv7axRJU0UAm5WrCKDhT+iVZoiXcHGQbc5XiYuppmErLMEaOQbVOpQFEXONB2YkHqRHGFEJk6VpEQLI+hBEAr/HI4rHda8Hp5/Ho3VWLBq1QvvGR8U+m6uLq5lTEQu6jhuUGtAn+qcuRToQaUWpYckBANZbdIeEuVhxfh1kuBS1iuriRKMuETAlhFVSFTiqEWVIFApFXLZfG63zFhYt09RFe9bvZhma4CytNSHb3/8xCXM+pyxeX0umRcvmH2mNPlVc13eXQqJ7E/TUfsv8lbmLQWGC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIX+i3z25gVp3/2nhD/+s9/l/uOLpALdXn6vsrS9Aq+aZsnnOzT9XESI7hCr4/sSHQxXh6C6y02S5ppuXa66LDRyrXPsOcq197HvqTLtZ/V7glZWy5KujLw7oGAub9S51OmKdeebs9V/DbN3gxqTs+dO9cI5doHncpw7vdbNb9tG9dsTe35KdMsyrWncFpHZQ7WMUq59jNvfi89v56dd/r3X5Nkh2pTtU1MVa5dzmmcPuZgHIEpy7U7r309N2qfJPBI17mWtYMPXTOrcu1dOY3nZxrjmWe59s77//iR7b8kYGl5ZeMyC9/+ZOJy7R05LdfS5JaDN5VYufYllbwChEdWBqx9umNsuTed/jGLcu1YDsFarh04QiJPvc2Wp/6XyrXTy2KYuFz7NXuucu05zJS2RMq120Rst1C4OPlt+JS3+MKPfsN5L9dOFzfjoQT5FXuuEuRnDJNNNKBcuzb4+Ph1yfvFO6JWdJeNXl+z+EOYhhXdR/CAVQ4nVruN63NNXa79Dpsb+58If5FE+OnVhIwmwu8m5BLhryQsCRH+XfvvTr//daQk+/pB377nWpfj8bQ5zz4Sapa7CLk0yxsIjSLC33JKSKfDu2qErfacN3LkxEoSk4vw23KiAvqN2cwdDDv4w58I/zz102rldrX1mzagXpK2dk2qGKYpRfgtOE331TSTB6OL8FftpK1d/qBWvKb/jA8zfzzKNbEIP+ZlWFXUgZcxmgj/3eWLB1vWXBJw6HS3VR1Ov+5hBiL8tpzgVBIaUYR/9ocWC1IqdAxZ1Dyosf2Yv8eYgZwFRMiCE6GvuunnXba8TSpybvaj4xXR2nv1111a8pbKILPCDvElqpQgojNzNksWnD3zt0gU+fcTWhgAcbUqKTYO5HCwyrUqxiAtB3qFRdanZaoeFGjUl9vXRCqYD/GVieGiCw1fQXOpIJ6ZJhl4sKpG/mOBqwQWaLl5F6/Wa3OzgyfJzjZZuHjhmuLX7qKlUHTHWNxi8wC9DIievRhVjxhMrKYalkJVxIdvtDxWLUfnlxdmNbxrffC5aPa8uqJpLkeW0E5IYTciTkjh13mX/QXvP4bz/ZNNnizpeqYBiRJ8ZIUqWhHFoW3Te+PXH3Gtw0QZW04/OvIxuDK1r5IfwOyrupaSMEY8pzGiTGMMRnFsQ3Ys3IISVFoQvmRRcO3U0aMjmLKCmUW8i7B5x6g4lTraRdiio2aIWov9gs5Wy+XER7vIvkg29l+yu5pnHnVLvjz8gghtihJR/zK/qSSM1YvTWGFmMXLgRxmUrdbMX+hOSFIP1HCMoN8zqx6xUdX0X2U/aOylA6l3ijNVLqY5cpoTjhwe9bzA0IVqId0w0cAslfDkHNnWeW/5Z3XXbUEHanuG3H+2d69Jp70QgBEkADcQAEDXYlAmSoYydpGJqo9OBltnRQbNrV9jVxXZ468mPewLARjABUBkuJBMNO/9x/g49MLcRuPj2Dhw8XEeMjNLnvk4P70TOfYWZgZkOP+68e59u5/NgI9Tw4Frd7OCgxmQCoYPH24EPs6DJaNivyXHe89f3bpfjeVvnpoFH0fAaZ2/TROSTcDHGXPcQRzXsqHvgWqTf6vj8dLPLPg4r4RcxnloDsYRmJKPk+avWdB30enghUeazL0/7PRms+Lj3OA03nmTJ7tmxMexnj+qvtvR64FTyzye5BW/5LWJ+TjHOS233+SWK1E+zvadovqLF7uH7dzR+0HG1cAEs+DjYDkEKx/noS5Pvf9/gY/TMfWSKtm3iffOUS/H3O09P9fEfJyeDlx8HB8H4/Bx2julfCiVcD0kNbp7q386rlzNOx+HPjfngWMS6cDFMQl2KCk+zqk+7y6PdzklyQx2fWzV4Go873wcuo/gASsfTqzaGneWYGo+zgM2NzbkiKKZInS9eM/hMOWzx33eUndKuibBs5N+alliHPOEqQHbF40kCk0iPD2m281JccVPmQplUDMvFn4Dsuc1GLur75cftmFHet37NNk1MIv1+Zg7OQUbGf2vfARwYWEFj2IheiX93JOevVL3aQg+jR08hW8jhv9o5z8XO0qVderlWkfIlcBg8ugA4NeHkR+HmRU3ZR6bKW0epkuqef0uzvZ8dGTLqWQqB6SUD9qAVXHvjrCZoALeRDlkRQQDxuErvpQ86Ifki6DkoW92UIrFSgOA74gjS+TmiAjUH7Kh/n389pXV3Sx8dve1zVqdGLKq0NOXFUoeeb1PbNJP7/F0YrOI44bLIvvq0C3yiM0iy2alJ70K/Ow3b4iNJmuKC3XFqqwvJM9omRkZ6/QSv0GoAVEfr3eZpIEpL1arLU6ljIZyjJASGIP9HZYOa2WxGr1yEPoRybLBqqjB8mjdTahHZy7n4tf13a12kgoc7ACYpVGkPiiqXsoOIb8EIYLzOIT8EvxHl18KHX+vU0TuS+9xZ3emWr4Pu0KXX0rrkT36VmJf/8ycZQueZk7rRLaTh1GLLM9E/2KEPBObpa2gegBhRnQVnGz7maWTb4g3O8Z93HcvqnFxrMX/bhiwqz206yJUypMDhlBNO5MUnrSC9R37a8A7JMTmO4z83zFXM8LDK3wUQiWKzVbVfPNHG0iItElqdOK6xaVC7MKb630OjLp1sWZ8VSGnycqJ8U9CaB0TDSVhNCtOo5UyrtFIF2wRLMYdKrxltG7cY7YhxyhbstdAQpS+ViRo5GqMdQe+guIwkbaKfPS5bNl1aUHjtu4YsjJ70Fm6rcqFJGllA5U6AQsBbbMLfqsHM1x5FK71VbRwxWXUT3W4jPq6DkPri7OAAtHZ5bg+CxI8ukwKZ0e3gJ6OWaYDu8o7o9Sd8Es5IkSl+0QPrIsTIf0xW0jv+uh+WDnleb+l+w6XHr3bgSpTWCEiThGjFcK6stSwDuMVW01ru7CYGDgVkSmVRPlVBSycB8W73ZAA0wsOsj0CIl/Sl24PesZPsN9080EVw3OVCp4Uu0S1NVZ9F4xNDXxgNL8zd/iL5Rm53lkjfreJcAulFkS1YHnFQlNCetH14hLvAVZlIFaZIhT3A0zwvzCLUnOyxnALqrBegS4bf3pFy+Fz/hTvXLmo8QrFrzLGknKMfsAUdzyBN39bm+vNnxi3wDTLcjLWAw3YY7OCOkNc0lMLGtqMOf96ku/ctDf1TqW3DKX2S3i3seC/zQn/RdPAz2CIFbdQNz4iINsZvAnSIvSKu0X0FMVdzXcjXEGONyLAzHTDBgQRYJ6wBRiD9XwcddYreT2fmhfcnZb+fk206VZuo5w3GbkF9Hza/r1gQDXRQNEi5RfxpyiP5wX0fLx+u3zpUN1lohlzen3+dGLP1QJ6PuoHVxZHH10t2V/m1rl5eTN+KqDnk/PN8nre/kP+R6L+CAm5Gfe2gJ4PovIvqW2IqPxLFupFVP61JJrWr2h8s2KHcL8pVvGb3WrY/AGayhNN7T5OG/7o+VFRWu/jX29YLCoDmioQTTO7PHO4PPVl4PZeod/ed/5wAjRZEU31A5vsfDLnu296B2fNt1XWT0FTRaLpbua4akvadvbLDhx0vG5dgRo0WZNARbUf3aH1at+0rUN+vvrbyiGgqRLRJHy48uiyyRWkm3Z2UbTYLUkBTZWJpineDSo4tbH33b392rNSLimeoKkK0dQl4+ix2v/c8d/W1WtMj5aj7EFTVaLpkPXnzKPyyd7TRlicqmx3ACopVSOaYuOeDBL6VwlI/fq0sn/5yFjQVJ1oWlst7+9mTad4p9bJy5tw2g9+YA2iaUOm5+JlPW4G7xma7bvzsXo4aKopYJWBsiGavpy0GXk6Z51kRebMxhleR1uDplpEk+xlu24uXkG+mQ3uVr80P+QCaLIlmn4kph13cPOSbBKXr3qwUaw3aKpNNLlU98ntJF7tM83asty3X56+BE11iKbzk6vtulUjymfqisTfOs9tEQma7IimMs3ahAlujQrZ4VGmVbUFaqjnWJdoylj79ZyzV5mgw+2GT+59Zdti0FSP7AC/zvl+qoVt6LZHe+/WvW4XBJrqE03pp4I6Vnm0wXfG4oApNVq9ygFN9kRT1/cVmwY5qL1nuB8Nb/5BXA80CYmm1jv2ri8fERCwePWJssfyylkyhKocBCxCVe3rXqn5dLl18KpMu+tPeh+KQrgNQ4WqnrK5qJox+7ZknTgtXbTx4fCzdUcuo05dpcMSlapoxOkLtgS4CXGHkDwvi5Wp08SDhBg4IaICoJ7HLegOCvlozFk10aCvbjiYVgka5kL/itg5TAXp8YsGhhXQzD+Nij8I8t0G3J3RQft6aOiGE7UdZokDs3k8jMrzBiFc2fveAAAUjZp3fnaWCv5qYFBO7BkuB10D4z1Fy2GJI5VGgR0/Ac+nUGJTJ7KfCGVqeOJaFa+IQit0b7ItM6SOVdj+axUXRx6c0J1KH9d9D5M+nt/Ee2kaJ6zHcMD1oIFZZHLMo44GZnKuxECLzjeXNk6mFcbLBsuFIAHRlbBm55l/Pzx4aN26YeK5gssnunVc2YnGNCQ+FsE0JFv4tp63G9HZJSjrnXLHOjuDbW4gcA7koSiS8CenA4kES10rcl3E/XGSWdNEPd4IfDsW/wgWD2C94AQLdHUi/jxjiz//U24oknIDPUM3mnJDREMu5YaWDUtCucF154nEFq8n+a93rhE5etb8NTwGS7oH4kG5oWtDroPufg2NotwwcfTspC1he/zmtU2NPNDtznmTKzd05EQF9BszZZkaT7nh9Hptqe0fOvnMGbT5asWdB6+ajXKDE6fp7E1jOqMrN7yoUftFpcn3Qtb6nnyeW2W2o4mVGzAvw3r0HngZoyk3qL2GtplQJcV3smL1il8f16LNIE2i3NCRE5yWDY2o3JC0d86NANWZwLHrj20536P3AzNRbnDiRAiMaSJv+4Mtbzu9UBb8rV0tv7Gr65d70XDEYWo2GgxyNGGEJFj/hQMfXTFcWE2AzITBDDEG/AryrhQhwFatxTUKgLMl+ivMvYjUbZR+kle09Uv0czOzaLLFgLK4fs5EWVxGqpQILNDU2bBlBewBCmCAfLs24qjAmd/+laSdr3Xl379a0TKlCHg34oACdrmwTInu/3ioeSt1JthXjE7YxUUqaO9sEO/YFgOI7BeO0Qo16L6gHR1su1wOL3PoalnvSfuW+nZdq6BW/CwvIW9mDsv8psIAG1Rnc9v6D+wka2yEMuc+1xU8ANacEzDQo0ySROExA/5NSwHbD1MOy5LDllaYLTm86rTjx0/OvjhCsj32Wv+jmtdZ1TAhE2AM6bBEtVxHe8aSWpFPhGNPp+IlwPSymF3aVB2Q+4f/pLRJTucfTOnJg2nrcZq2uolMi8qPZ3Y2KNWqGFzAn6PZuS+mVRgY9tF3y/wGH+Y86m5P3/BDHKrCr/K+dudO+KStKFLJA3dsiBGB8TlbYPS5Uuvu0DY7vDf16Wc7NfIQtaxSDUh+1cKlT3iSWQ659XIDKsa7i1XxAHKcgot9THT+x2CTw/xC8ZBUqldEpG/bFf7ADHMg/0rfbAR0/vWNAOh/+CAKyM8EnX9Ro+LyU0TBBUCByw2wDBLMNlQJQkey+DlADxdAgv/DfZoGrkarkuUs6iUD77jffJKxXrIj0r38IMVeOdXHRGKkA6aPIa4X5mN+Fg9Y6Pqwsfc8bXa3CQN67C6mj8kBMK+FMFv4IEqmn3LGYC7uknDjAubXrW5FqRI08qgkrHtgnCgklgkDtRcbDJ7mu/pzsz03X363pZ7IyP9c5vSX0sg7ldKVgK0vCjZLdww2wiW8YHMJZys1/NC8tSpkwp9vg9wuj5ZS3s06XI5xGIWhSUolwhewJcyu5H2QCIv1WUXCUJlSEY138mSFNk6oAtMUtf6egL5Lz/GcDCtQm/U9tucoFaghulaozbcLIEvuW+yxbxOA8fDgqqtcgxGxMcSQADy8O2rzy6q3RKl9rq/8MabxMWr6jH0QM33GLxc2nOmshOIeRQPDOREitxyVMsDKrzGNWNNnPZGz0yGnpnQ12LWQ8C0+O3bIJ4sn/msH15MndK27kXrMnegg6C0daivfoxii1ZcTrfBGJmGxW3ZLSZQXxKFhAc6OWxBIaeVKN/g3Gjc///4wyY2Vq2mUOPhTXMdtgwVIaFjwEWBSnYKbGmllemAqziAppl1nuhOj4B2KNpfqgY0CgxbCbEMxbGGugPN3ia4fjYSizBjn8yNOHfFbf6jK9IBZo2n+AnsrxMYEdrkkoOjLCUW4LlC9ZAtUZlPzj+4t+Sl/XAIl/1o24ir510wH+Suzh5zOjeMHcmGnf0KqtpglSbfZ4lLpQPhyHiBf2pgL8vmNSchf88bKrExCbgRWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycr8bFHjQ9uRuX4r+9cqJevy7DcG5Q12XnRtRhr9kgfK2xs2+zcIOu56d1sF3zUW0QOvPa9CtX91fLFfrFRpYLqIbeAwk/KyLKOtga8CljuOg/WB8Q/AppRwnknQEPTb3qdTTgt9RAY4qD/SNysH2dIGuD9wA3liBBY6NWyb3w7fbcOUNFTQNAAP8As7L8i5z5vbt+9V9d+yaNiPOhNu+xZnr61kl7EFYOK8riERdt8xxAlBaxZzw58Lq5o6SkRBrNBHahxdtjz+3DhwVq+ch3VearQ80iLGdA/9eGr1MN91qsn+k3xSjvKA0lROlEY2ZC4+cOVpLl3IcYUNNgwzcsjBqR7JPWPfKvHtE7Wy3D/+0kWWnlPGysekmHA/d4Ar0YmQG3Lw8PRSA/dznXW7hxCiqAJ6nzACUXwTeiVgqHPYqdJh0o03EyY3PfP6tBnsWkKQMjhBmmrgvm5jiQJ/c91SVX6XwTYW2R2U7RCFpVWjJ8ELq9j+kz3wUx3qLiL5ucxdRF1LSaAzhhOdZN2e7lu2wPgyMjTYwv2LOGPFOd/ssIDezIV4ZiS0YAHXgbqfq6O6JasMktynH7DQd29AX/Y3LD0CYTvng1iA8gCwPTYs1Om3TfuqQp39k7KWBu5aVzH56dsXbaiLndh+LEtYpzQW5sXpLq64THAA1mcIVhdUH7vQTCp4Y1isq4SBJQcjjR2qXSPPXXuWstB//YT4nX94fqIW/SsvBfeigSrQZOSUAML0mBOmWwYGu8K30Oh7zSbbQoOeBusjcAtNyMgd3TFoCD/0js0PiZuec2+Xdj94mW/2e2272vXo69DxskQhvk6DWC9nS82b4veRuz3YuRSZMEGeDC/J1YooIkDqxyKhHe7ieELUSnmBZj1xTXSUCmo75ULFaUROvhWg/sXRIEdVCduGwhd3weMg37L5wRdeyvIT/LZ8sB8WsP1qU2qKhH0AM0XCLxc25ujn3Io55iAzuRaEZyNqzEE1TGsng9gk1vjzcImkh6b0b/e9a8fADc97jm3z6gZ1kkK8LnP3j7he6MH2dt9OOqXUC968Jer1v+Nr9uABnzKc+IDuYwqGgSVG3BiKA9FBQP8xrIqadTeZOlau5TLaqdJHxrT6tbdozskRPxp//JV6tK4sfj/TaMR13tdsgVXeOnJZ5YlZWeXdEdIqBoWvypjDS5RHE84XXXNhSESA3HdAwJhQ0YIedRbepRomBLufaRjiOt+GSXQn3AlcZmTMV7d6SAWWToZNyOx0GGATC6WiMDzm9+v6jyS4Y+hy4Yq6y/8eN4AmKYR/AEJSiGgoCUS+OHIh8sKRjOvv2eL61tlBf/Vp7xUw4a9vWstjtz5QbYx/o/5kmA66GQY1gAuT4xRRcSCthGcLZRoNVIPUsWKI8K/f5IN+Thv1vMw+iV83gCea60jwRBnsl0Qwq9vHjOsG7oDXJVINXDwJE/iFR5jwJ0G++N9zPyQ//Pdb4NoFjx3zPrWgkufKsSU2ugYjB39InzsBMfRAcTS6NMMwNMhjdQglehRe0oRyUAvygTT4+gAsowD/n59TCkeEjkLLvNDiuUkrqsB5LQaYLQowqGO9TzeY/zT7jSt6b+JJbZK+zcHDzlWmI9fO1Uwd5h/YMA/d43v+tOC4OLV37faKF4FVqYrbIRQhVKYjZUPaLgTkAyA8acGdSpqcqn56kzRlCq7HYgqBU9v1XbgBo/oBjNDTUAs3cI/ijBNCb5KMJwi9SfhNdL1Jul4kXW+yyHqS9BsRepJsvqmer0INfI4h8rfrpb+dH7P1uf/s19v/Ue+InkOVvxUxR4eoUHG7macjqpR+stR/862T0hZpM4t7btIDmPMeNKcHir0ACTpXnHIRQo5sIBVFJDhp0ljvh5vsRfOPzJ47wnJd6yKIBNNR2vOh1oo/xr/wPbJu76eKq44Vl3AAUTrDiVKOE0MCkJPtgtdagImRPirKNNY7NYbhH8WMYcT1kljwxnrMZ9RCU083DCnCn/71H/OndDkfI/nTJE5/2v9//pS0z4I+8vBHFhu9V97p/+Zct6W7ePCndJkmHjyFhtNTKErcnx7a+dRrf53IwDnBDzelLhv0igd/Sl8k4AGl/pwodS9Jf0qPoSb3pxpOf9pf508/mv2cgD6c+CGzeZaq/T5dnCjZ/dE7buuV9HAepgStnLimBC46yP/mjcxWiYTcCGQ2hAYe6eoRGngkmQ2hgUeS2RAaeCSZDaGBR5LZEBp4JJmNnqExGGvQKyK7GF09jwfG2ifejGxlRCMXTUcSIapIGpm+58+wiQWbTeiyhTzY5DObTbL2Pug18fHngP17d+3fNjiPes7vpy6yBLmSWRuFzbE5ioSJ8I4CFbqECSqtHBcXgvLcXBq2dN1FxKPo4+2sIqLUKqUyHEYseDH/yOe7zjRPuMhuQUaNPqP8MkpPqBEw2/E0mye07K6Rq6EAOPm1jSWqpIFKyNWCVXSg8E+0Qku8O8gw4C7Hw9TVNJOQZY4YhWybSgWLmgIH2k4sSJ0orhAiU8cqEoLlMZQAaIVfDof1TgteL49f76ZKLHiV6oUjxzaVtlzYNLcyBmIXNTw3qFXgT1WOfCrUgFLLkgMSoqHsFglvqfLwItx6KXAJy9WVREkmfEIAq6gqZEox1IIqEIi0arksXvc7Jkysu4foql/MPizTVUB5Wqqj938e4vLZplxx+VhTMi5/NXvM6fKq5rs8+isnsX+fjtj/D29h0lpgvDCJ0M0lwyRCN5cMkwjdXDJMInRzyVxoXKv5i6o/milZk9phY/S4P48VyIWub4g8NPD3BqErUpOlXa8kr2UEV+j1kR2JLsbLQ3D9l82SZlqunS46bLRy7Secucq1z2JKyfBcrv2Kdv+Qj5KH4iNT50199tThnRmUaz/mzFX8dp9pBDOoNaenTZtmhHLtT/5Mr1ohdIbPntiArTu1KdTVQlOVa9/CaZ1V5mAdo5Rrj6pa70fHoPbiGdfaBh5rG0xdYTZVufaFnMaZZQ7GEZiyXHvVq2Ve9ro3OHB+WJv2VY9EljOrcu0TOY03yoyEgkxern16g0muYyWVfQ9Uu/zXgN3ykSYu167htJzC5JaDN5VYufZyX/bMjbmnEq0YnfVZuPzLR7Mo147lEKzl2mfpxJ6+seWp/6Vy7fSyGCYu116xGVe59r+ZKW2JlGsfFHFncOiCZX5LFD8/X/7zbpocJA/l2uniZjyUIK/QjKsEuaBZSZVrf3lQVPpfn4shG8/3H9l12puTvJdrp/sIHrD625kLq1fG9bmmLtf+nc2N/U+Ev0gi/PRqQkYT4Y9uxiXCL2lWEiL8L/9K2HvotW3Awje7vs92qdeAx9PmPPtIqFk+sBmXZnlPpo8sCRH+SuO2pAbsahW6uU7F818f+WWaXIQ/lBMV0G/MZu5g2MEf/kT4q8+13RwQU0a8t1PV3r3rfK1sNiL8Xpym8zCN6Ywuwv/b9fv/Jmxr6z1jTLfwHesrVqbtdBpbhB/zMqwq6sDLGE2EP/2g7ZekX+eJZnpnfs9zuV3LDET4QznBkTQzogj/nY1u58c1XOGzouLOj8fW1p9hBnIWECEvToTAmCbyth9seZtU5NzsR8crorX36q+7tORtS6qOAHaIL1GlBBGdmbNZsuDsmb9Fosi/n9DCAIirVUmxcSCHg1WuVTEGaTnQKyyyPi1T9aBAo77cviZSwW8QX5kYLrrQ8BU0lwpWMNMkAw9W1ch/LHCVwAL56sPeX5JUrREpmTe9w8LVvr2peipFqt1FS6HojrG4xeYBemchevZiVD1iMLH61bAUqiI+fKPlsWo5Or8MqFbWp7xX+5DMe1ktN1/b8Jh2Qgq7EXFCCr/Ou+wveP89nO+/yeTJkq5nGpAowUdWqKIVURzaNqHtH1c49+sDnwXfmqnz/g1XUvsq+QHMvqprKQljrOA0xgLzSH8EhuxYuAUlqLQgfMmi4Nqpo0dHMGUFM4t4F2HzjlFxKnW0i7BFR80QtRb7BZ2tendeduVv4TG/cbZdd33bMIvK7SgPvyBCm6JE1L/MbyoJY83gNNZ4sxg58KMMylZr5i90JySpB2o4RtD6Xd69pk0qFzzrXo2aAdfGPi7OVLmY5shpTjhyeNTzAkMXqoV0wyEDs1TCk3NkW2UU3xrufT7Cf4OyrGhzE/ttJp32QgC2kQDcQAAAXYtBmSgZythFJm7kfQlupOogOjh58vbmLwPHm/SwLwRgHhcAkZN0iSYcFf8lPg69MLfR+DjBLlx8HFuXkubjjIwdHPWLdV7I/J0Zk65VTxtgBnycQBeu3U1vFzMgFWhASl/yfJy7PX6bvqbr8MCMfWkOdy1vlDcLPk5rTuu4mIN1jMLHSUzbUmdb6jnf+bd7PVj9Ne2kWfBxGnAax9YcjCMwJR8nr87d7/dWWIWuygtb/3Xv1Byz4uNU4jSehWmMZ558nEllljn6l/pFPH/ZFZfUaw98TMzH+dqMy3LvzGKaUmJ8nIkfel2fe3WeaN3CPY9elW8uMQs+DpZDsPJxgCMk8tRSbHnqf4mP0/V9xaZBDmrvGe5Hw5t/ENczMR9nugsXH2cYM6UtET5O81dd9g6e9NJ/a8QX+2bbb/rxzsehz8154JhMc+HimIx1KSk+jnWce8LgNZ/FaVmB7SxqJ+Twzseh+wgesBrGiVWCcaOlqfk4pdnc2JAjimaK0PXiPYfDlM8e96EWYrPqmgTPTvqpZYlxzBOmBmxfNJIoNInw9JhuNyfFFT9lKpRBzbxY+A3Intd6x9715SMCAhavPlH2WF45S9bnY+7kFGxk9L/yEcCFhRU8ioXolfRzT3r2St2nIfg0IVCYy0YM/9HOf2Y5Sv8Odsy1jpArgcHk0QHArw8jPw4zK27KMmymtHmYLqnm9bs42/PRkS2nkqlxtpQP2oBVce+OsJmgAt5EOWRFBAPG4Su+lDzoh+SLoOShb3ZQisVKA4DvWOJElMjNERGoW7Ch/n389pXV3Sx8dve1zVqdGLKq0NOXFUoeeb1PbNJP7/F0YrOI44bLIm8b0y3yE5tFls1KT3oV+Nlv3hAbTdYUl5+pa6K+kDyjZWZkrNNL/AahBkR9vN5lkgamvFittjiVMhrKMUJKYAz2d1g6rJXFavTKQehHJMsGq6IGy6N1N6Eenbmci1/Xd7faSSro0QSAWRpF6oOi6m2aIOSXIERwHoeQX4L/6PJLoePvdYrIfek97uzOVMv3YVfo8ktpPbJH30rs65+Zs2zB08xpnch28jBqkeWZ6F+MkGdis7QVVA8gzIjWfHDZc1BZXR089+nQr4mVz58rjrX43w0Ddu0O7boIlfLkgCEU1MQkhSetYH3H/hrwDgmx+Q4j/3fM1Yzw8AofhVCJYrNVNd/80QYSIm2SGp24Dok9/GFRly3+mSlHBdfXxy/lNFk5Mf5JCK1joqEkjCbiNFob4xqNdMEWwWLcocJbRuvGPWYbcoyyJXsNJETpa0WCRq7GWHfgKygOEy2Yvifv+rAbb0XbDyRvq936zkS6rcqFJGllA5U6AQsBbbMLfqsHM1x5FKr1VcRwxWVUV06jNmzC0PriLKBAdHY5rs+CBI8uk8LZ0S2gp2OW6cCu8s4odSf8Uo4IUek+0QPr4kRIL8sW0rs+uh9WTnneb+m+w6VH73aYQOXKRsQpYrRCWFeWGtZhvGKraW0XFhMDpyIypZIov6qAhfOgeLcbEmB6wUG2R0DkS/rS7UHPaA/TnG4+qGJ4rlKBXePi8sisseq7YGxq4AMjXzTs5b2xW5tmiFdkXqi4dnjcIXqBF+QrFpoS0ouuF5d4D7BqB7HKFKG4H2CC797YMNYYbkEV1iuQuFgNCyuVtX5x2BaRMrLTz7KyjCXlGP2AKe54Am/emPPNQS8xg+VkrAcasMdmBXWGuKSnekRJHYZNF3vPKN+/1r2sBeup/RLebSz4q3LCX8408DMYYsUt1I2PCMh2Bm+CLlpAq7hbRE9R3NV8N8IV5HgjAsxMN2xAEAGmHFuAMVjPx1FnvZLX84mzmxB6b1Yb/0kHM2onr2ldUNvwc8bZc+/DFJIZl/dPzPkq2FpAz6evtFFeqX6DvLfGHWkac6eVbQE9n3GJb+c0O1UzdPa1yV/9Tg5tXUDPp1TYk1U1Yg+ID9a4NFTYWNSvgJ4PovIvqW2IqPxLFupFVP61JJrKLLOedWF1dtjBg/tFPnl5DUBTeaJpWVLyiLkbr/nMXDriW0v5qDqgqQLRtGNdZe/eg4ZIjrwefe6zx3f4gVZE09ChbiOWPlZ6Z34YUjv1W1ot0FSRaOryy7rjtv+Ul6Q/HDHxV9/sJNBkTTS5vbW5ND3iaNjs07eXP431mQmaKhFN/d2PhdyqfSp4054Nts0D7otAU2XSKF9Xztrx603/gy2C1x3bMwg+RhWiqWID35Fue+0km1uW29Y9u78TaKpKNJ1eKnz0PUvtm5q8Jf2Pkd4/g6ZqRJPl3b8O9raq678tzLeTU2L3zqCpOtFk0/FjrwPjGwfN9e038rfx8i2gqQbRtCo15lXzQ5e9j7Tt3ybAP7c6aKopYJWBsiGa7h/PEtVesMz7UJke/d5ro7xAUy2iyTql/IFKc6tKs1yXP3GqewZ2AFuiKejDQnVy89l+Gd0P9rn4JgF+V23Syr32BvnXSfKe0Dp09ZTM2O6gqQ7RdCGr95Fqkrnee8sE3Wxff/oM0GRHNB3wa+xcs8JKvyUZ1zJWxbnKQFNdoun33y4+vVc71D+756XxcdZLd4GmekTT9sEZdsKpJ6XL7wT1Unw/+xA01SeaLKy6elTfMFI689LNwaL3lW6DJnuiybfVTg/769Eh2avSukWc8LwBmoRE08PzrrJ/38wVjblz4di7yjdPM4SqHAQsQlWxW554Vez1d9jB+0nnqsZ+seZBqMqSzUXVjNm3JevEaemijQ+Hn607chl16iodlqhURSNOX7AlwE2IO4TkeVmsTJ0mHiTEwAkRFQD1PG5Bd1DIR2POqokGfXXDwbRqiVsu9K+IncNUkB5PcjOsgGb+aVT8QZDv1ivev0f0msq+44+uOfLzFOV1Hg+j8rxBCFf2FkGAolHzzs/OUsFsN4NyYs9wOegaGO8pWg5LHKk0Cuz4CXg+hRKbOpH9RChTwxPXqnhFFBLFPm+qVKzTwCZo9soW95tN2zGLSh/XfQ+TPp7fxHtpGiesx3DA9YubWWRyzKOOBmZyrsRAi843lzZOphXGywbLhSAB0ZWwZueZr63fxc8lq7N4+7x/+k5bXvkGjWlIfCyCaUi28G09bzeis0tQ1jvljnV2BtvcQOAcyENRJOFPTgcSCdY7q07/jp/tKd6yrsLIzIsVo4t/BIsHsCZxggW6OhF/yrPFn/8pNxRJuYGeoRtNueG9G5dyw0XDYqWeyg1JU0qrxYeOiibedZRd8fpwn8dgSfdAPCg3vHXjOuj+xLBgWVTlhhrjyzTYPbddwJHVcUfGH51H7R+mUG64zYnKRdPERD1YpoUtMPGn3HDm27NqAyY8DlnVMmeWq8/R9maj3JDLabpD5prO8KzckGRd3eNl9RUhkzd8zDxZtfRXEys3YF6G9ej9E0SWUlLKDfVOZm6qsVUQtje9/Meq9T5TCUKmUW64zQnORTcjKjdMKmc3dUN6l7DU2BGlJZIurcxEuSGXE6FDurytAlvednqhLPhbu1p+Y1fXL/ei4YjD1Gw0GORowghJsP4LBz66YriwmgCZCYMZYgz4FeRdKUKArVqLaxQAZ0v0V5h7EanbKL0SJ/r6Jfq5mVk02WJAWdwnnkRZXEaqlAjrl3oatqyAPUABDJBv1yi2zKTEGZdC949yD67iNZ12cDcC3o04oIBdLixTovs/HmrePvIk2FeMTtjFRSq46WkQ79gWA4jsF47RCjXovqAdHWx797BsM/laU++9dx4/nj5CMJE6LCXkzcxhmd9UGGDPrkY3G5/5tzhdXjdlRwPlQR4A+50TMNCjTJJE4TED/k1LAdsPUw7LksOWVpgtObxqyCqX1JD2BwL2TZn1pkfZqW7VMCETYAzpsES1XEd7xpJakU+EY0+n4iXANNOeqffhjw7Th4szsp3evJybXVy9N2jaA5ym3WYi06Ly45mdDUq1KgYX8OfoI432f+yKHfNAsuSc3aAoT58r9A0/xKEq/Crva3fuhE/aiiKVPHDHhhgRGK3YAqPPlVp3h7bZ4b2pTz/bqZGHqGWVakDyqxYufcKTzHLIrZcbUDHeXayKB5DjFFzsY6LzPwabHOYXioekUr0iIn3brvAHZpgD+Vf6ZiOg8/t7AND/8EEUkJ8JOr+XR3H5KaLgAqDA5QZYBglmG6oEoSNZ/Byghwsgwf/hPk0DV6NVyXIW9ZKHmtKVv8z2CMsadCx7ibg1tUhf2UiMdMD0McT1wnyMPO9qdl/vlb7jEx3VE76FpxXTx+QAmH0hzBY+iJLpp5wxmIu7JNy4gPl1q1tRqgSNPCoJ6x4YJwqJ5fxJbt/F2d6S3Wl5g+NmBdymnsjI/1zm9JfSyDuV0pWArS8KNkt3DDbCJVRkcwlnKzX80Ly1KmTCn2+D3C6PllLezTpcjnEYhaFJSiXCF7AlzK7kfZAIi/VZRcJQmVIRjXfyZIU2TqgC0xS1/p6AvkvP8ZwMK1Cb9T225ygVVIHoWqE23y6ALPmre3HHvk0AxsODq65yDUbExhBDAnC2344tKQ8F/tkP3gvTfM+2o6bP2Acx02f8cmHDmc5KKO5RNDCcK0HklqNSBlj51cKDNX3WEzk7HXJqSleDXQsJn7TL1O3V7pQPmmr/7miL9AFU4a2KRAdBb+lQW/kexRAt0JM40HrnbhIWu2W3lER5QRwaFuDsuAWBlFaudIN/o3Hz8+8Pk9xYuZpGiYM/xXXcNliAhIYFHwEm1Sm4qZFWpgem4gySYtp1pjsxCt6haHOpHtgoMGghzDYUwxbmCjh/l+j60UgoNNPDjl5d3i1g3LO+Fz+8VdL4XdhbITYmsMslAQXWxVmhAF2cCFTWbIHKbGr+0b0lP+WPS6Dk30V3rpJ/p3WQVzJ7yOncOH4gP3bijqzxBJuglYMuPpif8zGGB8g7NueC3LM5CXll3liZlUnIjcDKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCsTQaIkWZnlz3t2e1N5qzizSdmMsdP2JTEob7DzInsfnX7JA+WtCpv9GwQdd727rYLvGovogdeeV6Havzq+2C9WqjQwXcQ2cJhJeVmW0dbAVwHLHcfB+sD4B2BTSjjPJGgI+m3v0ymnhT4iAxzUH+mblYNsKQD6tRvIEyNgCDoxs3KutWs7fLcNU9JQQdMAPMAv7Lyg+i3qjHsyd2bA9J8Wh/g510sozl5byS5jC8DE2Y8Mu+8Y4oSgta07Mg9nw6qmjhJRECskSv/+c6Rvze6XpfNWDpp5UDv2CY+0iDHdQz+eWj3Md51qsv8kn5SjPKDkxIlSHXfm4gNXnubShRxX2GDDMCOHHJzqkdwz9q2SgTm5eS1zIgNnez8JEawdIzfhfu4AV6ITITfk4OHpju6GpbHOut1DCFFUAb1PGIEovgldJ1a4xvLRojzRxOu3V76tEDfFDHYtIUgtOUFycjdsX7exRIG/uW6pKr/LYBuLHA7q1Mgn7w8dDxm34PnPZX6c2kzdRSQ/l7mLqGspCXTsOdGpqctFq7IFxpeRocEW7l/EGSvO+WaHBfRmLsQzI6EFC7gO1P1cHdUtWWWQ5D79gIW+ewP6sr+B68mEsJ3zQSxAeQDYxhoW6vTbpo21G/S3+50y0lTvlI/b3j45Q13sxPZjWcI6pbEwL053ccVlggOw5kGwuqD62AUoJGVYrKuEgSUHI40dqlmjXx+Y5l5eOjmqkdOLjfs6UD2RFNyLBqpAk5FTAgjTWE6YhhkY7ArfQqPvNZtsCw16GqyPwC00ISN3dMegIfxQNTY/JG56zr1d2v3gZb7Z77Xtatejr0PHyxKF+DoNYr2cLTVvit9H7vZg51JkwgR5MrwkVyuiiACpl1uiH+7ieELUSnmBZj1xTXSUCva0yoWK04icfCtAfX4rgxxVJWwbCl/cBY+DfMv7vQ/nNjg/Sbo+ZcS/3U62taGmSNgHMFMk/HJhY45+zq2YYw4yk3dBeDaixhxUw9zQyiA2iTX+PFwi6XWTXsmu9O8nznTdG7bae8VG6u4ffj9z94+4Xhg+OTN2142/Oj905aDse82zNl7gAZ9sTnxA9zEFw8ASI24MxYHoIKD/GFZFzbqbTB0r13IZ7dC2y6lTwweLF58c7HtxY0wg1Wj4/UyjEdd5X7MFVknntEqaWVnl3RHSKgaFr8qYw0uURxPOF2mYNmWzNCPjrvjNyN50+1nnvdTDfmVDsPuZhiGu822YRHfCncBlRsZ8dauHVLC6lWETMjsdBtjEQqkoDI8VfRQ7B7+6FbI4vdbkhMxzHjRJIfwDEJJCRENJIDKfE5FJrci4Xp0trm+dHfRXn/ZeARP++qa1PHbrA9XG+DfqT4bpoJthUAO4MDlOERUH0kp4tlCm0UA1SB0rhgj/+k0+6Oe0Uc/L7JP4dQN4ovJWBE+UwX5JBLO6Hsy4buAOeF0i1cDFkzCBX3iECX8S5Iu/aDzyhO+gVr4rbi+fFxK5itb52BIbXYORgz+kz0VBDD1QHI0uzTAMDfJYHUKJHoWXNKEc1IJ8IA2+PgDLKMD/5+eUwhGho5CI0uO5SSuqwHktBpgtCjCoY91DN5hrmP3GFb038aQ2Sd/m4GHnqnUrrp0rNx3mNdkwD93je/604Lg4tXft9ooXgVWpitshFCFUpiNlQ9ouBOQDIDxpwZ1KmpyqXn6SrkzB9VhMIXBqu74LN2BU/wKpmtNQCzdwjyLOE6E3ScYThN4k/Ca63iRdL5KuN1lkPUn6jQg9STbfVM9XoQY+xxD52za2EZ8vSMQ+e889X67ddVVFlb8VMUeHqFBxu+FV3adWrnhZsjtAuXGYutXA4q6ZAHOOhOb0QLEXIEFH7ZmLEHJkA6koIsFbh+18f2fBBJ8FUx/vPutw6HIRRILpKMl7hAfeX9c+bMbmo4c9xlzYyQNKcZwo9fNkSABysl3wWgswMdIDIDrrnRrD8I9ixjDiekkseGM95jNqoamnG4YU4U9t/mP+lC7nYyR/Wp3Tn35r9T9/StjnZekN0XVH/SzJPOT2WeFnUYEHf0qXaeLBU1Tl9BTlStyfnhYf3lrHbXLIkkkHo2svERVFdJ2OEn2RgAeUvrXiQulDqxL0p/QYanJ/WpXTn37T5ae1zH5OQB9O/JDZPEvVfp8uTpTs/ugdt/VKejgPU4JLnFOCMzrIbXkjs1UiITcCmQ2hgUe6eoQGHklmQ2jgkWQ2hAYeSWZDaOCRZDaEBh5JZqNnaAzGGvSKyC5GV8/jgbFWmzcjWxnRyEXTkUSIKpJGpu/5M2xiwWYTumwhDzapw2aTrL0Pek18/Dlg/95d+7cNzqOe8/upiyxBrmTWRmFzbI4iYSK8o0CFLmGCSivHxYWgPDeXhi1ddxHxKPp4O6uIKLVKqQyHEQtezD/y+a4zzRP+3txv6/WEUSFzmm574NvlgSubJ7TsrpGroQA4+bWNJaqkgUrI1YJVdKDwT7RCS7w7yDDgLsfD1NU0k5BljhiFbJtKBe1aAgfaTixInSiuECJTxyoSguUxlABohV8Oh/VOC14vj1/vpkoseJXqhd9NbCq1btsytzIGYhc1PDeoVeBPVY58KtSAUsuSAxKioewWCW+p8vAi3HopcAnL1ZVESSZ8QgCrqCpkSjHUgioQiLRquSxe9zsmTKy7h+iqdmYflukqoDwt1dH7Pw9xWdGSKy7LWpJxua7ZY06XVzXf5dH+nMT+Hjpifz3ewqS1wHhhEqGbS4ZJhG4uGSYRurlkmETo5pK5ULONI+Z0Xj9eMs5zTdBP41xvFciFlPdmdzpZKS9wl8NdF1HWWhEjuEKvj1ZOoYnx8hBc67NZ0kzLtdNFh41Wrj2qNVe5dvfWJV2u/Vht4agtmtPSdbN92soW1aWe7DRNuXZZa67itz1am0HN6fHjxxuhXPvaljO1B5ZlhG6/kTTmfkQ0dffFVOXaQzitIzYH6xilXHudDhnWDqIPPhOfzT1Q6kan3WZRrr0dp3HczcE4AlOWaz8afEYxuE6QaN/U/v0aVhlLVdo1dbn2xpzGszON8cyzXLt44ZhaXatppUsy+p48WTN4n4nLtVfltFw5k1sO3lRi5dorvO993LrVYO8lVhl1z5TeKDaLcu1YDsFarh04QiJPtWfLU/9L5drpZTFMXK59fWuucu1zmSltiZRr/5Ta/NHo/t/9tsxO+qPvliyqYCIf5drp4mY8lCBf25qrBPmS1iVVrv2uzeVg31V9/cZ0PCz0ll/M471cO91H8IDVXE6sphjX55q6XLuQzY39T4S/SCL89GpCRhPhL92GS4T/IdN38iDCX/bXv8faV+kUMOfRpAO77h17yuNpc559JNQsF7Th0iz/m+kjS0KE392z993XM3r7LBKH7tjksY9aB90UIvyvWnOh8tDkGWjBHSfTiPDXqhuvtAzfL1lYq1batlX9F5qNCP8NTtOdN43pjC7CX+6j0+hH/lk+K7fOTjrl3u6NiUX4MS/DqqIOvIzRRPgfX3iR5vD5fkCGk0dTaZi0mRmI8GPOhhWch62NKMI/bPmO+WnOT8Szm6zbUrrRrrtmIGcBEbrBidB53fTTgS1vk4qcm/3oeEW09l79dZeWvG1J1RHADvElqpQgojNzNksWnD3zt0gU+fcTWhgAcbUqKTYO5HCwyrUqxiAtB3qFRdanZaoeFGjUl9vXRCoYDIenTAwXXWj4CppLBaI2xT1YVSP/scBVAgvkq7et2C3oaNKCsL27ps05WCflePFrd9FSKLpjLG6xeYCeAqJnL0bVIwYTq/5tDCuEjQ/faHmsWo7OL4fM71K9xYK3YVtsmqtHJ9WlFmIuK8FuRJyQwq/zLvsL3r875/sHtTF1sqTrmQYkSvCRFapoRRSHts0f+46uW1dnms/YyMNvBGlfqHrgluQHMPuqrqUkjCHiNEYb0xiDURzbkB0Lt6AElRaEL1kUXDt19OgIpqxgZhHvImzeMSpOpY52EbboqBmi1mK/oLPVhg9GKXZ8mey9KOCRz/aAYdR0qDz8gghtihJR/zK/qSSM5cpprIZmMXLgRxmUrdbMX+hOSFIP1HCMoGzPYRUnxb/02RcRPDzdKu9tcabKxTRHTnPCkcOjnhcYulAtpBv6tDEsSyU8OUe2NWGaw+A346qELGiaMMqmQeZlk057IQBhJAA3EABA12JQJkqGMnaRidaptTZsbPAkZO2d8GrDtwfXo4Uy4x72hQC04gIgskkbMtFs8B/j49ALcxuNj/OiDRcfZzczs+SZj2N5dOiY7aHjghcMW/PLYM2bsWbAx/mjDdfu5j3TOH0qqWDw4MFG4OMk15q1ummdKuLt9Xu3+C36vtAs+DhXOK1zxhysYxQ+Tu/vr2vFPAsPOrJm4L30CRs/mgUfJ4fTOLvNwTgCU/JxSo+eHNchLdlnnsfnxJwf38LMio+zkdN4y02e7JoRH+dz0qj01okx4rQ6c6Z96L2hjon5OJmclptucsuVKB/H9Te7xfOS14VuWnX251m/Kt+aBR8HyyFY+Ti7dXlqw/8LfBzfVjs97K9Hh2SvSusWccLzhon5OC5tufg4Nm2Nw8epo/ix4ohPb8nmU1uaTxdcqsc7H4c+N+eBY+LclotjImxbUnwch+gatoFvl4VMybmy/KGk6kre+Th0H8EDVjacWFVs+/8VH6cRmxsbckTRTBG6XrzncJjy2eM+VOds1TUJnp30U8sS45gnTA3YvmgkUWgS4ekx3W5Oiit+ylQog5p5sfAb0IUPz7vK/n0zVzTmzoVj7yrfPM36fMydnIKNjP5XPgK4sLCCR7EQvZJ+7knPXqn7NASf5gU87Wcjhv9o5z+XOkp/f94y1zpCrgQGk0cHAL8+jPw4zKy4KRuzmdLmYbqkmtfv4mzPR0e2nEqmVkcv5YM2YFXcuyNsJqiAN1EOWRHBgHH4ii8lD/oh+SIoeeibHZRisdIA4Ds6kCVyc0QE6k3YUP8+fvvK6m4WPrv72matTgxZVejpywolj7zeJzbpp/d4OrFZxHHDZZH05nSLNGWzyLJZ6UmvAj/7zRtio8ma4kLVNCrrC8kzWmZGxjq9xG8QakDUx+tdJmlgyovVaotTKaOhHCOkBMZgf4elw1pZrEavHIR+RLJssCpqsDxadxPq0ZnLufh1fXernaSCjxDM0ihSHxRVv9ocIb8EIYLzOIT8EvxHl18KHX+vU0TuS+9xZ3emWr4Pu0KXX0rrkT36VmJf/8ycZQueZk7rRLaTh1GLLM9E/2KEPBObpa2gegBhRqS1Bqj/2rSxoUfInIzDxx/Y7wspjrX43w0Ddv0A7boIlfLkgCH0vLlJCk9awfqO/TXgHRJi8x1G/u+Yqxnh4RU+CqESxWarar75ow0kRNokNTpxPW/7vHOD4N7Bs9d3Pf30WdWGnCYrJ8Y/CaF1TDSUhNHucxrtqnGNRrpgi2Ax7lDhLaN14x6zDTlG2ZK9BhKi9LUiQSNXY6w78BUUh4k+8uweZe++qXTQnpmlHzosndCEbqtyIUla2UClTsBCQNvsgt/qwQxXHoVqfRUxXHEZ9SynUX9tztD64iygQHR2Oa7PgiaI02RSODu6BfR0zDId2FXeGaXuhF/KESEq3Sd6YF2cCOmObCG966P7YeWU5/2W7jtcevRuhwlUrmxEnCJGK4R1ZalhHcYrtprWdmExMXAqIlMqifKrClg4D4p3uyEBphccZHsERL6kL90e9IybsMRsNx9UMTxXqWBfscvTW2PVd8HY1MAHRr5o5IGGG9fmLAzdN7fSgHHLVyjoBV6Qr1hoSkgvul5c4j3A6jrEKlOE4n6ACf5vzKLUnKwx3IIqrFcgcZk2ftLX49k/SXcM9/Tc6OpQlrGkHKMfMMUdT+DNj3G+OeglZrCcjPVAA/bYrKDOEJf0VIDbu5eH7tQIPLD63u2W789PovZLeLex4N/CCf8q08DPYIgVt1A3PiIg2xm8CVqqg1Zxt4ieorir+W6EK8jxRgSYmW7YgCACjBNbgDFYz8dRZ72S1/O5JayxZ43GQnKo3ROLMh0uBhXQ8/nwtELIkaxBwYt29y5nIz2gKqDnE6oNvRkUsjxozV/eSX6B6WsL6PlEVo96OMTxrM+siKm3Lc7UCymg53OvQ9ZH6y4DpYdbf7aq4r5EXkDPB1H5l9Q2RFT+JQv1Iir/WhJNTVpZNe9rkx2w+KfX2cod0X+DpvJE0/PSeY1O7EiUzu0Zda3T0fo+oKkC0dS0zqt1Ea1SwpZmBM1t6/97K9BkRTTd3rQu7pbrIFG27MbFYZdu1wZNFYmm2eU1JxY83i3annDVJm7fmnjQZE00TRvb8WlWh5vB030HZP2rmR8JmioRTdcGOUT519EGLkyua3dCXe0maKpMAmU1vt6fr4J8dtjtq7PPQtgdNFUhmrxuW16qbpUYuNb3qHiURcvDoKkq0VSpm2deN5skn91jhw14OWJGH9BUjWhqGZb274ttY8WT97XMu9y3kTVoqk40nbx6Pnz/T899Nm3zbvi9Tc9ToKkG0dSjwof3dl8C/FYPdi01Iji4DWiqKWCVgbIhmvwOH7/RPmR8SMbOKxnjM6/vBU21iKb49z3tstfdkmzs6mln7zXOBTTZEk2KPcv9518pJZqw0bHXOduZb0BTbaJpmKuy6zepQ8COP5rXHXrZegloqkM0DZ9y8spAmdhntveNj4svHBkImuyIpn3PHrbKWv6P/4wpUVeG3Bn4HDTVJZqaW8RtW7v1uij9g80z5+0z3oOmekTTuJ5rZ/xi1T54qbJ6s+al+0F71SeaYo6crumSc8J7zI6T3ZNdJj4ETfYk8ieuh6ZP8fab/PXumf2SEQtAk5C8a16ni8uXtBRtCHaqOr3e7koMoSoHAYtQ1dy9wuV9bCcFr9tXt1OK2O4wD0JVzmwuqmbMvi1ZJ05LF218OPxs3ZHLqFNX6bBEpSoacfqCLQFuQtwhJM/LYmXqNPEgIQZOiKgAqOdxC7qDQj4ac1ZNNOirGw6mVV5eudC/InYOU0F63MjLsAKa+adR8QdBvtuothO98pzWBEyrNDzz8LLe5Xk8jMrzBiFc2WsLAYpGzTs/O0sFbl4G5cSe4XLQNTDeU7QcljhSaRTY8RPwfAolNnUi+4lQpoYnrlXxiii0hG3e9rXXymwXj8tY+mZ1zKG1VPq47nuY9PH8Jt5L0zhhPYYDrjpeZpHJMY86GpjJuRIDLTrfXNo4mVYYLxssF4IERFfCmp1nHt6hYcOQyI/i6T0eTXALlvxDYxoSH4tgGpItfFvP243o7BKU9U65Y52dwTY3EDgH8lAUSfiT04FEgrWr2zKbk+O6SaZfntU14/KnQcU/gsUDWI04wQJdnYg/zdjiz/+UG4qk3EDP0I2m3JDuxaXcEG9YrNRTucFywlXZ2NUOfsvG7LVVb9vixmOwpHsgHpQbpnpxHXQfY1iwLKpyw54/h1y4ePti8Jp+F+76T8mjlQk1gXJDMicq8aaJiXqwTAtbYOJPueGJUJwUO6KuZFarIRXvLHtBPXVkSuWGKE7T9TLXdIZn5Ya8VvdmuHlGBc75p8/hB7X7WphYuQHzMqxH78cgspSSUm6Y9Lrp910zNos3uD19FfSlzGAzUG5I5gQn3suIyg2Tfil7cIOtt2TStljXk3dePTcT5YYoToR66fI2F7a87fRCWfC3drX8xq6uX+5FwxHUNQrLYJCjCSMkwfovHPjoiuHCagJkJgxmiDHgV5B3pQgBtmotrlEAnC3RX2HuRaRuo/RKnOjrl+jnZmbRZIsBZXHHiIiyuIxUKRFYQCYybFkBe4ACGKCPvi+JmR/2VOG9f37SmYHKMg9pu0nwbsQBBexyYZkS3f/xUPN2tIhgXzE6YRcXqSBJZBDv2BYDiOwXjtEKNei+oB0dbMcvrK4WqM+FrrzeIuul6/T71GEpIW9mDsv8psIAu9KvfOjUh5ZBqz2Wj79nf68FD4AN5gQM9CiTJFF4zIB/01LA9sOUw7LksKUVZksOr9qq9PF3I1df9Z+WFXh44ZyLLaphQibAGNJhiWq5jvaMJbUinwjHnk7FS4Bppj3bb2f9xA3zvdMcPt1SPK3ZngfT9uA0bYiJTIvKj2d2NijVqhhcwJ8jjblp5SD/JqE/iRbOjTnhGLe1Pn3DD3GoCr/K+9qdO+GTtqJIJQ/csSFGBEZXtsDoc6XW3aFtdnhv6tPPdmrkIWpZpRqQ/KqFS5/wJLMccuvlBlSMdxer4gHkOAUX+5jo/I/BJof5heIhqVSviEjftiv8gRnmQP6VvtkI6PyP2wPQ//BBFJCfCTr/tfbF5aeIgguAApcbYBkkmG2oEoSOZPFzgB4ugAT/h/s0DVyNViXLWdRL7tiP2LFlUdnAfX++2evsu5aqXlU2EiMdMH0Mcb0wH7O/dF6DsBtS8USNS+eLtxyzi+ljcgDMDyHMFj6IkumnnDGYi7sk3LiA+XWrW1GqBI08KgnrHhgnCu0E6n9esXzo9pCxX2et/f3tL+epJzLyP5c5/aU08k6ldCVg64uCzdIdg41wCW5sLuFspYYfmrdWhUz4822Q2+XRUsq7WYfLMQ6jMDRJqUT4AraE2ZW8DxJhsT6rSBgqUyqi8U6erNDGCVVgmqLW3xPQd+k5npNhBWqzvsf24PFjiK4VavPtAsiS5xV77NsEYDw8uOoq12BEbAwxJACar9qtG+9NDV11Z9n7XUEjr1DTZ+yDmOkzfrmw4UxnJRT3KBoYzushcstRKQOs/LqsPWv6rCdydjrk1JSuBrsWEr4+f+8dE9veWjz/ztXsN6Os+lCPuRMdBL2lQ23lexRDtOZxojWtvUlY7JbdUhLlBXFoWICz4xYEUlq50g3+jcbNz78/THJj5WoaJQ7+FNdx22ABEhoWfASYVKfgpkZamR6YijNIimnXme7EKHiHos2lemCjwKCFMNtQDFuYK+D8XaLrRyOhqBzntfZZyk+iuaXWljs03X4CbWMCvhViYwK7XBJQzOOEYpouULmzBSqzqflH95b8lD8ugZJ/8e25Sv7JdZB7mD3kdG4cP5C/ifgwtm/p2T77ejsc2/pxlxMPkN/swAX5xQ4k5M15Y2VWJiE3AisTQaIkWZkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZcaPKi86GHbeb2a/SgMiBzy8yqC8wc6L7H10+iUPlLcWbPZvEHTc9e62Cr5rLKIHXntehWr/6vhiv1ip0sB0EdvAYSblZVlGWwNfBSx3HAfrA+MfgE0p4TyToCHot71Pp5wW+ogMcFB/pG9WDrKlJ3B/4AbyxAgYgicM2+a3w3fbMCUNFVbHQwVZgey8oCHHKsulA8LEm9vMjV6+v9b64uy1lewytgBMnB95EWH3HUOcELReYW74c2FVU0eJKIgVEqW9h+7smr/YMyBjUpVrC1yly3mkRYzpHvrx1OphvutUk/0n+aQc5QGlE5wo7fZiLj5w5WkuXchxhQ02DDNyyMGpHsk9Y98q6Xz5/K6TOw74L9n2odX66K/fTbifO8CV6ETIDTl4ePqmgfu5zrrdQwhRVAG9TxiBKL4JCc6rVT9NSrC/H7Y39VRqzwM/NpvBriUE6XdOkE4YuK/bWKLA31y3VJXfZbCNRXYHlXx/YM4iz2qhMx99Ck8qc6UHdReR/FzmLqKupSTQOcCJzjbdnm5LtsD4MjI02ML9izhjxTnf7LCA3syFeGYktGAB14G6n6ujuiWrDJLcpx+w0HdvQF/2N3A9rWAKf84HsQDlAWCrz1yAKv42rVNf+8Qf2xeIVyV/ULZZuW0NdbET249lCeuUxsK8ON3FFZcJDsBqAcHqgupjF5pJBY7oNSc2sCphYMnBSGOHKmZ13bQbT8uE7nY8M39O9sx/qZ5ICu5FA1WgycgpAYSpPidMNRAr7cXbQqPvNZtsCw16GqyPwC00ISN3dMegIfxQKzY/JG56zr1d2v3gZb7Z77Xtatejr0PHyxKF+DoNYr2cLTVvit9H7vZg51JkwgR5MrwkVyuiiACpl1uiH+7ieELUSnmBZj1xTXSUCiK8c6HiNCIn3wpQb+ltkKOqhG1D4Yu74HGQb+m4e8yZm5GjvVdcL5O+scsFqmzpT9gHMFMk/HJhY45+zq2YYw4yk7tCeDaixhxUw/TzNohNYo0/D5dI+sIDyxuFrLEL3vhV09PjQXA56u4ffj9z94+4Xhg+yY+W/tuy9pygPS9Hu2SMmL+OB3w6cuIDuo8pGAaWGHFjKA5EBwH9x7AqatbdZOpYuZbLaCvXdZ69bvOvflNmne9wclvsHarR8PuZRiOu875mC6zixGkVe7OyyrsjpFUMCl+VMYeXKI8mnC/SMJOj/o3uUK+bZF+fPofnrjtrQzVMCHY/0zDEdb4Nk+hOuBO4zMiYr271kAp8vA2bkNnpMMAmFkpFYXiU8R0TM+7g+7CDfzWfYzdrdGmapBD+AQhJIaKhJBBpyYlII28yrnuyxfWts4P+6tPeK2DCX9+0lsdufaDaGP9G/ckwHXQzDGoAFybHKaLiQFoJzxbKNBqoBqljxRDhX7/JB/2cNup5mX0Sv24AT7SUN8ETZbBfEsGs7kPn4u6A1yVSDVw8CRP4hUeY8CdBvnjQlfep9dc88TvYb97VT9sGd6R2PrbERtdg5OAP6XM/OufCCRyCo9GlGYahQR6rQyjRo/CSJpSDWpAPpMHXB2AZBfj//JxSOCJ0FHrBgBbPTVpRBc5rMcBsUYBBHWsAGDGYW5v9xhW9N/GkNknf5uBh5+pSZ66dqzM6zNuwYR66x/f8acFxcWrv2u0VLwKrUhW3QyhCqExHyoa0XQjIB0B40oI7lTQ5Vb38JF2ZguuxmELg1HZ9F27AqK4DqZrTUAs3cI/CQoTQmyTjCUJvEn4TXW+SrhdJ15sssp4k/UaEniSbb6rnq1ADn2OI/O3mkX818Du8K3Di/bZVPPvMqUKVvxUxR4eoUHG7jVOeJbernCLaPK3/uf6nzxd7aQmY0xaa0wPFXoAEnUqiXISQIxtIRREJflJm+9n4oP6hk0eFaNwmvZhcBJFgOkonx/0tFirq+o85P8VjXpP0hjygZMGJ0ldvhgQgJ9sFr7UAEyM9AKKz3qkxDP8oZgwjrpfEgjfWYz6jFpp6umFIEf607X/Mn9LlfIzkT7d4c/nTBd7/86eEfS7JBTnpQ9r7L5JNXrL+kv9gHvwpXaaJB0+xyZvLU6zwLml/2slqS+uHM4+FZf48pfOzMac68OBP6YsEPKC0gBOlGSXpT+kx1OT+FOsxrP50gW6C387s5wT04cQPmc2zVO336eJEye6P3nFbr6SH8zAlSPDmmhLE6CD34o3MVomE3AhkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxlp73oxsZUQjF01HEiGqSBqZvufPsIkFm03osoU82KQDm02y9j7oNfHx54D9e3ft3zY4j3rO76cusgS5klkbhc2xOYqEifCOAhW6hAkqrRwXF4Ly3FwatnTdRcSj6OPtrCKi1CqlMhxGLHgx/8jnu840T7io1cPzsrUR0nGdepXd0OHiaTZPaNldI1dDAXDyaxtLVEkDlZCrBavoQOGfaIWWeHeQYcBdjoepq2kmIcscMRalm0oFlzoBB9pOLEidKK4QIlPHKhKC5TGUAGiFXw6H9U4LXi+PX++mSix4leqFM0c2lY6/2Cm3MgZiFzU8N6hV4E9Vjnwq1IBSy5IDEqKh7BYJb6ny8CLceilwCcvVlURJJnxCAKuoKmRKMdSCKhCItGq5LF73OyZMrLuH6KodzT4s01VAeVqqo/d/HuLyT5xLdd86kXG5k9ljTpdXNd/l0X84if0fdMT+zryFSWuB8cIkQjeXDJMI3VwyTCJ0c8kwidDNJXOhOeOd19t+8JXuv6nNnT+lxpYCuZBbr+Q5g55/CFkzpIx7GUnPAEZwhV4f2ZHoYrw8BFdvNkuaabl2uuiw0cq1/xBxlWs/y5SS4blce1cLh9pdN1+QLH9VdXXb8W7U3XnTlGv/JuIqfvvBNIIZ1JrTo0aNMkK59jMjG4pbHRsinVip05i/GlWjni43Vbn255zWuW8O1jFKufa/3v721vN0T8nctRcb7d/Q77hZlGu/ymmcs+ZgHIEpy7W3q+/7qUXp2KAZMzJy489Ezzarcu2/chpvjxkJBZm8XPvtge9LXw+qFbRy8bMzhy5IK5i4XPsmTsutMLnl4E0lVq79bfnt9SrmvvPbZj/xwYOHz1+ZRbl2LIdgLdd+VreBKGLLU/9L5drpZTFMXK7d14erXLuHj3HKtfcYc+fB9GdLAre+qOXzsP5Gb97LtdPFzXgoQS7x4SpB7uVTUuXaR91KXpA5PMN3Z57KstGhXd94L9dO9xE8YOXBiVUTn/+vyrX7sLmx/4nwF0mEn15NyGgi/Et8uET4f2H6Th5E+KN6un88pnALTW2kTjhWocdUHk+b8+wjoWb5Ih8uzfLZTB9ZEiL8lyteGCLY6SzdO/rp/EuTxCKTi/BP4kTlF+N6Q865g2EHf/gT4T+h2ZW48/2OkFUWz36f2P7xJrMR4ddymm6QaUxndBH+oDqi8F9SKgeutHv6T2fPh6YUbYALr5iXYVVRB17GaCL8E0Vfbrxwrhy46dP2nW3Vx6j91jQi/JM4wfnFx4gi/H/231EpoMoO8ez27zwH16l81QzkLCBCWk6EwJgm8jYxW94mFTk3+9HximjtvfrrLi15SxWgtcIO8SWqlCCiM3M2SxacPfO3SBT59xNaGABxtSopNg7kcLDKtSrGIC0HeoVF1qdlqh4UaNSX29dEKignBvjKxHDRhYavoLlUcJd9iqnnwaoa+Y8FrhJYoJOnfh+/9h92wm9pxNWtvn+IaXohRandRS82T3OMxS02D9D7CaJnL0bVIwYTq38MS6Eq4sM3Wh6rlqPzy2u2P2dNa7jAP+vS9wX+rx2pZX/LSrAbESek8Ou8y/6C93/vw/X+z0yeLOl6pgGJEnxkhSpaEcWhbVNXdEqq9ZkkyVzVqPuyWZNzqX2V/ABmX9W1lIQx7nIa47J5pD8CQ3Ys3IISVFoQvmRRcO3U0aMjmLKCmUW8i7B5x6g4lTraRdiio2aIWov9gs5Wf3M4O3DqutDA8ZN3H+1Z1X0hNa7BL4jQpigR9S/zm0rCWKc5jXXELEYO/CiDstWa+QvdCUnqgRqOERTaxSJA0viFdKZkUbOpns36FmeqXExz5DQnHDk86nmBoQvVQrrhk4FZKuHJObKtnhMyuo+/Fxq26P2cPKdZTexNOu2FALz0IQC4gQAAuhaDMlEylLGLTHj96+Juv2hawM4U6dQHdf2OmvSwLwTgAhcAkUd1iabkP8bHoRfmNhofZ4KYi48TLi5pPk7lWy2e96mRGDjvSJc0yzdLX5gBH2ecmGt3c7jYDEgFUVFRRuDjTK50bvTje6mBO+99nvHHsA9JZsHHSeS0Tow5WMcofJxjiVtP2U5aLllR79XF8M67bc2Cj9OX0zjh5mAcgSn5OPVT//py/Fkf/7m1a/z68lPIDLPi4/hzGq+TaYxnnnycO3vmPP39r8rehxY4HzpR7/sLE/NxWnFaztnklitRPs68Kyd/2O6LDljbeNeKClUGpJgFHwfLIVj5OMAREnmq9P8CH6fSieuh6VO8/SZ/vXtmv2TEAhPzcU6Jufg425kpbYnwccT9e5UOn/bWe9bkt8PabItfxTsfhz4354FjclLMxTE5KC4pPk5s5f6/lB0QFLrw1uZ3F1r6N+Gdj0P3ETxgtZ0Tq7XG9bmm5uP4srmxIUcUzRSh68V7Docpnz3u85a6U9I1CZ6d9FPLEuOYJ0wN2L5oJFFoEuHpMd1uToorfspUKIOaebHwG9Dz7nmdLi5f0lK0Idip6vR6uyuxPh9zJ6dgI6P/lY8ALiys4FEsRK+kn3vSs1fqPg3BpxkHT/vZiOE/2vnPuY5S/7TOudYRciUwmDw6APj1YeTHYWbFTenHZkqbh+mSal6/i7M9Hx3ZcipZQlPBQBuwKu7dETYTVMCbKIesiGDAOHzFl5IH/ZB8EZQ89M0OSrFYaQDwHTe8iRK5OSICdX821L+P376yupuFz+6+tlmrE0OoYQR1+rJCySOv94lN+uk9nk5sFnHccFnEqSPdIgFsFlk2Kz3pVeBnv3lDbDRZU1x+pq6J+kLyjJaZkbFOL/EbhBoQ9fF6l0kamPJitdriVMpoKMcIKYEx2N9h6bBWFqvRKwehH5EsG6yKGiyP1t2EenTmci5+Xd/daiepYBYEszSK1AdF1Yd0RMgvQYjgPA4hvwT/0eWXQsff6xSR+9J73NmdqZbvw67Q5ZfSemSPvpXY1z8zZ9mCp5nTOpHt5GHUIssz0b8YIc/EZmkrqB5AmBFprVunP39L6rktdM249otE3WQdi2Mt/nfDgF1nQLsuQqU8OWAIje9oksKTVrC+Y38NeIeE2HyHkf875mpGeHiFj0KoRLHZqppv/mgDCZE2SY1OXBfX2pt9NP6D776bO168+flLS06TlRPjn4TQOiYaSsJoIziNNsS4RiNdsEWwGHeo8JbRunGP2YYco2zJXgMJUfpakaCRqzHWHfgKisNE2ur0vO/h4QtHibfUSPUNuNmeMbzKhSRpZQOVOgELAW2zC36rBzNceRSq9VXEcMVl1FhOo/7ckaH1xVlAgejsclyfBQkeXSaFs6NbQE/HLNOBXeWdUepO+KUcEaLSfaIH1sWJkB7IFtK7ProfVk553m/pvsOlR+92oFY/rRARp4jRCmFdWWpYh/GKraa1XVhMDJyKyJRKovyqAhbOg+LdbmhBEVrBQbZHQORL+tLtQc9IgsIU3XxQxfBcpYLuHYrLI7PGqu+CsamBD4x80d4d0wW/JAnFU3c08O2uuXmIXuAF+YqFE+9pRdeLS7wHWGkgVpkiFPcDTPAVHQxjjeEWVGG9AolLdLVJYVt23PDO0Lj9rOifN5+xpByjHzDFHU/gzftzvjnoJWawnIz1QAP22KygzhCX9JS6VlTtyzOb+m49k/P6+6mKDtR+Ce82FvxBnPCLTAM/gyFW3ELd+IiAbGfwJkiL0CvuFtFTFHc1341wBTneiAAz0w0bEESACWILMKcXyoK/tavlN3Z1/XIvGo6g6opbYkWxIiTBTLoJW3jxodakIwpqCaPlMeDXaOHAlIKF21zAhBGn48N5JHEybZReE8hFXokPWt9K8d2ptNwz4+l2d/RzMxdmyRZ997BASiOoBP79gQxNAGNBFSn/xevspi+5+XlhPb9NPaZdqxD5eTLN5cK7Ebt42OXC4tHiO7Kya6/fEy1v+dMTaXTg4WLGoxwAkBACNA6V88FKbDmVpIYszttiAJH9wjFaoQbdF7Sj2Zmiyj8iR9nniQ9Xutb347CP1JrG5SXkzUx2Zn5TYYDtqitfuyRoqigt5PqkjP2BeTwANqAyF2CgR5kkjOFHYuDftBSw/Rh2ZswKsyUHjfHY94zRspOlgzK+JX9+cXXUSdPSGIFlllXhsox3VdNYBnl67wjP9Q37bht+8LBPJ+9M/8bdPy09EGqy+oZwlxpzKVtRE6cqHtgIIeJaMFtcE+6/vlv7+yzRmsgGNisSPKjlP8uGq7SMEztckyZ7/AYQ1chzY2r4zJBUKRum0KAnTt2uNGnQ71hfv+lVt58N+nu2L+oRENrT2HUDyogLBFK8tBEjPF0AMydBacPCUyT+frBmIfYgyDd7unf813qyfwLG9It4POF1Xlfqm+EfwXwz4nph/jb6/7V3JWAxtW14KCQhCkUYlRat9l2zttekhSiUlErUVyH7VEqLEkqbVqESZYkWLZaSPWT5rNkpS7bPzn/e0+SvmXNOTZ3TTPiu6/+u758z5zTnfp/3ud/nee73fR6IdTWmhxqnGEybkPamshaHvthkABEDaVaLQevWUhIiQaFGkvAIgc1IYOgR8Tk0b1p6v8QAhu/xx1kXdWOati0UpUK38U4l+NPmsOGeozhgY9cJCxsu8wEPEiNhtGX4PzZLwMZ/FZclnP1IXsj8/TVriM6bL2uMCt4o+0YO3Tqv6UKHCh7Cu9Cp/7g5rMwLrlwIUY6jb0mIv/ZDce8gVKysvBzrtzj9/9BYPvBL7oyFH0VEeBiDT5VTr3pPtIDj8hCHz66k6N2gQlvd9Q/SZ/WqG7+rbY6gra0eNTkzXZSGwBsxWrA1c3jDBI03ZpzOfhWuNFg33OtVl/KP6k3Thz3rjwgm1yuAWt6tZHj9DaDg7+Du5la/8ARiAHhSQdEAeGrLCmenIy1fraj1YKaq3Xjy8m2dHsbv4+2K2+RySyMgsCKdzyCR4pAoRhJEQK6MNpfNPPInaTIDCnX93eT6PLbvcaG5riW4lc1a0NUEbVSlYaECfCotWBvUjyLydr9HD7emrXhivGewn5jBm8Kmu3VE9ZDWAfWfNufjVkwsStvpxKL7bV9dM/bpw41tjU2gsWaDsa5AyvEEAT5wZAhBio1EalKXaTAShBwP2tgNMGg080ChxgUeS23E4dM6q/xjwYta1rZNW/IXrj1Shl2PEePMslZVZKwLfJ++VXxmuvHOp/Gy22Zsw2NAF2IOqCsDpcLVNiRHIiIpv3P6tLzVadTE8IgrR/eHT28ZkiN5kRzZLJIam6N1XD+XU4rVvEW2rpaQwQNJN0wk3RnctS0+zxvvXe+YIcrF8CXHXd0uyYVtNixcfrzzB/W+Q5opDtZDyOteLFR0VHFn4EpNjv9ALHlFaMHmxmFgUzQG/tDXetG4Qm+T6G+zh2otZ2o0rTeZLXVzI8O7A3mVLKIouMrBNzUcj+Ve35Xea6mnk72DY8s2wZ0zWbP3WoqYXsCLIprWCOdkzCJjo9/Ie4TN/6/xky/KAJgi6YZJUIhHzmLwoxvu+essKg/otyC3lVKYrjfP4QJlQ8qMTdce7qVivm7bzqXC2eGBgDgZoCWDtCIHHdiqMxnc0R4WWn0t6u2E7O0M+TaAGHLIF9rDPqHm8SW9cD+rKW6h6YbYegvOQ3n1Fg0XmoOthP1Jhv4vw+jA67rrYv3KwnGADTIjDNjs9jJQ6yrIGy7rz5KBAIP8GTzn4P199e+HrHj9rhR7KP0kK9VV7tTbpQnr8LS6tqYGNThmVUcl8XbuytGE0eM4NlZHDS3SxtSpKIkbUCLLaKSQgyXuhIcWpVD4bB3FRAkttCHMrbcx/4YWmKFF0rPMO6+mRTM33dn0epfqsIvCGlqA7S/OYKwR10/pkIfJixJ0qkQAocX470dTT9/cyUq8/XX/fqrtbAJDC50e287ssbxsED9kEPVdn9C+OAyo2DasAYUmbzuGFiKdixZ8/8k0jL4xMynMW1qNwNCiE0322N7E/frRcutfO+esSMMByXRMJD9tY7ZHaJHn4uv1zcfDKFPPoOeCwdJpwhRa1Glw/AdiaAEYGDI3DgOb4RtaAPolLrQ4cnF8YGLyWoMw5fdJh5+9fUVgKKENGdqNaCZKKOEBIRwUw1e1qAWhBL17Xq8bX2RNN5pWOTiPq8vBMXTA2aGZQeg8A+ggroHZ0DScEMNXoailocMO8372s8ZONd5y+BzbLv50d+EOFQBMkJlgwHQjhsnfGaX8hwrcHliAoYG2JsdsEEMDshaMFscxTUetVgtNJ7sfsxKnq/5nuHvIzNX9R16xw6epr6+V6YeKXT66Ge7B+kG0FcdxaGQns4tJQm9kZ72rAXJzoYec240JJeR1YF7HokEOQjWZuAbILYQecj2FLMXsa3nGYZ9prq9D/ej4QM69fMIBckokFuTsyAbILdEgF+quxtwJh0btGrlXRY3aNXLPl0btGrnHteVdjfVf+XiRhwRRU5c8qouf6jMLh8aLVmhjkrRq29VXzxbR0/eqfr9wcdRVBPJC3rKMfGZz/Td5E0ALHaHbG04hbVkG6L25rB3TRIGeaCx592mfML9uJvYeHpzdag0TD8cF3J4zh95NZUzW2y2yd3CKXnINDmcf6O+HJkwIDYQJTSfMyHIN5p09+xsmzAy0wen13fTUw3UaxhsTVG1neH6VaiooNQVLbpBBaLl0TNnS0Qs05IB30P7aEQ62BpLByflLltm7uSxw8V6BOCAKXTeaxJfvNvJ3OmxzOWTgKZRfwytv/XWJnyrDE2hmViOl4sgQ4drV8FQZsBa/EuCPwy1AHFFE9E7bhxkn7Zc1LgzZLnrq+JfBTTNXiK9V/2lz4TkBufHkJ2hFreQRMDR8LXilQR8FsotTvTm4eJFN0aKnWSL7J/7IzKPsLJ0xP3OF+BquVglgkHXd7BfyyskaX8N7xVutzgHEA3GbH7Qern7K4Ou80wHcgBjUTwtETE4d8swwos6mxKwMuXs3sLbpmT49OXeiwMJ1mQhkyM+xkOE2lc7NIKNKhXc+LrV3Iy/4/9WGY/jqKRXsJkARar7sH9B1TGyyae6taUd0zswpbHqISKO/x3uISOOLhFhQLaYFvWgop8xE89RT1qifPURdbLyraMvYIpXpTd9NDM6bm7ojbIwUQYFa0czRE+yBJ3P2E5GXOC6s1zKqmLIsydB/O6oiC321HWSuF03MNNjySnmpqvubz8i/BOFAJc6VFqIGynDkexBqGyHUqrlRS4Ywra7my0f3pHHeFN58hrz5M/WdQa+P6YwCN7ebRaMdq5seS0LlzZ5Sm2V9bp/WRvesDYqTABVtKi/rk4LUYFT4Ez5CTsLR08sRzLJV1DWIuHBXR7i03fD5cAja7vrPcRfMa3Ag+IQEgbUmDAFnOll31Oqk66DH/vqrJ1C3qqaMGetn7U14dRIYVqVmGUp1EuxKrlQv+1udxKxOjnmxcku3FQcogQ5u8e9Tds8X1uqkGTTWOWCsEUswMpBrldQs+/Oqk0F25LggD2PTop/zEs7M3LuOwOqkdPdu6spxSowo2Q37rJSPLsJhQD00sAYUmrztWJ28dSR05LqRavrFNWOuflv48A6B1cmod5aKhlNTdfe/fFb+n3KJGA5IaqtjIRmhVtYe1UmTpQrdU7JcGLljRFImTJ50Q5iqk2ArNuw/EGNEUASAzI3DwLM6kvDRa/8I15TLvkabrqR9GHzrqlU7Ch8jQGTdvwylWgnvbetXhrPwcevNtzNyH7gap58oZ5NyV94lUPiIs8PLgdCiALQQy3LV0CRObooWXsLHQ3l91PudWaOX+Nb4ZHVF5caOJXwEsEFmhAGbnXQZ0cLHlXFFCz3kUvSS5fcvv+39eZAQCR/BnirYrBCrm2wtGD2OY5vdUUOLhzdyynoNf2SY/cIweN4z8ceEhxaVkNWxd9FRQgtQwGQfpv8NLTBDC5MBd33OF7uZbtgpF2mUMSVcWEOLOjDWu+ko66c8sK0ki/7nhRblgTuGeC6zogQUdppSNveaCoGhxZY7viIRg4oNsyIvFJvb1/bHY0D3Yw7oYXo7hhYO83XvHzacrn/UP7z045hvZgSGFlcnsxcGeRzTT556R8ciyCIZDyQLMZEspbdHaGExdMD5Z0pnGSnPkm9OYkidEKbQgqTJ8R+IoQXIlUPmxmFgGzQGvhksH3FbxYgZU5X3KVOB2R9h2Q53cOYNLeCyJt3N3cvRy5u1xG3FL9NA7K7MiTfgg43IcLSxzN7TxdF7RX1Bur5/QMsiD/nlkpELnKtN04bt2Kh9qeIu2k9GiTTga3z0/mb/SwcvihBpREAhLvsRnZ/EurRZAwBejvaeDs5kJ093ZMvL/6//8G3HljFK1siZ6L/OPNCWZtvEur1KANJNOkpnAaAKZN+jowUYLTx5rVFLC+ygIy9TZ6hT3G2DAxkrht7coMfVWQWHFhY4hxkweI8wwXtO56tIMajexKAlr43eHLJD/QQFFmdjNgcRMm7f3XSRy5nhKFOK6zLuhwFrcExrNRI6+lqwafFVUNZmuNQjQJ7v6L3c0XEJgAU+ZM7F24vs4enu2hAvgPgMQhARMol+1zTuypxnJQ+8fmbBP4mUplbW8Cd4rezXFUKAeoQJ1PMGLrDtqNGY//yvpZUOL6klwSfE1yfnaBEejYH9FznT0Qo9APMc1t9CD3Y0NvPb5ZvyMiYmxWxVxqkTsk+ENRoDGrGI6WjZ7Aroap3ZH1joeZA7+sup23sNY1Z/OqTSQzWRwGisyxP/jIpiaUZs3Vm5i8deTsFhQM3MsAYUmrztGI290zv7n5rsCua+6253Fz+MDicwGvs++K2Zo5IkZYMyO11r0Eo1HJCUZGEh6WHaLoUe/dBbHv/4btKPmPRz+pyJiinCFI2B845g/4EYjYHzLyBz4zDwnN8oGjsR0VN6ctZcvT2Xfc68mz1iA4HRWB20VjYzLkOJxiqhaKzOkKfug1M0Nv+hUb+VXoap/5WZPz2fnIBjNIaz25NUZZK0AUiIAQUonUUYoZZ78I7GqkdR1xzpOsuEPahXzPCx468KezQGwINsCAM8M0Peog+u0Ri37xaiaCxCg2NaiEFGkBZsWgKIxtLDem1xEJtBL1T6Wdz3jcxVgUdjACjYjFCBgsyIwwVzO2o0VpjvtLjznCVG/k/t7Gy6JBYTHo1JgoMiytGiMdDB0rnsbzSGHY3FlVSFxmU4UYq/Dt4Q/83xmLBGY2BDunU52pLzEzhhovwPjMbUpv0c8iHhnFG4ZkXXQx9LvxAYjelp97ze5Yk6Lah3F/1Po2aycRjQvDKsAYUmbztGYyeer/r3xpsw3axH2V/nlClqExiNxQb9s1Nki4xBzri1y5SUdnbDAUkZTCQrTrZLNGbh5Ot/a54SPWTvT7tNyY+/CVM0Bm/1LkeLxkDlDDI3DgPP60iyO1/tKZ26mucaZ2UqXvG+4GDUjrI7Cpik+WiyOzaEeF4e3rI79cXrbOKX6JvkizloSWeXpBAou8PZ4dkBBstH04+BxmZi+YTI7nKNte/1uXbBKHvyc7sJnuMedizZHYANMiMM2JzzCJfdSTzeGLyuuoqeMkXC9fnXPtVCJLujaHLMClF2p60Fo8dxbHYdNbSYp7B59oKs3azDL2ZKb7ddepr4o8yB2PMGWmghCRTF1/+GFtihhW7x6a/vZ15k5hRvthJJ8HkhrKEFOFuy7jra+glsC0y+/geGFpXRL+UfZr5nJPv5DGOf2mZIYGgx4LZLX6+iQ3rh838MGXxF5zoOA2qGOaDQ5G3H0GIMLaxiVt12xsa5myUiZ46+S2Bo8Vjy+2HDmw6G20k0Gn1mp5c4IJlzDQtJu2vtElp4yYistFy+nBqy+E7uuJQKe2EKLcD+Eth/IB9lrgmbG4eB7X+jQg8tyuKxU2m2bvKtJVFr3kilEyy7M7uKVugBsrvkKoIKPVI71oyYLk+lRk/QclBVq1iOY6EHZ7cHlGOUq2i1CqAcq6tqt0LP3fz73wu/nTQ+wtyj79d5lYewF3oAeJANYYBnVkVwoYfbdwtRoQcom2DTQlWT1VUJotBD+ep/y/WVDSu4RkEtcbylhcALPQAo2IxQgYLMiMMF89G44EfAgTQpTVHaYVuZuF0eJjubvNVwupX5TCYZ/JtqaWXOJFvqG5gzyAwDXaY505QOXWGZ0Cya0oQ456/0oS/18nZfjBSrteip4vX38/9zenFu5BqHlt2MGFu26E7kU3RtxGwokRP0Nuaenju692GlVqDLY1AtvK05nyZ+JsNF6bA55WDkoz5mEeSW7sfuhGKM5OFMkqRcOYnkB+8J4JidQ0dNAmw4+M/96jXf9TfYWhebzjx6tl3UnuqDyjHUnlkDy/8mATCTAAOLq1iZGlf0sgJWDe8UMHuSsCYBgKRNEYw1qqTt28DyPy8JEPvQdq3KzW6mScyDUt8m6ksRmAR4HtFZb2+/d7r5e2ZNrn3u2QuHAa0aiDWg0ORtxyTA9FmJSv9ZjGb5Zk5nbzocUENgEuCLbbK71GxPg0MnXw3tp3/mHg5IrsdE0nZgeXskAbjpUZiSAEDtCfsPVLUnZG4cBl7QkeqLSZqbbaeNoumtzxHtVh4u87idj/WIkS7HONaDIl2Oc33Rm3rvsZPuMBpbmlRecvuftQTWF3F2eOB8igiAFur5FM5N0cKrvlhoPiWwXCnOOOT4++ckb4nOHau+CJ+GggmbjHQ50fXFkBFfLOVvlLOCZ15JqmVFaQhRfRHkL2GzQj3WA0KP49gcO2pocUpH01Rh12FmSu0sizEZbNF26Wf2XhEttAAntnsr/g0tsEOL4ykbFPrqOJhu6n33cbw821xYQwsQRr5QRFs/gaZNJxX/wNDCWUQnWknhECM89cezMDURfQJDi9GWcsyFNmYmft0T3/ctmk/HYUC3Yw4oNHnbMbS4370o5bTTVYO9n7pvuniyRxSBoYXl1sF7lHYtYu7xf/388eW6OhyQNMZEUlGxXUKL8ctssrT98imFsofPfZIsnSFMoQXoZwb7D9R+ZpC5cRjY6TeqL67wWPtzV5q4yf7yrh+SwhkGBG8ks1Qox9hI9k2eJ9LAp75oELJwV3zORwNf9h2jAJF5q3GsL+Ls9sBeKGMAEupeKEUF1AAD7/pi9o/F4vKPb7FSC0rSr+3cnCTs9UUAHmRDGOBVyfOGGbjWF7l9txDVF8H+KNi0UPdHQaYlgPriyKF2SQE9a3T3KWSPPz+/UlHg9UUAFGxGqEBBZsThgoWtqi8qcZeyLJh0lmmbC4wtfCxChbGFd6KUGFt4NyKXtexWRMPZLl2S07niOTX0WN5nLYPi3q2BmMesWnpfc66Ne59GG8uMpYpMUt2pMsj8GpcZndGsr/+DMEbfSRfpKWMflmRXLGc0bTRS/4oGpmZWlsidrdBNrPG9CHbU+DKKsTT+CpJFNL6OOOzcbapQ3423iUrji631GmgjBDZKsg8wSaQztEYj5NIq/yBR/0NZVpY8Q9S8F2hyM8IYNbmOMkhNvoPYT6rxFxCHKSr00mKzQBvT2BMDNCbmmh1Gf0GecWp6laA+f6gzDVpEmGUz61tv/RpH11bNNJn6FzFjGZhakk2tTGhM89ZNO9QHIYwv6ndRxhr1+0jjjvplRBuYuGxIRFm3GcyAZ2lKl0/XRLYMHB57QP8m3pM4R5lJuuEPDf6oxm52EdrgF+/aOC39e7ZhbukUy4pCr6a9QruawpmfpkONlZXTQu0d6OTmbu/tsmQhJ+SrTykhr9kPjh/26dbuW0aF6uMm+Qfnk5F+Em8nHM7nzU017vFsa1lAjUnK84PQ1qfxNspRNdVg9pLzZwo4adeV1PBPBIVjDm6t8umyCEbcOgeP/iQEb4D+ZRR3gH4Dks2ifxt5v4PHnvPpR2qpweMPZzylsYNbiBCPwWJ8tTkb5p4gbaQLM8hjJLMhG57a2GMsxtdjoAVguHgM84IrF0KU4+hbEuKv/VDcOwhXjzGhSnPmOOmhusHPPk11sCuuwMFjkLujeIx1NA3mi9fdG3qKLmkVZY/iXv/Dy32yJcvcwoBlSjZnWVItwX9QTfWMW7mGbsWfQJjYrXgKyoxvxZOQjLEVj0G0R26Taevw8Nhua56B90IjQp5JkuwBRQyZjd2Ge6uYZTRf79M6zmnN30Aw2tY8BsVqW/MoJLNtzXMQ7bbIPvXHp5BYysGy5a8OdNIqaPMY8Rhuqx7SnIfmdv9t5EMKZNjVXSAPndPYsD1a5YulTah6pkxLsoWVuS6V3kpvi/gQBNNE/B6K7SF+F7FEgfRFROu5UGsy0nBElOHuRJbkjPhJSc0DwWMeyN/C23NpqzBJdt8YJJJc4wH+p1Weqx/XL26db0J+CsIQI38RZYyRv4w0yMjfRBxl+0edSxdXxFLZivN8Ri4asaQFaPAMM8rXCKq1oJkB2MtVWscAHe8bmYEnmhlYBGbfVbEKpLFXT32Wd/O6L6JerenAY8nmVFEXvgsdodtdHBqUYC2TJnFjg7Oajntut3ERnAw6cXxiIC+Cga7putSXhv6yXq1yvGQkoiEbG5gyLcgWdKoxk18n3OwDEWZrs/egTNxm70MyqGZvQpbXWN0crx1EpsaYpMVlnFtkwB+IPAbV/B14O/PS4UwS5SxkSs6NZ7F3q5z5MMRfD/9uRv1L8OvYm38igtk0fxOK3TR/I5LhNH8XouVEUD5PGeVYa7h18MSYWQNeTuITSR7TacEtzXmp73eNXtBmrqGklEYzZWrnxbZ1Y5wStAg0hEzLvbFpLUUzLfJChcNBYcG0rSeyjGM/569qKtEwd3SzX4FMDy1UKElRyctdPB3JnuBJZHf4xyAfBcsFA8IP4UGf1Cy4x13dLsmFbTYsXH688wf1vkPaqnRQh9jXkgHEwiQSm2cntQZ0dUYDBSxrFQVocxuUroG5hSVXGbQtlMD3H0CY63w/A2Xq8/0cRDUEvw9BPiIxzk8qd6Wjnn+XJzd0itZ8bdug8Fgq/0/APfOhAALEMhIpqbFfWN4qyhnZordpCwXx/xcQzJT/h6DYKf8PQjJU/p+CaKl2Vhay/UulTHI2rzMatq52fBtHhsdUW/GI5rwwd8/qNlJcDmTKpaPKSOzUxqbsg2bKoVWFfcQLB7F8F35RXRoxsWdTrSVzyYJ64ZcX7+4MtJ1n8kwfb097B29474sj9AA42+8F4iDOdrSWqUB7KiXdUpd5St2j/aR/wOgz/6L9Ml4V6P+vtfQgVXDUVwLEXOlI+82ADNcumcGPCrTPr/1mjsvs3ZbaeyPv/qlw2S53fHsdK35pzy9vhx9sKsxr2x4z6wLfp28Vn5luvPNpvOy2Gdtw6PBeDRBC3AxEUYcR4kvFyIEIAsXTu95EECFy/1I60WJ6mX7snNglLxPEm+716GIB7uaFqP5jvCV4QHANY1CJpFkHG6LISQy+tIq96zH4NUkQEXhht+tHnHsXk5DH4j16FGiWN0FABLJ1nveHPyTi7aExxnj75JSG1d0KNG9TO8PUWFTrMz1qxzndFJbB7KY7d4wh99JyPzOM7ukINgrZk92gr/9Se3ovd+d4nJa5GfXBL6VWz+tMTTAOrTnzIHsC70/iVfuDT/lo41zNhmA7h+haIFCT/flyLZLgjzc7bWKGPrEVMelrGJapZufRXT+nqR4Nnh8ogt8mF5vzMuRoyQcPIi2MInoWLGWtYSnh0OyV7AuBZYaolQZexo/BLTTHAqsXDBb2/Ko9sqjv7SfXGJFqd7stvzyv6RGj3X9xCQ9QjS41B5NB6Nq4WxMe0TZdd8w6NHjNDBxggqwGA6bq9fw5Y4l6o3JcuNgRBSWNzdE6rp/LKcVq3iJbV0vItHSa4O+HtDg2koPERHbaMDQcP7TyN9oU4/9+2cpLTBGDkpUF8kPqxu0hcFOMhyqTRApmoGyKgQP5UL58Vss3xUS+ilH4KWbOiN2f7/X9clQEjptiuFcSbZyEERBIFAAS4r4OSZAOD+HxVURtillifNJj4dR83eS+g088OZvxQ9g3xQDwIBvCAI8Uxp8H43tTDDd1CdGmGHCkCGxaiHs9xLRh0xLAphj9g1r7bucMYURZ7xkbV7NW8L1uAVCwGaECBZkRhwtW/UZcYPgpMr7rsX2MqPQ3duHjurwlmAvIW7G4oDqKIC5wsJ4U01l1mknu0v82yvwriycXcMdUOLgzu61Y7iw5st24YE3ksJk9zZKYmXUq9tUL7gd2BC6AbAgDPHI0wVzAvT4XMi6ATQvVxUGmJQAuULoj5TzWM8yEPS/YTW7pks5CwQWwGaECBZkRhwtWd7xsqNvzkPyUXZamWV/mBHhP6ZVJYDYUnHksObAMJRsKWmDkyPB15nYLs6HrLXdXZJ6fpRfyvVCnWFT7Fo7ZUOnu3dSV45QYUbIb9lkpH13URpflAY7UlkVrvWKnBiNERDZ0vu+7+SZLB7NiFjP8qj1vrxBgNhQ+/B5ggJgPTIZmo5ksfydDtygbWmb94a3V9xmG8Vf0lj+SiK0TUDa0sn4WYLy9pEzDcc9rOlA2dAdTY13ChSza/iU9jOeaV+zFORsK9jGSVMpQsqHV4AxtJb5cS8uyoRcuOVVKb7Y0Cn4edT1LfRJR2dBri4aIdq3YZrK7dPzWpM26b9p6Rg5YGCmXoaT52JCXoSjzHOvf1mwoq+SAuvWdA6yI+XWsnTsefSMgG/q58NZ6nTwt4003CpU9bV+dwAEmyGowYCIp8eeMm8+GRr2zVDScmqq7/+Wz8v+US8QElg0Fnga2EcRsqJkWDA3HD639jSJgZcmJdpuODGBFX59sFx0l5ktgBJysAhGdAloLEtBsOEKeoBYkSerjROqy3pmEyFTflLHQWYBjBMy9kmhrvyAIpEoFtC4aoF+ktkK7tSDRz/26nbZ8oVHBovgexxOGhQh7BAzAg2wIA7y6YQS3IOGmLiGKgEEDV9i0EAO7CVqwaQkgAn46STmz4NkO3V1XJQ6dF7WaIfAIGAAFmxEqUJAZcbhg3W/EBQ8kfOga4acN9/Qo+zg0SXEvwVxAGorFBcmDCeKCUQ+tpusOdDQ8Mt1DbeOPxKE4cgF3TIWDO6seguXOKEPajQvsZA/ELlgkbrTj0/1LY4u2CP1xcQA8yIYwwCMNJpgLuNfnQsYFsGmhujjItATABT5ayxQfOM4zDbl++pVXkhVbKLgANiNUoCAz4nABG40LRqaZl9lkZ+imp/U+e3zth21NXY6ep/tSj6Y00KNhEtPcPRf8/3xh+CO6uxv0RuAjRej/wt9GGI4hVPJC8Fz4GGhPey8vZ3cPD0dPzt4Ir84GjIZ5xy0PhS514lzilnRBlzpzLnGrKKBLIpxL3EU1MQPGvCbwg9QL4uif3nTI9mCvHrSAj1ovXl90zEbAiXd3BtdAkhoGsn5MfDvkmHAnqRuNCXdiqdGYcMdyjcaEm9pbPiYlE3ueYJ3VMtzl9U2BElf5BYcx8et4VYNuJ69a+90ezcg8c6tsw4ctwwisGoCj5iSPolUNwEm6doVEVA1uDJxxT3KTEj1z9kdXJ9OQ8zhWDfS0e17v8kSdFtS7i/6nUTPZbaR2bUDeR9GqBmQ1GCEiqgYy2p20xEauMCxefO6eYjcttgCrBuAYUxgDxLy5nSaTlFNIQNXAW6rXqNPib2jJe6gzdny+wRRQ1QC8PTTGGG8vWdjAyv4dqGqgIXJg2grpPrTtMusvHj8aOgfnqgFblUkSO4FWNUiGQLU+TkDVYNO4L6X5eo9MQweE31c/tUeVoKrB+6fPk/v0v6R/1OdUxMok+bY2A06GwPp0HC0dToG8TPpx3KsGRk7OSp51EnrZK2jrnkW9iSWgajAylJZgtXIcY9MCqatdVmzdiwNM1pgwiR3Hu2oQG/TPTpEtMgY549YuU1La2U1gVQPgaWAbQawaSGrB0HD80PrfKFP0YXZ3hR/mxvTwYAkbmQDxRQRmiuxApugYWqYIbJgyKyUoUzRPYct8xmtH3TTm8v4nT+iMwTFTxL2SaOMkZIPSSilasoMEtjmUtlumqPfrtYsdDj9ibl4rtpNKCwoT9kwRAM8MEzxSKcGZIm7qEqJMEUmDY1qICZBPmrBpCSBTJDf/9qN02ZW0Q1VLLlmsf3ZX4JkiAJQZJlCQGXG4IOA34gKr6ca7v4i40TL2LxEJ3zn0K8FcEFSMxQU3igjigj02IflvxqwxyO49X8XTId0RRy7gjqlwcGc+xVjuTKW43bhA0sLLfku+pF7hscHdshVMX3UELoBsCAO8oCKCuYB7fS5kXACbFqqLg0xLAFww2c3v0YbUvrRN4+7NyHWbrCMUXACbESpQkBlxuCCwQ2aouROijTLU3EmMRhlq7rihUYaam0ZanqHu1HnppefbxUxjAlJGvF4W/ByHDPWGjpehtjF9Im7Lpurm3Bx9szraZyWBGWqwFf99v3KUDDXIzW3vx1evtxZmqB/JymV2n7XYZMN0275JDyNdhLeTNNhY/qIfWstf0BIZQoiIDPXd87QqZeu3psVDvxytrJ6XIcAMtZkmBwPEHC1Zi0k62Y+/jmQtylDPV7P7UjBXUS92ufKFk6cTrgsoQw3efjvm23v3a2gzFtSBMtST5t5/5BP2zGSzzdriS+soLT6+oKXldmjieMiWo2SoQbpNRpYv19KyDPXnqrN9LdzemuyVMT5VceXDW4Iy1E+GMxXGqYbq7r/Q/b1mqr1sG72MHQSWMwALMfVKgsIhiixPO8m2ZqglB1vsXeQ3jp79Jt5//fBnawnIUOeSjly6OdGCFeKql3/yx2oJHGCSwYSpToY/Z9x8hvqLbbK71GxPg0MnXw3tp3/mnsAy1MDTwDaCmKGu1IKh4fih4N8oK7FqlOn3Y+/zDQ/qr5nH2nFel8CsBFmVSXKTQWt9C0IBaRmCWt+OlDqanHR0Iq3glUHtNcZMcRyzEtwriTZOQgoE0gIZtO6tpdAUnSLTbq1v71QOWJH8OJAW2ilPYpXBY1dhz0oA8KQxwXsxgODWt9zUJURZiVINjmkhBtt5WrBpCSArId2vZ/Dls7X0wHPDJcRKHK4KPCtRqsExI1SgIDPicEHIb8QFMeF0H/eCESb5wU+nWDK2fiGYC7QHYHHBjf4EccGrF2U/nUfXmR4yefY9IeLTNDz3OHHFVDi4M5UBWO6MNKDduKDAJcLejNZfN2jtpwcHVA+rdAQugGwIA7yc/gRzAff6XMi4ADYtVBdHGiAILlD0tjSbefStaVhi+odEa51FQsEFsBmhAgWZEYcLQjtkhpo7IdooQ82dxGiUoeaOGxplqLlppOUZavl0PbVxhbl6+/xmXrqy/8VAHDLUG9HGZMbp7FfhSoN1w71edSn/qN6p6eS08PZ0tF9M1nVx8+ZuRQnouTPKJBhefwNvQx7YPZO94Ke2rBvPtXW7vc9LvDHIserjTFL/Jxvj9/E6jyaX+cjFylhClh4HWTqbJ6UEzYMYi/KeZsAlOEJPbWhD25UzoOIG4BWbjDP4Xzf4Y4MFDdbmkT9JkxlQqOvvJtfnsX2PCw3XG0xu1oKK8E4l3RkFrwaY9FSTqmy43hnleg8W7J14WEKs/vP//2HuG+t/L/w64CtYLYmlDZYscPSBZxLIDNaPIuKg7Tof9nxcmaFeYM0SxT0KRmpN0xngbt50Bvxpc+S4YmJR2k4nFt1v++qasU8fbmxr5ww1JkkSjHUFUtb1BnT1mUW5gHsO/3LU/x+oBiNBWN+gjd0Ag0YzjwytcFzgsdRGHD6JrrcVJJwXU7M2BxqtFXn8tJvJUm/7+W6Ov0alKR1xZpk2z5h20uYZ0E5cA/qum0Xk9h4MvfUULflYiSMsHAa01AJrQKHJ2wjJzrghORIRybE/PlH3FogxEr4q9Hhx0rlHy5AcyYvkyGaRpOge1FKmJ7IS++v75PRWaKssBCDpgYmkvkU5x+v88h58tuHpXe+YHRdg+ZLh47ubVTx9yiyeVRhX0+OYOTaEXesh5HUvFio6qvhnSzU5/qMUAsmDp26nCZsbh4HDOioDT7kSeqHv9U6MaIaPV8WxxXsIZ+BqFSbJ2xaNgUFHhPc2fxkYm4Gnddv+ZvPq+4xM96QeG76GdhNWBiaBZLgtmpupgK4ybP9ABo4S/1Cu8mKZYVpNklJYl7QgAhl4SYzXwG5hEpTNNrfyE8cUxuAwoHKYAwpN3nZk4KIp78o1snayoislgjXVAqwIZGBHo/knI+amUCKCJ+lvLZnTHQckz9lgIZlm0y4MrJatslztah+DQ7WH9T/QZksLEwOD3new/0BkYLD7FTI3DgOH/0Y56i1efUTWyPc1yq5TlKDI0ojsSgA0rmI2aDlqOwjinNkE5ahv7KNP6ewbphe6ybsr9aDrQRxz1Di7PfiAGhu0NCt5BJN0Y3a75ajnjVmkFHmwHyvf+b2Ij8iug8KeowbgQTaEAV7QbIJz1Ny+W4hy1GQNjmkhpl5ltGDTEkCOOiFwvXqml51uRrjfYyXvlDKB56gBULAZoQIFmRGHCzZ1PMVut+69jvbc5mRaIhmudM314gq0X4aDYhdIoCxN0RS7AOdvJkQodl9P3J5oPNabkvvh1BCa8ToNHBW7OCea2BBCxqZoil0PNRghIhS7Z54q6qzTolCCEgK3bnbU5CrbtqtiFxwbDGOAqFkFfesUTQlQ7MrQVmem7lNjBf6z6Y1UmmmpgBS71fWzAOPtq0wavE1EB1LsGs28MmSliTRlw0uWd/6h44dwVuzmAOmWOZpitxKC7dF0AhS7pQ++VZ5QNGAlXjq6feX9iyUEKXZXXb8plu3MpiXGnTvo0OfNmjZ6GbBzYow5mhTVA1p6S5jjrthNunYtJeikhHFiuBu7T5yFNwGK3V2R02ZMdpVl+jrIffyqcZ6OA0yQ1WDAdHQ63opd7nS7wBS7EVocG0FU7FK0YWg4fmjzbxQBG4/zz92VucogN5aU/WS391QCI2BtVYjKpqNFwKAxxzkzgiLgZ1vF3oqndDXxLXK//KNLPJ4nUXOvJNraqRgk/qajBXHwHjCzdouAVQ5J3dwT3Ysecuk7/czMp+uEPQIG4EE2hAFemhnBETA3dQlRBAyafsCmhRjYVWjBpiWACPjsvI8x8bXD9ItsnH5u3n9+vMAj4EoNjhmhAgWZEYcLtvxGXCAre3fss14LDQ7LnKG83DW2N4FcAGZqHguNC7TBQXMsgriAdqr/6qXLqxjRg8aqjZjd/yee5wtxxVRt7dMEgZTDQnNnQGEVxGo/Lqj2OPW8X7heyucBvR+z9uULOxcA8OwwwZvAIpgLuNfnQsQFdRoc00J0cc+0YNMSABcMv6wzr6TqLjXwfoWEQnD4DoFzQZ0Gx4xQgYLMiMMFWzukYpc7IdpIscudxGik2OWOGxopdrlppOWK3YlS3U/3rDnKijsS7rnh66gMBJz4VexGdlS9kGhVlyrpxH6U0OOfT9QkVpYTrhcCff8+rUfTC4E1Ud76v3ohbL1QhtQo8Z7nXIx35r1dez1zCNc+feHRC4G2Yu/Xo4ki9NWZpOr1f6BeSHyUddKNl7N1t7xdNethzIlYAvVCNeuUYpTH3DQInuNtnh22uM1HUUIDeg5zQKHJ2456oYSxBp8MDtWaJC32dZjtPdiZQL2Qm0iuxVzZRP3UEWXetno/1XBAMg0TyYj17aIX6u0ywjKs+0t61MCQ4NlzV0sIk14oQpPjPxD1QqBvH2RuHAaO6qgM/Hib1Y1Xx38a+V7ud1A7YVQx4QwMguItwWgMXAoZpnnwXwbGZmDVSz4OJZvUdA93W2txiLX7iLAyMAhPw4PR3MwEKDxdGfwHMvB/J3v0yvQ+Td/9/sezLrWJVQQy8KpTfUf2/HrR2G/wXI8eG1a39fAxMKBOmAMKTd52ZOBP0b2tvbttpfq/WXPe3lRqAYEMnBJ1yc1IZZ3JBk/bCRPDKKk4IDkNE8kRwe3CwDUqinLnpJ6bxBvG2q+aOG2tMDEwaNYH+w9EBgb9syBz4zDwtt8oR32iJDVv2WY1Znh/7XcaStI6BOao61SYpNtBaDlqIIrOCSIoR63i023O/LMjdDMuJ7za/L42DcccNc5uTxIcjBCElmaNgCbryaB2y1Gzh8R5Fm61Zx5IsLszXm58oLDnqAF4OZjgbQ8iOEfN7buFKEcNjjSFTQsx9RqkBZuWAHLU/T8P/O/gEBnqvnXzl/6rvjhO4DlqAFQOJlCQGXG4ILrjKXZFQ8dcTOzyip5bXCSeun+pJMFn7Pb3wzpjt8aXCMVu9Huqw3SKNvPgMsupokM+ueGo2MU50QQKZ339sM7YhRAiQrGrWeI40GJcnemO/3ppl6ytbWqf7X/GLowB6imzP3wJUOz+fDA0N8O11rjkore8WN87/gI8YxcaY4y3v+bb4G1iOpBid+PrhBuiTjIm4YWyQ8Ml99rgrNgFDRLF16MpdikQbHf9CVDsPv5+5VpQzW5G6qwZX5zZ76YTpNj9NvOV48Bz/5qE9D8yeWevmEdtPW4LAqvrejQpajW09H7rj7tiV9S6SEbjxEhW3mrGmbzgUU13huCj2D3/uet/omaDmXseloqqpV6NxQEmyGowYDrjj7dilzvdLjDFLkmbYyOIit0cbRgajh+K/Y0i4D7uj+W9Ml4Y+94/ZfaMXq1KYAQMugyu9UeLgNkgycCfz2p5BDxGTNfPetYQ44iHQUfcUsfewTEC5l5JtLXlPQTSSn+0IA5MUSdeX0VUBGwjH7jbTKWzQaTUTQWlzB2XhD0CBuCZY4I3jU8PxncEzE1dQhQBUzQ5poUY2E3Qhk1LABHwvxKbX1wX/9dkLztkaP4x/TsCj4ABUOaYQE37xQVxvxEXVP+0e5GUMpQWfO7NpUitM4MI5AIwUyv80LgAdDHe7kcQFzyK15eT321umGq45/mQd+SJOHIBd0zVRndWDYF00g/NnQGFVY5fu3HB0RSH4ird3ZSklOqNTiL3o4WdCwB42zHBC/IjmAu41+dCxAWgCwtsWoguzlobNi0BcMGtiVuZsUfv6RUEzP3S2/D2bYFzAQBqOyZQkBlxuCC+o2pT3k2LnjXx7haTzLIuAXc++s8lXJsCMqOrk9G0KaDeOCX5rzYFW5uSEHMzZG6KC3XPk7quZl91mzpkIdKmgByvTzJaAT4PcsQLkv9AbcpD1RHLu1p904tfm1EZ8b54KYHaFG/5h66z5WX1ksTMd8lTCkpwGFAzzAGFJm87alOmWYzdZuV62ijthpVy6bp7TAK1KeTXuYHdlS4Z7z7QdfOIUwVtPc8VIKmCiaR0crtoU1b9Z5678soW/TyNf9deevfeRZi0KSRNjv9A1KaUasLmxmHg7R2VgbP+CX3Te4m10cZUySmOAwputAsDh6RhMbBh2l8GxmZgvT3XMk5dITGPjntpo3XsRxdhZuDANCw345n2BzJweM+RHk7ecXqH4lc/H/pzvxmBDDw6/pXUTPFg3a0l9gudgibJ4DCgczEHFJq87cjAe43PPiYf7klPv0bqOnv+6U4EMrBvZmfnW7L7TQIfjtd/s/XIZhyQHIeJpHxauzBw7ptbN672jKZu0eluYT55XoqwMTDsP1AZGDI3DgMn/Eb50JB5Oodic8OMNz25+vmsXbYUgflQcLx61Q60fGipOpOUvoOgfKjT2747P2rcpEVpRF48bvwhBMd8KM5uDxy+XLkDLaUHTv87uqPd8qFxQW7jpHfb0g+UvVbU3fCou7DnQwF46ZjgRe4gOB/K7buFKB8Kqs+waSGm+Xy0YNMSQD60srayMndbbwY7SPqtRMqkdIHnQwFQ6ZhAQWbE4YLEjqcOPaxS7PrRQI2yUVxnjUoJYzraL8NBHZoMTbm4BDR1KOhptSSBCHXo8qnHNsmJvdIPc71v86zLzqZ7HtqmDsU50QQaIW5LQFOH5qjBCBGhDh15akWPrJoYauaLpB4/KPsfCFAdCrrZwBgg6iProKt+CQSoQ3UPLLO98P603vbj9y+fkZAcLSB1KHj7JZhvPzuhwdskdSB16NjzX7se3fNBN6qw2vUta6E4709qkzpUEpo44Ulo6lBtCLb5SQSoQxVHbNgkulPZNOlV2u2J1XODCVKHbh95NzZ6C5Oan/LSKctPr18bvYw2yIQlockeKyEvsywJd3XorTnBe6i1cxh59zSrfXz2PSVAHerd480k86+JelH7LCde6Na1rZ1PAEzzMWEyTcJbHcqdbheYOhR4GthGENWhyVowNBw/lPwbRcDh3wvczq+20E8dfSvgjui/KwiOgDsnYUXA1xIJioCtMuzXrxlz3yBL3WzT9ewnoThGwNwrCRyCuB+JWEFcTWK7RcBBS5dY3BnKNCraIRZqIek0uSNEwNcwwTueSHAEzE1dQhYBw6aFGtjVJAoiAhZLdhunXbmNHjV97KhTLol0oYiAr2ECBZkRhwtSfiMu6LQ8dKxo6TBKfFonqa1LTTUI5gLjRCwuIBPFBZsuF6qM0plNKXyyQ3KudcBQHLmAO6bCwZ3pY7qzMe3HBSKrXI906bpeL7iPuOwQzaEvOgIXkDHBkyCaC7jX50LGBfqYLm6MQLggt+sWtu2/sQy2+IgjigeywoSCC8iYQEn84oLUjqpNUSDfiWffm03LT6VFFse7H8L4ffhoUzymMEmjCtC0KdXTmKS3+X+1KdjalMzeRdLPu+kyDpx/kyA/rfKjsGpTIqCx1ixAK8BbT2WSBhb8gdqUjEF6ZkaWkyhhzkcnqA8fSKQ25d2ciuWBPnXMrFEjNnUx0xiFw4B2xRxQaPK2ozblOVnpslZJKo0doVU5mKx9jEBtygjpr6YHJn5j7PI5cMnXijYQByTv5mMheSa/XbQpNv+Md3wkelg/ICas56qJDDVh0qYk63D8B6I2xY4CmxuHgXd0VAauS59PPl2ymRYYuX+NTvn9eMIZuBrC7UcRGgOb0Zmk4qK/DIzNwP3KFqi4kvVMDtI82eW91wYKKwOTqEzSlyI0N1MBXX1S9AcycP5lC3M1ZWndRJvk+8Xag2wJZODHvR/J+66aTdt4vGtC6gHztjb9AgN6GXNAocnbjgzcy3Ks89qAKfoHdkqsvyT2YBKBDJxhrW5c4z+Psv3bh+sMjwM3cEAyExPJbUXtwsAPZisr/UhNY/kfo7qtOtf7qzAxsCSD4z8QGbiSAZsbh4HTfqN8KMO0i5RtiSgr3atqHWtyYBWRZ4dCIa9+EerZoTQmSa6IoHzo/BMh4yJEU+jho24XyDjd1cAxH4qz25OEVoKMItTjL6EVjXZRu+VDjw2xXRxA1qSFvNfIXxNQFirs+VAAnhwmeGJFBOdDuX23EOVDI+gc00I+EpMJm5YA8qHF6q4J1f9+0d0gX3Vx3spvcgLPhwKg5DCBEvvFBTs7njqUXGs79srYr4ZFirPer57mvJFAdSgFCv7NjqCpQ0nQdFU8QoQ6dO2iTnWX1qroxieVj46IkFPBUR2Kc6LJDkLI+AiaOtRsKowQEepQixvfOolGiNJ2FHx4dDdxOUOA6tBSHQ4GiPpI4LYnHCFAHWoftXpS4I8xrN2bz5y/80DZVkDq0NL6WYDx9pJHGrzNrg6kDq1NSaub5FJhkH3roUNNr5qdOKtDcyZDbJaPpg6thECVySdAHTq3bvDIDZFnqRmqJ47dO1CgTpA69ETGrtKMoOfMLYdYPVRmrmO1tY09BBYlH0326AF5GfV83NWhjkM9k7zoakb5garz+pkbjSNAHdq5/3BHsfuirAOLj96TpmtG4wCTDCZMovl4q0O50+0CU4cCTwPbCKI6lEKFoeH4od2/UQQckqWt/DI8i5YW3++CpM3mOAIjYPYkJikvDy0CtoPi4415BEXArnetVNe9nmwclqdRq3Za4yCOETD3SqKNkzAZAulQHloQR4bWS8l57RYBr18ec6VyrKduZIJcrbP2MTdhj4ABeBsxwfPJIzgC5qYuIYqAyToc00IM7GSosGkJQhF0wn+6N1OdFbOlWxV1eflVgUfAAKiNmEBBZsThgvTfiAuGVPk/GHx3J6Noy9C8R2/+cSSYCzpjcsE1/kLjlnNBsMh6tsv+XkbpqU6xH4bHrMCRC7hjKhzc2Y8jWO6s5ki7cYH3i8DQ9LNfjENq9839YD28piNwwTVM8I7zmVrgmwu41+dCxgWwaaG6uBo+kw74cEHKuHsHn8yYwQzw+6H9Onr+MaHggmuYQEFm9D8=
- - true
-
- iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvQAADr0BR/uQrQAAAtlJREFUSEu1lE9IVUEUxg8PiYhWLSIiIqLCRKIoXEhQhBhEi6LaBJES9M8SokVQLoTICkKoTUUQYUGZSFS2imgTREhIuHAhEa4k4i0kXIiI/b6Zc+9797773q4ffjjfeWfmnHvnzlg1l812+bAR6/x/ygWz7T6sz0WzLb1myz1m2+Qp1n/J7EP4scIqtIi6g4MzZmvIWyL/toeKIemICpyNi8h3yNPdjpBQ4S5aQDuDA/K6VQSd81AtdH5YC542W+khTZxCI24TSugLmvRxgCe4SYGFgoYi+iHfMZOOe2fNHkpoRcuoM7hIibwJ5oy5r0EJZXTdvSj5Uwy7r+YHuh+HERY/xfxF9nO1h7Kw0BMS9Ogp+C5NOm+21kMJz9GnOIwwv1VvQf89lIXKe5VAJy0eMm06sTmKXPFQwmOUKcA+7td8dnqTh2rQK5nVhrkPEBsm9tFtwih6H4cRcgZp5JfbYkh6hL67DeBvFEycQA/iMJ4HGvlLXp+HiiGhi8R5twFivRT57VboU9ZZOBkckPMM/am7wQks1JNbTK9oAE25FR1In+kGmeQMoaPyDWHxUfTZbYCJX9GQW3EPTcdh+Lxn+P2F+/rsM2siMfPF6G7CL6lLD4lx9FQDfmtmju6wPfINofNOJXOaN3sobDqL/GSYXAtNSBdeeP/Jp1lwTmphsVdI3QX8y5gnxl/KRqT33y7DDy0qwOaml18hfqC0GE1F6LyP2Fzuy2hDKhAO0wmzFT6PB28ASYfUSfWjUmCGiYNuEw4gFUjzyHmN0icvhMXuUCD9FPFtKlhw/WozVSDdp+SK4dEPeqgWFnxJF2/cyl9l0qzbatS5CuhJUpg7hqbrHjQvoPsloGLords8KnwtDiN0v541yjT1Tvvi4QosdksduJUfRw/d5tGh+haHFchvp4Duo0n+7/ZwhKAOzIBbbfoIXR1zm0evpxyHWZi3FQ0xN72n/iNm/wBIHsRgzGECXQAAAABJRU5ErkJggg==
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtlJREFUSEu1lE9IVUEUxg8PiYhWLSIiIqLCRKIoXEhQhBhEi6LaBJES9M8SokVQLoTICkKoTUUQYUGZSFS2imgTREhIuHAhEa4k4i0kXIiI/b6Zc+9797773q4ffjjfeWfmnHvnzlg1l812+bAR6/x/ygWz7T6sz0WzLb1myz1m2+Qp1n/J7EP4scIqtIi6g4MzZmvIWyL/toeKIemICpyNi8h3yNPdjpBQ4S5aQDuDA/K6VQSd81AtdH5YC542W+khTZxCI24TSugLmvRxgCe4SYGFgoYi+iHfMZOOe2fNHkpoRcuoM7hIibwJ5oy5r0EJZXTdvSj5Uwy7r+YHuh+HERY/xfxF9nO1h7Kw0BMS9Ogp+C5NOm+21kMJz9GnOIwwv1VvQf89lIXKe5VAJy0eMm06sTmKXPFQwmOUKcA+7td8dnqTh2rQK5nVhrkPEBsm9tFtwih6H4cRcgZp5JfbYkh6hL67DeBvFEycQA/iMJ4HGvlLXp+HiiGhi8R5twFivRT57VboU9ZZOBkckPMM/am7wQks1JNbTK9oAE25FR1In+kGmeQMoaPyDWHxUfTZbYCJX9GQW3EPTcdh+Lxn+P2F+/rsM2siMfPF6G7CL6lLD4lx9FQDfmtmju6wPfINofNOJXOaN3sobDqL/GSYXAtNSBdeeP/Jp1lwTmphsVdI3QX8y5gnxl/KRqT33y7DDy0qwOaml18hfqC0GE1F6LyP2Fzuy2hDKhAO0wmzFT6PB28ASYfUSfWjUmCGiYNuEw4gFUjzyHmN0icvhMXuUCD9FPFtKlhw/WozVSDdp+SK4dEPeqgWFnxJF2/cyl9l0qzbatS5CuhJUpg7hqbrHjQvoPsloGLords8KnwtDiN0v541yjT1Tvvi4QosdksduJUfRw/d5tGh+haHFchvp4Duo0n+7/ZwhKAOzIBbbfoIXR1zm0evpxyHWZi3FQ0xN72n/iNm/wBIHsRgzGECXQAAAABJRU5ErkJggg==
- f47a97f7-5e31-4fd6-bdab-ced702d40e9a
- DIFERENCE CURWATURE SHAPED GRAPH
@@ -530,13 +609,13 @@
-
- 4877
+ 4888
206
689
424
-
- 5230
+ 5241
418
@@ -603,13 +682,13 @@
-
- 4879
+ 4890
208
339
20
-
- 5048.5
+ 5059.5
218
@@ -630,13 +709,13 @@
-
- 4879
+ 4890
228
339
20
-
- 5048.5
+ 5059.5
238
@@ -657,13 +736,13 @@
-
- 4879
+ 4890
248
339
20
-
- 5048.5
+ 5059.5
258
@@ -684,13 +763,13 @@
-
- 4879
+ 4890
268
339
20
-
- 5048.5
+ 5059.5
278
@@ -711,13 +790,13 @@
-
- 4879
+ 4890
288
339
20
-
- 5048.5
+ 5059.5
298
@@ -738,13 +817,13 @@
-
- 4879
+ 4890
308
339
20
-
- 5048.5
+ 5059.5
318
@@ -765,13 +844,13 @@
-
- 4879
+ 4890
328
339
20
-
- 5048.5
+ 5059.5
338
@@ -792,13 +871,13 @@
-
- 4879
+ 4890
348
339
20
-
- 5048.5
+ 5059.5
358
@@ -819,13 +898,13 @@
-
- 4879
+ 4890
368
339
20
-
- 5048.5
+ 5059.5
378
@@ -846,13 +925,13 @@
-
- 4879
+ 4890
388
339
20
-
- 5048.5
+ 5059.5
398
@@ -873,13 +952,13 @@
-
- 4879
+ 4890
408
339
20
-
- 5048.5
+ 5059.5
418
@@ -900,13 +979,13 @@
-
- 4879
+ 4890
428
339
20
-
- 5048.5
+ 5059.5
438
@@ -927,13 +1006,13 @@
-
- 4879
+ 4890
448
339
20
-
- 5048.5
+ 5059.5
458
@@ -954,13 +1033,13 @@
-
- 4879
+ 4890
468
339
20
-
- 5048.5
+ 5059.5
478
@@ -981,13 +1060,13 @@
-
- 4879
+ 4890
488
339
20
-
- 5048.5
+ 5059.5
498
@@ -1008,13 +1087,13 @@
-
- 4879
+ 4890
508
339
20
-
- 5048.5
+ 5059.5
518
@@ -1035,13 +1114,13 @@
-
- 4879
+ 4890
528
339
20
-
- 5048.5
+ 5059.5
538
@@ -1049,26 +1128,27 @@
-
+
- MAGNET SURFACE INPUT
- true
- 8bcb0a51-4070-4e59-a6ee-d8fd467fdbf2
- MAGNET SURFACE INPUT
- MAGNET SURFACE INPUT
- true
- - 0
+ - cbd6bf4a-bfcb-42e9-b3ba-b33cb2875e0a
+ - 1
-
- 4879
+ 4890
548
339
20
-
- 5048.5
+ 5059.5
558
@@ -1088,13 +1168,13 @@
-
- 4879
+ 4890
568
339
20
-
- 5048.5
+ 5059.5
578
@@ -1135,13 +1215,13 @@
-
- 4879
+ 4890
588
339
20
-
- 5048.5
+ 5059.5
598
@@ -1163,13 +1243,13 @@
-
- 4879
+ 4890
608
339
20
-
- 5048.5
+ 5059.5
618
@@ -1190,13 +1270,13 @@
-
- 5242
+ 5253
208
322
20
-
- 5403
+ 5414
218
@@ -1217,13 +1297,13 @@
-
- 5242
+ 5253
228
322
20
-
- 5403
+ 5414
238
@@ -1244,13 +1324,13 @@
-
- 5242
+ 5253
248
322
20
-
- 5403
+ 5414
258
@@ -1271,13 +1351,13 @@
-
- 5242
+ 5253
268
322
20
-
- 5403
+ 5414
278
@@ -1298,13 +1378,13 @@
-
- 5242
+ 5253
288
322
20
-
- 5403
+ 5414
298
@@ -1325,13 +1405,13 @@
-
- 5242
+ 5253
308
322
20
-
- 5403
+ 5414
318
@@ -1352,13 +1432,13 @@
-
- 5242
+ 5253
328
322
20
-
- 5403
+ 5414
338
@@ -1379,13 +1459,13 @@
-
- 5242
+ 5253
348
322
20
-
- 5403
+ 5414
358
@@ -1406,13 +1486,13 @@
-
- 5242
+ 5253
368
322
20
-
- 5403
+ 5414
378
@@ -1433,13 +1513,13 @@
-
- 5242
+ 5253
388
322
20
-
- 5403
+ 5414
398
@@ -1460,13 +1540,13 @@
-
- 5242
+ 5253
408
322
20
-
- 5403
+ 5414
418
@@ -1487,13 +1567,13 @@
-
- 5242
+ 5253
428
322
20
-
- 5403
+ 5414
438
@@ -1514,13 +1594,13 @@
-
- 5242
+ 5253
448
322
20
-
- 5403
+ 5414
458
@@ -1541,13 +1621,13 @@
-
- 5242
+ 5253
468
322
20
-
- 5403
+ 5414
478
@@ -1568,13 +1648,13 @@
-
- 5242
+ 5253
488
322
20
-
- 5403
+ 5414
498
@@ -1595,13 +1675,13 @@
-
- 5242
+ 5253
508
322
20
-
- 5403
+ 5414
518
@@ -1622,13 +1702,13 @@
-
- 5242
+ 5253
528
322
20
-
- 5403
+ 5414
538
@@ -1649,13 +1729,13 @@
-
- 5242
+ 5253
548
322
20
-
- 5403
+ 5414
558
@@ -1675,13 +1755,13 @@
-
- 5242
+ 5253
568
322
20
-
- 5403
+ 5414
578
@@ -1701,13 +1781,13 @@
-
- 5242
+ 5253
588
322
20
-
- 5403
+ 5414
598
@@ -1748,13 +1828,13 @@
-
- 5242
+ 5253
608
322
20
-
- 5403
+ 5414
618
@@ -5647,14 +5727,14 @@
-
- 4757
- 615
+ 4748
+ 642
50
24
-
- 4790.152
- 627.7759
+ 4781.368
+ 654.1295
@@ -20598,7 +20678,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- true
-
- iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAf5JREFUSEtjGH5Al4OjxlJcvBEZG/LyNkClKQP+hobpZw4ffvAfCfz69etMiq/vWagSykBLfv7r9+/f30LG+/fvf5bs63sJqoQy0FtV9f/NmzdgfPv2bTC9b9++1zSxwNnZ+f/JkycJW8D4rwfKIgyQLbh169Z/e3v7/ytXrnyb7OODz4LlUBZhgGwBCF+8ePG/gqzsV3tV1VKoEkxAigXpfn7bsoKCtiBjFT6+OqDUViDmACtCB6RYgAdYAfEyIGYC85ABlSwAgUAgnqHCwMBnLcKx0VtF4CgIi3Lveg1jg7CnJPtxiHIyAAsDQ7kUN8vzuzuCf/2/lfwfhCN8T4JpEP5zOvRUqjLjN6hy0oGzFNPlnDCx5y1ZMo8vr9G98u+c+Vkf+yPvQPSfQ6b73mYz/EtTZPgBVU46CNNmuPH3IMN/PWWG/4G2DP//H2L4H+G6HEz/WspwDmjBf4otABl2ZwXD/6Jwhv+/99PIAhjetYHh/1Zdg///3Rj+/zFmePdTjeH/CW6Gv/8YGBbDMFQrcQDZgk3AoEo+wPj/L5RPVR+gGw6z4FUmw/84WYbvUOWkA5AF2AwH4c8LGc6nKjJ8yVNnSIQqJx2YRzM81Opn/JPnxPAj34nhOzKO1GZ46SXC4A1VSgbYw+DLsJ9xDkM9luKCYkBjwz3JN5yBAQBPRnBBARQongAAAABJRU5ErkJggg==
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAf5JREFUSEtjGH5Al4OjxlJcvBEZG/LyNkClKQP+hobpZw4ffvAfCfz69etMiq/vWagSykBLfv7r9+/f30LG+/fvf5bs63sJqoQy0FtV9f/NmzdgfPv2bTC9b9++1zSxwNnZ+f/JkycJW8D4rwfKIgyQLbh169Z/e3v7/ytXrnyb7OODz4LlUBZhgGwBCF+8ePG/gqzsV3tV1VKoEkxAigXpfn7bsoKCtiBjFT6+OqDUViDmACtCB6RYgAdYAfEyIGYC85ABlSwAgUAgnqHCwMBnLcKx0VtF4CgIi3Lveg1jg7CnJPtxiHIyAAsDQ7kUN8vzuzuCf/2/lfwfhCN8T4JpEP5zOvRUqjLjN6hy0oGzFNPlnDCx5y1ZMo8vr9G98u+c+Vkf+yPvQPSfQ6b73mYz/EtTZPgBVU46CNNmuPH3IMN/PWWG/4G2DP//H2L4H+G6HEz/WspwDmjBf4otABl2ZwXD/6Jwhv+/99PIAhjetYHh/1Zdg///3Rj+/zFmePdTjeH/CW6Gv/8YGBbDMFQrcQDZgk3AoEo+wPj/L5RPVR+gGw6z4FUmw/84WYbvUOWkA5AF2AwH4c8LGc6nKjJ8yVNnSIQqJx2YRzM81Opn/JPnxPAj34nhOzKO1GZ46SXC4A1VSgbYw+DLsJ9xDkM9luKCYkBjwz3JN5yBAQBPRnBBARQongAAAABJRU5ErkJggg==
- db11e2b7-8148-4d11-8e6a-e72f02fa728d
-
@@ -29518,14 +29598,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3528
- 388
+ 3553
+ 359
90
84
-
- 3573
- 430
+ 3598
+ 401
@@ -29556,14 +29636,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3530
- 390
+ 3555
+ 361
31
20
-
- 3545.5
- 400
+ 3570.5
+ 371
@@ -29585,14 +29665,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3530
- 410
+ 3555
+ 381
31
20
-
- 3545.5
- 420
+ 3570.5
+ 391
@@ -29614,14 +29694,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3530
- 430
+ 3555
+ 401
31
20
-
- 3545.5
- 440
+ 3570.5
+ 411
@@ -29642,14 +29722,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3530
- 450
+ 3555
+ 421
31
20
-
- 3545.5
- 460
+ 3570.5
+ 431
@@ -29669,14 +29749,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3585
- 390
+ 3610
+ 361
31
80
-
- 3600.5
- 430
+ 3625.5
+ 401
@@ -32355,14 +32435,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3709
- 739
- 77
+ 3909
+ 696
+ 72
64
-
- 3766
- 771
+ 3961
+ 728
@@ -32391,14 +32471,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3711
- 741
- 43
+ 3911
+ 698
+ 38
20
-
- 3732.5
- 751
+ 3930
+ 708
@@ -32417,14 +32497,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3711
- 761
- 43
+ 3911
+ 718
+ 38
20
-
- 3732.5
- 771
+ 3930
+ 728
@@ -32435,15 +32515,20 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 1
+ - 2
- {0}
-
+
- 2
+
+
+ - 1
+
+
@@ -32463,14 +32548,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3711
- 781
- 43
+ 3911
+ 738
+ 38
20
-
- 3732.5
- 791
+ 3930
+ 748
@@ -32510,14 +32595,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 3778
- 741
+ 3973
+ 698
6
60
-
- 3781
- 771
+ 3976
+ 728
@@ -33267,14 +33352,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4166
- 959
+ 4165
+ 951
106
104
-
- 4211
- 1011
+ 4210
+ 1003
@@ -33306,14 +33391,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4168
- 961
+ 4167
+ 953
31
20
-
- 4183.5
- 971
+ 4182.5
+ 963
@@ -33335,14 +33420,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4168
- 981
+ 4167
+ 973
31
20
-
- 4183.5
- 991
+ 4182.5
+ 983
@@ -33364,14 +33449,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4168
- 1001
+ 4167
+ 993
31
20
-
- 4183.5
- 1011
+ 4182.5
+ 1003
@@ -33393,14 +33478,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4168
- 1021
+ 4167
+ 1013
31
20
-
- 4183.5
- 1031
+ 4182.5
+ 1023
@@ -33421,14 +33506,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4168
- 1041
+ 4167
+ 1033
31
20
-
- 4183.5
- 1051
+ 4182.5
+ 1043
@@ -33449,14 +33534,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4223
- 961
+ 4222
+ 953
47
100
-
- 4238.5
- 1011
+ 4237.5
+ 1003
@@ -33621,14 +33706,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4080
- 783
- 77
+ 4045
+ 789
+ 72
64
-
- 4137
- 815
+ 4097
+ 821
@@ -33657,14 +33742,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4082
- 785
- 43
+ 4047
+ 791
+ 38
20
-
- 4103.5
- 795
+ 4066
+ 801
@@ -33683,14 +33768,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4082
- 805
- 43
+ 4047
+ 811
+ 38
20
-
- 4103.5
- 815
+ 4066
+ 821
@@ -33701,15 +33786,20 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 1
+ - 2
- {0}
-
+
- 2
+
+
+ - 1
+
+
@@ -33729,14 +33819,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4082
- 825
- 43
+ 4047
+ 831
+ 38
20
-
- 4103.5
- 835
+ 4066
+ 841
@@ -33776,14 +33866,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4149
- 785
+ 4109
+ 791
6
60
-
- 4152
- 815
+ 4112
+ 821
@@ -34299,7 +34389,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 4
+ - 6
@@ -34406,14 +34496,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4339
- 868
- 77
+ 4173
+ 830
+ 72
64
-
- 4396
- 900
+ 4225
+ 862
@@ -34442,14 +34532,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4341
- 870
- 43
+ 4175
+ 832
+ 38
20
-
- 4362.5
- 880
+ 4194
+ 842
@@ -34468,14 +34558,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4341
- 890
- 43
+ 4175
+ 852
+ 38
20
-
- 4362.5
- 900
+ 4194
+ 862
@@ -34486,15 +34576,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 1
+ - 3
- {0}
-
+
- 1
+
+
+ - 0
+
+
+
+
+ - 4
+
+
@@ -34514,14 +34614,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4341
- 910
- 43
+ 4175
+ 872
+ 38
20
-
- 4362.5
- 920
+ 4194
+ 882
@@ -34561,14 +34661,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4408
- 870
+ 4237
+ 832
6
60
-
- 4411
- 900
+ 4240
+ 862
@@ -35178,8 +35278,9 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Join as many curves as possible
+ - true
- b5c58a31-491f-4d81-a1aa-0359275d3db3
- Join Curves
- Join Curves
@@ -35188,14 +35289,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4659
- 930
+ 4662
+ 931
116
44
-
- 4726
- 952
+ 4729
+ 953
@@ -35214,14 +35315,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4661
- 932
+ 4664
+ 933
53
20
-
- 4687.5
- 942
+ 4690.5
+ 943
@@ -35240,14 +35341,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4661
- 952
+ 4664
+ 953
53
20
-
- 4687.5
- 962
+ 4690.5
+ 963
@@ -35287,14 +35388,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4738
- 932
+ 4741
+ 933
35
40
-
- 4755.5
- 952
+ 4758.5
+ 953
@@ -35720,10 +35821,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Create a sweep surface with two rail curves.
- true
- 2b841695-b801-4232-8cec-df1e95b3ffb0
+ - true
- Sweep2
- Sweep2
@@ -35731,21 +35833,22 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4817
- 802
+ 4930
+ 895
125
84
-
- 4903
- 844
+ 5016
+ 937
-
+
- First rail curve
- 4a8234d3-d6a3-4e3b-b462-10d689649d0b
+ - true
- Rail 1
- Rail 1
- false
@@ -35756,23 +35859,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4819
- 804
+ 4932
+ 897
72
20
-
- 4855
- 814
+ 4968
+ 907
-
+
- Second rail curve
- 77951b5e-c755-4586-93e1-b5073c2e9e8e
+ - true
- Rail 2
- Rail 2
- false
@@ -35783,24 +35887,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4819
- 824
+ 4932
+ 917
72
20
-
- 4855
- 834
+ 4968
+ 927
-
+
- 1
- Section curves
- 5dc57f9f-7508-45ce-b3a1-65d545f50a26
+ - true
- Sections
- Sections
- false
@@ -35811,23 +35916,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4819
- 844
+ 4932
+ 937
72
20
-
- 4855
- 854
+ 4968
+ 947
-
+
- Create a sweep with same-height properties.
- 1e488029-c63b-4aef-bc34-8917303e40cc
+ - true
- Same Height
- Same Height
- false
@@ -35837,14 +35943,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4819
- 864
+ 4932
+ 957
72
20
-
- 4855
- 874
+ 4968
+ 967
@@ -35871,10 +35977,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Resulting Brep
- 0490c4ad-b715-43e9-85d4-2fa26a0f17a7
+ - true
- Brep
- Brep
- false
@@ -35884,14 +35991,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4915
- 804
+ 5028
+ 897
25
80
-
- 4927.5
- 844
+ 5040.5
+ 937
@@ -35920,14 +36027,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4629
- 1456
+ 4530
+ 1502
77
64
-
- 4686
- 1488
+ 4587
+ 1534
@@ -35956,14 +36063,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4631
- 1458
+ 4532
+ 1504
43
20
-
- 4652.5
- 1468
+ 4553.5
+ 1514
@@ -35982,14 +36089,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4631
- 1478
+ 4532
+ 1524
43
20
-
- 4652.5
- 1488
+ 4553.5
+ 1534
@@ -36006,7 +36113,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 4
+ - 12
@@ -36028,14 +36135,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4631
- 1498
+ 4532
+ 1544
43
20
-
- 4652.5
- 1508
+ 4553.5
+ 1554
@@ -36075,14 +36182,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4698
- 1458
+ 4599
+ 1504
6
60
-
- 4701
- 1488
+ 4602
+ 1534
@@ -36485,14 +36592,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4873
- 995
+ 4804
+ 1143
88
44
-
- 4917
- 1017
+ 4848
+ 1165
@@ -36510,14 +36617,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4875
- 997
+ 4806
+ 1145
30
20
-
- 4890
- 1007
+ 4821
+ 1155
@@ -36536,14 +36643,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4875
- 1017
+ 4806
+ 1165
30
20
-
- 4890
- 1027
+ 4821
+ 1175
@@ -36562,14 +36669,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4929
- 997
+ 4860
+ 1145
30
20
-
- 4944
- 1007
+ 4875
+ 1155
@@ -36588,14 +36695,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4929
- 1017
+ 4860
+ 1165
30
20
-
- 4944
- 1027
+ 4875
+ 1175
@@ -36623,14 +36730,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5039
- 1402
+ 5027
+ 1420
88
44
-
- 5083
- 1424
+ 5071
+ 1442
@@ -36648,14 +36755,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5041
- 1404
+ 5029
+ 1422
30
20
-
- 5056
- 1414
+ 5044
+ 1432
@@ -36674,14 +36781,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5041
- 1424
+ 5029
+ 1442
30
20
-
- 5056
- 1434
+ 5044
+ 1452
@@ -36700,14 +36807,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5095
- 1404
+ 5083
+ 1422
30
20
-
- 5110
- 1414
+ 5098
+ 1432
@@ -36726,14 +36833,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5095
- 1424
+ 5083
+ 1442
30
20
-
- 5110
- 1434
+ 5098
+ 1452
@@ -36744,58 +36851,6 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- - 59e0b89a-e487-49f8-bab8-b5bab16be14c
- - Panel
-
-
-
-
- - A panel for custom notes and text values
- - 996c966c-f40b-4209-83bf-0e365c00dba4
- - Panel
-
- - false
- - 0
- - 0
- - Double click to edit panel content…
-
-
-
-
- -
- 5303
- 724
- 160
- 218
-
- - 0
- - 0
- - 0
- -
- 5303.343
- 724.9738
-
-
-
-
-
- -
- 255;255;255;255
-
- - true
- - true
- - true
- - false
- - false
- - true
-
-
-
-
-
-
-
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
@@ -36814,14 +36869,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4570
- 669
+ 4486
+ 593
77
64
-
- 4627
- 701
+ 4543
+ 625
@@ -36850,14 +36905,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4572
- 671
+ 4488
+ 595
43
20
-
- 4593.5
- 681
+ 4509.5
+ 605
@@ -36876,14 +36931,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4572
- 691
+ 4488
+ 615
43
20
-
- 4593.5
- 701
+ 4509.5
+ 625
@@ -36922,14 +36977,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4572
- 711
+ 4488
+ 635
43
20
-
- 4593.5
- 721
+ 4509.5
+ 645
@@ -36969,14 +37024,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4639
- 671
+ 4555
+ 595
6
60
-
- 4642
- 701
+ 4558
+ 625
@@ -36988,7 +37043,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -37013,7 +37068,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- ccc7b468-e743-4049-891f-299432545898
- Curve Middle
@@ -37099,7 +37154,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -37159,7 +37214,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
@@ -37173,7 +37228,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- true
-
- iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvQAADr0BR/uQrQAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
- 2d385089-39da-42d7-a4fb-fcfe14c2c8e9
- true
@@ -38380,14 +38435,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
+
-
7H0HXBNZ13dQBAQpVnRRDFZUBOxiJSShhqKgYieQANGQxCQIWLFTLNgRG/Yu2LuiYlsb9l7XgrquuJZFV+W7dzITMpOZIXkIkOf9HvenC3MyNzP/c+4p9557jgVHGhUfJ5QoS8AfEwaDUQP8tZGJ42NEkpFjhXKFSCqBpBBwGZLhH3P4Eew+XyFfIJTDj9RAyZYYyY8DL9cEl0a5i/p72Y7zT+m8K33xt/pHzUPkwrEiYQKkWwK6WWgsGEVgi14OFCpiw5JkQkiujn6xNUoLksrj+GJIaQGurlmzpgS7K1QoFkYphQKMJhKJSupxhNEiiUgJ3iJELpUJ5UqRUIENC/+acvhK5HsswC97nsWlzZ/1wMKKI1REyUUyJfry8BEZpkH8OCH22/vq4b4+rq7P9y17uyoV/Pt8aQ7499nSXc+W7kV+QH7duwH+O38u8m/Gs/mL1Z8syAyCPy+cDkdYAm95vmK9+udnixY+W7RY/bFnS7eoR1N9TDXI26V74PVlU3Bfjd2LPhJK3YJ/vJWl35uWhXx4Nt3PWVvVA6L/oldo70J+Rt8I+UaNB9iifjb0ObHHLv0MQlW9I/qlyLujqCIjoPhg92ojqUIYRVv1RRgjUL6go+HYh8KLcNbV1cc3vGZ/IGFwKiiwaQL/WGNX2dJ41QSqjk0BIGyjgDCi8lMNvWwWxpfHCJFPOoJf7YvBpCkqKTEdIpXGYTPot+8D+tYYCMQZ91U14RWtr6nZP0rG4ydJ45Wan7X0kUvjZVofruXjy+KJIuV8OToFTNCZVQP3UXjFXPW5JOSZ0dvtWAqFMC5SnOQdLxZrTgVWSHx0tFAeLVLEujAHqjRG706u7vA/FyY7XqyMlwt7S4TxSjlf7MIMiY8Ui6IChElh0tFCSW8JGM0WG3pgqb6BI5ujo5ix4pWxUjl22TpQFBXLF4qZIfIkqbyanwDTMmsKVzYe2WEgL8dsnuhXoeU43Iy1LH1Mc4rvqV2qLIIjIfvUMG0BHLRSXcOBBa+bqa5DjKqh+Jn6DCjVfR3W9z8zNGeL9+b1thdPTfqyBPdUNRBe1WRLJUq+SKLSo23QUcy8pHJUtWKMMWNLxdJ4Oabh4P/JdJUjixkDx2VKo5k+cr5CESuVAd3HlKreqpofB5Ee8Hdh/7cTBn+OCUpze+f6/U38EkAyQUklEfdvPXnUImBRv10jMy/9bglI1VCSfPwvl0J3K07O7zl/OuQG1Aek6ijpuVMPfp5rOm/b2m0d3gttnQHJFCXtOsca+92hoe+JV0/ndbdzegxINVDSp1vPD66tW8jLfvV6+PTwbW8AyQwlrT7aqd6tn7V8jplUOzjJMfM7IJmjJFkOb9U22x7c5AZzWX4tJyUAkgVKmvr1KMPmuGlw7tHuJtcO+KwHpJooKeX0mQEn/rDmbZ/+fH73N8XtAMkSJUn2t3979s1O7tan2yI8nA99AyQrlFT9yOhbNTx+eWa/X/B0t9vgW4BUCyWlTWr54/3tSO/F1iHvP4c4DAEka5SU+KWBUztZZsC6Senmy4tTBwGSDUr68bxFj8vvu/gf8AhtP2ZNxGdAskVJPw+zVg5ZvI6TVbPk2rp70y0AyQ4lNW268uKczs985686n7/b5/tCQKqNkpYFvOPlbevOW7C/XeNVQ/q5AFIdlPR+Xa3GuY/tgndH9BM8cmiWD0h1UZJTzZPt3AM+sg6G/cibX6NBd0Cqh5J+GyZbWafbB7/Fpoesxtj4LQWk+ijp8dvPm+ZMb+C78+ToF3bbl28BpAYoqbA19+y/GX3ZR5az3KImfn0GSPYoafKcTIvzH356p7jcyPl9w5RYQGqIkqLrh34zmTnBe5bJAbnEKSAFkBqhpODMg1MTqwex1o6MqfPOYvq/gPQbSjoX36nz35OSA48+3nDvlkXSFEByQElXui5MWHCqwD+3zqYjzLNT2gJSY5SUOePmge8r41g7PjrZCCRZUKKaYNMhXzSzjn0mN+NvbsdTvN7vAMkRJfW63vTmwlUnWBsmbJ8aN3r8VkBqir3X482DN83oEjwl+vVDBmNRJCAxUdIqUdyivetcuRtqZN09+mvgfkByQkkRA0IbNcirG5g7f3KA0+R33Sz8OCNxyqUZVNp+EoWSL4kS+sSL1HpumvxqjXsnqvme2B8452ke35REo1gEiaJGa15mWLKUSrkoMl6pUv6oVse0l4nBtFdwJWqvTmEHl/7wu8Pe3PdNN9aB60oN7SXb2yTHzDyOm3PHpUvq1LfDNLTXtpwrO6e+fxKwO9Iu4r11XzsN7TVlQNCX8xsTvbdIU31TvJJOaWivF38eWv3Rx88rtV2beQxf5gsN7bUn5+Qv332DeXMc04suLs2z1dBeA8Ian3McVMJadrpzds2wn581tFdYr0ZxM1u8C04PMvk8zTrgu4b2muijlI7a0MHnSLUb05/UOvFJQ3stbxfk6P3viKBdiuXLN7WdsktDe33PTORs9WP47G6Q3vv1tAF/a2ivhSnczgUO473X9ljHfZW/p7mG9iqaXLv21ZmBvst9m+4Na9/mq4b2sgzs+vXayma+Of53+45ocfOyhvYqCPk7t/3rQO6W5msdrTsoXDW0V1q7dUkOITyfjKQsh93X+x/W0F4HluWbO5jLeRsH3XY0v5U/WEN7tdl7//zHL+8CZq/56BY6yH6Rhvaq1nv3gnGHJgUv+adn744pJTc1tNepP0P+/s22bcAyl5UrLTd579DQXl9yBnpb5ngGHGruVjumf98dGtrrwUim6PCt/r4rnG70vz3yyGoN7ZU2ilU8+9Jqv11Jn+pmvwhM1NBejD9iuoXsK/LKaPHxw/DZve5oaC9G6ODXeTfX+e++0ehQjfT7dTS0V/+uvTPrhrZj7R2W6u887/10De01q1GCQ9aeSwHp4/n2+X+OYmpor4HxI9md8pMC9pj3zq33Wd5cQ3vxrjQ8u/Jgbe9VeZOj6+/pWKKhvT53WMj1+Fjku4edffjm8BZxGtqrxl+p8azBab4p/VhDL0t9PTW01/ZPwRu7Fbfg7LPc9ffJKQvlGtqr+dff//R0Oumzwmw7c0a4aV0N7eXR9ijPjd3Ne9c5v66s0bvnAVIzlDTau8MAsz2rvaZYz5g96dEF6B00xx4+bPqwbStMvZdFft1of2RcX0BqgZKOOX1YEjGrIWvmuUV3e+88dgKQWqKkZOeMrc0d53sdaXM4bOmQZw0BqRVKmsTbN+Rc3GbvA3Hdls8d1NQekFqjpPYPmMsExb256d1W2vcYpIDf5Yw94aDrNsvHtvHP2mTX6k1+3zRAaoOSFtcuCeoqmBC48l2zTw8Ugf0AqS1KWtc+d+Fd11TPOcywmSH58+4DUjuU5Liu9+8X42K9967beW8lowsbkFxQ0haTfi3O80LZM69njTTvZXUBkNqjpLML7Mz6fHwSuHH9yqdBl48dAyRXbOrNXHu2lvUH/439XO3C/Zs5AJIbSvq3UZf1IzqGex5b888fvAsuUkByR0n/FL/YdLlxke/MPpJrGc2ujwekDijpd5fTDS5Wnxt4IvWL0zuLOssBqSNK2jCjm8uqofe8djsq7X53vAltbyeU9GrcgamPLiv8t/Ps/c4LxnkBUmeUtKKH7GnX+0nee8UWB+a92u0GSF0wzXazVbMRp4f5zK29+2LA1wXegNQVJSmqxdsHNbHzX7Dr865Rnw70AqRuKOl5J9O6NR8dCZy7etEo52DfroDUHRPs/o0iuIHN2at4do9f154zFZA8MAFYLLjS9OAF35QjJ1fOX53kD0g9UFLD73endbC28U8/ENvr9xOmUFX2xCZs//03HEKtg2ZFe40qmTIBvnIvlGR6eYsjd1o6d9ur/es+rF2fAUi9McPx+95PvTk9fTZV39FkjU/2W0Dqg02HsY4ZZ8wHcmcUrm91/cJbqL76YgKQGhIcMjPMc3aPiQHZafHRgOSJGY5uTsUPNj0IOOLStce01ENQA7AwBSvbdnnzgXes1G77t7z2Sk4FJC+UdNX6hKTT50esnIWhro9MukBzw8a0zeEbV9JaZ7EXrFx++1eLHVBsOCip+03XQV3rNfVOLSzuHRVx/DwgcbGpx1/7qzhtmeeeMwl/7TZxgxrbGyXFDrjfzT2FycoMXJ+15dJoP0DyQUkZnt96dRS+81/YxCNzsP37Hlr+iy+Dwn+Zsel1OKvVBd8pb87NtrSdaGMA/wXadlL/5fjG2X02/8zx35fXK+z8EUUd3HeZBcXHRQrleAfGHB2KzDVxQz+pYPKZUVKxWBXiQ0clWizlK0WSGKZMKpIomRJkYAXp6xO9FrJH0np/7How8jyqBTAk4DcLBS5VlJCBcmXTs2WNJt7rHnTo6qTYwHYFM6xUZK0QnwCneoXCC3xQgFyCOpuR247LcE8BguILpC+PVSNENFaKjAOtB8OzPXfM4hSuTQiMpxVKoUTJ4Sv59GsLZl5yAEgsQ4Nh2h8yDeErY7FXrz7efaKpn1IYx2CUrkGaqRCGn8FWKKBIouJQnUocjgk3bpX8vMib43Jmj7u8znAc9jXZ8fKxfLhcgZcI6OeZUUhET+5YvjierxQylbFCZhQ2ABQJPvKrkMlXgh8VMmGUKFokFDBlfDn4TqVQ7mrmKxIIhBI1XqTSQnRkKZ5YS2BKSTqyOqQNl5EXD1j9HbA62YvA6pD2gJrAtUKefqRIIotHVjzMUZDJoKnNRl5fKWUKUYxIX3DChzdt/1y01m/2UKuOA9Z+noLXBsgYWi+HXi5rMhDd+XJOBhlA6Gk8OhmKiJOBAaZKwVgcQiZlINQyBJMFJtAiKmkRSOOA4JWJ2oLE5jm9A3oF7Lh1+7B9ZhM5XizU42qLRSmpLPR+DZovLqyV5T2rerJrr4Gz9hoAPSBBNOjlJnJrqdCTxitRATOjga9+CKJr1dCBiTZeOZEULoehCx8u6RDiuc/22W/etwaH4oUMGUdbyFSXtWAiw4GhOw52rqgU9QI4ZBNxSHHjMpLH4nEwKQMHe/VUZ44Fyk8qp0NC8NzCjMdO563x69N9/ceCd/rrkwpBhJlAhwiQGxwi1XRHJEokjxLTysbFQXdKfDeeDNzKF/+VX++5p5EgEpFIhwgjiYvaOrhAQWrrXF9HOv2QFwcsGnzzrtvmrfVw71WLIxorEgiZiCLVNnfmFMC2QW/DbBuYIEBRjYnni5lioSRGGctUCGPg3p9CJ+NGXIqhfkQt9HFUHWGNACqIOR6A95XMxOW5AOpEvUycrdrECZCnIX3JvivjZ917Vct3+qzjW+f65f8yXgOXDPDxhPgwycQury1QXONJDRyVv1xH5bVCbwiTC1KIChJrR7RqpAxaafnqco9xszYRIIKvQwIRcrksiIgxlgEgSp5ABxEQoSp2iOFNTMgRDU5hGpOKU/ahMrFIqeYS1JejRZLRFBHM751MV41v6ndkzvfXDcakDcazKwDep80u1WVDa0rIj7yJdPyImFQl/DCPlErFQr5aATK0XBtMsZixoqKECoXm8KS6Bio8uG2pCjHJObPyId9s853HrLWdarzkCvyP42NLxKHRZg123eC8aY+qk2FkvOnuhqgTLU9HT1iahfElMYCxqOuDSK5AB6T2NRZuXhWQzpoWeCdl8WH/ZzikLNBBtbEqpVQEWohmoUQLaBYtL0hPtJqXRhwwuhDqDBcxGCDsrWOjagOmSasIyJDJTwkZmPyom1SDQeEmrR6/5NZfhaPZm3e0+XnlasdbJOYZ7x9Z0ODbmnKBCAiNUC6KUvlNunlHROtuQMeBuKJaTquYB2PfbRTLRBH92nNHddqOMcKMihGRzjObZ5ke99wX3qLh1ov3GuBe15YjjJICjOTxUUomSx6l7bLWoGBJz/5C8ArCsaoVmki+QsiUifkSoQtTzheI4gGnJALwN0asjr3h2o2EyZdH6bZCQ9wZpH1uLYYRP6BrhAAsW4YMIH6JzJV1B65shlwvV7Yx+G4mCB3ZqngJurSlD0b63o/3J791+DjE+9Cojhnc4PyHuPeuTvauyMWyRJMYjpVTNN0BULkQqGwWgyEjAlXQFgFKr2UHBy+1DCGiosJNFWeSArXuqsnmB+6J3oeb9q3fWrG8CV53IqOFwNG0dacGzdC6s8gFxSWcTHdmgwA0ZIyeyxD9VfNJJ0w4+46eOp7+iJO26HbHSQlW/+AdFdVI2o4Ker0isCgaQ4cFUUbKWoBgsjQVijP4C5UNX6Jog8JDCorFwbN1TT/nsHd+WKl8W/T1KV7hI0NqK3zV5YqAxF1BB0mBAtPoWASopdHdFkxMatLjl/f8AV3SGcsHL8ULfjCYP8FjgScSrq3Mq1PgWpctjQPwg4kHJx+8OVE3JU3M0aB6FO05WErT1SsBOiUvAECXC6B7SoTOHfgs2Ty9VLOVH/yUymEjfbnlr2v/OrNzQPBW+3Md74TyCaubA+F92nKjulyWNiYmDpRTG2fDNQSITSGLZD8ppR2CjV7auFYw8jEadN4JRjeqNaR+8D7Psfc73XiaRVA1QkW8WHt1Abtu8HnVHgWgmAyAQlcEAHReWVDNqzEnRO1EQVvZB44Hi1+/GPoB90ZW/eLBu8DMKVksfmLVZOgVK7TgiBTAyiXB3SuhEuqtpPZY0AD92xj4DaSIE7OeKJ9PC3YcUQv7mqFSuTJYM62MRGKJWUs6Sqx6NALDMpyBbegFGNaADf/iGTYky5kb9qkX1xo7e+AnEQgTseHg/1FW1qRi5buBQTxTt2/sxesuea8J9huCg8qUB1inrRxNKRjmxJYL4U4knykGH2dGCpUJQqGEqUyQopGdbqqSmJim/UhabEOu6uG55gWjnqu7lucK9wL66aUe7eCXM8F7yJWq9yR9qzaNVjw3ebuGO2fY1G2/rPc0xMtkKHI3+T4QjliWviRuNBnAe30KwQohM8MFQF8mh+i15WiDgCUEIQ81VC/29em8t/0Lry3XBvL753rMxm+IcMG95EBpkMqCiegSGwAmIDU0MOX109OsqIRKtRxKilJsXJJv/0f72DtOuFSbMWZWc12nieFNiisqI7ksuAxKdNXcEGhQPWRJpYcuLOfzfnrY+0zd6Gj+tvl4/MKhBQJGKIene9TthddFKJAgpowGvwqYkUmaE9aFqUQX8WAsrtpIcp2ok7IipsqSP7f2Mh5G0RHjgjYA370cBuMhWbgtAxxgHOQYXmmFNbi8I6zvSO6MGKsJbncsvfGOHaKXtB071eVKVlRFcOsIAiQjm4EhIJpI3sfRZ+uoIQIQJhfOApFctZbWhhSoybH2/M28v7npy3zr7m0TYoVXWRzsZm2VVUoqC7CIE8c+ORwZ5j39+ebBNkXdNhoAsLz9dIABiaqSjSTVQjr8TCcG1Z+ivsTNJcxZJQ1gEF6q5jX5iYbr/HN5SQe5h819v6U47bOr4ydRCuWAGdxEmRy4qhpjVWsfjnfgeciw2g48er0sthITtA0xDw7RzoPDVcNWsoS5or4GNorhh6e8/rtFYdDsR8XdGi0ZuKTKjKK7G6qPcsmW/Z66IdMLNYpWDAqjOLBptdGLdtl5HVoj/tBzooUvfmVXnfmnkjTdkygOmahvxeUIRgnlcABmNF+VxCOWSmKYIqUCs4joF6F0BTOKLwFOPlMRL5OJYWZhpBQQRVg2VLwE3goNqgQ5Mi0aBz6CXHRlsmOhXkUWxIcGDS9NSYTLvkppDFy6UkcP4DMwgoiTCoQ6BhDEMyq0sGkviBM+oCPDYZyWVx0wvD6bxEI/hTtFVnpZaB3TFx2OfoqPd7PlTX2za1vSkVsrDbhJc2qU+FrjOfP9jyScqvbFpY5jeXN5AUKepgChuWSqqRCGZWZaJpouZ6AZTh6Z0XDFF8EMBQx8lBQyG7OQuYMO7OXON/X+/UTa1Ijy6fNyKgoElZq0qFgZk8LWJ6mjs180M0weL3RBZjGeWyKFpl5wdnd1Z05idnB1J/evzLcJs7csb+U3fcexemucOxfjl0+D1ANpL59q0CqEdTa0rLOrEtYRcz9M9LKyTVRprcAkQK6VJo7T+E8LHk2pnuFw3H/7oivH+/Pf4bdOKze9FW4NIFrGl4wp7u6IltFrX6kVPsNDL2DcPW52qdfajr3qbs38u6sL8Mv+5ujAWtCoCRUCTk1acKw4em00tVZZqVILrg86gsSli6p3OczbnHvqkU+b5LmGSCI3BEI2tAjZYX5bLQaF38ZltW1X0vsma/Njxy3XV33ohF/rQ2ILmVQMLLq2z2ZBgXMXbD1DAnNesfsFqMFTxsql8TGxpSvl+qy3Es/tUj6t9sqkBlFXv7gV8HzheTE++LuZ6CYxOgCqhE10k7CMFx03DuqVPlYZWUURH681Ctua6D3XNP603/476fjVm4GwXA/4Qu3VGzWlLBcqtKn95cJWFzlrCrPv9+DUPV1OFyoEoucNkGvKJpFO33ZwBZKtjwtVSzV9BcIYuZDcv7ycbdPKImEhN/3cqkUvf31qi3eWOMiN2s4Set3QsxN5/yG07y9gG0H2KyKZejhK8JFFUgGWnkXKiO0Ldrke63GQu3/UH8mHI968xMsqNoC2rKopFcIMCS0zEquEGVqpr5qsqF4GK1wDJFIlMF/8KHia0tm9NwhZQWQR58Ls0DsqVioXuDA79laMkSuRX8i91RRHy5QJq4ZwZl7s8Cw2o+Qs3q7BLwhVJpHkUmiQKoRZU2iZNdMYZg4cSr9DWKqNcsgsSbw8UkEzgzL+qTe9V58i/2nPHSRvpjneL0+oXE525HVAFXlD4GYUENlR1JE7YEAoWy8vFdXkNN5W95yu7sdHXgmc1/9CoL373v5VGvYiAESgANwlAQCqFr08UcyUISlPpAAk7LKK7xrUirthWe3BxVZPigimDLmRxJSprlcIAONpABg4YDobdTStGRSO5n92upwKQYOcLieWejHo6XLi0XUDnC5ntGCTpw3/5due+1bojvHAhooHxpu/TSytY8ClQaIqNQQjZnqRM4IT0J7rnLXKC2WELRUjmDHN96fMSfVaeHo7b9m3Q+Pxr9tfKOYnkTOCEFZQeQZ1WcwEkVzIlMOR0GpQpLgTM4BIHkQLdxNmmZgT88jKiTkD5mj7oyeXkklKKzDsArBtezsqzGuGLh27MX4UJ+d9sbAbcws+drRFY9ZA8I9cxBfrvkPxW2m0GywTSnx4zDh0DN1CWmJ5KNrH0t4BIHxA17xLZwBmWw7Q6ECjFGjlQcA9+m5aOwB0rmgTVb0yOPvhkopAFB0drxAyo2L5EolQTPri99p3eX76Yabn0c0jroxr5X0Bv97EUY2gvd6EEQy+mgIgSYaQbCZbTfGEs759layQ1gDKVaquBPfPP/+U6BM1M/GMgWtd8WK+nBkriokVg7/kauHiyJ9XU05NCdz04+dih1m/TuMDuFB0EO0ATk2pEO640XKnoxFwp6SEUaJPMN2UGydSKETAF4zCsQlTIaTMka7fvur29jUBe2tNeec4/dVRPHNUI5Lkb5RSKoQ5nWmZ080ImAP5o0943Y0VB78S4Ql4HBBny4WSqCTVBlBvplTGHwP3izogv5V+gnxG9ct6IG/i7MCblzr5p2xXz1j88f0wjfG1j+/jqBXCPA9a5vUynk29p7hNPdMyONi7lIOKWJEkSQJcJ8A+wC6JFJ5q6wB+EksTECL81R2S4viJqgvkS1uBd1bcef2P15wdTv8sk5fEENLMYsnSNtDLFcK5PrScY1U15+BNAoae6yR1StdJaBXhKh63n7eTGefg3v0fb4xZXwOvCCl9plKKoTkS4Yb6ENBPPa/lVrkjihD1U2szKPzURqbjQ08d+Rx8wiLnZauu411wb2XDjlcopXFMtI4/3k2FmFanwLQ1SwwkXYFmHsAxkM3sGKE0TqiUJzFlqgEVtn6SKHG8QOgn6S+UoKcHqJ1XYgFTumfV4gOBbgPrtsukcqW3SKwUqkuY64r907YAXQeAfSZZrnwecGmTmVouLV18W9cHw0YpxeDRyaO3qDY559ybVj4zc8Tb6tTttAAvltio2mKpplRysgusJ5UMkfMk0yPJML3SUa981PphGi4McvRMTlXwpYlHVvenDT76HdrgNbxjc0L08x9NYQJWRB1hCKyYtFg1r1Sdi3USMUdDLvgh6Ow8yn5UYiFEPT7sope7V0kNxLYRraoFFhhgH4X/r6Xp9uDvYGDVJOtQqTEjDbeJdZUrLdzOm8elCbcj5mud4zFwuL1u02+Kp+l1fJfNWfPS8u2xZUYQbhdASCidF2ZGlRSjwccMubm5lRBuF67gnngY0dR78ctnB4XKdm+NItyWZdBxJ88YuFMp4fbtf9ba8V+8Z0+1WL1y8sRHIUYRbtvNp2MO0CZVzxxGVYbbhWmvbdcxX7F3fT//duyojmlGFW7n0jKPsaCqi6IZUbid6edx9k6zLl67BtgGu+eNGF3F4XbIAjrOZVc55yo03J59ueWfXW7XZK/72LGWha1NrlGE24gPQRluA0WI+ql1Gf8Hwm1i548qDLdlQN7t5nApwu0QWIh2jpZLWyHh9mCBlVuv4b39pjV5MLhlo117DB5u+zTf3iLn9kHenG9eoz6kT2WXM4TMgL4tRI40hLRrDzyvOXpVDtUj3D5Q4DFNfO2FzxZxJymv7V8jDB5uE3WEAbDKo8XKbm6l6tyqDrfrUakxIw23iQ2JKm93e/8put3txqcqONy2TNl0M2PwIPai4IW/mk0wWWME4TZj9yk6t3PVqaqPGR4/flwJ4XbHTOcN3fu1Dp4X07H6hS5/HjaKcJuRRssdsRFwp1LC7TuZPIddOav9Fr17kPQ8zMnKKMJtBoeWOY2NgDmMqgy3Lf12N7s5yJK1KLnZ49w7v/yNKtxmFJ6kY17myf+F2xgfH3RfZ/frSCv2FPc5u1vYNtlWxeE2w46Wc8l9/y+H27btmjt5tAgPSE87Mr9XkmKLUYTbiA9Bvbvd+BTqp9Zn/B8It4ktM6t6d7vZaZrdbUat05USbnu1Yy8d1T/Jf+7yiBsnnjR6b/Bwm5gKboAdWwbzNN2ObYPTFRRuv17wqK5SGea/507Kv7b7+zwyeLhN1BGGwKoWLVbVTv//FG43oFJjrF9jFX8qJ/ntiWn6K0QekU6Ia9UtlUhKi8KvoSpL2YQj5wM11h+8hJRJGEXHI9LEZr5mPGnUaKFAfRPtk5JE4PgP6HpiCBaUgL0Qs73IKswAdZWXqrU6iNVcJa/XiZyYgvq99ImQqqogGkdKr+oEzi+3RvPH5IrY2UOcg5IYnTrTgmNU/YagAShIoSrbCKcmM1WvVcMmofw4mRh6IQA1hUiZhEVnPpS1ag/2+fBHYZdanIV15L8avV30Oy165hzVsCRrHCjB0P4JhEiWSgcREDoj8BgRGdejJJxNaBRfjNTPpy4j3LLezOhmF+cFbPFP9R2U39KOXrCRAUkceeRyWYJNbAluAMG2S6PjWkSaMXBNxFBbBXsGhVWI/3a00+7ssIBlP8OHpfZclYJ3GDmiGJGSGRolh4fl9Oik2zwoPg45T6dAb0XUoEKElM2nO99I5BStUBAeT6dTX1QT1gIbBV7EbLgZ8gXqo2uwIokZcI6jRYmlX1EDdi1QF4W2QoQvPlrjI2gtdgyyaOwbGSrO6bp51ZLLKE4HMjeOrS1zQ8a15C78mY5tHDakYja79SU3j2lPeNneaz4qPRrhW1VY9xfG8WVM1VlRhe49clur7kO5quoZyGdKhAnwEiIEqkPDOlm7tFGs4tmXVvvtSvpUN/tFYCLNE2qxG0/Wo7Acsy6XorBcMqxXXV+vetU2CLdhiCKHj0PeGPGQPM5nyCWfLZOerkvNPP3YgBX9GaGDX+fdXOe/+0ajQzXS79cxRFU5CM9aMlXXHTjfT+vqZcOtVc9Dd5DcslkXyXkfmc/urwEPBCw3C/wZZ9X92mec0etl4RNy5MZbu0uXeevHrg7p9+14XQPgk1yPDh8gPlVhCiyQKj1jVUD0YhD/6FdpzjqML48RKumY9nV4v52H+tcLODSIO3zuvE/4Yppmqvu1mYZer4jScXn16bgS0cA4uaLXspwtovBkQgGqfEkZE9CvyP/il/u8ReKAATvbLsGf/jELRO7XZgx63dCM8XRD1Qlcj9PqEp3szmW419OvLZGDGgNYCzVKLCoLj+8TTayCLpzhzfn5JYbb4/pHfATAVg2gHQFghIpAhFmfDhG7Bphdb8SgsOu5CwI+D+3Zw2/m559Ki9P38WXS0W/UvQtPL3Vxd7wBZybEiqJimUJJlDROxlcoYKcQphjMIOjno+Zft4Cf8UdMt5B9RV4ZLT5+GD671x2y59WWSdV1PUq6ezbkqkq6a7XpkbUHqDeiTPbRsRJaY9TVgMZepFqlhQV6VU9C+uLit/stnQaEBa9WJuQGtx17DC98VI6NmlDJxh9Wu46AGLp7kXSzCWmHYKiXxuqFxQWqsi+4MsRiaYJQoeoRAPfC4c+lPiVzfBB5e2+iPa/SqjOwvQkCWEMywOBmBAAMncy/UU1moym0QZQmAxXa+A87+FAuAMNWZg50hTZyHTDMHYwec2K9egNhbm36feX+IB/W0q+rJ9snJP1hAMzzTnBoMM/Lww6NNqbCPOiA95ULjHx28pBGPUVv/WvjQ/tAuN8oE4uikCqT2saLCmmHQOCDAZdACe4UM+Nwo+hkm2Y1SnDI2nMpIH083z7/z1FMusfS3kHD03XtmQQ0qedpAOdssp2ybLiHcZZjra7KinmrmA23RBrI4XgJv8kcuewnwGRgsOD8XJMTNTmH/7IPtG5XtwCjm1DQrVSt17RkxEJ1nXpg1fMgjws/QhcsN/EWyYGeFwE3GVkhwvOLlD+u5tOFk/Yv9s5aUP9lm7HD8c3kTVjas4OlNTtMCLOjyYeTD5e2WuC3YnTs6J1jtqwtb7sieOASstOdRRJ9wC54efkcDZBMygDJMRS2ahXohVLccucJC568Cd4058+0Dyck+OJUJl7aKHmViVLsgPvd3FOYrMzA9VlbLo32MwBKQKxpUPI8x0FlUC1LdL5FQ1WSAnRGdQCIqBGrtG1gRHtUYmDbQK0eT+GuCFKoPm1CpU+zDj4dPOtFsd/hg/sO7xr9jEeoEs6XCMXaDQOp1KgziymDd2ikJzAlUqVQ1XJCKUxEWzKSu7m8Kw3PrjxY23tV3uTo+ns6lpA8iha2DDJUkTXZ/pCL8KJmoXyCcLJ2xbaybNiYN21k3MbwWwLKFX6LAQqhPAw8Pva1LTnS+EixEEaOUaORdhACkRJ9dzDr4OrA8+SNBD6q14eJWbytuYyQgYBbHmxG8iy2ZSBfHiOS8ITROKGwUl3uD5M9Na/XVF0Pk8o0rxJWeqe25joNGci1RUAMkUtlsFay6qnMsadSZZjCS9jGsRXcpPWTCGBVZfX8rgkvwiULjUuI/RKj+9EqIwlTSEV8MRt2CFGzxixUCYLEOPXvpoPkfFmp5lCJqiOVqBqNu/W5w0Kux8ci3z3s7MM3h7eIM5C7RZR/A7hbyaF0Li4jDHNxmxo95sSeswbCnNhy2hAuroQOc08phjmTCvMO6/ufGZqzxXvzetuLpyZ9wfdLquEjl8bL8JjXwjD3kmr2QTWhmtUkzgKLGQPHhWbQR85XKGKlMqAjUIYoqvlxMMAGxo9kd8pPCthj3ju33md5c0DCXEGi/AJSNZREnDGAVJ1B3kwYkExRUknP1g8+3rJnbavzema1F5frWfhxRuI4AzUqefGiT8EbuxW34Oyz3PX3ySkL5SQQapsSAo8ZGI9V7HKiYpcRWVCPtkd5buxu3rvO+XVljd49z+AWVGv+5Pd8OHwpf6NXrmz00wF/XW1fNRaU0RomDYK/vhVmQS1bc49bNfvvsKDNqETVaLT5aO8OA8z2rPaaYj1j9qRHF+obSJsT5d8A2pzhSKfNkx0xbd7c6DHnhU0ftm2FqfeyyK8b7Y+M62vEC3M9aBfmemCYt6DC/Hvk0HOdLDcFbjhW/Scj9udCsqrquu9sOAYK+QqYhoesN6saZgE7ibbp023v4pjThyURsxqyZp5bdLf3zmMn9Knzrms42JbLKFwOkDtItnfBBMiFr9Cvh7a62V2cCgDSNzs9czE3PGF/cFqnlz6jcwQEZ9iYMguTAUDFEKAiFsk6OzznDQDSr/dlmfX9u5g0+jiHLePs/+IZm3tzTtXW94cNDxEALMg2GmDLaAAAOrdaUs0tI12ATXbO2Nrccb7XkTaHw5YOedawkhZgswvoFmAjbvxvARblz87RLTYvGDuFu3ko58jbA/H9DbAAu7h2SVBXwYTAle+afXqgCOxngKXFpwV0S4vM6xW9AJvu8CTYo89u7raNU+vHDVM0NMACLDGTwwAoAbGmQSn7ZgUuwBIX3at8ARaRGMoFWIAUqk9bUelTo/EPJ/H2DTkXt9n7QFy35XMHNbXXxT8kCR4r3j1EkjOoF7X+xJpStDZ6yEcPum6zfGwb/6xNdq3e5PdNMwzksXFJvv0f7WPvOOFSbcaYWc0NsaYVRLumFYx5Dc5GDznRaBgGcqKbZwjI79HulN/HFEsbKsjrRx/KyTpzgbti+/NxFxtPyMZnDXETZWKpgKTZZQ0KhFuhd2BxjyplWxHHRxL10f7vOmZyLez/dsLgzzFBaW7vXL+/iV9C+mjaCU0oQVf3DOZyMfLhugyJe5YMo/cvWidJdYuHhKoHIX23P+p52wfvvea9f9bgr9+7cZcbMB4y8IFRdwBQcslpBkNAlu9aDKKl5O9aB0bpEn679BcC0UDqYAiEMN1PqhBBOhM8n0jMBJKilhMmXw4b3EvjRFGkKF41+1jNdm2Ad1bqjDN1u8bgJaSm+nu0u/WVkgyeptUGkRg6uIoq9cwolh5cdmdpTKp1zFBsj040QSm7lLF8JTOOP1rIjJch6yCRfFgXiLKt3+bqI1uu2qYIWGa3KSY9fbsdofIMOixJ5RmMYvCMWVdU2Dlk3Dvvhgi7Vg6xnsA5YT1osSOGQiKQpGAtdzkaNX1O/4Cs1/Jwx52z8bsV/1HHW0OA9YUWrKLTqP1py6CwPwObVhu9aJed16E14g89J1rgc/ttuXAbA+YLU63GURXqOmSivhWzREA0wY8ADJgciray54ulkhgQeynQ1RlXfKt7BTOKDxNJmYp4GYg4AIcipYAI7lcNGS+Bt8I9F4m6V73qoiuTHQs7gSP8HRo0XKPNNrAMSmkMPKymmaGqTJAy4+Aivm62sSTi/q0nj1oELOq3a2Tmpd8taWHTPsZM+IAe55kY9fMpzjPBdSOGdb4+trJ2qa1EH4j0ZUd15Np6317hu4PnkHBnZ35tAxpLogYyyJEdgNBcsilRCKtW1MnXx1g2w8kjut8HMUMBo4qAeyt/fB098XrgrlvBh8N79Q6r0hVFBBVbWlSs84206lBZx5c6+0Uzw+SwNBScxXhuiRSaegGpJDUJVpAibz08cMHscbMODuAd2tz9x7qvBTdwLLMMUg+kxTZNWoWwzpKWdRZVwrqy3Rm65aQmIUg3VGASsDp5omio3mnW6OMvXOtgtuqT35SHkkOReSmEjTFkPG0lpLps8FpQrqiW8SVjirs7omX0OunUKgwaK4DIWKHKLuoBTKOS6gWubX/nblk0ibEo/R0hgkQH1g7TMEKFgGNLC451vl7tiVurrFSpBdcHHf95e3JO28b5zan2eHZiJ7vF+BBFveyvHaKUkioEIUtahCzyUb+tHYPCb7uwnM/76WHvM3Wjo/nb5uOP471RHvDRmKEcnu4LB17qg2EwvwHzhEGEGA1+BX5XEhNgK1eq2hgDZYvKK/S9UNdtok6Ok3z8L5dCdytOzu85fzrkBtQnf25tLxqj6HFELNvujGoVUstVkgEOZNuc0WtZAXkADQzIq93s7uXRoy7Hd+vCvwbwj828QqhzAe8mqXOBXC7LUyLqPwOc/0qGAMnIhDDEhct4antGn8PfDRGAMLlwFojkqg7M5Mb2ztYVL2ZbT/FOrssfcrDo+V78tORgN2tPy1JSWYB1cP/cNvjlcv9VK0x2mPy6GG0AwDxt6QADElUlTpTKZsDPdGJQ/dE+E05X4sUK4SWNVpVPP6xsFfnRJ7W+pMG4aact6yBnnwEzuIkyuVBdBgtxalleoc7hbcrnABNYG5ebeiLxjIP3dJvRyy2bK6cYgLUMGzrWRlhXDWvJ/OMM/Q6S1+Jp6HNSZtarae7SOqsVZ3GjWTsHtD6Kb2phyiMrsqm6avC1OzdUJ+WyIC+I8a0bMsVQw+jCoDCMXjftH43ttsdzx9ARDdMHHsMnetaDWwdKuPQJK1sLYa01oR6np93Y0jgAuWoDAxlGUDoMEhyWHpoWACHRySI+d+rBz3NN521bu63De6Gtc9kPrMUO0k/p6o0A4c8bBbyRQrKEpAwg/J4xWosKeh6mZvE0QIHLDTAxE3obUgnTGTsIDNBDDCvyk0qnKeBqtDRBKCA3IjfjU+vdducHHljas/WhrA5t8ToGqalCctQcvV6Wjlnk3bZtQGgf38WvgztcHObRqZw6Jg+aDwizKVlWz/m2CMzlXRJuqcF+9epWlFSiEEbFI+IBsxzIVzcTHjkzfvq381p1LNRvWPLSXjgsrUrH1Q5/cURDq4SQ9ihsw8hgs3BDYENVQnsqlXDRpvmnDl2lgTP//hDgemMyl1h4SCbmRwmZQfFiMYkuoHKY22P3SeB9UGZFkrF8sUigEvIEEcw/BGGKXHdNsOsca+x3h4a+J149ndfdzukxzXOSFUjSIOuaagZrqQwD6FqRbb4VAC/Zc1B5534DaNSQMgpKeOwfKkmIGHlizZXTV7df9/dePPvU+sGfX/vh3WdkIG33WXW5rOk89etRhs1x0+Dco91Nrh3wWV/evV84nSFypFVokHOgg7UWGjH3WUfkHNTIyXGiBkWLPLvu7LNZSQye955z5m1u9k3/ji97jgoI+ZYOnmroWYygNYgWrbBKXcXCHtQiLEkm1MShuca5GtcA4NIKxa7wMwpXH9+R0MmNEcoJlfjgn/Iq7gaIgYSMBUOAoDpJxWpSLhMNU3kmSTn5muGGzoIisjQzWOAGzAK9FsIaqsqhQF8BsVWY6AvIC4QEBrS6sT3Df2f8lDW3o4sJFRWQtyLZmEAuVwgUg2ihCMMMlSvD2PNviNrSMPk3xNw1Q2SZBebTZZkFYJC7GT3kKafPDDjxhzVv+/Tn87u/KW5nGMjH/2gV1OHhhMCjg0yOhmy1LzQE5ItoIV+IQe5OBbneJydtMcgr4eQkMRrTODlJdM80Tk5+uvX84Nq6hbzsV6+HTw/f9kbj5OTqo53q3fpZy+eYSbWDkxwzv2ucnJTl8FZts+3BTW4wl+XXclICINVgkLsrgGSGkoiCAkjmKCmzicT98bRY31kNt7c3eXHzsdZRTCi8pNIn2d/+7dk3O7lbn26L8HA+9M0ARzE7UPG/WUB++0e7LL03mQoib7+xw/O/rmqxny2WKqC7iGzg6F6vtJm3CB7AjIUnFlUDICEljDP1OghU/cjoWzU8fnlmv1/wdLfb4FtlPqIWOGQf0tUrh8tR7cAku0u2do2UjGmu1za/g2q3DemsIEUONUthViB1XlDblKtnn4kkwbnLrGvV/K3u5PLstVXsMjYDJnS1Rc2uVom9Ilj3vRWpH06FVX11SoQmVuTVFwU9bIs6tvZbuHTQCI/oGg+N90wVRAnIDA1Knk21Fx/o/DSXEGxeIZMNwQybcjDUw3LPqLdK4hIsihoxDwXvH5kxKHpgY/sq3M9FSrS0pdqQgyeuGM76ubFt1buHECIVPGihRWCBcLqJvILNqPAG/yr+9VtbT3nn8nW/OCPYtURAakkLUnP99nVbckSqN1cvVZWKjKriJ6WC2nqaefv7cofAw7aL63tMXNICv4uIjau9i6imVAg6TFp0HDHHqCODwjC+GxjEM3X7xl687pL3mmC/IdoL8dqWkKp1hxN+P1ed6pYgRVdZdTOEaZNa/nh/O9J7sXXI+88hDiSPRL43oGv2N1TQfQBsl8gO58GSi54eepk63bZpt5iLr/8WN8dr89YVLS4+HjUVv9iJ7MdSmHUcscxtKoKKK28mONTTECzS1gQFcBWlp162zgYBSwhmGjVUWdUDNu71GOC9ZMGX2p/CTkrwmogL7iUHSoNUyS4BApMHLUxd9TN2ZW+hEfeaq2wLDWoaREbgFprWYbdsNwQaVA91otJDxt9KIPFLA6d2ssyAdZPSzZcXpw6q8FYCMmcuI/vffNiBmMQnz4X5JP/opah0aSXw4cszq2Z9rnjuLt5cx5ZTu7EBWwn8PMxaOWTxOk5WzZJr6+5NtyhvY2wATwSEZzvZnIPdEZnfKZfD/8NWAk2kXZnyGnz/KXXvDegReX+7QVsJ3G7e+iuP1Zm1s0nn/ENv5A8NgM/TYjp8gPgYZdF6A7cSaNU+dXxJ+kbOvMMmpk51Z7Ss0lYCiNR+pZXaL8bElaITGFcM30og7MjJR17mz1izLTyEcd2dn1VpKwGZG6pOSAvn57oDX/ubfgGZ3q0EuvZmn93cbwp33oaZ8xU7GhEOP1Z6KwGICFARNIjkfcHsemcGhV3/b2sl8ON5ix6X33fxP+AR2n7MmojPFdRKIOJjPk0rgewP5d0B17+VwKVhntekgQO5Rzpt3SI4eeEfA7cSMLDxh+lzTIghZSsBgGEVtxIg2vMqbyWAAEbZSgAAhk7mLlST2Wg2rojSZKCKZcRtDkPUWX1Ht3OV/BbDvCsV5kZaValp05UX53R+5jt/1fn83T7fF9I9liHL2lueoamq9NTizP+qKqn4U5CU3/3+4QKfGb072piJ3V8boKrS7eXn5z51ahG84ke1hzkRtuVeM4G+LmQnZb2g5JpnKriq0kLxmuvrLm8M2jl2u2vbztEcA1RVOp01te6+cUKfaTVe3e17bOK/hqg9ZUGHkqfFmYqrqkTMeq/yqkqIxFBWVQJIofq023+ZPl0W8I6Xt607b8H+do1XDennUkn6NKM6nT51r/Y/fYry51lJx69XH6Z5b1raIXnXs8NbDKBP36+r1Tj3sV3w7oh+gkcOzfINoClk1ek0RUG1itanA8fM8xvrFc9J6+JYbW2P9uMNoE+JiwQGQAmINQ1KGSYVqE+JNrTK9SkiMZT6FCCF6tPuVPrUaGIC4nQy2vpdjBLaZLZfWEjgQQW5USezEbdJNJLZiGsrGslsxIBOI5mNGGloJLMRjaZGMhtRGjSS2WZ1KWCmHHrOXhB4WxjG2lCokcxGdN50T2ZzqnmynXvAR9bBsB9582s06G6AZLYeBuO/VSXyn1jBTYP/xAI2GvwnJr9p8J+YDqDFE1Mqnvw2TLayTrcPfotND1mNsfFbagCe9KTiiRH1eihszT37b0Zf9pHlLLeoiV+fkTyKgbslrXWKmym4n8Za7PkiufuapJ1V1y0p+1J+BXdLslx9Kf+/otdDLypRNRqLPXlOpsX5Dz+9U1xu5Py+YUqsgVbxiPJvAJP99BqdyX5agJns3kaPeXT90G8mMyd4zzI5IJc4BaQY78qpZyYd5p5LMcz7UGGut5m0ZlSemXz89vOmOdMb+O48OfqF3fblWzTMJFF+NcwkccZomEkiYzXcpOR9Lk/ON7/I3Xp26ZWers3qabhJe7Z4peUEPebtjP2nzfKNndO1jCvU+qSCFJx5cGpi9SDW2pExdd5ZTP/XAMa1LxUna4YuHbsxfhQn532xsBtzy9/4ynfonmAg+EcOVKXuBQN/w3YTJcxgmVDiw2PGoWPotld4Lr5T578nJQcefbzh3i2LpCm0j6VdkI/wAV17VcCCfL1A0NaQzWAUaK3agKAtr7tWlRm6DIomKtHGClPC6gLxsIJnLF8CjBzpiytEI0OHdBN4zR7DGRGnbPEcv1fIUY2gvVeIEQxe3AhmuvQEkGymyqnw7FkltTRqRAFo1UqjqKioRJ86gEw8Y2DpqXgxX45sQYqh+0LKm8zTOzMTVvUMPJFZ/98uf2/bQ6ivig5CUl8Vo1QEd7J70HGH0cMIuAO0UYk+iUdNuXEiBVLROArHJkyFkDJn7wDZgaKh6cFTTrtzHE5vm4BnjmpEkvXdUkpFMCfCg445QJtUPXMgfzSZg1kmKuZ0Y8XBr0R4Ah5HAW4VSqKSVPUYezOlMv4YWL6xA/Jb6SfIZ9THi+sH70n84bWh21+tn+7pgi+RUCtMY3ztI+44akUwj9mdjnnJ3YynhhC+xqZpGRzsXcpBRaxIkiQBTjBgH2CXRCqBrAM/iaUJCBH+6g5JcfxE1QVSPooWN+3Rb8MfQemnH66WDvQuIBRKiyXLmEYvV4jF6kprsbpWNefgTXCzRa8smjqqpWqRJIZeEbo+iDq+QuTqlxI7vsWbC+2+4BUhpc9USjH4Wrgb6kPAiOO8llvljihC1E/1ZFD4qY1Mx4eeOvI5+IRFzstWXccTNvHYqoWcELlwrEiYgHdTIaZUSW+tWbAgkUJjMQipLRsjlMYJlfIkpkw1oMLWT5Xo5SfpL5Sg8Qu183ql68KEBacK/HPrbDrCPDulLd2zam844uk2A8E/Mqlc6S0SK1VfTObuUx4+bctlyDwB9plkG5F5wKW166vl0mIBMmk07INhg5ypRJ5RJ4/eZWvtlQeSGwdPv3UtbfLbVPyRZAtsVG2xVFPKipMD45vXXLNdxNnXufqa7j173C1vnAw0RQhEzpNMjySDKDq3r14VFeuHabgwTOlYoVwuomhnYW8VMKKW0x3uhlo1zk87vbNu+acwASuijjAAVkCOaLCS9alUnYutY5qjIRf8EHR2HmU/KrEQoh4fdtHL3aukBmLbiFbVAgsMsI/C/9fSdHvwd6jDbRaVGvtfff7/qD5/5oybB76vjGPt+OhkI5BkfaeFzZD1+Yu4Z2jq8xex9So6q2N9/sPszFFTH53yP1w9uM1qRpMXBjyIbmAdCcuZF0CEKMuZu3O1dGRF1OdvUnv3/iMPlrOnjbLflXYoLqDK6/NncOhQAXJjNLGDfmeCDFeff0ps37rr5tT23ea+kvXGf/two6nPH8KmY12uV5WwrtLr89d4NW3L+eP1OMuKLja+evJ9L8JOZ2XX50e0DGWBdaBlKq0+/8wR5388bJzss8PrsMeKOan4bISqqc+PKBtKcICyqbz6/MduuZ86vvWs1+YaKwK3fbl1zwgqXUCEkDlNiRCY06jf5sWg8Nu4rLbtSnrfZG1+7Ljl+qoP+Cp9Vsj5PplUDCy6ts9mQYFzl9ItElHp/WiZDIC4XBofEwt8OIUQWarRp8zDwnzRzDr2mdyMv7kdT/F6v6N8Wu2CCBpEXdP+WnEZyUMBvnw2XHQh4MvoAIL/cMoQU8czV/VKHwtcRbEgfXXztm03PZsU6rdY4Tdtw1m3wvK39SK4UL7pD2RjpszzzehR0m+4R4s15XShQgB6ERC9pmwS6fSFq8RD9HKh0PboAmGMXEjuX1rPtFqYFf7Zf/qV27WsDt9sSjg8hdxIcnhKdd3gFYHB+zOH0L1/8uCqdpbUkqmHowQfWSQViKJoyt6ETYi0av9jf8CUhlMWPevqUQMvq9gA2rKqplQEM8BkpWGGZ7hRuD8MfXYsXAMkUiUwX/wouHbq7N4bhKwgsohzYXboHRUrlQtcmB17K8bIlcgv5N7qtW6vbXJnP/Oae0F2LZnlOw1v1+AXhCqTxCStMUtJFcGs7EF0zGIMMoaZA4fSy1utX7rQLYmXRypoZlC7C10PMge6s+fnLzk0Zvqdf8oTKpeTHXkdUEUOT4EWaJWM6sjdljZEPy8V1eQ03lZgeB2eWbO5wbuGPdn3u+zm7ioNeyEAeYNRAO6SAABVi16eKGbKqOtPJP0w9Yn46srbcrXnvw4N+s6u0nPAEAC7cBoABnYZhDmabMZ/Vz5Or+tNby5cdYK1YcL2qXGjx2+ttHwcOwFdPk5BREXn4yS8ql3/auROz71f/56/IiEjwAjycYqi6HY3Q6KMIKng9u3blZCPM3n9e5b13R2Bq58HCjqVjO5hFPk4uZF03LGLNALuVEo+zt18k9bnLRW8RZNKWg5q/eKIUeTjyPh0zAHapOqZw6jKfJxd5t1MFvwRwdrj0JD1h0Pf5kaVj+MeQce8jJFV7ewaUT6ONGP3wE/RPYMPzgmJHnF3qEMV5+MUjaC1WCOqmnMVmo+zNC4wi/2mg9880aTrXu4XCo0iHwfxISjzcYAiRP1UDuP/QD7O5MebB2+a0SV4SvTrhwzGosgqzsdxj6XLxymIrpx8nOgmgQuV9kM9p3/MvOM1PzLD4Pk4xNjcEDkmsbQ5JjEVlY/Dm5zJG2sb73loWWBgy2a1qhs8H4eoIwyAFZAjGqzco/+/ysfhUqmxMSdE7URBW9kHjgeLX78Y+gG/U9IvHp6d9JHzZbHaJ0z12L5owREpZPD0mHo3J6m96pQpkw/L6cXAbyCVvFWiuEV717lyN9TIunv018D9lM+nvZOjSdSSv5qhQIUFax7FIpFK4rknHaVSPRpJPg3zVT6D0YAN/xLOf2Y5cy2bvsq3DhWKAcOEAj+g1xOx4RC2qljpTcVKvc+kOatlu+LPpNnOTuoxvUttr+P5tge6B1VL1ziTNvvTp8bJ9+75TI99NbRJc/NgjTNp8zp85Htt9Qna5vpvaztTp6UaZ9Iuhh8OuO+yxGtfQfQc58tu6Rpn0ubZBbZZ6pPhvbbFvZFZHY+VaJxJuzI84iG3xdfgrd8mpdbh3HfTOLrfI+j6uSWt8n0zBvWTL20yK0fj6P68Z/yzYfdl3Bxxgx6HQ7d0ACQLlLSsyTOH6Fm9vLYmSR+tzHaGZ+1qoqSOV9f92hQdwN1UL33ompr3ZwKSJUo6objxON7yZmDqqoJJHc7V3Q1IVihpgUf8y4Xjn/jN5y/oXreVwhuQaqGkOnWatexswvTPmfH6hl/0iFRAskZJMy3DRvcNEPhsfZz/m4LjcQ2QbFDSyJHMTS9DO3nPn5s96e3YqwsAyRYleVwKODorICQopZ3Mfvj4k2MAyQ4ltdkRHX2v02X/nGpm/qvDfwUCUm2U5Hrm6bEWHU57zh4XFnljxfLLgFQHJRU0aZuyf/RD72l9in+7PttyAiDVRUm+h30TlxXF+OY8i2+SWe3+IUCqh5JkTTtaB13by8o8UXR92OAGMYBUHyW9DD1R8uBGTdYRR1GHb/7HRwBSA5QUdfl2zTZrs7jHmr5vM+Mvj2mAZI89/I0X0X4zf/LS+nRjcIafGQhIDTFhC6+XdnyZOevAriuvzvaLfglIjVBS5wHBVqOPeQbtmfxr7copWXxA+g0lWUetq3dpUqTP8ak7Ly4wbTMDkBxQ0ttORd8i3j0NWjPl8YFzIXO7A1JjlOQl7Vy86l0sZ0pG870fvu2OBKQmGJfvC79dm5fntcp80rtJeefTAMkRJXW4btMg8cPh4HVn20/8rdbrvwCpKUra3tH+3elbNbwymnWW2H+5CN+LiZIK2fn1Cs8s8dreY9SravWPybUOWzoxKA5bLqvTpUlhw9fsWZ71fvsw5PIIAxy29KFSUfWjD+VknbnAXbH9+biLjSdk4xcTuYkysVRAkkFA1bO0FXqHOucTqcKuiOOLxUAJoQXudUwZICoo0kfTXudECbqWxYJd6iecgfqVxPtNhjXIxuuVUWlXmlGpehDSd+tYo9Z+F4dCXvqnS1GW/cb8MmBCpYGdXHdYvxYCJCBz3Iphe43xemUDdOkPHCY5snYnEMIKvlKFCEmhAM8nEsN+zGo5YQIPismHIVcUKYovoxpf6TN4KXuak3Wbux6Tm+G3QNXfo70FWkoyeOXVNojE0MCVPM4o9qu10/X07CjaHp1oglJ2KWP5ShC/jBYygQOi7tBEvVf664Wj9ODtDQGLvvzzzKnvmUTCajk6LMlqOUYxNPc8XVFh55Bx77wbIuxaO6Z6AueEJfZgi9ZCIpCkYPWvv2//l6zrXrOb5I1bM744tvxpRAYACxF1SrCAqKP2x5fxv9MHhjx9QPTQK+30wd1kutMHuZMr4vTBk+mJGxNvpfjur9HKsWnLhpMMaCyJGsgApw/OJ9MlaycmV8rpgzXzRG1XrxMF7ZvZIfx5/Y6rq/z0gTMtKkBujHSnpPJOH8y4n+Ny4EWS/7x1i2xWXw5daTSnD+wm07FONslI3RkDnz543eCsZOm2Vuw0v1M1Fq87da2KTx8gWoYyfRxomUo7fXBuWta2wB8WnIX3P7dwfx3eyghOHzjTggOUTeWdPhg1cGObQUnfvVYlmj2u1fNPfA2Qqjt9gMxpSoTAnEb9Nj8Ghd92YTmf99PD3mfqRkfzt83HH8d7o0g7u1AOT/eFAy98N0nUEwYRYjT4FfhdSZotF4GyReUV+l6o6zZRJ8eJuH5J/tzaXjRG0aPrS+b+M6quL1qukgxwIHOffssKOrWdlM6Y1cqht9Rrw8E/mq5nbmpN2GSHd5NssiOXy/KUiPrPAC1dUiBAMjIhDHHhMrrv12vvrCECECYXzgKRHIgvoJMb24tDtk2xnODKzRiaH/mw5Ul8+eCaHOxm7WlZSioLsL8Gzj1zaHCG95QbTcW3WweU90A7BKxwHx1gQKKqxIlS2Qz4mU4Mqj/aRzotaHhphfCSRqt6pe/6M6NLIveIU8zJLXuj/6mDHMYBzOAmyuRC9dYd4tSyvEKdw9uUzwEmsFZuO2/Oq0apgXM7vRp+vV/uEQOw1peWtcV7jcc/ztCvN1zZrU193K3v1Hjl4pViW8O3uOOg5Cprberuhuok2NpUphXfuiFTDDWM/gwKw+h10/7R2G57PHcMHdEwfeAxfGngerDkphIufcJsXCHcHxbq0RDNjS2NA5CrCn8iwwhKh0GCw9I+aAIgJDpZROK2XdkPrMUO0k/p6o0A4c9IB6AXepH0R8sAws9ML+9ZPRZPAxS43ABL+UJvQyphOmO9vQB6qkN88CeVTlPA1WhpgpDiBM4Nb2eHTuGLvec2zUkT7wu0xesYpE0qSfc49HqZ+Rc2A+27WPRi7+rh8nO9vHPHcuqYPLjPAWE29SLpCHa+LQJzeZeEW2qwX726FSWVKIRR8Yh4wO4S5Kub1bfGJfYfcdon5xZ7wHz+5Sh8VkHpuNrhL45o8BNN7VHYhpHBZuGGwIaqhAAqlXDRpvmnDl2lgTP//hDgemMyl9hLWCbmRwmZQfFiMYkuoHKY22P3SeB9UGZFkrF8sUigEvIEkTKWKQVhilx3TUDcpad5TrKexxpkXVPPYLGOVICuFdnmWwFcX04t79xvAI0a0hlRCTv5QSUJESMFYPep9WNjCm8ELXg/zuf8c7M8vPuMDKTtPqsulzWdiVkJ5U2nAtM5DyK3lsxlgI1NZKmU7rOOyDmokZPjRA2KFil8i73XxD+9fMXvaD1XXsLJ92/xqdqogJBv6eCphp7FEC0mLVoFKZXqYGEPahGWJBNq4tBcI2fHNQC4tEKxK/yMwtXHdyR0cmOEckKWMPxTXsXdADGQkLFgCBBUJ6lYTZ48TDBM5Zkk5W2v7IbOgiIWWVKhOzIL9FoIa6jqcAp9BcRWYaIvIIViKqej5UNLb/bBo3vlMUsnmhI2JuBbkWxMIJcrAgomLRRAxFFDxWNQGCqjqVtP1JaG6e5TAWXr785Ck9ZJy9ZnzsIgDzR6yIm5cYaBvOGR9q1vlkQHrL6bWq/jt0svDAB594V0kBcvwCAPooLcqBsqkSRRYlmZJEmUWFYmSRIllpVJkkSpzsrUTqLEsjJJkiixrEySJEosK3OEb7O39Y+88two4PEH1Zs7S/eGSsT0SwOkvAVT8b9ZQH77R7ssvTeZCiJvv7HD87+uarGfLZYqoLuIbOBoO+VmFLOtmbcItuyJhT1uVAMgISWMM9E0BN2294kpp2U+ohY4ZB/S1SuHa9fTwCS7S7Z2DTtFZk7Va+3aQbXbhpwGkULWADzAL9R5QU+8Jl93WpTqOWsJP+LcqUsby7PXVrHL2AwQOKdMQ81ukdYBe0C1m0bqh1NhVV+dEqGJFSlK92rmzHjysBl3Bm/8y7iPuxgGTIuYMiDoy/mNid5bpKm+KV5JpwyAEpAZGpSYU7UXH+j8NJcQbF4hkw3BDJtyMNTDcs+ot0pm/jjcky98wl3uFHfObpXyXhXu58LOjIgQkW7IFYEwuPs0/dzYturdQwhRlEbNCmiBcLqJPLGS9fbM1RXbfWfwT163nVg03wh2LSFIhVPpQMqcqt++bkuOSPXm6qWqUpFBNhapFZTVr3PHbo296rdsqc8fN5jr8BX3LLBxtXcR1ZSKQMeXFp3iKZhjFMKgMIzvBgbxTN2+sRevu+S9JthviPZCvLYlNKUA1wm/n6tOdUuQ6lU2jnjAQte9AV2zv6GCnglgu0R29tEdZoPOqIBt2qSOg+qaJe3xOjLbdO+NtvNO4Rc7kf1YCrOOI5alxYkqrryZ4AAsBgQrhEzGCtpxGbkz9LJ1NghYQjDTqKH62ejizUX2uZ5LXtUNXN5XjO/ZXpML7iUHSoNUyS4BhAlIDQ1MdjP0M3Zlb6ER95qrbAsNahpERuAWmlaT4Ww3BBpUD/Wj0kPs1pfcPKY94WV7r/mo9GjUhLgOHceXMVXrNCTr5VSueWvVfdhuD3Iuhc+UCBPgJaFcFIUaSJ3UEvFwF80Tkq2Ua5B1xFUGUyh3nIFVk0h88lyY87RdL0Vlg2xDqRZ3weOQvuW4djnnrp/d4Ze9ofXFpZu6ueNdJGQAbRdJdbmsOUc851bOOQczkxtCeLZTVXQ4v12vbBJr1fPQFfqauHzmrmsXF7OOJHPPXgmvPhi/+6e6X3v3D71eFj43N1+YJFya6n2syZuuKS8kYgPgk7idDh8gPlWRYWCBJG6MVQHRi0H8o18lcOswvjxGqKRjWpeVjbL69lsXeMC+9toE7hFCWojqfm2modcNvmYL8+m30XElZZsxcaXoBMYVvcyXLaLwZEIBqnxJGdP2Su8H+76t8J3TMGSVw3T/FXjGBCL3azMGvW5oxsjcUHUClxm14tVcdy4je7t+AZmDGgMksBCLysLj/OmmQ4I/judMbVhTJntVfSw+q5atGkA7qxYjVAQiztvpEMndhtn1/gwKu567IODz0J49/GZ+/qm0OH3/E57Hqm/UPRmmlzrCwBtwZkKsKCoWuJXwbCFfoYAVDdRZMaj51y34IJ7TJntebZlUXdcnT3Qrmieqlf0iA1Gd89by7oA3Rl0NaOxFqiI18AiT6knIu72u9Laa8VcJJ3uw26VjW9Pwht+cyrFREyrZ+COppBBDd7IcjZB2CIZ6aaxeQahEqcpy4g5qwXwghWp9AJYChD+X+pTM8UETSREl2vMqrQoK41oEsIZkgMFaTAAwdDKHUk1mo9m4IkqTgXpcE7c5DLBzxdxCt3P1dDOGeRgV5kEHvK9cYOSzk4c06il6618bXzUK6ScvE4uikGNh2oqUCmmHQOAPAPOkBHeKmXG4UXTSk8TKFHSPpV3MCk/XdeEGzOqIPQDO2WQLN3CPInf3GWv1aiTmOWH2xNIP6lIcL+E3mSOX/QSYDAwWnJ9rcqIm5/Bf9oHW7eoWYHQTCrpVMKJetGTEQnWdemDV8yCPCz9CF7g18RbJgc6B2QlIMhOeX6T8eZE5/Ebolzy/Gav8Ike/moxv/mfC0p4dLK3ZYUKYHd1rhfc67d7Db0uPUQtiXrVSlnfNBNbcg+x0J8tegAk6jD1nNEAqa2XJMVQYJQUaWh+UBjunHf/+NZ6z1ff7p+xty67jUfLSRsmrTJTeFBUe/tx2peeiIVt+s/iZP8QAKAGxpkEpYvcZVAbVskSb7aKqFwgdIx0AIma9422YaihtG4Zer4gFb0RiiskWmsJdEaRQfTrgv0yfEsv5VJI+tcil06fhOf/Tpyh/6licOpTWJDVo7dd+vVbejik0gD4llmkygKYozqHTFJtzKlqfruFtnNbo5jvW6peZSw6eGLzCAPqUuEhgAJTCaVGyyKlAfUq0oVWuTxGJodSnAClUnw6k0qdGExMQp5Nhktm6mDT6OIct4+z/4hmbe3NOfwOEBIyddCFB3g4M8kFUkOudzGaDQV4JyWwkNfAwVU9SAw9LZiOpgYcls5HUwMOS2Uhq4GHJbCQ18LBkNqKHppWxBrUiqYgRq+cZIGMt3GBMtqpEJv9ndSRJiipiTCbu+WvxxJSKJ8SyhQbgyWAqnmQdfDp41otiv8MH9x3eNfoZ/pxfjRC+RCjWLtBKpdicWUwZvEOjyjRTIlUKVcWFlMJEJVNVnJX0tYl1F0keRRdtZxUaJZeKxf2hxYIXNRuyEjTh/gdTb/MHj/I68fsZjwE/qn2n0oQWAxRCeRh4fOxrW3Kk8ZFimKsFK8HCwj8CkRJ9d+BhwF2O58kbCSzBSvVqNWNpDazSGqBAPdiM5Flsy0C+PEYk4QmjcQbQSnW5P+zZoXm9pup6mFSmeZVQAnZqa25SyJoztgiIIXJ4blApUj2VOfZUZBNKzk/wkwhg2S0MXpOa8CLcetG4hPjqYrSssCoggJ1ARHwxG9aC0jBESrmQH6f+3XSQnC9T34OK6hAqUTUas0ysAmqgpTqi/BvALh9cS2eXE9didnmo0WNOLK9qvMujskV0mLsvwjAfRoW53mbSmlF5ZpKkbi5mJknq5mJmkqRuLmYmSermYr7Qu1q1syL7rPKd24gf3nTgmJsavhBvyaLMZmHNfNf9M3QAe6mzh5ZxhVqfVJCIxXgNYFyHU3HSSFuOEYsOV1rLMcYlupZjEb9XdMux0HZnUk69aBeYNbZ+630HpuMLrVZRy7GLdA1csi8aQd+kwsLCSmg59ub9nsj5Ob/5LO0+f+Txot27jKLlWAgtdxjGwJ1KaTkmux7Wp+kPF1aWWRbfzfHnJaNoOZb7Ox1zgDapeuYwqrLl2KFPc99MV7xjHxw1puHXRZfwOcdV3XLMjpZ5eReMp1BQlbccOzmgU6vHF5exdzbaeTTGLx2/o1f5LcdkF+g4x6xyzsGbKqzlWN/9jV7/dm4c++imvHotuuzAV6arspZjF+lajgFFiPqpIxgUfup/U8sxYluMKm451v0KXcuxlMuV1HLsy+Jebve++a3jJluetUj5avCWY6HRU6Y9GNmKnbajJGJe9ssfBmij5XyFro3W3csV1XJswscDXgsajQmcvjL+QcSSpq8N3nKMqCMMgBWQIxqsul/+/6rl2EgqNfa/Ivz/URF+YjehSivCX1xAV4S/+GpFFOHfX1vRuMfWWQFpMS2b3ZxRx8uAp80NrCNhzfLCArqa5ZkFlVKEv+bC2ZzVmx/7b2VMvXl/bIxrlRfh96VFBciN0cQO+h38MVwR/r9+NDnWyPGPwPQbvdsvtrpwzmiK8G++Sse68KphXaUX4bd/KKqjOLbXZ27kL8cmN/reqeIi/IiWoayiDrRMpRXh93GwyXpwsp/PdvGkQzdtvuG1c9UU4felBQcom8orwm9i86ikntQvYHaznMRLjkP3GUE5C4gQMqcpEQJzGvXbIhgUfhuX1bZdSe+brM2PHbdcX/WhE76OAHKITyYVA4uu7bNZUODcpXSLRFR6P1oLAyAul8bHxDLVTWP1qeVA7LBI+bTaVQ80iLrm9rXiMkIeAXz5bLjoQsCX0YHLYDws78GqeqWPBa6iWJC+eq1rlwNGcY555w5fw7+8YrF9+Xt3EVwoRcPq48ISElhpcY/2dV1znl9OFyoEoOcJ0WvKJpFOXxBYFT3Uy4WqpZq+AmGMXEjuX9799+rSL9/FgTnzdu5JWdFTQjghhdxIckJKdd3gZX/B+2c/pHv/kIdV7SypJVMPRwk+skgqEEXR1LYZv3vZNOfX1oFLp3+6NepwoRAvq9gA2rKqplQEMxi0zMh9YBTuD0OfHQvXAIlUCcwXPwqunTq79wYhK4gs4lyYHXpHxUrlAhdmx96KMXIl8gu5t5qVs7Vgldub4E2d8g+1jGm3DW/X4BeEKpPEJP0vS0kVwayIB3TMsqsaZhFmDhxKL2+1fulCtyReHqmgmUH3GcvMbF6ZBB1/f8Jlf7FzWnlC5XKyI68DqsjhUc8CrbpQHbkDbj3Uz0tFNTmNt3Wed0TcoOdan40ba4y/JwkdX6VhLwRA9hAF4C4JAFC16OWJYqaMusjEzgc97a/fd/NZ9HN4YNYEZWuCKavcw74QgMwHNABsbfsAczT5jP+ufBxiY+5Ky8fxfUaXj7P5SUXn4/zzKnLEv4V9gw7YjjXhHZ/bzwjycbo/o9vdLHxqBEkFV69erYR8nIw7e5cN9Y7y2xgyuEu9S5eCjSIfJ/MpHXd8jYE7lZKP0+KfxYMkK0w8F2a7nfO2jt5lFPk4xU/omAO0SdUzh1GV+Ti1pfv6xdS08d1ywTfW9FKf4UaVjxNOyzyLqmGecebjPFncv53jiaPe83bs7rN43M1uVZyPc/AxHediH1c15yo0Hye1m+BIYq/nvM1WbjEzZ6ZuMYp8HMSHoMzHAYoQ9VMjGf8H8nG2d7R/d/pWDa+MZp0l9l8uDqzifJzwP+jycTY/r5x8nLrbLG6FPw4MWN77T/vNT1rMN3g+DjE2N0COie8fdDkmxc8rKh/HfdmMO+HzMjmrd2etHLq74d8Gz8ch6ggDYAXkiAar8Of/X+XjRFGpsTEnRO1EQVvZB44Hi1+/GPoBv1PSLx6enfSR82Wx2idM9di+aMERKWTw9Jh6NyepveqUKZMPa+bFwG8glbxCdn69wjNLvLb3GPWqWv1jcsrn097J0SRqyV/NUKDCgjWPYpFIJfHck45SqR6NJJ8meROQygZs+Jdw/jPLmTs+cdMZ61ChGDBMKPADej0RGw5hq4qVAipW6n0mzVkt2xV/Jq1BhuO1ll9e8qbebxXiUjz1b40zaU3nBY1s42btv6VuZ9v3m1v+0jiTdrvk50fPjru5m+QmUctDM45rnElTDORfqW2eH3CkX3DkqsKEcRpn0vbc9pUOOdw5cNWoezHs7kF8jTNpTzbO8Sl2eR887YkPM2n1sz81zuePZUgPfLUZwtubXq1hjd/X7NFoNtNj8YWWLzfP9Nzx0mxL/cRFAYBkgZIWBfe5F3vjjffiQwUHo4JPzQGkmijpZt2l3NXDONwVh0ZY9xtz7S0gWaKkwKML/x71ODho41f5o/UXQ5wAyQol+VqWyPnufO6cdfJ2HqP/XgNItVCSZZ3hi/7NjQjYe4ozNT/u3iZAskZJ0yc+mDS63yKvLbsb5I+f/hwew7PBnjBqjll47QOcdeLatT58T7YGJFuU1DZl8LCY5rsD1ieemeu7uuN4QLJDSamDlY8CFAuC01869rc57woxrI2SHizvMSZ665CADfbD2s9abpkJSHVQ0qnzo460OjjYb6Mikekhvge5XBclDUro0vwHr7Fvcn0f07k+ds0BqR521/5noWt+DvRe8yhs6ObrSoh8fZT0yDXC/PYyBmfhup5p/7ZcPB2QGqCkefOWPu7wT6OAnTbuqeLC0QmAZI+SDhSnpj0/38tnzeGwwKlDt80CpIYo6Vq71Kby306xDz9/ywv6f+x9B1gT2fd23EUFEbCggqDGjoiAfS0oEEJvggWxRhIgGkgMUVBREbugYkdERextxYaICq4Fu+Ja1t57RcVdu9+9k5mQqSTLkGT/34/n8XlkDjOZvOfec8+95z3nnDmZBkTWqGiCS1KD46Lf3A8GtTm1Lu52byBqiIpmvAi26zLyg8ecLKce2xu8uQVENqjonIc05MaPfM+ltWw2ZO33bAlEtqhoR//szD/nvHLNnNS077Ol5+Bga4SNqGqS+Q9uxblOq9/n228/7BOAqDEqyn620qXztOY+2+v84z5h0jQZEDVBRU/WXI9O4H8O3Gcf4bIgOxlWl+CiIrNumxMdbl3h54+rH1Uw9PlbUrJlUw5NsuWWOSte32qaEJg8ZPn8u/cX32Uh2VJEZ6LqRe7fkXH8FD9z24PxZ2wTs/CHifwEmUQqpGAQVKVZVlqhd6g4n0ip9bgYgUQCjBBaxV5DygDRQFG+GvmcExVoWvsKdod8fhzaVwrvN6kdnyN7pl0TiDJGpfJFKL9bNZfn+Y6rHHhrz2/v0LTxATYJlSw7uc4AoFoQICGV4/YJbB4OP9OKDdA5BDhMcuTsTiiCZXqlcWKEQgHeTyyBTZdV44QLPCiuAG65IihRtBuQE37n6F33vKXRjSa0+rUUHwJVfQ45BFomYr28ahtkxDDAxX1mEPFqMl1Py7ah7dCJJixTlyJaoAD7l1EiLnBAVG2Y6GOlifXPPZv+oWdAzowWdZ8M8rAknJajj6U4LcckbGvP1REd7B5U2jvphAx2UsRUS+CaYsQe7NBaRASSEqzNPz6F/x522j9l11n+qbzmORWnEbEAFjLUacECQx1dfyI5NOvP/7IP/lX2AdFD11n2Qd5LpuyDvBeVkX3Qbly9R+6KBT55V1rXsSv19GFxsSRaIBayDza9ZCRrv9RJ9oHVQs/uB22nue5PDnvjs/h7sN6zD4wZUQHjxkAjJbrLPphy3/7rjrb73HPljVotbDSgt8FkH0S/YFKdlX5Up/PsA6HfNucaSZd8Zsqf5LR5IZyi5+wDxMrQ08df6i774NLA8b4ZXxr7ZhXtfXqsU/NDBpB9YMwIDjA2uss+cAyr0VF4Ya7X5rnhu762K8H3NtZf9gEyp2kRAnMa9duiODR+26kVAv/v3Rp4JW9oXP1F8wkFeG8U6VkX6uGv+cGBO75lJOoJgx1iJPgV+F3j1PsqAmOLjlfoe6Gu20SNHCfi+SX1e5O9aEyiRWsXo7pFytYuJFdJBjQwrU4R+70lN2ZPP/4t7VngtKTfrs/LP/+WEGSHd1ME2ZHL5XlKRPvHQt+Wb3UAQDKqQRjswOdcxgNUXuzMCgEIGxd2QrEcDF8gp15s+w7tXbKvYyff+bb/NP9nnG0Gflp6YDeTp2WZqDzAdp7/ND5xUXPPWXdezCotbGTNAmDbGAEDI0ovTpRyzYB/05FD90NO6TRm0KUpoksGq+pfnDjynf3NoOVvik9Pznr4vA6SjAOUwU+QyUWq0B3i1Lq5h9qFtamYA0xQ7dqbhbNXHjkYkPxqW/2JP/vuZEG1gxlV20lPqqXyj9O0awBXfv/S52m/eG2v98Fz/9aBPV4+l5vrrX+psxNqk2D/Uhlpf+uETDF0YYzm0CyM7pcb3B7bdbfr9kFDrVL6H8KXBraEJTcV8OgTsnFFMD4s0qLrmRNPGgMgVxb+RB4jLHsMsjksa3YmBINEoxWRGLYr/4VJ6qD8K029EXhg+jfwRp65UzRBS4Nl0v+uaK6em78aKPC4AZbyhd6GNJZrhzXwAugpk/jg/5Q2LQ6eRkvjRTQZOPcnTV87qksePz+p5sjTF1Ov4W0M0guVokUcer08G9PC4mPbYd+6uq+7PrfxwX1rrSpoYw4DmIdDmI3cKdp+nbRHYK7okXBLNfWrTrcipLFxoogxyPCALSSoTze39Flc+/BDC6/ZRlnz+j3n4Cuqm5Y9l7z9xQlZz2hqh8I2mAo2YycENtQkiOlMwhnz5h/ad5EGzHj/1s/x0mQ+sWGwTCKIEHEDx0gkFLaAzmFuh90XC++DY1YcO1YgEQuVgzxerIjmSsE2Ra65JSBG6Rnek6qxsZpYU+oZrEdYCtA1pQq+FcN20qUVnfv14aKGtD9UwHZ90EhCxGh6Pp4L7nzLxG16k8ARXVcFvsa7z8iDyO6z8nJ505nISqgonQpM5yyIXDaVywC7lwSX0lLPNETORoWcHDfU4NCihC/5r3Y1ZoX8GbjltvWA+AYdF+Gp2ugAoQ7p4KVsz2KIFocRrZwPOj3Fwl7UuO84mUgdh+ZqnB1HP+DSiiSO8G/iHL28h0EnN0okJ7CE4U9FDXd9ZIGEigWPAJvqcUpVU2dREBamikySivZQdkJnQYkbFanQGZkFWh2EWSnbmEJfAVmrsKEvpITC2Gxp3I/A5/4HRLuDb1o+v08ITMBvRRGYQC5XBhQcRijAEEcXqpEcmoXKYOrWE60lOy18KqFsfd57xlYB7zHIRxk85ERuHDuQtzg7+XNsnR+8KXenZN1/kNiEBcitfjBBfu07BrmEDnKtWZkWGOQ6YGVSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxVubMX2d6CbZc8Sj4vbh2vUfnh5Aob3DwUo4+Iv2SBcpbDJ3+m/kda3d7Zw3PjUbCEVef18Lrv67ysJ8nkcZBdxEJ4JCd8mo0s62Zpxi27ImGPW6UD0C2lHCfidIQNAvvEymn5b4iCRyqP9LUKwfeUsIbMMmuUZ1dw3aQCa+1CvPbKKNtSDaIFKoG4AF+oecFWcv7b0kZHOe669mxSfUHOfWsSKytco+xOWDjHP0GXXZLSAn2QFrymtIPp8OqnooSoY4VJUqmF74GG/UP4y3KrTN/VdUMWxZpEVP6BX48uSHBc7N0tvcs93FHWEAJjBkGlDivtWvS7hCMzStksiGYYVMObvUw7hlDqORbp7E/kgt8cj06Js/kio/pMZ4L2y8ig4gyIFcCtsFWb7RzY+1V0UMIUYRazQq4AuFsEyU48yd1b5nxcp3bQrFlM65N3WEGELWEIJ18zQRSwmvt4rotPcTKb646qiobMkhgkd5AxTd80n+F6S3/WRFhF+f9sfw8PoqIPZccRVRJKgMdO0Z0rr3CHKNYDs3C+LJ/oL+R02fekrVnPdcE+YSTD+LJK6ERDbhN8fFcFdUtXqpV2ThigoWmsQFN2d/QQJcA2M5S5T46A9hcS7Rjf2sUpj3fbXpQgeOAwGVXHtfpYdSSULoPicfSLOs4YXlWnGjiKsoEB2Ddg2AFU42x4rZ8TlqJVmudOQKWCMw0eqhcTZbEhHuf8F/nf2FsvmN2P7wl4oN7qYFSE+nYJYAwuTLCVPJWu8Wu/BAaMdastxAatDTIGIEhNFIn4SwnBBrUDknp7BCv9VmnblPv+md5rnmn6GbdiHgOHSOQcZXnNBTn5XSueWvlfVi0B8lLEXBjRfHwkkgujkAXSI3MEjG5i+ENqU7K1cQa4iqz43P8zYtg1SQKnzwHoH7WTCs+iTkShlIe7oLXoS4T4FJvsdH37ryZtaP2ePcahP+WVZEHkF0k5eXy5hwxz62Ccw4ykz0gPNvoKjrYmmvFJjFTvg9ToS/7/j+3PX3e2G1x8ah+Lftlr8RH/5T3k6N/6PXy8KnbsIGxy6Nz/uvzvw2ymNnLmQV8Ss2Y8AHDRx8MA2OEuDFWCURPDvFHu0rgZn0F8iiRgklpEtfj27tf++maZ/Th+6ZqbQjV2ZT3k5WGXmf9zBZoZR2jVhINSislhZhWtFq+LBCDJxMJUeNLqRjFknqF4y3n+Bz6dn/N1awRNnjFBCD3kxWDXmdbMTIn1JzAY0bSfjXHmc8xNi/SakNmo8IA2VhIxOXhYR4deX700rNu2ziC46/588fhWbU85QPIrFpMUBmInDVjQiTNDKPGyDg063rOQr/SQT26+8wo/a4wPnrjA17Hyk/UnAzTU7XDwC/g3PhocUQ0cCthbqEgLg5WNFCxYtDlX7PNBzFPm+p9yWNSeV0bnqgZyhMlsV9kYFd3tiZpXdcyAm6LuhpwsRcri9TAFCblm1B+8UleE5N8fXy8NlrfvzHophU+kFudzrFRCXS8+CNU0ppFcANHwdEIbotgqJXF6hmIjihlWU5cohbkA8UpzwdgKUD4/zKfkjshcCJ1aRvCeq7XqqBwX4sAZkUFGKzFBABDJ/NouslsMIEr4mhiqcc1MczBQuTKu2YRQ+TKToW5nA7zwH2e509xjvGSwq17iF/41sZXjUL6ycsk4ggkLYxsSOmQtgkA/gBYnhTgTgk3BvcUjewksTIF02uRi1nh5Zoe3MAibbUBnKlUBzcwRlGrdpGZ6jQS85yw9aSGD7SlOF3CT6qOXPYRYmNgoPDkvCqFJh75bxoEmLWtW4zJq9DITYMQ80IaI8bK6/QPVr4P8rrwT5g2bo08xXJgcyA7ASEz4fVFqZ9Dx5udO/ohxHODfOFqK6sJeEpqFTfy7HAjzY4qhNnRJbd+nzTfbgFzbJvN8D7cJbGiZyaw9SxUpzMVewESdH6rXaQGUnknS41DRRFSYKG1Qcl5+7os0+713bcVTPfrcWFLLzxK7mSU3MtF6WU/+YZ1ke3cfy/2E55b/KeMBZRqMaL0rFYROgZVY4mR7aKsFwgdIw0AIrLe8WuY8lHkNQy9XhkH3siI+UR10BTmiCCF2tO4/5g9JZbz0ZU9tWC0pxb/s6eoftrvM3me3+Gc25aMgdmzr9k2ZcGeEss0sWFPLRjtqUVl29P0uo+mbd210Huf3LrayE1V2rBgT4mHBGzYU0aUnplXoj0lrqH6t6cWjPbUArOnCjp7ajB7AuJ0YofM1rmK9bu5PJlH7kfX6JzLc0PY4A+aM20J0s0xyMfQQa41mc0cg1wHZDaKGniYqaeogYeR2Shq4GFkNooaeBiZjaIGHkZmo6iBh5HZiB4aibEGrSLlECNWz2OBsTaWNSWb6lDJ/66OJEVRRUzJxJg/SSdGdDohli1kQSfxdDrJyLs3cOajTz75eXvzd466j99UVQ0WxIok5AKtdIbNzo0rg3eoVZnmxkoVImVxIYUoQcFVFmelZusQ6i5SvIom1s40NEIulUhC4IoFL6o3ZCVYQocrjZPsbv3mNWvW26l+A1bT5jYb94sTyfuC18c+tqWHdMwICeRqwUqwsPCPUKxAvzvwMGCU40HSBoJKsFK9pGYsrfmcwcbAgHbjcZJm8moECORR4lh/USRuATRVXg6BPTvUr5sor/eVytSvEkrAJrfmDxtoXGSBgBgsh3mDCrHyrapjb0U1oeSCeJ9YISy7hcFbxQRehKEXtUuIry5ByworNwSwE4hYIOHBWlBqC5FCLhLEqH43GiAXyFT3oEM1gW6oGsyyTKwCytJRHXH8s7AuW5owrculxti6PM7gMSeWVzXc49Hgn0zE/lo/Md7IeDrMtV4mzTi6WyYp6uZiyyRF3VxsmaSom4stkxR1czFf6FrWcpfSmbvdf0+taxQjqP6bmi/UqURe29R0s8eBkh2j8mz++oW0uEKrT90aklCMl4XFdQKdJg205Rix6LDOWo55NC5iaDmmaEQKEbLccuzDSvPSrqf2BKV2Gvx1S3J4tgG0HOsJIaFt4GLZWC/ECXzfpHv37umg5diKxQFDjs1Pd8v0ejkm/3HCV4NoOfaqEZN2jjUyAO3opOXY/i91k95G/h6wp+aLq316tcHTV/XVciyTUTkKQ1AOR58tx6704h/es+8Xt4zpc3/uiPLeY1Atx/wZlddCP8ozzJZj3wpiLjS7PCNg467g9lnnI5P13HLsmy2T5i7b6ltz8KZKazm2Y0iz5X+c+9tn9/BGT/d+yDEyiJZjiA9B23IMGELUT03k0Pip/6WWY8S2GHpuOTa8SRFDyzHjJrSsN1ZbjrVfcjpEWjOInz8tr/u8y7E3WG85VuP0ZnGr3BDX3Ysf1Q5O4xqz0EYrDCJH20bLuYlWRHctWo6Fr8g167OhbtBMY4eh9dZnb2C95RjRRrCAlTEjVvd0u0vQd8uxiXRm7H9F+P9VEX5iNyGdFeE/zC1iKMLvytUqE0jDIvxFC9rcda8W47nv1ahPa/rOx7dbr1i2Ocs2EtYsz4MI0dYsT+OSbGRlFOHvP9v+VP31dbxn9xHWqJPS00LvRfijGVEB48Zg9g7aJf6wV4S/juncTX18fPnbYrZYj1oXjT+212cRfitG1ZU00YvqdF6Ev2NfW37UoOCAZJNVpXUOjeDpuQg/YmVoq6gDK6OzIvwLMvxtEh9leOeHV/u8tPZlfMEs/RThj2YEx5UATnnFGipUhN9yRrPPtfqtCJwbfPFjR/kzfDkd/RXht2JECMxp1G+bxKHx2/hu9m1/ulx223Sn8eY/V70l1BFAkvhkUglY0ck+mzENzp3LQiTisvvRWhgAcbl0TFQ0V9U0VptaDsQOi7RvS656oCbUlNvXis/5rTXAV8CDhy4EfDntwfRsVdHEKsuy1wJXUSwov/rntavrWoh7+Cx5Hn3gcnE/PKP3X/XuIrhQXccO2uacvN/1gHXu2U+1DvevoAsVDNBzhug14VGMTm+4sWqtlQtVUzl9haIouYjavzyV3P3Iu2uPedmz6hXcWFviRciQQm6kyJBSXme97C/4/vdaMX3/vFb6dpZUI1MLRwm+slgqFEcw1Lbptcln6uzAUN/FloqApK2LU/BjFXsAeayqJJWhjDRGZUTrRxlE94ejTcTC0S9WqgDLlyACnp3aObuALSvYWcQ4cNu7RERL5UIHbgeXuNFyBfILtbcaOvXKtaJTzfkLBj59XnL9lBS/rsEPCFWMk1D0vywTVYayXBmVZWUQMwc+SitvtV7ZQXfsGPmIOIYZlHzbtJ7TiCDetANZi4Lfd2lZka1yBdVxuD1qyGGqZzGpLlQH/tYvrbTzUlFLzuBtHak/W2hs8sBtX+r03B7en6brddsLATjZCgXgGgUA0LRo5YliSxl9kQmPwke1ZhwI8kjZfT18V6M+DfWa7AsBGMwEQP+WrTBHczLnv8XHITbm1hkfp1MbJj6O0K6y+TjcrfET9hZec1/7+I9Xb69NPGoAfByHNkzRTaM2BkAqOHHihA74ODeGVcnr0m+ox/abit01o94kGAQf55Ydk3b22BmAdnTCxykM4gxvFWTmndIkKafp8iHhBsHHSWVUjtAQlMPRJx+nz8W0x4dP8PySsjqm7M/53dig+Dg9GZVnqR/lGSYfx6mmzROLbUX+Ux8+bjrnYLfueubjvGrNyFFsrW/NVSofx2GD8Crvr1VeS7bMW5k2ZHemQfBxEB+Clo8DDCHqpyZx/g/wcZ6suR6dwP8cuM8+wmVBdnKinvk4Pe2Z+DiP2uiGj5N0IXPS4hNZXqkJiwdK9nXYzDofh7g3Z4Fj0smeiWNS076y+DjzjvmteDBmsGfuuqjWP349vIl1Pg7RRrCA1aM2TFgd1O0uQd98nCl0Zmx0obitOHALb19BkOTpo0H4Nr6mfcbA3EkvuUAWTc4w1SJ80cJDHCeD2WOqaM64dsosU64A1syLgp9AOfLMum1OdLh1hZ8/rn5UwdDn9O9HjuSoC0njzyQUmLAg9VQsilFJzHvScFSqnkbBp5GYglFZnwf/EfI/M+z4w8SmRWahIglQmEjoA+x6AvY4RK1KVSbTqVLrnDQ71diu/Jy0RaO/xP/aqH/gitRVvaZMPtFbLSftZOeFB+9W93Lb3qXe2649Nr9Ry0mziJxtbnz6rNvs7k5pzzu2SFLLSfPs/vOPV1+2B6yss2/e7Sm949Ry0u41ODM8Zo+925Y/Wth9Wr54l1pOWktpj3e/TJ3slrUgTxxR+PCFWn5+ix1PjC79fdpr7syCb8WXu69VazZTL+NS0JQrw3xnHvD7saXgcwcgMkZFB2qOLclzOcXf0/uhnX/8uE5AZIKKXk62dFrUqIvrrJn/THH7uHUdENVARV+nfvrm3WUxb9H+dk/2/+MdAUSmqKjO8cYlU3I3+qcYXfHq3e/670BUExWdzlhU/WtHofc8UfVDr7M6/QpEZqjos+8t3wGTt/jurL5z8+kTe84AkTkqSst6du24/Ip39izhvVdm2+8CkQUqMhGvW5Vc8C1o9Z7dj3dfug1foxYqetPQc8O8w8m+WUNvVXu43AF+Vm1U1Pqp8TaLgi2+izpOEy1LuxMNRHVQ0fFQ879KOp123Vxb8iy8eHkMENVFRcNS18/huLRzP1j4du6dELu/gMgSFcm9zt7ZHjjdfaefxdKQz3VrAVE9VHTq7JFMxemWPmkPCtu+XJ01Aojqo6KqMT0KS9JyvDZZNc4fW9AjEogaoKLBdrNXDF26ImjNshuxDY6XngQiK1T0cdnaPp/efwxatc27Xcgg22dAZI2KvO4NOOJ3ZZPPjLtdT3zstqcHEDVERRtLnKbsnL3Oa8rKH8ud20TAu2xQ0fw8U+MO2y4ETn088rehg0+aA5EtKnon3v/2ZY/T/OQ5HTus/z7bC4gaoaKHNuaNb1wpcZ/Rtunu3i/rHAaixtj3aj+1+8djyW57nKbVsw+LWgpETVBRV+fbA2zirQIXTOjx8sbtG8uAiIuK3B/HJMlXnA2aPnmr/YGbTc6Rki2bcmiSLTNLOtytN/ee24KIJh2eLfngQGE2tE22nEpnoupF7t+RcfwUP3Pbg/FnbBOz8IeJ/ASZRCqkYBDQNSZthd6h4nwipdbjYgQSCTBCaBV7DSkDRANF+Wrkc05UoGntqzZ8To5TEbSvFN5vUjs+J8xJK0ZlrTJGpfJFqPn4aUtqrM/vFvj7hQsxGdkvclkkVLLs5DoDgDZBgIRUjtsnsHlIctKKDdA5BDhMcuTsTiiCZXqlcWKEQgHeTyyBTZdV44QLPCiuAG65IihR3OrWbf1KG3lgfqfq+enXE2/iQ6CqzyGHQMtErJdXbYOMGAa4nJ0MIl5Nputp2Ta0HTrRhGXqUkQLFGD/MkrEBQ6Iqg0Tfay0aLr/qT/sst12PHHPeufusYxwWo4+luK0HJOwrT1XR3Swe1Bp76QTMthJEVMtgWuKEXuwQ2sREUhKsH5ZUMvhZtVqAcuDOHlXzwmqVpxGxAJYYYxggaGOrj/TODTrz/+yD/5V9gHRQ9dZ9sE3Z6bsg0Tnysg+OPe4xOqmSbOAVV96dm1U84w5i4sl0QKxkH1Q6sxE1j7rrJPsg2u258c96yTxWmEvGXDkdcwRvWcfrGNEBYwbA42U6C77YOn6BX+Xfgz3XPww47D0azz+XEWf2Qd9GVXnoB/V6Tz7IDyjfpzEq6r/7ObhNVK2Pf1Nz9kHiJWhpY8DK6Oz7IOWjf1rp8b5ux4ae/Nnzf7GEgPIPljHCE6isw6zD+rHO7WfeOuW14JOe8+aLjA6ZCDZB30ZEQJzGvXbpnNo/LZTKwT+37s18Ere0Lj6i+YTCvDeKNKzLtTDX/ODA3d8y0jUEwY7xEjwK/C7xqn3VQTGFh2v0PdCXbeJGjlOxPNL6vcme9GYRIvWLsX+aGsXkqskAxoI9tfuWEGj3pIP3CdLrozeGji96skVQ/PfWxGC7PBuiiA7crk8T4lo/1jo23ISAiSjGoTBDnxOlr9WsTMrBCBsXNgJxXIwfIGcerHdcoKfO2XiRN70P/wurr15YyJ+WnpgN5OnZZmoPMAOXQi99bUqz29lt8a7hjnbW7IAWAIjYGBE6cWJUq4Z8G86cuh+yCmdxgy6NEV0yWBV4+ophs164ui+Y43NtW8Xn7ytgyTjAGXwE2RykSp0hzi1bu6hdmFtKuYAE1Qb6r2ZM6Rnvt/uq572sTMCXFlQrR2jajl6Ui2Vf5ymXQO48vuXfqgeujjT1MNrmqtTs+U19wXprX+psxNqk2D/Uhlpf+uETDF0YZzBoVkY3S83uD22627X7YOGWqX0P4QvDWwJS24q4NEnZOOKYHxYpEXXMyeeNAZAriz8iTxGWPYYZHNY1uxMCAaJRisiMWxX/guT1EH5V5p6I/DAtAsA/Zk7RRO0NDD4uV0qmqvn5q8GCjxugKV8obchjeXaYQ28AHrKJD74P6VNi4On0dJ4EU0Gzumj6xO5p1J9V1wUrW7rN+wx3sYgvVApWsSh18uzMdW//TASfQn3mO/2rueD+/yK8i8OA5iDIcxG7hRtv07aIzBX9Ei4pZr6VadbEdLYOFHEGGR4wBYS1KebfnWfH63HW+e7upaQ7zhrcF08q6DsueTtL07IekZTOxS2wVSwGTshsKEmYSadSThj3vxD+y7SgBnv3/o5XprMJzYMlkkEESJu4BiJhMIW0DnM7bD7YuF9cMyKY8cKJGKhcpDHixXRXCnYpsg1twTEKD3De1I1NlYTa0o9swM+TWeArilV8K0YeMnczhWd+/Xhooa0P1TAdn3QSELEqElVQStdX60d6La0ys/DXxuLn+DdZ+RBZPdZebm86UxkJVSUTgWmswwil03lMsDuJd6dad1nDZGzUSEnxw01OLSo+xxOffjg8ZWpXgtvhX50+5n/BU/VRgcIdUgHL2V7FkO0uIxofeqkUwcLe1HjvuNkInUcmqtxdhz9gEsrkjjCv4lz9PIeBp3cKJGcwBKGPxU13PWRBRIqFjwCbKrHKVVNqWXiwlSRSVLRHspO6CwocaMiFTojs0CrgzArZRtT6CsgaxU29IWUULTJMopZL53uszw3L3RywuodhMAE/FYUgQnkcmVAwWWEAgxxdKGaxaFZqAymbj3RWrLTwqcSytYndmJqFTBYBflsg4ecyI1jB/K3ksWrTIwH8vY8+DK8tdOgUhYgd+jOBHnN7hjkc+gg15qVaYFBrgNWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKFVdk8gkSoyV6Xivt8vc0dc8cwbNSLLuE+BGorzBwUs5+oj0SxYobyl0+m/md6zd7Z01PDcaCUdcfV4Lr/+6ysN+nkQaB91FJIBDdsqr0cy2Zp5i2LInGva4UT4A2VLCfSZKQ9AsvE+knJb7iiRwqP5IU68ceEuDO4BJdo3q7Bq2g7zVXquzaxtltA3JBpFC1QA8wC/0vKDJexqdHnbMPDDZe0eT3Qe3Lq5IrK1yj7E5YOPctwO67JaQEuyB1KoDpR9Oh1U9FSVCHStqDkj2zty2fhs955wc/86nu8lkFmkRU/oFfjy5IcFzs3S29yz3cUdYQAmMGQaUstpr16TdIRibV8hkQzDDphzc6mHcM/pQSf+006vOtZ7vtf3OaB+b5/ff6jGeC9svIoOIMiBXArbBDh20c2PtVdFDCFGEWs0KuALhbBMlOCu7+v/1vsfhwPQrSXP5q3+baQBRSwiSESNIt9prF9dt6SFWfnPVUVXZkEECi/QG6vBy8f085xifvL8PWqaePz8JH0XEnkuOIqoklYHOnvZM6KS2xxyjVA7Nwviyf6C/kdNn3pK1Zz3XBPmEkw/iySuhEQ24TfHxXBXVLV6qVdk4YoKFprEBTdnfwPSkdwSwnaXKfXQGsLl2rIQwbUoX3w1nRwn911wIvtzNg7sKf9iJxGNplnWcsDwrTjRxFWWCw+K5EKxgqjFWDEtxddRqrTNHwBKBmUYPVVhG055zg/p7JN8bvjeteVc869WED+6lBkpNpGOXAMLkygiTVUftFrvyQ2jEWLPeQmjQ0iBjBIbQSJ2Es5wQaFA7NJfODvFan3XqNvWuf5bnmneKbtaNiOfQMQIZV3lOQ3FeTueat1beh0V7kLwUATdWFA8vieTiCHSB1MgsEZO7GN6Q6qRcTawhrjJYBdi7CFZNovDJcwDq6V5aGSpzJAylPNwFr0NdaOjTxLNRy/92X2t+RrJknUsdvIuEPIDsIikvlzfniHluFZxzkJlcC8Kzja6iwzMvrdgkZsr3YSr05Xi/dMbGNvc9Nq7YYzRqW50L+Oif8n5y9A+9Xh4+u4e98yn57aJ3kv+4oTMXif5hAZ/DXkz4gOGjD4aBMULcGKsEoieH+KNdJXCzvgJ5lEjBpDQvE3FcwPirboV3ZU6dzy0oxitNeT9Zaeh11s9sgVZkjFrxNiitlBRiWtFq+bJADJ5MJESNL/V2rGnhLy1GmbitHn711sJl1fDx32oByP1kxaDX2VaMzAk1J/CYkbRfzXHmcy57abchs1FhgGwsJOLy8HhSNFy6/1Vt/1nmL01adf0Nn9pWnad8AJlViwkqA5F0LyZEBnth6/o8Ds26nrPQr3RQj+4+M0q/K4yP3viA17HyEzUnw/RU7TDwCzg3PlocEQ3cSphbKIiLgxUNVKwYdPnXbPNBzNOmel/ymFRe14Yn6onyREnsFxnY1aV7VjQCbou6GnCxFyuL1MAUJuWbUH5xm9nXW+xbv8Z/1k/Zp9yaa/Fc9+p0jo1KoOPFH6GSQgydqTgawW0RDLWyWD0D0RGlLMuJS9SCfKA45fkALAUI/1/mU3InBE6kRJS4nuu1Kijc1yKAWVEBBmsxAcDQyTyfbjIbTOCKOJpY6nFNDHOw0VfckylyVcrHME+jwzxwn+f5U5xjvKRw6x7iF7618VWjkH7yMok4AkkLIxtSOqRtAoA/AJYnBbhTwo3BPUUjO0msTMH0WuRiVni5pgc3sPSSH4AzlergBolR+BaZqU4jMc8JW09q+EBbitMl/KTqyGUfITYGBgpPzqtSaOKR/6ZBgFnbusWYvAqN3DQIMS+kMWKsvE7/YOX7IK8L/4Rp49bIUywHNgeyExAyE15flPrZIKixscaqJ557NxabTHGUdMHpp4obeXa4kWZHFcLsOO7zz+Oa84zcC3bPMd7Zpii1omcmQJ0OUJ3OVOwFSNAx8itSA6m8k6XGoaIIKbDQ2qDUfr1r8ozJy3y2j8xZkimYPgKPkjsZJfdyUfrbvEdz3qerHsu/rbpQfaJNAgsogWHNgNIe3yJ0DKrGEiPbRVkvEDpGGgBEZL3j1zDlo8hrGHq9Mg68kRHzieqgKcwRQQq1pwv+Y/aUWM5HR/Z0lg+TPXX2+Z89RfUz57DP6pLz/XxyVtt41vt4pSUb9pRQpokFS5Hkw2Qpwnwq255OE6993bP9ZK8lD63r1fNu340Fe0o8JGABJWdGlIx9KtGeEtdQvdtTZMTQ2lOAFGpPF9LZU4PZExCnEztkts5VrN/N5ck8cj+6RudcnhvCwpZgmjfTlkDojUG+iA5yrcls5hjkOiCzUdTAw0w9RQ08jMxGUQMPI7NR1MDDyGwUNfAwMhtFDTyMzEb00EiMNWgVKYcYsXoeC4y1xawp2VSHSv53dSQpiipiSibG/Ek6MaLTCbFsIQs6WUKnk4y8ewNnPvrkk5+3N3/nqPv4PL+qwYJYkYRcoJXOsNm5cWXwDrUq09xYqUKkLC6kECUouMrirJRfm1h3keJVNLF2pqERcqlEEgJXLHhRvSErwRK+OVX3bIt7fh6LF/z5zfm0Ay2T2rhfnEjeF7w+9rEtPaRjRkggVwtWgoWFf4RiBfrdgYcBoxwPkjYQVIKV6iUdSrcGewB3YEC78ThJM3k1AgTyKHGsvygStwCaKi+HwJ4d6tdNlNf7SmXqV/FW2Gh8a36enXuRBQJisBzmDSrEyreqjr0V1YSSC+J9YoWw7BYGbxUTeBGGXtQuIb66BC0rrNwQwE4gYoGEB2tBqS1ECrlIEKP63WiAXCBT3YMO1aV0Q9VglmViFVCWjuqI45+FdfmeO9O6fNgdW5eXGTzmxPKqhns8epmR2L9HRexPp8Nc62XSjKO7ZZKibi62TFLUzcWWSYq6udgySVE3F/OFjBcWvshYstt9zruP5zs+ut5QzReyH5mS+0fRG9+8RyF9YovftiAtrtDqU4fOCcV4WVhcl9Np0kBbjhGLDuus5di0/kwtx/b0q+yWY+mtrhiHb5zuvatL6Kh5j5qsNICWY4n9mRq49O1vAH2Trl+/roOWY0HxIX81lbwPmvbHytnjpTNMDaLlmAOjdowMQTs6aTm25Je8sIuTzvsVfOt8ITr0xiiDaDl2qx9jP7h+BqAcjj5bjsVUKckMFeYHFD5fOD560f6pBtVyLJVReUL9KM8wW45duv3A+9tX76BcyY2/L6ydsFrPLcd6MmrOUu+agzdVWssxt4gs075tFV6zfnZva2ndn2cQLccQH4K25RgwhKifmsGh8VP/Sy3HiG0x9NxyLGsAU8sx7wG6aTnGrR0y+p+E/fwdXzieIf7DlrPecqxlV5Pgk0+f8gsGHsh4YfpHhWMGkM02gKmNlmxAZbUcK/xxt4XXi5aey0s2Di727reC9ZZjRBvBAlbejFhxB/x/1XJsBZ0Z+18R/n9VhJ/YTUhnRfg5A5mK8CeFVUYR/tF2P/d/q9c3YE7bv44/j9yMJ5FVLNucZRsJa5Z/CmOqWV4cppMi/A++t4nMdbAM2G02dUqAxYbWei/Cv4kRFTBuDGbvoF3iD3tF+Ac9XG3N6RXtmxu+a1ezqg5tDaYIfxij6pz1ozqdF+GPTY9rWH1uTdcFg27uX9XpQLqei/AjVoa2ijqwMjorwu9UtLr1vT/D3Bcunrx+4djcagZQhH8TIzhJYToswv+mhuXgBeJrrgXxLgUbJ17abgDlLCBCYYwIgTmN+m2ZHBq/je9m3/any2W3TXcab/5z1duO+DoCSBKfTCoBKzrZZzOmwblzWYhEXHY/WgsDIC6XjomK5qqaxmpTy4HYYZH2bclVD9SEmnL7WvE5aUMBvgIePHQh4Mtpz+c8G1LRxCrLstcCV1EsKL/6Hx0/VWt74iFv4cjzAe2rb8V3WfxXvbsILlTbHXbxba/U9tnzMtf7o3t4RYvNBwP0ZkH0mvAoRqc32FgNH6qVC1VTOX2Foii5iNq/rNfuxr0n/Cz3maYb/sh/mpJNyJBCbqTIkFJeZ73sL/j+vzF+/1pD9e0sqUamFo4SfGWxVCiOYKhts2zLY//8pE8BmSK/B03e92+KH6vYA8hjVSWpDGWAycqgjMNDDML94WgTsXD0i5UqwPIliIBnp3bOLmDLCnYWMQ7c9i4R0VK50IHbwSVutFyB/ELtrZpsz73uO3aO67RhbWcajffpg1/X4AeEKsZJKPpflokqQ1npjMqS6UdZhJkDH6WVt1qv7KA7dox8RBzDDBrzo0nboTPWBB6oYvLij7+63avIVrmC6jjcHjXkMNWzmFQXqgN/a8hQ7bxU1JIzeFuHxEbj17fa4HOo3vUmTTOT+ut12wsB4GIAXKMAAJoWrTxRbCmjLzLRLHb55Kj6VV1TnOscE/rbP9Jrsi8EYM8QBgD6TxyCOZorOf8tPg6xMbfO+Dipw5n4OAeHVTYf5/rLohHbb4R4Z71utLd+zvg6BsDHmTacKbo5eLgBkAoKCwt1wMcZ1exQxpIJEf75L4Bb/jKryCD4OJ0YtVPTELSjEz5Osu2suteDTnrs9hSv3u2/39gg+DiPhjEpB1gT/SuHo08+DufRP9F/fRoasOrlrSpii8HzDYqPs5hReRL9KM8w+Tj9nX9Lnn5A4ZVbaJbwvYfjCz3zcTwYNWerd81VKh+nXkynnqOL8l1Xh43tdUHUU2AQfBzEh6Dl4wBDiPqpqzj/B/g4XZ1vD7CJtwpcMKHHyxu3byzTMx9nsYCJj9NToBs+zoX6v9/xWL/TZ1ZhfursAfKzrPNxiHtzFjgmqQImjolQUFl8nPCDVxs4bJjjs8r2+l9d7308xTofh2gjWMCqJyNWloL/r/g4q+nM2OhCcVtx4BbevoIgydNHg/C16U37jIG5k15ygSyanGGqRfiihYc4Tgazx1TRnHHtlFmmXAGsmRcFP4Fy5Lk/jkmSrzgbNH3yVvsDN5uco30/ciRHXUgafyahwIQFqadiUYxKYt6ThqNS9TQKPo2QD0ZlfR78hx+V4Rl2/CYj+EVmoSIJUJhI6APsegL2OEStSlVm0alS65w0O9XYrvyctMERtXs+jTzOX3Dvw5m1HdYK1HLSuF8vBd8preO12rr9Fp+v8/ap5aSZmU6Jv/pD4bZ68Mgu5tMaKtRy0n4/Wu/Wj8xr3ouycxpPOhIWopaTZj3swG+je2Z6zeyeeEAsaVaolpPmFiZ7dnsN33fuA8e9k7oej1LPz3eQbUwak+ixuHHXqiMXjuWrNZsZYP7y9bYOL3yXDwjLu75wwlUgMkZFxju+nd1TReyXb53UaGNB2FcgMkFF1Qb2+4e3poC/58mJWSP77ogFohqoqM3twFWPZ8cHrc/68W3Qm7YngMgUFTVq8+XD+3cjPKetdB1mZv72NRDVREV3HrxfH/dPBH9ZqOnQnXc6wOICZqjI//HTwZvXTQvcdmb90l/ORt8EInNUNDPI3PmmV5Fb/hKj2BWlVS8BkQUqGl/t+NLkToc9Mxec4+4dtNseiGqhoq7Pi8aNDI0I3LDr2Zc23Zx8gag2Kqpiwd92u+F2ryleDa5dfrC5CIjqoKKW3gMf1PKcE5QR29o3ML/2dSCqi4pudhlX2LF/PG/G8JAUh+YrTwORJSp6vD9j+vH5Zj5TXjc9+m5V1b1AVA8V7bywd0bDWZ34y5e+TO5Z7Rn8yvVRUZ9TW55NUzT13Zuw7uXxRP92QNQAFT3sMraH618B/F02My1N2uydDERWqOjlhb7eI37t456/uvUP17NSONisUVHNxPfP0/tMDphz2H7k2dwZ64GoISrKWVpndNyFjX7Thhmt+ZBcH4psUFGT6Fvde5l1CFzTfun0I1eOw8+yRUVe0/a32n3DO2CeTb3dJlWzjYCoESqy2hH1ZuuRtX5bcj6dalivRzoQNUZFvIezE9ZP28Zbb9XOZV/t3juBqAkq2qCoX/vjsnm+aYrlzer+sgm+BhcVbd714tYPfph/9twUu17Z3Y+Rki2bcmiSLYWWVmbOF+4GLBw+ZPO5/k7RFGZD22TLNXQmql7k/h0Zx0/xM7c9GH/GNhEfnK7OT5BJpEIKBgFdY9JW6B0qzidSaj0uRiCRACOEVrHXkDJANFCUr0Y+50QFmta+asPn9BUVQftK4f0mteNzvgm1awJRxqhUvgjldxvq7h/SQPiL27q77nVbu7R8ySKhkmUn1xkA5A8BElI5bp/A5qGFSCs2QOcQ4DDJkbM7oQiW6ZXGiREKBXg/sQQ2XVaNEy7woLgCuOWKoEQx4uFH15zjxoHpRUOeud76FowPgao+hxwCLROxXl61DTJiGOC6LDSIeDWZrqdl29B26EQTlqlLES1QgP3LKBEXOCCqNkz0sdLQNmuPfKtX5Pd78ZWwRQ+O9CKclqOPpTgtxyRsa8/VER3sHlTaO+mEDHZSxFRL4JpixB7s0FpEBJK65lCtxIXVNvzjlns+gxPW/0laxWlELICFDHVasMBQR9efbM7/sg/YzD4geug6yz7IimTKPuBGVkb2QckdxcgVP997H7DZVKd63KBoFhdLogViIfsgPZKJrC2L1En2gc+D9wv6rPzLY8/cCS2Pjhcu0ysNA6LizYgKGDcGGinRXfbBjGmPtvSx2hWQ1K+0966Y90cMJvvgk4gxnUZkoO4My9kHrYM+f5iYae2Z33GFTfHb1UP0nH2AWBla+jiwMjrLPlj7PaZZ6cbfeXMbmWfa3knEnwfqJ/vAmxEcbqQOsw86NPw891TXdV4HplhZVgsc9cNAsg+QOU2fvCLC/La1HBq/7dQKgf/3bg28kjc0rv6i+YQCvDeK9KwL9fDX/ODAHd8yEvWEwQ4xEvwK/K5x6n0VgbFFxyv0vVDXbaJGjhPx/JL6vcleNCbRorVL3yloaxeSqyQDGrCcUgm9JZ9H2P38vfNS76m+rzrPr/HlNCHIDu+mCLIjl8vzlIj2j4W+LcEQIBnVIAx24HN6TtEqdmaFAISNCzuhWA6GL5BTL7b33K9f3VP6l/8mf8HUatOi3+CnpQd2M3lalonKA2zf0avpHS+lBEyvst/5zeGGEhYAs2MEDIwovThRyjUD/k1HDt0POaXTmEGXpoguGazqyZUnJvlPOxq0e+rlRbNrSgvrIMk4QBn8BJlcpArdIU6tm3uoXVibijnABNUOmHa7rm3kU36mx5HeU588+8SCajmMqn2VZDj+cZp2DeDK71/6YnKr9NadbvjMHqII2TE3Jklv/UudnVCbBPuXykj7WydkiqEL4zoOzcLofrnB7bFdd7tuHzTUKqX/IXxpYEtYclMBjz4hG1cE48MiLbqeOfGkMQByZeFP5DHCsscgm8OyZmdCMEg0WhGJYbvyX5ikDsq/0tQbgQemowDoz9wpmqClgcF/bFRFc/Xc/NVAgccNsJQv9DaksVw7rIEXQE+ZxAf/p7RpcfA0WhovosnAsYlzOryz/UH3xTUKvw836i/G2xikFypFizj0enk2JsX/eum3sR3csh++u71sa69BFbQxhwHMpRBmI3eKtl8n7RGYK3ok3FJN/arTrQhpbJwoYgwyPGALCerTzayjv5q9KZ7tufnAgbnF04Z1xrMKyp5L3v7ihKxnNLVDYRtMBZuxEwIbahLW05mEM+bNP7TvIg2Y8f6tn+OlyXxiw2CZRBAh4gaOkUgobAGdw9wOuy8W3gfHrDh2rEAiFioHebxYEc2Vgm2KXHNLQIzSM7wnVWNjNbGm1DM7PscWomtKFXwrBl7ysZEVnfv14aKGtD9UwHZ90EhCxKi5xu4n16X/6OS/5PanE/ece7nh3WfkQWT3WXm5vOlMZCVUlE4FprMlRC6bymWA3UtejaR1nzVEzkaFnBw31ODQooRv4FQb54b3dwWljEhdkzijVTyeqo0OEOqQDl7K9iyGaIGRxIBW5kidOljYixr3HScTqePQXI2z4+gHXFqRxBH+TZyjl/cw6ORGieQEljD8qajhro8skFCx4BFgUz1OqWpKLRMXpopMkor2UHZCZ0GJGxWp0BmZBVodhFkp25hCXwFZq7ChL6RetB7nvk/aftUzzXR942P3HqcQAhPwW1EEJpDLlQEFMsRpoQBDHF2oNnBoFiqDqVtPtJbstPCphLL13JFMZes5Ksg3GjzkRG4cO5CLfhm6p+6XEq9ko+Ii59xfdrEAebGUCfIcKQb5JjrItWZlWmCQ64CVSUGixFiZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZizLPXEn3H+L1+/hPAZLQ0bVJlDc4eClHH5F+yQLlbTOd/pv5HWt3e2cNz41GwhFXn9fC67+u8rCfJ5HGQXcRCeCQnfJqNLOtmacYtuyJhj1ulA9AtpRwn4nSEDQL7xMpp+W+Igkcqj/S1CuHx1HRYJJdozq7hu0gk6K0Oru2UUbbkGwQKVQNwAP8Qs8LGlC7ZFKIu3vA1pv7Y4Oy/r5WkVhb5R5jc8DG+VMUuuyWkBLsgfRgFKUfTodVPRUlQh0rSpSOGUmm3HVcGLTl+9ZakR0e2LJIi5jSL/DjyQ0Jnpuls71nuY87wgJKSYwoeURp16TdIRibV8hkQzDDphzc6mHcM/pQSUrMIfslvjz/5FtjRImx0xz1GM+F7ReRQUQZkCsB2+DiKO3cWHtV9BBCFKFWswKuQDjbRAmOxbRT3Xsl/eRtyLrTYEUDX1MDiFpCkDYxgpQUpV1ct6WHWPnNVUdVZUMGCSzSGyiHqDUuwdd6e62rPWBljj3fCB9FxJ5LjiKqJJWBThgjOs5RmGO0hUOzML7sH+hv5PSZt2TtWc81QT7h5IN48kpoRANuU3w8V0V1i5dqVTaOmGChaWxAU/Y3MD09xQC2s1S5j84AtkfRlRCmvS041qeKp8Rzd8IrxbDcWXXxh51IPJZmWccJyz1CJpi4ijLBAVidIFjBVGOsGJaSEGu11pkjYInATKOHKsHvF+/EZ6v5ha03tqnVZsIwvCXig3upgVIT6dglgDA9imaC6WC0dotd+SE0YqxZbyE0aGmQMQJDaKROwllOCDSoHdpKZ4d4rc86dZt61z/Lc807RTfrRsRz6BiBjKs8p6E4L6dzzVsr78OiPUheioAbK4qHl0RycQS6QGpklojJXQxvSHVSribWEFeZHZ9TMrEIVk2i8MlzAOqyiVoZKnMkDKU83AWvQ/ktvzzvNmujdZzX0gWO7e/u/EHo2Ig8gOwiKS+XN+eIeW4VnHOQmfwMwrONrqLD4YlasUnMlO/DVOhrVOboKZtS1vkuvhBrXJDSdjQ++qe8nxz9Q6+Xh8/Mn45P12/64bHo+qOlgTf6b2ABn3RGfMDw0QfDwBghboxVAtGTQ/zRrhK4WV+BPEqkYFLaTds3I+zvZwYs3ui0j/e6+Sa80pT3k5WGXmf9zBbyohm1wjUorZQUYlrRavmyQAyeTCREjS+lYhZMufdXi6hh/luXLBuyaV7DMXjFBCD3kxWDXmdbMTIn1JzAY0bSfjXHmc/ZNlG7DZmNCgNkYyERl4fHs8hHXT1fF7pPL3K/5jTmT1c8q5anfACZVYsJKgMRGSMinSZi6/o2Ds26nrPQr3RQj+4+M0q/K4yP3viA17HyEzUnw/RU7TDwCzg3PlocEQ3cSphbKIiLgxUNVKwYdPnXbPNBzNOmel/ymFRe14InuikR5YmS2C8ysKuTJVY0Am6LuhpwsRcri9TAFCblm1B3i7rf0nrMDzPPjMmPFq3PsTyEH3x0jo1KoOPFH9LnsiCGzlQcjeC2CIZaWayegeiIUpblxCVqQT5QnPJ8AJYChP8v8ym5EwInUg8lwnqu16qgcF+LAGZFBRisxQQAQyfzdrrJbDCBK+JoYqnHNTHMwULk6tUEpsjV2QkY5r/TYR64z/P8Kc4xXlK4dQ/xC9/a+KpRSD95mUQcgaSFkQ0pHdI2AcAfAMuTAtwp4cbgnqKRnSRWpmB6LXIxK7xc04MbMKtnJAE4U6kObmCMIjypyEx1Gol5Tth6UsMH2lKcLuEnVUcu+wixMTBQeHJelUITj/w3DQLM2tYtxuRVaOSmQYh5IY0RY+V1+gcr3wd5XfgnTBu3Rp5iObA5kJ2AkJnw+qLUT9+FHpuWVlnhN23fsZMTIm3ww6aKG3l2uJFmRxXC7Fg177H1wdP2QfmDLjceaDQ8qKJnJkCdyVCdzlTsBUjQiU0qUgOpvJOlxqGiCCmw0Nqg9KD1yI8FNts95q1YlPui+IUZHiV3Mkru5aL0ySzndoko2HPtidnHYzaWjGIBpXBGlDyTitAxqBpLjGwXZb1A6BhpABCR9Y5fw5SPIq9h6PXKOPBGRswnqoOmMEcEKdSe7viP2VNiOR8d2dPhk5nsqfHk/9lTVD+J6wf87vNhl9+SW8MmfLNPfMSCPSWWaWLBUoRNZrIUzpMr257GjG6e2bygl/vSq7LYay7tfmfBnhIPCVhAyZgRpXuTKtGeEtdQvdtTZMTQ2lOAFGpPc+jsqcHsCYjTiR0yW+cq1u/m8mQeuR9do3Muz61wO19gVQdPYtoS9JyEQb6TDnKtyWzmGOQ6ILNR1MDDTD1FDTyMzEZRAw8js1HUwMPIbBQ18DAyG0UNPIzMRvTQSIw1aBWpT5IJ1fNYYKztYk3JpjpU8r+rI0lRVBFTMjHmT9KJEZ1OiGULWdDJbjqdLH32cWW7fqn++08H/eH1M6sZvlxHWR4qXjFMMaf6ZSWLYmFNKPQBNcg5rbU9g0IC3PraNZvg3D1kYjOHoDYa+ZXE0o3V/KURo0RC1U10X4FccaRMpmmoozWf8ygO2LouPJpzzm1xFP6lEQoXhX+JuCwE/zL9e1L+mgVhPrkbNwe6Pm57ky3/kbHadRkW3LECuVgwQkLNGeoj63x62cJ819xVPNPOT0/lM6PfH30UN4jsKAWV6ygRa2pWtKwR0N6tONRRImfB2SHaIzpKTP6kZZmjVDbQKVG7Msq62YcxHI9dE1vdurrz7/eMqNE5TVTHfRUNiHRAITnsSgFJVgcEEtSG7KGzIRl59wbOfPTJJz9vb/7OUffxucJVgwWxIgm5yDOd+bBz48rgHWqV6rmxUoVIWaBMIUpQcJUFnqlHJ6F2K8WraOIxmYZGyKUSSQj0euHFsrTxkt6EMRroVO+i9e4I15wF2e7dJuzZTTdGjfvFieR9wetjH9vSQzoGzowICawmDYuHCcUK9LuDXQqMlD5I2kDQI1bum9TQCQzt0nigx248TtJMXo0AgTxKHOsvisQNClPl5RDY90f9uonyel+pTP0qoYx0cmv+9JL4IgsExGA5zD1WiJVvVR17K6pFWS6I94kVwtJ9qtFuAi/C8K3aJWS/L0FLkyuNP+wmJBZIeLCenEo11UIVcpEgRvW70QC5QFZmQJRDdS/dUDUY155YSZil437i+GfBt89LYPLt0xMw85Br8JgTlxPDDbEkyJgwD5NhmO+jw1xrV9uMoztXm6L2NuZqU9TexlxtitrbmKtNUXsb20/VTxrVoXMfO+/cjGzbBo0bVlPbT43//GLLg7VT/Q/c63Tx1EafzSQHHVp9yoFELOjNgoOeR6dJA21bSCxcrrO2hbkzmNoWBs6o7LaFwpZWnaaeeBu0rUP1vrc6/yoygLaFu2YwNYFaNcMAeq9dvHhRB20LW4evyBVOqxuQaRn23tYqY6ZBtC2cw6idsYagHZ20LaxZ+tjl17tH+dP/TLm7f7kRvtGzvtoWjmBUTqAhKIejz7aFyaebdvo+hBNYcNwxu3bmenx9RH23LezOqLxW+lGeYbYtlF46t6ak2IJX0ED0MbiFVWs9ty2sw6i5H9P1rTl4U6W1LXz0V8qZD/PvB+z1TZ0yaezIywbRthDxIWjbFgJDiPqp+zk0fup/qW0hsbWOntsWesxkaltoNVM3bQvb1vPntfX9yt+UEmHVOYuL78fNRttCC7F937kmr3lLGs6ZHT40sSYLrfhcZzK14nOYWVltC/ftzb4XcX2hx8ETv5UYN5YaVXwKE7Ai2ggWsLJixMpo5v9XbQvz6czY/xp5/KtGHsSOZDpr5FE6k6mRxx6y7WShkcfL+4dPvf/ym19uZO/U0+9WPWCxYgXLNhL2PSiZydT34BbZRlZGIw++75ugL6/mux56ve16QZ0W+Prx+mjkcZIRlT26tYaMewftkgfZa+SR+Sn19NwzVQJTpyR+PtBw0HiDaeSRxai6VP2oTueNPCacqNPe7OsF/+RGQ2WmMxPN9dzIA7EytJ0YgJXRWSOPKWkWl3bsm+KzweiZfY1zbrcMoJHHSUZw9szUYSMPzsg+bz7P3uyxuleud9qEBrkGUBIHIpTFiBCY06jfdoBD47fx3ezb/nS57LbpTuPNf6562xFfiwRJBJZJJWBFJ/tsxjQ4dy4LkYjL7kfr6QDE5dIxUdFcVeNpberBELu00r4tuXKKmlBTfnArPufsHICvgAcPXQj4ctrzOQlzKpqcaVn2WpBBpMSC8qv3OBTZbmXyXV5Bdvy1DtI/8MVG/1X/P4IL9cKuhe3Zus8DVvguF0zo1mtSBV2oYIDeSYheEx7F6PQGG6s9c7RyoWoqp69QFCUXUfuXwU/bz3rw6ld+5teS8J6Ob44TsiyRGymyLJXXWS8dDr5/FuP3T52jb2dJNTK1cJTgK4ulQnEEQ32sg+3ObS1wnhU01Xvt+3Hjhljjxyr2APJYVUkqQxkJjMoQ6kcZRPeHo03EwtEvVqoAy5cgAp6d2jm7gC0r2FnEOHDbu0RES+VCB24Hl7jRcgXyC7W3eju1V9SjEXv52wemjPHdXvMAfl2DHxCqGCeh6KFbJqoMZQUzKqunQcwc+CitvNV6ZQfdsWPkI+IYZtDz3HdPhyQu9J3Se+2OFym7DlVkq1xBdRxujxpymC5eTKot14Hfb/sc7bxU1JIzeFslXD+vI3bbguacnsjfeD90ul63vRCAxRgA1ygAgKZFK08UW8roC9Vs2/Et+0LTnfwM2+g3xa3e1CUsZbotGAABGMoEwBb3OZijeZDz3+Lj8B7OTlg/bRtvvVU7l321e+/UGR/ndAoTH2dESmXzcTb+CHjhbV7Vb6GvY4d3tT5EGAAfpyiFKbq5K8UASAV5eXk64OM86P9ZHr78WuDKhH5PMz8HWBgEH2cVo3bmGIJ2dMLH6VjCSw1+c9Bv/ZIj12L+3j3OIPg4YxmVM8IQlMPRJx9nXej5rb8HJvosaJSd7hqTfd+g+DiBjMrrrh/lGSYf53XeAWnVoW1ckx8ceb2ty88sPfNxWjFqro7eNVepfBxuqjT58Sh/95W1mxYO9bVONwg+DuJD0PJxgCFE/dRDnP8DfJwNivq1Py6b55umWN6s7i+b1uuZjxOYysTHaZaqGz5Onzs1/ljc+zZ/0+ii3v1d/Aewzsch7s1Z4Jj4pjJxTLqkVhYf56Nb48n1B5wOmLvk7eKIb5lbWOfjEG0EC1g1Y8TKPPX/Kz5OAZ0ZG10obisO3MLbVxAkefpo0Ft8pKTPGJg76SUXyKLJGaZahC9aeIjjZDB7TBXNGddOmWXKFcC6m1HwEyhH3uZdL2794If5Z89NseuV3f0Y7fuRIznqQtL4MwkFJixIPRWLYlT+y/xo1dMo+DRGsLhffR78R8j/zLDjT+dMKDILFUmAwkRCH2DXE7DHIWpVqrKQTpVa56TZqcZ25eekbeR3srF0vMxbIpsYsa+KR6ZaTtrV9NydiX/K+Xv2uic8EM56oJaTdqXWXMkc69ceB9+J5L0yj7mo5aQFtH8YmmW/mL9837Tt4Q/yGqnlpM0at2rywKncgNSTjsM6lvb8qpaT1uj58aXiIht+4QGTm1NebCtWq/HRZckSjn/z3T6bD4XNLX7v5a7WsGpuQfh47mmvwO0TlkWNP3CjFIiMsQdGrv2t+eZsrxzbpu+Ta/x6F4hMMJF0Rb5t46muCzKu1HE71EQCRDWwl7ceWhzzODZgo3PfzYqZN2sBkSkq+j30lefHP8YFzlo/7GuvL4NSgKgmKhowVDrvU268W7bA/7f10j2wGIYZKlqzssWtyWv7e0xd2rZ1QMM60UBkjopuBaTF73M55D99+NU7tTrP7wVEFqiowe6Tl5OCr3unDNp2p8PhTXWBqBYqktbMOHTU5Te3dW2imn/caVsfiGqjonexLrVWjgn3XLv7jW+dWte3AlEdVMRJtwu41rea5/qjx1KCBswYAkR1UdHWKosnyKqXBu20aeW9I/dxCyCyREXdV9c+Pt8+NXDurcjzXyYGPASiethr3O/NjX/d2GPPrOoRN10O5ABRfVT0M9LubcuRm9xmzEj0fT1U4g1EDVDRIQFnWfaZzt5zQpo8CeyW9AmIrFDRqMmJo3bsH+M3Myd1yL3HV7oDkTUq6vz49Y4k38KAOeEzOqw58uw5EDVERSmjFYGDp9b2nx4+ZtvC5PQgILJBRX9Ue3GhepKl/65OX41r5I2+BkS2qMhyuG+zjt22eB78fk/eVOyxGIgaoaJJhZPylqZJfBcdPWZ9+t5piHxjTF9i23XN1/3lc/DXEz/d7vnBAdAEFZ3zDj4qKf0ncFaz0dbSvrOWAREXFT2c+jxh0gsTt5UnzxY0S7nhSUq2bMqhSbbMPL/CtF3yFN+tN74OvvDT7D2F2dA22fIwnYmqF7l/R8bxU/zMbQ/Gn7FNxG/LqvMTZBKpkIJBQNfcuBV6h4rzibRriIsRSCTACKGdMDSkDBANFOWrkc85UYGm9fPa8DnX5hZB+0rh/SbB+iZztWskU8aoVL4Itf9vv2jod0GdgOnp3GHcfX/1YpFQybKT6wwAugwBElI5bp/A5uHwXK3YAJ1DgMMkR87uhCJY6lsaJ0YoFOD9xBLYuF01TrjAg+IK4JYrghJFQebzI/zNH3npkjvSqjdsl+NDoKrPIYdAy0Ssl2hug4wYBrjS5xpEvJpM19Oy9XA7dKIJy9SliBYowP5llIgLHBBVKzeGblz7LUMGfL3pcahTv7ZdH93iE07L0cdSnJZjEra15+qIDnYPKu2ddEIGOyliqiVwTTFiD3ZoLSICSd2zuH9jzrYuqwJT71rc7d70hVvFaUQsgLWNESww1NH15w/O/7IP2Mw+IHroOss+SJ7HlH3gPq8ysg8+/D084cPlK4ELrlzyOtC8zjMWF0uiBWIh+2DSPCay9sh5Osk+kPNq+qQ8CeTPv1k9clHw7OZ6zz7oz4gKGDcGGinRXfbBjzVjFo7sbc7LNb+99/6K+S0MJvvAkVF1DfWjOp1nH1zqZzvQOG6s98E0J/utZ+ZN03P2AWJlaOnjwMroLPtg3jKe0cqBM90LuIMknZeuwhdM0E/2QX9GcNzn6TD7oGfjsYEpV3Z5zjEaWP1N/4TBBpJ94MiIEJjTqN92hEPjt51aIfD/3q2BV/KGxtVfNJ+A17ox0vcy1MNf84MDd3zbWdQTBjvESPAr8LvGqfdmBcYWHa/Q90Jdt4kaOU7E80vq9yZ70ZhEi/ZQeZloeyiSqyQDGkjIrIT+tHWqO5wRx+a4rz25ekl+1eDahCA7vJsiyI5cLs9TIto/Fno/7YEAyagGYbADn5OVqVXszAoBCBsXdkKxHAxfIKdebH2OH+r1fF2O28qOzwpPe2QewU9LD+xm8rQsE5UH2O4/WjWI6dsjaIFxzmmzLoUVrXkPAUtlBAyMKL04Uco1A/5NRw7dDzml05hBl6aILhmsqtuTm0GD+x/zSvdxWNg48UFpHSQZByiDXHK5mpt7qF1Ym4o5wATV7vn2Y/WbJ26eGQW9kq6Mb3GOBdUKGVUbrCfVUvnHado1kSy/B7Ki2cOR4c2svVYbh2xo5ppfqLceyM5OqE2CPZBlpP2tEzLF0IXxKIdmYXS/3OD22K67XbcPGmqV0v8QvjSwJSy5qYBHn5CNK4LxYZEWnROdeNIYALmy8CfyGGHZY5DNYVnDRCEYJBqtiMSwXfkvTFIH5V9p6o2Awe+8AID+zJ2iwHgaGPyWCyqaq+fmrwYKPG6ApXyhtyGN5dphTQABesokPvg/pU2Lg6fR0ngRTQaOj+9f/LYxCW5LrRMUHzq+xbdZrob0U6ZoM4leL8/G/D3u0LmYbzN4i12cR7T+tvxDBW3MYQCzA4TZyJ2i7PVJewTmih4Jt1RTv+p0K0IaGyeKGIMMD9iGhvp0M7Jnt65NLL8ErVy9YqJpUQG+FZ1p2XPJ21+ckPWMpnYobIOpYDN2QmBDTcIxOpNwxrz5h/ZdpAEz3r/1c7w0GX/MbRYikkkEESJu4BiJhMIW0DnM7bD7YuF9cMyKY8cKJGKhcpDHixXRXCnYpsg1twTEKD3De1I1R1cTa0o9s+NzDqcBdE2pgm/FwEtenFbRuV8fLmpIC1UFbPkJjSREjDqlxNTq9KPSX/z3f7oeOUM0tgPefUYeRHaflZfLm85EVkJF6VRgOh+EyGVTuQywA9KmNFr3WUPkbFTIyXFDDQ4tSviW1vHKqp9W1W/Zlv19XcK3DMFTtdEBQh3SwUvZnsUQrcWMaCWl6dTBwl7UuO84mUgdh+ZqnB1HP+DSiiSO8G/iHL28h0EnN0okJ7CE4U9FDXd9ZIGEigWPAJvqcUpVU2qZuDBVZJJUtA+7EzoLStyoSIXOyCzQ6iDMStkKGfoKyFqFDX0hJRRvC2YsiQ14473v3b3ntrUuNiEEJuC3oghMIJcrA4rFjFCAIY4uVMc5NAuVwdStJ1pLdtqAVULZevc0prL1HVSQFxk+5ARuHDuQd3o3InPC/jq+K1f3Lj1tIaroqRGEvOEiJshrLMIgP0EHudasTAsMch2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQqViaZRImxMilIlBgrUxJ8stikRkPeGt/YGQ0/+ZeSKG9w8FJvQgn0SxYobyfp9N/M71i72ztreG40Eo64+rwWXv91lYf9PIk0DrqLSACH7JRXo5ltzTzFsGVPNOxxo3wAsqWE+0yUhqBZeJ9IOS33FUngUP2Rpl458JY6zAeT7BrV2TVsKfteuzC/jTLahmSDSKFqAB7gF3pe0JfIakdXS1t45B0c8duR2JLwisTaKvcYmwM2zo7z0WW3hJRgD6S15lP64XRY1VNRItSxokRpUOn4wgtV5G75DzNbBe078AuLtIgp/QI/ntyQ4LlZOtt7lvu4Iyyg9H4eE0qX55EPH5j8NIdgbF4hkw3BDJtycKuHcc/oQyVR31v3LshszU++0HmFqV8LCz3Gc2ELV2QQUQbkSsA2uOF87dxYe1X0EEIUoVazAq5AONtEnawZ6NT165+7fPNabV1dxX/sfAOIWkKQqjGC9F7LuG5LD7Hym6uOqsqGDBJYpDdQY+v2GTXwz0UBWzvsS/nGb4dvZmeMPZccRVRJKgOdO7QxXYjOaVVM9xSHZmF82T/Q38jpM2/J2rOea4J8wskH8eSV0IgG3Kb4eK6K6hYv1apsHDHBQtPYgKbsb2B6iuGgOkuV++gMYFs3vxLCtAUpgy5dvf7Ec7djvzirxQ418YedSDyWZlnHCcuz4kQTV1EmOADrLAQrmGqMFbflc/K0W+vMEbBEYKbRQ3V35J7h1S2LfFYdH/bw97+L0vCWiA/upQZKTaRjlwDCtI4RprT52i125YfQiLFmvYXQoKVBxggMoZG6kWc5IdCgdug0nR3itT7r1G3qXf8szzXvFN2sGxHPoWMEMq7ynIbivJzONW+tvA+L9iB5KQJurCgeXhLJxRHoAqmRWSImdzG8IdVJuZpY066ldnzO4IwiWDWJwifPAajbZmhlqMyRMJTycBe8DuW3HH/Bqb7ntbWuc0dXWZm/fcdovIuEPIDsIikvlzfniHluFZxzkJkcBuHZRlfRwSNDKzaJmfJ9mAp98ScGC4oXrfEviBgr8mw261d89E95Pzn6h14vD59uAaMffM/8GLDf5daZ9CMv37GAjzMjPmD46INhYIwQN8YqgejJIf5oVwncrK9AHiVSMCnty7hFQTvyPAMWhHwyy0x/hqeSV1PeT1Yaep31M1ugFWNGrZQuNyStlBRiWtFq+bJADJ5MJESNL3VJkvRxYV1ifN2nZlcLM+vEOYhXTAByP1kx6HXWe0Q7oeYEHjOS9qs5znxO9wztNmQ2KgyQjYVEXB4enz92MQtzM/eb9eNju8ZOnZriWbU85QPIrFpMUBmI2DIi8mM5tq6f4dCs6zkL/UoH9ejuM6P0u8L46A185Aj9RM3JMD1VOwz8As6NjxZHRAO3EuYWCuLiYEUDFSsGXf4123wQ87Sp3pc8JpXXteGJLkd5oiT2iwzs6jKXVzQCbou6GnCxFyuL1MAUJuWbUG9vH3+u6vimpteWULdPt5avw5/GVqdzbFQCHS/+CJUUYuhMxdEIbotgqJXF6hmIjihlWU5cohbkA8UpzwdgKUD4/zKfkjshcCIlosT1XK9VQeG+FgHMigowWIspUzWZz9JNZoMJXBFHE0s9rolhDhYiV+HLmSJXvirMz9FhHrjP8/wpzjFeUrh1D/ELXzy92xzpJy+TiCOQtDCyIaVD2iYA+ANgeVKAOyXcGNxTNLKTxMoUTK9FLmaFl2t6cANm9YsVAM5UqoMbGKMoWFFkpjqNxDwnbD2p4QNtKU6X8JOqI5d9hNgYGCg8Oa9KoYlH/psGAWZt6xZj8io0ctMgxLyQxoix8jr9g5Xvg7wu/BOmjVsjT7Ec2BzITkDITHh9UepnVJcGRVUvPvFP63fT+snezCk4/VRxI88ON9LsqEKYHa1rrHnLaTI6YNXt3hGFF0qOVvTMBKjzCVSnMxV7ARJ0/lxRpAZSeSdLjUNFEVJgobVBqe9aB8suQX8Hzl98Natj3EUPPEruZJTcy0Vp9juHd1dWpvglt2u3adC28RXNLoUoFTCitGVFEToGVWOJke2irBcIHSMNACKy3vFrmPJR5DUMvV4ZB97IiPlEddAU5ogghdrT8/8xe0os56Mje2rJaE+fZfzPnqL66ed5bOT0xr957vMcW+vCsIFyFuwpsUwTC5aiFqOl+JZR2fa0u+nKdml/TfTLiB60qccqo1gW7CnxkIAFlJ5lMKF0OaMS7SlxDdW7Pa3FaE8BUqg9vUBnTw1mT0CcTuyQ2TpXsX43lyfzyP3oGp1zeW4IC1uChRlMW4JkFeTFdJBrTWYzxyDXAZmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKxdZE3JpjpU8r+rI0lRVBFTMjHmT9KJEZ1OiGULWdDJn3Q6yci7N3Dmo08++Xl783eOuo/P86saLIgVScgFWukMm50bVwbvUKsyzY2VKkTK4kIKUYKCqyzOSvm1iXUXKV5FE2tnGhohl0okIXDFghfVG7ISLOG0NksD77c4Gpi6cO7CQ/fePaWzhMb94kTyvuD1sY9t6SEdM0ICuVqwEiws/CMUK9DvDjwMGOV4kLSBoBKsVC+pGUtrPmfdMmBAu/E4STN5NQIE8ihxrL8oErcAmiovh8CeHerXTZTX+0pl6lfxVrja1Nb8+2uXFVkgIAbLYd6gQqx8q+rYW1FNKLkg3idWCMtuYfBWMYEXYehF7RLiq0vQssLKDQHsBCIWSHiwFpTaQqSQiwQxqt+NBsgFMtU96FC9RDdUDWZZJlYBZemojjj+WViXDy9jWpdzlmHr8mWDx5xYXtVwj0djGYn9Q1XE/it0mGu9TJpxdLdMUtTNxZZJirq52DJJUTcXWyYp6uZivtBSz88NeyS68fYccBu0aPAeNzVfqLeXq09JeIpn/uUHDTJWR60lLa7Q6lMOJGIxXhYW16t0mjTQlmPEosM6azkmW8PUcsx4TWW3HNvbOu1QcWKg96KQkwrpgFSuAbQck6xhauAStsYA+iadOnVKBy3Hnr/i1bBY98o3/1Sf9H0TO9gZRMsxD0btOBuCdnTScuzb490+TsfMPXdalPQWpefjqYz6ajlmy6gcY0NQDkefLceyz1xJDFndJ2D5L5eWRv8zq71BtRwrzWJS3r0swykUpPeWY5Ofp6RWG3iXP/XHwKfNVxZx9Nxy7Cyj5vL0rjl4U6W1HDt83KuFjU0Vn8Ks0Sua+L/qZhAtxxAfgrblGDCEqJ/6F4fGT/0vtRwjtsXQc8uxH2uYWo79SXZpK6XlmJFT/UdzNh51S66/ed/abU/wfGA2Wo5N+Dtk7/hLC73z2l2fdPFDqZiFNlpf1jC10XqyprJajr2o1T/F4qHUd+MN8wcLNu+ayXrLMaKNYAGrPxmxKtCtq6PvlmPX6MzY/4rw/6si/MRuQjorwv97NlMR/tjsyijCL+vl0/Z06wt+ufvaSnMKfXaxmG3Oso2ENcu3ZDPVLF+arZMi/Ic+2RbUcGvpt8Wii/3y/bn4IrP6KMKfzIgKGDcGs3fQLvGHvSL8Y+6Ofz1E4uC/+uLUQe2bD8AX3tBnEf5wRtV56kd1Oi/C33HFm7oDasz2XFQoiIqc1d1Kz0X4EStDW0UdWBmdFeFP2Vj9Rv0qFv6rr6bdM8lzqWcARfiTGcGJzdZhEf4p0nX3F//SyCtp/451vWvFnTCAchYQoXBGhMCcRv226xwav43vZt/2p8tlt013Gm/+c9Xbjvg6AkgSn0wqASs62WczpsG5c1mIRFx2P1oLAyAul46JiuaqmsZqU8uB2GGR9m3JVQ/UhJpy+1rxOavWA3wFPHjoQsCX057P8V1f0cQqy7LXAldRLCi/evG7yE5RvpuC9p441SL+5EV8o7p/1buL4ELtfXfz2hWzZW4Le5uEhvQYtqaCLlQwQC8DoteERzE6vcHGasZ6rVyomsrpKxRFyUXU/mVcw87dq0Xedc0/c3f/qA3V8Ucp1TyQGykypJTXWS/7C76/nPH7D12vb2dJNTK1cJTgK4ulQnEEQ20b4yND4x1iPwWutbz46vSEFrfxYxV7AHmsqiSVoQxfRmV00Y8yiO4PR5uIhaNfrFQBli9BBDw7tXN2AVtWsLOIceC2d4mIlsqFDtwOLnGj5QrkF2pv9ZeX+bWqjd3ovUPx6w3540M8/LoGPyBUMU5C0f+yTFQZymrGqCxzg5g58FFaeav1yg66Y8fIR8QxzKAU000/8j784revcy2Hle5Hm1Vkq1xBdRxujxpymOpZTKoL1YHfb/J67bxU1JIzeFvnHF8+rZPnF5QaES47YtnERK/bXghAJAbANQoAoGnRyhPFljL6IhPnCg90bHrjlG/e1Gpfm30sWE5YynSb7AsBcGYCYIvleszRvMH5b/FxiI25dcbHydzAxMfptKGy+Th3jM6dbzi/m+fGTW83OO8ZG2kAfJz0DUzRzWkbDIBUkJOTowM+jsXfLa6/tegesPHzLM+IyJFPDIKPI2PUzmBD0I5O+DhxE946rTu2JihzQ+dBPf8xtjcIPo43o3I6GYJyOPrk4+TfXJU33PGN68y6prVKnuUkGxQfh8uovJr6UZ5h8nFeGQV9TTKt4zE9s/63M+tNSvXMx/m0nklzjwxim1JpfJzXvoOijyec9k2x3P8gvdSlo0HwcRAfgpaPAwwh6qfe5Pwf4OOc8w4+Kin9J3BWs9HW0r6zlumZj8PdyMTHKSW7tJXCx2m1vCjUYfIw/tKrbR8d2/VrLut8HOLenAWOie1GJo6J8cbK4uP0MW31euCb7r4F1rO67TNxK2Wdj0O0ESxgVbqBCat7ul0t9c3HuUVnxkYXituKA7fw9hUESZ4+GvQWHynpMwbmTnrJBbJocoapFuGLFh7iOBnMHlNFc8a1U2aZcgWwZl4U/ATKkfdw6vOESS9M3FaePFvQLOWGJ+37kSM56kLS+DMJBSYsSD0Vi2JUEvOeNByVqqdR8GkepINRWZ8H/+FHZXiGHf/d/fQis1CRBChMJPQBdj0BexyiVqUqb9OpUuucNDvV2K78nLTcS3ZNv1+Z5LnGcenZj2+XjFLLSVvd65hDg7Rf3Q8Imm17aOtnpZaTNmlsMrdrte4+s907/J7v31eilpP24qnpfvvFX712vxT6TihtVaKWkzZ4dataXOvNfnO+//og8NwrsVpOmtePE8vF40uCUq/V2RJg+XCkWn7+9a5L5QteVPdPCQ/Zlskbk6HWbGbLw9lrAnN2ue0YkODcKi7oEBAZoyKXmE1TJ71/4ZWd+OfxlrWM0oHIBBUtGZt1vG9Tc/dCeabDt8FBG4CoBirybLBxs1PWV8/0GSkXt91ZEgREpqiokeL/sXcdYE0sXTsgKoode40dC8XelSSEGoqA2EuEANGQxATsBRv23jtYAb1iwQIoYgG7cm3X3nvFdu36z2x2A7s7uyQSkvx+1+e536d72GX3PTPnPTPnzDlVW7/9R8WbfqtIpWSvtvAgeylc1L7KRQvbCyrRLtuuykqP51cEotK4qPsc15wBymPC/T2Xfd3yq/t0ICpDfFftCyvcPW77JJyybFDxeeVWQFQWF428bbdJOL4Kb/+9xd8eL9hzDIjK4aILq8b9Kr1vuuv00uJA295OMUBUHheVu9p5jGS+pe+hPaFRkaWOPQCiCrjozZvHZZ5utBYsaJNT+e3aOj+AyBYX+XiGx07YqvaJuxzxdN7FA+eAqCIucm4k9H3cYhkvqX//tlahgdeAqBIuelH+0bxWFeZ5xH+66H3p3yq/gKgyLqqQPfH57GeHfRf2vDVFesCrCBBVwUWLt3TMTOnQVBRX6S/LAaUt1gFRVVzkMGX2hsFHf7nPfLOf3/7HhU1AVA0X9e72qmVkvVauS2bf/DHnYCWo5eq4aLJ/mZYVdlV0T+y7zO5iycgvQFQDF7kvUp048XidW8wr62k3a546CUQ1cVFgg7JlFO89efv+STlQmVMVYlgLFy0rk9W1fUxrt/0f56XJwqqHAVFtXOQR2/HlsvTWvgty0v2HD9i+AIjq4KL7xcqOrxjuwVsZadm38YGI0UDExUVnLwxc0r3oQ++tvDS33csSQmiHLetyGA5bNpBcebLV4axPdP+DF3sfejXTAIctbzOZqEqhKUkrM08KV2+7P/p0zbGx5M1E4UilTBGCyCBgakzaCL9Dm/OJlVpXR4hlMmCE8Cr2OqYMUA0U8tXo+5y4QNfaV7DfUXwWtK8I7zca9h2J168JRG5GpeZFkN+2ZtTrASqLIc5LIxaNbTSmarmCRIkK18l1AgA5QIBCUI7bZ7B4qB6vVzZAG3/gMKmwvbsQCSzTq1BLsRQK8H5SGWy6rB0nXOBBccVwyRWMPuOzSZlxRvSav2b8YXH9zkOvk0Og2t9DD4HmigxeXrUJNmJY4Hq3xSzi1fR0PT3bhtrjEy0kV12R4eJIsH4ZKuECB0Tbhok5Vnqq2LWoYaJmHrteNKhcvYcjl7Jbjj8WsVtOSAytPWcHfLC7oLR3whEb7LSIqZ7A1SUSe4hNawkVSHTr1bvJVWwn7HM52GvZZqutfdYXPI3IAGAVYwULDHWcf+5wGPjnv9MHv3X6gOqhG+30wdV4ttMHy/XjSh1PH1hMn3hlbHIcL3mNKLWn3aadBiRLqgUywOmDS/FsydoZ+pHl754+yFhm27D/u8rCyUFbuvT4OXukyU8fbGNFBYwbM42UGO/0QfZe4bBL4TO9Dtz8vurFvGs7zOb0wRRW1SlNozqjnz7Y0jP0Q8rEUcKk8Y8WTV82n9IPyeinDzArw5g+noHwUgrr9EEnjnTw3kkdRBNzkqNb1T9Njqqb5vTBNlZwlscb8fTBorJvuKH8MK/k8mXHnPepaGUmpw+msCIE5jTut93lMPhtJ1eJRT86VHGbtLl28ef1x6STvVGsZ12Ai0j3jQM+uWUk7gmDFWIo+Cfwu0bl7asIjC0+XqHvhbtu43Q7h0DZv0S/N92LJiR6tHbJ2Iu3dqG5Skqggei9hdBb8uTT7nVsm113nmlR9EIjcZV2lCA7vBsRZMcu5+cpUe2fAfq2HIAAKVGD0K+5kBO/V6/YWVUMIGJc2IVIVWD4AjmabJ0EXc9UfB/leWBhnRd+Xf3nkqelC3EzfVrmivIDzG/0VcmkQZn8xDI1VlTjv1tkAMAWswIGRpRJnCgNZ8CfacVh+kM/0mnNoksbTJcsVvWS74Xa2b8auCxQrY/6VKf2kwrYYRygDOFIpUqiDd1hTi2PH2DXq0nBHGCKannDyrUa1qeWcP6ndbMjBz/yMYBqZayq7WUi1aL84/n6NYDLv3/p+/4nRsSMzBFua9l0XlE/+5Ym61/q5IjbJNi/VElb3zpiUwwnxnscBmLkX6pya3i73c5/9R1QdVbQQXJp4Iqw5GYk3PqE2bgSGB+W6NH1zFGgiACQawp/Yo8JyX0MtjjMbXYWAgaJToxIDdvl/8I0dSB/SldvBAz+mK0A9Kd8RBO0+WDwD9la0LN6PFEeUOB2AyzlC70NhZxrRzTwAuhpDvHBv2lsmhruRitGSBhO4PT52nDRl2oJvAWW3zN7nrt+k2xjsF6oiBZx+PV8bcyVqY9exe9x3rr/ZqmJtUcmFtDGZACYJ0GYrfiItl8nmmIwF3RLuGEe9Wt3t4IVcrUkOAobHrCFBEPXuUZXAizbtfeOz5LcuX9nSBtyVkHuc+nLX5LQ4Cea7HHY+qFgs3bEYMNNwn0mk3C6TP33LdoqvGPevfFyuDhBSG0YrJSJgyVcnyiZDGELmBxme+I+ObwPjlmpfLhYJg3RDPIR0shwrgIsU1S6WwJqlJ7lPVGNjfOIdU09sxNyKkN0bVDBt2zgJT9PLOjcrwxJDWt/GAnb9UEjCRFDAtD+mlvPEl0X8hLLl9vjU6Z2fbL7jD2I7j5rLuc3nalZCQVNpwLTuQJEbj3KZYDdS34mMrrPOiJXQ4ucijTU4NBCx60T3w69t4brE2M5cojDB78J5FRtfICgQzpkqaFnMUQLjCQWtK4kGtXBIl7UOnCUUpIXh/p5cnYcvIBLK5E5wJ9RO7i5D4RObphERckShn8KargrYwQJFQseARbVozSqRmqZSkwFmSQF7aHsiM+CHB4qqdAJmwV6bYRV1bQxhb4CxlXE0A9BQnG+apkyE26oeAunXXXpcaLoT0pgAn4VIjCBXS4MKLAhzggFGOI4UT3gMBCV2dStp1pLw7TwKYSy9csT2crWT9dC/tDsIafmxhkGcnHdX951hk5w2+perGqNFs6XDQC58i82yAf9RUD+iAlyvbMyyxKQGyErE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREViYiiZLIykQkURJZmfdX1fnWcldT7419w07P3OPtQEt5g4MXOfqo6ZcGSHl7zKT/el7H7G/tLOm6xSpk8JVn5cj6t9Vs9gtkCjV0F7EADt0pL8Yw2+q5SmHLnnDY40bzAGxJCdeZeBqCbuF9asppvq9IAwf1Q7p65cBbmp4AJtlV1N41bAfpnqDX3nUNTbQNOw2igKoBeIB/MOcFfT2p9uwVX9V9812nMY88M/sXJNZWuNvYHLBwnpKA024O7YA9kIYmIP1wJqwqaVMi8mKFRCkizf35q21/Cfbbutm2755Q14BpERN7+Hw8sXmka4Jihvt0/qgjBkDJnRWlpgn6NWlv7kfMK2yyYZgRUw4u9YjcM+ZQSeDFYytc3g5xXz4gNKbXy5tjTBjPhe0XsUGEDMjlgGWwMkE/N7apNnoIIQrOU7MCMhDJNqGjll4BLrenlhBNbOIy71ynhJ9mELWEIPVjBck9Qb+4bkMXqebLtVtVuUMGCywyG6hH3b82HfqoqXeSrfvf39eujSZHEYnn0qOIWklhoNOaFR1uAuEYPeEwEOOLIB+RleMXwZINZ1zjfD360Dfi6UxoxQBuXXI8V5vqNkKhV9k46gELXWMDumZ/A9PTCLrwZ1BnH50AbF/1ozrdwrRLj+VExrSd7LZ2ZZ9qootXbpM3O7F4LAOtk4T5WXGqiStoJjgAqx4Eyw81xrJhdSf0nhMTWGUwsCRgpjFD1SNzRfkDa3u5Hozc5s49aUcmuRJCcC8aqDwiI7sEEKavCWwwPdaT7PIPoVFjzSYLoUFLg40RGEKjdRKOdcSgwe3QUyY7JGh8xrHD5DuiWNe4t5EdqtWi7kNHiJVczT4NYr+cyTVvrLmPiPZg51LEXLlkBLwkUUmDcYLUySxRD3exvCFqpzyPWEdclXZCTkhyFqyahPDJdwDUGyTrZajKYGEozeYueB3kV9aus67fIvtPHjEBRxT/DLqxmuwiYQ+gu0iay/nNOeo5twLOOZiZPAjCs42pooMoWa9sktKa92Er9DW7yIyg9c/Ge+32f97C9d5oC3L0T3M/PfqHX88PH2W30X+vbb3PZZat56o9de9FGACf9qz4gOFjigwDayxxY7gGiM4c6h/9KoGXDhSrwiSRbErreGRk4xtHi3knXIhSrekx4RVZaZr76UrDrxt8zxZopRyrVr7vNiet5BwitKIXfZXFDJ5SEoIbX6Ri2s7c+khYZCF/n03qlrsZQ8RkxXhj99MVg183tGKUjrg5gduMtPXqDichh5+s34KshhYDbGEhk+aHx8m0O1+Xujx3Pfglc1iFJj8dyVm1As0D6Fm1hKAwEGnAikixZILXn3EYeH3HQq8PfTt19Ij58CPS+uj192Qda36j7skwnbUrDDKBc0eES4PDgVsJzxaK1WpY0UCbFYPTv26LD+o5bdT70sek5ro+eaK78TxRWvaLEqzqNu4uaAS8Ju5qQLKXaorUwCNMmjdBfrjw5oObQ0JeOs9/Xf2folVSyK3UizM5NlqBkckfSyWFGDqhcjT8mmEY6mWxOvvgI0pTlpN0UAvmA6k1+wOwFCD8e65PyR3jMw7dQIXC5yatCgrXtRhgVVGAwVpMADB8Mj9nmsxmE7iijiYD9bimhjkMELkavJstcuWvxfwFE+Y++1zPneQcE0T3qdZJ+tyzPLlqFNZPXimTBmPHwuiGlAnpGt7AHwD0FAnulHEjSE/RyU5SK1OwvRa9mBVZruvGDZjV7/YAOGejNm5gjCJrT1Zp7W4k4TkRfFLSA9pSki7hbyqOXfYIIcZA75ATcy0OlXBJfV3Fu3Qz22xCbsEgt/HFzAttjFhrrjM/WPM+2OvCH2FbuNVylaqAzYHZCVgyE1lfSP0Ef3WOrVGxnXecqPuDLL8dM0j6seDRZwePNjssKLOj9xTLVtvnWnvtqxgV5NF/5quC7pkAdb6G6nRCZS/ABJ3re7LygJTfzlLtAEmwAlhofVA6sGjtrrrvfjnPn9xg7HlBLDkD0YJPR4mfL0r17r1MK13yi+Bg7b2PhzxxuWMAlLJYUdq1Jwsfg9qxxJrtoqkXCB0jHQCiZr2TOUzzKDqH4dcLY8MbGzGfURtNvRwwpHB7+vL/mT2llvMxkj2tyWpPc5L/s6e4fjYNb7CglR1XNPN054YK6cshBrCn1DJNBrAUVVkthVWh29NnK4XSueOmixa2nDyiWmbiDAPYU+omgQFQyklmQ+lmciHaUyqHmtyeVmW1pznaBf4rJntqNmsC6nQyTDJbG4tqb+cIlC57PzqH77g0x98AS4KVyWxLgplayF8zQa53MlsZAnIjJLMhauARph5RA49IZkPUwCOS2RA18IhkNkQNPCKZDVEDj0hmo3potIw1aBWRQ4xaPc8AGWtvDKZkGyMq+ffqSCKKKhJKpsb8aTqxYtIJtWyhAXSSw6STlfvv9p728LNH6v49qTuH3iOf8yvqJ5ZLZPQCrUyGzY7HVcI78lSZ5soVkRJNcaFIychIrqY4K/KzqXUXEa+ii7WzCQhWKWQyf8hY8GLehqwUS+h11dneuvgk/rxto+4fcepuy2QJrXuoJapA8PrEr23ooogaLIO5WrASLCz8EyKNxL8deBgwynE/ejNFJUSpXlozlsZCTsxOYEA7CDjR0wQlvcWqMKlcJAklEaCN5rI/7NmR93oJzfVAhTLvVUoJ2EmNhdun7swqi4Hop4LnBiOlmrcqTrwVakKpxCM85CGw7BYBr0UJeBGGXvJcwnx1GV5WWLMggJ1ApGKZANaCykNEkSqJOEL7b6ueKrFSew8+VN8yDVWzoWVqFVADbdVRx78BePnETjZe3r+T4OV3Zo85tbyq+W6PJrMm9m/UJva/Z8Jcb5oszTEeTSLq5hI0iaibS9Akom4uQZOIurmEL5TmcOr66UYf3KdPbTxewC27MI8vtHFpHUf1Gr5rSnApP+sF4Tk0coVWH71coRTjNQC5fmDSpJm2HKMWHTZayzHLNLaWYytTC7vlmOfPZ7b3soN4a9fMdqhrvy7KDFqO/Uxla+DyPNUM+iYdOXLECC3H3LZWO7L8cwX+tuOJWV2HuVGauZio5dgVVu0cMQftGKXl2Hilw449H664bnMam5T5MyXELFqObWdVzkpzUA7HlC3HKs1dcfz74b2u6RsPnLrY8vtAs2o5FsOqPJVplGeeLcc6TMu8Yv3SjTcv+5/mH9SXM0zccmwAq+Y8Ta45eFOhtRwb3arzzJyrPX02zhv7pM6jsOJm0XIM8yEYW44BQ4j7qR85DH7q/6eWY9S2GCZuOTY/ja3lWEiacVqOtWn9ZR3/aIjPknnLtm54fYEc0zZEy7G+w9pJHlrtdZ+6fE7pMR1cmhmgjdbsNLY2WiPTCqvlWGblhqIGH2JcN0ZYFj1cZNumgk9hClZUG2EArEJYsfJL+59qOfYvkxn7rwj/bxXhp3YTMloRfucDbEX4OQcKowj/riMnRk0LbOc88azb3QmTMpcY8LS5gW0krFne+QBbzXK7A0Ypwn+juX3gxJEezim1hqz9OXMsubKiKYrwV2RFBYwbs1k76Hfwx3BF+GtFHVzbz22D9wzV8iZeky6OMJsi/C/T2FR31bhERqjO6EX4H5V9WG/imD782UeKrVm/y7+riYvwY1aGsYo6sDJGK8L/86W639iAL25L7jevdiT7n0NmUIS/Iis4nANGLMJfxLXu8lcDXH3jFnaLLb9AnmIG5SwgQticZkQIzGncb/vEYfDbhLymzX51ucSLv1074cLaN+StXxvsEJ9SIQOMTvfZrBlwbpMbIpHm3o/XwgCIqxRRYeFcbdNYfWo5UDssMr4tvepBHqGuuX2NhJzKhwC+YgHcdKHgy2kh5BxJL+jBqoq5rwWu4lggP33Grqpny559zY85Y51k8bzE64L37qK4UPf7NG70c/1G38mHebIxZ8p+K6AL5QfQqwDRqyNAjE53WF40XS8XqpRm+oZIwlQStH/5c0umhZcdz2tDR3Xsqk9OpyknpLAbESekNNcNXvYXfP/zdLbvv5JuamdJOzL1cJTgK0sVIdJglto2VwO4RzZlWXgf9Jx2zG6/Yz/yWCUeQB+rWklhKOMIqzK2m0YZVPeHo0/EwsFLrogE9CUOhnundk5dwJIVrCwimnNbdAkOV6hCmnNbdlEPU0Vi/0B7q+Jlywa+bV/SZ/kE3wd1TlwNIPMa/AUBkaNkiP6XuaLCUNZKVmXFmMXMgY/Sy1utlLvRLY9SDVazzKB9mdOdi74575b0cn3No/f+LVOQpXIB1ZHRAjfk8KhnNq0uVEthj0/p+nmpuCVn8baWSKq8OeUUxz+UcsCve/suN0y67IUA3E7HAbiKAACaFr08UYLKmItMiC5fTLowZrnPnsSiD088uhBk0sO+EIB4NgASZ6cTjuZnzv+vfBxqY26j5eNUzGDLx9l2qLDzcRafv5J5uoK9R7KT21Bfj6F1zCAfp1wGW3Tz+yEzSCqIj483Qj7OumXlVgV093dPu7zae/O9LkfNIh/n6SE27VwyB+0YJR/Hd8yolkkjb3ns7vdpZsa7TnvMIh8ng1U528xBORxT5uNcP5JSZwUn1X1GVsb9KN+EILPKx1nOqrwpplGeeebjuPw771P66iDnfYN7uWbdnLnExPk4SlbN9TO55go1Hydg2qv70p4rnJc2rJ42oFyfn2aRj4P5EIz5OMAQ4n7qF84fkI9zv1jZ8RXDPXgrIy37Nj4QMdrE+TjLM9jycWQZxsnHadY3J6jjxCTR6n6ptmOrWY4yeD4OdW1ugByTxRlsOSbRGYWVjzMjLvvm/mtLePMvbOx/8NOCIwbPx6HaCANgJWPFqlfG/1Q+zlcmMzbskLSZ1CdRsC/dV/bkYd835EhJ9yh4dtJNJVaG00+Y6hG+aOAiVSvh6TFtNGeUveaUKVcMa+aFwd+AHHlnLwxc0r3oQ++tvDS33csSQhjfjx7JySukjb8SAcCE+eY9ioUYldRzTzqOSu3TEPk0z3eBUVlZAP+jnP9caSds/2xXVukAiQwoTBLiAez6SOJxmFo1qvzGpMpWyT78js16u6cnRXvPzEn6h2LlgfpUCpmmULUezf/aCkeC8RWsCYHi25H4o/AeljAfaqhcAbtZhnL16j2ywX7HoqsOM5zncANj/I7Nu872xgheIsn1KJl9N1bI4RzjI3KacoBluBsnLIScpsDLm2s/WC8TpCX+lA/m+IcZMKfJwB00/ABCORAh2EGD1poW+qsAoYJ2gasrII8hfEHtA8eXPYxNOCBRrDl2zOcqjV/zk1/su/10SSVy0/FiDAOFuG7wXBl7HCguimRgeXJnClAW+gNVvacEbv9gCJHnHRqhn1U2HsxqcddjgfDQfGGx6VfJ23X4w+jbdYSgMDCaH8eGEXUwWf4GRlh8C09lATjlO4omdVuStPqGS8KK1+NLecd/J89F+DBEW0HN5cLAx2k9Gz7R64W44f/OZPib/KhSdTu3iHAPP+ebpHYY2fDbYP0WmfJpmdYhtbwlYnWUSpPPqgnAaKw7rG6rm3GvvaHLqdMR4a7JG7ZfW8NpI2B8Kzpz5xHqYdYHrQM4HuEjits6A7OevY5m1vXMwSjBhz1bIADI751VN/DQ9EWnfTapD3qsVzdzoTZGUNOTojRX87PvVKNnAPuuhFAt5yFKssIUPwAVo31HJqdQO1lK5VwREqODEyfHfhvr4jkj5emupQ3Cd1XA0lrAtwtHgqWb1gnG3Ode9i1MGs7j2OM4wbQpGk7lHDCc8Kn5A59KtKlp1eIDr8zxbPcNbdtet0iqf7SISDqYkMU9XVNzYIsgUVKxedKfT0uSV+V46E+TdKL7vOW6STSemib9RVPKRW+/LMGie4MTogBBzIWVA4t3tjnJ/Gb0XdC8Uj1GZPQGmKiHmrzlIM1u0Msn42p9sjA0HOg66O1ujz46xl64ac+HmnY5HFsDumjSn73Xdm/yr+eW2j3HVm5xcVABp7ASHmragLto9KrKzTDA9NrLq+ZCGS/aXmfopqklzm46IbrFSxzt3u/M4sNhlLCzcTOosu1xNMqhJirkUIAGPlF/chg4dOnTj2vse8wWpZzyPez2K7YeORs71zzRt/KYtlcq555IkXMl2geUpJu6ojx7frMWOs3MkjHrs0qVfuO5ubtDuV6e9WowvSY9aTxXpkdvxkFrhJrejMg6neXWCgtcp3P5j+jUuAW9PPZuSfBxftTsBrVOJ1VujDqdtrlYgQmhkooHy9DT4NKTST7fRwu95y5wON+g+KttZG0E4bdyf6tMJ5UqDdAXUQm1iSxA2QtIM9YI9SjTqTNGHMdiK/p/dPeMmZz4t7w7vz0DRr9VpJNqhgyAERjTLBgNWivUp0hnxdwinbkGAInSlnsrqo271t4n5fz4cO9m2VNNWqBzvgM+VpAFOqc7YijhBvUXk0GtfH+OS4WO5wVxbR4cSjoxguwOW/DR24nlNbEGBJSckhoRqeQPHpqglQIyWF3ZnKepH5qucV7cJ6G69Y9jfSjfoMuQ1VUX2qAcNVYFyFy5MxPuxEByw1GHYP2xqL/oodq8MdSevz3bK+Ts4gtKE6Heq1wWBXWLPxn1f8t0qi/4fMVlxfe154uPqzHSVKh7UlG3/JNR/1x6x60ciZ/rhuMzMiO25Aw1EerloqmoF/mTUZ/xtvnby2tmeU2yt4/vu2200ESoy1ZRUbf6k1GnFkA2EeryPVTUizKh/nPqro22Dlb8vf2qrtys9EYVtCQjX7Lwkde5Gqf1wkPPVy7ZzZ/59uO5Vg+vVTdQNc6PyzZ0//zuo+/abe72/n1rPtXR52bTSGwnqkaK/ZEaqRw9tGWb7nbue1eur1mldvViBtLIi/OB7oOLdOenrmv80/mMYp8BNCIaRtVI8T9SI0tdv1TvNJYnSE7j9V3UL5lnII0MnTB2aFJKlNe0HbP73310uaMBNJK9iKoR6z9SI9R6sgbSyG9mcrD6TNupGinBpJHuD+74Fpedc1uXkm45YW9dcvWWkgHh0tBILgwFkdUC02aZsjJq+IaGwkwasUyWG3PBo3NIXJfXkjvdnhzuPq3qNnuLh5duM70CAlxddw0AJhnTjnE4gajMilh7IJ18rIAhuNJYZDBSATN/Q9EDyPbSpO7bZkR4J58/bN01rTo5hoQOw+kwfkbcsuP88GzGX3swwKNf9LLOBa0bA7CKhlgtR+00uTcXcpxjjul16FmjQQU2KpC4bIsqs7DjsGDB5spJNo4vx1yhZUSH6gZMQQPe4Ms5U9m+HIwSM8iGxkagHkdEbGCZfLbOCU0/dfq0pVxX9/WT9ndo7HiOvKuBFdk3FvzRk1gH3kSTwE874FzQDCPNjIDFOpgC9mO+N/JpcXOs94GeFgf8Eqs8/U1LUdBkdAfcFGQ4I9Kt4FYsmBA4wZQ0Y4IZ4F7veaW0x86bQ0TinhXnTiscgvk8L5OFYD7PzSx8gim6Zqlt9V+egnltLv418u/qdQ1DMEUSI0b6DzjqlnRZ0GOB+GywAQjmKcSKcZ4vn5dpWIKZ0TfMc2iQyjOpaI/F6U8W7jchwbizfjkYJX8iwbi9ulZ09e0q3rMHChTHFhVvajqCiZ/LBn8v08BvAoKpmmbf+NKvUK91V2dUbPnlzEPTEQxmChgJBkwInGBszJhgphWZ5iZOvOySvj27fKWH5/oXDsH4fWMjGL+vRiCYPY1qlb6/p43znJajnIpsiPjHMAST2H1x+YwHZd1mWMXO7fGMk2IAgnH+xjbPc74amGBe/+rWaVqfb7ydnueOf0oJfW1Cgon9yvblYJT8iQRTUhzT/J7rdJ8UJ/ngsq0STEgwHFb4d3z5XyGYBmcmfJFX+CmYeGdi7L37Y+uYjmAwU8BIMGBC4ARTiolgYhfMiXrp+dlt6bDK6pUzm5OtezFXWPE0Uvfcu3aaG7hqRYSEGwJGADdKDc8pK2XiYEm4QhYChgd2bikU+znsDHOkOEytUw7er06Nb7y9XIW3tcKTGMuHZysWEymCh0pCtDehXp2eu6O5rmt6exMhhysFA99SgDq1BCDmDkXk4kGIIAcjcvHgf9RcPJ+pt7sGHH/hPOV0crT1W99L1Fy8yT3jJlxX9nNfnhG74vHy2V0JuSWngD21qb8YkavHaLVgy0dcjehskv2lI0SOXVzS/13S4FWzdcMKoi3DlzADenWGel2NOv6RAc9aSYXGNGbEi9rIo2SygWrwDfIw7ccWy/03RrljnDr6j0PkDDLpqoJr7mwLjpJFRqnQKYMHfHfmnNs91y0meubFJb6X4lhVVlygeRL9TBMhKAylRQ9hUxqYjKZgICuRQGNQ4S0TtPMe0w0xR5nIph58S+iXSuVqiQorlQx+BclgInU1tlfAC86ZdOGSvwZ6XSpbtSVVV8W9oyJhgqcWfEqqOPytTnSWcso397Po6xlRvN4z3ad35/U9q3B3LuipGKDUjKFsSh0ko+V+siXIlsEHu0TTVBcJHm9neKOSVWuKJg+M2Nzrcsg61oFuBS0d/QgRdtXgTpYjbpcyeAhKVzphQxyn9NJ/AKVvmtqu+dq+1/i7akeWO1X70nQjUfqg1myUPqjtf5SOTpauvmn0gn2TXGLqZLhldt3b1ewoPbo1Kzu0+d+j9GjewyWTR3NF649bzj+y6ZbIDCk9ow2r9W/7P0PpxV5G1nFu31ww0X70zOV7110yGqWLAqf027raynXF4H83V0kb3c0AlM5px6bU2HYGp/RjnW72XybezN+hHHq3x+vz9mZF6ZhdYqR0MMRxSi/zB1D67gT+zCSf26Lt4Z+arNrcepaRKD0j/hgLpWdsPPYfpSPL6379JRT0lvhuEl9MP7E0eYH5UTrUK6Mhcd5i1KQJs6D0fiM3Tyhfc5zr1gtFM+b0E5U3Q0rnbGZTGpiM/yuUPmZGn7WpmS28pr/wfdGUY9PPaJQeWingi0XMWNdpFvtU8rpe0w1A6dEbWGfi+mOGpvT1dSNiQq7P5C1xfhjdPm7UdvOidGiXGCkdDHGc0sv+AZQuWrp4eb3Aeu4bPvXtIVhm18FIlO60PJOF0p2WZf5H6ShtxahLP7g62dZnQ7cn8y8qB3YzO0rnQr0yGpLsZUaNIpoFpV9vGTfknO0k/vovVtO8hdcamiGlRy9jU5qTcZVmSkoPHvFR3ryYpWjKkqvNrkbMv2w0Sp/dq+LM9BXFeft2nnuc1T30kQEo/e5SNqXOX5ppaErfe2PSFXHvIfxDpzI79Phu+dWsKB2zS4yUDoY4Tunl/gBKb52jKm9jk+CSlpM0dH+NfyyNROlVLbNYKH25RdZ/lI7SVk78wYND7h73Wu7vNTZzXNsKZkfp5aBeGQ3JUwuj1nw2C0q/MlvtIswo5rrgtKdqxe3TH82Q0jMs2JS23LhKMyWlV2l4NClp/zX3GPHgnv/KVl8zGqX/3WxGHVX1I4LU+89FPqdPzDcApStZlepukWVoSm9+uXa03c32btOnv5ns1XNdNbOidMwuMVI6GOI4pZf/Ayi96ZBZew9nvfbc/9C/uzz7TQMjUbpLFzZKP9b5P0pHaqtsQ8WOUTmNRfNa7K8UWvnCKrOj9M5d2AxJxS7/e5RebmLLztZ7G/KnSW4PK93Nr74ZUvrLzmxKA5Pxf4XS22UsmVj3mcJ3523p551T+1Y3GqX/ZpkWNqWuZlVqZGeDU/rrk7ZnGtz1clm84MJ3p1PNn5sVpWN2iZHSwRDHKb3CH0Dpo788T7y/YbIo7W7rv09u8UgwEqUfULFRemfVf5SOdsBWDLr5dcEm/iLbyi5FjqvY+cEUlJ6sYjMks1X/e5TucNWv3s+vU9w39m0+4JvL8+5mSOkhrErrbFylmZLSh91MGP+Tc987pp18y/4lXesZjdJ/s84Xm1Irsir15TCDU7qPY6W/q+0Odt6xYD2/w5jk3WZF6ZhdYqR0MMRxSrf9Ayi9m5uzR06fWa6pl+5XWbkubIORKD11MRulj178H6UjtbUv7di7hx3bOk8dYtev06gbB8yO0vcuZjMk6xf/71G6uMW555PELvxZY8cu4B1pxH5K1DSUPpdVaaONqzRTUvqqlqNvbXy31SfVk1f7UnDqDKNR+m8WimRTaiirUv0XG5zSpzRZ6nOvwVGf2QvnLDx49+0Ts6J0zC4xUjoY4jilV/wDKH3j0jqO6jV815TgUn7WC8JzjETpd7ezUXrs9v8oHaktiax24Jbsve7pbodbvKmVMsfsKP3mdjZDcmL7/x6lR8q6t7Hredhl90yHYj/s+/U1Q0pPZlVarHGVZkpK/zv9he3BJ7Eesw7+8/pUrweljUbpv1lpmE2ps1mVOnK7wSnd66qzvXXxSfx520bdP+LU3dasKB2zS4yUDoY4TumVmCi9xUb/zL5JCa7xG8uePjL+41JyHSk3lSJKSWZ0O+10UORtGI5dEihk4IvgJaIdO7JdAo8bBp8LO0G5qcRqdbhCqYQdM7E3VVt6uBDDp3HKhO1DM3u7TF5Q2Sqtyc0BQETQ3K5W46OXXkgT7W0t86iR9dMdiIjZs1ve8aHoUUPB+kUlJyyN+9oMiIrgoqcnv7y3fh/mPiUtu3nbsx9kQGSFi9Y36N9JGPPWJe7l+6Fjvh2vA0RFcdHjMb7T01o28Zzf8YHtxo51Y4GoGC5aUG1Sp4Q9Rbx2qj2LB3Y7egiIiuOifodrtLh+x94zdkN65UfS/o5AZI2Ljg65Pix5zzf+wc/lnpxxHvo3EJXARROrd77Q+chXwc5mlvJ7scJ+QFQSF6VccFw8LrOP67S7iuia62ZANGxw0f5Kzxc8Ee9znl+h7Jl5Da9ZA1EpXNQxW7WLd0AlWBb02SZl8MmTQFQaF90ZcuzdTfeRzhuLLr49dV3D0UBUBhcJjt9qXuQvG58NcVtmtT9aoQoQlcVFW+Zu/fK42nffuJMLz4tjV+wDonK4yHWlZVajAx7eKd93bforbgT85PK46ET87DdrZCeck2VtzrZf2+MlEFXARacP+yx9NvSS77S+Dbc8Ejj2ACJbXOQxp0a1VNe+bos/tLlz+9/HF4CoIi46K5yW9I9lY9HMt7K02o0PNQaiSrjoRflH81pVmOcR/+mi96V/q/wCosq4yG3qwd0Tn7rxFrcuWmf37c9QlVVw0cKa0ruf/EcLZ/UJ2i9r6HceiKrionXzHg1PrZHsvHNa9Z8lEm0CgKgaLqpz4cbw6FJePnP6dbk1qt/5SUBUHRct6fR4cMfK/4p29Z/VKbHapVNAVAMXXXiwznnAoUTPuWGC1ycfbocPrImLXiXGVv8xsqhL6rxDHco7nZwMRLVw0eZ73Uck/+XD33up6CSuSxc4emvjonGnB0lW3enFn8xvUnm5dOs7IKqDi94//rW5WucEXnypjmdeLsuMAyIuLnp2emn3i3uEvCWXEtN6pwdZW3u4DCRZo7rgP3TX6JbndkvauHvNXlpRFJaUVhZhNmhWkGrXOIRd05ioykwmqlJoStLKzJPC1dvujz5dc2ws2bMQjlTKFCGIrrBMtRYb4Xdw8S6wgExhBcIIsUwGjJBaEhYhgQ3FdVplUA0U8tXoTg8u0NHOl4PHbo5kQfuK6D0ZbS/kWB3J0qcjbDltR1iJ5kWQ33bIdklQ5UFdvZd6HfyWWeWftgbsALsvc7pz0Tfn3ZJerq959N6/ZQroFsCFV3MIUAjKLfjcVMipSgYIIysOsw/cxl8ChoZaOhz2yg1WRCgVaimUc8H7SWVYlU5inHDFKjCSIhUR0mAkikOz1z2T9Tnks63x7fPOAweRCwGX0P4eGpJ5RIb2GyBcVqxw5Rw2iWtMLRpoUdCigfb4RAvJVVdkOHCaI8RDJVzggMC+voNhH3Pm5r4pmz5YV4+5Lly9qfSCm/zDnUj6sw7AH0tTX67E0NpzdsAHuwtKeyccscFOAs5Cf+DqBoHlhRT8JNH9WEIFEgnW+3UvP2zqvV0wu/2SmAmSww3IYBHPpIOllRQGWFasYIGhjvNPFSb+CapjOXTxznL8lDjZm07jrN1JX1VW29hY03mdzkPFGTBOscjtiYwzERia4K8ADPAAbqg4OFKhAsZGAVbiUjB0ZdgvcMB/ES5Xc4PFcu5gCVcdpVTKpEBDgxVACO7XPDJKDm+Fu2hyuNSRSUeDH8EuOnAF4WJ5mATTb1+f/lwlsTMFmSFSERYmA7NDEjlCIpFjPxM5QsGNAINAR26keuissNHGBPUHdK1abCfkXIEKr4Tag7sLuHKpflxZPpcr8RdC9046lrU6ouZk14Pr49ZaOBaJMyBZUi1QQWsVA4QuQITmoqbEU2D90/Ujy3qk8Yj1v9MMPRwwKUMHPP5mS77LukRe9OeDLVMtFnPJew4Mw4K4bvC1NEAlkRUVMG5MXMe4GIf4c7ebPrWMW3uEcgNVUZLm2Cwma0uqzmsX7JwcnLjjuS0cnJogVZYVXv3WhnPhHqu3zhs2fkD9RuSq4z7aB9EbrueRFYbqJrGqTm4a1eXvzrC1y67lpwALE0gJUGtqpSRYGgrNu4YFkOoZ2Wh16I0WK90O/lW0wrpxR0qSjRD2PLoR0lw2tFJiHXAr445SipMTZmVoXgobHo0CIVkBRIZLNLyoBzDHJhd7fWTxDd+UViN+LJtxfTV5mYY/mL5MIwSFAU4iKzhLKeBY5gNOYw1L5TK4Pug0qFDywy7pCffoll98bnT+NZe8RNHGq+hLlFxRYSA0iRUhMKdxv60qk992cpVY9KNDFbdJm2sXf15/TDrZGxUBH40b4CKixyuZNg74ApVE463J4L24JwxWiKHgn8DvGsUF2KoiuUo4o4Cxxccr9L1w122cbsW6KPuXrBvO2u+ge9WEREfMs8GyMD0bYH6Tj3CdlEAj47NprhPR8AG5zYC9QB5MkF87r/Xfc64m9XOPDuy9bN7xG9NYv7ZoAHwa3YhpLufnSVHtYwE9qRyYwpWN9z2kDVK/5kLO5myaJwUBYyLqqhhgxLixC5GqwPAGcjQZh+9RLXseMclny+y2TTeFXQ5lBa6EC/Ew+jTOFeXbl6nq/ku7jrznr/lQrUhQy/UFrXYAAVzICiAYcSZxujQcA3+mFYfpTw7NCSvBolsbTLcsVvhSqd02P9LsPVJ7vBl7fmrg5QoecmBZgTKEI5UqsGTP86xiPH6AXa8m7EFyfR1oiqq3ZI4dtWjVW/6e1AqBI2s6PjaAqoewqjrIRKpG+dfzuzHuPCF7U4jy8AFSua9m5kyYn+7uHZ2xwe2c+Fo2ewwRPo4eQ8SuGnwv0BG3YTtQMcS7jtgUxIm2GhPR8i9VuTW83W7nv/oOqDor6KCI9DUVYZvaSLiV6iINDZWoJAAaNX2XpAgDto4CRQRQgaZZLvaYkNzHYItNTZskuFEFc4h0YlhqGDD/F6apA/lTuno3YDJMyQSgPwWT4S51MswHkyE8k5FpddzB44nygAK3LxRKiQp6Lwo5104z5tVcgB5GzNjfNDZPDXe3FSMkIWjS2b6kf5Vg6xyfA6G14hImbKhPtjlBWL8cus3Br+dnc5q+eFOk7IEf7lNcGwx6fXj25QLanAxYIQnCbMWHMXLq5l9TDOaCbjE3zKN+7W5ZsEKulgRHYcMDa+eFxHJR1NYkpyO+rouODaux/4nbTRKWNrnPpS+nSUKDZ87Y47D1Q8Fm7YjBhpuE6kwm4XSZ+u9btFV4x7x74+VwcYKQ9G2l/SVYygrXJ0omQ9gCJgfcnrgP5j1hY1YqHy6WSUM0g3yENDKcqwDLHpXuloAa9Wd5T5oWyGId0b1rJ+RUhOjaoIJ52bA93bGCzv3KHlgLObiLK1FjeXcYYkgAdu7+/mP0pmTP6AjfO4Gv5RR3G3sQ3d3WXM5vOlOzHAo4nTmwpA1Ebj3KhZjeTMj5fozmbhOZbjoiV0OLnIo01ODQQsJnddYquefVR8K0GpZFUxSbMkjwlcIHCDpERJYaehZDtMBIYkHr0jGTJC1aB45SSvLiUD9PDpCDF3B5JTIH+DNqBzf3gdAJDpOoKN3c4J+CGu7KGEFCxYJHgEX6KI2q0YdIKcRUkElSQL3Od8RnQQ4PoddoJ2wW6LWxVtUHwxb6CprWk/jQD0G3myjbd+nRVbs94uuP31LHocFgSqADfhUi0IFdLgwosCHOCAUY4jhR1WAiKm5Y/b3T58zgLzq6TbTiS8oY8vdAJ28UmaAYbDHTus+WB8aYSuO+jsJT3JDAUq0l4kXoGTX52uAlw2MzA+uW4R9SrW7+vZ/v5oLaYOCbLoWQc+EeERVyZ+A5xGghr2n2kFNz7QwDuYfVpp9dx8Xy1h8J+ris+JI7BoBcfpwN8gHHCchrMUGud5ZnWQJyI2R5IpIyLTiMSZnERgsiKZPI8kQkZRJZnoikTCLLE5GUSWR5IpIyiSzPa8VrOqTuELtMvtblwfai+5vRUujg4EVnllDSOQ2QQlebSf/1vI7Z39pZ0nWLVcjgK8/KkfVvqwkeCGQKNXQXsYAQ3SkvxjDb6rlK5SFYsCEYfwC2pITrTDytQbd0AWoKa76vSAMH9UO6euXAW4o5CibZVdTedyyYgq5H9UobqKGJ3gFHUqlSQNUAPMA/mPOM2m2r2zf8UXFeeoPX96qLY3YUJHZXuNveHLBwnnQUp90cqkHKAdKQo0g/nAmrStoUi7xYIVF6+LakZasnvr5rZlzzCD5+JsGAaRYTe/h8PLF5pGuCYob7dP6oIwZAyZUVJbuj9M0HNj+tuR8xr7DJhmFGTDm41CNy2ZhDLd3etLT7WOSl85LsrePOlztqZ8L48CB7fBAhA3zwrJz8qH5ubFNtNBJCpIEnRBEBM6kAA5FsE9oZeL3v73/KDvNcd+p4+U3vxn43gygoBKkPK0iuR/WLEzd0kWq+XLtVlTtksEAls4HinWi5fdDn7W67ji7d5cr71oQchSSeS49CaiWFgU5LVnRqHyUcozpMxPgiyEdk5fhFsGTDGdc4X48+9I14OhNaMYBblxwf1qbOjVDgu6y6ESH1wIausQFds8mB6WkAXfgzfMQGlBOA7bN+VKdbmPfV8hjbkxd7eCzpPeCG3/IzM8mbnVj8loHWScL8rDjVxBU0sxyAxYVg+aHGWHYzIacUes+JCawyGFgSMNOYoTof+91nzv5X7hvHLRvRt28UeSVYQgjuRQOVR2RklwDC9PkoG0wP9SS7/ENq1Fi0yUJoWMPxY3gIjUvzHR0xaHA7xGWyQ4LGZxw7TL4jinWNexvZoVot6j50hFjJ1ezTIPbLmVzzxpr7iGgPds5FzJVLRsBLEpU0GCdIncwS9bAYyxuidsrziHXEVWkn5Aw+B3Ctjkrl3QFQr3dOL0NVBgtDaTZ3wesgv7L0LvWPJeLuPsmJvWp5flNakV0k7AF0F0lzOd+IOuXcXAHnHMx0HgDh2Yaac85gznmeY9wOR8FTWvM++JhAojPVpkH/aekNfVPE725NGTE/nhz909xPj/7h1/PD50ql+q2TM9x806vua3XhbmhBbRLEpy0rPmD4mCLjwBpL7BiuAaIzh/qHnlbClttbOlCsCpNEsimtgjxpX/EVA73ndy7Z6sL7OPI5rmKa++lKw68bfM8WaKUMq1a+njUnreQcIrSiF32VxQyeUhKCG1+kYgadbHx7ZL1q3skz35/us79vClkx3tj9dMXg1w2tGKUjbk7gNiNtvbrDSchxPqffgqyGFgNsYSGT5odH3PH5K1r3shVtiq/4s3enlTUoFSQ0D0BUkMAFhYFIPVZErM4RvF6Xidd3LPT60LdTR4+YDz8irY9ef0/WseY36p4M01m7wiATOHdEuDQ4HLiV8KyiWA1WunmyYnD6123xQT33jXpf+pjUXNcnz/QsnmdKy35RglXd+rMFjYDXxF0NTa2MYFlUCDzmy9W8CfLDP41oPr6xxynnKdPP39l2/V0WefAxOTZagZHJH0s9hRg6oXI0/JphGOplsTr74CPKRTOi8h78gvlAas3+QLg0LBz+Pden5I7xGYdutkLhc0pNEezX0IcSft3geW4OOGBVUYANcsQAwydzPbMPXFFHky6BKwtu/luglDCHASJXg86yRa78tJjXZ8LcZ5/ruZOcY4LoPtU6SZ97lid9ahnvKFmkVCmTBmPHzOiGlAnpGt7AHwD0FAnulHEjSE/RyU5SK12wvRZNFRS5rhs3YFbnnAdwzkZt3MAYxbHziPJiBJ8gyovB30QtL0YtD0YtL/bb5cOoNyLKhzHZplquUhWwOTA7AUtmIusLqZ/Vjf468fPYGI8dHVKabW5fYRBJPxY8+uzg5VvLaH3o/kNL3lThp16vlTqk41m3gu6ZwJrCUJ1OqOwFmKBz9XwWom4XE0i1AyTBCmCh9UHpSuVWZYJbTOIvVj5Xjqg4gFycwIJPR4mfL0rjBqa3XdRlkM+qXg6xFcKP/jIASsdYUdpxnlbxiTXbxV+iBsBAx0gHgKhZ8GQO0zyKzmH49cLY8MZGzGfURlMvBwwp3J42+H9mT6nlgYxkT6uz2tPX5/6zp7h+nh4QJQet3uc6bVAH8dUHdeYawJ5Syz4ZwFJUZrUUloVuT1tVtyzdYFVftxVbEpYd+Hy+pAHsKXWTwAAovT7HhtL1c4VoT6kcanJ7WpnVnr7WLvAbmv2agDqdDJPM1sai2ts5AqXL3o/O4TsuzfE3wJJg+Tm2JcF0LeSNDJbMVoaA3AjJbIiaeoSpR9TUI5LZEDX1iGQ2RE09IpkNUVOPSGZD1NQjktmoHhotYw1aReQQo1bjM0DGWmODKdnGiEr+vbqUiCKNhJKpMX+aTqyYdEItg2gAndgx6WTl/ru9pz387JG6f0/qzqH3yOf8ivqJ5RIZWSdsB2LteFwlvAMvGKOOVERw5YpIiaZYEazGyh2OHRtDfja1jiPiVXSxdjYBwSqFTOYPGQtezD0CmtONYgkTProcSVi6zX1pYvD3xK6XHzJZQuseaokK1nslfm1DF0XUYBnM1QLvgxUSCpFG4t8OPAwY5bgfvZmikqIMBlTZWMiJPg0MaAcBJ3qaoKS3WBUmlYskoSQCtNFc9peGhZOul9BcD1Qo814lW+HjoxoLEyacziqLgeingucGI6WatypOvBVqQqnEIzzkIbCMFwGvRQl4EYZe8lzCfHWYIKO9VCoAVqkQywSwtlQeIopUScQR2n9b9VSJldp78KHaxOxpmVpV1EBbddTxbwBezjrNxst7TxO83NTsMaeWazXf7dFdrIn967WJ/c0MRpOlOcajSUQdXoImEXV4CZpE1OElaBJRh5fwhZYvujE95hSXP3X33+2VrhZl8/hCPyYEfZxo29w1vtw0m4eDIi7SyBVafeRAohb3NQC5NmfSZImAZcM3Rw1xSXr1WdKOm/COXC4PD/x5g/9RAVOpe5XB6kTIUM71VUrkbiJuBP4M3QKC1CLGrK9Fr+JH+QEdp0a0nZCT+jeM1gg4nGza1gxYmfn/TQsRsqVJ1NIMbaKaJSwhEAXLfoaL5YDkkB8+t8uhJpZ9h/OX9L3yZHmr6cPIAUEXzRPoAUFCYPCKSACSvRCSeKbEifV/myRxomgwgFZrNFJTU3/pUzyQS1YMrFcVJROrsDijDLov6MyJxm3beA0d5L6m59L+PfY/JW8jWAfgD0EUZSUkhaGduazaGW0O2gHW6Jc+2UV1hBFSNVYGOZikJsKEIJVTcfrKXrKOTb1Sd3q82Dv9pQtZOZonIjZxcyWFoZxQVuX4m4NyoH7yKodgJibltONFwF+J6QS8jhrcKpEHj9IUcezCVSjFw2DNxxbYv3J/Aj2j2jX/ujWh7D+8lDaP5uye9c9O8jn2wDzPp59jJ0kLQ3ldWZXX1DTK06Ewp1U+GuySq0F1uFQ+Sg6cYKA+oC65Qg5VB/4mU4zAhPCfTlAUIR6puYDU4/NzNVVKnyL8fSeCTq+a9vc/lOpp4ai0aPxyYWiuMqvmLE2uOXgTjKjolSpTQbMfDRsksRrCccE8u13P1ntseHYyZFV6YjLZEDL6TLkSg294O+I+BFxxnKC5VU6YIcT9VHsmP7Wa1ZiAI2kffA9ZJz1q1HZMc3KkTqDZyPFTSYZLJSPotRWZMtsa82DVIXWezSCsIG2YRBEhiVSN4io1D1SX9dBkc3nI/SVyfP3C7LxS22ywvSs9qkiWlwkC/6NUqCJdpbJIzS9GufuMJ0ybCjnuFwD2y1HRxgzg0ta8oFd1RVs3Ahvs4CT2jjp59IlLn10ot7e1x/zISnZpQyt8IA9L4qn0YamV5LdOphY7K+g6GVgKF4icM8qORINVtNMFvRLdKwXmcWG4iuESlUrK0APjslvVVU187vETHk4682mG0/WCT2FqugTFRhgAq5qsWFlfMKrNJfYxi+NLLvhD0Nm5FXvrl7UE9/iIi3wn/q+iGLdRWdWaWBgQPwr/v1Ret4d8h3a57cBkxv4r6v9bRf2p3YmMVtT/8wW2ov776bbTAEX931Z+uOLQjyHOf3mUTR7zfAL5uEvBTpsb2EbCGugfLrDVQL9Lt5GFUdTfruu7M/Zxdt4rn1epb/FQ7Gzyov5nWFHZb1xryLp20O/gj+GK+mfEVOhQfFU3twPH585qUnwDOUJhyqL+G1lVN980qjN6Uf+64ss7z87JFs5/cGbWCIcr80xc1B+zMoxV2YGVMVpR/+NvPa4IXhb3nTF/inW7Zx9WmUFR/zOs4Oy/YMSi/qIx/f5SDLPi7y9uU0aQtIVcT8Z0Rf03siIE5jTutzky+W1CXtNmv7pc4sXfrp1wYe2bVuQ6AtghPqVCBhid7rNZM+DcJjdEIs29H6+FARBXKaLCwoEPp5ZgWzX61HKgdmxkfFt61YM8Ql1z+xoJOacuAnzFArjpQsGX00LIGX6xoAerKua+FriKY4H89KLzp7+/1Pux29ygpoOPlgtXF7wXGMWFohrGgvYWBuhlQfTqCBCj0x0srHZd1MuFKqWZviGSMJUE7V82nju/R4NJtYRTHh6/XqJulgflhBR2I+KElOa6wcv+gu9fy/r9My+a2lnSjkw9HCX4ylJFiDSYpbbNo5y3ZV/EbhbGlHae1Sl+Azn73Jp4AH2saiWFoYzhrMoYbBplUN0fjj4RCwcvuSIS0Jc4GO6d2jl1AUtWsLKIaM5t0SU4XKEKac5t2UU9TBWJ/QPtrY7sbP/m8OtU0aq2V9+O2HlqI5nX4C8IiBwlQ/TTzBUVhrJ8WJXV0SxmDnyUXt5qpdyNbnmUarCaZQbVuBUwR3xnm8fk04s9nh+/3rQgS+UCqiOjBW7I4VHPbFpdqJbCHlsv6uel4pacxdsKtW3Vo/znevz41HE9g3+Mq2HSZS8EYCEBwFUEANC06OWJElTGXGRi9cJx8m3FX7j9teVp56uSFBcKlRn3sC8EoB8bAInOFwlH0+n/WT4OtdG30fJxTlxiy8cZdKmw83EqrXRL21PFwXdxj9oOa/2vljGDfJxjl9iimzsumUFSQVxcnBHycdqvWu0xe9A5YfKicur2qVw/s8jHWc2qnenmoB2j5ONkdyrapMjRx+6LSo8uEjdvbSuzyMeJZFXOIHNQDseU+TjHLsVtsQtx9dybLQ5KWLgjzazycUSsymtvGuWZZz7OHeXWsCIvO/gkT/rid2Nrl8UmzsdpwKq5cibXXKHm4/wda+9x5n0T57kXA+X3OVm9zSIfB/MhGPNxgCHE/dQWf0I+zvvHvzZX65zAiy/V8czLZZlxJs7HEV1my8fhXjZOPg636Kjlj72a8/969r1UROYrtcHzcahrcwPkmLhfZssxaX25sPJxHoTwOM/mVPGe26nSP2utHt03eD4O1UYYACsuK1alLv9P5eO0ZDJjww5Jm0l9EgX70n1lTx72fUOOlHSPgmcn3VRiZTj9hKke4YsGLlK1Ep4e00ZzRtlrTplyxbBmXhj8DciR9+z00u4X9wh5Sy4lpvVOD7JmfD96JCevkDb+SgQAE+ab9ygWYlRSzz3pOCq1T0Pk0zw8A0ZlZQH8j3L+c4GdsNWDM1mlAyQyoDBJiAew6yOJx2Fq1aiyFZMqK9+f41Kh43lBXJsHh5JOjCDvBVnw0Qosr7HuCJ1xSmpEpENWOBnQDl8ZqpIH9ZD8b1Ty0NU7sGDQ0iBgO2SwPAVsmZvBw1FvzYT6z6m7Nto6WPH39qu6crPSe1O+py9LFj7yOp/YpJ7eM9CJzd+cN2waKXOCqpE2TBqJXTAn6qXnZ7elwyqrV85s3p+8J+oKk2ci6R4Z4/JScwNXDVhf0+8ySg1dXqxXW7hCFgLLMcKUwFDs5zB3OFIcptbJB6EekWRvLa15E/p2rua6rtHqJkLObQimJSqpDxZVX3sCUX4JQgTXcYjyS/A/avkln6m3uwYcf+E85XRytPVb30vU8kuTe8ZNuK7s5748I3bF4+WzuxJy4jDqb5dnov5iRHkmJk3bwOoBuBqR2pq1+2iHYVtDRdE+Y7JLZgXaF0Rbho+GAb1eh3pdjXJ5MsAUyjphksaTNrC/40A1+AZ5WK7ByP03ZmrGOHX0H4eoEsWkqwquubMNOESRUSoGx/X+yIYNRw73SS21ldesf/ZaVpUVF2iehKh1jAsKQ2m7WJW21rhKI0ywlUigMajwlgnaeY/phpijTM5ePRe89bVUrpaosKw78CtIBhOpq5XdW77q3/ii56Ic62fPX4bMouqquHdUpHiwTFvAgkMJdsHf6kSnK6d8a339Jl2xKXUmq1KHn6DV+mJtoIAPdommPgsSPGqZFPZO99DS0dt0YFcNnlHqiNulDB6i073SCRviOKW3ZaL07g/u+BaXnXNbl5JuOWFv3RhyrmxAuDQ0kgv7ypJpHfIVU0/rGr6hoXApIpbJ8ParUtg4DxbvdkAC7HC3W5c5w6667ugbE12tuzeP6RUQ/pKu6fZgZCxuD5AK5KOa4dkLORXbFzSPrDTWfRfMTTV8YXTxhSme+/2LNPWJvlBt2bVvVetSG7wgPzFfl9DL9tnRSoKNnuvKhQgdpvezLWjiPcBqNsRqOQ+V+wEW+CHt9csa02hQgY0KJC5e6lYNvUvf9d4p3X5kS1aDO7Qt5VDdgCnofAJf3pn1y8EoMYPtZGwE6hFjs4F1hthKTx1xEDsIPvG9Z63p1/uX5e0X5HEJ7zYW/C/bscF/rJ15ZIgVtFG3ZkbAbGfwJUiNvJEtXlvCurcg+f7XQY0d+374TUtR0N18B9wUZDgjCGa+AzYhcIJpZ8YEs2j16cvLRf3dto/+7C0LGFa+cAimopyNYBZHGIFgzh9Th1ideOQ+eUqxRzP2fnMwDMHEHi1S+nX2DNeEtLQ52VMGtjEAwZSSs83zhxEGJpg5Kyuv+/UtyG2Gt9fpsQMHepmQYA5EsH05GCV/IsFUX/mx6L//3nCb7tTpVtfj9waYjmBkrPC7mAZ+ExCMxHJAsu3XHLdJVtlZTnstd5mOYDBTwEgwYELgBNPejAlG5nciu0TJ6oI4T3lM9c+iD4VDMIMXshFMvYVGIJgKya0P2dVO9kw8Hzj0u70ozjAEE9q5Q7s6Fb/6rlm3apxNVrqnAQhmwEK2ee650MAEM6Nia8Hdi9vdlq3rs7WYz4WVJiSYtqxfDkbJn0gwS8RVBq/NeOUR3313wwU5JZ6bjmDKsML/dcH/CsG0fjt49ZiUCp5r1nX7cKqsZIrpCAYzBYwEAyYETjAdzJhg7q+q863lrqbeG/uGnZ65x9uhcAgmcRsbwQzZZgSCSfXODKg9urnHkhFF5jTd+TTZMAQzvNGVAMt27b3jsyR37t8ZYogVzOZtbPN84TYDE0zXoUHHOnc447Oy6OjX63z7fTAhwYxn/XIwSv5Egum+ucns1VdthIdadOu4teKsfqYjmCBW+Pmmgd8EBCOu+8u7ztAJblvdi1Wt0cL5sukIBjMFjAQDJgROMB3NmGCuFa/pkLpD7DL5WpcH24vub1Y4BLM5i41gQrOMQDBbxzUPPDF+itfCta93fn2x/JZhCGZR1NYkpyO+rouODaux/4nbTQMQzPostnk+N8vABDNI+annv15TnbfV/HCvwu2FLiYkmNGsXw5GyZ9IMKPfNWho8fm0cMOtNU+u/VrtZjqC8WeFv6tp4DcBwXhYbfrZdVwsb/2RoI/Lii+5YzqCwUwBI8GACYETTCcmgtG7p4KdVnuF31Ohxu3abw+PnCha+v3dp2VR6el5eio4HE16IKxcVzSLZ197bkvezDw9FaaN313zijrIc2nQ9h7Vkm7MztNT4XZ4i2f9V931SuUUic0qH7IwT0+FJm73Ql5wKrjMfbwhqqI06HOengqPx/hOT2vZxHN+xwe2GzvWjc3TX2pBtUmdEvYU8dqp9iwe2O3oISAqjov6Ha7R4vode8/YDemVH0n7w15W1rjIpbfdor6Ogz027E9VBt9cBztglcBFrZ4kToy96u2cmq1a4PTBzQeISuKiz7OPpPXv34L/18T+NYK2zYK9ImxwEbf3rwbCppc9lu2eMOHKsynbgKgULmouS0i5vfC4R+LWB8mLDnpnAVFpXDRlxdpNmQuLCObHl2/h3tz1IRCVwUXZ81outHy6xnf6lnh7v1pd2wJRWVx0a5Ojz3eLk257Plv1/nZ+CweIyuGioC5v515/38o72rdVudJfux4GovK4aHGFfxPviN+5bWhevtmX7CKDgagCAW+Q5fLy+9S+S2cm3I53agWRtyUeOL9E0ugFKzwTrng8/56WVB+IKuKihU2qzPp2r7xwec+HsxqdqFsCiCpxGFtxVCYeOH6C8pi3HT/p0o/aRRvlTACiKrhIIfqyav3iG54r//71qKF10YlAVJVQit3n7gOXXPNd2uu5Re/dlzsAUTVcFFp1UclW05q7z3SN3Tx8VmBJIKqOi17Ve1M6otp61x3tNz5JfLRyOBDVwEVV1Hcz2rfZ7BU9WJy04XuxSkBUExclWmd/u+A71GW3z9cPjXuHBQFRLVzkX9pCGWWzRbju3+YtrK4KRgFRbVy0/VtgXBOn087bO5ze+7LI2VlAVAcXrR3n4PPhVqho078vToZ9ajoSiLi4aGOdM+mn/o3lrSqzSLw0adVbWrOQuhyGZiEHJVmzy55bJ9holb66hv+1nQizoW+zkM5MJqpSaErSysyTwtXb7o8+XXMsuf1VceFIpUwRgqiAxeQAN8Lv4BI1S6Vy6BZGAIcYGCG1JCxConPJK6qBQr4aPbMRF+jauxUmD1/NgvYVcXorGrjHu67qVRG0XG5FUM2LIL8t+mTW9+Hc7r4T91jwnvDeLjJgQVADH9KC2dXXIUAhqNy/z02FnKyrevnEbfwlYGhgZ89DJMGKCKVCLcVKgIH3k8qwpRMxTrhiFax6q4iQBqNHyP3VvzrF+3jt+TXv8CjZuEByCR/t76GX8MkVGdpvgHDtYoVr7VWz8OTo5Sb19OTs8YkWkquuyHBxJDdCPFTCBQ4ILCcwWAxrcTDW+mn25Or1Hkfe8bd0tR5xamWnvynVHvDHIqo9EBJDa8/ZAR/sLijtnXDEBjut4o+ewNUlCtMRRRckVCDRLYGLlz16p0MFwc6ng4Lq9ZzwtOBl8AwA1i5WsMBQx/mnCxP//Fc9+7eqZ1M9dKNVz55yja16tsu1wqieffxLs3My53L8XeVD72zrmRFsQLKkWiADVM+OvsZWbFh2zSjVs1Ou3v3k0y7Abe/khZxeH7z6mLx6di9WVMC4MdNKH/ltMBmuevbCa84VhnDvuKZdGnLo2s71e82merYTq+pqmkZ1Rq+e3VCaeJR34avbnIz0R1G35nFNXD0bszKM5Y+BlTFa9exP6+0qS2K8eOsmyzI6nrUihzBMUz27Fys4LteMWD27zIfvy9rEvvJNmHfO32WN9xAzqZ7txIoQmNO439aVyW87uUos+tGhitukzbWLP68/hrw4txYBH40b4CLSfeOAT1Qz5MKOzoQnDFaIoeCfwO8axQXYqiI1daKBscXHK/S9cNdtnE6OE3X/Ev3edC+akOiIcTZYBsqeAIxvoqJuSqCB5k/021bAXiAPBmhPqWX5+0X68lz2Ja0KlA6Y3YoSTYJ3I4pEYZfz85So9q+AnlIOACj8CX4CnjYI/ZoLOYFP9Kr9UhUDiBgXdiFSFRi+QI4m2wh5pbpBqxw9l2Q8+R5x+4SUPC1diJvp0zJXlG9DpivXRa8qLHNb8ir2yYITV98bADBnVsDAiDKJE6XhDPgzrThMf+gtSaxZdGmD6ZLFqj6Pc+8RfV/hsav39Hob3bJqV8CKyQNlCEcqVRJt6RnMqeXxA+x6NSmYA0xRbZllMzaNdzvFXzHkUnrHy5HeBlBtVVbVWplItSj/eH43vVytUqI89hypzPIeC26F/lPMa7Xb9FPDJzcMoQb8EIXtNFcNvnfniNukHTxEzO+uIzbFcGLsxkSM/EtVbg1vt9v5r74Dqs4KOigifU1FWIAkEm59wmqyEljfSKKmk2QRBiwdBYoIALmmDAr2mJDcx2CLQ02uCdxYgoU9dGJEatgu/xemqQP5U7p6I2Dwt7wJQH8KBv9d6uCfDwZ/5ZsFzU/hifKAArcbFEqJCnobCjnXTjPG1VyAnqYJBfybxqap4W60YoSEoYJ8qVWZ9jy3Pq7zg0r0EAzuYUO2MUFY0gHdxuDX87Mx1ytm+C18+chrU7Qvb7nPxsgC2pgMALMDhNmKDw+uUzfrmmIwF3RLuGEe9Wt3t4IVcrUkOAobHlhOFHoV8bnLMJ/rs4RT+g/hJYy0I5e3tMl9Ln35SxIavJyFPQ5bPxRs1o4YbLhJcGYyCafL1H/foq3CO+bdGy+HixOEpG8r7S/B6khwfaJkMoQtYHKY7Yn7YDESbMxK5cPFMmmIZpCPkEaGcxVgmaLS3RJQo/Qs70nTAlmsa+lEOyHnyA2Arg0q+JYNvOSlNwo69yt7YHl4cNdVosaK4WCIIQHwKVrPwrtYM8+5Xwe/+jV3chey+4w9iO4+ay7nN52pWQkFLQcIpnM6RG49ymWYDpPKbzC6zzoiV0OLnIo01ODQQsL3T+eFnkWDH7pNLXt/56tPbyitv/EBgg7pkKWGnsUQraWsaE26YZJKQtaBo5SSvDjUz5Oz4+AFXFqJzAH+jNrBzX0gdHLDJCpKShz8U1DDXRkjSKhY8AiwqB6lUTVSy1RiKsgkKaBe5zvisyAHlTYX7YTNAr02wqr6YNhCX0GTv4sP/RAkFLUmfC96reFX/r7AFPmF5j3bUgIT8KsQgQnscmFAsZQVCjDEcaLiMREVN6z+3ulzZvAXHd0mWvElZUy+lf8YbDHTuk7nKn5Ua6lLFT9OvjZ4YvXOFzof+SrY2cxSfi9W2K+gNhieXL6BF12OppXBBp5Day3kfLOHnJobZxjIs7bFRPq/OOky/0fND6OrzbtiAMhr3maDvNRtAnKBwbIyyxKQGyErE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREViYiiZLIykQkURJZmW3L3It+d2WZ66os61cPvBra0FLe4OBFjj5q+qUBUt5cmPRfz+uY/a2dJV23WIUMvvKsHFn/tprNfoFMoYbuIhbAoTvlxRhmWz1XqTwECw4E4w/AlpRwnYmnIegW3qemnOb7ijRwUD+kq1cOvKXW18Eku4o8MQKm4Af9wvw1NNE2rJq5AqoG4AH+wZwX1DRQniKoOdMzTpX5YEvw8o4FibUV7jY2Byycna7jtJtDaxAFpBWuI/1wJqwqaVMi8mKFRKm2JLF1rUadfdKuVLzyo+b78wZMi5jYw+fjic0jXRMUM9yn80cdMQBKH66xoXTlGn3zgc1Pa+5HzCtssmGYEVMOLvWI3DPmUMnUD5s+9Jc58Ofb+8lqj5wmMmE8d5A9PoiQATlYwLbmdf3c2Kba6CGEKDhPzzXIQCTbhATn18KEj1P21uDvXVUuPCR0q8AMopYQJGtWkD7oGddt6CLVfLl2qyp3yGCBRWYDpf7YPeH2/afey/YlP/zsbn+AHEUknkuPImolhYHOXcaYLkTnjDamK2QixhdBPiIrxy+CJRvOuMb5evShb8TTmdCKAdy65HiuNtVthEKvtsfUAxa6xgZ0zf4GpucCHFRn+IgNKCd4yPR6IYRphc9HbpKsjXdezeUMPeXVldyBzgaLxzLQOkmYnxWnmriCZoIDsM5BsPxQYyy7mZCTqh/XlcHAkoCZxgxVg66SloPWBAo2Vh/9eFHtkm3IlkgI7kUDlUdkZJcAwrSZFaaF1/Uju/xDaNRYs8lCaNDSYGMEhtC4NN/REYMGt0OuTHZI0PiMY4fJd0SxrnFvIztUq0Xdh44QK7mafRrEfjmTa95Ycx8R7cHOpYi5cskIeEmikgbjBKmTWaIe7mJ5Q9ROeR6xjrgq7YScco+yYNdPhE++A6Ce/VAvQ1UGC0NpNnfB6yC/UvSz25czVWbz0uv8lOw7OIhyDgl7AN1F0lzOb85Rz7kVcM7BzORSEJ5tqDkHO5J9fqhXNklpzfuwNard0DXKyXvie96Sa2ltNmbOTSJH/zT306N/+PX88Dl/vM7OiJP2LguH7k5fJCvfzQD4PHzIhg8YPqbIMLDGEjeGa4DozKH+oaeNsOXilg4Uq8IkkWxKe3NtT3VXr/Xuk4YOCV3c/mQDstI099OVhl83+J4t0MoBVq3Em5VWcg4RWtGLvspiBk8pCcGNL1Ixo7oNr5XQeIbH5uRZz/d4bLAkK8Ybu5+uGPy6oRWjdMTNCdxmpK1XdzgJOa8f6rcgq6HFAFtYyKT54THZbmktxxnl3A+lDG1VtewzR0pbB80DEG0dcEFhIJL9kA2RXQ8JXndj4vUdC70+9O3U0SPmw49I66PXyV4K/ht1T4bprF1hkAmcOyJcGhwO3Ep4tlCsVsOOXNqsGJz+dVt8UM9po96XPiY11/XJE32I54nSsl+UYFXnR+d1PSPgNXFXQ9PAAmuyCI8wad4E+eG70l5Mu7XzoE/Cq5teEyZcW0UefEyOjVZgZPLHUkkhhk6oHA2/ZhiGelmszj74iNK0lScd1IL5QGrN/gBsZQ3/nutTcsf4jENXiKbwuUm72sN1LQZYVRRgsJeon3Yyu5t94Io6mgzU8Ysa5jBA5KrMQ7bI1c8HBOYeTJj77HM9d5JzTBDdp1on6XNPckH1Mt6kZnR0Q8qEdA1v4A8AeooEd8ooLe10spPUyhRsr0VvxkqW67pxAxsJPQZwzkZt3MAYheoxoucXwSeInl/wN1F7flF7dlF7fv12Ty/qjYieXky2qZarVAVsjj4tCBc6bhlU92k5nyXiQ5u2LrMZT25ByKPPDl6+DYa+H1g1vcP4zp4LH1ge31JS+q6geyZAnSuhOp1Q2QswQSfmcRaimRYTSL/TqHF1o5gDkY2LOB9yED//WUJM3mrUrVEjFaXJzx/0/tb9q+us64vm3Js11hAoqVhRGvCY1oaJNdtF0+8aOkY6AETNeidzmOZRdA7DrxfGhjc2Yj6jNpp6OWBI4fbU8/+ZPaWW8zGSPT3xiM2ern70nz3F9dNkq8DBfsNOn7jrs0IPv0w9ZwB7Si3TZABLcewRm6XY8aiw7WmHSp6LxzWt7xyzpcLmMW03ZBrAnlI3CQyA0mpWlKY/KkR7SuVQk9tTbMQw2lOAFG5Pvcx+TUCdToZJZmtjUe3tHIHSZe9H5/Adl+b4G2BJ4PqIbUnQVgu5yGDJbGUIyI2QzIaogUeYekQNPCKZDVEDj0hmQ9TAI5LZEDXwtCUG6TXwiGQ2qodGy1iDVhG96KFUzzNAxpq3wZRsY0Ql/14dSURRRULJ1Jg/TSdWTDqhli00gE58mHSycv/d3tMefvZI3b8ndefQe9T8IbFcIqP3p2cybHY8rhLegRd4gW3RuXJFpERTXAi2SGWrYUutu4h4FV2snU1AsEohk/lDxoIXc4985nSjWMINNq9vVVc2cUl1lag3Wc5TMVlC6x5qiQo2YSV+bUMXRdRgGczVAu+DFf4JkUbi3w48DBjluB+9maKSogwGVNlYyGl6HxjQDgJO9DRBSW+xKkwqF0lCSQRoo7nsLw0LJ10vobkeqFDmvUq2wnXHNhZ+a3I/qywGop8KnhuMlGreqjjxVqgJpRKP8JCHwLJbBLwWJeBFGHrJcwnz1WGCjPZSqQBYVUIsE8BaUHmIKFIlEUdo/40VJtbegw9VX7OnZWoVUANt1VHHvwF4OfI+Gy+H3Cd42c/sMaeWVzXf7dFBrIn9ftrE/u4Go8nSHOPRJKJuLkGTiLq5BE0i6uYSNImom0v4QvdTBj1td7eqaPnMDl04i68+zOMLDVx4+FyCV6bnviEPGjcUjQuhkSu0+siBRC3GawBy9WfSZImAZcM3Rw1xSXr1WdKOm0BeGpXFA3/e4H9UwFTqXhWwOhEylHN9lRK5m4gbgT9Dt4Agtegw62vRq+5RfkDHqRFtJ+SEP4XRGgFwm2lbM2BlxnlKCxGypUnU0gxtovokLCEQBct0hovlgOSQH55VPWrvhiv2vLULu5ze+tS2CDkg6KJ5Aj0gSAgMXsEIQBICIYlnSpzwe2qSxImiwQBardHYtWvXL32K/XHJioH1paJkYhUWZ5RB9wWpm4A3ng/2e43xXrK4svXnjeKblCKq+EMQRVQJSWFopzOrduzMQTvAGv3SJ7uojjBCqsbKFgeT1ESYEHQi/SHBtWZ7T3nueCBd/2HnBnJozFrzRMQmbq6kMJRTkVU5HHNQDoQur3IIZmJSTjteBPyVmE7A66jBrRJ58ChN0cUuXIVSPAzWaGyB/Sv3JxjSs/8RdxZt68r7a8WXRNsFSyLI59gD8zyffo6dJC0M5b18wqa8q2ZUKIhcSNMqHw12ydWgOlwqHyUHTjBQH1CXXCGHqgN/kylGYEL4TycoihCP1FxA1xTJVjfe9qqEx/qpFjtqZGwYQeutg0iLxi8XhuaOsWpuh8k1B2+CERW9UmUqaPajpfIwdkN4O+ST074TbXzjSw0YbZEykew9WjP6TLkSg294O+I+BFxxnKC5VU6YIcT91AAmP7Wa1ZiAI2kffA9ZJz1q1HZMc3KkTqDZyPFTSYZLJSPIbirElCmzrTEPVh1S59kMwgrIhkkUEZJI1SiuUvNAdVkPTTaXh9xfIsfXL8zOK7UtBtu70qOKZHmZIPA/SoUq0lUqi9T8YpS7z3jCtKmQ8y/Efjkq2pgBXNpTdJeWWCAjV8NuBDbYwUnsHXXy6Mt23tWsfq2OHlvqOWWNOGlBrj1mTTyVPiy1kvzWydTiZgVdJwNL8Q4i54yyI9FgFX37qV6J7pUC87gwXMVwiUolZehZwdnjMUohGe22aP7Af8vPet+i4FOYghXVRhgAq1OsWO01rqtD7GMWx5dc8Iegs3Mr9tYvawnu8REX+U78X0UxbqOyqjWxMCB+FP5/qbxuD/kO7XI7kMmM/VeE/7eK8FO7CRmtCP/mZ2xF+EOfFUYR/omx/k8ryoe7722xLN2vV/wmA542N7CNhDXL1z9jq1k+95lRivAveBXk1/NdvHAhN/vR2xVjT5q8CP9oVlTAuDGbtYN+B38MV4S/dBX125WjOc4bWg/Z1i/UYbnZFOH3Z1VdV9OozuhF+Jf/E3pv3roevlsDtsz/4Dnju4mL8GNWhrGKOrAyRivCX2JDXOnt3cLdpsz2Cm37j+iiGRThH80KTugzIxbhX1NtcvGad6q7TrN9XXdVTLjCDMpZQIT8WRECcxr323ow+W1CXtNmv7pc4sXf/j/2vgOsieT9P3ooXRQFsWHsgFLUs2E5IITeFMvZjSRANBBMgooVe8VesHcQFMWu2LD3ep563tmwl7P3+p/Z7AZ2d3ZJyJLkfv8vz+PzyL7sZvN5Z955Z+Yzn9c56/Lyl2S5d2vsEF+SXAZGdHrOZsGAc4vCLRJp4f24FgZAXCFPjosHORysci2P1UnLgVphkfFt6aoHRYzacvsaCnlDnwJ8RQK46ELBl9dUyKv/VN+DVVUKXwtcxbFAfvWTQ3tL5o71DVp4MnLTp6CLZvrX7qKkUNTAqGcKFQXQU0H0agtQ9YjBxKrfU90KYau7r1gSp5Cg88uQX/1tVt3bFZ66usqJfY1+LKSckMJuRJyQUl/nXPYXfP8w1u/f+qmxkyVNy9QhUYKvLJWLpTEs2jbz7/LyK/Lmhm6XF/T03PKBUmeOeAC9rWospeGM+qzOqGgcZ9CKY+uyY+ERmihXgeFLFAPXTl282oMpK5hZJDThN20fEy9XiJvwm7VXDlKosF/Q2erDjk4R10LuCjMn39x60Fv1lTyuwQ+IVqXIEPUvC02l4axvT9ic9djo0wyCV6NTtupQuNCdmKzor2TpQdnvo7psn74y5ECUeKryXY8O+kyV9XRHflM8kMOjnhdpulDNhF26P9UtS8UjOUu2lfx89vznaRMj59p9jbfO8woz6rQXAuBDAHAdAQAMLTplosRQxiwyMeHmjOzy7t+Eq7NPu47r+rIpZSgz7GFfCIAVGwDZLzSJZtf/GB+HWpjbYHycwc/Y+DgVnpU2Hyf372UD7tq+Ct09t2efi/dfHTMBPo7iGdvuZp9nJkAqWLRokQH4OA96ZirNmvmHrL15qVWdOY/umwQfJ4TVOy1NwTsG4eNMi3QOfbutSfCWUfffL3ugmGESfJy6rM6pYArO4RmTj1MhoeLEWpde+qTbvBqXaWGfalJ8nC9P2Zz30OjTRBPi48S5luFVHlU/fPX9WWkuCZP+MTIf5zKr5w4Y3XOlysfx+d7q5fh63oFZtyo/bPR17zWT4ONgOQQjHwcEQjxP7fZ/gY+zfKRHxLubsWHrPjw7FffRbaiR+ThfnrHxcc7TU9pS4ePsFdlfO1m5cuDm3w7kPx2fKeWcj0Odm3PAMfnwjI1jUvCstPg4quuPoiqPjvBZaBbX7uunJwmc83GoMYIDrM6zYpVn2FTH2Hyc35nC2KCD0sbSiGzBrgORskf3e74k75R0TIZnJwMVoqR4+glTHbYv6vtLlUnw9JhmNyfFXX3KlC+Cmnlx8BOQLW9t7bMHTn9Y6bukwlzRgs1LXjO+H30np6iR1v4so0EIiyx6FAvRKqnnnrRslZqnIfg0M+6BVukogP8o5z/nuQgnpN07bhstkQGHScTBIK4PJR6HuVXtyu5MrnQsSPO3974gWNXi3sHNJ4f4U1Qw0A6spI7uCJ/xrNQm0iErfDCgHb7iSsmDeki+BEoe2mYHZRi81A/EjupQ7geWyM33xVHvwYT6jwlb11b2MPPb2ctpcUZSOIWshDh9aVX6yGt9YpN6eo+rE5sl6zdsHtl3i+qRnkweWTk7Lfl5yKfABYMclYunNulNXhMNgOQZFT0jY5xeqm/gK8Gor653mayEKS9Wqy1eLhNDOUZICYzF/g5Lh1WiOKVWOQj1iGT5MHnMQIlYcxPq1enLuerr2u5Wuwp5028DMMuiSH1QVD3sNkJ+CUIE53EI+SX4jyq/FDHhVofoE898xp/ZnmrxOvIKVX5pXLdVo28k9QpKz1+56GH69A6EnTiMWmJ5JuoHI+SZmDxtDdUDcDei98AsP65tM2dJyA65b+tbuw+00sdb3O+GAb9Ohn5dikp58kEXUt02SuFJa1jfsa8SfIfEuMKAUfg7FmqGe3l3GolQiWLylX1AYW8DCZEqWYFOXJ8Gnvq1s80Zn8nx4w971OxwjdVl5gL1kxBax7ihNJzWj9VpYYZ1GhGCzcIE6oAKbxmt6feYb4g+ypTs1fXHS19LE5USBca6Ax9BCphIXw3suL3PiMfLfffV2t8sJLTqOqqvzMOTVaL+Mo2ABY+y2QU/1Ys+XHkVq/VVwuGKzamtWZ1a/zZN64u1gALe2CVqfRZ0iQCKTAprQzeDkY5epgO7yjmj1BOPS/m+iEr3SV5YE8eH9F5MQ3rHe7cjzWXnA1fsOVB29M46E8lc2eh4aayKD+vKkod1OF4x1bSuERkbC6ciIpkML78qhYXzoHi3BxJgasFBpldA5Eva0u1By+h8EyDV2Q9VDM9dyKtyU18emS1WfRf0TSV8YbQ8fp3NW78ezg+ZPTrr6SPzVznUAi/Ir1hsSkgtuq4v8R4evIdYpfuiuB9ggt/upm6sMbUH5VirQOLSMyi99e1JmwVp/0TFTJi5wZW2pByrHTD69id4qJ31m4NWYgLLyVgL1GGPzRrqDLFJT3WJ3JJa/ZfxgnG95dVP7riRS26X8G5Dwc9jhf/5P6bBENO3ULe6R0C2M/gmaKkOSsXdEkYKfVfzPfBQkO+DGGBmeWAdAh9gejMNMDrr+bhovFf6ej6q2fmj+p9s7bu/ZlrKoiF1hhfR82m65JzPvKXVwtOPjn/87/bJ9kX0fE55TPr9ROy6yNktZgw809c6vIiez9GK++oPcpJGri8jmPTmtnBJET2fPTXKBSbVLPDdtXnV5MTef84sqm1Ir/xLaBsiKv8ShXoRlX8tcNOiqn169clb6Zfa5e/gh39+hMKMlrip/P4K6+wTO4ctq3v27ceI0ArAZIWb6toEbHyxf27ontEJY0V21ROByRo3+Xc8Fj2y0UnfWTWzv/hN2vAdmGxwU+6dYa6O7S4HZEX/dlc2v3d7YLLFTXevTKiaav0+eIXnvNPjqz0LAqYKuKlZgPyD575lfsuGDckPPBK4DZjscFNm/KjqaSeqhq6xzxxdf1aPisBUETf9krDjWC2758LlX/us7HnI3A+YKuGmN/9sv7w+doBg2b8JL8uu374BmOxx04fnEzrvrNE+aJeo08AJsZYKYKqMm2p3eLEj82S6YO2HWU2HX1mZBkxViO81eEGtYRNVkassrzRfNO1JDDA58BhloBxx04Yvw+IbzAoRZFf67dTfoilOwFQVN91J3t8htldAwKwnTmMO9vtWE5iccNOYO/ll7ri19FnRtWHLEw6DBwFTNdz0fckGt+wmQ3329j/+142vr7OBqTpuuv9GlXHXe3LIhAXV3/YY9ucyYKqBm5o7Hd597+XrsCVTBsyNzjkCgaqJm+Lv/Fg+fsRB36yF7er/1eS5KzDVwk2SVvXmvu3iF75leA/7NY33NwAmZ8JfO9qYX7/51W/dpZg3dWsmQdHO2rjpnrBRyLCHCuGSFXk57T4smg5MfKI7RL9dkhIdFL7Lq9a4jT1GNaIJVdXhMQhV3Zd1F9U+bxM0//M/Lt4zrS5yIFTVhylEOcTu2bz42Cnh0o0Fw87UHLGSPHUVDk2SycWI0xdMCXBD/A4+cV4WK1OnTAAJMQhCeAVALY9bUAMU8tXos2rcoK1uOJxWvTgO4yti5zAVFmR/oVsBzcLTqOoXQX63RzUXt33yID5o1cUvR+yH1t7E4WFUjjcI4crerxAgMWre+clNyOO/0CknbtFJApoGxnsSS2CJI7lSih0/Ae8nlWFTJ6Kd8EUKeOJaniCNQTPVhg13K1NnZEjm0tZ3JPk7V5Hp45rPodPHC02cl6ZxxVoMC1yf/jWJTI5+1FHHTM4d72jiQnep4kUqfoJooIQPEhBNCWtmnrlFrvzQyNpbAjfvNzsWEy6rTWEa4o9FMA0JC9fe8/HAG7s/ynsnPbHGTmOb6whcHeJQFEH4k1CBRILl1bK3UFGjSdhUN/+TJzvPJkfqEh3B4gAsG1awQFPHx5++TOPP/5QbSqTcQM3QDabccOsFm3LDct3GSi2VG162//1vu/zKwXnzxcOqfTh3j8PBkhqBOFBuuPGC7aD7cd0Gy5IqN3Rxzm6889KA8PGf65g1dsxMNrpyw1ZWVEC7MVGWqeGUG/zul2sxJ/Gez2r3cmHi+95xJqPcMJXVdYON4zqDKzfwy2RslE/tKdjs9D1GfnjKCyMrN2BRhvHo/XFEllJayg0nhvLtBs/fGTFhZ/WgNTMKsk1AuWErKzjLXxhQuaHhBMs7LmvEIdM/vI259fEQuSib8ZQbprIiBPo0nrf1Y8rbTi0RhX1vUzVwbIaz+dN6ww+Qs9EwkKPxo/3DtF848NMUw4XVBIhMGMwQY8GvIO9K4QNsFSq1RgEItnh7hbkXnrqN1Cpxoq5fot+bnkUTFh3K4h7/hpfFpaVKScADE7/ptqyAvUARDJDfLoP3R59DZ28GTPx3vvf2YW/7U3aT4N2IAwrY5eIyJWr846Dm7eFvOPuK1gijmgh5m77pxDt2wgAi2oWLWKoAzRfY0YOthac1f9uax+Frqz5XWNUYQZY1tvQnbqZ3y0JTcYCNtTu34rLNM+G23A/mBzu3asABYItZAQMtyihJlHrMgH/TnMf0Q5fDsmDxpTXmS5ao6ml+Zv5TUdngTelb1qbevPbTHhMyAc4QDk1SSDS0Zyyp9fWLdvndVb8EmOLavVHp9YQDO4Vubv363bjMXBcOXKtgdW0fI7kWlR/P+k2nVMsmrEg8Rzpz1J2ut4JODfVJr32h0/Cs6/uoG36IQ1Xqq5yv3XniMSkXRSq544l1MXxgFDENjH5Xqt4c3GqbT07PPk7Tuu4niwdUgeRXFVz6hCeZJZBbL9GhYrynQJ4AIFdTcLHHiAsfg00OCwvFQ1KpViMidduu+BemuQP5V9pmI5A5+hqA/tgPUUB+Fmj8Sa/15af4hhUBBS43wDJIMNuQJ/JdiOLnAD21ABL8nzqmKeFqtHyIhEG95M+sLmkt3Z4Jlh+z/6em11LyaFu+K0Y6oMcY/HpxMab6p1uuQz4GRGxf7N3QummXLXrGmHxI5IQwm/khSqafdMNg1ndJuEER92tWt2LkiUpJTDLWPDBOFFpbi3/nn52XjwTtHufoE/zhLrngoXXhc+nTX5KRcyqlOw5bLxRsFp4YbHhI6M8UEs5UqPe2aUt5+MQ3L0M9/hgtJH03204SjMPIj0iWyRCxgClhdifug0RYrM1KEweLZFKxupEPkari+XIwTVFoHwmou/Qs70nzAtms7bE9FyGvJkTXGrX5dhFkya9e6dv3HYMxHh5cdZUoMSI2hhgSgKEeE797dx4TOX3H0zJ1T17vQU6fsQfR02f15eK6M5WVoO9RNNCdnSByq1EpA6z8avaaMX3WErkaGuQUpKYGmxYSvg+bB9vNXVfZb1zrF79/8fcmJ9U2eANBb+mQrVz3YogWaEksaP3zyigsdovOKUmSojjUK8LZ8QgFKa1E5gH/RukRGNQXJrlxEgWFEgd/9A3cjtgACR0LHgEm1SlqVyO9TB2Y9Okkevp1lifeC16haHOpXlgv0GkhzCkCwxbmCmr+Lt70xUgo3EYtGbbuRnbkuFZW5Q8OjrxB2ZiA3wqxMYFdLg0osCbOCAVo4vhAFcM0UJlMzT9qtOSm/HEplPxb/oqt5N8MDeRik4ecyo3jBvIxZuWbz/GODV6iart637Mav3EA+eC3bJDHviUgl3DGyrQjIDcAKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBltk+TfDBbKghYMP2Q6oi1xTIa5Q02XmTro9IvOaC8xTL5v27oUfebW6wCMs3E/a8+qUj2f2X1Yr9AJlfCdBHbwKEn5eUZelvdACksdxwP6wOrH4BNKeE8E6chaLe9T6WcFvuKNHBQf6RtVg6ypRkvQSe7jjwxArpgxEud1q5rqHfbMCUNOXQNwAP8wswL6jzjx7CHHZ+HpSe4ZNSeXLBdn7220l3G5oGJ89SX+LD7iiZOCKyyl8g8nAkrBw0loihWSJTmLuwa++hqI59s17fzs+PGB3FIixjTJeL9yYyhAVnyKUGT/VIOc4BSBCtKXi/piw9seVqTKKJfYZ0Nw4zocnCqR3DPmLdK3KZ9KrOpw79hY63P1lL0sX1jxP3cfu54I0JuyMHD04Nf6pbGuml2DyFEMUX0PuEIRIpNSHCODffP6//UIWh21LbZqVfH9TSBXUsIUn9WkCJe6rav28Bfqv7mmqWqwiaDbSwyB6iXfbJbuATkhGT6WK91iehCIS4Sz6XvImospYGONys6DV8SiVEc08D4rGtEmJnnZ8H8NWcDVkUG96AvxNNHQjMGcOuQ93M1VLchcp0k96kHLLTdG9CW/Q1CTxOYwp/1QyxAecHSxPQFKP23aX+tYdfzr36Lfce7xVYKafacXIbZGtuPZRjWScbiojg1xOnLBAdguUCwolBt7GJjIa/KK53GugoYWBLQ05ihUnWvn1lupzJw+l+ttnazq3uWHImE4F40UEVMBk4JIEw8Vpie6zjYFb+FRt1rNtoWGow0WBuBW2h8Wu7oiUGDx6F4pjgkaHTWs82422ErA1a9VrWpVou6Dp0gSuKr12kQ6+VMqXkj9X3Ebg92LkXET5QMgZckCmkMPkBqFZaoh7tY3hC1Ul7ErCWuSS5C3oAvx6HiNCInzwWou33RKVBVwLah1Iu74HXQy+E/R6au933vt/u1t7PQ+xa55Gk57AH0FEl9ubg+Rz3npmefg8zkWAjPRlSfg2qYnb7oxCaxVb8Pm0j6by9ujHd3ah2c2vDY3yGLKmaRd//U99N3//DrxeFT7UrB08HNN4ePCXSz6Nmn5wAO8OnAig9oPsZgGFhgxI3BaiDa8ag/ulVRs+0sUsRJVGxOe7pVXPdLZlZkboeBV5zlPTqRnaa+n+40/Drna7bAK46sXilrUl55dZDwik7Dlx0W8JIkYjz4Ih1zc8jSKftabRIsd2o2OLTV6Atkx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQF/RFtwlZDQ0G2MRCJi0Oj6j1tU+6D5oWlrUjfOs+M/u9FEkh9QMQkkK4oTQQcWNFxOYLMa5Lmcb13Dmh73q29Q6e+O67yuLIjbdkH6s/UXsyTDvNDIM8gPOHxEtj4kFaCc8WipRKqAapYcXgw792kw/qOW3U+9LbpPq6LjzRzzhPlMZ+SQKzuuzP+u6A18RTDbV4EibwC48wqd8E+cU9ns+KSpDfDZ/vvPF9oHnnFuTGx5TYaAwGHvwxKinE0AvF0YhqjGGoU8RqF4G3KHVJE9JBLcgHUqrXB2AZBfj/wpySPzxiJBJR6nhu1IoqcF6LAeaEAgzqWAPA8M48wOQ3rqitiSO1Seo2Bwc7V/Gf2XauftdgPpAJ84hdAedP8Y4KUntUayt9GlKJrLgdThJCpQdSJqRrhIN8AAxPKnCnjCKnqlWcpCpTsL0WXQicbNd24Qb06k9fAZzTUQs3cI/i7FeE3iQxniD0JuEnUfUmqXqRVL3JEutJUm9E6EkyxaZaAVIFiDm6yN8+r/TduaGlh++MPq7H2uc1+Issf+tL7x2+xYrbfekQX86t1fPIpa9GFNzNd16h75oJcOc76E4vFHsBEnTufD2OEHJkAqkkIsHfT93OaV+3Vvj027arQ6fVJZ+v1k4kmIrSndb1Rj34Jg7OO/FUVt/th74cTojSWVaUdn+lSQCysl3UtRZgYqQFQFTWO3kMUz+KPobh10tjwRtrMZ9QC02/e2BI4fFU9h+Lp1Q5HwPF07qs8fTDl//FU9w/Ej+RwwTV85A5G2KzXMt7LOcgnlJlmjiIFM6skcKq1OPpC9s5wkWvw0JXNO34tkLW5VEcxFPqIgEHKH34woZSwZdSjKfUMdTo8dSZNZ5+0EzwE0x+TkDtTtyQ2VqUqfY6TZDkv/O9T3zulbROHEwJVn5hmxLM0kCeyBmZrQIBuQHIbAgNPCLUIzTwCDIbQgOPILMhNPAIMhtCA48gsyE08AgyGzVDozHWYFRENjGqeh4HjDU5Z062NqCTS6YjiRBVJJxM3fOn+cSMySdU2UIOfJLE5JPFu+90n3T/U3De7h15WwbeJZ/zKxclSpTI6LVRmAKbiy8/Cd5RpEIXP1GukqjFhaA8N5uGLVV3EfEq2kQ76+gYhVwm6wRHLHix8Mjnq98okXBHzx+vb2eVj5ytPD3oxaRqjExqiy5KiQIKgBMf28BfntxfBrlasIoOFP4RS1X4dwcZBtzlKEjNoLiEKHNEW5RuJOSN/QgCaBsBL3WSwCpcpIiTJoZJYkkDoLX6cidY77TodUv19c7ypKJXyVG4yqhGwstjPh63w0CMUsBzgyqp+q3MibdCdSiFaEhwohjKbhHwlrGEF+HWS5FLWK4uw0syqScEsIqqVCQTQC2oIgORSiERJWh+x4SJNffgTXWQyQ/LVBVQjpbqqO2fg3H5/Ee2cfnAR2JcVpg85lR5VdNdHs1jJfZna4j9Ss6GSVue4YZJhG4uMUwidHOJYRKhm0sMkwjdXCIXiu1QOfruxLqCvROGfVt3uHZkkVzo8LiUg9d3jvOd0ON8H7sRj2/RBlcY9dHrYxQxXg4GVxWTJ020XDtVdNhg5doPf2cr197je2mXaz8+cPH79DYRAbOPmLsd79891gTKtR/4zlb8Nvu7CdSc3rBhgwHKtQefc/Z+3j09cvn++6uj2yyhVBw1Urn2BazeGWsK3jFIufZfoi4VKLfG+yzjJUzbMSRjqUmUa09kdU4PU3AOz5jl2s9Gnr+Sd7qn767Yh+U7DTxGrktr7HLtAazOa2Yc55lmufYDNjl1nbyW+k7dt17y12ULcrUqw5drd2b1nJXRPQdvKrVy7W0kHx1We9QI2zF3zbgOUZvJ2hDGKteO5RCM5dpBIMTz1GSmPPW/VK6dWhbDyOXao36wlWuv/8Mw5dorfwhfdWh2ePC+D4EJjdaWG8h5uXaquBkHJcjDfrCVIG/9o7TKtVccl1t1/sTFEWs7tm6e4jxgN+fl2qkxggOs6rNiVfHH/1fl2gczhbH/ifCXSISfWk3IYCL8vJ9sIvz59NjJgQj/nx18vWbXbR2walSNJMm6dLI8uX6nzTmOkVCz/NsPNs3yx/QYWRoi/Gtenc26fr1x0BqPZ2081gjbGF2E/worKvmGjYascwfdDv5wJ8Ifa3vlt7f7m4ZPqLd0T8PtzuTS9cYU4d/I6rp047jO4CL8HeYM+v1zzSr+G4dMfN7J5iplV8XgIvxYlGFUUQdRxmAi/Lknr54WtReE5tZ0/XbxQkPyzppxRPivsIKT/8OAIvzex34e3P/nbP+Nn5b3tM3yIk/TjCfCv5EVIdCn8bxtCFPeJvR1a/yz/RXf9becsy4vf9mcrCOAHeJLksvAiE7P2SwYcG5RuEUiLbwf18IAiCvkyXHxIIeDVa7lsTppOVArLDK+LV31oIhRW25fQyHvMkyTRAK46ELBl9dUyBv1U9+DVVUKXwtcxbFAfvWlyp5103NfCZYftvN06JNElrguUe0uSgpFDYz6FpsH6J2H6NUWoOoRg4lV3k/dCmGru69YEqeQoPPLBpmLeb4jK4VNv77RacuRWD7lhBR2I+KElPo657K/4PtnsH7/OT+NnSxpWqYOiRJ8ZalcLI1h0baJamG2KOXidv/tlyvdU+VcaEVuq8QD6G1VYykNZ4xidcYA4ziDVhxblx0Lj9BEuQoMX6IYuHbq4tUeTFnBzCKhCb9p+5h4uULchN+svXKQQoX9gs5Wb8RcfFotIjJoyePdITPzm68lj2vwA6JVKTJE/ctCU2k4qyurs/xMoufAR+mUrToULnQnJiv6K1l60LgpqqzggoUhu91uDVv5sdJ+fabKerojvykeyOFRz4s0Xahmwi7bfuqWpeKRnCXbymx1J+PEMZlgzerTJ4Kfd1ho1GkvBGAxAcB1BAAwtOiUiRJDGbPIRINmQUctW2zw2WvZe/D00ap9lKHMsId9IQBiNgCyg34SiebQ/xgfh1qY22B8nHjeCRY+zq+8E6XMx1m9JarOl0mPIyaNmb1tXYvUTBPg48RCSBh3N3vxThifVDB79mwD8HGup7/aYt84y29StTLNvtukLTcJPk4nVu8EmYJ3DMLHaVt7+un3V/iRu3b/earN544XTYKP04HVOb+agnN4xuTjxMdfzWgTuCZi7taQKWfaR5w3KT6OG6vz+MZxnmnycRZt92i92vV9wMbYQ0sHf23RwMh8HEdWz9kY3XOlysdZPbdb01P2/PAFu3Ye8563+qpJ8HGwHIKRjwMCIZ6npvxf4OPcEzYKGfZQIVyyIi+n3YdF043Mx8mG2DPycebRU9pS4eN8TRt3qrIiODzj4qaTr6ueFXDOx6HOzTngmKyHyDFyTJaTkeOQj/PeQfkhyGx5xPbOi5qWb7gshXM+DjVGcIDVPFaspho25hqbjzOMKYwNOihtLI3IFuw6ECl7dL/nS/JOScdkeHYyUCFKiqefMNVh+6K+v1SZBE+PaXZzUtzVp0z5IqiZFwc/AV0yMvrtkpTooPBdXrXGbewxqhHj+9F3cooaae3PMhqEsMiiR7EQrZJ67knLVql5GoJP8/DTcR7PUQD/Uc5/LnAR9nrw6bhttEQGS8qIg0FcH0o8DnOr2pXDmVzpWJDmb+99QbCqxb2Dm08O8aeoYKAdWEkd3RE+41mpTaRDVvhgQDt8xZWSB/WQfAmUPLTNDsoweKkfiB2qr3iJ3HxfHPURTKj/mLB1bWUPM7+dvZwWZySFryv29KVV6SOv9YlN6uk9jk5slrDfsHnE8R3VIyOZPLJydlry85BPgQsGOSoXT23Sm7wmGgDJMyp6RsY4vVTfwFeCUV9d7zJZCVNerFZbvFwmhnKMkBIYi/0dlg6rRHFKrXIQ6hHJ8mHymIESseYm1KvTl3PV17XdrXYFQQiCWRZF6oOi6hnvEPJLECI4j0PIL8F/VPmliAm3OkSfeOYz/sz2VIvXkVeo8kvjuq0afSOpV1B6/spFD9OndyDsxGHUEsszUT8YIc/E5GlrqB6AuxHpLatn7dL+yfKM2B//asiVgZUK9PEW97thwK8F0K9LUSlPPuhC598ZpfCkNazv2FcJvkNiXGHAKPwdCzXDvbw7jUSoRDH5yj6gsLeBhEiVrEAnrq0u1295rl1q6Por1araSF7dZ3WZuUD9JITWMW4oDaflsTotw7BOI0KwWZhAHVDhLaM1/R7zDdFHmZK9uv546WtpolKiwFh34CNIARPpqxWREveOIxeHZiQ8Nx+w5FY/qq/Mw5NVov4yjYAFj7LZBT/Viz5ceRWr9VXC4YrNqXNYnTrqHU3ri7WAAt7YJWp9FiR4VJkU1oZuBiMdvUwHdpVzRqknHpfyfRGV7pO8sCaOD+mjmIb0jvduR5rLzgeu2HOg7OiddSaSubLR8dJYFR/WlSUP63C8YqppXSMyNhZORUQyGV5+VQoL50Hxbg8kwNSCg0yvgMiXtKXbg5ax6Q1AqrMfqhieu5CX+EZfHpktVn0X9E0lfGHkF/Wzs3+x5NbTkBnT9w2yP/4lilrgBfkVi00JqUXX9SXew4P3EKt0XxT3A0zwF7zRjTWm9qAcaxVIXBxd3j0b0c0udG/carFb928/aEvKsdoBo29/gofaWb85aCUmsJyMtUAd9tisoc4Qm/RUK9nudJ8rcwRzg2b93NEqvBe5XcK7DQV/D1b4A4wDP40hpm+hbnWPgGxn8E3Qej+UirsljBT6ruZ74KEg3wcxwMzywDoEPsCMZhpgdNbzcdF4r/T1fLo5d26ccniP76p/R3d0ePtbWBE9nyvfrv791WWQME/sarMj2OphET2fUblXFyzP/j1klqrSlBdNXw0qoucT05jX98mPf3yXX7ki3d631x9F9Hzm5DRuNCvpUsjCs0EVDt1t+LqIng+i8i+hbYio/EsU6kVU/rXATbePVm9q13V62JjPG/6tdvrBEWCyxE0Ww8ut+iB9Hp61rp80a5cMomGFm+62OVSt3S83fNIqqIKiBz5pAUzWuOmPgc+W/dO1QJA2KKT3/mvO54HJBjfd3DL3dJMVF0I2BP7Ka/73ldvAZIubcob/XOATKfUb06T5mZ9zg1KAqQJuCopqJfY6rxQcED/NmnqtQyYw2eGm4Z4WsiG3ZwTltft2Lz1XOhuYKuKmVtvEfzx6uzEs9U7iojvHztQCpkq4aerrc85PJOXDVp46809B/+u2wGSPm86233Hxa55DRHrzFhcTX/b7FZgqE/A2GFVmzbFLIQfOLKj/fvvjo8BUBTeVf3nnQYusgYIdVa9v+XS1WQ9gcuAxykA54qbJ6x+83NJpavDm3kf6XBfX6gdMVXFTwOwrA367Mzd4osuK4TUWtT0FTE64aXya8ui6Ox18J18K6qc4cmIvMFXDTR5Tt8RGrBzgv8697MbePRtdBabquEm4dce597InYZPqeNsIpnSFClE1cFOnymbZ5/+5JJh1xvXMjZYNnwJTTdxUxbm1l0p+ym+F5wyHXd+ewLZRCzd9WT6iw+s+3/zSdj3m7zTLXQ1MzripTa600x3XYf7TxKMcFrR2zAem2rjJpqyrcHOFYQETpyXeyF9UGX4WHzd9dvY+M2d2g4DMmTZBX3ZeiKIJVdXhMQhVWa1ocK5bV0+fVX1VMxfsz5NzIFSVyhSiHGL3bF587JRw6caCYWdqjiCLxpsLhybJ5GLE6QumBLghfgefOC+LlalTJoCEGAQhvAKglsctqAEK+Wr0WTVu0FY3HEyrXpU5AeMrYucwFaTHN8rQdg5ZC2gWnkZVvwjyu5V5G6hc2M1DsP5150Edl0wsx+FhVI43COHK3gsIkBg17/zkJuTdL0PbIGRLyVp0koCmgfGexBJY4kiulGLHT8D7SWXY1IloJ3yRAp64lidIY9AV7Jx2Hp66riBywtHIewOWishlSC01n0OnjxeaOC9N44q1GBa4LpYxCi+j+KOOOmZy7nhHExe6SxUvUvETRAMlfJCAaEpYM/PM29xLeF1p6cfwjS9O5y0245OL2VlE449FMA0JC9fe8/HAG7s/ynsnPbHGTmOb6whcHeJQFEH4k1CBRII1ffXk3+xfCCLmlHkwYbt/Y/IJyRIdweIArBusYIGmjo8/Y5jGn/8pN5RIuYGaoRtMuUFQ9gSLckO9sjqNlVoqN9R4n/q9n/sZQd66Mz2mHbJw4XCwpEYgDpQbfCFCjAfdW5XVabAsqXIDr97w7fNH3fRZc6jx2Ky+q/8wunKDOysqoN2YKMvUcMoNFf/t8f7o9feRG3MWuPM+dCZv+RtTuaEaq+vsjOM6gys3VO2T4+6ZlOO76Jb51eZ9KMd7Da/cgEUZxqP3IMoYTLnhQsbB3NlxrSJzfjwIvb6OT9bVMY5ygzsrOPUo4JSqckOix+eA+2mHI5d77/7qMK7MBxNRbqjGihDo03jeNpYpbzu1RBT2vU3VwLEZzuZP6w0/QM5Gw0COxo/2D9N+4cBPUwwXVhMgMmEwQ4wFv4K8K4UPsFWo1BoFINji7RXmXnjqNlKrxIm6fol+b3oWTVh0KIvbyvKEuiwuLVVKAh6oaqnbsgL2AkUwQH67fx3jWqXt7RC5stOirRO/mfWj7CbBuxEHFLDLxWVK1PjHQc3bFhCgJFQjjGoi5DW21Il37IQBRLQLF7FUASs5yxPRg+2U9zte3v92zGdbZWkVt22BZB0eS3/iZnq3LDQVB1heo2uz/u7Xyz/37i+TW586ks8BYHVYAQMtyihJlHrMgH/TnMf0Q5fDsmDxpTXmS5aoavfi/tZap7yDssd3afF658Mce0zIBDhDODRJIdHQnrGk1tcv2uV3V/0SYIprT21KPX134N/heafdXZoMtPXjwLW2rK79xUiuReXHs37TKdWyCSsSz5HOXOD/dojF8zaBy0Qb772J2OVH3fBDHKpSX+V87c4Tj0m5KFLJHU+si+ED4zimgdHvStWbg1tt88np2cdpWtf95FXrKpD8qoJLn/AkswRy6yU6VIz3FMgTAORqCi72GHHhY7DJYWGheEgq1WpEpG7bFf/CNHcg/0rbbAQ0/sW/ANAf+yEKyM8CjX/6L4xHd7RccfMNKwIKXG6AZZBgtiFP5LsQxc8BemoBJPg/dUxTwtVo+RAJg3pJ1Vo5P76ongqnyq9+vjv9PXnvpHxXjHRAjzH49eJiTK3Am3YDNm0SrEt8/kLsNnO5njEmH8CcDmE280OUTD/phsGs75JwgyLu16xuxcgTlZKYZKx5YJwoJJZN3+VfmfZie+CWCrzaPS62vEY+kVH4XPr0l2TknErpjsPWCwWbhScGGx4SxjOFhDMV6r1t2lIePvHNy1CPP0YLSd/NtpME4zDyI5JlMkQsYEqY3Yn7IBEWa7PSxMEimVSsbuRDpKp4vhxMUxTaRwLqLj3Le9K8QDZre2zPRcjrD9G1Rm2+XQRZcpjefd8xGOPhwVVXiRIjYmOIoRuhKKq9IKNWwPwrE5MDF8+oRU6fsQfR02f15eK6M5WVoO9RNNCd+0HkVqNSBlj5tesvjOmzlsjV0CCnIDU12LSQ8L2dtiavVsNNQbvnvoqr8qN8d/Ixd7yBoLd0yFauezFEK4wVLb9fDJpgES9q0TklSVIUh3pFODseoSCllcg84N8oPQKD+sIkN06ioFDi4I++gdsRGyChY8EjwKQ6Re1qpJepA5M+nURPv87yxHvBKxRtLtUL6wU6LYQ5RWDYwlxBzd/Fm74YLcuZbzml9VtPv9kVb/31/aPDBcrGBPxWiI0J7HJpQBHGCoWfZqCawDRQmUzNP2q05Kb8cSmU/Kv3C37gH1nyr4YG8okmDzmVG8cN5LHzanSTTt3nk9bh48PH5sKPHEA+04wN8klmBOSTOGNl2hGQG4CViSBREqxMBImSYGUiSJQEKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIn7Q+rZzelScCcBX81i/q8ezmN8gYbL7L1UemXHFDeJjP5v27oUfebW6wCMs3E/a8+qUj2f2X1Yr9AJlfCdBHbwKEn5eUZelvdACksdxwP6wOrH4BNKeE8E6chaLe9T6WcFvuKNHBQf6RtVg6ypSVwf+A68sQI6ILDddvmr6HebcOUNOTQNQAP8AszL+hoSGfHpFlzIqY/d23vOb7taX322kp3GZsHJs6LyuLD7iuaOCGwTqVv+LNh5aChRBTFColS+hGXKfvy3ofvKLugefVrY89wSIsY0yXi/cmMoQFZ8ilBk/1SDnOA0nBWlGRl6YsPbHlakyiiX2GdDcOM6HJwqkdwz5i3Sn7ar6y2cHO/sD0uyqvncr1VRtzP7eeONyLkhhw8PD1Tx/1cN83uIYQopojeJxyBSLEJCc7GtzPzIz79EphXrsmiq4PHepnAriUEaQIrSMN13Ndt4C9Vf3PNUlVhk8E2FpkD1KecRvNkSQVBGVnPfEIC/qFw8Yjn0ncRNZbSQGcQKzpxmj3dKUwD47OuEWFmnp8F89ecDVgVGdyDvhBPHwnNGMCtQ97P1VDdhsh1ktynHrDQdm9AW/Y3CD1PIWxn/RALUF6wCIRuQ51227Szb+x68rj8mohx37tHNx16cBd5sRPbj2UY1knG4qI4NcTpywSHhYcgWFGoNnaxsZB3S7exrgIGlgT0NGaoniY/DKuaHhg0vumb4RPPDyOLuVsKwb1ooIqYDJwSQJiusMJ0WsfBrvgtNOpes9G20GCkwdoI3ELj03JHTwwaPA5NZYpDgkZnPduMux22MmDVa1WbarWo69AJoiS+ep0GsV7OlJo3Ut9H7PZg51JE/ETJEHhJopDG4AOkVmGJeriL5Q1RK+VFzFrimuQi5FlanICK04icPBeg/sRcp0BVAduGUi/ugtdBfsuQsjNPTPu5JXjitrq73sbnuJFTJOwB9BRJfbm4Pkc956Znn4PMZHMIz0ZUn4NqmN/NdWKT2Krfh00kffPAAn5WfWu/jVsuHSk7+cQ98u6f+n767h9+vTh8Hp5o5hpVeYrP3uFZ/hb/Ntd33QTi89acDR/QfIzBMLDAiBuD1UC041F/dKuiZttZpIiTqNictq9HucnH5m0OzIxckjuoxbdQstPU99Odhl/nfM0WeOU2q1f+NCmvvDpIeEWn4csOC3hJEjEefNE1F57k8La0X+U3I+/U9JYOkc5kx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQ98lctwlZDQ0G2MRCJi0Oj+XDhftap/8aPP1Fj7ojChaKKZJC6gcgJIVwQ2kg8sScDZEb5sS4Po1pXM+dE/quZ1vv4Invvqssjtx4S/ax+hO1J8O008wwyAM4f0i8NCYepJXwbKFIqYRqkBpWDD78azf5oJ7TRr0vvU2qr+vAE91ljvNEaeyXJDCry6KP6zrugNfEUw21eBIm8AuPMKnfBPnFLTcqoye9c/Xdm5DQrI60H3loM2dKbDQGAw/+kD63A2LoheJoRDXGMNQpYrWLwFuUuqQJ6aAW5AMp1esDsIwC/H9hTskfHjESiSh1PDdqRRU4r8UAc0IBBnWsszSdebrJb1xRWxNHapPUbQ4Odq4mm7PtXKVqME9jwjxiV8D5U7yjgtQe1dpKn4ZUIituh5OEUOmBlAnpGuEgHwDDkwrcKaPIqWoVJ6nKFGyvRRcCJ9u1XbgBvfoiHKGnoxZu4B5FnsUJut4kMZ4g9CbhJ1H1Jql6kVS9yRLrSVJvROhJMsWmWgFSBYg5usjfdp50KO/m8cOCxfFv9x79ZaMDWf7Wl947fIsVt3uldB5lFj4gcvm/5t8jjz04oe+aCRSShO70QrEXIEHnqMUJhJAjE0glEQm+GXZc0n9OeNBsy9Odmji3zi6BSDAVpZTud9NsKq0NPjjoc5NeDhJ9OZwQpTxWlHItTlAlAFnZLupaCzAx0gIgKuudPIapH0Ufw/DrpbHgjbWYT6iFpt89MKTweDrjPxZPqXI+BoqnEtZ4Gvm/eEr4Z9ruDaFNm//rt2pmRTPlX/ducBBPqTJNHESKGNZI0b3U4+nwWb06vJ7iHrYq8F7eqLV7G3AQT6mLBBygFMmKkrA04yl1DDV6PI1hjaeRmng60+TnBNTuxA2ZrUWZaq/TBEn+O9/7xOdeSdNXLAJOCepbsE0Jamogn8UZma0CAbkByGwIDTwi1CM08AgyG0IDjyCzITTwCDIbQgOPILMhNPAIMhs1Q6Mx1mBURO/hUtTzOGCszebMydYGdHLJdCQRooqEk6l7/jSfmDH5hCpbyIFP5jD5ZPHuO90n3f8UnLd7R96WgXfJ5/zKRYkSJTJ6bRSmwObiy0+CdxSp0MVPlKskanEhKM/NpmFL1V1EvIo20c46OkYhl8k6wRELXiw88vnqN0okbOtZ7WT1yXV8ZtWN5z2unsyou2zRRSlRQAFw4mMb+MuT+8sgVwtW0YHCP2KpCv/uIMOAuxwFqRkUlxBljmiFbBsJeXPLgwDaRsBLnSSwChcp4qSJYZJY0gBorb7cCdY7LXrdUn29szyp6FVyFK4wppHQdk75E3YYiFEKeG5QJVW/lTnxVqgOpRANCU4UQ9ktAt4ylvAi3HopcgnL1WV4SSb1hABWUZWKZAKoBVVkIFIpJKIEze+YMLHmHrypzjX5YZmqAsrRUh21/XMwLu8tzzYubytPjMvzTB5zqryq6S6PbmEl9mdpiP3zORsmbXmGGyYRurnEMInQzSWGSYRuLjFMInRziVwo76zXmXnrzwi3/Dl+2DVexwZFcqElf21f5PukdfDsConN14WOHEUbXGHURzYkqhgvB4PrAiZPmmi5dqrosMHKte+wZCvXPoYuJcNxufYHPSqWLZs6Mjw9xTNt/q4+HUygXPs2S7bit1nGEcwg15xes2aNAcq193VvEB079bRw8aQJ3QbXEi40iXLtK1i9M98UvGOQcu2XjtfMXqya6jPle6xZpzcWD0yiXPs0VueMMQXn8IxZrn2NxU3Z3l15Ptsk1w/fllW0M6ly7UNYnZdgQkJBRi/X7nijB7/coFuC+bd/OX0oZGwNI5drj2H1XHejew7eVGrl2vmS7hXd9rsHLG6XZJZZ4d4lkyjXjuUQjOXax2jEnhYy5an/pXLt1LIYRi7X/s2SrVz7Q3pKWyrl2uX+F3pNXfKn/7S6saH/Wmbu5LxcO1XcjIMS5F8s2UqQv9JNNlGHcu1/V2pedlXfbf5b26SXcW0hmah/F6ZgRY0RHGD1kBWrfwwbc41drj2dKYz9T4S/RCL81GpCBhPh72zFJsL/q1VpiPC35Y9ueJi/TjD/0N3vO8063uLwtDnHMRJqlneyYtMsD7IyiAj/o6M3vAfkfovMLPct+ciRPsFGF+HvwIoKaDcmM3fQ7eAPdyL8IafP3Bzuc87n4HyLGh51vpw1GRF+N1bX8Y3jOoOL8Fdvu0yWt/998JRmvfcPunb1A2Wn09Ai/FiUYVRRB1HGYCL8Q2Wr/vr8OD9y9c8YqzGRMZNNQIS/Ays4v1oZUIT/H8+eltt//RGy5GL5lV8OpZCnPsYT4XdjRQj0aTxvW8SUtwl93Rr/bH/Fd/0t56zLy182J+sIYIf4kuQyMKLTczYLBpxbFG6RSAvvx7UwAOIKeXJcPMjhYJVreaxOWg7UCouMb0tXPShi1Jbb11DI2w/xFQngogsFX15TIW8uPU3S8WBVlcLXAldxLNBkoT7zP15qViU0+8jNzsNPW1AKnZWkdhclhaIGRn2LzQP09kL0agtQ9YjBxGqLbimUjbr7iiVxCgk6vxSP9FB8+1rHb+eyI8+SN+UlUk5IYTciTkipr3Mu+wu+fybr919m9GRJ0zJ1SJTgK0vlYmkMi7bNqFp1szf9wQuYEpPvuLzzyPrktko8gN5WNZbScMZcVmdMMY30h6fLjoVHaKJcBYYvUQxcO3Xxag+mrGBmkdCE37R9TLxcIW7Cb9ZeOUihwn5BZ6tjP47irY5dELpqYHrAvFV9V5DHNfgB0aoUGaL+ZaGpNJw1mtVZySbRc+CjdMpWHQoXuhOTFf2VLD2oxoxZk0c4/hO8d8GgZXOrTBiiz1RZT3fkN8UDOTzqeZGmC9VMuCFHxywVj+Qs2dYOZVSSm7NTYOqKvYH+zSqeMuq0FwKwigDgOgIAGFp0ykSJoYxZZOLYyzvpaWKzoDl/1rvbZ+adFMpQZtjDvhCAiWwAdB2qSTQX/8f4ONTC3Abj47SzZuPjWFiXNh/n7xedhYN6fA+bK9nYO753I4UJ8HG8rdl2N72sTYBUMHXqVAPwcaym753s1+6G34qJjZL/qS06ZxJ8nIas3qlpCt4xCB/nwABhQp97XYOn9H0nqPNBmWASfBx7VudYmIJzeMbk4yyPj3bOrJsUljZ96llXO+ePJsXH+WHF5rx3Rk92TYiPU/DHOq/hvjP8tkz1TRx0vFpjI/NxnrJ67o7RPVeqfJyfHw8EujZs5TvXvnXKVPGVzSbBx8FyCEY+DgiEeJ665P8CH8emrKtwc4VhAROnJd7IX1TZ2HycUdZsfJx4ekpbKnycsaMPxX98OVywd45P0/F2jd5wzsehzs054JiMsGbjmCisS4uPU2nHG7nZrxK/xevOe9u1jR7DOR+HGiM4wCqeFas+hk11jM3HWcoUxgYdlDaWRmQLdh2IlD263/MleaekYzI8OxmoECXF00+Y6rB9Ud9fqkyCp8c0uzkp7upTpnwR1MyLg5+AbHmfnb3PzJndICBzpk3Ql50Xohjfj76TU9RIa3+W0SCERRY9ioVoldRzT1q2Ss3TEHwafyjM5SiA/yjnPxe5CC8LzE/YRktkwGEScTCI60OJx2FuVbtyGZMrHQvS/O29LwhWtbh3cPPJIf4UFQy0AyupozvCZzwrtYl0yAofDGiHr7hS8qAeki+Bkoe22UEZBi/1A7FjhgVeIjffF0d9ORPqPyZsXVvZw8xvZy+nxRlJ4euKPX1pVfrIa31ik3p6j6MTmyXsN2weuW1G9cgKJo+snJ2W/DzkU+CCQY7KxVOb9CaviQZA8oyKnpExTi/VN/CVYNRX17tMVsKUF6vVFi+XiaEcI6QExmJ/h6XDKlGcUqschHpEsnyYPGagRKy5CfXq9OVc9XVtd6tdhbzAcgDMsihSHxRVb1QOIb8EIYLzOIT8EvxHlV+KmHCrQ/SJZz7jz2xPtXgdeYUqvzSu26rRN5J6BaXnr1z0MH16B8JOHEYtsTwT9YMR8kxMnraG6gG4G9Hig1+eDmv0arNw/tv8c1+67N2lj7e43w0DfhVCvy5FpTz5oAu1LWeUwpPWsL5jXyX4DolxhQGj8Hcs1Az38u40EqESxeQr+4DC3gYSIlWyAp24nnQTLll9r1J47ps/ZQNbZ/3L6jJzgfpJCK1j3FAaTmvK6rRGhnUaEYLNwgTqgApvGa3p95hviD7KlOzV9cdLX0sTlRIFxroDH0EKmEhfDXn9+cW4zA8R036tn5G7dBSP6ivz8GSVqL9MI2DBo2x2wU/1og9XXsVqfZVwuGJzai1Wp1YuR9P6Yi2ggDd2iVqfBc2ZpsiksDZ0Mxjp6GU6sKucM0o98biU74uodJ/khTVxfEhfyTSkd7x3O9Jcdj5wxZ4DZUfvrEM+D2IVHS+NVfFhXVnysA7HK6aa1jUiY2PhVEQkk+HlV6WwcB4U7/ZAAkwtOMj0Coh8SVu6PWgZjWGa09kPVQzPXcizNtOXR2aLVd8FfVMJXxj5RUO99i3KWHowYkLHvPoTuownqw2ZMXzFYlNCatF1fYn3ACtXiFW6L4r7ASb4tc10Y42pPSjHWgUSl1yvxndcnc/6Tay8sUV2wRc72pJyrHbA6NufwDd3YP3moJWYwHIy1gJ12GOzhjpDbNJT+Tv6DK08WRI0pzl/8O3t7Y6R2yW821Dwl2GF/6Nh63sT8NMYYvoW6lb3CMh2Bt8E6RFqxd0SRgp9V/M98FCQ74MYYGZ5YB0CH2BWMQ0wOuv5uGi8V/p6PoK0bT18XL6H7GoQNKbb+fLKIno+7i8a8FLS1kesuWD3j2qBY1YRPZ+WDduNSlh10GfbxRqP89c3KldEz+dU+PBpWQ8rhcx59nK1aGfUP0X0fNaeW/24xqhZoet3NB13r/LxlkX0fBCVfwltQ0TlX6JQL6LyrwVuarawSvCGbT8EU2v9OORzN3UtMFnipoXmAcmt/aTBM/zn1Tv98fxcYLLCTVYz1kVE9fUNXzh+372o0VN9gMkaNxUMjViR/HFJ+C679N7tXn6A6os2uGlW5uqDwyNt/Q9Mn5rUv0ezYGCyxU3ev1wLqPTheeiUcucuZDTrdwKYKhAPXHfv4uTEGxHZ6xxavxS3sgQmO9wU36R7F3dF05BFV8u+Teg5aRgwVcRNrklWDn35BwJzhN8tRt1OnAxMlXCToqlPFM/9cuCBsucCR/ndSQMme9zU6tuYMf7lhaFjV4T5fBnbciEwVcZNT7JltuKknuErp3w6Z/Zv13fAVAU3xR59Yr534Bf/8Um33l3vPfsRMDnwGGWgHHHTHz3dvtu8nueTu3Z1zIL1D7YBU1Xc9PrZ0SOhVqNDF/b3W2rXdC4UUnTCTSN2To8Ps+0YuOVworibt9gCmKrhpu1O5R42uJUcvjDnas1RFxceAqbquMl61N+dBy66FrqlUcO9zQOmKICpBm5yfPDE9czsl5FzlVaVOvlUnAVMNXHTpB4WYRNSfhPOTxv0OnHUZzNgqoWb6ka7n9r7dKjfit4fds91ag1Nzrjpd8GM7iNc/grfPoxfsWKe0yJgqo2bglxV8+4Ore43b+Cl5jmVU54AE5/oRHsOHv0jY0R4TqsrfgneTmdoQlV1eAxCVfGv5ftaVD8buVwytcHGSfVOIcKGrkJVq5lClEPsns2Lj50SLt1YMOxMzREryVNX4dAkmVyMOH3BlAA3xO/gE+dlsTJ1ygSQEIMghFcA1PK4BTVAIV+NPqvGDdrqhoNp1W2bEzC+InYOU0F6fMpGtwKahadR1S+CLlZvc3fK9V+jApaO+fWj56l7ZCl6/Q6jcrxBCFf2bkKAxKh55yc3Ie8PG51y4hadJKBpYLwnsQSWOJIrpdjxE/B+Uhk2dSLaCV+kgCeu5QnSGCSKfZ682jgxnB+8pP6yN+2jkx6S6eOaz6HTxwtNnJemccVaDAtcB21MIpOjH3XUMZNzxzuauNBdqniRip8gGijhgwREU8KamWdu9ceOw/MDzgvS419vfvOrb1UK0xB/LIJpSFi49p6PB97Y/VHeO+mJNXYa21xH4OoQh6IIwp+ECiQSrKUR1Qfsf7nUf/4yy/snf9tG1sEs0REsDsA6xQoWaOr4+LOGafz5n3JDiZQbqBm6wZQbmtmyKTfY25aGcoOTxcUVx48lRKxYuqXO2+X5zTkcLKkRiAPlBi9btoPuDW0Notyw3Pzy+gknHQV5OQ3vVGli2dLoyg01WVEB7cZEWaaGU264EGoT3PJrYsj6yrtS10yY1tNklBssWF33w1TTGY6VG6xGrutx2mJ+5MofR78su+1BrhFneOUGLMowHr0HUcZgyg0ta8xNffH9q3DhfJH5v1ljfpqAckNNVnDsbQ2o3LDk9woFo1a4BS5zythXr1P2cxNRbrBgReiHJm9by5S3nVoiCvvepmrg2Axn86f1hh8gZ6NhIEfjR/uHab9w4KcphgurCRCZMJghxoJfQd6VwgfYKlRqjQIQbPH2CnMvPHUbqVXiRF2/RL83PYsmLDqUxW1YBS+LS0uVkoAHylfRbVkBe4EiGKBJ8fO2/XNbMjpw+5Jqee0GxL+m7CbBuxEHFLDLxWZKlPjHQc3b+lVw9hWtEUY1EfKqV9GJd+yEAUS0CxexVAGaL7CjB9sj0XuyGp76PWx1cs/JWcMf/iB3S3/iZnq3LDQVB9jjE3fq10maHTH1If/Zno473DgArCIrYKBFGSWJUo8Z8G+a85h+6HJYFiy+tMZ8yRJVxz9/d7HihMDw/Q5dXmWs3trTHhMyAc4QDk1SSDS0Zyyp9fWLdvndVb8EmOLa/oqU+t9nvQ/a9mxKtdsKxzAOXPutMptr31Q2nfx41m86pVo2YUXiOVqybLWF/RSfuT47Jiwd8dfyD3uoG36IQ1Xqq5yv3XniMSkXRSq544l1MXxgXMc0MPpdqXpzcKttPjk9+zhN67qfTHSoAsmvKrj0CU8ySyC3XqJDxXhPgTwBQK6m4GKPERc+BpscFhaKh6RSrUZE6rZd8S9Mcwfyr7TNRkDjn1IBgP7YD1FAfhZo/MMr6MtP8Q0rAgpcboBlkGC2IU/kuxDFzwF6agEk+D91TFPC1Wj5EAmDekn/DV6HK4/f45c74dDCyOO1yWWJy3fFSAf0GINfLy7GjAz760TaOZ+gqYM3hTbj3dqjZ4zJBzBPgjCb+SFKpp90w2DWd0m4QRH3a1a3YuSJSklMMtY8ME4UEss9f6/+02/0Z5/pPhefXd44rjr5REbhc+nTX5KRcyqlOw5bLxRsFp4YbHhIyGAKCWcq1HvbtKU8fOKbl6Eef4wWkr6bbScJxmHkRyTLZIhYwJQwuxP3QSIs1maliYNFMqlY3ciHSFXxfDmYpii0jwTUXXqW96R5gWzW9tiei5DXEaJrjdp8uwiy5LZ6933HYIyHB1ddJUqMiI0hhgSgwej3k88K+wcs+3eyxeT4vhQyFvYgevqsvlxcd6ayEvQ9iga6cyREbjUqZcAqv1ZgTJ+1RK6GBjkFqanBpoUu5NJo2III/0HB655Vn/RFvqQv+Zg73kDQWzpkK9e9GKLVlhWtphWMwmK36JySJCmKQ70inB2PUJDSSmQe8G+UHoFBfWGSGydRUChx8EffwO2IDZDQseARYFKdonY10svUgUmfTqKnX2d54r3gFYo2l+qF9QKdFsKcIjBsYa6g5u/iTV+MhCKuYLxzn0uXfLI9m22O+rbyPGVjAn4rxMYEdrk0oGjLCkVTzUCVyTRQmUzNP2q05Kb8cSmU/LOvwFbyz0oD+XqTh5zKjeMG8m/SP55YNezov/6hfGEQf2Q+B5CPsmODfLAdAXkWZ6xMOwJyA7AyESRKgpWJIFESrEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJVuaC4zm1Gsk+B+xsJcsxz83dTKO8wcaL3l2h0C85oLxlM/m/buhR95tbrAIyzcT9rz6pSPZ/ZfViv0AmV8J0EdvAoSfl5Rl6W90AKSx3HA/rA6sfgE0p4TwTpyFot71PpZwW+4o0cFB/pG1WDrKlqXB/4DryxAjoggN02+avod5tw5Q05NA1AA/wCzMvaNyiq19nmKcJsn75++Qrz8xJ+uy1le4yNg9MnCfb4sPuK5o4IbCm0Df82bBy0FAiimKF3sq4a+c1Ofibz7jWNXKuPbiwgENaxJguEe9PZgwNyJJPCZrsl3KYA5QGsKLU05a++MCWpzWJIvoV1tkwzIguB6d6BPeMeask5NTNvzu0eBC5d/Sj7HsZDo+MuJ/bzx1vRMgNOXh4epSO+7lumt1DCFFMEb1POAKRYhMSnJwGUfV/dd4TljZZmaEYt1JuAruWECQVK0gDdNzXbeAvVX9zzVJVYZPBNhaZA1TL52lWjzb/FTAjze1oi6p7WpN3EYnn0ncRNZbSQKcfKzpdbYnEaAPTwPisa0SYmednwfw1ZwNWRQb3oC/E00dCMwZw65D3czVUtyFynST3qQcstN0b0Jb9DULPXxC2s36IBSgvANsR3YY67bZpp7c8b70h7e+AHZc2PLj0KbAfebET249lGNZJxuKiODXE6csEB2Bdg2BFodrYxcZC3jndxroKGFgS0NOYoRo16OrYG1a3ArPtD3dM7+HsTY5EQnAvGqgiJgOnBBCmI6ww7dFxsCt+C42612y0LTQYabA2ArfQ+LTc0RODBo9DG5nikKDRWc82426HrQxY9VrVplot6jp0giiJr16nQayXM6XmjdT3Ebs92LkUET9RMgRekiikMfgAqVVYoh7uYnlD1Ep5EbOWuCa5CHmf7E9AxWlETp4LUL9ur1OgqoBtQ6kXd8HrIL/lted9r9c/PDQ4p1/rY18vFIwkp0jYA+gpkvpycX2Oes5Nzz4HmckfIDwbUX0OqmE+t9eJTWKrfh82kfScDWl7j0yrKdhUI+vsj8QwssoR/nXpu3/49eLwGbjti/TiJbuAtBsXkgtszfkc4FPAig9oPsZgGFhgxI3BaiDa8ag/ulVRs+0sUsRJVGxO+zSp+f7mj7oHpvZzvBNd5WYzstPU99Odhl/nfM0WeOU8q1eOmpRXXh0kvKLT8GWHBbwkiRgPvmgl/KBDNgFvnSMXDNx4cFjWoPJkx4Rj99Mdg1/n2jFJnng4gcuMtPlqrpeQ98hetwlZDQ0G2MRCJi0Oj8Flr58dO+eW/8bfFh2q+qVtN4qkkPoBCEkh3FAaiFxnReSUPTGu5zCN67lzQt/1bOsdPPHdd5XFkRtvyT5Wf6L2ZJh2mhkGeQDnD4mXxsSDtBKeLRQplVANUsOKwYd/LVfhKOe0Ue9Lb5Pq6zrwRDPscZ4ojf2SBGZ16fRxXccd8Jp4qqEWT8IEfuERJvWbIL/4LxOqTQ5Z8CN0TPlnq/3Ltq1JbnxMiY3GYODBH9Ln1kIMvVAcjajGGIY6Rax2EXiLUpc0IR3UgnwgpXp9AJZRgP8vzCn5wyNGIhGljudGragC57UYYE4owKCOdbqmM28y+Y0ramviSG2Sus3Bwc7VEHu2nSu5BvPNTJhH7Ao4f4p3VJDao1pb6dOQSmTF7XCSECo9kDIhXSMc5ANgeFKBO2UUOVWt4iRVmYLttehC4GS7tgs3oFcfhJTZ6aiFG7hHkVUZoTdJjCcIvUn4SVS9SapeJFVvssR6ktQbEXqSTLGpVoBUAWKOLvK3vh5XCrYOEweOqX1/1sftn5+Q5W996b3Dt1hxuyi30OsDHp71zQtMfVjnUgtPfddMgDv3Q3d6odgLkKCzrfIJhJAjE0glEQl27y0fvdy7UfDKA2lrpy+sM6IEIsFUlOpn9VZm3jstnC9ueahB/xFWHKCUxYrSiso0CUBWtou61gJMjLQAiMp6J49h6kfRxzD8emkseGMt5hNqoel3DwwpPJ7m/sfiKVXOx0DxtDNrPO3wv3hK+Cfr/biVVa7djNi/70TvakMUJzmIp1SZJg4iRSfWSBFU6vG0Vszh1gvW3w5YJ332b0j3TS04iKfURQIOUOrAitKvpRlPqWOo0eNpJ9Z42kETT7eY/JyA2p24IbO1KFPtdZogyX/ne5/43CtpnTiYElSuzDYlsNZAvpUzMlsFAnIDkNkQGnhEqEdo4BFkNoQGHkFmQ2jgEWQ2hAYeQWZDaOARZDZqhkZjrMGoiGxiVPU8Dhhr2zhzsrUBnVwyHUmEqCLhZOqeP80nZkw+ocoWcuCT7Uw+Wbz7TvdJ9z8F5+3ekbdl4F1yNlwuSpQokdFrozAFNhdffhK8o0iFLn6iXCVRiwtBeW42DVuq7iLiVbSJdtbRMQq5TNYJjljwYuGRz1e/USJhhS4XQsSebyJzvtaut25Gq0pMkdCii1KigALgxMc28Jcn95dBrhasogOFf8RSFf7dQYYBdzkKUjMoLiHKHNEK2TYS8lIrgQDaRsBLnSSwChcp4qSJYZJY0gBorb7cCdY7LXrdUn29szyp6FVyFJ4JPuLt6Eon7DAQoxTw3KBKqn4rc+KtUB1KIRoSnCiGslsEvGUs4UW49VLkEpary/CSTOoJAayiKhXJBFALqshApFJIRAma3zFhYs09eFPdYfLDMlUFlKOlOmr752Bczq7ENi6vrkSMyztNHnOqvKrpLo+uZCX2p2uI/bs4GyZteYYbJhG6ucQwidDNJYZJhG4uMUwidHOJXGjLvkauJ9YvCN5+wdla+UPRpEgudPnI9cMNZr4MSxsSdTXhoOwQbXCFUR/ZkKhivBwMrruZPGmi5dqposMGK9e+tgpbufYkupQMx+Xa7Zx2zjsmfR6+5vKfY5tnHDaFcu2rq7AVv003jhYKueb00qVLDVCufercgZYhqQlhi706/THxz1NDTKJc+wxW74w3Be8YpFz7F1nDaPsGq4XbFbXuta8WRd5JN1a59mGszkkyBefwjFmufY51bpJqsyho8au/Gw3/eJwsS2zscu2xrM7rZSQNKJMs137EsUtqT+85YemhE3e4H0zOMHK59k6sngsyuufgTaVWrn14dfO6qXUTw+cE2J5NsZ9KLmxurHLtWA7BWK49SSP2tIcpT/0vlWunlsUwcrn2Z1XYyrX/SU9pS6VcO2/cX23Xn74RuKvPwr9ryqZs5rxcO1XcjIMS5E+qsJUgv62bbKIO5do/rRieq9xeJXLz6ILJNf/ua8N5uXZqjOAAqz9ZsTpj2Jhr7HLteUxh7H8i/CUS4adWEzKYCL/AgU2Ev55DaYjwd5taS/Viwq8BG9cPuHz4nM89Dk+bcxwjoWa5rwObZnkrB4OI8Odcepxw9mLNgPmhh+z2jVHuMLoIvzsrKqDdmMzcQbeDP9yJ8JefGLPdMfJKUO65tSNi4px6mYwIfzVW19kZx3UGF+G/+rBDXuj78JAFgy5mPI5L32lkEX4syjCqqIMoYzAR/ofi1NV/uAb4Tu6WFGXWoOpMExDhd2cFp56DAUX4dz61aJ+f3zlo26Hdx5vX++ulCchZQISqsSIE+jSet+1lytuEvm6Nf7a/4rv+lnPW5eUvyYVxrLFDfElyGRjR6TmbBQPOLQq3SKSF9+NaGABxhTw5Lh7kcLDKtTxWJy0HaoVFxrelqx4UMWrL7Wso5G2E+IoEcNGFgi+vqZA3lp4m6Xiwqkrha4GrOBboqdNosd/GHZmBORYdxt2pvJRc07ZEtbsoKRQ1MOpbbB6glw3Rqy1A1SMGE6uVuqVQNuruK5bEKSTo/HLjnem5P87OD9xQLdjzn3YZZC3F8v7YjYgTUurrnMv+gu+/gPX7Tzd6sqRpmTokSvCVpXKxNIZF28bt02zHHElF/yy3qKS22ZmUtko8gN5WNZbScMZYVmcMNY30h6fLjoVHaKJcBYYvUQxcO3Xxag+mrGBmkdCE37R9TLxcIW7Cb9ZeOUihwn5BZ6sP2jnu7jCum2/Gmz2b2ydUIi/pWcIPiFalyBD1LwtNpeGsRFZniU2i58BH6ZStOhQudCcmK/orWXrQ8dkeZ/p0Pho0bnOVrT0szZ7qM1XW0x35TfFADo96XqTpQjUTbliqY5aKR3KWbCv5yUzfXW9cgrL8z6zg5X8Zb9RpLwRgFgHAdQQAMLTolIkSQxmzyESbcj82/pO6KSCvy6/Orcv1GGPUw74QgGQ2ALrGaRLNff8xPg61MLfB+DiNHdn4OB/pmSXHfJyAlpGTn1t0DN3QU9L/4trzf5oAH8fVkW13s7ajCZAKxo4dawA+zsg2o3/On702dMUevz9WCguemgQfx4HVO9am4B2D8HGWOM1/Lruy3G/H1j7ffZJPVDYJPk4ZVud8NE6+ZEJ8nJjT7XcdDWvok+P3wKZmTtmnJsXH+deBzXn3jJ7smhAfxzlvbY/nV7oFpp75WnOH/7n6Rubj/MXquQtG91yp8nEc2hzcsUo+LnjSs3WLWpadMskk+DhYDsHIx/moyVP3/1/g4wS5qubdHVrdb97AS81zKqc8MTIfJ8GRjY/TzdEwfJxKd8ZKlNdO+a55NdRl5j735Zzzcahzcw44JgMd2TgmIsfS4uOcS1vczctjS/iml60enLt+9RznfBxqjOAAq26sWIUbNg81Nh/nAFMYG3RQ2lgakS3YdSBS9uh+T/J+lXXHZHh2MlAhSoqnnzDVYfuivr9UmQRPj2l2c1Lc1adM+SKomRcHPwEtlbPn4NE/MkaE57S64pfg7XSG8f3oOzlFjbT2ZxkNQlhk0aNYiFZJPfekZavUPA3Bp2kGhbkcBfAf5fxnuotwZ1P7E7bREhlwmEQcDOL6UOJxmFvVrjzI5ErHgjR/e+8LglUt7h3cfHKIP0UFA+3ASurojvAZz0ptIh2ywgcD2uErrpQ8qIfkS6DkoW12UIbBS/1A7BhJlMjN98VRz2dC/ceErWsre5j57ezltDgjKXxdsacvrUofea1PbFJP73F0YrOE/YbNI+ftqB45xOSRlbPTkp+HfApcMMhRuXhqk97kNdEASJ5R0TMyxuml+ga+Eoz66nqXyUqY8mK12uLlMjGUY4SUwFjs77B0WCWKU2qVg1CPSJYPk8cMlIg1N6Fenb6cq76u7W61q5DXsiIAsyyK1AdF1R0rIuSXIERwHoeQX4L/qPJLERNudYg+8cxn/JntqRavI69Q5ZfGdVs1+kZSr6D0/JWLHqZP70DYicOoJZZnon4wQp6JydPWUD0AdyO6QMCvzltXlSkInOedMSBz0vEW+niL+90w4NdfoV+XolKefNCF3CoapfCkNazv2FcJvkNiXGHAKPwdCzXDvbw7jUSoRDH5yj6gsLeBhEiVrEAnrubL+D/fdT8tWBF781Cys/1KVpeZC9RPQmgd44bScBqf1WmOhnUaEYLNwgTqgApvGa3p95hviD7KlOzV9cdLX0sTlRIFxroDH0EKmEhf3Rg67Mxcaa5wm82mHyMf9Xah+so8PFkl6i/TCFjwKJtd8FO96MOVV7FaXyUcrticasPq1LIVaVpfrAUU8MYuUeuzIMGjyqSwNnQzGOnoZTqwq5wzSj3xuJTvi6h0n+SFNXF8SD/MNKR3vHc70lx2PnDFngNlR++sM5HMlY2Ol8aq+LCuLHlYh+MVU03rGpGxsXAqIpLJ8PKrUlg4D4p3eyABphYcZHoFRL6kLd0etIzqMM3p7Icqhucu5H3Ru0S1LVZ9F/RNJXxh5BcdtOz9k78SfhPOelSlY1zOVrJyihnDVyw2JaQWXdeXeA+wcoJYpfuiuB9ggl/BTjfWmNqDcqxVIHFp28/hF/uFiREb48s/a2p99jxtSTlWO2D07U/gm5uxfvMvhi0wzbCcjLVAHfbYrKHOEJv01IHsKtVlE60CJpW7/e9zWVfyGhSmUmQo+F9VYIP/oXHgpzHE9C3Ure4RkO0MvgnSI9SKuyWMFPqu5nvgoSDfBzHAzPLAOgQ+wBxhGmB01vNx0Xiv9PV89r9SmLUZcTFoe8HUyGEL6vOL6PnYd7Pw7Xhsa/Cqigsdx2fK7hXR8zkyZNON020uBK+UXn+WHhPctIiez5F7A2b3XqII3bP4vWXdYc1vFdHz+XA3c+0uxSCf+SG2sQ797I8X0fNBVP4ltA0RlX+JQr2Iyr8WuGmiZeuQPaNqRawcc2D4vXZPrIHJEje92PPX8CT/P0O2TQvb7e7SYiwwWeGm63MWZOx61cln8drVC3uNaPkbMFnjJov6d7sdudozdOeIOark4bsFwGSDm9qOsWki3ve7f+qFMxLXzff3ApMtbnpcJirzW6fHIdsbXF04aGsVX2CqQKDxm2WXAZGDfRb/6NW1099b5wGTHW5yP9rV8ePEP/xW3bradfYeUSAwVcRNZUaYh5fl8/yXF9QveDjr2GpgqoSbyrYOjD36yMtn/5/VbccPazIRmOxx084RNm2yzt/x3X40cvXyB837AVNl3DTGI2J/p9+/Beek3nrXueLeOcBUBTcNCakpLbPzeOjBq10f23362waYHHiMMlCOuGn75r+a8BTggY931Zj6NPYaMFXFTQOGPSub8qYgeOad7E/DFM92A5MTbhqbXK374qfjgzaViVFlfE7xAqZquGnWuCM2Hd9fiVx+afEvMxs1HglM1XGT/45zPLOXbSMneb2pcfhKfn1gqoGbAtKeX5/8dVPIGB9/Zev8pdDLNXGT99UFBbUefgvfKVyREvJLeagrVQs3Va2/8Z6gjDJgZ4Ci8l77WjHA5IybGjXa+2bJ5keCeS+fzP99cgUpMNXGTe1TL8uHBDT02T7y2ZibPRZCgVA+bqo7dkevzz+dIg92v/VxinvIYppQVR0eg1BVm8erBzfPzPTZM2PDtRV7P6zkQKjqKFOIcojds3nxsVPCpRsLhp2pOYL8WebCoUkyuRhx+oIpAW6I38EnzstiZeqUCSAhBkEIrwCo5XELaoBCvhp9Vo0btNUNB9Oq01VPwPiK2DlMBenx9qq6FdAsPI2qfhF0/b1KMRFn2nQIXX/y2bX5gZOnc3gYleMNQriydxICJEbNOz+5CXkHquqUE7foJAFNA+M9iSWwxJFcKcWOn4D3k8qwqRPRTvgiBTxxLU+QxiBRPP0ksVoby4Uhs4NPbFw4qsJ8Mn1c8zl0+nihifPSNK5Yi2GBK7uqSWRy9KOOOmZy7nhHExe6SxUvUvETRAMlfJCAaEpYM/PMeQ0nXp3UfpBf5sV5Oy497tKTwjTEH4tgGhIWrr3n44E3dn+U9056Yo2dxjbXEbg6xKEogvAnoQKJBGvxkNDaLSseDJ1isdc6JKg3eaZYoiNYHIC1nRUs0NTx8ecY0/jzP+WGEik3UDN0gyk31HJiU274rttYqaVyg+pli7lTHlz3WX8r7sLvz2dO43CwpEYgDpQbajixHXSv5GQQ5Ya6nex3Z7muFSy5/Xdrs/utVxhducGcFZXvxhkTtWCZGk65wePc/YvXVp4RLpC7ri17ZM0mk1FueFuVzXVPTDWd4Vi5YfTyxDvvFvcLXLe2fe/pT66dNbJyAxZlGI/egyhjMOWG2U1u/WLtdTw8q2mliz6zG5BJ0cZRbjBnBed7VQMqN/zskvez5/ft/vODVgywXP6ILOFoPOUGrE8zIvREk7cdZ8rbTi0RhX1vUzVwbIaz+dN6ww+Qs9EwkKPxo/3DtF848NMUw4XVBIhMGMwQY8GvIO9K4QNsFSq1RgEItnh7hbkXnrqN1Cpxoq5fot+bnkUTFh3K4laqjZfFpaVKScADr511W1bAXqAIBugDCi+S5vj39/BZ4Rxcrf0foX9QdpPg3YgDCtjl4jIlavzjoOatXW2cfUVrhFFNhLxytXXiHTthABHtwkUsVYDmC+zowVbZdP6Ek5feREybM0r+72jX9uRu6U/cTO+WhabiAAuWBT3pW9AidKbsVEi30WccOADsqzMbYKBFGSWJUo8Z8G+a85h+6HJYFiy+tMZ8yTbmHFt0f2WHDz65LRs8e5RsV8keEzIBzhAOTVJINLRnLKn19Yt2+d1VvwSY4tpjb34W+PfpGHCg0c3Zn0e39ObAtY9YXXvTSK5F5cezftMp1bIJKxLPkc5sNz07s82M30JyVE9zRvXn+1A3/BCHqtRXOV+788RjUi6KVHLHE+ti+MB4gmlg9LtS9ebgVtt8cnr2cZrWdT+5rFIVSH5VwaVPeJJZArn1Eh0qxnsK5AkAcjUFF3uMuPAx2OSwsFA8JJVqNyJStu2Kf2GaO5B/pW02Ahq/qhoA/bEfooD8LND4Y6vpy0/xDSsCClxugGWQYLYhT+S7EMXPAXpqAST4P3VMU8LVaPkQCYN6SWZPeYW6/IzwrZnN/xQJx5EPsZfvipEO6DEGv15cjPFbdD5p4xErn61O22YO/H1pbT1jTD6AWQFhNvNDlEw/6YbBrO+ScIMi7tesbsXIE5WSmGSseWCcKDRNL/PBzdlfAsOWjOk69/n9iUvIJzIKn0uf/pKMnFMp3XHYeqFgs/DEYMNDwkmmkHCmQr23TVvKwye+eRnq8cdoIem72XaSYBxGfkSyTIaIBUwJsztxHyTCYm1WmjhYJJOK1Y18iFQVz5eDaYpC+0hA3aVneU+aF8hmbY/tuQh57SC61qjNt4sgS26od993DMZ4eHDVVaLEiNgYYkgALmSfmf2ioJz/tg7t++4+d3IXOX3GHkRPn9WXi+vOVFaCvkfRQHf2hsitRqUMsPKrVzXG9FlL5GpokFOQmhpsWkj43mx0nbzg88Tw7Ft7ag3OFtmSj7njDQS9pUO2ct2LIVoNWdGqWc0oLHaLzilJkqI41CvC2fEIBSmtROYB/0bpERjUFya5cRIFhRIHf/QN3I7YAAkdCx4BJtUpalcjvUwdmPTpJHr6dZYn3gteoWhzqV5YL9BpIcwpAsMW5gpq/i7e9MVIKGpIB1e/tvK5f978W/fmRG9pRdmYgN8KsTGBXS4NKBqyQlFTM1CdYhqoTKbmHzVaclP+uBRK/n13Yiv5996JgPy0yUNO5cZxA7lV3IcrDTYnhi7cESGs/S73NQeQS6uzQS6qTkB+hjNWph0BuQFYmQgSJcHKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBlIkiUBCtzkF/oiL51O4bM2j34wnDfgtM0yhtsvMjWR6VfckB5O8vk/7qhR91vbrEKyDQT97/6pCLZ/5XVi/0CmVwJ00VsA4eelJdn6G11A6Sw3HE8rA+sfgA2pYTzTJyGoN32PpVyWuwr0sBB/ZG2WTnIlpJhXLuOPDECumAXJ53Wrmuod9swJQ05dA3AA/zCzAu6fGvicIt2Nv6Tkl7vd1/lMUGfvbbSXcbmgYmz0gkfdl/RxAmBVUzf8GfDykFDiSiKFRKlhb/cfhC6M9p32ddRL7aZf63LIS1iTJeI9yczhgZkyacETfZLOcwBSl1YUQpwoi8+sOVpTaKIfoV1NgwzosvBqR7BPWPeKolvs+WMS/cfEWMyV/5Zu/fUAUbcz+3njjci5IYcPDwt/X/sfQdYE8n7f1ROUcQuoqgEKyDNggUbIQm9KCjWUyMEiAaCSRCxnCh2xY4iVuy998rZsJ1n7w3r2fU8z3Kn/me2BHZ3dklgSXK//5fn8Xlkh012P+/M+74z85nPa+B+rrNu9xBCFFVA7xNGIIpvQoIz1Pv+PfuAl9J1ATG9gn+vFWAGu5YQpP6cIHW3NWxft7FEgb+5bqkqv8tgG4vsDirqxo+k3EeNJONbeW1wPmE5mbqLSH4ucxdR11IS6ARxoiPS5aK/sQXGl5GhwRbuX8QZK875ZocF9GYuxDMjoQULuA7U/Vwd1S1ZZZDkPv2Ahb57A/qyv4HrOQ5hO+eDWIDyALBtNizU6bdNW3ur7+krwmXB84Y+GOG+cjR1c8oK249lCeuUxsK8ON3FFZcJDsA6CsHqgupjF5pJBXsNi3WVMLDkYKSxQ/XObkr0u+wG/ptTa1981XvGDqonkoJ70UAVaDJySgBh2swJ00oDg13hW2j0vWaTbaFBT4P1EbiFJmTkju4YNIQfOs/mh8RNz7m3S7sfvMw3+722Xe169HXoeFmiEF+nQayXs6XmTfH7yN0e7FyKTJggT4aX5GpFFBEg9XJL9MNdHE+IWikv0KwnromOUsGjerlQcRqRk28FqB+rZ5CjqoRtQ+GLu+BxkG+5auq0mS1HHvDfJS2z735KeCtqioR9ADNFwi8XNubo59yKOeYgMzkPwrMRNeagGub1egaxSazx5+ESST9a6kmfdvu6eWf/U26b1Q9xEHX3D7+fuftHXC8Mn/Jru118a+UfvNu54TlZ4FobHvD5jRMf0H1MwTCwxIgbQ3EgOgjoP4ZVUbPuJlPHyrVcRnv89d2AUrk7gqe1juiw7uTd1lSj4fczjUZc533NFlhlH6dVtpiVVd4dIa1iUPiqjDm8RHk04XyRhhk7tU34sOP3Q7Y+cnvhUKE5dVGmbAh2P9MwxHW+DZPoTrgTuMzImK9u9ZAKLtUzbEJmp8MAm1goFYXh8aBU6fd7Pu3zOyIq5dI4agR1ObacGP8AhKQQ0VASiBzjRGRnPTKu/84W17fODvqrT3uvgAl/fdNaHrv1gWpj/Bv1J8N00M0wqAFcmByniIoDaSU8WyjTaKAapI4VQ4R//SYf9HPaqOdl9kn8ugE80Vn1CJ4og/2SCGZ1acy4buAOeF0i1cDFkzCBX3iECX8SdP2X6tP8OrY4F7RD1neiy+FTMmrnY0tsdA1GDv6QPjcDYuiB4mh0aYZhaJDH6hBK9Ci8pAnloBbkA2nw9QFYRgH+Pz+nFI4IHYVElB7PTVpRBc5rMcBsUYBBHes03WC+YPYbV/TexJPaJH2bg4edq4H1uHaueuswv8iGeege3/OnBcfFqb1rt1e8CKxKVdwOoQihMh0pG9J2ISAfAOFJC+5U0uRU9fKTdGUKrsdiCoFT2/VduAGjej2kzE5DLdzAPYq59RF6k2Q8QehNwm+i603S9SLpepNF1pOk34jQk2TzTfV8FWrgcwyRv5X5r/M4PVDpv7+Os1+IrH06Vf5WxBwdokLF7Qb9fvtjz1Ie3rNKzZvfbkiflsVdMwHmXAvN6YFiL0CCzpL6uQghRzaQiiISfKbvzo1VLu2XZl5P6ZY49Fl4EUSC6ShFpK3afvq5PHSdIOFrjP/8RjygNJcTpSn1GRKAnGwXvNYCTIz0AIjOeqfGMPyjmDGMuF4SC95Yj/mMWmjq6YYhRfjTS/8xf0qX8zGSP+3M6U+d/udPSfu0Tju6v9QvQZJt+499inwRKePBn9JlmnjwFB05PUXLEvenV36Z1vbYgISgPbVatTvy6G4ED/6UvkjAA0pOnCjZl6Q/pcdQk/vTjpz+1EnnTy+b/ZyAPpz4IbN5lqr9Pl2cKNn90Ttu65X0cB6mBN85pwR/66YEV3gjs1UiITcCmQ2hgacjszE18EgyG0IDjySzITTwSDIbQgOPJLMhNPBIMhs9Q2Mw1qBXRHYxunoeD4y1q7wZ2cqIRi6ajiRCVJE0Mn3Pn2ETCzab0GULebDJNTabZO190Gvi488B+/fu2r9tcB71nN9PXWQJciWzNgqbY3MUCRPhHQUqdAkTVFo5Li4E5bm5NGzpuouIR9HH21lFRKlVSmU4jFjwYv6Rz3edaZ5wxfCQvAlvD4fsi1woTZFYD2PzhJbdNXI1FAAnv7axRJU0UAm5WrCKDhT+iVZoiXcHGQbc5XiYuppmErLMEaOQbVOpQFEXONB2YkHqRHGFEJk6VpEQLI+hBEAr/HI4rHda8Hp5/Ho3VWLBq1QvvGR8U+m6uLq5lTEQu6jhuUGtAn+qcuRToQaUWpYckBANZbdIeEuVhxfh1kuBS1iuriRKMuETAlhFVSFTiqEWVIFApFXLZfG63zFhYt09RFe9bvZhma4CytNSHb3/8xCXM+pyxeX0umRcvmH2mNPlVc13eXQqJ7E/TUfsv8lbmLQWGC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIX+i3z25gVp3/2nhD/+s9/l/uOLpALdXn6vsrS9Aq+aZsnnOzT9XESI7hCr4/sSHQxXh6C6y02S5ppuXa66LDRyrXPsOcq197HvqTLtZ/V7glZWy5KujLw7oGAub9S51OmKdeebs9V/DbN3gxqTs+dO9cI5doHncpw7vdbNb9tG9dsTe35KdMsyrWncFpHZQ7WMUq59jNvfi89v56dd/r3X5Nkh2pTtU1MVa5dzmmcPuZgHIEpy7U7r309N2qfJPBI17mWtYMPXTOrcu1dOY3nZxrjmWe59s77//iR7b8kYGl5ZeMyC9/+ZOJy7R05LdfS5JaDN5VYufYllbwChEdWBqx9umNsuTed/jGLcu1YDsFarh04QiJPvc2Wp/6XyrXTy2KYuFz7NXuucu05zJS2RMq120Rst1C4OPlt+JS3+MKPfsN5L9dOFzfjoQT5FXuuEuRnDJNNNKBcuzb4+Ph1yfvFO6JWdJeNXl+z+EOYhhXdR/CAVQ4nVruN63NNXa79Dpsb+58If5FE+OnVhIwmwu8m5BLhryQsCRH+XfvvTr//daQk+/pB377nWpfj8bQ5zz4Sapa7CLk0yxsIjSLC33JKSKfDu2qErfacN3LkxEoSk4vw23KiAvqN2cwdDDv4w58I/zz102rldrX1mzagXpK2dk2qGKYpRfgtOE331TSTB6OL8FftpK1d/qBWvKb/jA8zfzzKNbEIP+ZlWFXUgZcxmgj/3eWLB1vWXBJw6HS3VR1Ov+5hBiL8tpzgVBIaUYR/9ocWC1IqdAxZ1Dyosf2Yv8eYgZwFRMiCE6GvuunnXba8TSpybvaj4xXR2nv1111a8pbKILPCDvElqpQgojNzNksWnD3zt0gU+fcTWhgAcbUqKTYO5HCwyrUqxiAtB3qFRdanZaoeFGjUl9vXRCqYD/GVieGiCw1fQXOpIJ6ZJhl4sKpG/mOBqwQWaLl5F6/Wa3OzgyfJzjZZuHjhmuLX7qKlUHTHWNxi8wC9DIievRhVjxhMrKYalkJVxIdvtDxWLUfnlxdmNbxrffC5aPa8uqJpLkeW0E5IYTciTkjh13mX/QXvP4bz/ZNNnizpeqYBiRJ8ZIUqWhHFoW3Te+PXH3Gtw0QZW04/OvIxuDK1r5IfwOyrupaSMEY8pzGiTGMMRnFsQ3Ys3IISVFoQvmRRcO3U0aMjmLKCmUW8i7B5x6g4lTraRdiio2aIWov9gs5Wy+XER7vIvkg29l+yu5pnHnVLvjz8gghtihJR/zK/qSSM1YvTWGFmMXLgRxmUrdbMX+hOSFIP1HCMoN8zqx6xUdX0X2U/aOylA6l3ijNVLqY5cpoTjhwe9bzA0IVqId0w0cAslfDkHNnWeW/5Z3XXbUEHanuG3H+2d69Jp70QgBEkADcQAEDXYlAmSoYydpGJqo9OBltnRQbNrV9jVxXZ468mPewLARjABUBkuJBMNO/9x/g49MLcRuPj2Dhw8XEeMjNLnvk4P70TOfYWZgZkOP+68e59u5/NgI9Tw4Frd7OCgxmQCoYPH24EPs6DJaNivyXHe89f3bpfjeVvnpoFH0fAaZ2/TROSTcDHGXPcQRzXsqHvgWqTf6vj8dLPLPg4r4RcxnloDsYRmJKPk+avWdB30enghUeazL0/7PRms+Lj3OA03nmTJ7tmxMexnj+qvtvR64FTyzye5BW/5LWJ+TjHOS233+SWK1E+zvadovqLF7uH7dzR+0HG1cAEs+DjYDkEKx/noS5Pvf9/gY/TMfWSKtm3iffOUS/H3O09P9fEfJyeDlx8HB8H4/Bx2julfCiVcD0kNbp7q386rlzNOx+HPjfngWMS6cDFMQl2KCk+zqk+7y6PdzklyQx2fWzV4Go873wcuo/gASsfTqzaGneWYGo+zgM2NzbkiKKZInS9eM/hMOWzx33eUndKuibBs5N+alliHPOEqQHbF40kCk0iPD2m281JccVPmQplUDMvFn4Dsuc1GLur75cftmFHet37NNk1MIv1+Zg7OQUbGf2vfARwYWEFj2IheiX93JOevVL3aQg+jR08hW8jhv9o5z8XO0qVderlWkfIlcBg8ugA4NeHkR+HmRU3ZR6bKW0epkuqef0uzvZ8dGTLqWQqB6SUD9qAVXHvjrCZoALeRDlkRQQDxuErvpQ86Ifki6DkoW92UIrFSgOA74gjS+TmiAjUH7Kh/n389pXV3Sx8dve1zVqdGLKq0NOXFUoeeb1PbNJP7/F0YrOI44bLIvvq0C3yiM0iy2alJ70K/Ow3b4iNJmuKC3XFqqwvJM9omRkZ6/QSv0GoAVEfr3eZpIEpL1arLU6ljIZyjJASGIP9HZYOa2WxGr1yEPoRybLBqqjB8mjdTahHZy7n4tf13a12kgoc7ACYpVGkPiiqXsoOIb8EIYLzOIT8EvxHl18KHX+vU0TuS+9xZ3emWr4Pu0KXX0rrkT36VmJf/8ycZQueZk7rRLaTh1GLLM9E/2KEPBObpa2gegBhRnQVnGz7maWTb4g3O8Z93HcvqnFxrMX/bhiwqz206yJUypMDhlBNO5MUnrSC9R37a8A7JMTmO4z83zFXM8LDK3wUQiWKzVbVfPNHG0iItElqdOK6xaVC7MKb630OjLp1sWZ8VSGnycqJ8U9CaB0TDSVhNCtOo5UyrtFIF2wRLMYdKrxltG7cY7YhxyhbstdAQpS+ViRo5GqMdQe+guIwkbaKfPS5bNl1aUHjtu4YsjJ70Fm6rcqFJGllA5U6AQsBbbMLfqsHM1x5FK71VbRwxWXUT3W4jPq6DkPri7OAAtHZ5bg+CxI8ukwKZ0e3gJ6OWaYDu8o7o9Sd8Es5IkSl+0QPrIsTIf0xW0jv+uh+WDnleb+l+w6XHr3bgSpTWCEiThGjFcK6stSwDuMVW01ru7CYGDgVkSmVRPlVBSycB8W73ZAA0wsOsj0CIl/Sl24PesZPsN9080EVw3OVCp4Uu0S1NVZ9F4xNDXxgNL8zd/iL5Rm53lkjfreJcAulFkS1YHnFQlNCetH14hLvAVZlIFaZIhT3A0zwvzCLUnOyxnALqrBegS4bf3pFy+Fz/hTvXLmo8QrFrzLGknKMfsAUdzyBN39bm+vNnxi3wDTLcjLWAw3YY7OCOkNc0lMLGtqMOf96ku/ctDf1TqW3DKX2S3i3seC/zQn/RdPAz2CIFbdQNz4iINsZvAnSIvSKu0X0FMVdzXcjXEGONyLAzHTDBgQRYJ6wBRiD9XwcddYreT2fmhfcnZb+fk206VZuo5w3GbkF9Hza/r1gQDXRQNEi5RfxpyiP5wX0fLx+u3zpUN1lohlzen3+dGLP1QJ6PuoHVxZHH10t2V/m1rl5eTN+KqDnk/PN8nre/kP+R6L+CAm5Gfe2gJ4PovIvqW2IqPxLFupFVP61JJrWr2h8s2KHcL8pVvGb3WrY/AGayhNN7T5OG/7o+VFRWu/jX29YLCoDmioQTTO7PHO4PPVl4PZeod/ed/5wAjRZEU31A5vsfDLnu296B2fNt1XWT0FTRaLpbua4akvadvbLDhx0vG5dgRo0WZNARbUf3aH1at+0rUN+vvrbyiGgqRLRJHy48uiyyRWkm3Z2UbTYLUkBTZWJpineDSo4tbH33b392rNSLimeoKkK0dQl4+ix2v/c8d/W1WtMj5aj7EFTVaLpkPXnzKPyyd7TRlicqmx3ACopVSOaYuOeDBL6VwlI/fq0sn/5yFjQVJ1oWlst7+9mTad4p9bJy5tw2g9+YA2iaUOm5+JlPW4G7xma7bvzsXo4aKopYJWBsiGavpy0GXk6Z51kRebMxhleR1uDplpEk+xlu24uXkG+mQ3uVr80P+QCaLIlmn4kph13cPOSbBKXr3qwUaw3aKpNNLlU98ntJF7tM83asty3X56+BE11iKbzk6vtulUjymfqisTfOs9tEQma7IimMs3ahAlujQrZ4VGmVbUFaqjnWJdoylj79ZyzV5mgw+2GT+59Zdti0FSP7AC/zvl+qoVt6LZHe+/WvW4XBJrqE03pp4I6Vnm0wXfG4oApNVq9ygFN9kRT1/cVmwY5qL1nuB8Nb/5BXA80CYmm1jv2ri8fERCwePWJssfyylkyhKocBCxCVe3rXqn5dLl18KpMu+tPeh+KQrgNQ4WqnrK5qJox+7ZknTgtXbTx4fCzdUcuo05dpcMSlapoxOkLtgS4CXGHkDwvi5Wp08SDhBg4IaICoJ7HLegOCvlozFk10aCvbjiYVgka5kL/itg5TAXp8YsGhhXQzD+Nij8I8t0G3J3RQft6aOiGE7UdZokDs3k8jMrzBiFc2fveAAAUjZp3fnaWCv5qYFBO7BkuB10D4z1Fy2GJI5VGgR0/Ac+nUGJTJ7KfCGVqeOJaFa+IQit0b7ItM6SOVdj+axUXRx6c0J1KH9d9D5M+nt/Ee2kaJ6zHcMD1oIFZZHLMo44GZnKuxECLzjeXNk6mFcbLBsuFIAHRlbBm55l/Pzx4aN26YeK5gssnunVc2YnGNCQ+FsE0JFv4tp63G9HZJSjrnXLHOjuDbW4gcA7koSiS8CenA4kES10rcl3E/XGSWdNEPd4IfDsW/wgWD2C94AQLdHUi/jxjiz//U24oknIDPUM3mnJDREMu5YaWDUtCucF154nEFq8n+a93rhE5etb8NTwGS7oH4kG5oWtDroPufg2NotwwcfTspC1he/zmtU2NPNDtznmTKzd05EQF9BszZZkaT7nh9Hptqe0fOvnMGbT5asWdB6+ajXKDE6fp7E1jOqMrN7yoUftFpcn3Qtb6nnyeW2W2o4mVGzAvw3r0HngZoyk3qL2GtplQJcV3smL1il8f16LNIE2i3NCRE5yWDY2o3JC0d86NANWZwLHrj20536P3AzNRbnDiRAiMaSJv+4Mtbzu9UBb8rV0tv7Gr65d70XDEYWo2GgxyNGGEJFj/hQMfXTFcWE2AzITBDDEG/AryrhQhwFatxTUKgLMl+ivMvYjUbZR+kle09Uv0czOzaLLFgLK4fs5EWVxGqpQILNDU2bBlBewBCmCAfLs24qjAmd/+laSdr3Xl379a0TKlCHg34oACdrmwTInu/3ioeSt1JthXjE7YxUUqaO9sEO/YFgOI7BeO0Qo16L6gHR1su1wOL3PoalnvSfuW+nZdq6BW/CwvIW9mDsv8psIAG1Rnc9v6D+wka2yEMuc+1xU8ANacEzDQo0ySROExA/5NSwHbD1MOy5LDllaYLTm86rTjx0/OvjhCsj32Wv+jmtdZ1TAhE2AM6bBEtVxHe8aSWpFPhGNPp+IlwPSymF3aVB2Q+4f/pLRJTucfTOnJg2nrcZq2uolMi8qPZ3Y2KNWqGFzAn6PZuS+mVRgY9tF3y/wGH+Y86m5P3/BDHKrCr/K+dudO+KStKFLJA3dsiBGB8TlbYPS5Uuvu0DY7vDf16Wc7NfIQtaxSDUh+1cKlT3iSWQ659XIDKsa7i1XxAHKcgot9THT+x2CTw/xC8ZBUqldEpG/bFf7ADHMg/0rfbAR0/vWNAOh/+CAKyM8EnX9Ro+LyU0TBBUCByw2wDBLMNlQJQkey+DlADxdAgv/DfZoGrkarkuUs6iUD77jffJKxXrIj0r38IMVeOdXHRGKkA6aPIa4X5mN+Fg9Y6Pqwsfc8bXa3CQN67C6mj8kBMK+FMFv4IEqmn3LGYC7uknDjAubXrW5FqRI08qgkrHtgnCgklgkDtRcbDJ7mu/pzsz03X363pZ7IyP9c5vSX0sg7ldKVgK0vCjZLdww2wiW8YHMJZys1/NC8tSpkwp9vg9wuj5ZS3s06XI5xGIWhSUolwhewJcyu5H2QCIv1WUXCUJlSEY138mSFNk6oAtMUtf6egL5Lz/GcDCtQm/U9tucoFaghulaozbcLIEvuW+yxbxOA8fDgqqtcgxGxMcSQADy8O2rzy6q3RKl9rq/8MabxMWr6jH0QM33GLxc2nOmshOIeRQPDOREitxyVMsDKrzGNWNNnPZGz0yGnpnQ12LWQ8C0+O3bIJ4sn/msH15MndK27kXrMnegg6C0daivfoxii1ZcTrfBGJmGxW3ZLSZQXxKFhAc6OWxBIaeVKN/g3Gjc///4wyY2Vq2mUOPhTXMdtgwVIaFjwEWBSnYKbGmllemAqziAppl1nuhOj4B2KNpfqgY0CgxbCbEMxbGGugPN3ia4fjYSizBjn8yNOHfFbf6jK9IBZo2n+AnsrxMYEdrkkoOjLCUW4LlC9ZAtUZlPzj+4t+Sl/XAIl/1o24ir510wH+Suzh5zOjeMHcmGnf0KqtpglSbfZ4lLpQPhyHiBf2pgL8vmNSchf88bKrExCbgRWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycr8bFHjQ9uRuX4r+9cqJevy7DcG5Q12XnRtRhr9kgfK2xs2+zcIOu56d1sF3zUW0QOvPa9CtX91fLFfrFRpYLqIbeAwk/KyLKOtga8CljuOg/WB8Q/AppRwnknQEPTb3qdTTgt9RAY4qD/SNysH2dIGuD9wA3liBBY6NWyb3w7fbcOUNFTQNAAP8As7L8i5z5vbt+9V9d+yaNiPOhNu+xZnr61kl7EFYOK8riERdt8xxAlBaxZzw58Lq5o6SkRBrNBHahxdtjz+3DhwVq+ch3VearQ80iLGdA/9eGr1MN91qsn+k3xSjvKA0lROlEY2ZC4+cOVpLl3IcYUNNgwzcsjBqR7JPWPfKvHtE7Wy3D/+0kWWnlPGysekmHA/d4Ar0YmQG3Lw8PRSA/dznXW7hxCiqAJ6nzACUXwTeiVgqHPYqdJh0o03EyY3PfP6tBnsWkKQMjhBmmrgvm5jiQJ/c91SVX6XwTYW2R2U7RCFpVWjJ8ELq9j+kz3wUx3qLiL5ucxdRF1LSaAzhhOdZN2e7lu2wPgyMjTYwv2LOGPFOd/ssIDezIV4ZiS0YAHXgbqfq6O6JasMktynH7DQd29AX/Y3LD0CYTvng1iA8gCwPTYs1Om3TfuqQp39k7KWBu5aVzH56dsXbaiLndh+LEtYpzQW5sXpLq64THAA1mcIVhdUH7vQTCp4Y1isq4SBJQcjjR2qXSPPXXuWstB//YT4nX94fqIW/SsvBfeigSrQZOSUAML0mBOmWwYGu8K30Oh7zSbbQoOeBusjcAtNyMgd3TFoCD/0js0PiZuec2+Xdj94mW/2e2272vXo69DxskQhvk6DWC9nS82b4veRuz3YuRSZMEGeDC/J1YooIkDqxyKhHe7ieELUSnmBZj1xTXSUCmo75ULFaUROvhWg/sXRIEdVCduGwhd3weMg37L5wRdeyvIT/LZ8sB8WsP1qU2qKhH0AM0XCLxc25ujn3Io55iAzuRaEZyNqzEE1TGsng9gk1vjzcImkh6b0b/e9a8fADc97jm3z6gZ1kkK8LnP3j7he6MH2dt9OOqXUC968Jer1v+Nr9uABnzKc+IDuYwqGgSVG3BiKA9FBQP8xrIqadTeZOlau5TLaqdJHxrT6tbdozskRPxp//JV6tK4sfj/TaMR13tdsgVXeOnJZ5YlZWeXdEdIqBoWvypjDS5RHE84XXXNhSESA3HdAwJhQ0YIedRbepRomBLufaRjiOt+GSXQn3AlcZmTMV7d6SAWWToZNyOx0GGATC6WiMDzm9+v6jyS4Y+hy4Yq6y/8eN4AmKYR/AEJSiGgoCUS+OHIh8sKRjOvv2eL61tlBf/Vp7xUw4a9vWstjtz5QbYx/o/5kmA66GQY1gAuT4xRRcSCthGcLZRoNVIPUsWKI8K/f5IN+Thv1vMw+iV83gCea60jwRBnsl0Qwq9vHjOsG7oDXJVINXDwJE/iFR5jwJ0G++N9zPyQ//Pdb4NoFjx3zPrWgkufKsSU2ugYjB39InzsBMfRAcTS6NMMwNMhjdQglehRe0oRyUAvygTT4+gAsowD/n59TCkeEjkLLvNDiuUkrqsB5LQaYLQowqGO9TzeY/zT7jSt6b+JJbZK+zcHDzlWmI9fO1Uwd5h/YMA/d43v+tOC4OLV37faKF4FVqYrbIRQhVKYjZUPaLgTkAyA8acGdSpqcqn56kzRlCq7HYgqBU9v1XbgBo/oBjNDTUAs3cI/ijBNCb5KMJwi9SfhNdL1Jul4kXW+yyHqS9BsRepJsvqmer0INfI4h8rfrpb+dH7P1uf/s19v/Ue+InkOVvxUxR4eoUHG7macjqpR+stR/862T0hZpM4t7btIDmPMeNKcHir0ACTpXnHIRQo5sIBVFJDhp0ljvh5vsRfOPzJ47wnJd6yKIBNNR2vOh1oo/xr/wPbJu76eKq44Vl3AAUTrDiVKOE0MCkJPtgtdagImRPirKNNY7NYbhH8WMYcT1kljwxnrMZ9RCU083DCnCn/71H/OndDkfI/nTJE5/2v9//pS0z4I+8vBHFhu9V97p/+Zct6W7ePCndJkmHjyFhtNTKErcnx7a+dRrf53IwDnBDzelLhv0igd/Sl8k4AGl/pwodS9Jf0qPoSb3pxpOf9pf508/mv2cgD6c+CGzeZaq/T5dnCjZ/dE7buuV9HAepgStnLimBC46yP/mjcxWiYTcCGQ2hAYe6eoRGngkmQ2hgUeS2RAaeCSZDaGBR5LZEBp4JJmNnqExGGvQKyK7GF09jwfG2ifejGxlRCMXTUcSIapIGpm+58+wiQWbTeiyhTzY5DObTbL2Pug18fHngP17d+3fNjiPes7vpy6yBLmSWRuFzbE5ioSJ8I4CFbqECSqtHBcXgvLcXBq2dN1FxKPo4+2sIqLUKqUyHEYseDH/yOe7zjRPuMhuQUaNPqP8MkpPqBEw2/E0mye07K6Rq6EAOPm1jSWqpIFKyNWCVXSg8E+0Qku8O8gw4C7Hw9TVNJOQZY4YhWybSgWLmgIH2k4sSJ0orhAiU8cqEoLlMZQAaIVfDof1TgteL49f76ZKLHiV6oUjxzaVtlzYNLcyBmIXNTw3qFXgT1WOfCrUgFLLkgMSoqHsFglvqfLwItx6KXAJy9WVREkmfEIAq6gqZEox1IIqEIi0arksXvc7Jkysu4foql/MPizTVUB5Wqqj938e4vLZplxx+VhTMi5/NXvM6fKq5rs8+isnsX+fjtj/D29h0lpgvDCJ0M0lwyRCN5cMkwjdXDJMInRzyVxoXKv5i6o/milZk9phY/S4P48VyIWub4g8NPD3BqErUpOlXa8kr2UEV+j1kR2JLsbLQ3D9l82SZlqunS46bLRy7Secucq1z2JKyfBcrv2Kdv+Qj5KH4iNT50199tThnRmUaz/mzFX8dp9pBDOoNaenTZtmhHLtT/5Mr1ohdIbPntiArTu1KdTVQlOVa9/CaZ1V5mAdo5Rrj6pa70fHoPbiGdfaBh5rG0xdYTZVufaFnMaZZQ7GEZiyXHvVq2Ve9ro3OHB+WJv2VY9EljOrcu0TOY03yoyEgkxern16g0muYyWVfQ9Uu/zXgN3ykSYu167htJzC5JaDN5VYufZyX/bMjbmnEq0YnfVZuPzLR7Mo147lEKzl2mfpxJ6+seWp/6Vy7fSyGCYu116xGVe59r+ZKW2JlGsfFHFncOiCZX5LFD8/X/7zbpocJA/l2uniZjyUIK/QjKsEuaBZSZVrf3lQVPpfn4shG8/3H9l12puTvJdrp/sIHrD625kLq1fG9bmmLtf+nc2N/U+Ev0gi/PRqQkYT4Y9uxiXCL2lWEiL8L/9K2HvotW3Awje7vs92qdeAx9PmPPtIqFk+sBmXZnlPpo8sCRH+SuO2pAbsahW6uU7F818f+WWaXIQ/lBMV0G/MZu5g2MEf/kT4q8+13RwQU0a8t1PV3r3rfK1sNiL8Xpym8zCN6Ywuwv/b9fv/Jmxr6z1jTLfwHesrVqbtdBpbhB/zMqwq6sDLGE2EP/2g7ZekX+eJZnpnfs9zuV3LDET4QznBkTQzogj/nY1u58c1XOGzouLOj8fW1p9hBnIWECEvToTAmCbyth9seZtU5NzsR8crorX36q+7tORtS6qOAHaIL1GlBBGdmbNZsuDsmb9Fosi/n9DCAIirVUmxcSCHg1WuVTEGaTnQKyyyPi1T9aBAo77cviZSwW8QX5kYLrrQ8BU0lwpWMNMkAw9W1ch/LHCVwAL56sPeX5JUrREpmTe9w8LVvr2peipFqt1FS6HojrG4xeYBemchevZiVD1iMLH61bAUqiI+fKPlsWo5Or8MqFbWp7xX+5DMe1ktN1/b8Jh2Qgq7EXFCCr/Ou+wveP89nO+/yeTJkq5nGpAowUdWqKIVURzaNqHtH1c49+sDnwXfmqnz/g1XUvsq+QHMvqprKQljrOA0xgLzSH8EhuxYuAUlqLQgfMmi4Nqpo0dHMGUFM4t4F2HzjlFxKnW0i7BFR80QtRb7BZ2tendeduVv4TG/cbZdd33bMIvK7SgPvyBCm6JE1L/MbyoJY83gNNZ4sxg58KMMylZr5i90JySpB2o4RtD6Xd69pk0qFzzrXo2aAdfGPi7OVLmY5shpTjhyeNTzAkMXqoV0wyEDs1TCk3NkW2UU3xrufT7Cf4OyrGhzE/ttJp32QgC2kQDcQAAAXYtBmSgZythFJm7kfQlupOogOjh58vbmLwPHm/SwLwRgHhcAkZN0iSYcFf8lPg69MLfR+DjBLlx8HFuXkubjjIwdHPWLdV7I/J0Zk65VTxtgBnycQBeu3U1vFzMgFWhASl/yfJy7PX6bvqbr8MCMfWkOdy1vlDcLPk5rTuu4mIN1jMLHSUzbUmdb6jnf+bd7PVj9Ne2kWfBxGnAax9YcjCMwJR8nr87d7/dWWIWuygtb/3Xv1Byz4uNU4jSehWmMZ558nEllljn6l/pFPH/ZFZfUaw98TMzH+dqMy3LvzGKaUmJ8nIkfel2fe3WeaN3CPY9elW8uMQs+DpZDsPJxgCMk8tRSbHnqf4mP0/V9xaZBDmrvGe5Hw5t/ENczMR9nugsXH2cYM6UtET5O81dd9g6e9NJ/a8QX+2bbb/rxzsehz8154JhMc+HimIx1KSk+jnWce8LgNZ/FaVmB7SxqJ+Twzseh+wgesBrGiVWCcaOlqfk4pdnc2JAjimaK0PXiPYfDlM8e96EWYrPqmgTPTvqpZYlxzBOmBmxfNJIoNInw9JhuNyfFFT9lKpRBzbxY+A3Intd6x9715SMCAhavPlH2WF45S9bnY+7kFGxk9L/yEcCFhRU8ioXolfRzT3r2St2nIfg0IVCYy0YM/9HOf2Y5Sv8Odsy1jpArgcHk0QHArw8jPw4zK27KMmymtHmYLqnm9bs42/PRkS2nkqlxtpQP2oBVce+OsJmgAt5EOWRFBAPG4Su+lDzoh+SLoOShb3ZQisVKA4DvWOJElMjNERGoW7Ch/n389pXV3Sx8dve1zVqdGLKq0NOXFUoeeb1PbNJP7/F0YrOI44bLIm8b0y3yE5tFls1KT3oV+Nlv3hAbTdYUl5+pa6K+kDyjZWZkrNNL/AahBkR9vN5lkgamvFittjiVMhrKMUJKYAz2d1g6rJXFavTKQehHJMsGq6IGy6N1N6Eenbmci1/Xd7faSSro0QSAWRpF6oOi6m2aIOSXIERwHoeQX4L/6PJLoePvdYrIfek97uzOVMv3YVfo8ktpPbJH30rs65+Zs2zB08xpnch28jBqkeWZ6F+MkGdis7QVVA8gzIjWfHDZc1BZXR089+nQr4mVz58rjrX43w0Ddu0O7boIlfLkgCEU1MQkhSetYH3H/hrwDgmx+Q4j/3fM1Yzw8AofhVCJYrNVNd/80QYSIm2SGp24Dok9/GFRly3+mSlHBdfXxy/lNFk5Mf5JCK1joqEkjCbiNFob4xqNdMEWwWLcocJbRuvGPWYbcoyyJXsNJETpa0WCRq7GWHfgKygOEy2Yvifv+rAbb0XbDyRvq936zkS6rcqFJGllA5U6AQsBbbMLfqsHM1x5FKr1VcRwxWVUV06jNmzC0PriLKBAdHY5rs+CBI8uk8LZ0S2gp2OW6cCu8s4odSf8Uo4IUek+0QPr4kRIL8sW0rs+uh9WTnneb+m+w6VH73aYQOXKRsQpYrRCWFeWGtZhvGKraW0XFhMDpyIypZIov6qAhfOgeLcbEmB6wUG2R0DkS/rS7UHPaA/TnG4+qGJ4rlKBXePi8sisseq7YGxq4AMjXzTs5b2xW5tmiFdkXqi4dnjcIXqBF+QrFpoS0ouuF5d4D7BqB7HKFKG4H2CC797YMNYYbkEV1iuQuFgNCyuVtX5x2BaRMrLTz7KyjCXlGP2AKe54Am/emPPNQS8xg+VkrAcasMdmBXWGuKSnekRJHYZNF3vPKN+/1r2sBeup/RLebSz4q3LCX8408DMYYsUt1I2PCMh2Bm+CLlpAq7hbRE9R3NV8N8IV5HgjAsxMN2xAEAGmHFuAMVjPx1FnvZLX84mzmxB6b1Yb/0kHM2onr2ldUNvwc8bZc+/DFJIZl/dPzPkq2FpAz6evtFFeqX6DvLfGHWkac6eVbQE9n3GJb+c0O1UzdPa1yV/9Tg5tXUDPp1TYk1U1Yg+ID9a4NFTYWNSvgJ4PovIvqW2IqPxLFupFVP61JJrKLLOedWF1dtjBg/tFPnl5DUBTeaJpWVLyiLkbr/nMXDriW0v5qDqgqQLRtGNdZe/eg4ZIjrwefe6zx3f4gVZE09ChbiOWPlZ6Z34YUjv1W1ot0FSRaOryy7rjtv+Ul6Q/HDHxV9/sJNBkTTS5vbW5ND3iaNjs07eXP431mQmaKhFN/d2PhdyqfSp4054Nts0D7otAU2XSKF9Xztrx603/gy2C1x3bMwg+RhWiqWID35Fue+0km1uW29Y9u78TaKpKNJ1eKnz0PUvtm5q8Jf2Pkd4/g6ZqRJPl3b8O9raq678tzLeTU2L3zqCpOtFk0/FjrwPjGwfN9e038rfx8i2gqQbRtCo15lXzQ5e9j7Tt3ybAP7c6aKopYJWBsiGa7h/PEtVesMz7UJke/d5ro7xAUy2iyTql/IFKc6tKs1yXP3GqewZ2AFuiKejDQnVy89l+Gd0P9rn4JgF+V23Syr32BvnXSfKe0Dp09ZTM2O6gqQ7RdCGr95Fqkrnee8sE3Wxff/oM0GRHNB3wa+xcs8JKvyUZ1zJWxbnKQFNdoun33y4+vVc71D+756XxcdZLd4GmekTT9sEZdsKpJ6XL7wT1Unw/+xA01SeaLKy6elTfMFI689LNwaL3lW6DJnuiybfVTg/769Eh2avSukWc8LwBmoRE08PzrrJ/38wVjblz4di7yjdPM4SqHAQsQlWxW554Vez1d9jB+0nnqsZ+seZBqMqSzUXVjNm3JevEaemijQ+Hn607chl16iodlqhURSNOX7AlwE2IO4TkeVmsTJ0mHiTEwAkRFQD1PG5Bd1DIR2POqokGfXXDwbRqiVsu9K+IncNUkB5PcjOsgGb+aVT8QZDv1ivev0f0msq+44+uOfLzFOV1Hg+j8rxBCFf2FkGAolHzzs/OUsFsN4NyYs9wOegaGO8pWg5LHKk0Cuz4CXg+hRKbOpH9RChTwxPXqnhFFBLFPm+qVKzTwCZo9soW95tN2zGLSh/XfQ+TPp7fxHtpGiesx3DA9YubWWRyzKOOBmZyrsRAi843lzZOphXGywbLhSAB0ZWwZueZr63fxc8lq7N4+7x/+k5bXvkGjWlIfCyCaUi28G09bzeis0tQ1jvljnV2BtvcQOAcyENRJOFPTgcSCdY7q07/jp/tKd6yrsLIzIsVo4t/BIsHsCZxggW6OhF/yrPFn/8pNxRJuYGeoRtNueG9G5dyw0XDYqWeyg1JU0qrxYeOiibedZRd8fpwn8dgSfdAPCg3vHXjOuj+xLBgWVTlhhrjyzTYPbddwJHVcUfGH51H7R+mUG64zYnKRdPERD1YpoUtMPGn3HDm27NqAyY8DlnVMmeWq8/R9maj3JDLabpD5prO8KzckGRd3eNl9RUhkzd8zDxZtfRXEys3YF6G9ej9E0SWUlLKDfVOZm6qsVUQtje9/Meq9T5TCUKmUW64zQnORTcjKjdMKmc3dUN6l7DU2BGlJZIurcxEuSGXE6FDurytAlvednqhLPhbu1p+Y1fXL/ei4YjD1Gw0GORowghJsP4LBz66YriwmgCZCYMZYgz4FeRdKUKArVqLaxQAZ0v0V5h7EanbKL0SJ/r6Jfq5mVk02WJAWdwnnkRZXEaqlAjrl3oatqyAPUABDJBv1yi2zKTEGZdC949yD67iNZ12cDcC3o04oIBdLixTovs/HmrePvIk2FeMTtjFRSq46WkQ79gWA4jsF47RCjXovqAdHWx797BsM/laU++9dx4/nj5CMJE6LCXkzcxhmd9UGGDPrkY3G5/5tzhdXjdlRwPlQR4A+50TMNCjTJJE4TED/k1LAdsPUw7LksOWVpgtObxqyCqX1JD2BwL2TZn1pkfZqW7VMCETYAzpsES1XEd7xpJakU+EY0+n4iXANNOeqffhjw7Th4szsp3evJybXVy9N2jaA5ym3WYi06Ly45mdDUq1KgYX8OfoI432f+yKHfNAsuSc3aAoT58r9A0/xKEq/Crva3fuhE/aiiKVPHDHhhgRGK3YAqPPlVp3h7bZ4b2pTz/bqZGHqGWVakDyqxYufcKTzHLIrZcbUDHeXayKB5DjFFzsY6LzPwabHOYXioekUr0iIn3brvAHZpgD+Vf6ZiOg8/t7AND/8EEUkJ8JOr+XR3H5KaLgAqDA5QZYBglmG6oEoSNZ/Byghwsgwf/hPk0DV6NVyXIW9ZKHmtKVv8z2CMsadCx7ibg1tUhf2UiMdMD0McT1wnyMPO9qdl/vlb7jEx3VE76FpxXTx+QAmH0hzBY+iJLpp5wxmIu7JNy4gPl1q1tRqgSNPCoJ6x4YJwqJ5fxJbt/F2d6S3Wl5g+NmBdymnsjI/1zm9JfSyDuV0pWArS8KNkt3DDbCJVRkcwlnKzX80Ly1KmTCn2+D3C6PllLezTpcjnEYhaFJSiXCF7AlzK7kfZAIi/VZRcJQmVIRjXfyZIU2TqgC0xS1/p6AvkvP8ZwMK1Cb9T225ygVVIHoWqE23y6ALPmre3HHvk0AxsODq65yDUbExhBDAnC2344tKQ8F/tkP3gvTfM+2o6bP2Acx02f8cmHDmc5KKO5RNDCcK0HklqNSBlj51cKDNX3WEzk7HXJqSleDXQsJn7TL1O3V7pQPmmr/7miL9AFU4a2KRAdBb+lQW/kexRAt0JM40HrnbhIWu2W3lER5QRwaFuDsuAWBlFaudIN/o3Hz8+8Pk9xYuZpGiYM/xXXcNliAhIYFHwEm1Sm4qZFWpgem4gySYtp1pjsxCt6haHOpHtgoMGghzDYUwxbmCjh/l+j60UgoNNPDjl5d3i1g3LO+Fz+8VdL4XdhbITYmsMslAQXWxVmhAF2cCFTWbIHKbGr+0b0lP+WPS6Dk30V3rpJ/p3WQVzJ7yOncOH4gP3bijqzxBJuglYMuPpif8zGGB8g7NueC3LM5CXll3liZlUnIjcDKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCsTQaIkWZnlz3t2e1N5qzizSdmMsdP2JTEob7DzInsfnX7JA+WtCpv9GwQdd727rYLvGovogdeeV6Havzq+2C9WqjQwXcQ2cJhJeVmW0dbAVwHLHcfB+sD4B2BTSjjPJGgI+m3v0ymnhT4iAxzUH+mblYNsKQD6tRvIEyNgCDoxs3KutWs7fLcNU9JQQdMAPMAv7Lyg+i3qjHsyd2bA9J8Wh/g510sozl5byS5jC8DE2Y8Mu+8Y4oSgta07Mg9nw6qmjhJRECskSv/+c6Rvze6XpfNWDpp5UDv2CY+0iDHdQz+eWj3Md51qsv8kn5SjPKDkxIlSHXfm4gNXnubShRxX2GDDMCOHHJzqkdwz9q2SgTm5eS1zIgNnez8JEawdIzfhfu4AV6ITITfk4OHpju6GpbHOut1DCFFUAb1PGIEovgldJ1a4xvLRojzRxOu3V76tEDfFDHYtIUgtOUFycjdsX7exRIG/uW6pKr/LYBuLHA7q1Mgn7w8dDxm34PnPZX6c2kzdRSQ/l7mLqGspCXTsOdGpqctFq7IFxpeRocEW7l/EGSvO+WaHBfRmLsQzI6EFC7gO1P1cHdUtWWWQ5D79gIW+ewP6sr+B68mEsJ3zQSxAeQDYxhoW6vTbpo21G/S3+50y0lTvlI/b3j45Q13sxPZjWcI6pbEwL053ccVlggOw5kGwuqD62AUoJGVYrKuEgSUHI40dqlmjXx+Y5l5eOjmqkdOLjfs6UD2RFNyLBqpAk5FTAgjTWE6YhhkY7ArfQqPvNZtsCw16GqyPwC00ISN3dMegIfxQNTY/JG56zr1d2v3gZb7Z77Xtatejr0PHyxKF+DoNYr2cLTVvit9H7vZg51JkwgR5MrwkVyuiiACpl1uiH+7ieELUSnmBZj1xTXSUCva0yoWK04icfCtAfX4rgxxVJWwbCl/cBY+DfMv7vQ/nNjg/Sbo+ZcS/3U62taGmSNgHMFMk/HJhY45+zq2YYw4yk3dBeDaixhxUw9zQyiA2iTX+PFwi6XWTXsmu9O8nznTdG7bae8VG6u4ffj9z94+4Xhg+OTN2142/Oj905aDse82zNl7gAZ9sTnxA9zEFw8ASI24MxYHoIKD/GFZFzbqbTB0r13IZ7dC2y6lTwweLF58c7HtxY0wg1Wj4/UyjEdd5X7MFVknntEqaWVnl3RHSKgaFr8qYw0uURxPOF2mYNmWzNCPjrvjNyN50+1nnvdTDfmVDsPuZhiGu822YRHfCncBlRsZ8dauHVLC6lWETMjsdBtjEQqkoDI8VfRQ7B7+6FbI4vdbkhMxzHjRJIfwDEJJCRENJIDKfE5FJrci4Xp0trm+dHfRXn/ZeARP++qa1PHbrA9XG+DfqT4bpoJthUAO4MDlOERUH0kp4tlCm0UA1SB0rhgj/+k0+6Oe0Uc/L7JP4dQN4ovJWBE+UwX5JBLO6Hsy4buAOeF0i1cDFkzCBX3iECX8S5Iu/aDzyhO+gVr4rbi+fFxK5itb52BIbXYORgz+kz0VBDD1QHI0uzTAMDfJYHUKJHoWXNKEc1IJ8IA2+PgDLKMD/5+eUwhGho5CI0uO5SSuqwHktBpgtCjCoY91DN5hrmP3GFb038aQ2Sd/m4GHnqnUrrp0rNx3mNdkwD93je/604Lg4tXft9ooXgVWpitshFCFUpiNlQ9ouBOQDIDxpwZ1KmpyqXn6SrkzB9VhMIXBqu74LN2BU/wKpmtNQCzdwjyLOE6E3ScYThN4k/Ca63iRdL5KuN1lkPUn6jQg9STbfVM9XoQY+xxD52za2EZ8vSMQ+e889X67ddVVFlb8VMUeHqFBxu+FV3adWrnhZsjtAuXGYutXA4q6ZAHOOhOb0QLEXIEFH7ZmLEHJkA6koIsFbh+18f2fBBJ8FUx/vPutw6HIRRILpKMl7hAfeX9c+bMbmo4c9xlzYyQNKcZwo9fNkSABysl3wWgswMdIDIDrrnRrD8I9ixjDiekkseGM95jNqoamnG4YU4U9t/mP+lC7nYyR/Wp3Tn35r9T9/StjnZekN0XVH/SzJPOT2WeFnUYEHf0qXaeLBU1Tl9BTlStyfnhYf3lrHbXLIkkkHo2svERVFdJ2OEn2RgAeUvrXiQulDqxL0p/QYanJ/WpXTn37T5ae1zH5OQB9O/JDZPEvVfp8uTpTs/ugdt/VKejgPU4JLnFOCMzrIbXkjs1UiITcCmQ2hgUe6eoQGHklmQ2jgkWQ2hAYeSWZDaOCRZDaEBh5JZqNnaAzGGvSKyC5GV8/jgbFWmzcjWxnRyEXTkUSIKpJGpu/5M2xiwWYTumwhDzapw2aTrL0Pek18/Dlg/95d+7cNzqOe8/upiyxBrmTWRmFzbI4iYSK8o0CFLmGCSivHxYWgPDeXhi1ddxHxKPp4O6uIKLVKqQyHEQtezD/y+a4zzRP+3txv6/WEUSFzmm574NvlgSubJ7TsrpGroQA4+bWNJaqkgUrI1YJVdKDwT7RCS7w7yDDgLsfD1NU0k5BljhiFbJtKBe1aAgfaTixInSiuECJTxyoSguUxlABohV8Oh/VOC14vj1/vpkoseJXqhd9NbCq1btsytzIGYhc1PDeoVeBPVY58KtSAUsuSAxKioewWCW+p8vAi3HopcAnL1ZVESSZ8QgCrqCpkSjHUgioQiLRquSxe9zsmTKy7h+iqdmYflukqoDwt1dH7Pw9xWdGSKy7LWpJxua7ZY06XVzXf5dH+nMT+Hjpifz3ewqS1wHhhEqGbS4ZJhG4uGSYRurlkmETo5pK5ULONI+Z0Xj9eMs5zTdBP41xvFciFlPdmdzpZKS9wl8NdF1HWWhEjuEKvj1ZOoYnx8hBc67NZ0kzLtdNFh41Wrj2qNVe5dvfWJV2u/Vht4agtmtPSdbN92soW1aWe7DRNuXZZa67itz1am0HN6fHjxxuhXPvaljO1B5ZlhG6/kTTmfkQ0dffFVOXaQzitIzYH6xilXHudDhnWDqIPPhOfzT1Q6kan3WZRrr0dp3HczcE4AlOWaz8afEYxuE6QaN/U/v0aVhlLVdo1dbn2xpzGszON8cyzXLt44ZhaXatppUsy+p48WTN4n4nLtVfltFw5k1sO3lRi5dorvO993LrVYO8lVhl1z5TeKDaLcu1YDsFarh04QiJPtWfLU/9L5drpZTFMXK59fWuucu1zmSltiZRr/5Ta/NHo/t/9tsxO+qPvliyqYCIf5drp4mY8lCBf25qrBPmS1iVVrv2uzeVg31V9/cZ0PCz0ll/M471cO91H8IDVXE6sphjX55q6XLuQzY39T4S/SCL89GpCRhPhL92GS4T/IdN38iDCX/bXv8faV+kUMOfRpAO77h17yuNpc559JNQsF7Th0iz/m+kjS0KE392z993XM3r7LBKH7tjksY9aB90UIvyvWnOh8tDkGWjBHSfTiPDXqhuvtAzfL1lYq1batlX9F5qNCP8NTtOdN43pjC7CX+6j0+hH/lk+K7fOTjrl3u6NiUX4MS/DqqIOvIzRRPgfX3iR5vD5fkCGk0dTaZi0mRmI8GPOhhWch62NKMI/bPmO+WnOT8Szm6zbUrrRrrtmIGcBEbrBidB53fTTgS1vk4qcm/3oeEW09l79dZeWvG1J1RHADvElqpQgojNzNksWnD3zt0gU+fcTWhgAcbUqKTYO5HCwyrUqxiAtB3qFRdanZaoeFGjUl9vXRCoYDIenTAwXXWj4CppLBaI2xT1YVSP/scBVAgvkq7et2C3oaNKCsL27ps05WCflePFrd9FSKLpjLG6xeYCeAqJnL0bVIwYTq/5tDCuEjQ/faHmsWo7OL4fM71K9xYK3YVtsmqtHJ9WlFmIuK8FuRJyQwq/zLvsL3r875/sHtTF1sqTrmQYkSvCRFapoRRSHts0f+46uW1dnms/YyMNvBGlfqHrgluQHMPuqrqUkjCHiNEYb0xiDURzbkB0Lt6AElRaEL1kUXDt19OgIpqxgZhHvImzeMSpOpY52EbboqBmi1mK/oLPVhg9GKXZ8mey9KOCRz/aAYdR0qDz8gghtihJR/zK/qSSM5cpprIZmMXLgRxmUrdbMX+hOSFIP1HCMoGzPYRUnxb/02RcRPDzdKu9tcabKxTRHTnPCkcOjnhcYulAtpBv6tDEsSyU8OUe2NWGaw+A346qELGiaMMqmQeZlk057IQBhJAA3EABA12JQJkqGMnaRidaptTZsbPAkZO2d8GrDtwfXo4Uy4x72hQC04gIgskkbMtFs8B/j49ALcxuNj/OiDRcfZzczs+SZj2N5dOiY7aHjghcMW/PLYM2bsWbAx/mjDdfu5j3TOH0qqWDw4MFG4OMk15q1ummdKuLt9Xu3+C36vtAs+DhXOK1zxhysYxQ+Tu/vr2vFPAsPOrJm4L30CRs/mgUfJ4fTOLvNwTgCU/JxSo+eHNchLdlnnsfnxJwf38LMio+zkdN4y02e7JoRH+dz0qj01okx4rQ6c6Z96L2hjon5OJmclptucsuVKB/H9Te7xfOS14VuWnX251m/Kt+aBR8HyyFY+Ti7dXlqw/8LfBzfVjs97K9Hh2SvSusWccLzhon5OC5tufg4Nm2Nw8epo/ix4ohPb8nmU1uaTxdcqsc7H4c+N+eBY+LclotjImxbUnwch+gatoFvl4VMybmy/KGk6kre+Th0H8EDVjacWFVs+/8VH6cRmxsbckTRTBG6XrzncJjy2eM+VOds1TUJnp30U8sS45gnTA3YvmgkUWgS4ekx3W5Oiit+ylQog5p5sfAb0IUPz7vK/n0zVzTmzoVj7yrfPM36fMydnIKNjP5XPgK4sLCCR7EQvZJ+7knPXqn7NASf5gU87Wcjhv9o5z+XOkp/f94y1zpCrgQGk0cHAL8+jPw4zKy4KRuzmdLmYbqkmtfv4mzPR0e2nEqmVkcv5YM2YFXcuyNsJqiAN1EOWRHBgHH4ii8lD/oh+SIoeeibHZRisdIA4Ds6kCVyc0QE6k3YUP8+fvvK6m4WPrv72matTgxZVejpywolj7zeJzbpp/d4OrFZxHHDZZH05nSLNGWzyLJZ6UmvAj/7zRtio8ma4kLVNCrrC8kzWmZGxjq9xG8QakDUx+tdJmlgyovVaotTKaOhHCOkBMZgf4elw1pZrEavHIR+RLJssCpqsDxadxPq0ZnLufh1fXernaSCjxDM0ihSHxRVv9ocIb8EIYLzOIT8EvxHl18KHX+vU0TuS+9xZ3emWr4Pu0KXX0rrkT36VmJf/8ycZQueZk7rRLaTh1GLLM9E/2KEPBObpa2gegBhRqS1Bqj/2rSxoUfInIzDxx/Y7wspjrX43w0Ddv0A7boIlfLkgCH0vLlJCk9awfqO/TXgHRJi8x1G/u+Yqxnh4RU+CqESxWarar75ow0kRNokNTpxPW/7vHOD4N7Bs9d3Pf30WdWGnCYrJ8Y/CaF1TDSUhNHucxrtqnGNRrpgi2Ax7lDhLaN14x6zDTlG2ZK9BhKi9LUiQSNXY6w78BUUh4k+8uweZe++qXTQnpmlHzosndCEbqtyIUla2UClTsBCQNvsgt/qwQxXHoVqfRUxXHEZ9SynUX9tztD64iygQHR2Oa7PgiaI02RSODu6BfR0zDId2FXeGaXuhF/KESEq3Sd6YF2cCOmObCG966P7YeWU5/2W7jtcevRuhwlUrmxEnCJGK4R1ZalhHcYrtprWdmExMXAqIlMqifKrClg4D4p3uyEBphccZHsERL6kL90e9IybsMRsNx9UMTxXqWBfscvTW2PVd8HY1MAHRr5o5IGGG9fmLAzdN7fSgHHLVyjoBV6Qr1hoSkgvul5c4j3A6jrEKlOE4n6ACf5vzKLUnKwx3IIqrFcgcZk2ftLX49k/SXcM9/Tc6OpQlrGkHKMfMMUdT+DNj3G+OeglZrCcjPVAA/bYrKDOEJf0VIDbu5eH7tQIPLD63u2W789PovZLeLex4N/CCf8q08DPYIgVt1A3PiIg2xm8CVqqg1Zxt4ieorir+W6EK8jxRgSYmW7YgCACjBNbgDFYz8dRZ72S1/O5JayxZ43GQnKo3ROLMh0uBhXQ8/nwtELIkaxBwYt29y5nIz2gKqDnE6oNvRkUsjxozV/eSX6B6WsL6PlEVo96OMTxrM+siKm3Lc7UCymg53OvQ9ZH6y4DpYdbf7aq4r5EXkDPB1H5l9Q2RFT+JQv1Iir/WhJNTVpZNe9rkx2w+KfX2cod0X+DpvJE0/PSeY1O7EiUzu0Zda3T0fo+oKkC0dS0zqt1Ea1SwpZmBM1t6/97K9BkRTTd3rQu7pbrIFG27MbFYZdu1wZNFYmm2eU1JxY83i3annDVJm7fmnjQZE00TRvb8WlWh5vB030HZP2rmR8JmioRTdcGOUT519EGLkyua3dCXe0maKpMAmU1vt6fr4J8dtjtq7PPQtgdNFUhmrxuW16qbpUYuNb3qHiURcvDoKkq0VSpm2deN5skn91jhw14OWJGH9BUjWhqGZb274ttY8WT97XMu9y3kTVoqk40nbx6Pnz/T899Nm3zbvi9Tc9ToKkG0dSjwof3dl8C/FYPdi01Iji4DWiqKWCVgbIhmvwOH7/RPmR8SMbOKxnjM6/vBU21iKb49z3tstfdkmzs6mln7zXOBTTZEk2KPcv9518pJZqw0bHXOduZb0BTbaJpmKuy6zepQ8COP5rXHXrZegloqkM0DZ9y8spAmdhntveNj4svHBkImuyIpn3PHrbKWv6P/4wpUVeG3Bn4HDTVJZqaW8RtW7v1uij9g80z5+0z3oOmekTTuJ5rZ/xi1T54qbJ6s+al+0F71SeaYo6crumSc8J7zI6T3ZNdJj4ETfYk8ieuh6ZP8fab/PXumf2SEQtAk5C8a16ni8uXtBRtCHaqOr3e7koMoSoHAYtQ1dy9wuV9bCcFr9tXt1OK2O4wD0JVzmwuqmbMvi1ZJ05LF218OPxs3ZHLqFNX6bBEpSoacfqCLQFuQtwhJM/LYmXqNPEgIQZOiKgAqOdxC7qDQj4ac1ZNNOirGw6mVV5eudC/InYOU0F63MjLsAKa+adR8QdBvtuothO98pzWBEyrNDzz8LLe5Xk8jMrzBiFc2WsLAYpGzTs/O0sFbl4G5cSe4XLQNTDeU7QcljhSaRTY8RPwfAolNnUi+4lQpoYnrlXxiii0hG3e9rXXymwXj8tY+mZ1zKG1VPq47nuY9PH8Jt5L0zhhPYYDrjpeZpHJMY86GpjJuRIDLTrfXNo4mVYYLxssF4IERFfCmp1nHt6hYcOQyI/i6T0eTXALlvxDYxoSH4tgGpItfFvP243o7BKU9U65Y52dwTY3EDgH8lAUSfiT04FEgrWr2zKbk+O6SaZfntU14/KnQcU/gsUDWI04wQJdnYg/zdjiz/+UG4qk3EDP0I2m3JDuxaXcEG9YrNRTucFywlXZ2NUOfsvG7LVVb9vixmOwpHsgHpQbpnpxHXQfY1iwLKpyw54/h1y4ePti8Jp+F+76T8mjlQk1gXJDMicq8aaJiXqwTAtbYOJPueGJUJwUO6KuZFarIRXvLHtBPXVkSuWGKE7T9TLXdIZn5Ya8VvdmuHlGBc75p8/hB7X7WphYuQHzMqxH78cgspSSUm6Y9Lrp910zNos3uD19FfSlzGAzUG5I5gQn3suIyg2Tfil7cIOtt2TStljXk3dePTcT5YYoToR66fI2F7a87fRCWfC3drX8xq6uX+5FwxHUNQrLYJCjCSMkwfovHPjoiuHCagJkJgxmiDHgV5B3pQgBtmotrlEAnC3RX2HuRaRuo/RKnOjrl+jnZmbRZIsBZXHHiIiyuIxUKRFYQCYybFkBe4ACGKCPvi+JmR/2VOG9f37SmYHKMg9pu0nwbsQBBexyYZkS3f/xUPN2tIhgXzE6YRcXqSBJZBDv2BYDiOwXjtEKNei+oB0dbMcvrK4WqM+FrrzeIuul6/T71GEpIW9mDsv8psIAu9KvfOjUh5ZBqz2Wj79nf68FD4AN5gQM9CiTJFF4zIB/01LA9sOUw7LksKUVZksOr9qq9PF3I1df9Z+WFXh44ZyLLaphQibAGNJhiWq5jvaMJbUinwjHnk7FS4Bppj3bb2f9xA3zvdMcPt1SPK3ZngfT9uA0bYiJTIvKj2d2NijVqhhcwJ8jjblp5SD/JqE/iRbOjTnhGLe1Pn3DD3GoCr/K+9qdO+GTtqJIJQ/csSFGBEZXtsDoc6XW3aFtdnhv6tPPdmrkIWpZpRqQ/KqFS5/wJLMccuvlBlSMdxer4gHkOAUX+5jo/I/BJof5heIhqVSviEjftiv8gRnmQP6VvtkI6PyP2wPQ//BBFJCfCTr/tfbF5aeIgguAApcbYBkkmG2oEoSOZPFzgB4ugAT/h/s0DVyNViXLWdRL7tiP2LFlUdnAfX++2evsu5aqXlU2EiMdMH0Mcb0wH7O/dF6DsBtS8USNS+eLtxyzi+ljcgDMDyHMFj6IkumnnDGYi7sk3LiA+XWrW1GqBI08KgnrHhgnCu0E6n9esXzo9pCxX2et/f3tL+epJzLyP5c5/aU08k6ldCVg64uCzdIdg41wCW5sLuFspYYfmrdWhUz4822Q2+XRUsq7WYfLMQ6jMDRJqUT4AraE2ZW8DxJhsT6rSBgqUyqi8U6erNDGCVVgmqLW3xPQd+k5npNhBWqzvsf24PFjiK4VavPtAsiS5xV77NsEYDw8uOoq12BEbAwxJACar9qtG+9NDV11Z9n7XUEjr1DTZ+yDmOkzfrmw4UxnJRT3KBoYzushcstRKQOs/LqsPWv6rCdydjrk1JSuBrsWEr4+f+8dE9veWjz/ztXsN6Os+lCPuRMdBL2lQ23lexRDtOZxojWtvUlY7JbdUhLlBXFoWICz4xYEUlq50g3+jcbNz78/THJj5WoaJQ7+FNdx22ABEhoWfASYVKfgpkZamR6YijNIimnXme7EKHiHos2lemCjwKCFMNtQDFuYK+D8XaLrRyOhqBzntfZZyk+iuaXWljs03X4CbWMCvhViYwK7XBJQzOOEYpouULmzBSqzqflH95b8lD8ugZJ/8e25Sv7JdZB7mD3kdG4cP5C/ifgwtm/p2T77ejsc2/pxlxMPkN/swAX5xQ4k5M15Y2VWJiE3AisTQaIkWZkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZcaPKi86GHbeb2a/SgMiBzy8yqC8wc6L7H10+iUPlLcWbPZvEHTc9e62Cr5rLKIHXntehWr/6vhiv1ip0sB0EdvAYSblZVlGWwNfBSx3HAfrA+MfgE0p4TyToCHot71Pp5wW+ogMcFB/pG9WDrKlJ3B/4AbyxAgYgicM2+a3w3fbMCUNFVbHQwVZgey8oCHHKsulA8LEm9vMjV6+v9b64uy1lewytgBMnB95EWH3HUOcELReYW74c2FVU0eJKIgVEqW9h+7smr/YMyBjUpVrC1yly3mkRYzpHvrx1OphvutUk/0n+aQc5QGlE5wo7fZiLj5w5WkuXchxhQ02DDNyyMGpHsk9Y98q6Xz5/K6TOw74L9n2odX66K/fTbifO8CV6ETIDTl4ePqmgfu5zrrdQwhRVAG9TxiBKL4JCc6rVT9NSrC/H7Y39VRqzwM/NpvBriUE6XdOkE4YuK/bWKLA31y3VJXfZbCNRXYHlXx/YM4iz2qhMx99Ck8qc6UHdReR/FzmLqKupSTQOcCJzjbdnm5LtsD4MjI02ML9izhjxTnf7LCA3syFeGYktGAB14G6n6ujuiWrDJLcpx+w0HdvQF/2N3A9rWAKf84HsQDlAWCrz1yAKv42rVNf+8Qf2xeIVyV/ULZZuW0NdbET249lCeuUxsK8ON3FFZcJDsBqAcHqgupjF5pJBY7oNSc2sCphYMnBSGOHKmZ13bQbT8uE7nY8M39O9sx/qZ5ICu5FA1WgycgpAYSpPidMNRAr7cXbQqPvNZtsCw16GqyPwC00ISN3dMegIfxQKzY/JG56zr1d2v3gZb7Z77Xtatejr0PHyxKF+DoNYr2cLTVvit9H7vZg51JkwgR5MrwkVyuiiACpl1uiH+7ieELUSnmBZj1xTXSUCiK8c6HiNCIn3wpQb+ltkKOqhG1D4Yu74HGQb+m4e8yZm5GjvVdcL5O+scsFqmzpT9gHMFMk/HJhY45+zq2YYw4yk7tCeDaixhxUw/TzNohNYo0/D5dI+sIDyxuFrLEL3vhV09PjQXA56u4ffj9z94+4Xhg+yY+W/tuy9pygPS9Hu2SMmL+OB3w6cuIDuo8pGAaWGHFjKA5EBwH9x7AqatbdZOpYuZbLaCvXdZ69bvOvflNmne9wclvsHarR8PuZRiOu875mC6zixGkVe7OyyrsjpFUMCl+VMYeXKI8mnC/SMJOj/o3uUK+bZF+fPofnrjtrQzVMCHY/0zDEdb4Nk+hOuBO4zMiYr271kAp8vA2bkNnpMMAmFkpFYXiU8R0TM+7g+7CDfzWfYzdrdGmapBD+AQhJIaKhJBBpyYlII28yrnuyxfWts4P+6tPeK2DCX9+0lsdufaDaGP9G/ckwHXQzDGoAFybHKaLiQFoJzxbKNBqoBqljxRDhX7/JB/2cNup5mX0Sv24AT7SUN8ETZbBfEsGs7kPn4u6A1yVSDVw8CRP4hUeY8CdBvnjQlfep9dc88TvYb97VT9sGd6R2PrbERtdg5OAP6XM/OufCCRyCo9GlGYahQR6rQyjRo/CSJpSDWpAPpMHXB2AZBfj//JxSOCJ0FHrBgBbPTVpRBc5rMcBsUYBBHWsAGDGYW5v9xhW9N/GkNknf5uBh5+pSZ66dqzM6zNuwYR66x/f8acFxcWrv2u0VLwKrUhW3QyhCqExHyoa0XQjIB0B40oI7lTQ5Vb38JF2ZguuxmELg1HZ9F27AqK4DqZrTUAs3cI/CQoTQmyTjCUJvEn4TXW+SrhdJ15sssp4k/UaEniSbb6rnq1ADn2OI/O3mkX818Du8K3Di/bZVPPvMqUKVvxUxR4eoUHG7jVOeJbernCLaPK3/uf6nzxd7aQmY0xaa0wPFXoAEnUqiXISQIxtIRREJflJm+9n4oP6hk0eFaNwmvZhcBJFgOkonx/0tFirq+o85P8VjXpP0hjygZMGJ0ldvhgQgJ9sFr7UAEyM9AKKz3qkxDP8oZgwjrpfEgjfWYz6jFpp6umFIEf607X/Mn9LlfIzkT7d4c/nTBd7/86eEfS7JBTnpQ9r7L5JNXrL+kv9gHvwpXaaJB0+xyZvLU6zwLml/2slqS+uHM4+FZf48pfOzMac68OBP6YsEPKC0gBOlGSXpT+kx1OT+FOsxrP50gW6C387s5wT04cQPmc2zVO336eJEye6P3nFbr6SH8zAlSPDmmhLE6CD34o3MVomE3AhkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxlp73oxsZUQjF01HEiGqSBqZvufPsIkFm03osoU82KQDm02y9j7oNfHx54D9e3ft3zY4j3rO76cusgS5klkbhc2xOYqEifCOAhW6hAkqrRwXF4Ly3FwatnTdRcSj6OPtrCKi1CqlMhxGLHgx/8jnu840T7io1cPzsrUR0nGdepXd0OHiaTZPaNldI1dDAXDyaxtLVEkDlZCrBavoQOGfaIWWeHeQYcBdjoepq2kmIcscMRalm0oFlzoBB9pOLEidKK4QIlPHKhKC5TGUAGiFXw6H9U4LXi+PX++mSix4leqFM0c2lY6/2Cm3MgZiFzU8N6hV4E9Vjnwq1IBSy5IDEqKh7BYJb6ny8CLceilwCcvVlURJJnxCAKuoKmRKMdSCKhCItGq5LF73OyZMrLuH6KodzT4s01VAeVqqo/d/HuLyT5xLdd86kXG5k9ljTpdXNd/l0X84if0fdMT+zryFSWuB8cIkQjeXDJMI3VwyTCJ0c8kwidDNJXOhOeOd19t+8JXuv6nNnT+lxpYCuZBbr+Q5g55/CFkzpIx7GUnPAEZwhV4f2ZHoYrw8BFdvNkuaabl2uuiw0cq1/xBxlWs/y5SS4blce1cLh9pdN1+QLH9VdXXb8W7U3XnTlGv/JuIqfvvBNIIZ1JrTo0aNMkK59jMjG4pbHRsinVip05i/GlWjni43Vbn255zWuW8O1jFKufa/3v721vN0T8nctRcb7d/Q77hZlGu/ymmcs+ZgHIEpy7W3q+/7qUXp2KAZMzJy489Ezzarcu2/chpvjxkJBZm8XPvtge9LXw+qFbRy8bMzhy5IK5i4XPsmTsutMLnl4E0lVq79bfnt9SrmvvPbZj/xwYOHz1+ZRbl2LIdgLdd+VreBKGLLU/9L5drpZTFMXK7d14erXLuHj3HKtfcYc+fB9GdLAre+qOXzsP5Gb97LtdPFzXgoQS7x4SpB7uVTUuXaR91KXpA5PMN3Z57KstGhXd94L9dO9xE8YOXBiVUTn/+vyrX7sLmx/4nwF0mEn15NyGgi/Et8uET4f2H6Th5E+KN6un88pnALTW2kTjhWocdUHk+b8+wjoWb5Ih8uzfLZTB9ZEiL8lyteGCLY6SzdO/rp/EuTxCKTi/BP4kTlF+N6Q865g2EHf/gT4T+h2ZW48/2OkFUWz36f2P7xJrMR4ddymm6QaUxndBH+oDqi8F9SKgeutHv6T2fPh6YUbYALr5iXYVVRB17GaCL8E0Vfbrxwrhy46dP2nW3Vx6j91jQi/JM4wfnFx4gi/H/231EpoMoO8ez27zwH16l81QzkLCBCWk6EwJgm8jYxW94mFTk3+9HximjtvfrrLi15SxWgtcIO8SWqlCCiM3M2SxacPfO3SBT59xNaGABxtSopNg7kcLDKtSrGIC0HeoVF1qdlqh4UaNSX29dEKignBvjKxHDRhYavoLlUcJd9iqnnwaoa+Y8FrhJYoJOnfh+/9h92wm9pxNWtvn+IaXohRandRS82T3OMxS02D9D7CaJnL0bVIwYTq38MS6Eq4sM3Wh6rlqPzy2u2P2dNa7jAP+vS9wX+rx2pZX/LSrAbESek8Ou8y/6C93/vw/X+z0yeLOl6pgGJEnxkhSpaEcWhbVNXdEqq9ZkkyVzVqPuyWZNzqX2V/ABmX9W1lIQx7nIa47J5pD8CQ3Ys3IISVFoQvmRRcO3U0aMjmLKCmUW8i7B5x6g4lTraRdiio2aIWov9gs5Wf3M4O3DqutDA8ZN3H+1Z1X0hNa7BL4jQpigR9S/zm0rCWKc5jXXELEYO/CiDstWa+QvdCUnqgRqOERTaxSJA0viFdKZkUbOpns36FmeqXExz5DQnHDk86nmBoQvVQrrhk4FZKuHJObKtnhMyuo+/Fxq26P2cPKdZTexNOu2FALz0IQC4gQAAuhaDMlEylLGLTHj96+Juv2hawM4U6dQHdf2OmvSwLwTgAhcAkUd1iabkP8bHoRfmNhofZ4KYi48TLi5pPk7lWy2e96mRGDjvSJc0yzdLX5gBH2ecmGt3c7jYDEgFUVFRRuDjTK50bvTje6mBO+99nvHHsA9JZsHHSeS0Tow5WMcofJxjiVtP2U5aLllR79XF8M67bc2Cj9OX0zjh5mAcgSn5OPVT//py/Fkf/7m1a/z68lPIDLPi4/hzGq+TaYxnnnycO3vmPP39r8rehxY4HzpR7/sLE/NxWnFaztnklitRPs68Kyd/2O6LDljbeNeKClUGpJgFHwfLIVj5OMAREnmq9P8CH6fSieuh6VO8/SZ/vXtmv2TEAhPzcU6Jufg425kpbYnwccT9e5UOn/bWe9bkt8PabItfxTsfhz4354FjclLMxTE5KC4pPk5s5f6/lB0QFLrw1uZ3F1r6N+Gdj0P3ETxgtZ0Tq7XG9bmm5uP4srmxIUcUzRSh68V7Docpnz3u85a6U9I1CZ6d9FPLEuOYJ0wN2L5oJFFoEuHpMd1uToorfspUKIOaebHwG9Dz7nmdLi5f0lK0Idip6vR6uyuxPh9zJ6dgI6P/lY8ALiys4FEsRK+kn3vSs1fqPg3BpxkHT/vZiOE/2vnPuY5S/7TOudYRciUwmDw6APj1YeTHYWbFTenHZkqbh+mSal6/i7M9Hx3ZcipZQlPBQBuwKu7dETYTVMCbKIesiGDAOHzFl5IH/ZB8EZQ89M0OSrFYaQDwHTe8iRK5OSICdX821L+P376yupuFz+6+tlmrE0OoYQR1+rJCySOv94lN+uk9nk5sFnHccFnEqSPdIgFsFlk2Kz3pVeBnv3lDbDRZU1x+pq6J+kLyjJaZkbFOL/EbhBoQ9fF6l0kamPJitdriVMpoKMcIKYEx2N9h6bBWFqvRKwehH5EsG6yKGiyP1t2EenTmci5+Xd/daiepYBYEszSK1AdF1Yd0RMgvQYjgPA4hvwT/0eWXQsff6xSR+9J73NmdqZbvw67Q5ZfSemSPvpXY1z8zZ9mCp5nTOpHt5GHUIssz0b8YIc/EZmkrqB5AmBFprVunP39L6rktdM249otE3WQdi2Mt/nfDgF1nQLsuQqU8OWAIje9oksKTVrC+Y38NeIeE2HyHkf875mpGeHiFj0KoRLHZqppv/mgDCZE2SY1OXBfX2pt9NP6D776bO168+flLS06TlRPjn4TQOiYaSsJoIziNNsS4RiNdsEWwGHeo8JbRunGP2YYco2zJXgMJUfpakaCRqzHWHfgKisNE2ur0vO/h4QtHibfUSPUNuNmeMbzKhSRpZQOVOgELAW2zC36rBzNceRSq9VXEcMVl1FhOo/7ckaH1xVlAgejsclyfBQkeXSaFs6NbQE/HLNOBXeWdUepO+KUcEaLSfaIH1sWJkB7IFtK7ProfVk553m/pvsOlR+92oFY/rRARp4jRCmFdWWpYh/GKraa1XVhMDJyKyJRKovyqAhbOg+LdbmhBEVrBQbZHQORL+tLtQc9IgsIU3XxQxfBcpYLuHYrLI7PGqu+CsamBD4x80d4d0wW/JAnFU3c08O2uuXmIXuAF+YqFE+9pRdeLS7wHWGkgVpkiFPcDTPAVHQxjjeEWVGG9AolLdLVJYVt23PDO0Lj9rOifN5+xpByjHzDFHU/gzftzvjnoJWawnIz1QAP22KygzhCX9JS6VlTtyzOb+m49k/P6+6mKDtR+Ce82FvxBnPCLTAM/gyFW3ELd+IiAbGfwJkiL0CvuFtFTFHc1341wBTneiAAz0w0bEESACWILMKcXyoK/tavlN3Z1/XIvGo6g6opbYkWxIiTBTLoJW3jxodakIwpqCaPlMeDXaOHAlIKF21zAhBGn48N5JHEybZReE8hFXokPWt9K8d2ptNwz4+l2d/RzMxdmyRZ997BASiOoBP79gQxNAGNBFSn/xevspi+5+XlhPb9NPaZdqxD5eTLN5cK7Ebt42OXC4tHiO7Kya6/fEy1v+dMTaXTg4WLGoxwAkBACNA6V88FKbDmVpIYszttiAJH9wjFaoQbdF7Sj2Zmiyj8iR9nniQ9Xutb347CP1JrG5SXkzUx2Zn5TYYDtqitfuyRoqigt5PqkjP2BeTwANqAyF2CgR5kkjOFHYuDftBSw/Rh2ZswKsyUHjfHY94zRspOlgzK+JX9+cXXUSdPSGIFlllXhsox3VdNYBnl67wjP9Q37bht+8LBPJ+9M/8bdPy09EGqy+oZwlxpzKVtRE6cqHtgIIeJaMFtcE+6/vlv7+yzRmsgGNisSPKjlP8uGq7SMEztckyZ7/AYQ1chzY2r4zJBUKRum0KAnTt2uNGnQ71hfv+lVt58N+nu2L+oRENrT2HUDyogLBFK8tBEjPF0AMydBacPCUyT+frBmIfYgyDd7unf813qyfwLG9It4POF1Xlfqm+EfwXwz4nph/jb6/7V3JWAxtW14KCQhCkUYlRat9l2zttekhSiUlErUVyH7VEqLEkqbVqESZYkWLZaSPWT5rNkpS7bPzn/e0+SvmXNOTZ3TTPiu6/+u758z5zTnfp/3ud/nee73fR6IdTWmhxqnGEybkPamshaHvthkABEDaVaLQevWUhIiQaFGkvAIgc1IYOgR8Tk0b1p6v8QAhu/xx1kXdWOati0UpUK38U4l+NPmsOGeozhgY9cJCxsu8wEPEiNhtGX4PzZLwMZ/FZclnP1IXsj8/TVriM6bL2uMCt4o+0YO3Tqv6UKHCh7Cu9Cp/7g5rMwLrlwIUY6jb0mIv/ZDce8gVKysvBzrtzj9/9BYPvBL7oyFH0VEeBiDT5VTr3pPtIDj8hCHz66k6N2gQlvd9Q/SZ/WqG7+rbY6gra0eNTkzXZSGwBsxWrA1c3jDBI03ZpzOfhWuNFg33OtVl/KP6k3Thz3rjwgm1yuAWt6tZHj9DaDg7+Du5la/8ARiAHhSQdEAeGrLCmenIy1fraj1YKaq3Xjy8m2dHsbv4+2K2+RySyMgsCKdzyCR4pAoRhJEQK6MNpfNPPInaTIDCnX93eT6PLbvcaG5riW4lc1a0NUEbVSlYaECfCotWBvUjyLydr9HD7emrXhivGewn5jBm8Kmu3VE9ZDWAfWfNufjVkwsStvpxKL7bV9dM/bpw41tjU2gsWaDsa5AyvEEAT5wZAhBio1EalKXaTAShBwP2tgNMGg080ChxgUeS23E4dM6q/xjwYta1rZNW/IXrj1Shl2PEePMslZVZKwLfJ++VXxmuvHOp/Gy22Zsw2NAF2IOqCsDpcLVNiRHIiIpv3P6tLzVadTE8IgrR/eHT28ZkiN5kRzZLJIam6N1XD+XU4rVvEW2rpaQwQNJN0wk3RnctS0+zxvvXe+YIcrF8CXHXd0uyYVtNixcfrzzB/W+Q5opDtZDyOteLFS0VXFn4EpNjv9ALHlFaMHmxmFgUzQG/tDXetG4Qm+T6G+zh2otZ2o0rTeZLXVzI8O7A3mVLKIouMrBNzUcj+Ve35Xea6mnk72DY8s2wZ0zWbP3WoqYXsCLIprWCOdkzCJjo9/Ie4TN/6/xky/KAJgi6YZJUIhHzmLwoxvu+essKg/otyC3lVKYrjfP4QJlQ8qMTdce7qVivm7bzqXC2eGBgDgZoCWDtCIHHdiqMxnc0R4WWn0t6u2E7O0M+TaAGHLIF9rDPqHm8SW9cD+rKW6h6YbYegvOQ3n1Fg0XmoOthP1Jhv4vw+jA67rrYv3KwnGADTIjDNjs9jJQ6yrIGy7rz5KBAIP8GTzn4P199e+HrHj9rhR7KP0kK9VV7tTbpQnr8LS6tqYGNThmVUcl8XbuytGE0eM4NlZHDS3SxtSpKIkbUCLLaKSQgyXuhIcWpVD4bB3FRAkttCHMrbcx/4YWmKFF0rPMO6+mRTM33dn0epfqsIvCGlqA7S/OYKwR10/pkIfJixJ0qkQAocX470dTT9/cyUq8/XX/fqrtbAJDC50e287ssbxsED9kEPVdn9C+OAyo2DasAYUmbzuGFiKdixZ8/8k0jL4xMynMW1qNwNCiE0322N7E/frRcutfO+esSMMByXRMJD9tY7ZHaJHn4uv1zcfDKFPPoOeCwdJpwhRa1Glw/AdiaAEYGDI3DgOb4RtaAPolLrQ4cnF8YGLyWoMw5fdJh5+9fUVgKKENGdqNaCZKKOEBIRwUw1e1qAWhBL17Xq8bX2RNN5pWOTiPq8vBMXTA2aGZQeg8A+ggroHZ0DScEMNXoailocMO8372s8ZONd5y+BzbLv50d+EOFQBMkJlgwHQjhsnfGaX8hwrcHliAoYG2JsdsEEMDshaMFscxTUetVgtNJ7sfsxKnq/5nuHvIzNX9R16xw6epr6+V6YeKXT66Ge7B+kG0FcdxaGQns4tJQm9kZ72rAXJzoYec240JJeR1YF7HokEOQjWZuAbILYQecj2FLMXsa3nGYZ9prq9D/ej4QM69fMIBckokFuTsyAbILdEgF+quxtwJh0btGrlXRY3aNXLPl0btGrnHteVdjfVf+XiRhwRRU5c8qouf6jMLh8aLVmhjkrRq29VXzxbR0/eqfr9wcdRVBPJC3rKMfGZz/Td5E0ALHaHbG04hbVkG6L25rB3TRIGeaCx592mfML9uJvYeHpzdag0TD8cF3J4zh95NZUzW2y2yd3CKXnINDmcf6O+HJkwIDYQJTSfMyHIN5p09+xsmzAy0wen13fTUw3UaxhsTVG1neH6VaiooNQVLbpBBaLl0TNnS0Qs05IB30P7aEQ62BpLByflLltm7uSxw8V6BOCAKXTeaxJfvNvJ3OmxzOWTgKZRfwytv/XWJnyrDE2hmViOl4sgQ4drV8FQZsBa/EuCPwy1AHFFE9E7bhxkn7Zc1LgzZLnrq+JfBTTNXiK9V/2lz4TkBufHkJ2hFreQRMDR8LXilQR8FsotTvTm4eJFN0aKnWSL7J/7IzKPsLJ0xP3OF+BquVglgkHXd7BfyyskaX8N7xVutzgHEA3GbH7Qern7K4Ou80wHcgBjUTwtETE4d8swwos6mxKwMuXs3sLbpmT49OXeiwMJ1mQhkyM+xkOE2lc7NIKNKhXc+LrV3Iy/4/9WGY/jqKRXsJkARar7sH9B1TGyyae6taUd0zswpbHqISKO/x3uISOOLhFhQLaYFvWgop8xE89RT1qifPURdbLyraMvYIpXpTd9NDM6bm7ojbIwUQYFa0czRE+yBJ3P2E5GXOC6s1zKqmLIsydB/O6oiC321HWSuF03MNNjySnmpqvubz8i/BOFAJc6VFqIGynDkexBqGyHUqrlRS4Ywra7my0f3pHHeFN58hrz5M/WdQa+P6YwCN7ebRaMdq5seS0LlzZ5Sm2V9bp/WRvesDYqTABVtKi/rk4LUYFT4Ez5CTsLR08sRzLJV1DWIuHBXR7i03fD5cAja7vrPcRfMa3Ag+IQEgbUmDAFnOll31Oqk66DH/vqrJ1C3qqaMGetn7U14dRIYVqVmGUp1EuxKrlQv+1udxKxOjnmxcku3FQcogQ5u8e9Tds8X1uqkGTTWOWCsEUswMpBrldQs+/Oqk0F25LggD2PTop/zEs7M3LuOwOqkdPdu6spxSowo2Q37rJSPLsJhQD00sAYUmrztWJ28dSR05LqRavrFNWOuflv48A6B1cmod5aKhlNTdfe/fFb+n3KJGA5IaqtjIRmhVtYe1UmTpQrdU7JcGLljRFImTJ50Q5iqk2ArNuw/EGNEUASAzI3DwLM6kvDRa/8I15TLvkabrqR9GHzrqlU7Ch8jQGTdvwylWgnvbetXhrPwcevNtzNyH7gap58oZ5NyV94lUPiIs8PLgdCiALQQy3LV0CRObooWXsLHQ3l91PudWaOX+Nb4ZHVF5caOJXwEsEFmhAGbnXQZ0cLHlXFFCz3kUvSS5fcvv+39eZAQCR/BnirYrBCrm2wtGD2OY5vdUUOLhzdyynoNf2SY/cIweN4z8ceEhxaVkNWxd9FRQgtQwGQfpv8NLTBDC5MBd33OF7uZbtgpF2mUMSVcWEOLOjDWu+ko66c8sK0ki/7nhRblgTuGeC6zogQUdppSNveaCoGhxZY7viIRg4oNsyIvFJvb1/bHY0D3Yw7oYXo7hhYO83XvHzacrn/UP7z045hvZgSGFlcnsxcGeRzTT556R8ciyCIZDyQLMZEspbdHaGExdMD5Z0pnGSnPkm9OYkidEKbQgqTJ8R+IoQXIlUPmxmFgGzQGvhksH3FbxYgZU5X3KVOB2R9h2Q53cOYNLeCyJt3N3cvRy5u1xG3FL9NA7K7MiTfgg43IcLSxzN7TxdF7RX1Bur5/QMsiD/nlkpELnKtN04bt2Kh9qeIu2k9GiTTga3z0/mb/SwcvihBpREAhLvsRnZ/EurRZAwBejvaeDs5kJ093ZMvL/6//8G3HljFK1siZ6L/OPNCWZtvEur1KANJNOkpnAaAKZN+jowUYLTx5rVFLC+ygIy9TZ6hT3G2DAxkrht7coMfVWQWHFhY4hxkweI8wwXtO56tIMajexKAlr43eHLJD/QQFFmdjNgcRMm7f3XSRy5nhKFOK6zLuhwFrcExrNRI6+lqwafFVUNZmuNQjQJ7v6L3c0XEJgAU+ZM7F24vs4enu2hAvgPgMQhARMol+1zTuypxnJQ+8fmbBP4mUplbW8Cd4rezXFUKAeoQJ1PMGLrDtqNGY//yvpZUOL6klwSfE1yfnaBEejYH9FznT0Qo9APMc1t9CD3Y0NvPb5ZvyMiYmxWxVxqkTsk+ENRoDGrGI6WjZ7Aroap3ZH1joeZA7+sup23sNY1Z/OqTSQzWRwGisyxP/jIpiaUZs3Vm5i8deTsFhQM3MsAYUmrztGI290zv7n5rsCua+6253Fz+MDicwGvs++K2Zo5IkZYMyO11r0Eo1HJCUZGEh6WHaLoUe/dBbHv/4btKPmPRz+pyJiinCFI2B845g/4EYjYHzLyBz4zDwnN8oGjsR0VN6ctZcvT2Xfc68mz1iA4HRWB20VjYzLkOJxiqhaKzOkKfug1M0Nv+hUb+VXoap/5WZPz2fnIBjNIaz25NUZZK0AUiIAQUonUUYoZZ78I7GqkdR1xzpOsuEPahXzPCx468KezQGwINsCAM8M0Peog+u0Ri37xaiaCxCg2NaiEFGkBZsWgKIxtLDem1xEJtBL1T6Wdz3jcxVgUdjACjYjFCBgsyIwwVzO2o0VpjvtLjznCVG/k/t7Gy6JBYTHo1JgoMiytGiMdDB0rnsbzSGHY3FlVSFxmU4UYq/Dt4Q/83xmLBGY2BDunU52pLzEzhhovwPjMbUpv0c8iHhnFG4ZkXXQx9LvxAYjelp97ze5Yk6Lah3F/1Po2aycRjQvDKsAYUmbztGYyeer/r3xpsw3axH2V/nlClqExiNxQb9s1Nki4xBzri1y5SUdnbDAUkZTCQrTrZLNGbh5Ot/a54SPWTvT7tNyY+/CVM0Bm/1LkeLxkDlDDI3DgPP60iyO1/tKZ26mucaZ2UqXvG+4GDUjrI7Cpik+WiyOzaEeF4e3rI79cXrbOKX6JvkizloSWeXpBAou8PZ4dkBBstH04+BxmZi+YTI7nKNte/1uXbBKHvyc7sJnuMedizZHYANMiMM2JzzCJfdSTzeGLyuuoqeMkXC9fnXPtVCJLujaHLMClF2p60Fo8dxbHYdNbSYp7B59oKs3azDL2ZKb7ddepr4o8yB2PMGWmghCRTF1/+GFtihhW7x6a/vZ15k5hRvthJJ8HkhrKEFOFuy7jra+glsC0y+/geGFpXRL+UfZr5nJPv5DGOf2mZIYGgx4LZLX6+iQ3rh838MGXxF5zoOA2qGOaDQ5G3H0GIMLaxiVt12xsa5myUiZ46+S2Bo8Vjy+2HDmw6G20k0Gn1mp5c4IJlzDQtJu2vtElp4yYistFy+nBqy+E7uuJQKe2EKLcD+Eth/IB9lrgmbG4eB7X+jQg8tyuKxU2m2bvKtJVFr3kilEyy7M7uKVugBsrvkKoIKPVI71oyYLk+lRk/QclBVq1iOY6EHZ7cHlGOUq2i1CqAcq6tqt0LP3fz73wu/nTQ+wtyj79d5lYewF3oAeJANYYBnVkVwoYfbdwtRoQcom2DTQlWT1VUJotBD+ep/y/WVDSu4RkEtcbylhcALPQAo2IxQgYLMiMMF89G44EfAgTQpTVHaYVuZuF0eJjubvNVwupX5TCYZ/JtqaWXOJFvqG5gzyAwDXaY505QOXWGZ0Cya0oQ456/0oS/18nZfjBSrteip4vX38/9zenFu5BqHlt2MGFu26E7kU3RtxGwokRP0Nuaenju692GlVqDLY1AtvK05nyZ+JsNF6bA55WDkoz5mEeSW7sfuhGKM5OFMkqRcOYnkB+8J4JidQ0dNAmw4+M/96jXf9TfYWhebzjx6tl3UnuqDyjHUnlkDy/8mATCTAAOLq1iZGlf0sgJWDe8UMHuSsCYBgKRNEYw1qqTt28DyPy8JEPvQdq3KzW6mScyDUt8m6ksRmAR4HtFZb2+/d7r5e2ZNrn3u2QuHAa0aiDWg0ORtxyTA9FmJSv9ZjGb5Zk5nbzocUENgEuCLbbK71GxPg0MnXw3tp3/mHg5IrsdE0nZgeXskAbjpUZiSAEDtCfsPVLUnZG4cBl7QkeqLSZqbbaeNoumtzxHtVh4u87idj/WIkS7HONaDIl2Oc33Rm3rvsZPuMBpbmlRecvuftQTWF3F2eOB8igiAFur5FM5N0cKrvlhoPiWwXCnOOOT4++ckb4nOHau+CJ+GggmbjHQ50fXFkBFfLOVvlLOCZ15JqmVFaQhRfRHkL2GzQj3WA0KP49gcO2pocUpH01Rh12FmSu0sizEZbNF26Wf2XhEttAAntnsr/g0tsEOL4ykbFPrqOJhu6n33cbw821xYQwsQRr5QRFs/gaZNJxX/wNDCWUQnWknhECM89cezMDURfQJDi9GWcsyFNmYmft0T3/ctmk/HYUC3Yw4oNHnbMbS4370o5bTTVYO9n7pvuniyRxSBoYXl1sF7lHYtYu7xf/388eW6OhyQNMZEUlGxXUKL8ctssrT98imFsofPfZIsnSFMoQXoZwb7D9R+ZpC5cRjY6TeqL67wWPtzV5q4yf7yrh+SwhkGBG8ks1Qox9hI9k2eJ9LAp75oELJwV3zORwNf9h2jAJF5q3GsL+Ls9sBeKGMAEupeKEUF1AAD7/pi9o/F4vKPb7FSC0rSr+3cnCTs9UUAHmRDGOBVyfOGGbjWF7l9txDVF8H+KNi0UPdHQaYlgPriyKF2SQE9a3T3KWSPPz+/UlHg9UUAFGxGqEBBZsThgoWtqi8qcZeyLJh0lmmbC4wtfCxChbGFd6KUGFt4NyKXtexWRMPZLl2S07niOTX0WN5nLYPi3q2BmMesWnpfc66Ne59GG8uMpYpMUt2pMsj8GpcZndGsr/+DMEbfSRfpKWMflmRXLGc0bTRS/4oGpmZWlsidrdBNrPG9CHbU+DKKsTT+CpJFNL6OOOzcbapQ3423iUrji631GmgjBDZKsg8wSaQztEYj5NIq/yBR/0NZVpY8Q9S8F2hyM8IYNbmOMkhNvoPYT6rxFxCHKSr00mKzQBvT2BMDNCbmmh1Gf0GecWp6laA+f6gzDVpEmGUz61tv/RpH11bNNJn6FzFjGZhakk2tTGhM89ZNO9QHIYwv6ndRxhr1+0jjjvplRBuYuGxIRFm3GcyAZ2lKl0/XRLYMHB57QP8m3pM4R5lJuuEPDf6oxm52EdrgF+/aOC39e7ZhbukUy4pCr6a9QruawpmfpkONlZXTQu0d6OTmbu/tsmQhJ+SrTykhr9kPjh/26dbuW0aF6uMm+Qfnk5F+Em8nHM7nzU017vFsa1lAjUnK84PQ1qfxNspRNdVg9pLzZwo4adeV1PBPBIVjDm6t8umyCEbcOgeP/iQEb4D+ZRR3gH4Dks2ifxt5v4PHnvPpR2qpweMPZzylsYNbiBCPwWJ8tTkb5p4gbaQLM8hjJLMhG57a2GMsxtdjoAVguHgM84IrF0KU4+hbEuKv/VDcOwhXjzGhSnPmOOmhusHPPk11sCuuwMFjkLujeIx1NA3mi9fdG3qKLmkVZY/iXv/Dy32yJcvcwoBlSjZnWVItwX9QTfWMW7mGbsWfQJjYrXgKyoxvxZOQjLEVj0G0R26Taevw8Nhua56B90IjQp5JkuwBRQyZjd2Ge6uYZTRf79M6zmnN30Aw2tY8BsVqW/MoJLNtzXMQ7bbIPvXHp5BYysGy5a8OdNIqaPMY8Rhuqx7SnIfmdv9t5EMKZNjVXSAPndPYsD1a5YulTah6pkxLsoWVuS6V3kpvi/gQBNNE/B6K7SF+F7FEgfRFROu5UGsy0nBElOHuRJbkjPhJSc0DwWMeyN/C23NpqzBJdt8YJJJc4wH+p1Weqx/XL26db0J+CsIQI38RZYyRv4w0yMjfRBxl+0edSxdXxFLZivN8Ri4asaQFaPAMM8rXCKq1oJkB2MtVWscAHe8bmYEnmhlYBGbfVbEKpLFXT32Wd/O6L6JerenAY8nmVFEXvgsdodtdHBqUYC2TJnFjg7Oajntut3ERnAw6cXxiIC+Cga7putSXhv6yXq1yvGQkoiEbG5gyLcgWdKoxk18n3OwDEWZrs/egTNxm70MyqGZvQpbXWN0crx1EpsaYpMVlnFtkwB+IPAbV/B14O/PS4UwS5SxkSs6NZ7F3q5z5MMRfD/9uRv1L8OvYm38igtk0fxOK3TR/I5LhNH8XouVEUD5PGeVYa7h18MSYWQNeTuITSR7TacEtzXmp73eNXtBmrqGklEYzZWrnxbZ1Y5wStAg0hEzLvbFpLUUzLfJChcNBYcG0rSeyjGM/569qKtEwd3SzX4FMDy1UKElRyctdPB3JnuBJZHf4xyAfBcsFA8IP4UGf1Cy4x13dLsmFbTYsXH688wf1vkPaqnRQh9jXkgHEwiQSm2cntQZ0dUYDBSxrFQVocxuUroG5hSVXGbQtlMD3H0CY63w/A2Xq8/0cRDUEvw9BPiIxzk8qd6Wjnn+XJzd0itZ8bdug8Fgq/0/APfOhAALEMhIpqbFfWN4qyhnZordpCwXx/xcQzJT/h6DYKf8PQjJU/p+CaKl2Vhay/UulTHI2rzMatq52fBtHhsdUW/GI5rwwd8/qNlJcDmTKpaPKSOzUxqbsg2bKoVWFfcQLB7F8F35RXRoxsWdTrSVzyYJ64ZcX7+4MtJ1n8kwfb097B29474sj9AA42+8F4iDOdrSWqUB7KiXdUpd5St2j/aR/wOgz/6L9Ml4V6P+vtfQgVXDUVwLEXOlI+82ADNcumcGPCrTPr/1mjsvs3ZbaeyPv/qlw2S53fHsdK35pzy9vhx9sKsxr2x4z6wLfp28Vn5luvPNpvOy2Gdtw6PBeDRBC3AxEUYcR4kvFyIEIAsXTu95EECFy/1I60WJ6mX7snNglLxPEm+716GIB7uaFqP5jvCV4QHANY1CJpFkHG6LISQy+tIq96zH4NUkQEXhht+tHnHsXk5DH4j16FGiWN0FABLJ1nveHPyTi7aExxnj75JSG1d0KNG9TO8PUWFTrMz1qxzndFJbB7KY7d4wh99JyPzOM7ukINgrZk92gr/9Se3ovd+d4nJa5GfXBL6VWz+tMTTAOrTnzIHsC70/iVfuDT/lo41zNhmA7h+haIFCT/flyLZLgjzc7bWKGPrEVMelrGJapZufRXT+nqR4Nnh8ogt8mF5vzMuRoyQcPIi2MInoWLGWtYSnh0OyV7AuBZYaolQZexo/BLTTHAqsXDBb2/Ko9sqjv7SfXGJFqd7stvzyv6RGj3X9xCQ9QjS41B5NB6Nq4WxMe0TZdd8w6NHjNDBxggqwGA6bq9fw5Y4l6o3JcuNgRBSWNzdE6rp/LKcVq3iJbV0vItHSa4O+HtDg2koPERHbaMDQcP7TyN9oU4/9+2cpLTBGDkpUF8kPqxu0hcFOMhyqTRApmoGyKgQP5UL58Vss3xUS+ilH4KWbOiN2f7/X9clQEjptiuFcSbZyEERBIFAAS4r4OSZAOD+HxVURtillifNJj4dR83eS+g088OZvxQ9g3xQDwIBvCAI8Uxp8H43tTDDd1CdGmGHCkCGxaiHs9xLRh0xLAphj9g1r7bucMYURZ7xkbV7NW8L1uAVCwGaECBZkRhwtW/UZcYPgpMr7rsX2MqPQ3duHjurwlmAvIW7G4oDqKIC5wsJ4U01l1mknu0v82yvwriycXcMdUOLgzu61Y7iw5st24YE3ksJk9zZKYmXUq9tUL7gd2BC6AbAgDPHI0wVzAvT4XMi6ATQvVxUGmJQAuULoj5TzWM8yEPS/YTW7pks5CwQWwGaECBZkRhwtWd7xsqNvzkPyUXZamWV/mBHhP6ZVJYDYUnHksObAMJRsKWmDkyPB15nYLs6HrLXdXZJ6fpRfyvVCnWFT7Fo7ZUOnu3dSV45QYUbIb9lkpH13URpflAY7UlkVrvWKnBiNERDZ0vu+7+SZLB7NiFjP8qj1vrxBgNhQ+/B5ggJgPTIZmo5ksfydDtygbWmb94a3V9xmG8Vf0lj+SiK0TUDa0sn4WYLy9pEzDcc9rOlA2dAdTY13ChSza/iU9jOeaV+zFORsK9jGSVMpQsqHV4AxtJb5cS8uyoRcuOVVKb7Y0Cn4edT1LfRJR2dBri4aIdq3YZrK7dPzWpM26b9p6Rg5YGCmXoaT52JCXoSjzHOvf1mwoq+SAuvWdA6yI+XWsnTsefSMgG/q58NZ6nTwt4003CpU9bV+dwAEmyGowYCIp8eeMm8+GRr2zVDScmqq7/+Wz8v+US8QElg0Fnga2EcRsqJkWDA3HD639jSJgZcmJdpuODGBFX59sFx0l5ktgBJysAhGdAloLEtBsOEKeoBYkSerjROqy3pmEyFTflLHQWYBjBMy9kmhrvyAIpEoFtC4aoF+ktkK7tSDRz/26nbZ8oVHBovgexxOGhQh7BAzAg2wIA7y6YQS3IOGmLiGKgEEDV9i0EAO7CVqwaQkgAn46STmz4NkO3V1XJQ6dF7WaIfAIGAAFmxEqUJAZcbhg3W/EBQ8kfOga4acN9/Qo+zg0SXEvwVxAGorFBcmDCeKCUQ+tpusOdDQ8Mt1DbeOPxKE4cgF3TIWDO6seguXOKEPajQvsZA/ELlgkbrTj0/1LY4u2CP1xcQA8yIYwwCMNJpgLuNfnQsYFsGmhujjItATABT5ayxQfOM4zDbl++pVXkhVbKLgANiNUoCAz4nABG40LRqaZl9lkZ+imp/U+e3zth21NXY6ep/tSj6Y00KNhEtPcPRf8/3xh+CO6uxv0RuAjRej/wt9GGI4hVPJC8Fz4GGhPey8vZ3cPD0dPzt4Ir84GjIZ5xy0PhS514lzilnRBlzpzLnGrKKBLIpxL3EU1MQPGvCbwg9QL4uif3nTI9mCvHrSAj1ovXl90zEbAiXd3BtdAkhoGsn5MfDvkmHAnqRuNCXdiqdGYcMdyjcaEm9pbPiYlE3ueYJ3VMtzl9U2BElf5BYcx8et4VYNuJ69a+90ezcg8c6tsw4ctwwisGoCj5iSPolUNwEm6doVEVA1uDJxxT3KTEj1z9kdXJ9OQ8zhWDfS0e17v8kSdFtS7i/6nUTPZbaR2bUDeR9GqBmQ1GCEiqgYy2p20xEauMCxefO6eYjcttgCrBuAYUxgDxLy5nSaTlFNIQNXAW6rXqNPib2jJe6gzdny+wRRQ1QC8PTTGGG8vWdjAyv4dqGqgIXJg2grpPrTtMusvHj8aOgfnqgFblUkSO4FWNUiGQLU+TkDVYNO4L6X5eo9MQweE31c/tUeVoKrB+6fPk/v0v6R/1OdUxMok+bY2A06GwPp0HC0dToG8TPpx3KsGRk7OSp51EnrZK2jrnkW9iSWgajAylJZgtXIcY9MCqatdVmzdiwNM1pgwiR3Hu2oQG/TPTpEtMgY549YuU1La2U1gVQPgaWAbQawaSGrB0HD80PrfKFP0YXZ3hR/mxvTwYAkbmQDxRQRmiuxApugYWqYIbJgyKyUoUzRPYct8xmtH3TTm8v4nT+iMwTFTxL2SaOMkZIPSSilasoMEtjmUtlumqPfrtYsdDj9ibl4rtpNKCwoT9kwRAM8MEzxSKcGZIm7qEqJMEUmDY1qICZBPmrBpCSBTJDf/9qN02ZW0Q1VLLlmsf3ZX4JkiAJQZJlCQGXG4IOA34gKr6ca7v4i40TL2LxEJ3zn0K8FcEFSMxQU3igjigj02IflvxqwxyO49X8XTId0RRy7gjqlwcGc+xVjuTKW43bhA0sLLfku+pF7hscHdshVMX3UELoBsCAO8oCKCuYB7fS5kXACbFqqLg0xLAFww2c3v0YbUvrRN4+7NyHWbrCMUXACbESpQkBlxuCCwQ2aouROijTLU3EmMRhlq7rihUYaam0ZanqHu1HnppefbxUxjAlJGvF4W/ByHDPWGjpehtjF9Im7Lpurm3Bx9szraZyWBGWqwFf99v3KUDDXIzW3vx1evtxZmqB/JymV2n7XYZMN0275JDyNdhLeTNNhY/qIfWstf0BIZQoiIDPXd87QqZeu3psVDvxytrJ6XIcAMtZkmBwPEHC1Zi0k62Y+/jmQtylDPV7P7UjBXUS92ufKFk6cTrgsoQw3efjvm23v3a2gzFtSBMtST5t5/5BP2zGSzzdriS+soLT6+oKXldmjieMiWo2SoQbpNRpYv19KyDPXnqrN9LdzemuyVMT5VceXDW4Iy1E+GMxXGqYbq7r/Q/b1mqr1sG72MHQSWMwALMfVKgsIhiixPO8m2ZqglB1vsXeQ3jp79Jt5//fBnawnIUOeSjly6OdGCFeKql3/yx2oJHGCSwYSpToY/Z9x8hvqLbbK71GxPg0MnXw3tp3/mnsAy1MDTwDaCmKGu1IKh4fih4N8oK7FqlOn3Y+/zDQ/qr5nH2nFel8CsBFmVSXKTQWt9C0IBaRmCWt+OlDqanHR0Iq3glUHtNcZMcRyzEtwriTZOQgoE0gIZtO6tpdAUnSLTbq1v71QOWJH8OJAW2ilPYpXBY1dhz0oA8KQxwXsxgODWt9zUJURZiVINjmkhBtt5WrBpCSArId2vZ/Dls7X0wHPDJcRKHK4KPCtRqsExI1SgIDPicEHIb8QFMeF0H/eCESb5wU+nWDK2fiGYC7QHYHHBjf4EccGrF2U/nUfXmR4yefY9IeLTNDz3OHHFVDi4M5UBWO6MNKDduKDAJcLejNZfN2jtpwcHVA+rdAQugGwIA7yc/gRzAff6XMi4ADYtVBdHGiAILlD0tjSbefStaVhi+odEa51FQsEFsBmhAgWZEYcLQjtkhpo7IdooQ82dxGiUoeaOGxplqLlppOUZavl0PbVxhbl6+/xmXrqy/8VAHDLUG9HGZMbp7FfhSoN1w71edSn/qN6p6eS08PZ0tF9M1nVx8+ZuRQnouTPKJBhefwNvQx7YPZO94Ke2rBvPtXW7vc9LvDHIserjTFL/Jxvj9/E6jyaX+cjFylhClh4HWTqbJ6UEzYMYi/KeZsAlOEJPbWhD25UzoOIG4BWbjDP4Xzf4Y4MFDdbmkT9JkxlQqOvvJtfnsX2PCw3XG0xu1oKK8E4l3RkFrwaY9FSTqmy43hnleg8W7J14WEKs/vP//2HuG+t/L/w64CtYLYmlDZYscPSBZxLIDNaPIuKg7Tof9nxcmaFeYM0SxT0KRmpN0xngbt50Bvxpc+S4YmJR2k4nFt1v++qasU8fbmxr5ww1JkkSjHUFUtb1BnT1mUW5gHsO/3LU/x+oBiNBWN+gjd0Ag0YzjwytcFzgsdRGHD6JrrcVJJwXU7M2BxqtFXn8tJvJUm/7+W6Ov0alKR1xZpk2z5h20uYZ0E5cA/qum0Xk9h4MvfUULflYiSMsHAa01AJrQKHJ2wjJzrghORIRybE/PlH3FogxEr4q9Hhx0rlHy5AcyYvkyGaRpOge1FKmJ7IS++v75PRWaKssBCDpgYmkvkU5x+v88h58tuHpXe+YHRdg+ZLh47ubVTx9yiyeVRhX0+OYOTaEXesh5HUvFiraqvhnSzU5/qMUAsmDp26nCZsbh4HDOioDT7kSeqHv9U6MaIaPV8WxxXsIZ+BqFSbJ2xaNgUFHhPc2fxkYm4Gnddv+ZvPq+4xM96QeG76GdhNWBiaBZLgtmpupgK4ybP9ABo4S/1Cu8mKZYVpNklJYl7QgAhl4SYzXwG5hEpTNNrfyE8cUxuAwoHKYAwpN3nZk4KIp78o1snayoislgjXVAqwIZGBHo/knI+amUCKCJ+lvLZnTHQckz9lgIZlm0y4MrJatslztah+DQ7WH9T/QZksLEwOD3new/0BkYLD7FTI3DgOH/0Y56i1efUTWyPc1yq5TlKDI0ojsSgA0rmI2aDlqOwjinNkE5ahv7KNP6ewbphe6ybsr9aDrQRxz1Di7PfiAGhu0NCt5BJN0Y3a75ajnjVmkFHmwHyvf+b2Ij8iug8KeowbgQTaEAV7QbIJz1Ny+W4hy1GQNjmkhpl5ltGDTEkCOOiFwvXqml51uRrjfYyXvlDKB56gBULAZoQIFmRGHCzZ1PMVut+69jvbc5mRaIhmudM314gq0X4aDYhdIoCxN0RS7AOdvJkQodl9P3J5oPNabkvvh1BCa8ToNHBW7OCea2BBCxqZoil0PNRghIhS7Z54q6qzTolCCEgK3bnbU5CrbtqtiFxwbDGOAqFkFfesUTQlQ7MrQVmem7lNjBf6z6Y1UmmmpgBS71fWzAOPtq0wavE1EB1LsGs28MmSliTRlw0uWd/6h44dwVuzmAOmWOZpitxKC7dF0AhS7pQ++VZ5QNGAlXjq6feX9iyUEKXZXXb8plu3MpiXGnTvo0OfNmjZ6GbBzYow5mhTVA1p6S5jjrthNunYtJeikhHFiuBu7T5yFNwGK3V2R02ZMdpVl+jrIffyqcZ6OA0yQ1WDAdHQ63opd7nS7wBS7EVocG0FU7FK0YWg4fmjzbxQBG4/zz92VucogN5aU/WS391QCI2BtVYjKpqNFwKAxxzkzgiLgZ1vF3oqndDXxLXK//KNLPJ4nUXOvJNraqRgk/qajBXHwHjCzdouAVQ5J3dwT3Ysecuk7/czMp+uEPQIG4EE2hAFemhnBETA3dQlRBAyafsCmhRjYVWjBpiWACPjsvI8x8bXD9ItsnH5u3n9+vMAj4EoNjhmhAgWZEYcLtvxGXCAre3fss14LDQ7LnKG83DW2N4FcAGZqHguNC7TBQXMsgriAdqr/6qXLqxjRg8aqjZjd/yee5wtxxVRt7dMEgZTDQnNnQGEVxGo/Lqj2OPW8X7heyucBvR+z9uULOxcA8OwwwZvAIpgLuNfnQsQFdRoc00J0cc+0YNMSABcMv6wzr6TqLjXwfoWEQnD4DoFzQZ0Gx4xQgYLMiMMFWzukYpc7IdpIscudxGik2OWOGxopdrlppOWK3YlS3U/3rDnKijsS7rnh66gMBJz4VexGdlS9kGhVlyrpxH6U0OOfT9QkVpYTrhcCff8+rUfTC4E1Ud76v3ohbL1QhtQo8Z7nXIx35r1dez1zCNc+feHRC4G2Yu/Xo4ki9NWZpOr1f6BeSHyUddKNl7N1t7xdNethzIlYAvVCNeuUYpTH3DQInuNtnh22uM1HUUIDeg5zQKHJ2456oYSxBp8MDtWaJC32dZjtPdiZQL2Qm0iuxVzZRP3UEWXetno/1XBAMg0TyYj17aIX6u0ywjKs+0t61MCQ4NlzV0sIk14oQpPjPxD1QqBvH2RuHAaO6qgM/Hib1Y1Xx38a+V7ud1A7YVQx4QwMguItwWgMXAoZpnnwXwbGZmDVSz4OJZvUdA93W2txiLX7iLAyMAhPw4PR3MwEKDxdGfwHMvB/J3v0yvQ+Td/9/sezLrWJVQQy8KpTfUf2/HrR2G/wXI8eG1a39fAxMKBOmAMKTd52ZOBP0b2tvbttpfq/WXPe3lRqAYEMnBJ1yc1IZZ3JBk/bCRPDKKk4IDkNE8kRwe3CwDUqinLnpJ6bxBvG2q+aOG2tMDEwaNYH+w9EBgb9syBz4zDwtt8oR32iJDVv2WY1Znh/7XcaStI6BOao61SYpNtBaDlqIIrOCSIoR63i023O/LMjdDMuJ7za/L42DcccNc5uTxIcjBCElmaNgCbryaB2y1Gzh8R5Fm61Zx5IsLszXm58oLDnqAF4OZjgbQ8iOEfN7buFKEcNjjSFTQsx9RqkBZuWAHLU/T8P/O/gEBnqvnXzl/6rvjhO4DlqAFQOJlCQGXG4ILrjKXZFQ8dcTOzyip5bXCSeun+pJMFn7Pb3wzpjt8aXCMVu9Huqw3SKNvPgMsupokM+ueGo2MU50QQKZ339sM7YhRAiQrGrWeI40GJcnemO/3ppl6ytbWqf7X/GLowB6imzP3wJUOz+fDA0N8O11rjkore8WN87/gI8YxcaY4y3v+bb4G1iOpBid+PrhBuiTjIm4YWyQ8Ml99rgrNgFDRLF16MpdikQbHf9CVDsPv5+5VpQzW5G6qwZX5zZ76YTpNj9NvOV48Bz/5qE9D8yeWevmEdtPW4LAqvrejQpajW09H7rj7tiV9S6SEbjxEhW3mrGmbzgUU13huCj2D3/uet/omaDmXseloqqpV6NxQEmyGowYDrjj7dilzvdLjDFLkmbYyOIit0cbRgajh+K/Y0i4D7uj+W9Ml4Y+94/ZfaMXq1KYAQMugyu9UeLgNkgycCfz2p5BDxGTNfPetYQ44iHQUfcUsfewTEC5l5JtLXlPQTSSn+0IA5MUSdeX0VUBGwjH7jbTKWzQaTUTQWlzB2XhD0CBuCZY4I3jU8PxncEzE1dQhQBUzQ5poUY2E3Qhk1LABHwvxKbX1wX/9dkLztkaP4x/TsCj4ABUOaYQE37xQVxvxEXVP+0e5GUMpQWfO7NpUitM4MI5AIwUyv80LgAdDHe7kcQFzyK15eT321umGq45/mQd+SJOHIBd0zVRndWDYF00g/NnQGFVY5fu3HB0RSH4ird3ZSklOqNTiL3o4WdCwB42zHBC/IjmAu41+dCxAWgCwtsWoguzlobNi0BcMGtiVuZsUfv6RUEzP3S2/D2bYFzAQBqOyZQkBlxuCC+o2pT3k2LnjXx7haTzLIuAXc++s8lXJsCMqOrk9G0KaDeOCX5rzYFW5uSEHMzZG6KC3XPk7quZl91mzpkIdKmgByvTzJaAT4PcsQLkv9AbcpD1RHLu1p904tfm1EZ8b54KYHaFG/5h66z5WX1ksTMd8lTCkpwGFAzzAGFJm87alOmWYzdZuV62ijthpVy6bp7TAK1KeTXuYHdlS4Z7z7QdfOIUwVtPc8VIKmCiaR0crtoU1b9Z5678soW/TyNf9deevfeRZi0KSRNjv9A1KaUasLmxmHg7R2VgbP+CX3Te4m10cZUySmOAwputAsDh6RhMbBh2l8GxmZgvT3XMk5dITGPjntpo3XsRxdhZuDANCw345n2BzJweM+RHk7ecXqH4lc/H/pzvxmBDDw6/pXUTPFg3a0l9gudgibJ4DCgczEHFJq87cjAe43PPiYf7klPv0bqOnv+6U4EMrBvZmfnW7L7TQIfjtd/s/XIZhyQHIeJpHxauzBw7ptbN672jKZu0eluYT55XoqwMTDsP1AZGDI3DgMn/Eb50JB5Oodic8OMNz25+vmsXbYUgflQcLx61Q60fGipOpOUvoOgfKjT2747P2rcpEVpRF48bvwhBMd8KM5uDxy+XLkDLaUHTv87uqPd8qFxQW7jpHfb0g+UvVbU3fCou7DnQwF46ZjgRe4gOB/K7buFKB8Kqs+waSGm+Xy0YNMSQD60srayMndbbwY7SPqtRMqkdIHnQwFQ6ZhAQWbE4YLEjqcOPaxS7PrRQI2yUVxnjUoJYzraL8NBHZoMTbm4BDR1KOhptSSBCHXo8qnHNsmJvdIPc71v86zLzqZ7HtqmDsU50QQaIW5LQFOH5qjBCBGhDh15akWPrJoYauaLpB4/KPsfCFAdCrrZwBgg6iProKt+CQSoQ3UPLLO98P603vbj9y+fkZAcLSB1KHj7JZhvPzuhwdskdSB16NjzX7se3fNBN6qw2vUta6E4709qkzpUEpo44Ulo6lBtCLb5SQSoQxVHbNgkulPZNOlV2u2J1XODCVKHbh95NzZ6C5Oan/LSKctPr18bvYw2yIQlockeKyEvsywJd3XorTnBe6i1cxh59zSrfXz2PSVAHerd480k86+JelH7LCde6Na1rZ1PAEzzMWEyTcJbHcqdbheYOhR4GthGENWhyVowNBw/lPwbRcDh3wvczq+20E8dfSvgjui/KwiOgDsnYUXA1xIJioCtMuzXrxlz3yBL3WzT9ewnoThGwNwrCRyCuB+JWEFcTWK7RcBBS5dY3BnKNCraIRZqIek0uSNEwNcwwTueSHAEzE1dQhYBw6aFGtjVJAoiAhZLdhunXbmNHjV97KhTLol0oYiAr2ECBZkRhwtSfiMu6LQ8dKxo6TBKfFonqa1LTTUI5gLjRCwuIBPFBZsuF6qM0plNKXyyQ3KudcBQHLmAO6bCwZ3pY7qzMe3HBSKrXI906bpeL7iPuOwQzaEvOgIXkDHBkyCaC7jX50LGBfqYLm6MQLggt+sWtu2/sQy2+IgjigeywoSCC8iYQEn84oLUjqpNUSDfiWffm03LT6VFFse7H8L4ffhoUzymMEmjCtC0KdXTmKS3+X+1KdjalMzeRdLPu+kyDpx/kyA/rfKjsGpTIqCx1ixAK8BbT2WSBhb8gdqUjEF6ZkaWkyhhzkcnqA8fSKQ25d2ciuWBPnXMrFEjNnUx0xiFw4B2xRxQaPK2ozblOVnpslZJKo0doVU5mKx9jEBtygjpr6YHJn5j7PI5cMnXijYQByTv5mMheSa/XbQpNv+Md3wkelg/ICas56qJDDVh0qYk63D8B6I2xY4CmxuHgXd0VAauS59PPl2ymRYYuX+NTvn9eMIZuBrC7UcRGgOb0Zmk4qK/DIzNwP3KFqi4kvVMDtI82eW91wYKKwOTqEzSlyI0N1MBXX1S9AcycP5lC3M1ZWndRJvk+8Xag2wJZODHvR/J+66aTdt4vGtC6gHztjb9AgN6GXNAocnbjgzcy3Ks89qAKfoHdkqsvyT2YBKBDJxhrW5c4z+Psv3bh+sMjwM3cEAyExPJbUXtwsAPZisr/UhNY/kfo7qtOtf7qzAxsCSD4z8QGbiSAZsbh4HTfqN8KMO0i5RtiSgr3atqHWtyYBWRZ4dCIa9+EerZoTQmSa6IoHzo/BMh4yJEU+jho24XyDjd1cAxH4qz25OEVoKMItTjL6EVjXZRu+VDjw2xXRxA1qSFvNfIXxNQFirs+VAAnhwmeGJFBOdDuX23EOVDI+gc00I+EpMJm5YA8qHF6q4J1f9+0d0gX3Vx3spvcgLPhwKg5DCBEvvFBTs7njqUXGs79srYr4ZFirPer57mvJFAdSgFCv7NjqCpQ0nQdFU8QoQ6dO2iTnWX1qroxieVj46IkFPBUR2Kc6LJDkLI+AiaOtRsKowQEepQixvfOolGiNJ2FHx4dDdxOUOA6tBSHQ4GiPpI4LYnHCFAHWoftXpS4I8xrN2bz5y/80DZVkDq0NL6WYDx9pJHGrzNrg6kDq1NSaub5FJhkH3roUNNr5qdOKtDcyZDbJaPpg6thECVySdAHTq3bvDIDZFnqRmqJ47dO1CgTpA69ETGrtKMoOfMLYdYPVRmrmO1tY09BBYlH0326AF5GfV83NWhjkM9k7zoakb5garz+pkbjSNAHdq5/3BHsfuirAOLj96TpmtG4wCTDCZMovl4q0O50+0CU4cCTwPbCKI6lEKFoeH4od2/UQQckqWt/DI8i5YW3++CpM3mOAIjYPYkJikvDy0CtoPi4415BEXArnetVNe9nmwclqdRq3Za4yCOETD3SqKNkzAZAulQHloQR4bWS8l57RYBr18ec6VyrKduZIJcrbP2MTdhj4ABeBsxwfPJIzgC5qYuIYqAyToc00IM7GSosGkJQhF0wn+6N1OdFbOlWxV1eflVgUfAAKiNmEBBZsThgvTfiAuGVPk/GHx3J6Noy9C8R2/+cSSYCzpjcsE1/kLjlnNBsMh6tsv+XkbpqU6xH4bHrMCRC7hjKhzc2Y8jWO6s5ki7cYH3i8DQ9LNfjENq9839YD28piNwwTVM8I7zmVrgmwu41+dCxgWwaaG6uBo+kw74cEHKuHsHn8yYwQzw+6H9Onr+MaHggmuYQEFm9D8=
@@ -38397,6 +38452,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtlJREFUSEu1lE9IVUEUxg8PiYhWLSIiIqLCRKIoXEhQhBhEi6LaBJES9M8SokVQLoTICkKoTUUQYUGZSFS2imgTREhIuHAhEa4k4i0kXIiI/b6Zc+9797773q4ffjjfeWfmnHvnzlg1l812+bAR6/x/ygWz7T6sz0WzLb1myz1m2+Qp1n/J7EP4scIqtIi6g4MzZmvIWyL/toeKIemICpyNi8h3yNPdjpBQ4S5aQDuDA/K6VQSd81AtdH5YC542W+khTZxCI24TSugLmvRxgCe4SYGFgoYi+iHfMZOOe2fNHkpoRcuoM7hIibwJ5oy5r0EJZXTdvSj5Uwy7r+YHuh+HERY/xfxF9nO1h7Kw0BMS9Ogp+C5NOm+21kMJz9GnOIwwv1VvQf89lIXKe5VAJy0eMm06sTmKXPFQwmOUKcA+7td8dnqTh2rQK5nVhrkPEBsm9tFtwih6H4cRcgZp5JfbYkh6hL67DeBvFEycQA/iMJ4HGvlLXp+HiiGhi8R5twFivRT57VboU9ZZOBkckPMM/am7wQks1JNbTK9oAE25FR1In+kGmeQMoaPyDWHxUfTZbYCJX9GQW3EPTcdh+Lxn+P2F+/rsM2siMfPF6G7CL6lLD4lx9FQDfmtmju6wPfINofNOJXOaN3sobDqL/GSYXAtNSBdeeP/Jp1lwTmphsVdI3QX8y5gnxl/KRqT33y7DDy0qwOaml18hfqC0GE1F6LyP2Fzuy2hDKhAO0wmzFT6PB28ASYfUSfWjUmCGiYNuEw4gFUjzyHmN0icvhMXuUCD9FPFtKlhw/WozVSDdp+SK4dEPeqgWFnxJF2/cyl9l0qzbatS5CuhJUpg7hqbrHjQvoPsloGLords8KnwtDiN0v541yjT1Tvvi4QosdksduJUfRw/d5tGh+haHFchvp4Duo0n+7/ZwhKAOzIBbbfoIXR1zm0evpxyHWZi3FQ0xN72n/iNm/wBIHsRgzGECXQAAAABJRU5ErkJggg==
- be3370c7-2c61-4103-98ae-a04608017d07
+ - true
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
@@ -38494,14 +38550,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4284
- -361
+ 4339
+ -508
678
424
-
- 4626
- -149
+ 4681
+ -296
@@ -38554,9 +38610,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Second item for multiplication
- 5bee381f-9036-4110-94b2-02617aa9e447
+ - true
- B
- B
- true
@@ -38567,23 +38624,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -359
+ 4341
+ -506
328
20
-
- 4450
- -349
+ 4505
+ -496
-
+
- Second item for multiplication
- 1c695091-f304-4f23-97ae-5d02953710b1
+ - true
- B
- B
- true
@@ -38594,23 +38652,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -339
+ 4341
+ -486
328
20
-
- 4450
- -329
+ 4505
+ -476
-
+
- Second item for multiplication
- 675970d3-47a5-43d8-819f-9871056f5829
+ - true
- B
- B
- true
@@ -38621,23 +38680,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -319
+ 4341
+ -466
328
20
-
- 4450
- -309
+ 4505
+ -456
-
+
- Second item for multiplication
- f4e46797-d4e5-4b35-b601-ee6d7af1685d
+ - true
- B
- B
- true
@@ -38648,23 +38708,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -299
+ 4341
+ -446
328
20
-
- 4450
- -289
+ 4505
+ -436
-
+
- Second item for multiplication
- 8f96129a-9ecc-4a70-bc41-4973816d604c
+ - true
- B
- B
- true
@@ -38675,23 +38736,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -279
+ 4341
+ -426
328
20
-
- 4450
- -269
+ 4505
+ -416
-
+
- Second item for multiplication
- e081964e-fdfe-44b0-b0eb-c6dd87063a32
+ - true
- B
- B
- true
@@ -38702,23 +38764,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -259
+ 4341
+ -406
328
20
-
- 4450
- -249
+ 4505
+ -396
-
+
- Second item for multiplication
- cc8fbc63-192d-4ddd-9d03-6cd57c67c6d0
+ - true
- B
- B
- true
@@ -38729,23 +38792,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -239
+ 4341
+ -386
328
20
-
- 4450
- -229
+ 4505
+ -376
-
+
- Second item for multiplication
- ccbd84ce-a1f7-4be8-8774-8a87926fd9da
+ - true
- B
- B
- true
@@ -38756,23 +38820,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -219
+ 4341
+ -366
328
20
-
- 4450
- -209
+ 4505
+ -356
-
+
- Second item for multiplication
- 755a4cf8-149d-450c-83a6-7dd52b10e03b
+ - true
- B
- B
- true
@@ -38783,23 +38848,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -199
+ 4341
+ -346
328
20
-
- 4450
- -189
+ 4505
+ -336
-
+
- Second item for multiplication
- b115a5ad-b307-4a4d-8556-df132d2e8d34
+ - true
- B
- B
- true
@@ -38810,23 +38876,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -179
+ 4341
+ -326
328
20
-
- 4450
- -169
+ 4505
+ -316
-
+
- Second item for multiplication
- 63ecd970-f781-474c-8c4d-e1461088bdd7
+ - true
- B
- B
- true
@@ -38837,23 +38904,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -159
+ 4341
+ -306
328
20
-
- 4450
- -149
+ 4505
+ -296
-
+
- Second item for multiplication
- 2339f91b-9953-4128-8840-4e3d186978f8
+ - true
- B
- B
- true
@@ -38864,23 +38932,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -139
+ 4341
+ -286
328
20
-
- 4450
- -129
+ 4505
+ -276
-
+
- Second item for multiplication
- 24a50abb-f78d-47e9-bce5-1a377707de98
+ - true
- B
- B
- true
@@ -38891,23 +38960,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -119
+ 4341
+ -266
328
20
-
- 4450
- -109
+ 4505
+ -256
-
+
- Second item for multiplication
- c7412269-447b-448a-a1b5-d41f4cb82772
+ - true
- B
- B
- true
@@ -38918,23 +38988,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -99
+ 4341
+ -246
328
20
-
- 4450
- -89
+ 4505
+ -236
-
+
- Second item for multiplication
- 50d63093-92d0-4e6f-8e52-901f407c4665
+ - true
- B
- B
- true
@@ -38945,23 +39016,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -79
+ 4341
+ -226
328
20
-
- 4450
- -69
+ 4505
+ -216
-
+
- CURWE CURWATURE FIRST DIFERENCE COMB LINES SCALE
- 511d22c2-3da9-4d38-b6e2-0e7bcafb3013
+ - true
- CURWE CURWATURE FIRST DIFERENCE COMB LINES SCALE
- CURWE CURWATURE FIRST DIFERENCE COMB LINES SCALE
- true
@@ -38972,23 +39044,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -59
+ 4341
+ -206
328
20
-
- 4450
- -49
+ 4505
+ -196
-
+
- CURWE CURWATURE COMB LINES SCALE
- 6544b69d-05ce-41ef-b469-0ee1432c1b0a
+ - true
- CURWE CURWATURE COMB LINES SCALE
- CURWE CURWATURE COMB LINES SCALE
- true
@@ -38999,24 +39072,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -39
+ 4341
+ -186
328
20
-
- 4450
- -29
+ 4505
+ -176
-
+
- MAGNET SURFACE INPUT
- true
- effd0c88-5134-43d0-a072-9e5a8fa6e5fa
+ - true
- MAGNET SURFACE INPUT
- MAGNET SURFACE INPUT
- true
@@ -39026,23 +39100,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- -19
+ 4341
+ -166
328
20
-
- 4450
- -9
+ 4505
+ -156
-
+
- CURWE CURWATURE COMBS TORSION ROTATION ANGLE INPUT
- 251546e5-c722-4efd-9ba8-f20c35cde9f0
+ - true
- CURWE CURWATURE COMBS TORSION ROTATION ANGLE INPUT
- CURWE CURWATURE COMBS TORSION ROTATION ANGLE INPUT
- true
@@ -39052,14 +39127,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- 1
+ 4341
+ -146
328
20
-
- 4450
- 11
+ 4505
+ -136
@@ -39086,9 +39161,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- CURWE POINT NUMBER INPUT
- 0c1c2042-7b1c-4071-b5e8-d6d1b706be6a
+ - true
- CURWE POINT NUMBER INPUT
- CURWE POINT NUMBER INPUT
- true
@@ -39099,52 +39175,54 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4286
- 21
+ 4341
+ -126
328
20
-
- 4450
- 31
+ 4505
+ -116
-
+
- CURWE INPUT
- true
- 77d4b220-fe6b-4d6d-8ccb-dcdd14627cac
+ - true
- CURWE INPUT
- CURWE INPUT
- true
- - 7cfd70f2-4f2c-4782-b50f-973a840c0925
+ - 2dc09fb8-47e4-40f3-968a-cf8ffcc6485f
- 1
-
- 4286
- 41
+ 4341
+ -106
328
20
-
- 4450
- 51
+ 4505
+ -96
-
+
- 2
- A wire relay object
- bc785377-76b0-4fa0-970e-ea6d7d6355fe
+ - true
- Relay
- Relay
- false
@@ -39154,24 +39232,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -359
+ 4693
+ -506
322
20
-
- 4799
- -349
+ 4854
+ -496
-
+
- 2
- A wire relay object
- 4bf21b88-6a1a-4a50-9727-a97a6321ddc5
+ - true
- Relay
- Relay
- false
@@ -39181,24 +39260,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -339
+ 4693
+ -486
322
20
-
- 4799
- -329
+ 4854
+ -476
-
+
- 2
- A wire relay object
- c625aab6-2911-4a41-a854-5d84b29c2c42
+ - true
- Relay
- Relay
- false
@@ -39208,24 +39288,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -319
+ 4693
+ -466
322
20
-
- 4799
- -309
+ 4854
+ -456
-
+
- 2
- A wire relay object
- 3e309f4a-457a-4c10-9b92-3941a96f8167
+ - true
- Relay
- Relay
- false
@@ -39235,24 +39316,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -299
+ 4693
+ -446
322
20
-
- 4799
- -289
+ 4854
+ -436
-
+
- 2
- A wire relay object
- ee4e7f14-5f6b-48bb-ae3f-43fd40db77af
+ - true
- Relay
- Relay
- false
@@ -39262,24 +39344,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -279
+ 4693
+ -426
322
20
-
- 4799
- -269
+ 4854
+ -416
-
+
- 2
- A wire relay object
- 0a908cdf-cc80-4936-af68-09b0245d6e61
+ - true
- Relay
- Relay
- false
@@ -39289,24 +39372,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -259
+ 4693
+ -406
322
20
-
- 4799
- -249
+ 4854
+ -396
-
+
- 2
- A wire relay object
- fbcaa33f-a39f-4a67-b316-7b398c9a2fda
+ - true
- Relay
- Relay
- false
@@ -39316,24 +39400,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -239
+ 4693
+ -386
322
20
-
- 4799
- -229
+ 4854
+ -376
-
+
- 2
- A wire relay object
- afced422-83f3-4ac6-960b-4522b5ed7908
+ - true
- Relay
- Relay
- false
@@ -39343,24 +39428,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -219
+ 4693
+ -366
322
20
-
- 4799
- -209
+ 4854
+ -356
-
+
- 2
- A wire relay object
- 0a8a2537-f5ab-4fb5-98fe-a5fb97a1558c
+ - true
- Relay
- Relay
- false
@@ -39370,24 +39456,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -199
+ 4693
+ -346
322
20
-
- 4799
- -189
+ 4854
+ -336
-
+
- 2
- A wire relay object
- 8ba01db9-8d83-4f38-8c53-bd0d88ae6ded
+ - true
- Relay
- Relay
- false
@@ -39397,24 +39484,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -179
+ 4693
+ -326
322
20
-
- 4799
- -169
+ 4854
+ -316
-
+
- 2
- A wire relay object
- edb26a72-bfaa-4bc0-b767-89f065217a52
+ - true
- Relay
- Relay
- false
@@ -39424,24 +39512,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -159
+ 4693
+ -306
322
20
-
- 4799
- -149
+ 4854
+ -296
-
+
- 2
- A wire relay object
- 90c40e0d-c846-4a2a-bba4-dec174483b9d
+ - true
- Relay
- Relay
- false
@@ -39451,24 +39540,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -139
+ 4693
+ -286
322
20
-
- 4799
- -129
+ 4854
+ -276
-
+
- 2
- A wire relay object
- df9104b5-69dd-4ace-ab9f-e9dde38a82b8
+ - true
- Relay
- Relay
- false
@@ -39478,24 +39568,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -119
+ 4693
+ -266
322
20
-
- 4799
- -109
+ 4854
+ -256
-
+
- 2
- CURWE CURWATURE THIRD DIFERENCE COMBS
- 10b40115-ca80-43a4-b7ff-3e3cc287db4a
+ - true
- CURWE CURWATURE THIRD DIFERENCE COMBS
- CURWE CURWATURE THIRD DIFERENCE COMBS
- false
@@ -39505,24 +39596,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -99
+ 4693
+ -246
322
20
-
- 4799
- -89
+ 4854
+ -236
-
+
- 2
- CURWE CURWATURE SECOND DIFERENCE COMBS
- 4ae35450-a07a-4cad-ae49-a42ca58cf5d0
+ - true
- CURWE CURWATURE SECOND DIFERENCE COMBS
- CURWE CURWATURE SECOND DIFERENCE COMBS
- false
@@ -39532,24 +39624,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -79
+ 4693
+ -226
322
20
-
- 4799
- -69
+ 4854
+ -216
-
+
- 2
- CURWE CURWATURE FIRST DIFERENCE COMB SCALED LINES
- f603fd6f-4b23-4615-b5bd-18f72ef9afa8
+ - true
- CURWE CURWATURE FIRST DIFERENCE COMB SCALED LINES
- CURWE CURWATURE FIRST DIFERENCE COMB SCALED LINES
- false
@@ -39559,24 +39652,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -59
+ 4693
+ -206
322
20
-
- 4799
- -49
+ 4854
+ -196
-
+
- 2
- CURWE CURWATURE COMB SCALED LINES
- 58b459c4-94f2-4ec3-8c36-5616b5483813
+ - true
- CURWE CURWATURE COMB SCALED LINES
- CURWE CURWATURE COMB SCALED LINES
- false
@@ -39586,24 +39680,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -39
+ 4693
+ -186
322
20
-
- 4799
- -29
+ 4854
+ -176
-
+
- MAGNET SURFACE OUTPUT
- true
- 3da08a32-dc28-4b76-9d5a-21b6e48e34a6
+ - true
- MAGNET SURFACE OUTPUT
- MAGNET SURFACE OUTPUT
- false
@@ -39613,23 +39708,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- -19
+ 4693
+ -166
322
20
-
- 4799
- -9
+ 4854
+ -156
-
+
- CURWE CURWATURE COMBS TORSION ROTATION ANGLE OUTPUT
- c5b490fe-1199-4438-90de-077997bfaba9
+ - true
- CURWE CURWATURE COMBS TORSION ROTATION ANGLE OUTPUT
- CURWE CURWATURE COMBS TORSION ROTATION ANGLE OUTPUT
- false
@@ -39639,23 +39735,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- 1
+ 4693
+ -146
322
20
-
- 4799
- 11
+ 4854
+ -136
-
+
- CURWE POINT NUMBER OUTPUT
- bb23cf5b-49d5-4882-ae82-8baf02c85df5
+ - true
- CURWE POINT NUMBER OUTPUT
- CURWE POINT NUMBER OUTPUT
- false
@@ -39665,14 +39762,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- 21
+ 4693
+ -126
322
20
-
- 4799
- 31
+ 4854
+ -116
@@ -39699,10 +39796,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- CURWE OUTPUT
- true
- b6c26ff9-7209-4d5c-94ca-c26997d4c84d
+ - true
- CURWE OUTPUT
- CURWE OUTPUT
- false
@@ -39712,14 +39810,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4638
- 41
+ 4693
+ -106
322
20
-
- 4799
- 51
+ 4854
+ -96
@@ -39731,7 +39829,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -39767,17 +39865,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
-
+
- Create a polar array of geometry.
- true
- dd9e0176-4b21-45cc-90b7-f31fadcde515
+ - true
- Polar Array
- Polar Array
@@ -39786,20 +39885,21 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5029
- 1081
+ 998
207
84
-
5156
- 1123
+ 1040
-
+
- Base geometry
- fcd5c8ad-c3be-4e0f-aa7b-6a718f026e43
+ - true
- Geometry
- Geometry
- true
@@ -39811,22 +39911,23 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5031
- 1083
+ 1000
113
20
-
5087.5
- 1093
+ 1010
-
+
- Polar array plane
- 1b718b59-fd18-44eb-b17c-1fd6a1a0c6a7
+ - true
- Plane
- Plane
- false
@@ -39838,13 +39939,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5031
- 1103
+ 1020
113
20
-
5087.5
- 1113
+ 1030
@@ -39881,9 +39982,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of elements in array.
- 17c2c2bb-1438-410d-9450-05653a3d6610
+ - true
- Count
- Count
- false
@@ -39894,13 +39996,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5031
- 1123
+ 1040
113
20
-
5087.5
- 1133
+ 1050
@@ -39927,9 +40029,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Sweep angle in radians (counter-clockwise, starting from plane x-axis)
- cd9bc5d0-c344-4716-a064-eecf171207ef
+ - true
- Angle
- Angle
- false
@@ -39941,13 +40044,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5031
- 1143
+ 1060
113
20
-
5087.5
- 1153
+ 1070
@@ -39974,10 +40077,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Arrayed geometry
- 8417b745-f41f-4d9e-8bbb-9e5377f43932
+ - true
- 1
- Geometry
- Geometry
@@ -39989,23 +40093,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5168
- 1083
+ 1000
66
40
-
5193
- 1103
+ 1020
-
+
- 1
- Transformation data
- 9beef5c1-f0e3-4213-8b40-a8de215f7c5b
+ - true
- Transform
- Transform
- false
@@ -40016,13 +40121,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
5168
- 1123
+ 1040
66
40
-
5193
- 1143
+ 1060
@@ -40032,17 +40137,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75164624-395a-4d24-b60b-6bf91cab0194
- Sweep2
-
+
- Create a sweep surface with two rail curves.
- true
- 1df9d5e6-0ba1-4a1d-98c6-385bff3e9a5d
+ - true
- Sweep2
- Sweep2
@@ -40050,48 +40156,50 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5023
- 1228
+ 4998
+ 1258
125
84
-
- 5109
- 1270
+ 5084
+ 1300
-
+
- First rail curve
- b18cea78-d396-434a-b057-a5994b6649ae
+ - true
- Rail 1
- Rail 1
- false
- - 5ef63ff9-6730-42b3-b53c-8762ec52dae5
+ - 788c609b-314a-42fc-9ea6-dd50e84c46d0
- 1
-
- 5025
- 1230
+ 5000
+ 1260
72
20
-
- 5061
- 1240
+ 5036
+ 1270
-
+
- Second rail curve
- 33b8c586-75e6-4631-828e-efad1f382d6b
+ - true
- Rail 2
- Rail 2
- false
@@ -40102,24 +40210,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5025
- 1250
+ 5000
+ 1280
72
20
-
- 5061
- 1260
+ 5036
+ 1290
-
+
- 1
- Section curves
- 983cc157-3d94-43a5-9ddf-15500de2ac90
+ - true
- Sections
- Sections
- false
@@ -40130,23 +40239,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5025
- 1270
+ 5000
+ 1300
72
20
-
- 5061
- 1280
+ 5036
+ 1310
-
+
- Create a sweep with same-height properties.
- 4f12b42c-ec4a-489b-887b-9f59ee1a5034
+ - true
- Same Height
- Same Height
- false
@@ -40156,14 +40266,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5025
- 1290
+ 5000
+ 1320
72
20
-
- 5061
- 1300
+ 5036
+ 1330
@@ -40190,10 +40300,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Resulting Brep
- 3ae18dd7-3009-43a7-983b-2c350bfef07c
+ - true
- Brep
- Brep
- false
@@ -40203,14 +40314,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5121
- 1230
+ 5096
+ 1260
25
80
-
- 5133.5
- 1270
+ 5108.5
+ 1300
@@ -40220,7 +40331,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
@@ -40239,14 +40350,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4536
- 893
+ 4648
+ 1145
77
64
-
- 4593
- 925
+ 4705
+ 1177
@@ -40275,14 +40386,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4538
- 895
+ 4650
+ 1147
43
20
-
- 4559.5
- 905
+ 4671.5
+ 1157
@@ -40301,14 +40412,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4538
- 915
+ 4650
+ 1167
43
20
-
- 4559.5
- 925
+ 4671.5
+ 1177
@@ -40325,7 +40436,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 8
+ - 6
@@ -40347,14 +40458,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4538
- 935
+ 4650
+ 1187
43
20
-
- 4559.5
- 945
+ 4671.5
+ 1197
@@ -40394,14 +40505,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 4605
- 895
+ 4717
+ 1147
6
60
-
- 4608
- 925
+ 4720
+ 1177
@@ -40413,17 +40524,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
-
+
- Mirror an object.
- true
- 4b52ff38-2edb-42fc-ad3c-aad65645bfbf
+ - true
- Mirror
- Mirror
@@ -40431,21 +40543,22 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5230
- 1214
+ 5249
+ 1226
305
61
-
- 5471
- 1245
+ 5490
+ 1257
-
+
- Base geometry
- 505f36ba-5d42-4711-bb2f-12412b8d9067
+ - true
- Geometry
- Geometry
- true
@@ -40456,23 +40569,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5232
- 1216
+ 5251
+ 1228
227
20
-
- 5345.5
- 1226
+ 5364.5
+ 1238
-
+
- Mirror plane
- f2f9db89-552e-445e-8378-f2fc9f019f55
+ - true
- Plane
- Plane
- false
@@ -40482,14 +40596,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5232
- 1236
+ 5251
+ 1248
227
37
-
- 5345.5
- 1254.5
+ 5364.5
+ 1266.5
@@ -40526,9 +40640,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Mirrored geometry
- 9e81018f-eb0e-422b-8b03-5fa6f29962ba
+ - true
- Geometry
- Geometry
- false
@@ -40538,23 +40653,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5483
- 1216
+ 5502
+ 1228
50
28
-
- 5508
- 1230.25
+ 5527
+ 1242.25
-
+
- Transformation data
- 9cd75d03-875f-4f14-a38a-33fee0ebdc03
+ - true
- Transform
- Transform
- false
@@ -40564,14 +40680,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5483
- 1244
+ 5502
+ 1256
50
29
-
- 5508
- 1258.75
+ 5527
+ 1270.75
@@ -40581,17 +40697,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
-
+
- Create a polar array of geometry.
- true
- 2aa02528-07ad-4eb2-a14e-23480eb36571
+ - true
- Polar Array
- Polar Array
@@ -40599,21 +40716,22 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5309
- 1413
+ 5340
+ 1339
207
84
-
- 5436
- 1455
+ 5467
+ 1381
-
+
- Base geometry
- c7101f1b-5f11-4b5a-8ce4-aca0d3add6ab
+ - true
- Geometry
- Geometry
- true
@@ -40624,23 +40742,24 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5311
- 1415
+ 5342
+ 1341
113
20
-
- 5367.5
- 1425
+ 5398.5
+ 1351
-
+
- Polar array plane
- a8471fed-2546-4fb0-93a9-d9cebc0b92ea
+ - true
- Plane
- Plane
- false
@@ -40651,14 +40770,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5311
- 1435
+ 5342
+ 1361
113
20
-
- 5367.5
- 1445
+ 5398.5
+ 1371
@@ -40695,9 +40814,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of elements in array.
- 0e17a2e0-16f2-4382-82e4-704ea4d7c239
+ - true
- Count
- Count
- false
@@ -40707,14 +40827,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5311
- 1455
+ 5342
+ 1381
113
20
-
- 5367.5
- 1465
+ 5398.5
+ 1391
@@ -40741,9 +40861,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Sweep angle in radians (counter-clockwise, starting from plane x-axis)
- 5bc28fd2-567f-42d5-976a-afe024f38684
+ - true
- Angle
- Angle
- false
@@ -40754,14 +40875,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5311
- 1475
+ 5342
+ 1401
113
20
-
- 5367.5
- 1485
+ 5398.5
+ 1411
@@ -40788,10 +40909,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Arrayed geometry
- b3e9652a-0589-4dbf-b8e1-243721b1bfc1
+ - true
- 1
- Geometry
- Geometry
@@ -40802,24 +40924,25 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5448
- 1415
+ 5479
+ 1341
66
40
-
- 5473
- 1435
+ 5504
+ 1361
-
+
- 1
- Transformation data
- bbc36e0c-38f8-4c59-8ccd-b9ec863cf0e6
+ - true
- Transform
- Transform
- false
@@ -40829,14 +40952,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5448
- 1455
+ 5479
+ 1381
66
40
-
- 5473
- 1475
+ 5504
+ 1401
@@ -40846,17 +40969,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
-
+
- Merge a bunch of data streams
- true
- a1881539-51c5-48a1-b579-c1eeb39cdbdd
+ - true
- Merge
- Merge
@@ -40886,10 +41010,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 1
- 38b8585d-bfe9-4a59-be1f-6f310459249a
+ - true
- false
- Data 1
- D1
@@ -40915,10 +41040,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 2
- 6b0e7e6c-52be-48fb-934b-f4c80cd0c3fe
+ - true
- false
- Data 2
- D2
@@ -40944,10 +41070,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 3
- 264bee91-6031-4c1f-aae1-ef024f5be16e
+ - true
- false
- Data 3
- D3
@@ -40972,10 +41099,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Result of merge
- 060648e6-d9c2-477c-ba2f-71b14f63a036
+ - true
- Result
- Result
- false
@@ -41004,16 +41132,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57b2184c-8931-4e70-9220-612ec5b3809a
- Patch
-
+
- Create a patch surface
+ - true
- 896526e7-4b6f-49d0-9eba-8afd5bc1f034
+ - true
- Patch
- Patch
@@ -41021,22 +41151,23 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5071
+ 5135
855
- 171
+ 119
104
-
- 5199
+ 5211
907
-
+
- 1
- Curves to patch
- 57e2c7ab-acb9-4ad3-98b6-2608f40034d6
+ - true
- Curves
- Curves
- true
@@ -41047,13 +41178,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5073
+ 5137
857
- 114
+ 62
20
-
- 5130
+ 5168
867
@@ -41061,26 +41192,28 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Points to patch
- 63afc207-44e8-434b-a8b5-07bc63a085f4
+ - true
- Points
- Points
- true
- - 0
+ - 5cacee03-857e-4f27-8db3-fad6acaee1f8
+ - 1
-
- 5073
+ 5137
877
- 114
+ 62
20
-
- 5130
+ 5168
887
@@ -41088,9 +41221,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of spans
- 94205002-ff33-4d56-aa50-8c9de91b06d7
+ - true
- Spans
- Spans
- false
@@ -41100,13 +41234,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5073
+ 5137
897
- 114
+ 62
20
-
- 5130
+ 5168
907
@@ -41124,7 +41258,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 2
+ - 16
@@ -41134,9 +41268,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Patch flexibility (low number; less flexibility)
- fc501350-14e6-48eb-a9a6-29dedcd983f8
+ - true
- Flexibility
- Flexibility
- false
@@ -41146,13 +41281,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5073
+ 5137
917
- 114
+ 62
20
-
- 5130
+ 5168
927
@@ -41170,7 +41305,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- - 1.1920928955078125E-07
+ - 8
@@ -41180,9 +41315,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Attempt to trim the result
- 5159e24d-fc93-4859-a5c5-506c1538b080
+ - true
- Trim
- Trim
- false
@@ -41192,13 +41328,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5073
+ 5137
937
- 114
+ 62
20
-
- 5130
+ 5168
947
@@ -41226,9 +41362,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Patch result
- d636886e-6a7c-4eda-b4a4-ca364081a1e2
+ - true
- Patch
- Patch
- false
@@ -41238,13 +41375,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5211
+ 5223
857
29
100
-
- 5225.5
+ 5237.5
907
@@ -41255,7 +41392,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- Curvature analysis
@@ -41269,7 +41406,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- true
-
- iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAABSBJREFUSEvtlHtMk2cUxs9QvHARFB0IXhYdRowyoSpIQBlDTa0avGBUYHhDCcqcQJyCW53LjMKGFqtYoCgoIGVjyEVAkIqABUqBclGplYpyFXV4YV64PPtWvrgsIlmW7b/9/mryPOd53++8p4f+51/H399/pB9faLblQOSsz/mh1l5f8Kf4+fkZsPI/JyTGb+o+gSBgT3j8td3h8S27fjz5LCAsoPvA90s7vzpopQwKMg7du1P3E8aqM1DxN4mPN9U/Hrf9y5Do85oQ8dX+by4U4FiSGDE/bUJa6hhkiAkXDxKEmwlf8+jRLmcK2cEhPbZ8aPKTx1mIU7ZJjl5M6zmSVoMfMkshzo3EleuOqLxGqIwhFPgRotYR/HmE1YsJPA71LLemYxwO6bIxg1P4C01OTHcrEGRl43heAyKlCqTIBFAorXC/nNB4mnB9B+HQJoK9vRnGTjDBiFF6GKVngEmTDLptP9ZbwUa9S040jbucuzA7Kj8dJwubEHPjJjKqInFbPQNddYRHQkLpdsJeD+riOFmfsrTUf/LRtOEwN9eBiYkujIx0md/GOTtokK8QiUhXmjfpRLw0tu90cTvEZW1Iq0lHQ5MTXmoIr0WEm1sJgR70cIGL4zoOh6PL5U489dkSIzg7D4ednSFsbEZj5syRT6yszKaysX9SlEsrU6R7ukUlLYiWd0NSU4Pqe9vxuoOANEKHD+GoF3Utcl20ni0hHx9rO+9tk194e4/G+g3GcFszDtxlH/Ta2pq6sJYBbifQeKl0ruKsrAoieR/OKx+j8K4Yzx8bAgpCbwAhyYvecFfaBjL2t+PoLpxlEBQ8s3rffjMEBo6F7+4p8PUdBR5vjAdrGUCRQ/6pxaF9Z8pfIaYaSFdVoqmTC7Qxtz/BTA0zih7uFkn29vaj2ZK3hAlmx4WGT0NYmCH4300H/9ux8PEx2MnKA7cvKrKpjy1XIaoSuFD3DOXNEeh/wYTnEZ4zrTnsQRo7V1dLtuQvxMbPPyg6OwfnYo0hiLSCUDgewcE6zDuz1F2ijZdL9/eK5D0QK4GsOwp0/OoEPGAO4BOyvKlnhZu1L2t/h+SMxT6JqY5ITTVHbKI9EhJMEXbExEsrgpkchVQ/M0Eu1d4+ob4bFa0ngO6Bh+1iWhPkqSOb5upqpC0YhLxCB4/MKwv6C/Mm4Oesxcy/3Lw/IsKCqxVrk2h6cYlzp1jeBnEV03t1Hdq7XIBm5oBgQvoGesNbzXHXmt9DafmnW4vkdlDKDFFQbI/igjGvLhw3mqsV61PJM1u2ty+q4hXial+i5IEY+KP3mYQ3noTgjVTq4OBgqDW/B3kdN0BRvxC3aidCVuUExXXddqFwgplWrMqh6OSyFEQrepByqwnqh5uBTuaAQ4SitdTnvsrSR2scgpoGt/BbdxdCpZqB6tuOqJXr3+DzZ40giYSGleePl8WVlSGm8jdk37mKp0+nAsy+AdN7wQa67+LiYsHmDIpEIhlWr3HPuN88G2r1AtzRzEeNzCBcK1aISE8qndciljXgXOUjlGgEQBcTzmzKdmZL+q41jmFsQ+54jcbbWHVvTcOTVnMmfBnua6b0yLNH8LRiHbPYcq+ufhZ1oxGJ1SrUNW8FWgYe98oa6uHxbFZpjUOgVq+dp+7gvnjeYorG1qXoVOs3XorWN9WKUgmZXZJ6VpwpVimTa6XKe63zlL2VpOzdQsoId8q3XmL9odY4BCqVu6eqdbmyUzNH2dLhpGyrGnaYlf5riH4HemHIJv0HHOUAAAAASUVORK5CYII=
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvQAADr0BR/uQrQAABSBJREFUSEvtlHtMk2cUxs9QvHARFB0IXhYdRowyoSpIQBlDTa0avGBUYHhDCcqcQJyCW53LjMKGFqtYoCgoIGVjyEVAkIqABUqBclGplYpyFXV4YV64PPtWvrgsIlmW7b/9/mryPOd53++8p4f+51/H399/pB9faLblQOSsz/mh1l5f8Kf4+fkZsPI/JyTGb+o+gSBgT3j8td3h8S27fjz5LCAsoPvA90s7vzpopQwKMg7du1P3E8aqM1DxN4mPN9U/Hrf9y5Do85oQ8dX+by4U4FiSGDE/bUJa6hhkiAkXDxKEmwlf8+jRLmcK2cEhPbZ8aPKTx1mIU7ZJjl5M6zmSVoMfMkshzo3EleuOqLxGqIwhFPgRotYR/HmE1YsJPA71LLemYxwO6bIxg1P4C01OTHcrEGRl43heAyKlCqTIBFAorXC/nNB4mnB9B+HQJoK9vRnGTjDBiFF6GKVngEmTDLptP9ZbwUa9S040jbucuzA7Kj8dJwubEHPjJjKqInFbPQNddYRHQkLpdsJeD+riOFmfsrTUf/LRtOEwN9eBiYkujIx0md/GOTtokK8QiUhXmjfpRLw0tu90cTvEZW1Iq0lHQ5MTXmoIr0WEm1sJgR70cIGL4zoOh6PL5U489dkSIzg7D4ednSFsbEZj5syRT6yszKaysX9SlEsrU6R7ukUlLYiWd0NSU4Pqe9vxuoOANEKHD+GoF3Utcl20ni0hHx9rO+9tk194e4/G+g3GcFszDtxlH/Ta2pq6sJYBbifQeKl0ruKsrAoieR/OKx+j8K4Yzx8bAgpCbwAhyYvecFfaBjL2t+PoLpxlEBQ8s3rffjMEBo6F7+4p8PUdBR5vjAdrGUCRQ/6pxaF9Z8pfIaYaSFdVoqmTC7Qxtz/BTA0zih7uFkn29vaj2ZK3hAlmx4WGT0NYmCH4300H/9ux8PEx2MnKA7cvKrKpjy1XIaoSuFD3DOXNEeh/wYTnEZ4zrTnsQRo7V1dLtuQvxMbPPyg6OwfnYo0hiLSCUDgewcE6zDuz1F2ijZdL9/eK5D0QK4GsOwp0/OoEPGAO4BOyvKlnhZu1L2t/h+SMxT6JqY5ITTVHbKI9EhJMEXbExEsrgpkchVQ/M0Eu1d4+ob4bFa0ngO6Bh+1iWhPkqSOb5upqpC0YhLxCB4/MKwv6C/Mm4Oesxcy/3Lw/IsKCqxVrk2h6cYlzp1jeBnEV03t1Hdq7XIBm5oBgQvoGesNbzXHXmt9DafmnW4vkdlDKDFFQbI/igjGvLhw3mqsV61PJM1u2ty+q4hXial+i5IEY+KP3mYQ3noTgjVTq4OBgqDW/B3kdN0BRvxC3aidCVuUExXXddqFwgplWrMqh6OSyFEQrepByqwnqh5uBTuaAQ4SitdTnvsrSR2scgpoGt/BbdxdCpZqB6tuOqJXr3+DzZ40giYSGleePl8WVlSGm8jdk37mKp0+nAsy+AdN7wQa67+LiYsHmDIpEIhlWr3HPuN88G2r1AtzRzEeNzCBcK1aISE8qndciljXgXOUjlGgEQBcTzmzKdmZL+q41jmFsQ+54jcbbWHVvTcOTVnMmfBnua6b0yLNH8LRiHbPYcq+ufhZ1oxGJ1SrUNW8FWgYe98oa6uHxbFZpjUOgVq+dp+7gvnjeYorG1qXoVOs3XorWN9WKUgmZXZJ6VpwpVimTa6XKe63zlL2VpOzdQsoId8q3XmL9odY4BCqVu6eqdbmyUzNH2dLhpGyrGnaYlf5riH4HemHIJv0HHOUAAAAASUVORK5CYII=
- 96f58509-13bf-447a-b124-a197a8abf5a2
-
@@ -41307,14 +41444,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5102
- 991
+ 5265
+ 1002
167
64
-
- 5207
- 1023
+ 5370
+ 1034
@@ -41345,14 +41482,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5104
- 993
+ 5267
+ 1004
91
20
-
- 5149.5
- 1003
+ 5312.5
+ 1014
@@ -41373,14 +41510,14 @@ Note * Only subdivided surfaces, breps, and curves
-
- 5104
- 1013
+ 5267
+ 1024
91
20
-
- 5149.5
- 1023
+ 5312.5
+ 1034
@@ -41421,14 +41558,14 @@ Note * For surfaces and breps
-
- 5104
- 1033
+ 5267
+ 1044
91
20
-
- 5149.5
- 1043
+ 5312.5
+ 1054
@@ -41468,14 +41605,14 @@ Note * For surfaces and breps
-
- 5219
- 993
+ 5382
+ 1004
48
30
-
- 5243
- 1008
+ 5406
+ 1019
@@ -41495,14 +41632,14 @@ Note * For surfaces and breps
-
- 5219
- 1023
+ 5382
+ 1034
48
30
-
- 5243
- 1038
+ 5406
+ 1049
@@ -41514,7 +41651,7 @@ Note * For surfaces and breps
-
+
- 66d2a68e-2f1d-43d2-a53b-c6a4d17e627b
- Control Polygon
@@ -41532,14 +41669,14 @@ Note * For surfaces and breps
-
- 5010
- 747
+ 4985
+ 793
98
44
-
- 5054
- 769
+ 5029
+ 815
@@ -41557,14 +41694,14 @@ Note * For surfaces and breps
-
- 5012
- 749
+ 4987
+ 795
30
40
-
- 5027
- 769
+ 5002
+ 815
@@ -41583,14 +41720,14 @@ Note * For surfaces and breps
-
- 5066
- 749
+ 5041
+ 795
40
20
-
- 5086
- 759
+ 5061
+ 805
@@ -41610,14 +41747,24767 @@ Note * For surfaces and breps
-
- 5066
- 769
+ 5041
+ 815
40
20
-
- 5086
- 779
+ 5061
+ 825
+
+
+
+
+
+
+
+
+
+
+
+ - ac750e41-2450-4f98-9658-98fef97b01b2
+ - Brep Wireframe
+
+
+
+
+ - Extract the wireframe curves of a brep.
+ - true
+ - 91e4cd65-024d-4e22-9ef9-5f3a855232f8
+ - Brep Wireframe
+ - Brep Wireframe
+
+
+
+
+ -
+ 5305
+ 865
+ 130
+ 44
+
+ -
+ 5371
+ 887
+
+
+
+
+
+ - Base Brep
+ - ad53a1a1-a451-4132-8734-2e9a536da464
+ - Brep
+ - Brep
+ - false
+ - b2e8ac92-d227-488f-9a7d-6fc35ad071e2
+ - 1
+
+
+
+
+ -
+ 5307
+ 867
+ 52
+ 20
+
+ -
+ 5333
+ 877
+
+
+
+
+
+
+
+ - Wireframe isocurve density
+ - 9b445a6e-079e-415d-a65d-f02b14d09129
+ - Density
+ - Density
+ - false
+ - 0
+
+
+
+
+ -
+ 5307
+ 887
+ 52
+ 20
+
+ -
+ 5333
+ 897
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Wireframe curves
+ - 090d9c21-ebe4-48d9-8f7e-e9cf4bf8263d
+ - Wireframe
+ - Wireframe
+ - false
+ - 0
+
+
+
+
+ -
+ 5383
+ 867
+ 50
+ 40
+
+ -
+ 5408
+ 887
+
+
+
+
+
+
+
+
+
+
+
+ - 3581f42a-9592-4549-bd6b-1c0fc39d067b
+ - Construct Point
+
+
+
+
+ - Construct a point from {xyz} coordinates.
+ - true
+ - 8607557e-920d-44ea-897a-c3388ebae07b
+ - Construct Point
+ - Construct Point
+
+
+
+
+ -
+ 5195
+ 754
+ 117
+ 64
+
+ -
+ 5271
+ 786
+
+
+
+
+
+ - {x} coordinate
+ - e78eda7c-7d41-4a4d-b7d2-ded2a41190c7
+ - X coordinate
+ - X coordinate
+ - false
+ - 6abad9f4-df4e-4bc9-a13a-fc424fe4c40a
+ - 1
+
+
+
+
+ -
+ 5197
+ 756
+ 62
+ 20
+
+ -
+ 5228
+ 766
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {y} coordinate
+ - eb8c4c5f-7ac3-414b-885e-737d0370f2e1
+ - Y coordinate
+ - Y coordinate
+ - false
+ - 6abad9f4-df4e-4bc9-a13a-fc424fe4c40a
+ - 1
+
+
+
+
+ -
+ 5197
+ 776
+ 62
+ 20
+
+ -
+ 5228
+ 786
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {z} coordinate
+ - 17551570-925d-489c-8f4a-c7e1fe2c3dbb
+ - Z coordinate
+ - Z coordinate
+ - false
+ - 6abad9f4-df4e-4bc9-a13a-fc424fe4c40a
+ - 1
+
+
+
+
+ -
+ 5197
+ 796
+ 62
+ 20
+
+ -
+ 5228
+ 806
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Point coordinate
+ - 51179561-239d-4312-82e0-f4e7f66516de
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5283
+ 756
+ 27
+ 60
+
+ -
+ 5296.5
+ 786
+
+
+
+
+
+
+
+
+
+
+
+ - 9445ca40-cc73-4861-a455-146308676855
+ - Range
+
+
+
+
+ - Create a range of numbers.
+ - true
+ - c9a8dc4b-abf3-4367-b392-ec2e73e5858f
+ - Range
+ - Range
+
+
+
+
+ -
+ 5202
+ 688
+ 144
+ 44
+
+ -
+ 5300
+ 710
+
+
+
+
+
+ - Domain of numeric range
+ - b84b7aad-7c57-4840-9ae9-d3962839170d
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5204
+ 690
+ 84
+ 20
+
+ -
+ 5246
+ 700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Number of steps
+ - aaafd565-907f-48bc-9256-389f9fbad5aa
+ - Steps
+ - Steps
+ - false
+ - 0
+
+
+
+
+ -
+ 5204
+ 710
+ 84
+ 20
+
+ -
+ 5246
+ 720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Range of numbers
+ - 6abad9f4-df4e-4bc9-a13a-fc424fe4c40a
+ - Range
+ - Range
+ - false
+ - 0
+
+
+
+
+ -
+ 5312
+ 690
+ 32
+ 40
+
+ -
+ 5328
+ 710
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 450ec7d6-6e26-4b9a-970b-d0cbf1772eec
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4323
+ 836
+ 77
+ 64
+
+ -
+ 4380
+ 868
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - c4d83e97-6acf-4921-9e15-25465eddb845
+ - List
+ - List
+ - false
+ - c7759ede-6017-4b39-8cfd-985e47669aa1
+ - 1
+
+
+
+
+ -
+ 4325
+ 838
+ 43
+ 20
+
+ -
+ 4346.5
+ 848
+
+
+
+
+
+
+
+ - Item index
+ - 3c027a27-2646-4367-9902-c20adeb5f6af
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 858
+ 43
+ 20
+
+ -
+ 4346.5
+ 868
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 58f4d409-cc2a-44ed-849a-d0442067a074
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 878
+ 43
+ 20
+
+ -
+ 4346.5
+ 888
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 04070efd-05f8-4658-8331-40f0368aa8fa
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4392
+ 838
+ 6
+ 60
+
+ -
+ 4395
+ 868
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 15462838-16ed-45b2-ae57-bf3140d2a0c4
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4467
+ 748
+ 149
+ 64
+
+ -
+ 4552
+ 780
+
+
+
+
+
+ - Curve to evaluate
+ - 765a521b-aa26-4ea8-bd44-2d1ac48c4a29
+ - Curve
+ - Curve
+ - false
+ - 04070efd-05f8-4658-8331-40f0368aa8fa
+ - 1
+
+
+
+
+ -
+ 4469
+ 750
+ 71
+ 20
+
+ -
+ 4504.5
+ 760
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 89441ced-3308-4968-9a08-ca77e5fff5ca
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4469
+ 770
+ 71
+ 20
+
+ -
+ 4504.5
+ 780
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 554ae01c-34f4-406a-9d3f-a64da5656529
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4469
+ 790
+ 71
+ 20
+
+ -
+ 4504.5
+ 800
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f37cb892-e085-4d02-b622-0cf629b13abf
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4564
+ 750
+ 50
+ 20
+
+ -
+ 4589
+ 760
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ccaef106-f7ec-4a61-955b-726eba10cb0f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4564
+ 770
+ 50
+ 20
+
+ -
+ 4589
+ 780
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 4158be2d-5059-4c52-9111-20bb07143d0e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4564
+ 790
+ 50
+ 20
+
+ -
+ 4589
+ 800
+
+
+
+
+
+
+
+
+
+
+
+ - 269eaa85-9997-4d77-a9ba-4c58cb45c9d3
+ - Discontinuity
+
+
+
+
+ - Find all discontinuities along a curve.
+ - true
+ - 787bc2e4-45a8-4f65-ba4a-1370065d5bd7
+ - Discontinuity
+ - Discontinuity
+
+
+
+
+ -
+ 4591
+ 824
+ 196
+ 44
+
+ -
+ 4718
+ 846
+
+
+
+
+
+ - Curve to analyze
+ - c620e97d-b1df-43da-84e2-a8167399f250
+ - Curve
+ - Curve
+ - false
+ - b1b2d77d-acac-4f93-9d49-1df12c7f025d
+ - 1
+
+
+
+
+ -
+ 4593
+ 826
+ 113
+ 20
+
+ -
+ 4649.5
+ 836
+
+
+
+
+
+
+
+ - Level of discontinuity to test for (1=C1, 2=C2, 3=Cinfinite)
+ - 0ba9154e-97dd-41b5-8079-8af2e09ec5d7
+ - Level
+ - Level
+ - false
+ - 0
+
+
+
+
+ -
+ 4593
+ 846
+ 113
+ 20
+
+ -
+ 4649.5
+ 856
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Points at discontinuities
+ - df6e61e1-1184-4a91-97bf-62962510ac96
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4730
+ 826
+ 55
+ 20
+
+ -
+ 4757.5
+ 836
+
+
+
+
+
+
+
+ - 1
+ - Curve parameters at discontinuities
+ - c974fe53-cc46-49c9-963d-cc9c7e724e14
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 4730
+ 846
+ 55
+ 20
+
+ -
+ 4757.5
+ 856
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 413dab6f-30ff-4b34-9f67-90b9f0ff1ee3
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4701
+ 747
+ 77
+ 64
+
+ -
+ 4758
+ 779
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - b430cc72-3de3-4425-bb1c-86715c095b3c
+ - List
+ - List
+ - false
+ - df6e61e1-1184-4a91-97bf-62962510ac96
+ - 1
+
+
+
+
+ -
+ 4703
+ 749
+ 43
+ 20
+
+ -
+ 4724.5
+ 759
+
+
+
+
+
+
+
+ - Item index
+ - 4a487015-cb96-43bd-9f37-765100234d74
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4703
+ 769
+ 43
+ 20
+
+ -
+ 4724.5
+ 779
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - d8cac58f-189f-498d-8607-9f7a513a1b26
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4703
+ 789
+ 43
+ 20
+
+ -
+ 4724.5
+ 799
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - c0156a88-eddd-4204-a1a9-6d6859b95655
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4770
+ 749
+ 6
+ 60
+
+ -
+ 4773
+ 779
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 2b4ed57e-fb00-43dc-8e5f-783398616385
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4694
+ 669
+ 77
+ 64
+
+ -
+ 4751
+ 701
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 5f3a2d0d-f2d2-4ee0-8ed5-2c4dbae31185
+ - List
+ - List
+ - false
+ - df6e61e1-1184-4a91-97bf-62962510ac96
+ - 1
+
+
+
+
+ -
+ 4696
+ 671
+ 43
+ 20
+
+ -
+ 4717.5
+ 681
+
+
+
+
+
+
+
+ - Item index
+ - dff5cd65-cb06-41b2-b199-a1946585a002
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4696
+ 691
+ 43
+ 20
+
+ -
+ 4717.5
+ 701
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - e7e6673d-186e-4a1a-9466-639bf1eeddd1
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4696
+ 711
+ 43
+ 20
+
+ -
+ 4717.5
+ 721
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 330006fd-b3f1-44f3-8f7d-9b4cca70cab1
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4763
+ 671
+ 6
+ 60
+
+ -
+ 4766
+ 701
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 2ac16693-cfbb-413e-95aa-4f61e4c28f43
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4818
+ 667
+ 106
+ 84
+
+ -
+ 4879
+ 709
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 4aa7a97a-2fa1-43b2-971f-37891cd5c08c
+ - 1
+ - false
+ - Data 1
+ - D1
+ - true
+ - 330006fd-b3f1-44f3-8f7d-9b4cca70cab1
+ - 1
+
+
+
+
+ -
+ 4820
+ 669
+ 47
+ 20
+
+ -
+ 4851.5
+ 679
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - cf5915bf-66c0-4066-92ac-d3d1b8b959eb
+ - 1
+ - false
+ - Data 2
+ - D2
+ - true
+ - f37cb892-e085-4d02-b622-0cf629b13abf
+ - 1
+
+
+
+
+ -
+ 4820
+ 689
+ 47
+ 20
+
+ -
+ 4851.5
+ 699
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 8e0e32cb-a4ba-4c66-b3e7-461cba5c8d0b
+ - 1
+ - false
+ - Data 3
+ - D3
+ - true
+ - c0156a88-eddd-4204-a1a9-6d6859b95655
+ - 1
+
+
+
+
+ -
+ 4820
+ 709
+ 47
+ 20
+
+ -
+ 4851.5
+ 719
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - 5703caee-1e91-455a-b652-9f6cfe30e0f8
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ 4820
+ 729
+ 47
+ 20
+
+ -
+ 4851.5
+ 739
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 7c15dd75-0fb5-4a70-8968-035294646203
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4891
+ 669
+ 31
+ 80
+
+ -
+ 4906.5
+ 709
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 4f97cf3f-ae0c-4d3c-9f34-ce92704918f5
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 4175
+ 621
+ 244
+ 84
+
+ -
+ 4367
+ 663
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - d554d29a-fd6e-4dd5-8e2b-3e23c028de73
+ - Vertices
+ - Vertices
+ - false
+ - 7c15dd75-0fb5-4a70-8968-035294646203
+ - 1
+
+
+
+
+ -
+ 4177
+ 623
+ 178
+ 20
+
+ -
+ 4266
+ 633
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - dadee473-b312-46ba-8f68-cd9361f1f948
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4177
+ 643
+ 178
+ 20
+
+ -
+ 4266
+ 653
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 30e48b0d-5118-47d5-a050-92e2ccd4925f
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 4177
+ 663
+ 178
+ 20
+
+ -
+ 4266
+ 673
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ -1
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - cc4486c6-435b-494a-90b6-38e39bf80feb
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4177
+ 683
+ 178
+ 20
+
+ -
+ 4266
+ 693
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 0ad4a801-5c37-4f86-b0c9-cfa2810fbeed
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4379
+ 623
+ 38
+ 26
+
+ -
+ 4398
+ 636.3333
+
+
+
+
+
+
+
+ - Curve length
+ - f19d34d8-952c-4b7b-9d1c-7cff6f55186e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4379
+ 649
+ 38
+ 27
+
+ -
+ 4398
+ 663
+
+
+
+
+
+
+
+ - Curve domain
+ - 03e24465-d0af-4b53-bf1d-8f60b8c8be45
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4379
+ 676
+ 38
+ 27
+
+ -
+ 4398
+ 689.6666
+
+
+
+
+
+
+
+
+
+
+
+ - 14cf43b6-5eb9-460f-899c-bdece732213a
+ - Blend Curve Pt
+
+
+
+
+ - Create a blend curve between two curves that intersects a point.
+ - true
+ - 81c31b9d-d9f4-48ac-8b75-2e11cf294f83
+ - Blend Curve Pt
+ - Blend Curve Pt
+
+
+
+
+ -
+ 3838
+ -327
+ 167
+ 84
+
+ -
+ 3962
+ -285
+
+
+
+
+
+ - First curve for blend
+ - a4c7118a-7572-41be-b304-670fa4f0336a
+ - Curve A
+ - Curve A
+ - false
+ - 5a30bc9c-1f0b-4a38-8546-68bfff78fe07
+ - 1
+
+
+
+
+ -
+ 3840
+ -325
+ 110
+ 20
+
+ -
+ 3895
+ -315
+
+
+
+
+
+
+
+ - Second curve for blend
+ - b9be3c42-571a-4365-b65c-6eb712673f9e
+ - Curve B
+ - Curve B
+ - false
+ - 781927c7-3272-460b-af8b-3107b52db860
+ - 1
+
+
+
+
+ -
+ 3840
+ -305
+ 110
+ 20
+
+ -
+ 3895
+ -295
+
+
+
+
+
+
+
+ - Point for blend intersection
+ - 56da942a-7d64-4a15-a453-bd453c33c962
+ - Point
+ - Point
+ - false
+ - f37cb892-e085-4d02-b622-0cf629b13abf
+ - 1
+
+
+
+
+ -
+ 3840
+ -285
+ 110
+ 20
+
+ -
+ 3895
+ -275
+
+
+
+
+
+
+
+ - Continuity of blend (1=tangency, 2=curvature)
+ - c921ac17-e66d-495f-b864-733f670a6de1
+ - Continuity
+ - Continuity
+ - false
+ - 0
+
+
+
+
+ -
+ 3840
+ -265
+ 110
+ 20
+
+ -
+ 3895
+ -255
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Blend curve connecting the end of A to the start of B, ideally coincident with P
+ - e7179353-b7a9-4734-995e-1ac6997baecc
+ - Blend
+ - Blend
+ - false
+ - 0
+
+
+
+
+ -
+ 3974
+ -325
+ 29
+ 80
+
+ -
+ 3988.5
+ -285
+
+
+
+
+
+
+
+
+
+
+
+ - 62cc9684-6a39-422e-aefa-ed44643557b9
+ - Extend Curve
+
+
+
+
+ - Extend a curve by a specified distance.
+ - true
+ - 78bea16c-c7ca-42a2-8f5a-2cbb175c6b39
+ - Extend Curve
+ - Extend Curve
+
+
+
+
+ -
+ 4250
+ 396
+ 124
+ 84
+
+ -
+ 4330
+ 438
+
+
+
+
+
+ - Curve to extend
+ - cb01bec1-5994-48f1-bdcc-f6c296ef31f8
+ - Curve
+ - Curve
+ - false
+ - 0ad4a801-5c37-4f86-b0c9-cfa2810fbeed
+ - 1
+
+
+
+
+ -
+ 4252
+ 398
+ 66
+ 20
+
+ -
+ 4285
+ 408
+
+
+
+
+
+
+
+ - Type of extension (0=Line, 1=Arc, 2=Smooth)
+ - cea346a1-d619-486a-907c-9d9c84e216d8
+ - Type
+ - Type
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 418
+ 66
+ 20
+
+ -
+ 4285
+ 428
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Extension length at start of curve
+ - 2cc7cbe5-f621-4395-9528-fb47068a8b5f
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 438
+ 66
+ 20
+
+ -
+ 4285
+ 448
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.0625
+
+
+
+
+
+
+
+
+
+
+ - Extension length at end of curve
+ - 3bcb9a0c-7d15-470d-b3db-f84b1b79ace3
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 458
+ 66
+ 20
+
+ -
+ 4285
+ 468
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.0625
+
+
+
+
+
+
+
+
+
+
+ - Extended curve
+ - b7ece470-8963-4e98-b9fc-c87e811ab6a6
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ 398
+ 30
+ 80
+
+ -
+ 4357
+ 438
+
+
+
+
+
+
+
+
+
+
+
+ - afb96615-c59a-45c9-9cac-e27acb1c7ca0
+ - Explode
+
+
+
+
+ - Explode a curve into smaller segments.
+ - true
+ - 8ffd48b3-48cf-434f-9acc-297e520858bf
+ - Explode
+ - Explode
+
+
+
+
+ -
+ 4229
+ 333
+ 134
+ 44
+
+ -
+ 4300
+ 355
+
+
+
+
+
+ - Curve to explode
+ - d9fa462d-da4f-4ce6-92e7-51395c617b2d
+ - Curve
+ - Curve
+ - false
+ - b7ece470-8963-4e98-b9fc-c87e811ab6a6
+ - 1
+
+
+
+
+ -
+ 4231
+ 335
+ 57
+ 20
+
+ -
+ 4259.5
+ 345
+
+
+
+
+
+
+
+ - Recursive decomposition until all segments are atomic
+ - 16058c48-486f-427a-802c-3b8a1a421834
+ - Recursive
+ - Recursive
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ 355
+ 57
+ 20
+
+ -
+ 4259.5
+ 365
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Exploded segments that make up the base curve
+ - b6507732-c5c5-43eb-bc89-4c7b87a994c4
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ 335
+ 49
+ 20
+
+ -
+ 4336.5
+ 345
+
+
+
+
+
+
+
+ - 1
+ - Vertices of the exploded segments
+ - b55cf522-ec7a-460d-b821-829569c85064
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ 355
+ 49
+ 20
+
+ -
+ 4336.5
+ 365
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 8a512fa1-3acb-436d-b89c-8cb084c66169
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4245
+ 205
+ 77
+ 64
+
+ -
+ 4302
+ 237
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - eeb4e85f-0bf6-474e-88c8-cc8acc779e91
+ - List
+ - List
+ - false
+ - b6507732-c5c5-43eb-bc89-4c7b87a994c4
+ - 1
+
+
+
+
+ -
+ 4247
+ 207
+ 43
+ 20
+
+ -
+ 4268.5
+ 217
+
+
+
+
+
+
+
+ - Item index
+ - 0eb903a7-7ee6-43b4-944b-4f4e6ad99965
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 227
+ 43
+ 20
+
+ -
+ 4268.5
+ 237
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 99da5bf6-85bd-4a71-abf4-b7e058ad3f67
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4247
+ 247
+ 43
+ 20
+
+ -
+ 4268.5
+ 257
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 36f43267-27de-4174-8fa7-7181d7f6dbfa
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4314
+ 207
+ 6
+ 60
+
+ -
+ 4317
+ 237
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 50b2e22f-d285-4505-b5fb-8235c2d94057
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4261
+ 270
+ 77
+ 64
+
+ -
+ 4318
+ 302
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 88acd6d0-a007-4cb8-9f54-0f418402bed1
+ - List
+ - List
+ - false
+ - b6507732-c5c5-43eb-bc89-4c7b87a994c4
+ - 1
+
+
+
+
+ -
+ 4263
+ 272
+ 43
+ 20
+
+ -
+ 4284.5
+ 282
+
+
+
+
+
+
+
+ - Item index
+ - 4d7f2675-c380-4963-a3f7-5ca159ad5ed2
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4263
+ 292
+ 43
+ 20
+
+ -
+ 4284.5
+ 302
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - bd590e8f-a4e2-44df-a546-1012dbb005da
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4263
+ 312
+ 43
+ 20
+
+ -
+ 4284.5
+ 322
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - bc053c85-52d7-437f-91c0-31b088f374ee
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 272
+ 6
+ 60
+
+ -
+ 4333
+ 302
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ae4835db-ae71-4361-8536-1a5e50386819
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Smooth Curve
+
+
+
+
+ - Smooth a curve recursively by fairing, without changing its control point count.
+ - true
+ - 0a8dc1c7-b2ee-4263-98b3-965c28c16253
+ - true
+ - Smooth Curve
+ - Smooth Curve
+
+
+
+
+ -
+ 4133
+ 57
+ 236
+ 124
+
+ -
+ 4305
+ 119
+
+
+
+
+
+ - Curve to smooth
+ - 90e156bb-f8e3-4a2f-8beb-3a96059ad328
+ - true
+ - Curve
+ - Curve
+ - false
+ - 61cdd93c-f110-4b0c-bf21-6e530a53b584
+ - 1
+
+
+
+
+ -
+ 4135
+ 59
+ 158
+ 20
+
+ -
+ 4214
+ 69
+
+
+
+
+
+
+
+ - Number of recursive smoothing steps
+ - 2ed91357-e0ac-438b-b9c5-4193e5fddef1
+ - true
+ - Steps
+ - Steps
+ - false
+ - 0
+
+
+
+
+ -
+ 4135
+ 79
+ 158
+ 20
+
+ -
+ 4214
+ 89
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 16384
+
+
+
+
+
+
+
+
+
+
+ - Determines how the start of the curve is preserved
+
+0 = Preserve start point only
+1 = Preserve first two points
+2 = Preserve first three points
+ - 06bf77c9-d4bc-48e5-8412-9a41d53a5233
+ - true
+ - Start Type
+ - Start Type
+ - false
+ - 0
+
+
+
+
+ -
+ 4135
+ 99
+ 158
+ 20
+
+ -
+ 4214
+ 109
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Determines how the end of the curve is preserved
+
+0 = Preserve end point only
+1 = Preserve last two points
+2 = Preserve last three points
+ - 3040ef14-312c-4cf6-9a58-6cf92786bce9
+ - true
+ - End Type
+ - End Type
+ - false
+ - 0
+
+
+
+
+ -
+ 4135
+ 119
+ 158
+ 20
+
+ -
+ 4214
+ 129
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Tolerance distance the smooth curve is allowed to deviate from the curve to smooth
+ - 212a8a80-64fa-4eea-b945-0ac216f4f602
+ - true
+ - Deviation Tolerance
+ - Deviation Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 4135
+ 139
+ 158
+ 20
+
+ -
+ 4214
+ 149
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.1641532182693481E-10
+
+
+
+
+
+
+
+
+
+
+ - Tolerance angle in degrees for kink smoothing
+ - a7c8ed03-05ae-4e13-963e-edfb406bdbf3
+ - true
+ - Angle Tolerance
+ - Angle Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 4135
+ 159
+ 158
+ 20
+
+ -
+ 4214
+ 169
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1E-10
+
+
+
+
+
+
+
+
+
+
+ - Resulting smoothed curve
+ - feeb8fb9-73ac-48b1-9eb5-2c4dd1d3d0ab
+ - true
+ - Smoothed
+ - Smoothed
+ - false
+ - 0
+
+
+
+
+ -
+ 4317
+ 59
+ 50
+ 120
+
+ -
+ 4342
+ 119
+
+
+
+
+
+
+
+
+
+
+
+ - 90f8f0a7-659d-486d-8f65-192a4190828f
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Fit Curve Smooth
+
+
+
+
+ - Fit a new curve through an existing curve with kink angle smoothing, without changing the general shape.
+ - true
+ - 3ec9ee03-4221-491e-9b2e-e9ca61fba9dc
+ - Fit Curve Smooth
+ - Fit Curve Smooth
+
+
+
+
+ -
+ 4142
+ -58
+ 215
+ 84
+
+ -
+ 4314
+ -16
+
+
+
+
+
+ - Curve to fit
+ - 4b511898-c5ac-4d17-96e0-3680a81b7782
+ - Curve
+ - Curve
+ - false
+ - e7179353-b7a9-4734-995e-1ac6997baecc
+ - 1
+
+
+
+
+ -
+ 4144
+ -56
+ 158
+ 20
+
+ -
+ 4223
+ -46
+
+
+
+
+
+
+
+ - Degree to fit the curve to (if omitted input curve degree is used)
+ - 4bd4de6f-ea06-49e3-bf55-2835e752d797
+ - Degree
+ - Degree
+ - true
+ - 0
+
+
+
+
+ -
+ 4144
+ -36
+ 158
+ 20
+
+ -
+ 4223
+ -26
+
+
+
+
+
+
+
+ - Tolerance distance the fit curve is allowed to deviate from the curve to fit (if omitted document tolerance is used)
+ - 4d424ce7-e6aa-4f9a-9a9f-48d020d08f2c
+ - Deviation Tolerance
+ - Deviation Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 4144
+ -16
+ 158
+ 20
+
+ -
+ 4223
+ -6
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1E-10
+
+
+
+
+
+
+
+
+
+
+ - Tolerance angle in degrees for kink smoothing (if omitted document angle tolerance is used)
+ - b006e454-520f-4644-b3a5-7101f3f1e20e
+ - Angle Tolerance
+ - Angle Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 4144
+ 4
+ 158
+ 20
+
+ -
+ 4223
+ 14
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1E-10
+
+
+
+
+
+
+
+
+
+
+ - Resulting fitted curve
+ - c44e8329-996a-4fbf-a0a5-2e0cae3ec7a2
+ - Fitted
+ - Fitted
+ - false
+ - 0
+
+
+
+
+ -
+ 4326
+ -56
+ 29
+ 80
+
+ -
+ 4340.5
+ -16
+
+
+
+
+
+
+
+
+
+
+
+ - a3f9f19e-3e6c-4ac7-97c3-946de32c3e8e
+ - Fit Curve
+
+
+
+
+ - Fit a curve along another curve.
+ - true
+ - c4ad8a66-83a4-4648-8e6e-22b1afd02951
+ - Fit Curve
+ - Fit Curve
+
+
+
+
+ -
+ 4111
+ -139
+ 171
+ 64
+
+ -
+ 4238
+ -107
+
+
+
+
+
+ - Curve to fit
+ - f1bb9af6-16c6-40c9-8805-50bd958b4ab5
+ - Curve
+ - Curve
+ - false
+ - e7179353-b7a9-4734-995e-1ac6997baecc
+ - 1
+
+
+
+
+ -
+ 4113
+ -137
+ 113
+ 20
+
+ -
+ 4169.5
+ -127
+
+
+
+
+
+
+
+ - Optional degree of curve (if omitted, input degree is used)
+ - e0312145-e521-49ba-8684-002e93d7c7be
+ - Degree
+ - Degree
+ - true
+ - 0
+
+
+
+
+ -
+ 4113
+ -117
+ 113
+ 20
+
+ -
+ 4169.5
+ -107
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Tolerance for fitting (if omitted, document tolerance is used)
+ - 35da1179-61ce-40c7-96ea-530c35bf68f3
+ - Tolerance
+ - Tolerance
+ - true
+ - 0
+
+
+
+
+ -
+ 4113
+ -97
+ 113
+ 20
+
+ -
+ 4169.5
+ -87
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1E-10
+
+
+
+
+
+
+
+
+
+
+ - Fitted curve
+ - 2dc09fb8-47e4-40f3-968a-cf8ffcc6485f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4250
+ -137
+ 30
+ 60
+
+ -
+ 4265
+ -107
+
+
+
+
+
+
+
+
+
+
+
+ - f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
+ - Rebuild PolyCurve
+
+
+
+
+ -
+ 1VwJPFTr+x9jJ2uUVoMWIkuiW4hh7CbClaVkxhwMY2aaxZIW2bK3oVJKWVKUmyUVZSttitJeSlq0KFrJUv9zZnGbTbq5v9/v73PPvXfe57zved/vs77P+5wjgSL500MBIu07+CcEg8FEwUuWTKAH4omrwwAKFU8iQiQXsBkiQ3/i0C3sfnYABgdQoFtEWWQpNskeBTVLgk2PY93+cl3jjy4+dqac4DJ0SNyFAoThgXCILgXSxdyCwFFwcqxmNEANco8kAxBZmPVgGRZtGYkSiiFAlFmMp2WN9HIDCIA/DcCN0LJgOCUUEIAn4mngKlwoJDJAoeEBKntY6BJBYWiM50iAP+Kq5u+M1r4tIY0CqP4UPJnGWjw0RZjIMkwowP6lSicSwZ84hKaxroG+7gJ9gz90EAYLdI11jQy1dAODJF3BKUHYUdm4Qn8y7FYrEp2JuDAbM3B2weDsWQ+Es5rF3DGUQIBx50zwJ/nb9++Hwf8X8SaRQv+GPNdc1ANcP8ejJKEWnsdIuvqTnTCRJDrtx3ulbCkkOpnnZjEknRZEovzYJGqNxuAJbBAUcIGY1YYWQSRaKNiq608K5cBIBoUh4gECAonFEHCA+AoAS8XTRqjzg2g0MnWJnl54eLhuAMYfwJJIIdAYesxuzF4gI/CBRICi8DcfnbEQUCOLVQAvaWYbxwqgdjFmOzRzOEuMRGz//Fss90dl3Xr3MsSq6KjW8LWWBbc4pi9qRaeEAZJWJCINgycyRVyCNQo/AZnLupOKwCD8SQQCk5sIUgAiEAC74/0R/tCAVDE7PA4HENnzF5pgT6TSMER/wJaOx7FnNrUuPO9K+KDj8bIIHd2159v4zExiGd4/5MdmYStKmIQzY05MBWHwV8yNRKf4Awzug9eCzU7evTdf2xxsUP5aNlW8VJpJ5oAO6ieFpNEoeCydxlSXEYG0BG/EMZo0oN91YiiQlVYwmJ0l+AMp6oIPIzHGUQWJ2VoyKMOJi61YbBASxIby84Y7viqYWlZXbljuYQWfwilFrgCWjifgEHzYAYm/mAB2LGb3wzBxR4TjaUHgDyoZ8McHgNwg0kOxAAXijz84JoVEmE8m4Yk0qu6YGPRN39e4/F6f5ZYncnvPGIpvH2XOvIxyBSzHiK/FfhDfeSC+MSC+RZac+MIs8kGqu5U0GUPBhK7GE8l0Gts+C5JSecaUEDQSgsKcI9/V7SyMNZ/QW+qcNOXi4XV/1juPRfyErH4qfOgahcqcByoWRRJNTz5MDH74m8IXDYGjA4LTigSNIJfwwRAHQKoxBzhCLHmBCwDHhL0ABA4IpAAAQzgYeGniAxCkUDwNdC86CMZY7FvwVASdCuC0+OKYZhZhtHvrGotj6sqqE6L8PnPgKIZijMALJIoHSCF+SMF+ESmLUZFysJJ1gdw9lQZ6btApYkaezWA5N4vELCngYoN+NK28N4m4YGhBI1Ifpb9exJ4GhMJgf4cSYkwtZHeCrh8ZBmdJsyCGqSzjVmIEU4n5cuOl5yMKdsgHnbT0oZMrnJjIJdXQ7HmZseynUm2cYJ0Y4mTnlLGpShG22GvveEi1+6i88v1f4JUUF6+Ef6Jc08AwjQpAysRUKYCIQ4AsAp2jAHZ5wbrR17oVbOLXxFrUb999nYNdEu6srrwcc+fl2HioT9CoLKH8V1giDgZNBAAz4qtgE5gMAQM8li8Qgwn2BSNuisEQvjyQf101x9vUw3J74pG0XZs37f6njuA3GVBXwLL0+hADuN0guZChMawwAw4br2hvND861miPL6pdH5NnAHdlHA/abVCGXympGbfo7sPJzJtGmnLIsoIOzUq5qWK/aYpyT4LAugmI7mAXq8HobjUbdmFBsK9Nm/HRmH7RYW/W8Ivu+2gpjsUqM8MRFJ4K2W88kY6HNmicbIAGERHABksbPGhGMATQY3MOAbaRiIEjwR8GS4L+TQT/CSQw/DoNVBxIBwEFa6I/JZIMevYft8JK4OC94BOA1/ber/r7TLRU9bUPht1OktqfXEX4ONPBOEUzRVYF1Xn0ybGYmeY5EZJflLGHFe9Z1ofUDx6JEb094LQfe6lLLUB2r6mlbm7BpvZTB5Z4pmGnvdKredVmvEuGbuLZWZs7+fKdcxPKbze+yiI2r984FFfWirz2OL/fzfyefuWG/D1OZVI6Il6x8/QnbMcWDyNe9ZNzCi2zhb8vqxKp1xk4eFHZKXEmoevAfqeDcsh++9SCDq+yHHeJS1q+YuqeYj0XS0VERQpbdpzsFi+6H7Jy0PSTgcjGzltbEoZlPd+U7PnY0kKSCT0cuWz5acTlJcpat+7e3Xf9UnbzjIyCLo0Cd2H0rF2uyVmKyhOjXQo277A07Vl9/BR6ouuxfeFfnL55Jz7au8JmoMkjQkUosvNasNpk9a0x7y5L58Hvrop0na+6MXmhyup1WMsdm+4bz3DYs1izqc+wIjRjak3jdZGpFk+LmjVtaNPP6Kfu7S1aEdHZ/k2uXetlz+BqG8kZJWS1TyEasMuq2h5z4jPW5NTcF64wsF9VQFl5rdDsCJ6oWvx8e4NdW3rvDStqonh4cmJViB6lIIXsf6Zin+S3gOn36p9NvEf/1Bz3bHPpocz8BQrhj+s/vky62h48aTmlvye/9qTK1RuyijseBdi2rixt6kojnRuY/PHc+9YdgfrWoY8U4TPOX9Ff0HnBu23Z1eZe45fni975Uw5LPC9PcjRsVTSnpel8k5F/3JpMNlsT82767PftjutRf2niXLoalgZ+Eb6yRuZJZdAS9eWl7ep3P9/bMWlJXkP3WorN5Uu3jwTZ3sxyVCrPQlmkojfjD4WXYs+0YGXOf65ZubWSdE24tP3180XdBikSC+V6ooNdNxgRht9Sk1MuPBmoLXvnk3W7Kyrf0fD22UcS7euk9NRUE3Y3J2A0fLRbY3zCPXrkVTvDtyK9LL4lFlkdrN98qOmUaIlZ7JLOA6uLu05dOL3a062tLkGI7rb4lTfFdK7Is0HFHMQ90tIEt1ba7Qr9v+AnTvZMMH6aeH4g44JZt5C+xuOP+09cpLrfMCLZlTjolD7M2Yxoj0jRhdPJTYEutRUvZbem2ypGDZUeLh6idpou1757dof9J2S63OzuNx8whuUp/SKmWpmnQtRLkszPNAm3Gh3CKr1yaJpa+OxQe/x2kxwpimLWlNtzMigT52S9x+6erb7lhbWI0sbr/e8SzGb2B8mmRJCitFu+Dyp7Ny/vjYrxmrK8wOu96I3lpdtsblb4tEd82ZnyPmrayeKHz46FHHu4CYgWMsiWurojKqaj1XHh5eXInuKXj1UewdonuKptz1562G9KxSZjXyM5/xfzvmnvNAJel51WXHTZ98WSyTcWXU7MPDdzY0tTu5mb7SphOFlxxvZNX2e3yMz9hCAHn/wcefp797fBwJIlak+sH7wvC0hJa5qeJaU2cd58X6Gzz22/S154U96XlzcUGZ/SM6xrlZSskN1jUz0nzq5wglJM2Z71Gvt2mscNLi11Dlqf23TLGPgiR1fWvx5V/la5G//hyp95A0I04++1JaeKOhKqNIqdbxXXdETkUL6vtJJ4334D26O27s4k74zEKvHdsS6HPvxFeFxddDzuuu/s2oOx4kZ5uhudX2i89vc/I3Nx1ps80aFLCxuPRO/Su9Q6UcsD8dD5biV8kvyL9fv6nm/SUTsw6H0XO+BDPtGx+9SwG7wobqOGvecU0dnbZh0zvbV0t/ojKjJc/Oa82e/nLGgXnuKdRPlk8dCkXJS03/zEnLNia3XPRvucbQNcLTIlzzZTyhMdUwJ8RO4GGD0JP2qC3N72JBV9XoJ04+7aweGSwkOKGwYLrs9aFXLcpFhJy1tBYqeJ2IpP7yR3Rj0qTGpIv+SzUhnZAN+cIB/Ra7ov/7Xxra03vjlJIJe99nY49xY+5auqyudG0cDtpE++HQ06eQQzqeVmHTebvqwLsj61UXuTC+Khx6Gdia5iWc8Pbn/2TGl41lx1wxxvy0ziy4aFM0sd04HOl+FzcLWH89K84GFdEmS5olMYTDIGpbHN49azh50RLqs0n4oEddzGfjAGri2ZIqn29V142GW6eXx2UfyLAwvXth66c/TPvrKYaxnGV1FvkoUvHG6pKtnSeu3J3Y9fB8Vby0IKXXdOmwfHO2We8yA+i2mmWZBUD63Yu3n6seW6RNlLtwMQ+l3HjXPFMAVRr9vgN170DayRC/Sc7IM1XNRVo1qyvEtv0WDk8c332jqrPnuHo1tehHxaoDwYFrvQK3Hfg7nmllKVUy+sqXUZvhNl8tZ1y8cvyXu+NsnekvlmbJXa53TeRtukOUbk1osNK2zq0Pv1V8995NGUOTmkw2M4Qsp+l4TKl3lVmmnzFgJrF0yvei9p0LR1cYqR2a0hK7lTr5Oy8G3Bx+ehgFvLjRr+eL3BeKX68guri+l7PzvNzth2Rrrpjtzz+zuvp6nJ3TU/ZXVirYr/1FMvBx66GPmtJC2KJLRKZc4Nb0aIyiwTQiHoSRgn3NStptfKhlFXLzVWkVLa4upC0pccNXvxQDsmSeOyXt/7xxto2dMo4e3P+7Ypdd5/ENkqVL9it/fG5jnOJGnxnKPYTbqntUtXVMfuKnnT3H91R59c7sVDB7snnBiaE+bpPznbRss8bWNs559xzQFBOfvxOy9G34qeHTTJx0eCaJSy/jX9OVF0Gsbg9aBdXs29T+3rTp7VfJ5881rrS7G8xDbVPfFfwicOpn6bgKzRmRUT++Yc3eaR0UTPPpE9bZfeom7+1SNsEUe7W5BmRiqs2KexMWzplOg88qEjMG0t36YMs8t3OqLfPNuDfnUlRGVx87qQzQVH8jY8Tu2aLD0Ev1l1yOyMSfebqRMqGto85QmGfQEKTXUNCVU7he2NPiKforqkci7EHXi6rVpD02NIvbR40+3iILj5ZVTWpjgLncQP5pujZs0YuPVuULrk1OMBwrGLr8+tS47Qoma0JxwwfHPc/3jG3Olmzshrt4sCY9G4NY4X7h2cQgPsVlyd+CHzqnyP0cdkBQ3kPW+hSJ9Pbqf0ygclKwl+enXwVd5p2JJLaipt5T2WOps7JAvX7U2BxXy6T3pvGJ+6moz2vHG/s7GiZzK1mEor8yE2r03qek7OUCKFW4imFiYidiuJfk565bs6tqDHyOdaLyA2Helzd9f6+9ddNbuWaIoVyVj3hT2OPvbpTMtnWtu93oHJE18S6KYROzImzRR1udT30IAWojDJFjPnUWN1yJW2lmD3zC2fhB+40JUbW28vUgdWDMx6cppWnGcy8ciqGcV+q3T3DGKfbj8sVJFVuqI08mY8/Mi2TGWpsnTkGt+2NwNCqSHTjhFF9lT6Os1dnNZPe4Le8uXzgoFnqxP6BybmxygH1JLRqsNFG3T1pLNy4ihXrr/5muh0f6H89Lpaq6osgyXKa/v6c6z1Gyrw3/QX5RK63N7rfIRvN0qJy650uSuq7qui4yL5cdONB55f9vbv2br/nUmJWMvJ0rf9G8+dz7tV/gR1p97U6v4neqPtYvUc9MwU84cNPXGrB47/tQBhnfdx9kZssmWna+85t/mpCXe3laICnGtTM5/eDxSDw4XP9C6/PBF2JveMhrzz+knFwJLVk447SDUCWxpMdq1rkrje1oF2ERlcvSBV7jqqq7Io4rnu1ronorJKyxu6kyXUOnW71YesgtMMBtFPre0MVsZczlnw9KH2/v4niS39SMvZc3vVE10nV5IOf0zfrGxU+y2RMJXmdCEx80VEkNDrLTD1uuyZQuc/YSIXBJf/YTLnjLh5duH6+Me+zzYjcP7r13vlrKuOMKsOl1P9cDXEh1IYa2F5f4sfcmjv5H3XYuQ+ts4rvLRgDW/yE4yqncMACgWPY0Tts8HWbWCgn+SyzFZGaipjH2lvh3IF/6sCXRLQjrMj3KwfitoDkWhww3Z8i/QQBsrVSpLtvKgwmGwNdAll1lDswT2DoT0K6W7neDXDIGji8ulN38W06v3sUT0UUVFx5QVJiVZHZnnbidbPj21Q60T8cVJze9ysRafs1r7VnKerbimhgHRYLHlQNl1WNsYOibKTF8/EIu939bWfyZexmf1KebjD9t3g3HWPo/T0tn13bbEOe3Wh97PTLJl9wSY1H74OeRa4XnIv/nNa6QX9ZJGexBr5xVJnMeKln4P+UCNL1aekPy3S/VTg+mprrHrcouiph3NdNLv1dl5xlCB0foYFnscaxN9YrDS90LYXPb3F1GFmm5x8uInonPVVvhKnN3X07XYKKJ75WfKJVtzG+idz6+tazmGPRz44oZzuVe8rV+jt+VU4w/TGl8kH6hovX7nvWl2/mCzdezFLptHF/VAbpt72rzlx1Xfrp4UOxmU6awxZOeDkuoFeRf38LRGmx0xb3D6vzXkkHNKwWBVZPzc0qnPNQ2Wvh9NWXu3JnXZSpH/VSuGa0Af1S8nizULCQ8h0VEm20xbVrrfd8cdgCfuEHtSRywKexSzW6NpxbGXlysidJZcezPf/oEwyGJr5x6WWtFkiWXMCrL3Ky7Cnbzx7bXBCqPFru6ffn4OPfRM2LQimrG1Q3uInLp3V9mBDX4TugG7EtwnLvhJj70tuCAojw9rF8fIOl7zqlM3fr6r17BTbkpdyJ010xboqybWinuSG8D25QF3MmsfxRXYLp67SR7vNVpScNH1C0xOtnCvPh8yPehSfj9lc/4dpQdm97uDqdo80m1jRqtg1J0+L9L8Jjakdwg+7JQ2J9MSeT7SedDUK2obaWy9DHbP0i+G7026cfsRj+aZlFvFpYg/Kzyu1CzsCkeztnTx4OW++Kfyhgjy/1XvJQqdIb6cxbE55dub8b2OfSnKfr/5PHatJuEDpIjSGDHWXZs+GI10A6S2EGjvFkG0i7fQsCOuUG6M9aV5s+wOIJsSiaZacTH8es8vpSGQV9ure500QDc6iTWmkFVb6wpAHHIqEzsqE34NowixanmL11SCMql0sVu3KEURaAUQTYdFUGvXa7hr1OZc+3iJ5Sqj9uagHhkAfSXjIzWuUTpbfit77TfZGb5WkFpPKnk/JtYQ3ko106z35DemFbgflmFT2jGasb8gvdDZD7gsjnWz6XibCpLLnVBvUmSP7ScbibMD6zmsphxcxqexZIaqWUg8/cHc82lo6TYz4dXCsiURNFAyGZiVUornzWHW6IDXUSobBFIAGUNh5RHEWH6TsoUQrB3sYGXJGsz2ODQp3ootNZ8NytjB1adFwqUNlnan7xWqqorQzI13IMS50STDb/x54wdKSQdj77ZYJ28NnSVkOTx25gT0yfWnPJOWnu+0qDdomhVjevzRyA1zAo5krYiwYesho56t/n1xhiBhC5FpgTOd03KL1DxOYQlyJNu7z2d9MtMG0QM47s/KbvdyJNr95jJz/D1hBQ492LjIbjSfiQ+mhrHQXiBkNEwJw58j4Asat35yAIaHxeAFD/hQwT9J68cOd0o5bWpQW7Zid+3g8AAsdFbB1/+1DEigQWpKq35keab2UpWIjgj5aWn6qC+MIC4Gh8SQ1+XKM2+pyHjIyB+Nlmcv4J+kNfhBi3lMSQ5DqZfUjEEI/AWIas9Zn7Ehw+woOJMRZo43piG88oPAfFYpQDijgP4FiFtP4kdmeYeyYcPtdDkykRlwNH1ho/w4s4aPBEh3NPk8QgQk4T0DkU6O7Q57a71Ex3ki6E9zIsSBpB1DcmWUXVN5aEUGnCKqMXhgqIhRDjGQd3EA/ySQqFY8ljM3TGFRH7dL1Pu20bydq3YlZ86cKnBcP0iIQcaxHMiUghHYghGQwgtDnjiBgxxmegrsghO1WxZD+/gB1pP5NkLDJMucJuY1gcGZ8V1uXevP10Rd4hxyP1XtW3dm2mNPoCFjoGEpEuA8cf9NPdJQwShtgsCJ+Eqd/jKd+5mclIuojp9g4POXvQz9mScgoR36lpvHi/v5OVvsrZ4gEvfi2g/Mwmz3of8JMMyDxHRWSoP/Rw2z2gewY5dgM0isAN6LQRBzIJxw+DI+jYwjsVloQaEn9SXQCDkEk0RBYgCHzAE6XLxu5D1j/sdj/bkVCGUuuIUuK4DYD+uUMFrMsqaggSwpLuKVfPPWBZXTe+9cES3wup8VygkpPKQj3IAyR15KKCoB8CqsXiCoRoUmiIIA1ENY0ktaYbKgyDpZgvdDPPuXk3GQ/R/iwwBnxYCzGJI4Vvj9BgIZAC7qLrxX1A6lKv1RWJ8sqRIIibYBK47u4L3sPfo1yeG17uP907qaspR4ci5tgg6dQaQjmMGMJsLkNJ1YNftus+61dRdVe7aI21OHfDbA9QAxgoIB18LMS0V4gVeqXDOckToQQmECoeoI/Uia992VIK+Ksk16cUsi6U7SaM//hBoBRD04gVPrjrmwMLJRGxWLm/8Jmg/33a0VA7hQ6gMAHIJCIpQhLvuzQ8LsRLP5NblnR5Yov1f73MvhqJY2fVgotHX9m+LMEM5cvMwCGYHIg8LNthuwPCJgJgEDP2070gOQHp9opJKO9D3bpcEAg1xldiABtnTXL1vHAAF9q9u/goDQqDjPZHoCtlzwe4Gb+jXlPzL5Y5p/sUzH6uEKec8PkBrpGcGsw9jh6JqvHSNkNuPUkIahAIJQAHWNhtSsq2aZce69tTuerQ/eHxcz5TokHYTZhrBsRFxAeSxA8FF/7vwKkev6S/ZcZSU6Bjw/luzAthXg3zWkGNoe+3qkKKot9PE411eOcibJYDq4dJWiLlusKUpfx2P1f3F9M+nvXCSFGJRPwoD/g7wqy3Pcrquaud66pQeVqV2Z7/db2lQs67q3xeEDnOSp0WKvfjWkVWIIOhrUUIBRyoXxhs2hVexYSEeeUD9d7tvRELmcBv4QbSyN5QXMbfzvlzRIoBL9I1cKHgRnLTrFTmjx2Sg0e7zO38rZjKvYVMugqcYAzIEBjqFQEEodjvB40dmulCXrsABIlFNz1g/0xrP7Qbg6DIICenLGvAz3u2N7YcSsdOBPaV2FXEuy5SCH1QucoU+T1D2jkWNG0YgWuFvwMl4Ud38D1F9VzCSPPjAiDzjuoCBAhLoA0ATwtCDTyzOCDCnm+MJB5JAqV/0sQT7MdpI+jDtgnIDBVLZOmeHIaPsbDeAXR/j+tvdFW7IDXgo+c+qEYyP5SZDXZFaDSCQwx4gCQL0jc4TvnxpI5Ei9KruOurhaOLBhc+BmxDif+4dUvGrHJTiz1Aseh4cGYicJYH39T5t53o6KnTgp5/JZ91oqHIX9whl4urBGYCPFaNLgL5d/BSGlUjEZCLwlBJm0A63PBUOoQuuCM8DAsaJgzISTmBBADaUG8tkxYAKIz0QCGSqeAEUgQgCAwOjMNGSMOG1vkFYNG2Meo99tmNdfVZGk36PGbEW9ZOtg+Vg1LAoFxsmLarg4e/5gKUr3/4btsoczV812W4YE1b17CN9kcNIUVNIbINvxvvstWl8SIrJjBA0+pPTmZAc4vmZ8JTHSYwsAXmZ6L5ulHFAscM6uHXm7YqGo4JoYLOY27PiHSWWuX57f2v9IZa2fpk6QgffK4VPoufc4Mm3TqO9GmPh0hrpwBjQJgQhE2eALfDY3Ac1RmB96XPJj5Xipj1LHFB5svCtHsfXY4JotnuGnUvHk1yvx4k1vM9rHqGR0EbBII5zq+RQZRjNcieYsMIFmCQiU+RQbQxV1kQD61RNc6vtomljBd4TlG+hp3kYEX7mK6UK0k6vS7yWgZ7YmtbDpcAJ1fEQJjb8FdhMDdkauEYLRjcSV7Ig6IgPhni6EBLPbxLxuQENb5InXbLq0TmZS//2E4B7dEoN68imH7U5vBnUj53RxdGMhKFUEbDr9wkKr+385LjZgCzuIFSRjfgEEQ4ybb/6Bv0NEnnsFIfb68241ZN/+CsJLFGT9s5Jtn2oA4mk7DYAnACFe4NkPMQfXHkkn8t8tAwn58zY0vQ41/LAOBjxuSBnyRrKj+4LQm+C+Hrcgd3jo5sS5jQ9KAF0mDnyLJvWEdDyQtRkXSwYq7KEPAPkkQlHJMqwzuxEcxJNxhwugQijEh5D0hdtM00Br/4/gNLPtRh4TOk7nj2GiGuLH8rhRMgN89bpJ1csURou1B2beEL0b5eznWI4sGg3I8mYD3x/za3nwaGrQxQCjYyx8M7kM5RhmTuxXB2d4djCl1zrAmVpjGed0ZbVq8cCMbd471Cw1+mazghW8qMXoXSMX9UlQ7g3kSBGUemJtvjrnyXewntw2180kr0Ed34wiT58Rx1mwJIf/JcRJ3bPi7b5JCKLkI0keXLJ7YX+gnKM1knQL9CkyBWXvexWQRkek5M3Vz5649ywmTJS9Mlj+FaTtxRndz9Tpk3tPrxiVDkyeOB0y4UWEi/touAOEObggpI4kIaHuI/jlS3J80+G9lI2DZLLHhmzzMzWagxbJQ0oIsFHfNKedimMeIY3/xW0/gi98BBBKIKDGQ+QkKdnqML77cYsNvSrxbbbD9pwKpVKgSWlUJt8h6KuxSnf22YDy+7+NrJeAN8D9kUDC/YDYDJghiwLf4svyJuiKWJ1aqZBeS0fxqcDnxl2KNomBFp9JIofx8L1MGIbQZGQ4p5p28A8uyCDwbfL4enWtU/vkEHYl7HugsZCwi3xwbJk4ap3wC9zcBxsg4IUGMO8d6dZ/MYByLRTKCWDSpMw2luKTF6oDR09rSi+Gon7JI8qcsUnIhESL9ub42ND584js0X2Zxf+7qX/5+hSBuRLdbMT+TxcEN2X/EDTkUnvkROUQABsq6/ypfaoVsGP2YlU9st8mohPoxdQhg/INYp7isA1wIaxyUMQgFH8a4m+cTWqyv7zAcMmN4VlddGSkr3jsYj2APbvbDs6Gx2e3zEFzr1eUjQ9yYCJImFD9p+n8PCF/J53YEo8rQWL5BNS464MutA3L/j7w29zsM4+e1t/dbVunb9KDyxOolzzuW/G4eAfLa0QkCvHb2FBmUYXkq22vL/zMjhGS9WML6iMqvGqEl7uyef7+iwqlK7KoRtviT2Safn/pzzUaQ+iP5Hnf+86nwj+24eDkqbmPamv2m4sEeWMGiE0cU7/8A
+
+ - Rebuild a curve preserving the kinks in the polycurves
+ - true
+ -
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAyFJREFUSEvNlVuIjVEUx/8YYjLJJSQxD6655J7mAWm8SLmWa5RcHoxLeXWXa0ouiUkMpZgxQ0qJJ8kw4YXkQYrQmBCSy3TMbL//Od83850xUzoP8q9f5/v22nutvda39j76r3RKyj8t3T8s3doutY+GrQFwA8rSb7lqtVTUSwrToVKaHA3nwzN4AwFGQ86q7CmlzuPoqlRdLnVijKT0CQaBA8yEnFQIDbOkQzh3gLBLespYIyylZHn8OsA8yEnL4QfkXZF2UqIwEEZkgn0+J33HFlZIJz05F62BL5lHaQjlYsuNJ3DqYOOhAEqlR9GULE2BergLbX2kkeAS7AcaKv28BufjWFDVQfqFwdnUn5U6Y8tSCTj9e/ANZoPlVuwDrq+1CT7DS1jqAeQu+tpbOhp/m8vSsIypWc7AO7KBLNVID1azq9po3F3Cd0x3TUu5XUNfaTjOGxygSqIXsuUd1sFuv0yTXvATJko/+ZCLeN4GzuwOcBSyNAa8idE4r4sCrExbWmgf1GIpYNKPvUwk1UDH3I/6fRS8gofgssRyGd9CGXOfOwC/LuUf6g+pItrMk1pwMboafJhcrjOQlHs/bJA+eH5bAazS7uzebcek26R6IBHkcBRkMbgkPnhJHeObhS3AumXRWLbYRjEeAi3lAEvs0LuPgzBWtkDqwtT3sD69KBIpDebbhY5QLK2KhrOFg+MYA/dNA6Xi3EiufzII1NARjzEdsz0Wa3dAmMB54PUd0FgJRY4+sZNAqimGyDYjZ8LiI3GQoUCHPaOUMyroHkqykfF62zhk/j5uhqPpxbFwMCd2wKE5yJAPnu/5JjFnPvaPvrIpcpxRE9hfXZJ6MJXYup5eFAtjRTSxhle3pc/FVtuSItOu7SjhOsqQcJyCcp77McXt7M0xJSGMtdHkzbxOAh8sX3CtyZdeCaXpyY4H+Z8uM6y54AbwgWw+9U4Lx4HjGrpJDxhyG96E1q4G6wK8hoXgzayFavA6/o/UFZqF88KxGWPgGnSJvBP3fFtyna9Beg04W6qnqfCn6JI8/m+f7OFa8HM0/DdyKydv238t6TcqDxtLIt+sCAAAAABJRU5ErkJggg==
+
+ - 42552df7-58ff-4656-87fe-5d739944d700
+ - true
+ - Rebuild PolyCurve
+ - Rebuild PolyCurve
+ - false
+
+
+
+
+ - dga_3@hotmail.com
+ - Daniel Abalde
+ - https://www.facebook.com/DanielAbaldeDesigner
+
+
+
+
+ - 4
+ - 1d2c2e2b-0e0b-4438-8ade-61a6e3f0ee82
+ - 224c0a47-5619-47c1-b276-571e8bf36b50
+ - 32b3918a-3315-4cf8-a01b-38a61e3eef7c
+ - 35103ea6-aa36-4414-a756-320abb96aae7
+ - 5a4c8732-d4f0-46ea-a2c2-15f9b21a07af
+ - 6d18a614-b5b7-4002-96e3-0350bb9aeda5
+ - d9082c33-4d56-4196-8320-a43f6276076f
+ - b742f892-4630-44ef-a306-c109c54bacd3
+
+
+
+
+ -
+ 4085
+ -245
+ 198
+ 64
+
+ -
+ 4239
+ -213
+
+
+
+
+
+ - 3
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 1
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+
+
+
+
+ - Polycurve to rebuild
+ - true
+ - 1d2c2e2b-0e0b-4438-8ade-61a6e3f0ee82
+ - true
+ - Curve
+ - Curve
+ - true
+ - 61cdd93c-f110-4b0c-bf21-6e530a53b584
+ - 1
+
+
+
+
+ -
+ 4087
+ -243
+ 140
+ 20
+
+ -
+ 4157
+ -233
+
+
+
+
+
+
+
+ - Factor that multiplies the length of each curve segment to determine the number of control points for that segment.
+Control points for each segment = length of the segment * Division factor.
+ - 224c0a47-5619-47c1-b276-571e8bf36b50
+ - true
+ - Division factor
+ - Division factor
+ - true
+ - 0
+
+
+
+
+ -
+ 4087
+ -223
+ 140
+ 20
+
+ -
+ 4157
+ -213
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Tolerance angle to determine the segments of the polycurve
+ - 35103ea6-aa36-4414-a756-320abb96aae7
+ - true
+ - Angle tolerance
+ - Angle tolerance
+ - true
+ - 0
+
+
+
+
+ -
+ 4087
+ -203
+ 140
+ 20
+
+ -
+ 4157
+ -193
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1E-10
+
+
+
+
+
+
+
+
+
+
+ - Resulting curve
+ - 32b3918a-3315-4cf8-a01b-38a61e3eef7c
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4251
+ -243
+ 30
+ 60
+
+ -
+ 4266
+ -213
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - edbb3077-efd3-4404-9f0b-245ae0eb3be1
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 4.0
+
+
+
+
+ -
+ 4010
+ 723
+ 250
+ 20
+
+ -
+ 4010.45
+ 723.8688
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - ad5dc94a-b303-4f73-b70d-830a6b7d77aa
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3880
+ 69
+ 116
+ 44
+
+ -
+ 3947
+ 91
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 519b96ec-6dd3-4bde-9106-92062a54c659
+ - Curves
+ - Curves
+ - false
+ - bea61fda-b9a0-4e8d-b5c8-349c680f7f11
+ - 1
+
+
+
+
+ -
+ 3882
+ 71
+ 53
+ 20
+
+ -
+ 3908.5
+ 81
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - f3b5180f-ef64-45eb-8739-7354ef0d7dd8
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3882
+ 91
+ 53
+ 20
+
+ -
+ 3908.5
+ 101
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 61cdd93c-f110-4b0c-bf21-6e530a53b584
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3959
+ 71
+ 35
+ 40
+
+ -
+ 3976.5
+ 91
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ca78e54f-2c7c-4550-9fbf-85e4695e34e4
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3789
+ -122
+ 149
+ 64
+
+ -
+ 3874
+ -90
+
+
+
+
+
+ - Curve to evaluate
+ - dd2f36a5-23b5-459e-b992-a75493cda62a
+ - Curve
+ - Curve
+ - false
+ - 61cdd93c-f110-4b0c-bf21-6e530a53b584
+ - 1
+
+
+
+
+ -
+ 3791
+ -120
+ 71
+ 20
+
+ -
+ 3826.5
+ -110
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a626a633-28be-4e60-aa66-ab87a5fd3aef
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ -100
+ 71
+ 20
+
+ -
+ 3826.5
+ -90
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 3bc92ddc-efb7-4cea-93d9-a2f4b5f2d4b4
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3791
+ -80
+ 71
+ 20
+
+ -
+ 3826.5
+ -70
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e3153001-e796-4e33-9d15-b9039c2731e4
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3886
+ -120
+ 50
+ 20
+
+ -
+ 3911
+ -110
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 8d37d265-0ac7-47c0-894b-867f41a16c07
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3886
+ -100
+ 50
+ 20
+
+ -
+ 3911
+ -90
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 0987247a-c794-4447-9ca1-201dc487ac69
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3886
+ -80
+ 50
+ 20
+
+ -
+ 3911
+ -70
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 34c4c1ac-606a-4181-b6ea-85caebd18dee
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 3785
+ -10
+ 149
+ 64
+
+ -
+ 3870
+ 22
+
+
+
+
+
+ - Curve to evaluate
+ - 0067ccf1-d979-4390-97e0-0faaed3b6f2f
+ - Curve
+ - Curve
+ - false
+ - 61cdd93c-f110-4b0c-bf21-6e530a53b584
+ - 1
+
+
+
+
+ -
+ 3787
+ -8
+ 71
+ 20
+
+ -
+ 3822.5
+ 2
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b13229a6-453f-4764-a681-b1dc1666401f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3787
+ 12
+ 71
+ 20
+
+ -
+ 3822.5
+ 22
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - e1eab9c7-e20a-4d23-a413-8bddc10e4b9f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 3787
+ 32
+ 71
+ 20
+
+ -
+ 3822.5
+ 42
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 16169ace-483c-4e56-8a72-77a9c4c82d5b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3882
+ -8
+ 50
+ 20
+
+ -
+ 3907
+ 2
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - fcfcbdd9-db9d-4f3c-8a85-0f96d283393e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3882
+ 12
+ 50
+ 20
+
+ -
+ 3907
+ 22
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 4b197f91-bca9-4a38-a968-a5ae7c30c35f
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3882
+ 32
+ 50
+ 20
+
+ -
+ 3907
+ 42
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 047a5695-ff36-4869-944b-5ebaa3186102
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 3987
+ -17
+ 111
+ 64
+
+ -
+ 4062
+ 15
+
+
+
+
+
+ - Line start point
+ - 6c6604ef-2377-423c-a16e-57c265137324
+ - Start
+ - Start
+ - false
+ - 16169ace-483c-4e56-8a72-77a9c4c82d5b
+ - 1
+
+
+
+
+ -
+ 3989
+ -15
+ 61
+ 20
+
+ -
+ 4019.5
+ -5
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - ce555c73-64a4-4990-9365-66523408f53c
+ - Direction
+ - Direction
+ - false
+ - fcfcbdd9-db9d-4f3c-8a85-0f96d283393e
+ - 1
+
+
+
+
+ -
+ 3989
+ 5
+ 61
+ 20
+
+ -
+ 4019.5
+ 15
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 5680e3fb-5d6a-4120-968f-d5398062b72f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3989
+ 25
+ 61
+ 20
+
+ -
+ 4019.5
+ 35
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 781927c7-3272-460b-af8b-3107b52db860
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4074
+ -15
+ 22
+ 60
+
+ -
+ 4085
+ 15
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - a05abdad-28b6-4b95-866d-a3f33bb365c8
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 3962
+ -112
+ 116
+ 64
+
+ -
+ 4042
+ -80
+
+
+
+
+
+ - Line start point
+ - 86af090d-9208-420a-88e0-8f8a939baf03
+ - Start
+ - Start
+ - false
+ - e3153001-e796-4e33-9d15-b9039c2731e4
+ - 1
+
+
+
+
+ -
+ 3964
+ -110
+ 66
+ 20
+
+ -
+ 3997
+ -100
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 3471d444-f4ee-4b0e-ac6f-ea51a042c6b7
+ - Direction
+ - Direction
+ - false
+ - 8d37d265-0ac7-47c0-894b-867f41a16c07
+ - 1
+
+
+
+
+ -
+ 3964
+ -90
+ 66
+ 20
+
+ -
+ 3997
+ -80
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e9778750-d5d6-4bf3-9004-7cb67ef72d17
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3964
+ -70
+ 66
+ 20
+
+ -
+ 3997
+ -60
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 22bdd8c1-4612-4e12-8e18-a6ff4858397b
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4054
+ -110
+ 22
+ 60
+
+ -
+ 4065
+ -80
+
+
+
+
+
+
+
+
+
+
+
+ - 22990b1f-9be6-477c-ad89-f775cd347105
+ - Flip Curve
+
+
+
+
+ - Flip a curve using an optional guide curve.
+ - true
+ - 7db82370-1fb7-400f-86a3-eaef43bf2368
+ - Flip Curve
+ - Flip Curve
+
+
+
+
+ -
+ 3857
+ -187
+ 88
+ 44
+
+ -
+ 3901
+ -165
+
+
+
+
+
+ - Curve to flip
+ - 9a53f913-d34a-4bd1-a9d3-d273c2628f83
+ - Curve
+ - Curve
+ - false
+ - 22bdd8c1-4612-4e12-8e18-a6ff4858397b
+ - 1
+
+
+
+
+ -
+ 3859
+ -185
+ 30
+ 20
+
+ -
+ 3874
+ -175
+
+
+
+
+
+
+
+ - Optional guide curve
+ - 2a3216a9-ed14-492b-aaa2-5017c2ccfda1
+ - Guide
+ - Guide
+ - true
+ - 0
+
+
+
+
+ -
+ 3859
+ -165
+ 30
+ 20
+
+ -
+ 3874
+ -155
+
+
+
+
+
+
+
+ - Flipped curve
+ - 5a30bc9c-1f0b-4a38-8546-68bfff78fe07
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3913
+ -185
+ 30
+ 20
+
+ -
+ 3928
+ -175
+
+
+
+
+
+
+
+ - Flip action
+ - 0f570591-bce7-4ff5-b1fc-d70a0678ea70
+ - Flag
+ - Flag
+ - false
+ - 0
+
+
+
+
+ -
+ 3913
+ -165
+ 30
+ 20
+
+ -
+ 3928
+ -155
+
+
+
+
+
+
+
+
+
+
+
+ - fca5ad7e-ecac-401d-a357-edda0a251cbc
+ - Polar Array
+
+
+
+
+ - Create a polar array of geometry.
+ - true
+ - 8c20db33-7495-4e96-8233-e8e3b3728666
+ - Polar Array
+ - Polar Array
+
+
+
+
+ -
+ 3824
+ -439
+ 207
+ 84
+
+ -
+ 3951
+ -397
+
+
+
+
+
+ - Base geometry
+ - 80796372-9f01-4e8e-b395-8fc785274a24
+ - Geometry
+ - Geometry
+ - true
+ - 2dc09fb8-47e4-40f3-968a-cf8ffcc6485f
+ - 1
+
+
+
+
+ -
+ 3826
+ -437
+ 113
+ 20
+
+ -
+ 3882.5
+ -427
+
+
+
+
+
+
+
+ - Polar array plane
+ - 35d099df-9ba8-4875-b626-b9938ddbea74
+ - Plane
+ - Plane
+ - false
+ - 8466f10c-3993-400e-8742-e7e3f179651f
+ - 1
+
+
+
+
+ -
+ 3826
+ -417
+ 113
+ 20
+
+ -
+ 3882.5
+ -407
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Number of elements in array.
+ - ff0ddf7a-9806-471c-ac45-9274d0b598e6
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 3826
+ -397
+ 113
+ 20
+
+ -
+ 3882.5
+ -387
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Sweep angle in radians (counter-clockwise, starting from plane x-axis)
+ - c19752f4-442c-4183-a7b7-2d046cbbc77c
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 3826
+ -377
+ 113
+ 20
+
+ -
+ 3882.5
+ -367
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6.2831853071795862
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Arrayed geometry
+ - d0b62982-5ce1-4b59-bf67-33f8e443f0be
+ - 1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3963
+ -437
+ 66
+ 40
+
+ -
+ 3988
+ -417
+
+
+
+
+
+
+
+ - 1
+ - Transformation data
+ - 78d948c3-0d9c-4563-b0d3-444fb72abced
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3963
+ -397
+ 66
+ 40
+
+ -
+ 3988
+ -377
+
+
+
+
+
+
+
+
+
+
+
+ - 4c0d75e1-4266-45b8-b5b4-826c9ad51ace
+ - 00000000-0000-0000-0000-000000000000
+ - Divide Curves on Intersects
+
+
+
+
+ - Divide curves on all of their intersects.
+ - true
+ - 08a69d9a-83d0-4bfc-b362-4a04de7a6be8
+ - Divide Curves on Intersects
+ - Divide Curves on Intersects
+
+
+
+
+ -
+ 3824
+ -496
+ 174
+ 44
+
+ -
+ 3951
+ -474
+
+
+
+
+
+ - 1
+ - curves to be divided
+ - 810eed2d-45ac-4f6f-9502-4ec17c5acd1b
+ - curves
+ - curves
+ - false
+ - d0b62982-5ce1-4b59-bf67-33f8e443f0be
+ - 1
+
+
+
+
+ -
+ 3826
+ -494
+ 113
+ 20
+
+ -
+ 3882.5
+ -484
+
+
+
+
+
+
+
+ - ZeroTolerance
+ - 0e757afa-0a00-4d3a-9d95-893da68ef26c
+ - Tolerance
+ - Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 3826
+ -474
+ 113
+ 20
+
+ -
+ 3882.5
+ -464
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4.768E-07
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - aligned curves
+ - f53f20a5-69ef-4f15-910d-10163e12842b
+ - curves
+ - curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3963
+ -494
+ 33
+ 40
+
+ -
+ 3979.5
+ -474
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 6cc9e9a5-ad5e-45b1-83e4-b125eb50a81a
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4505
+ 1912
+ 106
+ 64
+
+ -
+ 4566
+ 1944
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 8797e737-655f-439f-94df-0c415d95f107
+ - 1
+ - false
+ - Data 1
+ - D1
+ - true
+ - acba9f12-7c5f-4b20-8140-fb2b4854a190
+ - 1
+
+
+
+
+ -
+ 4507
+ 1914
+ 47
+ 20
+
+ -
+ 4538.5
+ 1924
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - b3c3dc20-91ea-42ab-a774-508a452de635
+ - 1
+ - false
+ - Data 2
+ - D2
+ - true
+ - f53f20a5-69ef-4f15-910d-10163e12842b
+ - 1
+
+
+
+
+ -
+ 4507
+ 1934
+ 47
+ 20
+
+ -
+ 4538.5
+ 1944
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 3e8e5b08-c7e2-44f7-a27c-3d7901e0ea27
+ - false
+ - Data 3
+ - D3
+ - true
+ - 0
+
+
+
+
+ -
+ 4507
+ 1954
+ 47
+ 20
+
+ -
+ 4538.5
+ 1964
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 3b24cb86-4f11-455c-82c1-505e4e6a4ac8
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4578
+ 1914
+ 31
+ 60
+
+ -
+ 4593.5
+ 1944
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 22990b1f-9be6-477c-ad89-f775cd347105
+ - Flip Curve
+
+
+
+
+ - Flip a curve using an optional guide curve.
+ - true
+ - c8952bed-4df0-4f17-9d79-43e809adecfd
+ - Flip Curve
+ - Flip Curve
+
+
+
+
+ -
+ 4694
+ 1545
+ 88
+ 44
+
+ -
+ 4738
+ 1567
+
+
+
+
+
+ - Curve to flip
+ - 28eb5751-5e9b-4337-bfc8-83a4c94364d9
+ - Curve
+ - Curve
+ - false
+ - aeaf0dce-3d62-4791-b43d-941eeac6c2dd
+ - 1
+
+
+
+
+ -
+ 4696
+ 1547
+ 30
+ 20
+
+ -
+ 4711
+ 1557
+
+
+
+
+
+
+
+ - Optional guide curve
+ - d6ab2f4f-8592-4046-9f38-14d9c0c86934
+ - Guide
+ - Guide
+ - true
+ - 0
+
+
+
+
+ -
+ 4696
+ 1567
+ 30
+ 20
+
+ -
+ 4711
+ 1577
+
+
+
+
+
+
+
+ - Flipped curve
+ - 788c609b-314a-42fc-9ea6-dd50e84c46d0
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4750
+ 1547
+ 30
+ 20
+
+ -
+ 4765
+ 1557
+
+
+
+
+
+
+
+ - Flip action
+ - 218abd2a-6403-4174-bf9d-ca291b1eccfc
+ - Flag
+ - Flag
+ - false
+ - 0
+
+
+
+
+ -
+ 4750
+ 1567
+ 30
+ 20
+
+ -
+ 4765
+ 1577
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - e3a1925e-6189-4b04-b610-90425fea5486
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4923
+ 1522
+ 90
+ 84
+
+ -
+ 4968
+ 1564
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - a8aec8be-05b3-48f6-95b6-cfd0498a9bc9
+ - false
+ - Data 1
+ - D1
+ - true
+ - aeaf0dce-3d62-4791-b43d-941eeac6c2dd
+ - 1
+
+
+
+
+ -
+ 4925
+ 1524
+ 31
+ 20
+
+ -
+ 4940.5
+ 1534
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - da9945ce-59f7-4a96-b705-16a66625fadb
+ - false
+ - Data 2
+ - D2
+ - true
+ - 3914ac59-33d9-41bd-9611-37164936a031
+ - 1
+
+
+
+
+ -
+ 4925
+ 1544
+ 31
+ 20
+
+ -
+ 4940.5
+ 1554
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 2c15933c-ed2d-41f2-b118-69a74a250e27
+ - false
+ - Data 3
+ - D3
+ - true
+ - a9ba64db-3550-4932-9fee-3e0b1c0f003b
+ - 1
+
+
+
+
+ -
+ 4925
+ 1564
+ 31
+ 20
+
+ -
+ 4940.5
+ 1574
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - a2635cde-6a9b-4bbf-8847-e4ee58b9bccf
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ 4925
+ 1584
+ 31
+ 20
+
+ -
+ 4940.5
+ 1594
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 968f41c5-c073-4340-ac8a-7f6a9e381c3d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4980
+ 1524
+ 31
+ 80
+
+ -
+ 4995.5
+ 1564
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4f8984c4-7c7a-4d69-b0a2-183cbb330d20
+ - Plane
+
+
+
+
+ - Contains a collection of three-dimensional axis-systems
+ - true
+ - fe603778-e828-46b9-bbe9-17506a90a5fd
+ - Plane
+ - Plane
+ - false
+ - 45cfde48-1fbd-483f-a6e7-6d1b863b0955
+ - 1
+
+
+
+
+ -
+ 4913
+ 2186
+ 50
+ 24
+
+ -
+ 4938.885
+ 2198.492
+
+
+
+
+
+
+
+
+
+ - 962034e9-cc27-4394-afc4-5c16e3447cf9
+ - Extrude
+
+
+
+
+ - Extrude curves and surfaces along a vector.
+ - true
+ - 344134a5-0dd8-46c0-8e3a-a172f88aa49b
+ - true
+ - Extrude
+ - Extrude
+
+
+
+
+ -
+ 5032
+ 2173
+ 133
+ 44
+
+ -
+ 5106
+ 2195
+
+
+
+
+
+ - Profile curve or surface
+ - 8cb874de-7a3b-4e1c-8b35-165a4000afaf
+ - true
+ - Base
+ - Base
+ - false
+ - 45cfde48-1fbd-483f-a6e7-6d1b863b0955
+ - 1
+
+
+
+
+ -
+ 5034
+ 2175
+ 60
+ 20
+
+ -
+ 5072
+ 2185
+
+
+
+
+
+
+
+ - Extrusion direction
+ - 86a389a0-7a0f-4554-aa8d-adbde0772662
+ - -X
+ - true
+ - Direction
+ - Direction
+ - false
+ - fe603778-e828-46b9-bbe9-17506a90a5fd
+ - 1
+
+
+
+
+ -
+ 5034
+ 2195
+ 60
+ 20
+
+ -
+ 5072
+ 2205
+
+
+
+
+
+
+
+ - Extrusion result
+ - 5d3f8e73-964b-4624-83e9-e7ee581f02bc
+ - true
+ - Extrusion
+ - Extrusion
+ - false
+ - 0
+
+
+
+
+ -
+ 5118
+ 2175
+ 45
+ 40
+
+ -
+ 5140.5
+ 2195
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 45cfde48-1fbd-483f-a6e7-6d1b863b0955
+ - Relay
+
+ - false
+ - df574f9d-53d6-42be-8428-cdfc794cda50
+ - 1
+
+
+
+
+ -
+ 4854
+ 2159
+ 40
+ 16
+
+ -
+ 4874
+ 2167
+
+
+
+
+
+
+
+
+
+ - 4f8984c4-7c7a-4d69-b0a2-183cbb330d20
+ - Plane
+
+
+
+
+ - Contains a collection of three-dimensional axis-systems
+ - true
+ - b61abf08-a492-40ae-a5bd-8b6987016bfc
+ - Plane
+ - Plane
+ - false
+ - bc6cb778-3b9d-4212-b11d-dc534e071d3b
+ - 1
+
+
+
+
+ -
+ 4929
+ 2290
+ 50
+ 24
+
+ -
+ 4954.396
+ 2302.154
+
+
+
+
+
+
+
+
+
+ - 962034e9-cc27-4394-afc4-5c16e3447cf9
+ - Extrude
+
+
+
+
+ - Extrude curves and surfaces along a vector.
+ - true
+ - 1e7da00e-d976-4f38-afa5-d3899aaab01e
+ - true
+ - Extrude
+ - Extrude
+
+
+
+
+ -
+ 5047
+ 2276
+ 133
+ 44
+
+ -
+ 5121
+ 2298
+
+
+
+
+
+ - Profile curve or surface
+ - 267d8b83-a817-4c8b-adb4-6c08d3800ad2
+ - true
+ - Base
+ - Base
+ - false
+ - bc6cb778-3b9d-4212-b11d-dc534e071d3b
+ - 1
+
+
+
+
+ -
+ 5049
+ 2278
+ 60
+ 20
+
+ -
+ 5087
+ 2288
+
+
+
+
+
+
+
+ - Extrusion direction
+ - 3615e3e8-527c-484d-bab7-357debff0c3d
+ - -X
+ - true
+ - Direction
+ - Direction
+ - false
+ - b61abf08-a492-40ae-a5bd-8b6987016bfc
+ - 1
+
+
+
+
+ -
+ 5049
+ 2298
+ 60
+ 20
+
+ -
+ 5087
+ 2308
+
+
+
+
+
+
+
+ - Extrusion result
+ - c9f55136-fb6f-40a6-819e-aba3e906f9c8
+ - true
+ - Extrusion
+ - Extrusion
+ - false
+ - 0
+
+
+
+
+ -
+ 5133
+ 2278
+ 45
+ 40
+
+ -
+ 5155.5
+ 2298
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bc6cb778-3b9d-4212-b11d-dc534e071d3b
+ - Relay
+
+ - false
+ - 0b778866-2bfc-4cc1-95b8-4603e1b937d6
+ - 1
+
+
+
+
+ -
+ 4869
+ 2262
+ 40
+ 16
+
+ -
+ 4889
+ 2270
+
+
+
+
+
+
+
+
+
+ - 4f8984c4-7c7a-4d69-b0a2-183cbb330d20
+ - Plane
+
+
+
+
+ - Contains a collection of three-dimensional axis-systems
+ - true
+ - f9c4318e-f2c3-44de-9e4b-84056e68fa44
+ - Plane
+ - Plane
+ - false
+ - 347017c1-2ff4-494f-9650-d789a20b9830
+ - 1
+
+
+
+
+ -
+ 4924
+ 2065
+ 50
+ 24
+
+ -
+ 4949.123
+ 2077.652
+
+
+
+
+
+
+
+
+
+ - 962034e9-cc27-4394-afc4-5c16e3447cf9
+ - Extrude
+
+
+
+
+ - Extrude curves and surfaces along a vector.
+ - true
+ - 9aa77003-8d7a-4c20-b6a9-e99010bd95ab
+ - true
+ - Extrude
+ - Extrude
+
+
+
+
+ -
+ 5057
+ 2051
+ 117
+ 44
+
+ -
+ 5115
+ 2073
+
+
+
+
+
+ - Profile curve or surface
+ - b9ea2da0-a43d-4b6d-af41-7c57d5346a74
+ - true
+ - Base
+ - Base
+ - false
+ - 347017c1-2ff4-494f-9650-d789a20b9830
+ - 1
+
+
+
+
+ -
+ 5059
+ 2053
+ 44
+ 20
+
+ -
+ 5081
+ 2063
+
+
+
+
+
+
+
+ - Extrusion direction
+ - 286aabfb-5f3f-4da2-bf08-52987b8a7a8a
+ - true
+ - Direction
+ - Direction
+ - false
+ - f9c4318e-f2c3-44de-9e4b-84056e68fa44
+ - 1
+
+
+
+
+ -
+ 5059
+ 2073
+ 44
+ 20
+
+ -
+ 5081
+ 2083
+
+
+
+
+
+
+
+ - Extrusion result
+ - 177d790d-349e-4b3e-aadf-b0e117d5db28
+ - true
+ - Extrusion
+ - Extrusion
+ - false
+ - 0
+
+
+
+
+ -
+ 5127
+ 2053
+ 45
+ 40
+
+ -
+ 5149.5
+ 2073
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 347017c1-2ff4-494f-9650-d789a20b9830
+ - Relay
+
+ - false
+ - fa0cddff-014a-4549-8163-058027725db7
+ - 1
+
+
+
+
+ -
+ 4863
+ 2037
+ 40
+ 16
+
+ -
+ 4883
+ 2045
+
+
+
+
+
+
+
+
+
+ - deaf8653-5528-4286-807c-3de8b8dad781
+ - Surface
+
+
+
+
+ - Contains a collection of generic surfaces
+ - true
+ - 927e01cd-1477-43c2-bccc-061c24b5e77c
+ - Surface
+ - Surface
+ - false
+ - 0
+
+
+
+
+ -
+ 3426
+ 2201
+ 50
+ 24
+
+ -
+ 3451.054
+ 2213.132
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ pLwFVJVL2/+PdHfXprtTFBgaAUFaQqU7RUJEEZHGQEUEBCUFAUVEASVmyE13g5QSFiqigCD8t89zPOv8znOexfv+39nr3h++s2fPXJP3zLXvBd4BPDy8PVz4xV+BEh/3dtzc08s/QDvAzy/AX4LH2i3ojFeAv5qylKy8lJysvMJB3B8yMrISPNohvsEhQW5q/m4hwUFOvhI8piHOvl4uRm7hlgE+bv5qiopycgdl3VSUXZQVFRXlZYh+lcLwr8yl9N0C/NyCg8KltILcAglx8SSh/y6H3CnIxdMr1E3e1Y8sINDN3z8kyPkMoatTsNOvRKSkpPi/TKQVxsOTw/HWDgUlGQHuD5pfb0Qn8fDwf1zEx9s68e/qbO/h4zH+UTXtpoDPYvmketnjRYMtvWJKIrtlh3Zwnzf+kVYOLwpPI0rk34L2V3a/zP2Vmxrtf+bGRld+yoximA7u4tFePsD32ZA9nOVXbkR/pKXF/yMhMe56gPf38Bn8R9S/4+HfY0pwF0t/WuC2j7bGfuwR2ZU3LNifBhnCnMPL+9PQkoeISlNnX3KLFX5fK9mflpd0JBLFdPdl0vhrJ0zJ/kTSl+88F9Xbl9/j+HqMHu5PiZlG/AUR/X3prOh08Gzx/ky/gudPLXJkX/a+vp9fULQ/CQ+DiUPCBvvy0M0Z6oEH+zPw7QUdDyHDfflAg+vcz8L9OX2nrvyWoNG+pP9kvyhauD+P6G2zI4Gj+zIyO9PUumB/PltXifvAb7wv3xlN1Ebn70/zHlpXeQKTfbl6di5yV2t/Wv9gES7P259XzKpP6PId25dNxdY3p3L3587ej9c1tKb7Mq20c/ey6f68xHx1IzR2fx4IJvNleLo/1SW4HceH9mf6+EDj3qf9+Ws9zvPze9aQFgiSXNTz9ZVNYQfNE/LraffhZrzFBRenOxBa0Go2Dj+BG2dehpTPPoBTuxkGoS0vYDxt/8xRkgqYFJ/ymNCuEcaUGVhg71VBoa7VT68GWmHLjc5dHaU6aFTw6O4ryS7YYuuiWhDSCHmTWda2dPqhNJOfgUh/CzRp3qHeWxuEen2VU0/E2uGYEDv/z5wRWCOcbaQR2wWP1R48985kHCYbzPCMzvbC8SZdAdqJKXif9HscWdEAPJStlM7qMgtf5R68KTkzBE9gfpaFh87DEHKWHWumUVh4cuaw/uHX8EmVTealo+PwgUa05qe9N3AkgSG88PIkjIo+nS7Ltgzz3qk4dwi8gtczz1IDubdwlamh43XrLKTV8bSmMnoP06a8t87Iz0N6p3CtdJePsHSh0Hb+8gJU1+xKX4j4BIn1nugrDL+GJsN2jgcOfIEz+V8aPL0WId7cudQF7TWowvR6MHR3CVbz2T9Ii/sK8wa+aVncWoFOKerxQh3r8Ht3R+BP4XfQNHZeO5XiO1SzKl8Kq3sPNc7F4OGbbMCYV6kn1kw/wtDvS+nGKZuwbi2ZXW1xFb56vnbmwuAW3IkjDn+s+hlmZg12xzFuw6Cw6fsPiL9A1zxZY3/rHWgocvx7cv8XKF2c0mOV/hPyTQwcPZ25Bkl6/EM4JnehveGXQW3Xr7CjOIRgjgoPVVaXjBJJrUNSlcaNvMd4iDZgDbzcWIe7Xw7x2Rw7gCopFARdGr/B9ZJnR6k+H0DWxSHklMnfYc6VE4+epeAjdbEKn4eWGzBfY3vqmCwBap2qSFXj3oT3R4UY5gcI0AcG6vzO5U147w4N1juIEDVfGGaxqNiCWTab59bpiVDmcuaVqXM/YJbOvdLQSiLEc7nLw0FnG+IRGU99tSBG6nXSVPNUO9BbA9Ppv06MOqMwdS5jOzDHl2b2bSoJugn0xd/l/IRj6XtfXRVJkd2uf2ag9y6ceE4lPTdCihyqezt+yO/BLU51olOhZOgxsq5I/rkHFfXibs8xk6P+pEDBWy54iFLskK9XNTmyFXt9zb0dDy1QrWqtHadACx1WmyqSB5B5GZXjpU0KdG4mJJLh5gFk9qzYlDWDEsW89Hdd/34APX3fSl+jQoVesmU8fmWPjx5tNxM7TVKhdcNHlP0IHxVTNP0gi6BGkucbvZsECZDqeg5PHQcN8r4Ip+uTCJAwecNIWB0NqjV7R9f8iQC5PF3yvSdFix47i3oMWhKilWJHOqKLtEjtU/jE+xeEyP/+5HOfPlrUHdFpRIQhQmKzbedHMXTo+2WJKZEYIiSTm/taJ5AOmSH8eOu3RGianRy/CtEhMKXy+aoJMVJze5cuQkeP+MTpfHsridG98k7pu070iDhiZZmajQQ97+QDNE/p0dyeQ6hNJAlyYaVIvIzPgI5dovQreU2CjulWRnw3Z0BlkUljBAakSCGKwdk9nwGt+J/JcnlMilhrzxwZ/cqA+B1OODUzkKFvBFf4tHUYkarWkyjRcDIUR2urU5rKiFrIOT+nzpChTBXSHspFRmQ/MuBEqEOOjse0iLgrMqEr1HRkYQ/JEWNfVAyMZUL1+qZP3lJToIjDhpW0o0wo4RPrVYdgCvT6cm33cSFmZGAxd2xsggJFPeL5eiuUGTWtaSSaAUoErwlnNrcxo4KkOcKeAkq0GyCl+ZWZBcXxRUUdIadCr0jHPJk9WNDQ01PqrQFUKHWah1mqmgU1jNKO645QoY8kEQ1KJKyIwaTIEHuIGq3jxWXIHmdFcz0NmsY51Gh7KyVYoogVPTYePThERIOeoKPRbBusaH3E/9lJHxpEVj2/vqHHhtLiqa9/7KdBcW3rPO1pbMhzSZ5Xm4MWeZzdTUhaYkM55jN2TCa06IgY6ZejSuxovCEhdTmKFl2NJL19II4dla3LPIaVtEjk4d0fxSPsSJ1u0fL+Ei1K8ndV1BHkQOKdOrMJbHSoySrqyHAwB7KUZC2PPEqHfqhm2bu2cKDIlPeRwRfpEIkehf5bBk70JlsuNfQpHUJkfhJuLpwob4ucNGGRDi2RslwYe8qJ7H6e1S5hpUcCyw/jdPC5kNFq95N5I3rk1KqaUmHGhVRnebjZLtKjqugac7ZcLuReb1fvhhs3o8IL0xGfuRC1wC31jkV6lFivKzkDuJHPyT3HI2wM6ODgqIH2dW40tXY7dukoA1pa8nAvnuFGRgkSJTFRDCjlnNAxWikM6g3/2K/5jAERbhEmXryAQda8eFZ8KwzoUEC80o9uDHrJnK4kxsmIIqkcfXWoeVDKYSZXR1NGtGys+JZNggfJssgTJ4YxIseeV/jfDHhQ9KsDlV33GNE9oH9o1IMHwfCeAtE2RhRL+cKkIZYHiXHT+RV8ZESWjfSvS/N5UB3rvYFDTExI/rrJ3fvVPKgdPmC8L82EBFr0Wm938SAVS8FsGkMmpDRcK3ltlgcJT0+bX3FlQkcFwu0TvvKggwapiPEiE/K84T59mYQX1ZxdO1ucwYQYnndyXRDkRZvwIlVcIxMiY7e3C9fmRRWqhOQX3jIh9m7dglAnXiTjyembTMeMUpPXW89c5EUTffa8T1SYkX3CGLl/Ni9Krf2Jv+LEjFwnnri7t/Kig0ZRk/F3mJHnnc5S24+8aM6CpN2ghxktXzszqs3Eh9Svl8SJErCg+bn0OYwaH2pfETnMq8KCNsrecbx35UOc5bI5kgEsiCpc9XjVFT4UGHKI6FAhCwLwZXPgMz50pbiH3X6KBTmdmvBgmeZDU3xSulfpWNGT9q6lYgJ+ZGs44tirz4oO5R6bFxTnR0c+L57mjmRFreFDU3nm/Egp7Xu0/zNWlIRWzCjO8aO0l4GJPe9YUfGkY5RDLj8KGz3odYiXDe28kCrIa+dHwtuR5TXH2dD8GOeDsU/8CKhvLhpeY0Nt38iLKVkEkPWl05yvWtiQqjlbgry6ABpd4NK+vM2GvilftjjmJoAidMg5NOTYESOy8XG5IoAKzhcmMXuxI4OSLMagSgFkd3RNgjSHHYXKe9C+GhJAjAw77Xk97Oh7gaKJzroA8vWp5TXFbbuTqmw2ihkFcfNNdJtWlAOth4vOUygKoidD9E8XrTlQu1BjmY+VINKTEqPsjuFAxH5PnZ4GCqJTnO+oz5ZyoHRrwrnvyYIIy9KRJjPIgZ4caG48WCSIvK7QVqxvciBGO1AV0iSIfkaX2DZiOJEng+jbkleCKPjiPaebepwobOnoSe01QfR9B99vHTdP6/yeOowRC6EY9+4tm0ucqPnuhYOuHEJIPNa5u+4eJ7r2Mvz7e2kh9MPNYounjhMlmdd9dtMRQuMyucTnJzgRd/vJQ2ethBBBdL/bty+c6IxR41qUuxCKOpri50nOhYDQqZ0rYULoaMKVgjk+LtSJZ7x7PkEIYWrDj4PDXMhT0JXVK0MIpeETm2VacCENCTC0dxE/6vc5/rczYZHqf+5MeET1D86Eq/8HZ8IN3PWixHTV7LaSxn4csB8qz93bn0t5GROCF5X3ZXDplxuZwgf3pXuur1/yp/2ppzyjEjCnsi8Feo4RWwwc2pdXfhbM/ow9vC/Pt79qDdjdnwubcvfZK1X3ZdO1Ap/dfLV9mSPAfHAhVX1fRr2MJ2yLBftSuvj8iuVhjX2JOfO8t61yf9Korz47KKG5L/dIhe+WFOzPT0MOlzi5tPbl7L10j2u392ef14AxHrX2voQK5ApBcfuzfE+L/c3u/rzfGYFnHaazL6/ffraE/bQ/Lzp+7Fbx1N2X4VMlh+S69yecHU3z5dHbl/oEL0ulHPfnoH3EFevb+/PXOvb3RZNTyNB687IQKiUrOjFgx4WMbeoHYv2FcJt6SzYyZy704zZ9KomtELpRO0ih68WF0tSV1a9oCyGZYKPvkYFcSKT2Uwi1FE47RZ+pCeNCgdd9jPUZhVBtId2ocxQXmgwovX/+hyAKaAm8S5nIhS4dmiKsnBNEd2qFGCtvcKEPdteX3rYJohyTxCSrTC60ZdV9g++RIHoTh4lby+NCT+9pRjLiblqe/qJ+Fo+5UGyAXCKZF+6mNUjdUvKCCwVf/ixMoC+IMt3uNn5r4UIxMkeHDggKIguD1K+y/VzIMb7+LSGBIJpsInE/OYWzp8mg7dGkAKoheH3k/goX0qdSmz7xVAD1CMJbHd+4UDJRiAddkgDqmPvyehyfG71zA4odTgIoL2U4ppOGG1Hz+rJEq+Bu6uuG3+5ycqPBCyny26QCSPGAWTCVBDfi7XgzFzLOj6Inl1RMD3Oj6+OxcqtF/Cg4UnfLwZAb+b98O+sQxo9iFJUnD9pyI8ObCvVtevzokbBGzZgHNxLxvpgpycyPRtkM0kJDudGBgxVFiYt8iFnf6/RUDDd6U2LHOobbBJ3bI3uDfwuX/lHRGkMMH9Lw26V7m8ONPlJEx2hY8KGskjMliY+5Ed7Q4pdcKT6Uk97F2VTDjTi4E5V+kPEhj20Kn6EmbjSKdfY2WORFY6sW2NpubrSE6q1TEC9KCmfWCR/lRjGf0hT77/KiupiRbbI5bpROfQFjepkXJcxbhnovcaO+zM9L3d68aP4WBUX1B26knXJ3Rc+cF01uSIh9WuNGWl3cdxpUeBFGMk2Xfosb9VOn+Crw8qIjt3dHMXvcSGj9hYTbDg+Kl+WQVSDFoHrfiJYbYzzICK+KkZUOg4y2K3prn/Kg0PDoug42DMqOU6BavMqDooQCkvX5MKjwXsAgtRcP2vWzVUkRwyA7rwapL8o8qJBvueuuIgYdlLp2bpiYBxXZL7w7ooFB5A+sC8JKMYhrOSY+1RCn+7onzAwwaHKWrPi8JQa1nPIlklvmRreOCtfhncKgqFUKWfpYbnT0hU5/jAcGfXszbL7Jx40IMn+MFQRikH9niekcws2TK5tsjuEYZN+SsIM9xYXah3UVqi5hEOMjAb3HO5wohrPSpygRg7puo+upmZxIw5UnP/0GBpn4sYeFH+REK6WPNgQyMOjQZev39qMcqNkn/tHRHAwKf2Dz9TDuEHXNVq+CtgiD3t4QWWGj50Cvsm6MBD3C1ffC5vRGOTuSmJveGq7EoG2ZtIYhY3a0d/aZ+sgLDKqVhkuP3rOh0tRjoSEQg1aPORPGJ7Ih9ksL1jUtGJR0cTrYQZgNHVzHf5DbgUFC5daLyq2s6LgH/7ekXgwSXy0qpnFhRUJOA0/ZhzAoJOuFzDIeK2I5v5dhOYZBEifHAxvusaCCzltX1KYwaO3g+R+pqiyInKvlxNQMBr1g5InxmWRGAQHrEuELGHSdwuC45llmVNaKJrsWMWh5hteViZkZ8RttRk6sYNCTd9P2S5VM6McHj7SH7zEoduehQ5UZE0qdJNHSWMXVlzrMJe4TI5JqL/o4+hmD1ISsz1hdZURJB85KKnzFoEsGlYQC4oy49eWZx8lvGKRAlcj9tZ0BCR2Y5D6+gUGn3vCJNLszIK2WCKzgFgYl1NbJ3iJkQKfiuQLXf2CQ6AN2cdc8ekTafpg8fQc3/srd8pU06FHWS5JVxl0MMhwfekc+Q4daASkmYA+DSovGZOcj6NAjHwNuKzweRBk2dbYad/g9W039aA2n+z4Ew+vVtCicku1p1AEe9LHYU97bihbxH9LaxcPnQc/5K6uvLtGgm0945ENw+tq9aFMjPhpkqdTaOoPT7mzmb0lPUSOmOi+bIwQ86LAaTWdnBhUSMRs+UoTT8RVXB1JGKNGXdhbKnzjtoT311I6OEvkGJL8zJMQdNimcyUSMKZDVvasEN3E6a2jF4VsCOVLvuc45gdNrA8XibS1k6HYMTyAbEQ/yq3YizsQjQ8yogssSpz94fzkdqEqK+HS7OJJwWp+tvvvIWRLcIdVArQ6n87AJwrzPiJHsRtupVZweD0w5vf2JCCkKPMznxM27MbNxsjFxIuRq3jujj9NKV0aEKz0IkZ1cJAzE6fw1vI5r+QQoSJ9u7A5O09pKeHvP4qPkEwWrDTid9D72mi4HPmp9wK72BqdDkno4MccPIA7lDQtSEh40uVKy8e0mHjKMDHggjtPkRqZ6Kdl7sP7BpRQTnHZsMcxWYNqFMn23zp3Gaa0fMbf7ruzA5XGwcwun05Ixzg6E2zDs8cOAKpyuGS9JnozYgueO83NO4DSPgddzra8bUDEsTnoHpxNeCM+WeH+Hn9PeamFIeZCyMRsZ3sI6dJFUqtfCab5zYZ80bb9CleAn0B2nV0GQT2D/F2j9kl4+GafxeeXTkvU/w3F+iuFynC6ZuMQ0j78Kt64SHu7F6WDtj44poe8hUZVb4wecLtgzUhB8twLJg74DCjKcvby2FDknlyANjI4Uxel0s106/IHXMG1EUl4fpx+MiHaJlM5DtmXLQ444rfGTpTeCfBba0GfNnsVp6udmRjENk1AMu7qTgtNlcoE0fkGj0L6T0qYYpw9snghTERqEE4rvmxt+lRf5vaG3swcu6o/U9eF09ZEv1OQGWDgoViwxh9MF5++zCGMRVMpvfPcJpzMMzOKtk57BhYQO1j2cXhYv72hkvQdXU4cNqch5UI46C//4vSRQpnuDhw2n6wvlo6hOlIHHZcL6Ajh9/gmXjAbpC0AVhX9BGqc1bdNOmnxpBIM+IYwqOM1aNeAdeQoLrDdJQrRw2rm27sk/HfoEyf/nh76PZP9w6HP7Pxz6vHAXBt/s16EO7UeNwuc5UXz7047MO609XXFfxi+eDZhYUNiXhrbkGm/J92fKwktHSCy/L4d9fC7dxpfbl+zfOPJ8dmX2Zf1Oeuzldel9qUfzo036g+S+lHqFv/nZTWJfBrlXsmKdxPeljUKdQcKU6L5c0ONKVhgS3pfetpHdc52C+3LdZ5bqahP/vjwfqXFM5SXvviRwd/lsg5tI+/GFKr7uN1WufSnQM8TBxMyxL4tt3Rf7DNn25a95+PdJr/H+h+sTFyygPUeyybiMQdzpdzQ6PbHAY1FfJBe36bnV+HZH2A8Lcpwuj9Ndwd3Er5mwRJ3GggkdFs843KYu55t41NkQLFgrYQ9dk8Ggc+dBweFzWNAdfRHo/+BGi0QvOUIisWAgn6T7ejM3mmZ5e8wgGgtunbpvPnIFt0m+zaZ1LxYLDP1pcpmtudGM/p3mcwlYsLnGKnEcw41qvZ6f1rqCBdOvwE+CMS604UPzSfk6rnxp1/Dya1yIsTf/htUNLKALUfQ8pceF3vU07dy9iQU/mdxWGHc50Q/m5WHCW1jQOzjGOPKcE+lhk3Uv4fQgXp4loyMnqii1vtmKSx/LP6zgRM6JXr3IS+9KwQJN9tpO+IwDOX91xyRexQIdrmeusg4cyN1L9OxXnH2mFcIjz8k4UM0jkiC/y1hwVGzarSaPHdXZaTBtR2BBm0CJyehhdrSkqfUiIQgLtvUNCWhG2JCETxzFnjsWaMRfbz3lz4YiG5KLtGyxoGv3ahckYUP9dDe044yw4HjolQGeXFYkc/246J3DWCAupMNx6xArIu5pN7ATxQJhs+cM9MMsqCv4pPYTRiz4/vg91W0/FmQYIRMU9rMNND/oecFMwoKwlwhy1ZfawPV75W7pOczo5xIjUVh3Gzguo9bMeogZWSpq1u2WtwH1jdS5lCEmVGC6oliR0gZcy3RVt32Z0Pi502Ze/m2goe6woSUxE6Io/OHLe7QNMPfI2jy6z4j4ZtzEZoXaQM5BP9ZvBxnR13DlqAu7reBQtR6PyCADir6osTc62AoUXtml6/owoKFUm4GO/FagGFZaYIrbLAqUBObXBbcCJbqdJ/bZ9Ei57077Ea1WADCJZpZK9CjKuXv7KGUriPVgV1Pvo0O9FrfdSwZbQC/l+QyMJx2Km2Y0NLndAuT8F54RH6BDdJefKRh4tAB15QCyZ5W0qH3mULO4cgtgL/HPcHWnRZLW8aTvCVuA5kpWJTsbLTpLlDwb398M9LKI+9vv0CCbYMIbWxnN4L6rh3PMT2p0hwHvaWZIM5hMNWcrS6NGrH25LLqmzYBwbvjhojQ16g3liPgm2gxsjW8IS3dQoZ2LhHQP8ZuBTpw0UYIzFXKxF+M8OdkE5ig2ela3KVGkwGuJ99lNwMiSb5vUmRKlt7nqHnJoAtqJ3uFa7RRoS8QqVJO7CfB9u2l1R4oCNYp5BGxNNoK2x01qBLfJ0TzXpITD7UZgHtMdEr1Nhhyr2yNvHGwE1UYxaFSKDH38WeOeP4bAAIWJo7EzKSJ/dSfnahACC2Osbq9uk6DTgz8CrMkQYBOOy43sIEYmrq0d8gchYNg1CxP/SYRq+G9XvjzZAKhGuIzHZYgQrPZfUYqoB53yR+pSXAlR3tGTl1+l1AE5bZI443QCJO7oeIX+fi0oc3/ZQ9GNj2IKvFdtHrwEUQKpG217B9DMSrDp/UcvgOWCH2+0/AFEdiqOYuNRDYg+5C95yAMPzSD2yDdF1cBU8kPzhOIeLOU4r06SVQUockjlRbJ/whKSXdXdpOegXeaN/UnCHVj09eLhb+HPwOVGGHPT5wccDeQ7i1wqgUagncfjwU14WTiukNHgKbD5QR9dqrIBkwOwWyfFKkDvRFxCfM43aCLCM9NO8gTIOjed1CBZhwt+Kx5yko8BazbpTnLlGlRUavGJ1C0Do++q7KHDF3i2+NiJcpsSIGXc+nCC4jPUcLzB2uVeDHKuJB6pCvgI3161CCIPfAAyjbulrmDfwQ/T+rQh7QVgN1re4ELSCrRrYrL15coHxLXZHibGS/Bi+mEuuoBc8IBBUg6f9g3MyDU20o64D/q2xo2yB+dhzt1xFV6GLFBw76aSodgs1GK8deRrZAZgf96BYWmbgmY3hPwal9OAwHLdxx6ncaiZdsLzrXEqULDPvh70cxhOJxS93Kq4AS46e7dSZAxAegkR1TmRa0CL/LaRvFc3lJZ9MRXenQjYUx3o+BvbIJ9zdvaEXyz4wNPCRMDWCAm87Yk3qS6BWVvZsvb5KvhCb/R7uW04IO/1YX7KVwT//uSJ2q7XyF83jQ82Wll/PYvYT/THRvCvzyKexP+f7yQF8f+Swa/w6zlL6v/DTvLXs43/7dnDl7rqoYYqun+yPdvrKyeZ/p/sPmPSYlZs+CcTCuKN6o6Y/MkN7xbnM2Smf/K/Pbvzy3411eEEjFo7fBKmY8yi1g4ysw2HmHH0krmEueGIhas36lgHHbHgy/229emKDkB/crvrfGQbjB0yeese2QZCFY8MzWK6wFanYhJ1fQskBCIN3PUtgFrkfEgxfi94F/wjQH6qGTZ0b/TITDWD5nRdXsXgPpDmVyfCpdQIXT/ZDwopNYJo9oSrQosDoPQpIRHexwb4bXjJb/dDA1i6FxcjbD8ELpz8XOqSXw1jz7874ZlfDQIS0tQeyYyCnR+HgGxvJVSciSuT7q0Eq0515XevjoGZQE9fmfmHkHXuZ7bw/EOgylVciM86AaKrXnA07xVAltdHNQf3CkCcTy0siZ4AUmufFFmyb0PK+raJzazbwD89qF6UYRL4YpPLiTNiIdmPRnXhjFjQet9hAXNoElDc06TkvB7YMFBh3koY699gJK9XV6gyCSJOdX39p2PLqwP/88FWeOAfBhv5/2GwUeL999+qdr0ZLoQqq/7JdQPi8hsfNf7kTW4RtfuN2n/yv/mgf9lX6EjBvHYtsEH7QsENAVyjKP/RKI7SwVWC1Jnw+8DoUyK8Vw2Thc7Fh3HxqwGO4NruQ/is8YqRyEC8uh0mOsJpaQIIMGRekmR9AWnJGZFmg34DzXulS92l44Dxx8nBc3cbYCS97PNR8kz1hREqkjfYMVD99VONoHsLjHOrPkcTENtgo0U0pdIwAvJ5dncIYRt8TnVZUc2oSN07szo/L3MY5M2NRoi6dMG1mW0PMlTSoDbEYz1ybBC0xHJb7j7pgTJlD+92EHxXb3zIe25aeAAgVF9yAK8fevon+nKqFTWohl2cx2lgXHjy1D919sn/RWcL/lNnE/8fOpsU77+fUdU5VCc2v0j8yf+2N/9Vfmbuvyt9IKjkFgZX6dC0f1f65HzU98G9PrjMXbinJZIHuseLn77d6wO+KwSnKJX74PsvqvZq9E+Bq++DBSLlPkBmTlF+2Kobsv50D5GXawT2XXbxGlbd4FSFBwuTWScs2dVOz2lpAT/143ztzToBUVhT068VCa9iUPnXinTN0LLx14rEwqus9E9rewn9Hw144C89cIP+P3uApd1R//VfeqBU5FrDrx6w/Z3B7x4g/uOi+WPq/P/tCQbcVVH7UKCvSgjtR+X5qNce4fz/wc9PSxWzVJj/gxeL5HKIl7bg30kl6BCR97EX7Mdf95/8gTpRFX4etB+XFeRmHpPQ/gd3F28vJOJ2QX9n6y21UYKQYrAfn/3qMC7Wo36cZvCA1VuVh3ypcN3/aXUW4yTo63WPse62BIL3YzjPUp8Ahee25l1DJoHLgPHdtIIQoJV/7VtZyR1wkaDL145gEuzwf++LvRAN+iuONh7GPgCHn4hUMApMgnspw5rx5clAvFl3hlXnGfgxtv6tim4SCMi6RZmIXwNt9FMBk231AGV8GN4WmgTHnlKTzHVfBVl1qjwnHiBQw8e5q3VwEnxW2bhhrJoEXB4WcVB9bwYrQyXCeqcngZ2mEP4u/gWAt/H5eTzEAqINxr2gb5OATbxpPG3HB9iJfnjXdLMDdLXvavPrTQEvJUJMXKsldDN63GsR3wVGjAtOY0umwJaa872Z0PPw+NkPIi1ZPcDfUpCLnn8a3GboWboQcRmeHiHneplzE379fKk6mWUSxLG0XEh7dwHqFN5Rnlz0As9iHULsz04CTnPeOjkGb5g9kNNhSpcBDJUvUnDhTwILbNArIkVjIOT4+UG7TxHo2Eui8sG1A//Uyy3rybPg+fE4G0zsM6D+6O4b4dkJMOD3ai8TRoGWdnFe+Q/14O0DyZI7wxMgxqzGmYbxErC/xGYYUomA4jPQPzU5ARjMnz3FK7wAxqIUnzlvNoNT2BIFL7xJcColjFvrtROQGovM4q/CAsr5728e49pNZOPWg88WFvD2QFkHdUwH4KVLM2d8OQk0/e7TTTaGwt32QAmlM13gS17cnXDmKZCui08y7xAHZ5Wcs/kv94CLeiE81+KmwLHgW+do3W5CghPSDKacN+DJDtvTqvSTgCDrwV1yjRR451nOR8xiEHBOWiuuDpoEGtH3G19Nx0N9ZT4Lm9BMcGT0blzp5gRYs7d+e736ApTxUOW+RV0MLG6661ZsTICCPC9ZWanj8PW6z+30lmfgXeXem49FE4DueJgqSa0tONexfY2JpgF82zOecY2aABJHHtBRLTuC8Icv6Q5DBJjV7EOTzk8AkkBZQemvtsCJ+ew31a1m0PdAaoEnZQKYNzSIjVN5QHPRpxvipVhQcPdIbvOnCfA0TDKZkvUsjCBixzSe6QBmvLODnjKTYKuADWPjFgO3120nwk92gYYCx0n62ElwhC+EdbjlGty9ZsY/59EDprZdSoM/4vYpYS8OGBDchceffxod17gOTZQdrv4kxLV/zRllxr106FHJ1h38+CxgqvhMjHWdBFkkLtje26nQOSvGDPbdBbxCn6rrl3H2dPD9fBt7HXbcDiv+/LAYxIkbGc6MToCmc7M3pTWjoYKFGr4L3nNwLWNp9pjvBHCrCL+60RUM6XZfpQVLNoDcbBuTELEJUMVCUy8cchrGUBg6l7UjMK9DS3aaawJEiE6Wsa0Fwur7i1xFG83gfJzpgQSeCWApnufpKhEFjVN/aJdnY4Hbge2G3oAJcC3UJStkJhZa3YtgXHHsAE8jRPQPPZwAZsHO1Zj7V6H1pzx5Gd0u8H4o/XjF9wmg//Fy8ouKW9D6iOkRCsMeMBLjL7ZwHLcFMfG5qNVXBrEk/rc6CWKhturOzMe6CTAREMklRlkGNw2PvajQigPk1aPFvjST4MlrgYvvKh5C8SIS+1a+HHBKSU7A8s4E+NJCJHCr6QE8/fHyk1eoBASw5u36Gk2An/Uu96yP5UGqCsIJv9bn4MELiQz/5HFwJ0Fvfe5hNjxmrUamGtcA8O4mpSx9HwN96SWEVBV3IZ5EdVnKHAKTYf4Rst1jIM78h/+KVwZ8naV+u3i5GeS/eX1YJ2MMrEc6dwXvZkLKR1N5r52xoGzVZU3z6RjYCl5yqB/MgmblGYkb9B1ACztq8mRoDBTn895IfXgfun44xvzsdSf4qJZykJ1sHLC6HD+OD3MhPHG0tHK4G1AqL5EcNh8HV3r57Mpan8O52Iuv7YzD4bcZRxUbtgngPSx6afjcc6hQUucVM3YVTJ9uCF7WnwANARemt44+g/z6ZPdae3JBUX67jvbrcfA9noLa7OFTKDZW5kJtUgZIvftv2l4aB/F2LFasE+VQ443pgwKRKvCY6YhE+r0xEB40ScvKUQo50s2lNaIbQEL0/ddnJ0cB15OUTv3ch3Czj9+cqROBi2/3TlXcHQVMTqd1K64XwXe1E0dfP2wGo1/pRxK0R4HmWM2ylE0RHPra29e+1QY+7lxvplcYBaWOpKdAbxHcufViMCStHdw832nni0v/4GurEk1LMVTmvSBeY9EJVldb7ha5jwK2LuaFFcUSKMB+XL5XphsMzxKpGWePgoTUJDHt+pew49UCxqwlEJqLsRQc8B0HpCzKimuXX8Ks1dlLoCkFVJxKa/VLGQfjNbZW244vYO7OQZKi+3mAWH1n2FFgHDzk1BB9+KgaZt3ovntsqQy8zX/w0L9tDJxtpalnrHkGK53eSW9aVIF5zgBuq9ejIEPoo3PsdgXcaKDOPejdALTCHQJXiEZBgFveuTa2Cuhz3ODu0ycIJO9wpLbjtsKjhwfO5yaWQ12T3J93zzSDiNPNLAnmI+A5w7XUw2WP4UXr2+3OBW2AJcpHrk9iBAhVJ9jJTjyGBoc6d57LtwO5O9TZ6nIjgPMk3dyRS+UwkBgaJC90AMWj3QpYwxHQ6+4uHGD2BF75eV+g9wluXRLNPHM0dARYjvEuRCw3QkonDdXlAw6QPNyVK396FHTKzZhujTdClQttsvJ1NwGknVzOWcX1YzK1Hbd1I8S7HkKpHZcPKhx5WUyvjYLN+cyLOtEI1lXNnJ4ffgTe521KXOYeBf1iDCTfR+uhVb32587LVWBOwqGMUmcERJRnXp2+/RIeO7SwPi3YAF4WpE8GWg2Dgd3l9Jxw3NHCYFzbMwSBosO9xVcODINn2lnEhY+roWy3NWImbgaFBjrLFyKGQLcuQ7XY4yq4mz1ljNlsBZ/0omIfyQyB/LuhX65HVUGRnBVxe28sMPWc9fESGALO8bf0zl2vgvzyPXuOO+2gRpJmc0lsCMTIGjgXjlXBnW2KspyyTrAkoftQTXsIZPUyPSrYaoU/sd+yir7YwG1VasHgn8NAqUjCNOp7K9Q4Z1ny1uAWoAh8+9WLZAQ08uLXjSS2wiIdX4uhuXygrx4niV8zDKLUl/eq+1pguwt1L6/gY5CyvFH28MQwWBa7/zjZohn+/HS5mqKiCrwxkBijThkC0TYuTTdzG+FUi1LbPGMDmH1QLod/dxDM2OKrnyVthJKd3sZepxA4JXdbNV93EFTq+LTkrUH4TowAPm5oArWlcyFLJQMgk+zU5+gzDVBn8nb+M99W4KOp33kQDADRwjCVZPIGqKUoUL0K24BTH9WHq/wDgMS2aTarvx7OTsqhPvF2EKNaY3+aeQCECYfdCGith42KBpptTzoA2yqRHTHrAHjrKP7WZg4LlXyemF9aOQ6HB4lozlENg6K0iFNBs1hIuVa2UnXtFrAlupCSyDgM8ChZDZovYqEQb0vuZ9YC0DzOzm3QPwQMH5l72oy2wbjaWyHW7o+BDN+l5w3hQ4DnqSl46d8Kw0uL6flHqsAT+/ht1apBEF/vyPO5qRl2m09Pbss0gEuffOY/tA0AW/QhMkG4GZ5gNI/L8EDg+25HkFPAAPhomtxGRtsEt3lHD/bUNoGTFdjvNf39ADufoX1PqREK5kZ9UjRqBU+IyGlLrPtBkYnhOsEXBM0ieQjTktrAKrfHTXbZflD64zDNWhOCqeSsiWGvsUC7NCDZib0fdN5FqTEPESxZ3KsZNu8AWRY7rzto+8El8xOiEWWdUC+mj/Wm9nF4xqX2nd3DQTAvwhXk9bgTJl+9fpiTMhVoBGgMmD8eBH7xRJlLtp3wwUMhF0G/AtBJNVdYGToIzq94v+Nt7YBjcYPV4S8fA/OBc4tPRQdB9Z0vWSsX26H24tn7lUzVwFykclYnbADwZGt/PL3QBuvjyS/GBzSAmQ+t8P21fmBW6MthZNAGn6WlvCeMRcCKoTf0x8F+IMXJRpPI3wqF092oPzc1gcGZ5qyj/H2gWiswJpGxBdIfOPGAir4VcOVFZoR/6gGhFKyJR543Q/wThlRZ8m1gIbWIKi+uBwjfIFc+69AMHVKGKyhPYYF9UEdIlmgPOGOJpPUYmmHYY29qz5vtwDRlxkRzohtME929tR3SA39qL0k+J7GG7urke4s6A+CWU2AYd1gPJBjx6c09nQpqO3m/DegPABDFVWwp2wMlT9qVHJ8uAO+F+qRVMANgVQZPSqGqG77l94mZjygH91L9n2nP9gMjdzzzwbQuuCiOZ+xUUg1GpQmfvtbsB2SjHRdqmTshUdGGykteCDpq2+vejvQC77NvlRdiO+DjLkjxGnd/93rudW5DrheEcBJsFnq3Q/6iFJdQnmbw9kBwJ9/nbkDKEEzqqY6Fads97nO6rWD7tltO6p0uwKNqXTcL26B1DKueHGgDd30a9VhJusAD9tlypN0GlwoNbrSpYIF1advroPBO0DxN37HX0QofDtQkRii1A1ezpulDnzrAC/msOw/teuGHZlWChHdWkMDmZaHaYD9wiyBZybXvhQqWBhu3ElJBpt+S2uBwP7DWf6hBxNULYyctZekoC4EJ30h689N+MPGDxfpmaQ/stSAuCR0uB1xTi84DYf0gYTba3jCzG5b5+YGlT9XgqZRbo01bH7je8fzFA6EuGDUVJC54FoIIXfL8KeFecNXqxsXEjE7olnX8AQl1IyARG27US+wB4tiv1cfjOyDdTa9+I8tmIKJyKUPNrBt0i5xh0D/eDt+nLpbwBrWC4vt3lI9/7QQlvhbGN3qxMIXFMpf0VBvIc8xJ7rbqBPg0KaWtR7CQplbsEu9RLCAAmKTE2g6wGf8pgaalDUYaKLWxHW4H7zDr1Z/5OoAH9aOHLaAPRucyGppLWUFlq54KSUdcvXyKAuM1+6CKaS3py4pUIG6dMC/t0g9qb1YG5pH2QdK1qxt3tAsBnrNX27puPzDMaupluNsLtRujHVbpnoDXhLsnjKn6gWaqlEj0zR6okpNhyiVSAxqpG/q+/ewFBEFQECvYDXflVtbKnkHQm/3g2w/PHiDiXNQ4ltEFnSr1eqnEG4E+6fX+ma5u4PeUT53/aidUU3YeiQtqBi4dz6JZM7sApA863+DWAeWlHTrupLWCS/c3Uj7odoIwShWTwdl22Hm28uOZmDZwcERjV6e0A6hY8leu2bbDa3f6sIqnsYDkKf3QD5oOMIrHt3NxCAv5JL7SiJ1sB+K5375igtsBU+EjHjH6ftgc2zdjJGsFjUG83KWpPuBgoMB/CRefOE6lqQlTgdOiudyn2T7wmtPNQP5jH1RWTmrosy0Etn60natFfcBM42bWxLk+SEhHQU7E/gTsdVx2XZDtA7GZKyIugb1QzNYiy0KsBthWxJXaMfcC7LuGd5F73TC35DDPWg4ELU23IysudAOvGwmJVIHduH3g1MweWyMY165C3tNdQCjpnemccxf0m5aTMrZrBvZe4sMqDztB4HD2/UqDTjhXUXljNLEVrIQfxWy6doBIm0vHt7o74ALZ94TpqDZwP/vCt7HhdqBy/oRBgEkHZHhbYDkYjAUwZyLqnGY76CEyF+3vaYd84tTsZ93bQQbNpmYY7jy3u2X06q9eKwHZWfVfXqsMvL85nXJtuwp/ub1sUpO1frm9GIOPdf5ye/1+dOUX1XNU4gzZTNV/eblsLgrRkVwPbEi6E1HKGOvfoPmHr/V3+t//huL3dyUr/u3OU/jMhsetVtQwEfdvdx7+H2nx/5I+Ncrk1S8jR/5u5O/w+5eK378k/C7wd6GS2pzvF5TYwd/T/TXNbwf0bwfybyN+p/mdx9/T4f/F2N9+zd9+y79WHv8vefw9nQODT8uvCt7+u/P1v1Xury3615bFw/vs6S88po7LolHIc0H9v333v4VBLvl79ZuLe7/5u/L/1Dh/7aX/1wY0/ZT0I25YkU7Yusr8R4P9b2343cD/1Lh/HSX/jw1Hr472GDH9co2m2+t3qf/9u/9bG6aiE3x+dZDgH5/T/i7sd0f9dbT8CpKZSTG/viD7h6b7597652D2Ofr17wXrtyPy9wT+7Sj8u2PuV2E1LH+U8cvlXPSH+KvL+c3wmIn+2yE6uPhvl7PkC44Tv1zOAX+kVQzDvV37D3v+7mL+DH67iX+7b3+7Zn+7UvOsAielbUg05D0Ui8wLfwJavKgG3gztqsoVTXWlszGV9TjK9gzgxmkU+MsF/3L9Le5Xy/2aIX+YwPS7Lf+pPX9Ps7/H0+7T7vE6y4asx6v+9b1/jaye7l/hDfh32Ux/JPvd14S/k01cVSGLsVXu+tMmUTERUTxhMQIJSXGJAyKSEgSEhPgHJCQI8SUkiKRlpKQJxGWkiYiJCQmkpYkJpaVJ5eRl5Yik5OVIyciIieTkyIjl5MhJiMkoFZUUFElllRQpqajISBUVqcgUFanJyahoKMip6agoaempqegYaKjpmelomVjo6ZhZGehZ2BgZWDmZmTi4WJg5uVlZuDBsrNw87GwYPk4OXn4uTj4Bbi5+QQy3gBAPRlDY1s5OTNjODs9WWFjMTkTEXsTOzvq4jY2NlbW1OZ6oqI2tlRW+6IEDtnhWVpIi9vYnxCUl7U9ISp44KSPjIHvqlNTJU6cclRwcTsiIi5+UkpE5JSsv76igpKQk6+AgL3XqlIKjk5MlnoUFnqWVlQWeuTm+majoMXxCQnNRMzMzfFNTU/xjxwhNjh0zITQ2PmpMQkJiTEhIYmhkREyCo9HRowaGJCTkBiQkRwwoKCgMyMn1j1BQ6FPo6dHoUVDQ6Orp6dLo6FAq0NLSOjk7OzPR0royubgwObu4uHG4urpyMDF58/Hy+vLz8fFyuLnxurm769AwMPjweXt7eLq7+/ji4r28vb14PT0DBQUEAgIFBPwF+Pn9A3Dk9/Pj9/Xzc/fk5Q08LSiopc3IqMOora3JyMamocnGpsWoqcmow8AANNjZ2dg1NNQBO7uaOg8PO4+6uqoaD0+QkKDgYVUhoWChM2eCzggJBQmePh18SEhI5VBIiNChw4dVQg8eDFU+eDAkVEXlUHBICI+QqqoTrYJCKhEensh7If5/jTbHP54RODtJNbStPBzOSeIYfDjCMkvIq9Sri9m7SMY1veH+GHMh6clp642TdodEBQ2Nvc0YisxDrWKyUyTcDzrFvfk6c9DSv6dEm4X8tlTt81SlG97b81sM9woMyaSpkplGWWZiPI90MPQMxR57SWyzmvTmeu1it9LWoZnWtDOnrSv6Vaqo58+Q10ydO161Eay4ZKe2ePXnCce4mA9rtXVoIPu538OWi2ljL74FihlZec77bDBxFb8QUuUabCpGCY/Pf3alUb6DXh8B192XbbCnqNw9D7/4mick5NN3uTT4kNXPIRHLsuG5519c7Tif3/R72xsfFkWW0Wfk0Tz7xjljTGTtuELFGoPYidBU81It6eBwBzRlQb929FQPdXdv9JxishaXnM33WEoBXZNcOorMjJYvEm1C6YNpKbyhIuJsshNGoq8HJRuD3Q89EJDKy+XGML9LIx+iFjYvcn/6nMEiMLKISq2nvuNesOD8mR++nZbnHY2UhLS8wFVfFyGenk2ZyXXQv2zrFx3iIRcq+aWwLGL3w8jkLZkz3/geGrZ+x6jExTsZFY+UxT7qMG/6mpH1JkD9qep1m+mNivzCU3ye5R90e2/KZL5cashJNEQwMvfZud5D3w9qJP4wAAM/en3TpjHxUwSXht/0d553wKA5JGb+kr0JyuOvT8lNhvdTmheZPjsa/EaI7fKajo+aRPK1L1Mk5Cx6cUpa4SEEHuW3CFX9tTJCSB2W2BpMH3nGXa1JwjYoMnLXFV9eKU6yPyJFznI0YC57Hd/Be7RB5t0MVZbR5l19kMF7MJKn4GLpslJRZ+yXd96WSzNLms43TFOtLytlyDJhpyg+VFJPmVB/nVZW1KoNFyy5TOX5NvETYevYcZkzw5RyAzKatXmk3JJ8hjU20ivP73xO6V65ruEx7xJOpq7ucPR2H4v2Ruwdk5zI7KgQNm6RK2kD3RfksoK+aG7hizJJpWj98OQ6ui2osKkXLXq6kVTsSV4BvjjhhC92oodZ564kj8/1pm4D56cZAnF24bTb7D1vj+SrNA0u3GBUvjR8miFlIIxxd+10Qcr1Zr2N13MXXIpLAyhtvot6Bl0p5sWSjhFbOGaotdRXxtvUhbEbOnxb+3G8vtv0dmJtZcTm6wm1sre6zE3Tq18v+G/YbtYln6216cPWrGSc9jzw7qpPePxpyak7J2K+eIjVbB4lYlhMnZuQVPxUX+je6xE8bh9675Po4b7paPEvR242fTpibjPpGb28k39CaU/EaNKC6vmsP/di9d1WL+/5bDa07E78xKHvhP5YhMrFrVO9Wn4cMrtP0ruok20v6DBceXa/RM8TkG3/9NcK2fEeSXp9nAhaq/HpVlhJ5dlo/liTZhSnLA1ijGvaGpIMvKZ+ItOHy/YQfEEUFzBY+qDoxbu2x96XRoPE7pRn5ouvjOa/WexTzVHV8bnXT0lYsJYcIvhdc5Xq4ERk7PaHsmfKYTVxk4dpNntDzOMHU7wZ9zYT7QNogmp8TWML3r82UPyWfaHRkivubusb55secMFaVuESvbf09JsnSBGTjV1cv1AzmKukzvEosevt6nuqwoattysUG0Wzyj1nyoqNLo2Kp1tf3Z1bGTyNP1TGV1wWnuXrWk7/mjIyt2G5147hskNg0QdaN1ECIpePvDXPuAokm8NiW6ouJ5Al8vrYU3z3OEK5ViVa7GSMV1tpfGn1nudgMJfTZbUBm9PSSSbMJenL9SJXgq/n7FwiV6pRxf+aHZpSUhBrq/IRRbmLWwXXObrr2s+fYDj6c4v4yEOyOOMPQvTG7BQXPggd3Q1Ko1ha4SCNyX4k/c3W1jEuWzrYZKZgNW0uvVL5nom9SX2tGymjNHZvkv/xhNRBD/Nfi+5GQCL3vxZdiz8XXaJGsoOMnrhFdzkrSOdIHpuctk8CW/UnaXEu74E4KZpjJFxaA7xVValPsw8dT7r2SHJKN6x7471NofG1qiLf8YJb/hVOYtsN5l8nPtjmRZczSrcuLzEcjYwkdzCTxzRlL3ZXLxNer7uFl23EIZ6d1nO/PvPStp9xt96m8LF7bFfdKIjWJaWuC8foOO80l5edteaSVmeOG/x8yl02P1mamyGh48aoK8NtrGSh01lavsJHyRxnv6dpFGyyD/Qe4aI5PHdVi4T/pZxBVIxIWJZU2sCtZnD6eDht1qNHnhGfudR9cmmewoTiLW9MwPqXFl1+/gUh+pbCWs3t+zfbrh1ZWPQ5P3/SS5/gInH5M9PXY5EMdqsjrRZF5+YuxPKSuQiwpryLY/CKexa8h5ceLPakYzTbP1U30OAGcaih/mT1T0ppxpKK3JkrlJ/qFwD8onOnM0XKn7mpsYlLWDxEQtP7Gpuc8gdJpYKM0QebKQUIe12sM2ztjUq8wkq2WP6X+ta6iRGS69fuDpmd5HdYzde8/Fw9PJ01p6STgmokYMK5kI3+0znkr0Wy/aVA0fv7CyfTlySPKOSX335UPzJ0x6Je4v7U250KyY6spk0qdaBOe+gVS1pY/a33fmSouedR99YLVunUyBr7HZYznN4UxsXKUvfud+10Olgyn3XjFX955TnJh1FDi8EnA+c5GL5dXzjzqdClc43Ld6nV0y/MWIj43akKuvj73sdr+loG3nkzFxjOV59zd1r4YOeeEmFVerNb+yee6O1jdF+mIm/dWH8Y70bdtTjxSDahZ4T/080Au23eoRs/PEl1qRUWy2uxjrpQ9KOBTd+UFraxrSNJgov4M9UIw8CNRzmEPrwOXziao29/f8N2q+vbNQZ8/jfDVsKLndjczVwYq2t5OFdVm9rtmPzhV+LNvVoe6ewhTzhm4zT65ThtiR1sfqoYZXkHXarQ0FhwZeh+H6jZjnF+epRJs5fxIKswb+VlLc5rVjzQ4Kj1ab7xWrF+WvEHr57znTAV73cVffDtk44N1yMUc4yP/E7Sac+n+ER9usNidC6uefjLPrqWm5YxAVNMNbY8fG6XSMNiDYdtEkX0eLTOJtOb5McojFolKDgoW66QJajJxuUvHQ7uuiLi8oROa11tzrTgmMry+ulvCSwL7+ET/LHyutEBFu7sk2UewcrwFmfMcYpTlZuS5eETeabn+33cCqmubzFXn96smeOu9PSZs8owG88MznZbrW2jyiqau/SG0of7QmbpnkFUxUW6iK/B0mEJBnEZWDvmC36S14ss36xed3uX4FUXcF5o7bWrr3nKTWmOW7FNxzYub5Se8g6L7NW8I3eoRgrobit6MhnGlZPZ8J1kr3l5kclXaZo8rdhOTOrVicRjgvNllULVeYb3qLxmqIVuWG1iwk5F1zMdzwjtvReVSkdh9qIkO+Q+++Ls1oaELzWLqf6J1UW3VxZ0ds66bhzlm9Mm17WGjfST5NQvzFtjWTkNrW+Wtc0N5r2kjYkpXXmzGXn/5Hv8LxHLRwwzI1BYegtNiHTd2x9LEtAmg+blsYeij8/HzX70Yl8PKRHdculZDPWhWjs3MixzaM887wUx1zX2zvE3F18Unbxq8Wnk2Xffl1XSRldTSGae7X4g+RgjF6B6J8LsLadiH+n3ptFqboVlXfaxRFVe6xe3bn2Vijzx9lrj1cfrUhVXDk8H69rMBpaceTxP0yrV7pVmdmFEfrdc49q3n9oPT6dcw5ZzJV0xP/xSxiBhRN9vviBAu1HXvV20uukmFbPCTxafLDaPRP4qZ76IiHRmyqaKqPKydw38DdAvfrUqtEpPEDvErL9Ds5afq8DgFb1dgzsquzy9sfavdXYA//c6q9bvd/TqaVbsl2eHM7OHB+MOMa+lJCrQ9Kx+hZE3M2IMD1q8P/Co0E58aOC1sXnY4LnY2OCWuCTevrpigYcyFgodJg9s7I162B+tBb7aWHtXuRdywWEnrPVNd27ft6F2d6Pd8tbylIIqw489axEfmsQ/9pg01DPX58wPm/n1rmVlZ2Gu3HyylSV+tm/t3qJa13bE4brnal0RaRsf3qivfcCf5qazwwb962USKl9LNtbV9Pze4u/XbsK3qNHK6d8vrGeYRWykstXZx6TDqzml5D8jS9oz7fN6QqxyZ82Y9FfV+5delvR/KiZP/qF7932JFrwv5lz64P9r116jodD2AIB7JBnhEJIob3lkCFHeSiZDhPJKOQzCeOZxcCjRaNIQR3m/zoSDUk7e45UyIeMxMoio45E3eY2ajHO7d927Wnfde9f9cL/d/+/L3uu//mvtvT/svfb67+2103/BxOSUcKsyAmcgHqfwQVWKLKBWIS/ES96+PRLBUjIvzS/wlG/s/Id2OuHlSLZLLWUEH3PHUDn0Ha61+NjuhxYrjGoEOpp/zIL+HNVsIJaGPD0Rf39mxCOuLlxh1Hq014HEIlu4OzU10mX5KBdfEukDeuBI49mg1kfJ0WZcGXcUjJzXQ8b9ReupZgNr8TOE/n1B4TsZWAfNdTVijuOXnv4SBQvB35/FpW4xMLdfy5R8Vbx/KFFi1vmAib176QFdo/jdhOAK+ZxMBvkWmpgRlDeI77oRkrrxJf3euXobdIPRltiOgug2soMZmmRiX63op/0gwTpBT+ihkuuLXBZHkg5qyF/XDElZ+mOKT2lYfyNjQWWwL3hC0+bm8JkDBkeL2IoNNPh9jgnJnyDSu7E20b/Ji32V7R+sakpnRNuXr7I8IGx0fiTXENtJTqFLeLJKGm/4mWuIztK3k08dOTpyeiYzTREXw/YnhFgK2nvLKtY/yXc7ck+0VKgyr5tYpI6gXrxgbVV080vNxrqe7fMHp/QE/W1d/J+ecrVTmWNkJ9tlcz/JykVtdpjYZSJ/k+TEaRp6BPAqMrd/fH/hONmJqHYolcDqg2CySV/M+sQ5Xd36n8oLAZwsLFZYP/W/7gCTf9w03PujNFLDBTlXKk574DzIIup3M340n3rjZ5HC+2loxhxvVqnpGSmNN+tLkHpILFSussWglaQsnDQINWY9FiK+krNt1dYy1uFeB0Vb/a4v5Bgs5OWtNdIZ2WvZjHmtQmxTteHecRNBzhyaI6svup7fzm/NgIQp+/is9KhEW7T19l9ulCqmbpenSbp1U02FKqaWXVMmd1uiirvypRXR07SuPgox8JBe4OW3qjXpWq4Irg0l5nFv99nNvtokcpTGUnzEpHKnj1rfIjHwMIExg2e8aXnIHHM/49IhyWaqgKvX19gsqOAjRM3go7Ytc50jpIsMz/VT1No6zwsw+oaSyNEam8SKw4RtlSR6mg96bO7L98HtnXdZ6gM/L1oaxyw19bp1o810GrEhO3yEE2MHv/gqVz0KyEFpJZHFlnly5ktrlUsm5qf70ieiCg5jaXFfR9sHKES1V5HGSm2xXxs8se90HenbT1UHFu8GSIX/4pTb5cXhUFdu7vvzkkIdOfrNleY51gO0krOvyxakGPk58herU3hslvbaZUXJvPapxvC8apYUT9R8/Osb3uR4pL73utKWocpiZanXXXHZPCem/hJtLVnXoUA3MquYk88W13Q8MHaSZB5BWv1Ff/J+C38YTfVzEDab8kQr7n1iQt1uDiKme6l7rZqDbDjchHz0wDIm+Jhx6KSE+FXk5iqJtP6+43GaVujr4hveLVWLM5pRAdyRYr2v3W7S7ukFKXkIbLWlCdbKV+QH5Z5u8K/gx9wW3i/n3eXilexmpz8iElHOWDjHoxqvFOve8HnRVsS7t5NyUPvpx8thMhOK4tkYTw/cievbeXZN7UxtF8QtLZlT0p912+/9lMk3rCYxRb3QLIYTiqtE9dOoGaoja48jMRqHEc6FTSMa5qrLidbvInx5uG+1amUg7QOq6Kvrwv6SV5EnhX3L1GOLUu2E1K8LxpAcz4fXxvF4NuTyirkOtYTOBvaPr1Iks0Wr6qfKeYJzLPsMgu+wZ8/sSriDctpTatBXK9nB5tiwMX7ffP+pq8taYwN9l3p7z/kRtm32WmZc2Ty5MGnUitQ8qJiy+D547tEQzgVt34pIQgUkt5h5WQl7TgzSl7s1Qq4jYyIzyhGEbD7JFAm/qzTb9i1yL93OwEebaSfmvuLEhc2rm46zadRETSFXxcpervQOG45HFLC4jhZucJVhJYcY7+OXlNiOYCnRPYvCRo1Uas+L03sqxTvjU6JZrUb8qJdoXM/V1RWuisbyrYUF1zfoS8dxjKQnJHiuudgMkQIZkcY//NQ11LM+ZTgw9WkrUUWy8nO/oIkOJb9BWWMi4eKey2jk3fBDbi2sxR7zrnr8R1ZHxAuDRF++4nRGaf7AOjlHGcpQ4xJhf5HqgJNCreswUflb8WIze95NucncdL/pc81GVpQ698lTa6dD6kgY6vIOxkjnxKUDBTXD9rtGqUWPA+cHXvI5Ehu5S6SsjlvqyGmXylWeCS89RBukky2ePUPb7Quk3mhykTv8R5b+LN2kFN+O1g/B4mRPe0RdSVY3tYgb7DC+khn0ofXtryKroUf5j2kWVbbEsZ9/e29fWJc3nkrAeynNYtNzVcuWcVE8/GnN2O5ritw005XfKbhlgaN6Gce03HbrZk/k8+LLpaYJjz7ZY4w5n5SK5vUgJKyrtWtO9MrHHi9HPXa9IJAy3+ZACWZfsSLIeZ68v69OeFSPKSdoFb15JbDc+ay9T+aS6Uol5vMqT5UWu9Cu5qiQUPHIGzLsmAonpx4BvHeyYg79ztf92OCCVNaJbe1vB+rD76qz/6oo7BHJzvxb79/9mP5n//u8b/PSlbpGYGFhLycxMN8/xB0c5yj8tgyOvwcIy2zUb22McKLX94nc/91gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P/rTw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 70ec994d-456f-4e57-b702-81ec45280eee
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3838
+ 1676
+ 305
+ 61
+
+ -
+ 4079
+ 1707
+
+
+
+
+
+ - Base geometry
+ - 47ee6ac5-29ab-49dd-a673-156be3fe0c5c
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 5fa3dc85-5552-4797-8ef8-852841306048
+ - 1
+
+
+
+
+ -
+ 3840
+ 1678
+ 227
+ 20
+
+ -
+ 3953.5
+ 1688
+
+
+
+
+
+
+
+ - Mirror plane
+ - f292dc72-1ef6-43fb-952e-843596f8eadb
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3840
+ 1698
+ 227
+ 37
+
+ -
+ 3953.5
+ 1716.5
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ -0.707106781186548
+ 0
+ 0.707106781186547
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 81052002-08bc-4a9a-9ac4-3e3b56313fb6
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4091
+ 1678
+ 50
+ 28
+
+ -
+ 4116
+ 1692.25
+
+
+
+
+
+
+
+ - Transformation data
+ - 9b4d9128-d04a-4c77-8697-552a79245044
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4091
+ 1706
+ 50
+ 29
+
+ -
+ 4116
+ 1720.75
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 5ce6c664-11de-4eb2-85be-835fd02d7dea
+ - true
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4159
+ 1726
+ 90
+ 64
+
+ -
+ 4204
+ 1758
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 50c5eb07-ebe2-4e77-b27d-641e7c279e3d
+ - true
+ - false
+ - Data 1
+ - D1
+ - true
+ - 81052002-08bc-4a9a-9ac4-3e3b56313fb6
+ - 1
+
+
+
+
+ -
+ 4161
+ 1728
+ 31
+ 20
+
+ -
+ 4176.5
+ 1738
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - 4523a6ce-8db4-48e7-a025-87bcdff4287f
+ - true
+ - false
+ - Data 2
+ - D2
+ - true
+ - 5fa3dc85-5552-4797-8ef8-852841306048
+ - 1
+
+
+
+
+ -
+ 4161
+ 1748
+ 31
+ 20
+
+ -
+ 4176.5
+ 1758
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 3cca2959-e927-448f-9de6-432d9127d407
+ - true
+ - false
+ - Data 3
+ - D3
+ - true
+ - 0
+
+
+
+
+ -
+ 4161
+ 1768
+ 31
+ 20
+
+ -
+ 4176.5
+ 1778
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 60b9fa4e-0618-430c-9a02-f404d3e7e0e8
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4216
+ 1728
+ 31
+ 60
+
+ -
+ 4231.5
+ 1758
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fca5ad7e-ecac-401d-a357-edda0a251cbc
+ - Polar Array
+
+
+
+
+ - Create a polar array of geometry.
+ - true
+ - 0b66b220-a593-4d2d-b43a-d9bea427175b
+ - true
+ - Polar Array
+ - Polar Array
+
+
+
+
+ -
+ 4166
+ 1843
+ 207
+ 84
+
+ -
+ 4293
+ 1885
+
+
+
+
+
+ - Base geometry
+ - bee72032-2927-462f-b841-bc5fa22d30c7
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 60b9fa4e-0618-430c-9a02-f404d3e7e0e8
+ - 1
+
+
+
+
+ -
+ 4168
+ 1845
+ 113
+ 20
+
+ -
+ 4224.5
+ 1855
+
+
+
+
+
+
+
+ - Polar array plane
+ - f8bb1e77-8c53-41ce-95aa-1fd099d8a170
+ - true
+ - Plane
+ - Plane
+ - false
+ - 8466f10c-3993-400e-8742-e7e3f179651f
+ - 1
+
+
+
+
+ -
+ 4168
+ 1865
+ 113
+ 20
+
+ -
+ 4224.5
+ 1875
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Number of elements in array.
+ - bfd5e0b4-2dbc-42a3-b4e4-f9ef0977bf98
+ - true
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 4168
+ 1885
+ 113
+ 20
+
+ -
+ 4224.5
+ 1895
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Sweep angle in radians (counter-clockwise, starting from plane x-axis)
+ - ee8f125c-abfe-4569-8dce-b0dfe8a6460b
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 4168
+ 1905
+ 113
+ 20
+
+ -
+ 4224.5
+ 1915
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6.2831853071795862
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Arrayed geometry
+ - d1569728-2025-4216-bad3-47ca9bcebef8
+ - true
+ - 1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4305
+ 1845
+ 66
+ 40
+
+ -
+ 4330
+ 1865
+
+
+
+
+
+
+
+ - 1
+ - Transformation data
+ - e3423839-30c9-461e-94d2-2e66f455ea6d
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4305
+ 1885
+ 66
+ 40
+
+ -
+ 4330
+ 1905
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - d1908af1-1b67-4bd8-9995-e46c08fd6660
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4688
+ 2022
+ 77
+ 64
+
+ -
+ 4745
+ 2054
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 7c501baa-9ca0-4806-87aa-63639dc28f29
+ - List
+ - List
+ - false
+ - 3b24cb86-4f11-455c-82c1-505e4e6a4ac8
+ - 1
+
+
+
+
+ -
+ 4690
+ 2024
+ 43
+ 20
+
+ -
+ 4711.5
+ 2034
+
+
+
+
+
+
+
+ - Item index
+ - d32ea081-72c8-40df-9ce6-06ace6c631b5
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4690
+ 2044
+ 43
+ 20
+
+ -
+ 4711.5
+ 2054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - b8c6cd2e-94bb-4f5f-af9f-27969998be39
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4690
+ 2064
+ 43
+ 20
+
+ -
+ 4711.5
+ 2074
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - fa0cddff-014a-4549-8163-058027725db7
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4757
+ 2024
+ 6
+ 60
+
+ -
+ 4760
+ 2054
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 44164ff8-8fe9-42a6-979a-bc56c957ab35
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4693
+ 1842
+ 77
+ 64
+
+ -
+ 4750
+ 1874
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - ed0fceba-e861-467c-945d-8e201eb23e3f
+ - List
+ - List
+ - false
+ - 3b24cb86-4f11-455c-82c1-505e4e6a4ac8
+ - 1
+
+
+
+
+ -
+ 4695
+ 1844
+ 43
+ 20
+
+ -
+ 4716.5
+ 1854
+
+
+
+
+
+
+
+ - Item index
+ - f4db141c-e265-47ac-b4b3-5bebe16ffa82
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4695
+ 1864
+ 43
+ 20
+
+ -
+ 4716.5
+ 1874
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 7
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 8fa8ddac-3175-4620-875f-49dae9f332dc
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4695
+ 1884
+ 43
+ 20
+
+ -
+ 4716.5
+ 1894
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - ccaa406a-d1d2-48df-985d-211d822a8ce2
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4762
+ 1844
+ 6
+ 60
+
+ -
+ 4765
+ 1874
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - c9db4af4-9d54-4a9e-88da-ceb253ff1bf7
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4693
+ 1932
+ 77
+ 64
+
+ -
+ 4750
+ 1964
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 6d88c5d8-e295-44ef-bedf-f54e7b821e3f
+ - List
+ - List
+ - false
+ - 3b24cb86-4f11-455c-82c1-505e4e6a4ac8
+ - 1
+
+
+
+
+ -
+ 4695
+ 1934
+ 43
+ 20
+
+ -
+ 4716.5
+ 1944
+
+
+
+
+
+
+
+ - Item index
+ - 2159d80e-e1b1-4105-b2a2-5b2207afe2bb
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4695
+ 1954
+ 43
+ 20
+
+ -
+ 4716.5
+ 1964
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 74209fb3-5699-4f14-b0b7-aa5de377ce43
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4695
+ 1974
+ 43
+ 20
+
+ -
+ 4716.5
+ 1984
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 1731a79f-7aa1-457a-9b51-3e85cf4909ff
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4762
+ 1934
+ 6
+ 60
+
+ -
+ 4765
+ 1964
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - deaf8653-5528-4286-807c-3de8b8dad781
+ - Surface
+
+
+
+
+ - Contains a collection of generic surfaces
+ - true
+ - 6457973d-18aa-4d88-958b-85acd494ab86
+ - Surface
+ - Surface
+ - false
+ - 0
+
+
+
+
+ -
+ 3652
+ 1557
+ 50
+ 24
+
+ -
+ 3677.79
+ 1569.566
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 7boHVFTL2rBJzjnnJoNIkpxLEERQJAiI5KxIEgQFRaIIiKAiknOSLBJFhF0gOUqUKAoIkpQgGWHae47nP3PuvcM365+1ZtYaHtbup9/d1btq166urrfZGJgYGBiHaH75FyRY6IfLetccXFzPuDo7u7oIshvaud90cHVRlBY+JS4sdkpcQgb9RFT0lCD7GU8nD093O0UXO08PdysnQXYdT2snB5vzdt76ro52LoqSkmJiMqfsZKVtpCUlJcVFcX/VQv2vgwur27k623m4ewuruNvdwEHvx7/1Rz1EVu421xxu2YnbOhO63rBzcfF0t76JY2vlYfWrEAEBAdavJlLwYWCIof1sn5iEEBv9hPzXwxddDAysXT8sjBHdP05n7xALg+bPUzvT4LoikElwNnn4RV9jt4AU/0Gh3D769fQ/y4ph+GOchtx/BBS/Dverub+OVkvw70djpHxprks8QIkcYFAEYXKuaDJ50/86WvCfZSmw/iyIh94MMf7JCvi3XX/sR/65xxi9MdXxLUmJTyFHOXTcNjpx//ORNpfAWWWuOdocHVS70bZHe4st8Nvnn5+O9LzXiAFv4NEe6xOtvY53tBOvUGiY004eaT9ShH6O9eORtql3nnXlnTjS6p4sFdvC40f65ImOoADpsSNNPuGtR3R69EivP+HneHZu5EinyOATCd0dPtI89twsqO4PR7qP1mYQdf5oF+lN8MxPDB3pX58HBjqB0cOaKrBL39F5j4AdutsrhGK1VIE1s1ckjeMoWFh68/6b3ipgyOal+DAXBZWD+O7JjVaBfb74AgUPFHxQvz5eM1UFPEwOlRYBCqp6nU8RWKgCg5zqghHEKOjO0zdDs14FYOQwT20nG2w2FKP22K0CB/Y1S6MRbDA/qTeiBuM1+PLk1sf5i2yweK9m+hnua2Ch1Wa8SM4GKQtcF0gIX4OieHXf2feskKJBwDyT9DUwZfNlyrnHChcctV4PkL8GEy+oM40FWKGzsYF9IDpu3ycIoPrAAslq+bELSF4DqVc9+Z+CWGDDvuW4Dv5rwOsgwPFelAXS1yOpm+j6iWLmRGS7mWH2UsQs1VYVuNoYztfryAyjrVrWyuarAIaDcX8BITP0yuUiwxmpAspV3XldL5igng4JgXBTFejuZikRO8sEy6voMM4Voc9PZk8x4T0jHHdS6u95UgVOE17VszFhhItJwS8oblSBzEauwgezDJBCwWlA43wVaBiVXFh2Y4CdshzsiZzo8lmIRdBPehgqPeS4tFMJap01BhnC6OHosytDBl2VIGFBM3Cchh4mRbl67yRVgncoF47XaXTwht00w6drleCTLYPkc0E6+LN3sIPsVCVQiPCXsXpNCx8ptfoq7lSAxIqv8kKqtHBIVVatvLYCKNSTiXztoYE3E13CbvtWgE/T3575mdDAyL7C2VD5CqBv03VlZpYainE2vlr6UQ5WPr5zJXOnhgNuYz46xeXgofGbYJmfVPBgpKMCz7YcaPS1LvKFUkEVHNIYSrpycGjKBvupqGDT844PtxvLQG5r0bR8MiXMjcDcPOVaBqRez0/Z81HCR8HSNEuMZaDxBc/U01cUsHd6hmwXlgJJZrJaP3kKWBVp0GRnWwpqpb713n1IDgUIIBkJTimY470gUJ5MBlXVhPM+pr4CxNjzX4tKSKFZYNKZV/KvgMhk8IsX70ggaxCZSEl/CdB6YdVpPUQMaS6n9/ZfLQFDMryEP74SQRcR2jfaKy/BV4nn327sEcIkm+FPiYQvQYZAq80GKSFsj03E/8pZDEzZ94a92QngR19tpWGJIlBHvjaBK44Ps0c/nioChUCppKu3TA0PkrG5Z/ecKQBpQcln0o1w4X6swVSFcj6g8DWk/uqIAxcoZVFJIA/4e5FPC/thQ5MGJ56z0rngIP4VRU8UFrylsuohcOIF6GnHqZzKwYTlHOQ4nbQ5QPr6217/GgyY/2ShLfVnFnivt3nomn6IpB02Pb75JROI9940/djxE9E6MH/k3ZoB+B4fTvhu7SE5rcq1fC/SgVYspHXl3kXaLk++mglIA3o9F3Bq9LaRTRelTYzSFMDbOGRiELiJGN8rfsDflATyPyOcnzE2ED+x3RHt/gQw9IDo/CX/deQSjoZp73gccGGjNc7EWEPIGxdObn2OAcbeSqfrAlYQF6vIjI2paLAtuKT4E+8b4t9mTesk8Qw0JH0Y/RS4iJjp5lR8D3wKFmQ8bV4efkVuvYlU0Ul+DKg4MU2V780iGFmlJ9VFHoFi38KL+nvTSObkwRb221Dgpawdkub9GcmxC9VxQD0AmxWYpPV8k0jgrNJCj18QqLLlLw40HUMunyaMZJ7wB8JVBsI8Tz8gr10Xh2ZdfYBLfs9OZVM/8sP50yty1G2w4PT8TNZaD4I7ebAeVOIOuA0wuk8ntyEGUdX5E3ecwJCC290HZ98hAdhz5IzRNiDy1Y8Stc/VSA7fpmCStAHwJCt6rHM5H8mWe6wEaARA7hi9IfYJM4QGc0Dt0A/L//c64vdi5gvp/3wxU0T6HxYzEf8bi5mn6K3gzy+Bo8zMQc8Zdeto4wz6uqfsDh7p/o4u/knDo41pe4cgOHrgSNdKV++b5vcfaW/i7RUJ2HekJSelvpAM9R7p1VLPkZnF90e66EF511vMo/2+fDbohEj3kT5naus0Ytx5pOuwp/TDHrQfaakCC0XZ0tYjXfiv8dB8pLl3jcniCZuOdEL68OY5yXdHmkrDcHLbsv5of37xWJcROdIYopmWr27UHOkV35RTlK1VR/pjVzyWG6r8SHexPO9/f6vkSHt9YNewSso70oae9Ivs5zOO9H3n7fepN+KO9Fp5j6Ohw6MjzWr7aBUOeh/pP6ca/6P8ax7756TpE0nRKziQhdQWlBI9Zk9ElJROE13+XI6Iy7s8uiedjyQT8ZwKuIIgaqRe7wRvlCG+kDm47Wsj8u1J9W5CYzVi/zBsY5e7Hem4MBtZQQKRgRvvJZWk3iMrJC4kDcPvkEt5n2lZjPsRYyG/XZrsFiR6z7ERx3cI+ZHhC5+7dSAM0eRae+kjSD3Vi4iLSj1I7KOXmttN44jhq0OjxOBe5KrFbjDRrU+IQLAfpiLBAJJFehjKFjaFPGRm2cEPH0IaBV5IiCfNIMEjghe2SUeQBmXBG2deziJprFacBE/HkIcxS2vnG74i+g98qSVoPiI+mrnT0TKLSCV+7U57CDqx+p653le8jDgkJFQ8xp1CCAse7/hRrSDu06DeNmgaudt982u41iqCfaOhRh3zC3IGVVocHrqGbOrN7Uv5zSJmVV7LZDg/EOEgdz6L818RV12KB/5+Gwgqpowrnn4BKfFVezexu4k82cbjm5peRKaozWl5bm0jWGJemrIly8hjV+vzBqs7SNyajnCqz3dEocM+INhpD4kdoQkLzFpB7JcNE1Pm9hGPnxJjbx+uIuKyHU6p1gfInQdPJw5urCENiWbCIROHiPAoQbbG5XUk8P7FcIFCDIhLfG4qRfEHwi3v4vfUAROOy4egfnBtIGy3Zx4s8mLBDxqRfZeINpGMnmdAZgYLpmRuFCIrm0jfeKLG7XRsuL2iiiH3YQsZEfwpnWuOAy/tmUU11W4jn3zMeUeYcWEx7m1u3awdBJIz7uwN40Lirisbyw93kai3imcoYvBgT4dRa4rbHvKtafIh7SV82PqKYNDeaB/J+BmkRExBAFOHSp00wE/EQJJ/DaOLAN7aM8UR5D1ArBK7KefCCKGgBSbfCdJD5ASWDXHtWSK4Ud/IqfrjEHnE/kEyEJsYoryGRKAzBsS2W0ckITE8EWJkf+MzBryTR64570MCJWJGk9gNMCE2zYB4uCwp5E2+vjjVigldnYULmTZJYVAvY9trBSz4fUerOqaUDJrHLrlklmBBgX1ZzgMXcph0VdE/kxsbih9GNZXSUsBR6cinmXHYUET+O9/4TQroS2VGVk2CAwMmvibu9lLAgauKiTP+ONB1b8qGVJQSenEWqvBu4MBsb+s46khKqMOSL3HPAReObX3uZFyihPx0ubwDE7jQaGjWmVqTCkpoS9qc1sODhRfdog9fUMFd/zi2+mY8uBuyKjSBSw2Fu+8X6svjw8AnT7ELbKhhja957PZLfEgYf2rEq54anhORCUziJoDtN1YXpFA0UPTMYZtOPAHsEeTFmPGhgWTfm35QkRHC5o0vjb6jNPCyOd/oZCB6kS3t0osrQwuf/fjwpWyLEHZ6b048ek4L3z8MXQ1xIoLDEupiGOu0EONcKJfNZyKo6bP92FyHDm4enPZSMSSG88wP5HOK6CDVhQdkHB3EsB6r++YQET38OIiM/gQkMH6ethDvGj0sttjJGS0ngfn0DG6oJnoowsuXV3GCFGKKB/1EcTLA7VaLwIgUUlhN4LWL78cAdQ5ima2pyWBf48johzEGSPXqRp9kKBlc9JeveSHDCAdsNMIIf5JBWy4iP4vnjBAzusFs3I0cnlXRLjtcZYRcP+oqSmbJoSQes3nYRSZYrD9X2SREAWkE7iwd5DNBgi8oPLlrFPCH1sgdD3xmaOtpZFCcQQEbezuWBm2YoX9NfeyJCQrYkO6OwwWZYc8pQvxiekr4lhqDzIaFBQ5OFJ05o0cJOwY/aD71YoGnebY15h9RwtHYlyHIAAvMd1LRedxCCffzerfGRFmhl7YY+1ksKphRXHZ/+xErvO9cQ8yiSAXJ4Dmu8/OsEP9yXpWUFxUMVxXiGVJjg5bNvv0JZVSQoI2SzyqDDb6R1P9+8I0KxkC1R9yHbHBegPJuoQA1nFDlGxQ2RcGo4e/zL+2poYvNtT3vahQclp32I8ikhstfKW/fI2aH2484yUsnqSF3muuKohw7ZPhklWLCQgPP+RHpMDqwQ2qeZV7DKzTQWNj1IWEcO7wr9GIgKYYGuuuU/sBpYYdScUREvAM0sK6s5C3mJvp1me+lc5S0kIj+5f0Dbg4Ih/tN8rRpYWjNtfz9SxzwcbGsV2YELTzNR2myFsgBH7qdX+rooIXsRhatg684oCLuhhkDER2cNc+aSP3EAS/q7C35n6ODRXbzaw7knNAiEdNn/gEdNFHhKWFS4oTdybb8Lk10ULnq2U6+EyekNUgkx8ehh2etZ0zpEjlhYfbPJ8Uq9FCoQReatnHCGetqcZsAekjDiXBlbnFCFnbPIXpIDyekNEIaebjgusbDhJEDeqg2WVgHL3FB/NCHxC8UGSBTdu9OYgAX5BxE9QX6MEC27KZN85dcsCvv2pBnDQPkzK5e55jggl6+r0av7TJAw0mf0k4iblg2WsRyU5YRTl8+aXxdhhuqCJYtZ3gxQtmwZwihPTfkvcU8T/SaEUrczOsuf8YNe/1qhaq3GKH0npxfUjU3xG2SkY4WZIK4RMUyjya5oeTP+4WpVkzQeGTwchguD9yO4CCcjmGCm/WqrDEneeB7D/cV604mKHWqGrdAlwea+jkE02ExQ48dlQboxgMv0vgoG4gwQzdrN7XxpzxwXb6k8LUpM6xXlb61+4oHEqPkNRQfMkNH9QNLyj4eeD+XimSoihnSaC46Mq3xwPmmyt3bX5gh7nyIhTERL6zvIpzAImCBnyfnLaI40fHHPIxnAiyw/J1jc60cL/wRgphxaLFAp3pQPqHHCxk8la8UubJAnfrL7YvXeaFw8cZFwSgW+Nq7aXjHlxd2V3x/962YBdIPn/ffi+KFHymKT+Z2sEA3U6Ob+zm8kKniPIvdVxaYkWv2cPoNL+R53/ADB5cVytg7X2np5oWv/Q/b0jhY4aqmx+H/J5O+6nydb7rPpU4f5V6T/pfph0d7NiN+hMdP+kh7FKw+TeCTOdL26U7O4d+P9lnpj7Kun2SPNHeXNt6lXrkj/ehn1uTPYPkj7dM60eR6cLSntsVSmcoUjnRDZJbjQabikU7jppOZilY60v5vQnCag8GRFsn1+aovf/pIo25WdDeXHW1ypW/lMoLKR/qQgC8xP+tof++3CGBhVTnSkylxVyOfH+0eh14tDLIzRxqRIJJwf3C0Xx6qMM0cHO3U9rsYhrdVj/Tj5+WzLd+Ptp/lcqfsNbUj7T2WLyfWebSRyaEYJ/azR1od+02BsOXR7jO5+8jw+dH+NY/9c9Isv7R+Ub6aF3I8vy3ziZ8VCo/LeBRl8sIaF2FXdvRiJYDy/g3qSF4YxZwWbifNCl/wMqr7ePFCMtu0p7lKrNCoX99uypoXvqm1t1lUY4UCCw9Cd87xwgDPlc20i6zw9sOpehIRXmgyaggML7NCt4pzley0vFDLgvkigSUrpGqYeyuxxwOdHL7ZVV5jhaUXeEQ1P/PA14I358zdWOHH5N3npAgPzL8WiN/jwwqvjnN59SfxwB8FjlclQ1nhY9xAs+Q7PLBuVGYn8hkrbNzZ2Xc04oFZ6kkYIymsMP5+KDWQ4oFY7G/NKfNZoX50xFYxKQ+UCbgTa13FCt9lT/HwfOGGyi6r3xIaWWE/W4NH+ltuuMycXl7Zi/6SScyM4ozmhgz8Hqiyj6zw1l3q3RxHbggT4tcjFlkh9uD22Cc5bthgFtdAtMcKPbldg1DoRcDLWdR7QyI2iMK1sLQc4YKjtO8uujCyQRk2Ha/UXC4oo7P34CI/G9x9VT04fJsLNrVeJtuUYoO1alziVOpcUE+5/HkyevF3Qh93SI2OC5JuSziR6LPBs2dpWG584YSpKy7PTluzQWliutzIck44+RyLSvoGGyw+LL2YHsQJCYRvCy3dY4N4Vbnnv5tzQt40MiyJUDbIVP08VkqOE35JmCG7HMUGwwiiaW/TcsIkbpLmS0lsMKqFQPfVCge0xBi34c9hg85nSTRmOzhgXOx9tv6XbFB/xeabeRkHrNPVXFGtZIO8CR8VBhM4YNZdae6st2zQpi/FTwO9yHPyGRBbaWCDI5r6DG8dOODHFr1n/G1skGXXx01IlwP6CrY0XOhhgxiYcrcvC3LAG+82CIOG2eCpM7tFvvgckIy6eyr8Mxs8lzp5N2uKHQIr2Wd2C2yQU47Xs72WHZropPqSrbNBP2n7llX0IpW7n9QoeI8NaofVTL6/yg7vB2x6d+OhYJezsVmpFDt0lLKMq6NEwU/NhTjxuOyQ0kAtXo8FBUPD36eR5KFgf+mmfSgvCiqQ3Uz4dhYFcRpHrSxEUXDtCW30+xk2KDFYZyolh15cx01/rw5kg33xg/eLz6Dgs5zvCjnsbNA7l5Oi5QIKbt4LpHtWxwpXPFse+xmg4MBIqIKfKSvUVebVGDZDwRLJx9aOuyywlCQY65Q9ChLQEQ4axrHA/cHkjRMuKNhZwap/WooF9qQG2r/zRMG4FqU6vgFmqLIYoX3gg4ILS5mnSd2Z4YXB2aTxIBRUpCJ8t0bODPURsPDmIQrSnS81Gypigmvqs4kKT1HwnL2O0uvzTPApFUaqTSwKyr1dn42bZ4Rt6k86xJLR7T3LEOQVwghFGXRpijPQ7etVQBnxMMKYr5RmJ3JRUOrpVLHUOwYooI/doFOEgtKzrT40Vgzw9Km7NPylKJjI4Cm1il48k/DuPy6vRMGrbwbMOpPo4bZVy7e9NygobioR/EKOHs4kR2mdQdCvO6szBQzTwe/suY/V3qHg58Gep5dv0aGTnNNxhC0oaJShMnGChg5mM9npxrSjILfdBs/eK1q4ICPbvdSFgqt8uS6d6ORC+DLp+TO9KEj9OaE8aRmdnICn4TYDKMjUAj84hdNAy7deDrofULCZ1ee00gka+NnS7TH5KAoGePsbUrZQQ1NVKe30cfT1HrzvNGNLDYf49sjEJ1EQX6pPpBqLGmpqProW9xl9vqE/lJ6kUUFDUzHngWkUHKPFqHNQooK38t9LLHxBwTvr6jFq45Qwo8G5YHwOXX/vYxeOO5Swa5SIs2ceBSsPqNMO0ckibm2Oesoi+vrgi1B8qkAnkxFxpFrL6Ov5JNyi4RIFzEg2PvvxG3p8jtqxXJgmhzytS6n6Kyi4/KzcmxpFDnPXfHfaV1HQfC3u+YQxGeyS/nyTdx0FvV/z3ciLIYWM/n1vHX6gYJ0aU6dnHwkc14g3jd1AQWy8V87KZCTQ+uvbl6820eOhWZ2cVJMYfn3wCatzCwUjqgM3PwQTwVO7loT92yi4VSMym1ZPCD9Yz6PadlDw4flP6fY/CSCBQ8Dtkl0UjIlcJueXJYB3FFspw/dQMKN39968Bz5cpCQvtNtHQd5W25ScEjyYVI4TJv4TBenDww3Nl3ChqL1x/iY6zm96X0zOjwvv09pMlRygj589OVVtgwNbvyK9Noco6Bj8jc42FRvimUdaEmOww3iiFl78MSyYPjIrboWOgy32L2TQYcECUlXxcnQcKLS8JaGHCX25uOlwMdnhvFRIQ10EBmQmT7mjj47T/FWYnkYdIq936Scz0fEZorZvUYQHCNvbk02r6Fh/VV8m0H8fibKYb1fCYof7/JMB5lu7iJ8/kWc4Otbolorlc9lBhpS5hIfRcczNyMKVmS1EEFthjhubHYY9KIvIMdlElm0vvHRDx0NxxAQafT+Q70jvSh06/nQ178TwuXWkIFpxnwSHHfroRZ3XR1aRmUwzXFN0nKZHc7rCawXBESFNTUbHNK7d8lS23xD75/fnJtHxS1YZwbShRaT1ncU+J3reyvV5iUerMY8o3QhctkfH5+7R9rnVzCJx9CE1Bei4/N6y+9voGUTu9XDZF3TcxPTmcMN5Cqlr2zjHjscOf34dFEGpf0K+ieLfNUHHGDfvOLidHkeSTo2oxKJjjyrr1JC1D8g9QPykHx1zbh70O5QMIJplEZKY+OxQum0qSN6lF/H66MMngo7zAspP7l7uRIqfuVqYoeN3seTCNv1NyI5ESW/4r/Km6svmyXWIfoyQxxt0LNUYMbBaV4b0VToYfEbH35uJEqphOiLOImREQMAOW2mSGjhn/ICIlrWLCDp+Nec0K/cmD9wzqU0yRMf/vHOC4Ued+d+TvpytJoZf9zLp4P2ZyP39XqYJzP95JpiN+bcD/OLXfVpE/xuZIAnGf7+XiYqt0CnU7PNf7qnqxXMN/vSX6RuLlRezJ/7yf7u35Ff7KF1Ecx0Pe5DpwmbrebXKunwBDM6rhz2ALsG/tAfzPRKXc8fj3lwA6GGVOjGA+R6w8Nefz9ztQdKFHFNfY0YBjO72Cxm7PcCHPO0nVn0P8tDwo+qrxXRQyLjJ9hP2AP+3pqHfnvQgoVdr8Bg1ckBtlS7/6pMecMh5IShkqBupOCVNyPfwFRApHdd+NNQNGDGcVyj5uxHQgvsxPb0CkGKSblPxdwNcdl9y2+kOpPRixHmVzxCY3/jAc226A6S9mjJIoWlHzDquispnNgKUsoNrLk07MHlRaXxbsRXRvVE2eUWxFVCtNZigYzA1RhXzn9J+M6z/+cXmwfoPF5vsf+NiU2D89//1zlHcm3zM2/uX7/rMXbYfaP7LiMKyuWd+5V/uOp9fQFKQ8w/H/OU/q/T/p3+13+jPTjP4R6dFvxgJ+pbTjDzf5VFKfNEMqEMiLvNrd4AqGbMo+91GRINgVfXabiPAkcd3KTrfDZo3QNGhVz0y4FfWtudVDxq5VFQDiPsAb8TrHGJ1BGFS4zLFUUdA/1WsioWb/cB4zat3K7wKcXkzTkv0qAqkM5PeusE2BO7LHK7Hh5UhD6yrZcLCyoD3SeeSGJsPQANMJK3fzEN43+zhYHjkgYXmJj8bzBHgldOWpdSahWDF70vqt2aBGVQsOd+dEVCNu4dh9TIB2fog36H8MgF8Zq561rgxAgZqf+wFhTxHSG4tUtiGPAc9Se6vk2hGARwfVUt9G4wUFr6mZK0LBhEiyzTE0qOgb38qpzPBEwl+KzRHE+sJNuikLzDIjYLibNY+d+YndfNlZ2lofUuUriv+AE9lR8FLXuyV/zTY/l+fWf7bb0ofFlVWiSUU/jKu8aBL5dLpv6xD5jbzsv7MX/5vueOv9uk+Hz97A90pRfKPqejQnRL2Z6e8SbN2iTqIR8K4X+T2Fa/WaXo2epSjO5HX7XpT3bc8ZOeJWOZeeWXdKO3TzsnZEXA7qvB8Knk1kpHL5s66U6H0prNvl6hoGJy0aQ+SfF6HeBbT+H8pSFS6oJwXzNf2Acy4RQg12DYiM9P9pa8e+NXZjGjwtdYNguuMVsuP6poRMc0SVmtcNyWyEMf4nwkDIMf+4oqkTQeSYmn+xG7uSp1df/hMrXYfYPlm4N5f2oUsdG7UuYtnKhFrmEQV8PeCEL0/Zsxg35ua39AzZr/4HzOme5qA3X/6bnlD/OcFxPzbCEgn/vcRQN9qqT79txFQwB9Z92sEOPw+wO8RgPfn9utKEv5vjIRf0041Y8JzqSVeeJTNir6OyhZx/ZtF9fat1+Lp/s24ZNpXq23egaP86xdUCn+Pitsc7PAoJ1NcIUjDofg3Cw/uR6RR5IKj7ISuy9YuVkIhxQhpCt7FNjiIRrq4eJJTxEaBrN6ctguxCVCN8zQbb2YBCG56iit6VD5QvWbV+vEGwN0MKNueiwGU+U2G541GQSJhfz+B631Q/zEim6ksG5iuvyyT/zICwhTvw8OgcNBmS1SgnlgJuk7GXC87Mwp8V2SNxP3CAZcISe6GYz1ofdD7WnllFFStymQTHoSB8qcMdvyBjSBe17Pnjt4YcNks7SL3DQZhzL6ag7UtIHn+NFVT3xiQjzr7lDvjFggX5ckqPdsBIN9D7uDgcfCs+pm8uMx9pPzls1rmkGcIrYZ9FT3fKMjup+MSMfdBig7T+ofKroDPHyP041RGwXZh68C3aTckzfsOqax2HGA3xgPptqMgs6/X6rKvGZj78KNpzCgH6PWSzDJNjAB+v723mgdeYDK27gzOWCW44s5xzYx1FCCnzdLMz/iCfo2821Xe9SBlt6nmTvIoIJhbq9QR9wWD/Onr6fcbQbMzrXz/3ChQGT4Qn+b0AkFNOCZaFS1gL1rG7ZzuGBjCuUwQiGcCNi8pPSYT7wBXdKf1mJbHgBGO6HxXURTCmvajcpQ4CjmvrpWaxDwKaB6s2YK6x8hg1RUpj6lrwLcOU2hWdRRE7pxyGrnwEAnUFlMWrYwHHMSndzLQ58VwUWDG44c3IsFJoxywkwNY8+zqPrWMALe9EsfbJZeQ9rSffm/pqoAWofuboKURoI/xgIrIyhAkrc/kpd6vB0zCvQomp0dBx6t1fIHXlgBPv/OsFfq81u0VUpY8RsG0tmkeiYc+MKitUFLLbwEIdZtFausoKOqa8agftEa8kuKfcrN2AK+AidRPF9HnW6C+4iqXiAy8VSbDin2CkNLMIAwkowCDynIdKy0OsbGzH7mo4w5YmNtlHyqOgp2xtuKOvueIv4KD6h2+REDAPGZ2TRPdD7aboiWhEciu3EOZ/acvwK5qudpq8ggYTsWdlbocgNR+GG9RuVgF4AtTOJg3AgwV2+TuH7gj5VfmVq49qgdjKKOemj50+a/DEjTYjgj1bPKSUEAj2LFZvnR7fQTMJzoE5bE6IW25cjP3ktDndWHCsgX9eXFuEST8Pu6NjNJoNFXjdIDtQaOd7qxR8CKSo1O8uxDJb/uUQ4gfghQ8bGryqBsBV69yHfB8K0AoaTxEQvWDQBCh/JoI/iiQsxjF8qLIR0xcTT/P66aCD4EXCM43jICh0+0VP75mIxQur2Mr9PIAV9ijtMqfw6BELZOv3CsdmRK6mWy2XAWiA4eyCrOGwbRLdzdKKwERxqtWEkOfFzLdRxEuOwxkyxoVs9/GIEUNcU92zRtBzCzTlSzGYRDzgD+CKTwauSs0MMqh3wLiBkLVD6iHgc2tQWIroefIV9Nb8QGx7SBhkNspSmUY7Ed9ZV2CFYj7kxez4hfuIZ+eD5Fl0o2AtGbH7tKACsRDRyKrVDocpJjWqjNrjAB/ZtVb61rliPtd6WHQlQaiH066PMRA9/OThKUxnlJEO5bX+UZFPrjTl7P3RWYY/PQ+fOfbW4ScEQxkOztbBRKSsqkclT+Auh1SP1z4AgnNSEHGtOvBj0N322KfIUCEaFIsUWQjvaLi88SYjeD7yRcpknxDYO0zm7QFRiZCodNTqNHfDEZdte4ofx8Em5EE02QOGYhMgkPs5FYb8Dk5Jem0NAgw/N+oztS8QaK1zIvN/TwQTU+1qmdOw4DkUYfA3YA3iLBJma1WUiTQrwvufB8+DCjvdR0EplQjqMSmWWL8DICf/XhJ1GgYMCUov+U2qULcLvJmt4UXgHuZlq+u5aGXamRke55VZchbydZ4cq7XwG+S9vR6xBDw/pbxOVquBEF1Y0fLnasHcletIm4/GwSq5tbnW0WLECPxJ2Udn98BsB9yaMw9CDQv3fHqyctHmu3lHa0ym8EX5NPs/b4BYFMxLOrvn4dkhGRcyXvVBlx1F5ssygZAJ81patW1BuQezgpK3NEKyXISLfPwHwLn1/lJn8w2IB0HO7VEylEAFyO0kCxyCARasojkBjQgzqzcg8namSA1gmNGy3wIlH4wbJdMrEekAqeWigOKQFXYdvupiUGwdMJTW5QHQW65TnVkR70Gd3bxPJ9Woev9jEnxibEGOWX/5VXsxXqgRasmtxzdDwivjr24hFWNGM/m02fVvAPtVreQlzt9YJTmoZshSxUiRBKfKqfUDO5vM65l3uwDLuO1A6bclUhjuULldZE2cM52MTZfsA/YlslxXO5tQcY37CfDTUyQSLG0W3GsAyC79iDXo6sFeW78Ie0+wTPgK3OLfpdzAARcPTcck9yCYMYQiImSZwHuLtM8d+IB8DS5mSi/rBm539svxfG5COx+UV+Uf9IPlg2I7Pdxm5DHxi9j1/Zfg+KM+tLzRX0gfDzG+Np2AxJG/mnDybweFFA/IhmJ6AV5Ma+mcTrrkdDm+2w9Ke9A3+wz3vml9+AzVXFy5g5EFC3JlIjkmsGazFqy2O33AGlXe5zrBpFyIp9AfqY28OCtbu/CiffAf3eGpPZRO5KLYV/wRsgEGYz1MRMr6wMWtlgzxk/akbVoycTDiGfgyhWnL6Jv+oDwEp7uff12RNTa04fbLgvI0tgpWCf2ARXGb07k+W3IJsvbu5cLi0HOQsg7VuU+YHin7Tv5agvic/qqUIp0Nfhxu+HyxUu9QK/1eoUidTPCoWqmyxxVDwS4CN/1X3oPvj8PE62tb0QGPmd+sUl7B6Za0kToFXrAgmBdcOWTdwjF3UQ+wr4mYIfXM9u90QU2b7KtptY3INdPI/2vLFoB9oNX3ieou4CK5Fm3aosuBNvFqjGK3Qj5XmdOnIOut3WY5/s93S5ExCJ7eIM9GiQvKpPYafcCq0dDOd+1uxDedKFA4R9ZoKNwXUgDvf9gekHcz6sTSVM0Gg1Ufwl8zJkz5T69B9UW6eozW+2I0BaT2+SbamD0AekMoH0Pthn4hw++tyJSynjLo0n1gKtyf8XmoAvolDiNShO2IiecitwuEzWCSF1gvIzTBQ4+jzQYdTUjnz7eprvG2wymRKt7h0o6QI4gn3xKWRNys7rax9SmFdyazicjC2gHMhqkbHqU7xFvzrLdZxP6SISJNuv50R6gUu08nkD/HrnJgRnj/yQaaAyYilkt9IAMqyXsVsz3SJYaXbCbbjY44MnKLqntAU6R8wytij1IW3IdL2X+SxCRkLlfuNoNphhIap6jV9+hrhHpCuPVALmRV85h0AXi8UXGUGUdyIZJO9vNtHqwa2xggS/dAfhwFd2uVLQjOfPtVmDuHVCWlhsl4W0HIudk1dsz2hBVrzCOfv5mgFefEffhoBWE2yUwwfBW5OQ8huOOeSsQ5ONkX+1tASSXcjL/vornPjWp9GsVH/97zfx7EX7B8o80oJw2eWgRnQYoifyRBvy+FQAL43/xa9Vv/GdufekfuTXW38pg/O29/qz3Hrmh06eOrevPfuWUd/5Mn7D+LPv34yuyemb+auTgPxv5m9+/HP3+5ed3hb8rFTrDsjglxQT+We7vZQr+9t5f7fvdiN9lfh/jn+Ww/tbY33nm7zzx7yeP9bdj/LOcTuq07a8TfP7PZPi/ndzfe/TvPYsR2ry+dR8DnSK9b4rZzVb6b+/9b/SxiqfUbn85/O3fJ/+fOufvV+n/1AaIeaJukwlgnDaxFZPh/bcO+7/bht8d/J8695+j8H8x0EeYSIDuB7oAy0/i/9bh/3fbUBW8+vDXBeL583WK35X9vlB/Hy2/EEp4eP/XG079GVP+x6v1X9BdCZz+PdH8TuR+f4B/J2D/TJB+VdZK92cdv1Lwqj+Dv6fgMwMfLqrP91MiX/5IwYWqmU1/peB+f5aVvIF+CPq39vwz5V4Bv9Pm32nu7xT2dyp6UPGst3BqG2wFn5KkSl8Alnt+dfvic5WvF5WVwsb8y/sWlJUiOnuV0MMB/G1D/rb9Y9+vnvv1CfmzCbS/+/I/9efvj9k/91Mc0e8hqnOaDJcr//W+f42srs5fzIA/6qb9s9jva43zu9hIhCzh/SvSHX+9KHDyhAAG/0kBLGxsTAwBAWxMAQEcIWFBIawTwkI4uLjYWEJCuNhCQgS4OPiEeLgEJAT4xKSEBCRkRISkFCTE5JSkJBRUZKSUZFTU1LQU5DR0lBS09FSUdAzUVPTMtDRMLHS0zKz0dCxsDPSsKEYGNk5mJg4uFmZOblYWLh42Vm5eFBsPHzuK19LK1dXK2tX1JL+NjbUNP/+Jk2jzY2CYW5qZWZpbWLiamJqauaI3S1dXVwxjY1drDAw7YVtbO3tBwWvEV6/i21+96kB87Zqt8IkTdoLCwoL4ODj2+IKC+FeJiW1sT5y4YoyJ6WpsYmJ0BRMT0xj9YbiMiYmNZ2BghHn58mVsQ0NsA0NDfQM8vEv6eHjYuHh4unpERHiEenqX8PT0dHSJiPQIiYjItImItMkuXiTS1tG5oEVNTaZ18eL5C9TUWmTU1A7kxMQ05NevO1wnJ3ekuX7dicnRkcaRicmZyclJk5qBQYyTg0OCi5OTg8nZmcPZxYVTTFxcjOPUKXEJTk7RUxwcIqIuLjLc0tJS0tzc3FxSUlJckpJcEpKSLqIcHDI83NznNBgZNRk1NNQZUaiz6ijUOUZ1dUZNBga1s+zsKPazZ1XV2NnPqPLxsfOpqqqc4eOT5eXhkefj5ZXnlZOTlePlleWRkVHgk5cHp5WUlJVOn1ZSVlRUVlFUVORTUOBTVFE5T62peRoX/f3FRFf0rxFEgfvHCPIapW3yNur0ZsG/kejl4fRlWLWAU1BOUivEd7Iq6qGBE+Md08SLH/rOJF7jifbQShwRZnVvNKTR03KoS81pHrr1pEYiekhINSbFTHv0qsXh26yXmdUFB0rpr16Qmq0qj+/Uk8S4/9Q2VTBuj5Buv38Gr+uas+AnYSW6R7EFooPLSo8fygg5Keap3r4l/3jvQ6Sk103bMX6vs7pUBeEFARpleFdQteyqCQOBtocr3kzdhdsF1xVeebeh9nLEJjxjSxrKnrXc54/T9GGT14vgv60jzHDoTsmVydv38cyjvPWOlaZzIbzNWa/YDQNZyyRyh54YVd+kdOIz6d9+xd3JqEC887p6RmwkIv6lcMN89Dz3ub54jzbCax+lM+6f3FjS9WGznmXWeX8DML9sVxluUfthdjvzk0Q6hhom+3pReHyhGP1IAUveBW4bOlSppbitFvElJiOL1yTFumXzF8aZeeu4mkbp+68FppCxXeH5fCsaTKw60X1c+PkgsOmkRtm7cFklDXXDYum8JDGj/sd6ThqmF/iyBWavPsEJxXV3Q1kuJHl5tKmVF2viK9qQf6qHCvkmlg8vl04Y9VZEFNtWEKZKPLuhXRv2dlbQhucMYe4Iy7nLLKXDpw1Z2Lhfpl/FP7SkJN+06bpuYbwzw8pVNvGVpTY68IznqV5v+eKdN30WsVqv6kQY1lKCFIbb+758Gb0leMe0u4UhpuZt3cAjjhaSFM0wFWdl4ln6mRXGuSkz4eHKhhDFmdoX4A3OtsRp5w+ttdnegcuhRMqYWvtjc7dNHz58af1uzoioJC/X/YCFeKzYSDN0g960xnrVwxIYkExSG+NvTn9bYlCpZHRMZMXuT7omdoXTqlu2V5QkPKNn1e0CDR1uYj4BlfqseE8+gepsyKUMc1r5JFSk9q2xXLdFSSnDclLkRbDuXI/2lXvGDC5t2A4xvaJ77OSq57/cGXXKjth6vrgq2pS6mbqPN5p3QOCxldn10/7cza13I0qu7gNljRVKrj47beF1X+UabtTQL+xO5E4/HzvMnIzWrWJ8J5Rp9/XW7Yw75HwSoTzX1uh7IRPlOJ0zHPMcyvpoSWp2n+NnSPWP+tvCAzcbVvUUnmmy2ls/a2aTmU/Qe118YukM+Wm3u0QGH1OwUHYKTJEXMs6r81rVWFHtC24QxuyGEsVYq+apiUQb8yvcpaEi1zL+mk44/fEC/22ydWr5kPh4F2EVFrwdgRDloaveLF+Se7y05sRj5u8QEYUlgNjcEbKestfmffWkmvJGeY4n7G8VeFlWPbQzjp5+YNwdMuDOe83w05Ve2YPKryzyH0yDJ+iCFVozntSOGYR36jBOsgnYnM2U5T5PfrMgOyTeM4vKoaVhJ8Xmc2eFRjCTH6HfdxGrulqtYarlRpOM5GE+b+KovYidCV+bSh8r+fI50pNyc2TETzk+9NZq5xGMvaChap6Ea0tBD4ds8INVFhMZMvPSvcSNz3zNfR2mvxHQXnrbbWpmM/FcZ+ulfa475rU3B7V8XOLb7y7v5Wu//Qo/PhE1t/umu7y6KOnE2jYrRPzdIGuvwjq6MBIIJQrXdSboJG49CfkeL2JeWYY5estiW98h9SejEO5SwY/c2fyw2khvyR9MOb1buuPFhetYZ3eu9EUzXqxcTuGJi3rrn1JlMKyGUgr+FM3j4WPzyuy8G9vC7SLec5uhdS7tcNKXw8PcXqRv4SkntKYnPdF9ebbuvH+6Ox39j8sE07Oen8BCYGDq9ko+wa9J8mZYb92/JkmSvyZJ0v6ISyTX0JPkSKXx2OZBxpvRduGxnIpBl2uLOxsq8dmXQubVeNTW+kRzk3JIrvKL5HF7JsWeuR36Lvm8s6KFC4FbbOiTqreePG2DkvotO/RK4qn5ue8EnXoFzSslqbsnWuKfXRbqYSnDeJNinzOJRI216r3aauapHM0JnpSVop+6efjqUsoVnw70VD3zoV5z6fs66707uauhPBt1c0IR/U/kbbUcvwl/EcZSdMrOPHFjRir2eUjG1sbdW2e3A/ZmcK062jClfA8oLlfiNJgtXFSsst4pjKPIkjDRdRiXNPe6KlDsTeygoQ6Qiovh3AGU8xlKbp8dSd+Gv/36QCCaniWOKD2ImFB9YfuVL2l+pfH797MuH1O+he9bXSJyRE11Y19vZBXNmZXANPfSVhn1pB3hObmj+Rjj0V5XUGHq5fVoAcC9uDw/MPjCx3aWu1VL6Nyar//V+/mWa32PmDaw9reHmIu6ePVvmN/f7iLijtzMDrDGZ3PIVFsXl9VwJF/97rsZ7FwtThs8MZ0+qJTbVZKdEnhbYTVOmi3uis4La4nK77rsIsqqX9isFUhiufLPqhr4aXy600ddv1Fn63Ol8Z2So87Bc3qDFoM1pWQmvoMnfSO79mzDLxvJP1+cmRl/Z/ZY+7R9AGtwWMR7TzuWGbWYH+4IwW4b22snoRzMbNqDziecwl8ZTt7hdx22r2Iq7gtZem1hd2a/yIPG5EPpcHCeT9M6z40xz6eeJEXOXj6+uLPeBG3tT6Vp+Jq4nG/ydbxsndpN2Qm9MtlTejXJwetLTGA+s7HYjxSCtZU+dtv3qUxb3Y4yRjnBPzmA8d3Bhy0Su1zqxTmN6h071sFMPE3UDnfmfD+KxIeOTxPdWXT8pG7vd4rkSb/kHh3bjybluGUNMQ187fx1Vc+Q6LNC3i3itt9unPfIzubhUng9TMu8Vf2k3sK/o99UZ2H6gkYnzXPMiyXmSjE+b5rZ5+jVnZyqXsjG07XufvXfk3fOLWpmmhyTy7jxlEcjZkw5cZFAuRy3y8fusf4rLpnY9yke8k4s0/c/L1NptlUGtHbj2nlTjVJdDQ65WLwtaagSPiUoWm9K1KF087q8dWSZ2be4zFN8SlqP7DZS+HVD2zRk8cYe2r2/Ffo1xvD+yfjp9MOhR91qCRwKhgFOYSfCOLV65c6EeV69n8VwFcu5VZVFSzon1NDGiZN2QAxzQouC/YujJEnXWe4QyuK5bQ6PZn69KxEqFzLxfmqrG7kuE6BI4km8x/A33fvUlfa/hK/PY87abIoc6lPdV9FCXWLaWq2hve8RIt15si6xap/1QU3G5cL5ZWJhofDTe20tnTsv1BV2y9meyhuPJOUafmOSZJbb8KR7Nt54eTkpfN8WO/FLm/diAo5P2TSO4/OUWXIFOhV6427BLf0VO1zGJ3ZzpbuZsj73fgi8NUm3YbUxGF/2Jrvel4ITq/jSsdUoIYRHeiLo6tBkweHcFuk14yXX7R/surG73tgu9lK4LS/HKWxNnpFfscKpUZzQoz/REVxjKR3uKSjJkpwUHIpLfyUiNUi5VYySYrSJ39vF8nu4xPab+Pe7le1QNBwntHL06bblNm5bzjXThWi9jf1vo18mng6X6Cg/ts7dtHck2MTNax0u8Fmo5GRN+bGr9z5NzTLTlqjv7s/5leSHJ7aSsPyJmUpZ94tdZIyJzWoe5CAjBlUm2U2Bj5kSjOKz79rnqZ2w6IzmnVXo4sc/xHZddKINkp308EfnmQvcVQT/miBrsH5PkJJ99y50urHgr8hpR+g5PH82MLV7plVTb2vP92PyhSLdCwN0XzgMizpRbBk1qedJbeYcEoLTPfIzI5YFvePEu68/etDXNFDej5J+LBkcrISM/dwYnVv39TvY+cas80zdLt2cRvTbxgzR9Vr9zE7BnswNKTt7xXX7HWEe6TfRih13h8pETjCkCzFZ3Oh2//X3MerU5bYr3eg/7eK2uLDI2jbNx1/YOhRj7ha+2HK0UyCTLjTYFdy68q1s/Gp1z53di5MXsuoE9L4Z1dnsRH6Rj/n+64nwaW+QeQNJ1DWtNBT4PjXEP/79Ko3i0w/Pa00yWyvaS7QqHBe/teeWslA7XZlQTThVByoscQel2ksSBPJqzjYzf5dLuKfT3EfE3DZmO3B285mAAZ733XRFn7eH71CPQ0iGR5kxKyb8G/BfGfk2Y/z0tmTv8Q/oE5RQZ1zx0MWMIV2gXPXl86BTNL1rK1hXzex4celd8lj21+vDwVl3g0UraLk+956VSXFtath0wtn88tl2TmDGp6M56COtzOLzsPfKhHiHEgx1gvUDT2hk1OnSjJJx5nBIYwqm04iIWh58YpBwCHRrcmW7PxOiaSDTd5M33U+GYd7C79LUi/lrkbefrm/QkLDcUX8nJZIlk6Lbt8thTHM7tX3woty9H3hXUjz6b2ypCZgPXgxI510Qq9LtScf+MRUWbN239nVujlg/7Rm/fWBYZGxIf+T8nd0PirwuES6cLzp47SUDimuLqDa/P5WoHtC+f28lpyVsY3SQt8bLazp0+/o1mjcFAg8lUdQHg3L5G2OCxv2PaMzKjGwjzHPq2VGfRUFW/VKsnocL6ufya27Pi3vqAYub54up/HLXxLMeFhJ4POqK1aOydiuWUxUgwtYDu+dmQXyJBUt/93yPevhg9sTHOmr1DBbjnyOM7X7b5DcuOJnXJGff+79Mw/ExMCJqprP+NdaF/1oMmA3clYj2ZsC/EXPqUdipZoYH3l1xjKSU86KEL88LM+aV93m45RnWLLdplifqLMVcH4s2UW8q7fXoz+G51L53TissW1+/f7ZPbYk781zZ9UqwKX03EoC5nXtIj+zNlNtDFq7lP3Rv1jMURCz9KA/aOPR2VQtKk47CtRocKz38JPt1tvVa3bC0tY9bUrJLpMK9A7FIEOxs719t8sVxdUtw4q7tDzbv3T3czZA3VA8dSvjzplxGzz4QfvxorZUf/cA3m3XxrHe/h7dttPpZ75l570eohm2XYRzNSTxyBW7Gxd0nuiixhTNn77X27yVFkj5/+4L59A1ayeUgo/NpvrYDjx/tPtUFYgvqKR9Bhn3jLfoLVCYvVxvcxwze3Gu9hhIbDXm0yZH559NvRa37PQar67Jv9lS+FZc5J4vuHCo97WWZoHd3J76a6H5CfYuNsevKhbmW0WY8U5uJoRS7JYxC3qiO6HQWC9E3VjJBzQEtxNdxnqUWrU2aAjt7/DNXfHqdvbF9vWZUpskumXyl1thheoHnk8ZV4RHYHpj/ROUF07ya6SUODpS0jYpKb8BjofOLq31yl4ubkzDnGolystVYu72j2aKvnsUn679p1/OZ2KuoF78aISTtU+nrcMfrmX6Jx1+81aYvc9d2TCylEm+yu+Oc8ECU1WKABTV9RVLDXSKkuty1D0P4bOPmVeICt5FHNnrvYo05R6ZS1+y/E/n0aQHe4u+KlNwf+8TvniU0F/KdXUz3OjMed86JqWMsArlTV2lIWqtaoV0Hum80awsUxTKHDlFUc+A1ECiTW0XJbsk0VSUzZFIUySfhhZUcBH41/kidIS1S6XUxKeHcda+xWJuNwNZauvXTYuuKnweXvMO6DCmVJh/MJV3SpnzubZ9RH3R9SnPA/HIf0z322O0NC/tH1Lt25cF72CTKSIVdjsE8t9UdOb+PKupiMicj6UpkL6nqXPVSpo/HenBekHXKzrhBfsXwzJdJfdGpu+0levfeJ1pElWS+YzHPnhyLo3PFOHPQKSJzUvCTvnfgZv4THLEtmoOHJh7viZcf78pY4zxdl5R//pHEK9FA2olL+gHp5QLbHb7CT4FZfYu6ZLjCh6KLytzvmHBu90id4NFnqHnH/mGuxFL/ncZ1m4SAmu89veOUzKGZ/MWKi9IhOoc2VfjZTgzXYu8XvHG4AWZd7i2Qyr9eZ5Y85z2IZeT9Rb2JjYVg5f3J8zLKIc3FgVprYiSBDVKdVCylOHqvDG6vC+O3ypQq7utKYesPeI8LAOHQKFZ5rEuF0DPcaurFKWGcyKKsJ1Txn2472BDzTtd3TrJ+jBMue5D1squ6Vk+dYN4ojovIrt7ZseuN5SWla7PtDxuVpChWV3LobwWTn3iYNoh12yS3PbVW3PMZRu6V9gthoaQRKl8caNUJMD98l+AjXDqdVK5xp+wMwVry6BBRsaJgmNw0Va0hhovSnS/4kaPvHkdZFiS4qfPH7Xls1fdMnomv8XHoZWN7ZG/0eKltBpasLV0GI+71M/RcL7v5WCiUDIrEH9VDLqUze92kQZEh3e/S52/pWHPseSjhBjE/pr89Qjd2ekmgrPyzJsmCKVvc7aFTyoPnXg57sgZJq8/2itcIKrtmX+qN1RZdSb5ze9I1Gu/lzdSR7TzRa5tVjzuvXkoXWjK/uIODx4erhT3SEZHWaDng3KNOEjh5wpCediEg+iCKuuhw5zYbgSK1jtJFhrpQd3mnTxh7B3rNrwlSqM8U7I4OcOMPg5oL9cKeAz/BPnH+CUPtqBufKH7NnFl/+7XyP/1Ian8X++CPZ//tjqp/8v98uV/tUuC8GYGBga110fnk3/8xxTyJm/3rNHB/74j4jtX3y90Ic+ffCxL/zyo75phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeb/b/wf
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 39fe7bfe-0509-4e50-803a-e7deb403be7e
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 3908
+ 441
+ 77
+ 64
+
+ -
+ 3965
+ 473
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 6fbf1472-7e82-4d08-b222-450925322be4
+ - List
+ - List
+ - false
+ - f53f20a5-69ef-4f15-910d-10163e12842b
+ - 1
+
+
+
+
+ -
+ 3910
+ 443
+ 43
+ 20
+
+ -
+ 3931.5
+ 453
+
+
+
+
+
+
+
+ - Item index
+ - d6cd368f-84fe-4567-87a5-77783fd5322e
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 3910
+ 463
+ 43
+ 20
+
+ -
+ 3931.5
+ 473
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 22b46ed2-7966-465b-9135-df8a6a9c11d8
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 3910
+ 483
+ 43
+ 20
+
+ -
+ 3931.5
+ 493
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 99f5fc3f-db7c-4a85-a057-068cca5aeb3c
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 3977
+ 443
+ 6
+ 60
+
+ -
+ 3980
+ 473
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - e1a9c2f8-c3e7-4f50-bb3e-5d1ae0bd4ae1
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 3819
+ -584
+ 72
+ 64
+
+ -
+ 3871
+ -552
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 042171b8-c11a-45f2-add0-0e17d80e65e8
+ - List
+ - List
+ - false
+ - c7759ede-6017-4b39-8cfd-985e47669aa1
+ - 1
+
+
+
+
+ -
+ 3821
+ -582
+ 38
+ 20
+
+ -
+ 3840
+ -572
+
+
+
+
+
+
+
+ - Item index
+ - 96c68b64-657d-4397-8c38-0a6efd55e8d7
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 3821
+ -562
+ 38
+ 20
+
+ -
+ 3840
+ -552
+
+
+
+
+
+ - 1
+
+
+
+
+ - 2
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 46c4097a-b449-4b56-ba86-1887d1043fcb
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 3821
+ -542
+ 38
+ 20
+
+ -
+ 3840
+ -532
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 2be8bdda-3bdd-4517-81ad-b4bb9c9526dc
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 3883
+ -582
+ 6
+ 60
+
+ -
+ 3886
+ -552
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - b9111c25-32c9-4ae2-b420-bf50da805105
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 3899
+ -586
+ 77
+ 64
+
+ -
+ 3956
+ -554
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - dc5da884-ea97-48c6-a58a-a93e4d17fc7f
+ - List
+ - List
+ - false
+ - f53f20a5-69ef-4f15-910d-10163e12842b
+ - 1
+
+
+
+
+ -
+ 3901
+ -584
+ 43
+ 20
+
+ -
+ 3922.5
+ -574
+
+
+
+
+
+
+
+ - Item index
+ - 2d1c305c-021b-47b5-99d1-6e9f168aec58
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 3901
+ -564
+ 43
+ 20
+
+ -
+ 3922.5
+ -554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 2775aee9-d588-4116-bdad-8ab944cbc5c0
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 3901
+ -544
+ 43
+ 20
+
+ -
+ 3922.5
+ -534
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 40e853a6-8fa2-4636-b140-bae6c2ba12ce
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 3968
+ -584
+ 6
+ 60
+
+ -
+ 3971
+ -554
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - ed77bd18-58d4-4267-ac22-9e4405a9d12f
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3858
+ -686
+ 116
+ 44
+
+ -
+ 3925
+ -664
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 2f823399-d42d-46c5-ad44-3e92be39ad7a
+ - Curves
+ - Curves
+ - false
+ - 88532dac-a710-4434-8df3-dbea837fd3dc
+ - 1
+
+
+
+
+ -
+ 3860
+ -684
+ 53
+ 20
+
+ -
+ 3886.5
+ -674
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 7bc945b0-5e9c-4407-a430-689a32d69fa1
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3860
+ -664
+ 53
+ 20
+
+ -
+ 3886.5
+ -654
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - a5f747da-dee2-4728-ab8f-9f85563a8e79
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3937
+ -684
+ 35
+ 40
+
+ -
+ 3954.5
+ -664
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 76f2a47d-667a-4b6d-b60d-58cc11b07d42
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4028
+ -637
+ 90
+ 64
+
+ -
+ 4073
+ -605
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 90a5d041-e600-42ad-b64e-e465fff748e2
+ - false
+ - Data 1
+ - D1
+ - true
+ - 40e853a6-8fa2-4636-b140-bae6c2ba12ce
+ - 1
+
+
+
+
+ -
+ 4030
+ -635
+ 31
+ 20
+
+ -
+ 4045.5
+ -625
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - 740f00ef-6083-4004-997d-6560212df9c9
+ - false
+ - Data 2
+ - D2
+ - true
+ - 2be8bdda-3bdd-4517-81ad-b4bb9c9526dc
+ - 1
+
+
+
+
+ -
+ 4030
+ -615
+ 31
+ 20
+
+ -
+ 4045.5
+ -605
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 4d361d2a-3d82-436c-9d2e-7ac757af5d71
+ - false
+ - Data 3
+ - D3
+ - true
+ - 0
+
+
+
+
+ -
+ 4030
+ -595
+ 31
+ 20
+
+ -
+ 4045.5
+ -585
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 88532dac-a710-4434-8df3-dbea837fd3dc
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4085
+ -635
+ 31
+ 60
+
+ -
+ 4100.5
+ -605
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 94652780-6d68-44fc-9baf-9fa65c08c024
+ - true
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 3906
+ -802
+ 72
+ 64
+
+ -
+ 3958
+ -770
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 62a76678-17c6-4b5c-b021-ba7284f49b27
+ - true
+ - List
+ - List
+ - false
+ - f53f20a5-69ef-4f15-910d-10163e12842b
+ - 1
+
+
+
+
+ -
+ 3908
+ -800
+ 38
+ 20
+
+ -
+ 3927
+ -790
+
+
+
+
+
+
+
+ - Item index
+ - 9bf82e1e-ed9f-4bab-99a4-4f07f0b5e981
+ - true
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 3908
+ -780
+ 38
+ 20
+
+ -
+ 3927
+ -770
+
+
+
+
+
+ - 1
+
+
+
+
+ - 2
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 61dab7e7-1b0b-4328-a114-e19124559889
+ - true
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 3908
+ -760
+ 38
+ 20
+
+ -
+ 3927
+ -750
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 5ab14d43-1f28-4418-9365-3b6289c41646
+ - true
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 3970
+ -800
+ 6
+ 60
+
+ -
+ 3973
+ -770
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 70503b04-4dcd-454a-aebc-e89f08885657
+ - true
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 3801
+ -787
+ 72
+ 64
+
+ -
+ 3853
+ -755
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 66a4b00a-c9eb-4798-a24b-9df79e4c8dd7
+ - true
+ - List
+ - List
+ - false
+ - c7759ede-6017-4b39-8cfd-985e47669aa1
+ - 1
+
+
+
+
+ -
+ 3803
+ -785
+ 38
+ 20
+
+ -
+ 3822
+ -775
+
+
+
+
+
+
+
+ - Item index
+ - 6f387e29-44fd-4247-9dff-410fc12f4685
+ - true
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 3803
+ -765
+ 38
+ 20
+
+ -
+ 3822
+ -755
+
+
+
+
+
+ - 1
+
+
+
+
+ - 3
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+ - 0
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - d6c72b77-80e2-4109-a821-7a33713cd4e9
+ - true
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 3803
+ -745
+ 38
+ 20
+
+ -
+ 3822
+ -735
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - f63e2038-e99c-4ba8-bdcb-667e1ffc18a9
+ - true
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 3865
+ -785
+ 6
+ 60
+
+ -
+ 3868
+ -755
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - b762ba05-b0df-42f6-b0d6-b3d3ab3efdad
+ - true
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4015
+ -780
+ 90
+ 64
+
+ -
+ 4060
+ -748
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 59e625b0-2ca6-486a-a96b-7ae870ffaf46
+ - true
+ - false
+ - Data 1
+ - D1
+ - true
+ - c941d725-c216-43d8-937a-b93706e3dd70
+ - 1
+
+
+
+
+ -
+ 4017
+ -778
+ 31
+ 20
+
+ -
+ 4032.5
+ -768
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - 92060c9c-a935-4164-baf1-b159597edd67
+ - true
+ - false
+ - Data 2
+ - D2
+ - true
+ - 0ef5f963-ee98-4aeb-aa80-2bc5eae22ee8
+ - 1
+
+
+
+
+ -
+ 4017
+ -758
+ 31
+ 20
+
+ -
+ 4032.5
+ -748
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - e6fb580d-fd8c-4dbf-8630-aacae7e0920c
+ - true
+ - false
+ - Data 3
+ - D3
+ - true
+ - 0
+
+
+
+
+ -
+ 4017
+ -738
+ 31
+ 20
+
+ -
+ 4032.5
+ -728
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - b000eec6-2ed2-459f-ab6c-82168ce081e9
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4072
+ -778
+ 31
+ 60
+
+ -
+ 4087.5
+ -748
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - f41d190e-c0b8-4fa2-916e-6fa8fecd604d
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3887
+ -887
+ 116
+ 44
+
+ -
+ 3954
+ -865
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 017929f5-b9d7-42fa-a847-06a2f78bddc3
+ - true
+ - Curves
+ - Curves
+ - false
+ - 5ab14d43-1f28-4418-9365-3b6289c41646
+ - 1
+
+
+
+
+ -
+ 3889
+ -885
+ 53
+ 20
+
+ -
+ 3915.5
+ -875
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - c889c4cf-f19a-4bff-a731-5653c70c2617
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3889
+ -865
+ 53
+ 20
+
+ -
+ 3915.5
+ -855
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - c941d725-c216-43d8-937a-b93706e3dd70
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3966
+ -885
+ 35
+ 40
+
+ -
+ 3983.5
+ -865
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 39a8d6ae-e5d1-404f-8576-3da8711c9cb3
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 3775
+ -840
+ 116
+ 44
+
+ -
+ 3842
+ -818
+
+
+
+
+
+ - 1
+ - Curves to join
+ - bd9b006a-4258-44f3-87a9-dcf4a6964510
+ - true
+ - Curves
+ - Curves
+ - false
+ - f63e2038-e99c-4ba8-bdcb-667e1ffc18a9
+ - 1
+
+
+
+
+ -
+ 3777
+ -838
+ 53
+ 20
+
+ -
+ 3803.5
+ -828
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - dc69c91d-b4d8-473d-80c9-ccbca9c4442e
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 3777
+ -818
+ 53
+ 20
+
+ -
+ 3803.5
+ -808
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 0ef5f963-ee98-4aeb-aa80-2bc5eae22ee8
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3854
+ -838
+ 35
+ 40
+
+ -
+ 3871.5
+ -818
+
+
+
+
+
+
+
+
+
+
+
+ - 046b132a-5362-439b-a57a-d4dbb32ff590
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Weighted Average Curve
+
+
+
+
+ - Solve the arithmetic weighted average for a set of curves.
+ - true
+ - cc052aa7-ab67-4c9a-a039-4e39f0bfd393
+ - true
+ - Weighted Average Curve
+ - Weighted Average Curve
+
+
+
+
+ -
+ 3894
+ -1063
+ 186
+ 84
+
+ -
+ 3987
+ -1021
+
+
+
+
+
+ - 1
+ - Set of curves for averaging
+ - 15b48d47-a26e-4de7-b7d5-b4c82deb17c1
+ - true
+ - Curves
+ - Curves
+ - false
+ - b000eec6-2ed2-459f-ab6c-82168ce081e9
+ - 1
+
+
+
+
+ -
+ 3896
+ -1061
+ 79
+ 20
+
+ -
+ 3935.5
+ -1051
+
+
+
+
+
+
+
+ - 1
+ - Collection of weights for each curve
+ - d0bda1ca-40f4-47fd-9c4b-9953458bfb0e
+ - true
+ - Weights
+ - Weights
+ - false
+ - d25249ba-aef7-4d5e-9264-4a101848ac12
+ - 0b7d7f13-8423-4b5b-a0a7-60782beb8f0d
+ - 2
+
+
+
+
+ -
+ 3896
+ -1041
+ 79
+ 20
+
+ -
+ 3935.5
+ -1031
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Optional Refit match method.
+(No Integer or 0 = Off, Integer greater than 0 = On and curve degree of refit)
+
+If an integer greater than zero, Refit match method is used if possible. When input curves are refit their control points are redistributed, added to, and removed from based on the curves curvature and the input integer degree, while trying to maintain their shapes. Refit results in tighter shaped averages, with curvature based control point distribution.
+ - 343200ae-fb51-4440-b046-591d01e6148b
+ - true
+ - Refit
+ - Refit
+ - false
+ - 0
+
+
+
+
+ -
+ 3896
+ -1021
+ 79
+ 20
+
+ -
+ 3935.5
+ -1011
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Optional Point Sample match method.
+(No Integer or 0 = Off, Integer greater than 0 = On and amount of sample points)
+
+If an integer greater than zero, Point Sample match method is used. When input curves are sampled their control points are recreated by equally dividing the curve by the input integer point count. Point Sample results in looser shaped averages, with uniform control point distribution.
+ - 28df7303-d356-48a9-b4f9-f7b16ff0d154
+ - true
+ - Point Sample
+ - Point Sample
+ - false
+ - 0
+
+
+
+
+ -
+ 3896
+ -1001
+ 79
+ 20
+
+ -
+ 3935.5
+ -991
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Arithmetic mean (average) of all input curves
+ - 4c700625-5a99-4244-9f68-b34b5c8f431c
+ - true
+ - Arithmetic mean
+ - Arithmetic mean
+ - false
+ - 0
+
+
+
+
+ -
+ 3999
+ -1061
+ 79
+ 80
+
+ -
+ 4038.5
+ -1021
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - d25249ba-aef7-4d5e-9264-4a101848ac12
+ - true
+ - Number Slider
+ - Number Slider
+ - false
+ - 0
+
+
+
+
+ -
+ 3862
+ -943
+ 275
+ 20
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 0b7d7f13-8423-4b5b-a0a7-60782beb8f0d
+ - true
+ - Number Slider
+ - Number Slider
+ - false
+ - 0
+
+
+
+
+ -
+ 3851
+ -919
+ 275
+ 20
+
+
+
+
+
+ - 6
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - fca5ad7e-ecac-401d-a357-edda0a251cbc
+ - Polar Array
+
+
+
+
+ - Create a polar array of geometry.
+ - true
+ - bece9317-35bf-414d-8457-30aa7ff224b7
+ - true
+ - Polar Array
+ - Polar Array
+
+
+
+
+ -
+ 3879
+ -1172
+ 207
+ 84
+
+ -
+ 4006
+ -1130
+
+
+
+
+
+ - Base geometry
+ - 80a58ae4-b1a2-4e44-abee-11ef02320535
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 4c700625-5a99-4244-9f68-b34b5c8f431c
+ - 1
+
+
+
+
+ -
+ 3881
+ -1170
+ 113
+ 20
+
+ -
+ 3937.5
+ -1160
+
+
+
+
+
+
+
+ - Polar array plane
+ - a1e248d4-ffeb-4800-ab56-cf15ce14d14b
+ - true
+ - Plane
+ - Plane
+ - false
+ - 8466f10c-3993-400e-8742-e7e3f179651f
+ - 1
+
+
+
+
+ -
+ 3881
+ -1150
+ 113
+ 20
+
+ -
+ 3937.5
+ -1140
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Number of elements in array.
+ - 46e32c8a-5902-4a03-9fa0-487518ec213b
+ - true
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 3881
+ -1130
+ 113
+ 20
+
+ -
+ 3937.5
+ -1120
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Sweep angle in radians (counter-clockwise, starting from plane x-axis)
+ - ae6a000d-ea44-4efb-981d-6b22c25f75bf
+ - true
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 3881
+ -1110
+ 113
+ 20
+
+ -
+ 3937.5
+ -1100
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6.2831853071795862
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Arrayed geometry
+ - 98d526cf-04c9-4368-a0c5-8a5b1df8a978
+ - true
+ - 1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4018
+ -1170
+ 66
+ 40
+
+ -
+ 4043
+ -1150
+
+
+
+
+
+
+
+ - 1
+ - Transformation data
+ - 43f9b048-1759-4f89-83af-d8ad6e189c6c
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4018
+ -1130
+ 66
+ 40
+
+ -
+ 4043
+ -1110
+
+
+
+
+
+
+
+
+
+
+
+ - 4c0d75e1-4266-45b8-b5b4-826c9ad51ace
+ - 00000000-0000-0000-0000-000000000000
+ - Divide Curves on Intersects
+
+
+
+
+ - Divide curves on all of their intersects.
+ - true
+ - 7404a613-f68e-41c9-9fa4-741e035c855d
+ - Divide Curves on Intersects
+ - Divide Curves on Intersects
+
+
+
+
+ -
+ 4430
+ 2134
+ 174
+ 44
+
+ -
+ 4557
+ 2156
+
+
+
+
+
+ - 1
+ - curves to be divided
+ - d6ea936e-d158-4a07-83cd-9024b4a665a8
+ - curves
+ - curves
+ - false
+ - 98d526cf-04c9-4368-a0c5-8a5b1df8a978
+ - 1
+
+
+
+
+ -
+ 4432
+ 2136
+ 113
+ 20
+
+ -
+ 4488.5
+ 2146
+
+
+
+
+
+
+
+ - ZeroTolerance
+ - fbdb22c7-55fa-4064-a268-9ad17fb5ab59
+ - Tolerance
+ - Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 4432
+ 2156
+ 113
+ 20
+
+ -
+ 4488.5
+ 2166
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4.768E-07
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - aligned curves
+ - 279785ac-b10e-4ce4-a421-b3710c32a4d2
+ - curves
+ - curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4569
+ 2136
+ 33
+ 40
+
+ -
+ 4585.5
+ 2156
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 28624ba4-d62c-4c5a-9ffc-680dc382dbd0
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4695
+ 2160
+ 77
+ 64
+
+ -
+ 4752
+ 2192
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 68590ce3-8e16-4307-8fcc-4d898a45f6c8
+ - List
+ - List
+ - false
+ - 279785ac-b10e-4ce4-a421-b3710c32a4d2
+ - 1
+
+
+
+
+ -
+ 4697
+ 2162
+ 43
+ 20
+
+ -
+ 4718.5
+ 2172
+
+
+
+
+
+
+
+ - Item index
+ - e1ab5e19-649f-4041-9765-69e12998e047
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4697
+ 2182
+ 43
+ 20
+
+ -
+ 4718.5
+ 2192
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 37d4d9f1-97e0-485a-a5b6-f95250ba2bf3
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4697
+ 2202
+ 43
+ 20
+
+ -
+ 4718.5
+ 2212
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - df574f9d-53d6-42be-8428-cdfc794cda50
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4764
+ 2162
+ 6
+ 60
+
+ -
+ 4767
+ 2192
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 17fb5240-c7b8-4d78-83fa-123bb68e0de6
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 11
+
+ - 1.0
+
+
+
+
+ -
+ 4277
+ 2315
+ 250
+ 20
+
+ -
+ 4277.862
+ 2315.64
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 38f97bf5-26cf-4e43-a755-e818ab9c0a0a
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4700
+ 2247
+ 77
+ 64
+
+ -
+ 4757
+ 2279
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 70a809b3-e294-4ac5-a2e8-8aafef92b6a2
+ - List
+ - List
+ - false
+ - 279785ac-b10e-4ce4-a421-b3710c32a4d2
+ - 1
+
+
+
+
+ -
+ 4702
+ 2249
+ 43
+ 20
+
+ -
+ 4723.5
+ 2259
+
+
+
+
+
+
+
+ - Item index
+ - d6fd5048-c97c-4ab0-9ba7-db0b5ab6dd20
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4702
+ 2269
+ 43
+ 20
+
+ -
+ 4723.5
+ 2279
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 2437e604-93df-4283-afb5-006ada19e931
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4702
+ 2289
+ 43
+ 20
+
+ -
+ 4723.5
+ 2299
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 0b778866-2bfc-4cc1-95b8-4603e1b937d6
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4769
+ 2249
+ 6
+ 60
+
+ -
+ 4772
+ 2279
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - deaf8653-5528-4286-807c-3de8b8dad781
+ - Surface
+
+
+
+
+ - Contains a collection of generic surfaces
+ - true
+ - 495fbba5-b009-46ba-9e60-22062083d2ac
+ - Surface
+ - Surface
+ - false
+ - 0
+
+
+
+
+ -
+ 3678
+ 2146
+ 50
+ 24
+
+ -
+ 3703.404
+ 2158.318
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 7bt1WBVb34BNd3dvupEGCZkRpJQGkVQ6JKUUEFABUUopEQUEJKSUBqkZQkC6u0GRkAZpvu05x/Od9zznXLzv9Xz/fdxew71/M2vPrFlr9trrN3tEQUVBQTlF8tM/IUBD/rmhY2fv7KLg4uTk4szPrG/t5m7v4nxJ8oKw6AURYVGxi8gXQkLC/MwKno4enm7Wl5ytPT3czB35mbU8LRztLa9Ze+u5OFg7XxIXFxG5KGwtJWkpKS4uLiqE+fMo5L/t/IKytYuTtYeb9wV5N2tXDOR6bK/fj4Nn7mZpZ+9lLWrlhOviau3s7Olm4Y5hZe5h/rMQDg4O2s8qknChoIggHXOET4CLjnxB/PPPrC4KCtpBABrKoO7vp3N4ioZC8cepKdS7rPO+xVFKGs7qbezkleA+yZM+Qm5P/qOsCMoDFDCF8/eA5Ofuflb3595qcP5zb7SkH25q4/eTQicoJIGorOtX6bypf+4t+I+yJGh/FMRCLvoof2cd+I9Vv6+H/r7GCLlEyj+Fd30UwbP8ILmI+3jybIeUZezv6iud6Xh8zFeeO2e7AK2zNqZQ+UyzL2puXIxVOdMvu3rYJr1UzzRBma5+oOHVM/0gceAJt+y1M7396EZVB5PambazH/nuhqp+psc1jZlp5s+2lsSETk2TxpluZLgVbJGteabXcCmuwyJaZ9qrRCHj9OHZ9gZrIo5qzvad1Z6607Wz/fPzsPKm+4GEqhm0SJz6yYreFJLSt5qZeOUIveFMdSC6nQMJmCmuoHh5QHom8YXA9kcos3J7uuG1D7TBpGzZrtcAKW3OBkzfegC1OyqOshd8hoZtDIeYXQOhMcWVugOMbuipqDBVJ0MIRJdnLInd3wdlhQUb7zeFQg5Xdvv3U4egsYFNVS7nSGisv7vtncsYFGp761kPThSUYqQofCI7Bc1/vL3ycDgaci7FWeUJnoFU7laMk1yKg7ipilbJceahzgWPJLzkeChbd4LvJPQrZFhMlbRwkABFGguo8BAtQrqfqs31dBOhdwpdVgNRy9Aw5/gcRVYy1CHt28BLtQrpr0CS1KUpEC0ZYb/X03WIjLva3JA8DZJFK/PXxNmETKi9dpmc30KlYWR4n0K2IIsoWyKNT+mQQy598Cr2DqS/EGBaQ5MJFel+1x1+sgt9HWHVKizMguY7Di/GG+xBTK03KMQUs6GS4oirTjwH0OfEMVbUvhxo05rhwOXwEBLBG6B9b5QHvZx83Pm68xhqR1VqfDqWD125/XFxNO0Ust0vc7Y2+QDtHXiiRVShwAk1ml8lHQog7avuohKZqPB67rKnP3shpCf8Uv1mFBq8jXVkHzFSCFl0BzBu3EeHP359uPT9aRG0IT86PGiHAfs3YTtoSBdDD0rFYqv1MGEMPvR7KF+LoeeHqDI7IBbMlE7BGxleAnnj8nDYC2DDz3OsIh8LlEJDTqnvjmhx4Kijfp7CllIor4qa6yUWLhytofhpzLIMeoAbmSG6hQuzrAzEX9wvg1pBNMTQFB78cr5nJ+RJOSQ3YN1i344Prwkr93eTVkDc3G/qRioIYCMDYbPLcRVQpFXCD7oMQrjJn36lkOYjtJ0SI2ASRQQr+ftwXH3xERps0khx9iOGxV/73rInqoSIfemvvRMjgev5Xs26P6yEnurJjPvlkMC8z+OCKdYqoVdoMg0CzKRwzPZz7lKTKiivQDpnIo4UHua3X15urIL0ROkWbPHJYDR+udv1XNVQA3VrwOcHZLBsuYsgW3A1NBnb9xZtlwzWoVLOoJ6ohgwP7zbTOpDDtp5M9ATiNVC/OcOy0DQ5bPju9eXYkBqooNCYiPM6BRxNWtZZ0F8DoaPMHJx8poBFKMWvOTLUQjxGPdhNcpSw2kbbbvfNWoi3PsclpJgStumwSBNPRca8QUMq3FTw3kNSP4XJWggrRekVRhIVzMaAr4ZJBUEIJon1JlJqmG7bb/axCgS1Zm3xJj+mhk8gyLfDE4Li2u+qxR9Sw7NhqJQUbyHIbOPQ6bkrDVx4jawQ0QZB1wqVvHK/0MB3OqX0dr9DEI4apcSOES28PY9V3IoJQ0wFqibe3bSwhFVV0SEpDHnn5xxKK9HBOGNs3HQMMIRzr4h1L4sOJhMUybvNDkPCgVpvp3DpYQrHOdxlXhhi2y5C33KghxmZj3JfCcJQAd3MR8FOepisXFjfWwSG0gPewaFCDPDwZQ6teTEYOokV6rILZIDZHldKY0rA0L22ZAuTQQY4KDa8e0ochjjqxtnMeBjhqwHd867I8ocg9QO7+4www2IVZp0wDFV/jG9x6GKEfYrGdSqQxwvbj7OUJ2KCg7f3yn/wwxCmZD8llToTbHC8XejBA0MPnJsTp8OY4Px3xRE3OGDIcRNbLK2VCbawy/ayY4ahsum4CS1cBPz9er39NeT5qqgWImIuIeAe6QPnRGoYckctlGq5g4C9Ph/6fyGDIZHxdzdPMhAw2qfpSiJCGHqZeiWZfBQBy3oYnZBhw1BgH7caGTYzjPId8eA0AO3Br3nEr8nMF8L//WQmn/AfJjMR/8VkJgq59Br7huvHKcFnWRm9MveC2dmGpgZfODKfbe+xHGmRdsUzHWD2vV3K7mw/iyv52rx25Uy/afVF0b97tj+cytPNnyicaUgMT8zt8dnusu9RRyE621PJL20j4+TP9FrfrYcMjGf7FIfrdU765TNNLLdacpH/bCPcSzubisEzLfju/jc9mbP9oDIEoykYONMp7FQXZ2PlznR9ZLrDydtLZ3p2T+QNXbHsmb7fMvHJ5UTmTIcfp08dB59t9g5NLN0e6TOtJDkp5TItdaZtUh2dwtYunmmP3I2oV1xn+2tawghHgOSZ7jHu+5B6KnGmP+ZorWrHne2f49jfB02tAZphGv5S6DrVdN8BFjNcLZRBwhabDm35UgnPIeMQPquEvD0LALx/RaUVGeuZqu/zbWUC7+XYzAqR8VBLwEMV4zLgCEaZikfGivv8IholdQAJSayyNzJmT9J+OCvdAmBGYfUbImMsA7M9y7pO4H77cbsUMuadVaZeeNsLvBRPJKBFxru0o34kCwPA5FWqzB+YzLAwZm6HscQowC1i/rgNGTNMn36IDp4E3mh9vJKMjC/cDxgwvD0DvJ6FF1yQMZ1HIM5U1BxQZIcZACJjnKekIQYfvwCOxVr4JMj45aeDR/PK34DIXe2ngxjMcLFsNqrZ4BKQ/k762Wtk3FTq7dlq9R3oUFDivIWMvcxzvNi21gACkcxrLMhYJn/cvBTcAJquGuzOoDPDo29C0EdaN4H3VnffxSHjaarptjW9bWBvZ1FMGRkTZnIE7E/uAIT+4qG7aMwwiTVwumP3A/iWTxj8FhmjktcpftncA96F5X5XR8absHx4//0DwM5eVX8PlRnuNuVPKMM6AvB38vhTkHE/Rp1t2PNj4E4zh5QiMjb0yMfTpTsFVp8OCC6gMMOHbelzWDooIDeW1PtgZNw6sXl5ngoVtHiUyM+OjDM+0whUjaGCxa621v6nCJgkMrM5LAUN7NpYrso7QcCfid9o6lujg6uCyrd7jxHwozeOvPS8GGD7Mta11SPkl66gNOb0KgaYk9XEh4eMd9vHRd4UY4LKM0tyDIcIeBSrndrwHhYoHI19i+0AAb/gfg0QXcIGR71rRJn2EXAfXrsOhIoDrqal8+PvIY///cjatQkHRG0P49jbRcCdz55ZMYbhggES6fJDOwh4Vh1rt0kTD7w8+XwrcxsBF8ilTTpR4IMc1hMu1lsI+JYT/RzZCD7oUVtXRLKJgIkSYxfKkwjARurMnap1BJyCs4xtbEEI+iuwnuquIScVCHXsY04icGU/qnXwOwJe5gVzkpeJQJM7g1TyKwh4m2zCFywgBotCX1rFLCFg/+NqzjvSJCBOulHR/DcE3H5rmrM+kQRUvPUKlWEBARe3rgWSn5KAhuSNvRJfEHCrUJaVtTkp6JV3bCcyh4DLHG6+L28gBXmVKVvwZxBwWiblHi4nGTg1w8/1ZRIBW5W155g8IQP5/Fk1E8cR8JuA7MwPS2RgyudYlQvISY6VDms8mjo5yG5C1xM/hICnC1yz9T6Qg44tEQ8H+hGwCTFUlUlKARaLoYqQ9yLgZ/uzaz/cKcBaHws8ji4EPPgAvVx5ELmdmd4eux0BN6R/MYm9SAlqXJSkLW9BwGoB1d/HX1GCl/AwUwQ/IeABwxh/jmNKkH+8l/NdHQI+WLp5YH+LCnS10wlarEHALzl5H2bWUYFpF+0HNj4iYOdHAagTbNRgYWwr28dSBEylJL9B9Jga5CavJJIqRMC1uJgz4DdqMCUqe78iDwFLiouDzldpwIciXA83shCw5i2BT/F5NODToqmq8TQE3H04NlpDRAtadBgleiYh4NtJ1KbTrrTg+yfpBhXxCBgD0J1C66MFDxRWKQ6jEPDHL/SdLOJ0YOUbrPyFMATMvXyb6VI8HfjySreiTzCyvsm0znr7dGBWFg5zgT8CjhpFy7Y1pkd+iQbZh9xFwKFUK3M+NfTgcPxp0U1XBEw4RowXimAAD9lrHYbsEPBa4il23EMGsOjNo7o1MwScSLlOnjjHAG4ptvVmGiDgk1VTrxRFRpD/To/zkSYCNmtpG07PYgStEofwdJSR1xtaeVQmLhMYq/ZaWEkOAbfNvlnMdGACc2T1C4fFEPAVJ+PL7zqYwOepBth4fAi4CDG++l4QAep/ssEeY0bArL0miaVRCJB+0QM7jwoBP81Le1O3hQDr2iILGQgQ8NsoOosVXmbQh7k6XwAVAX/jJ9g8NGYGHz9/hJjZYYLVFzheEEQwg9f8XopILzHBNKJSpCOFzOD06jcUvxkm2JbkLVfmIDOYSLW7Hz7MBDfuKiW6HTKDR8uX3Ry6mODCRc1mWWYWMG9ygIiuiQnGqdHnR1dkAW+f3o15Vc0EX35T4BJiygJ+hSJfKJYxwRHSJZh4XixgKpY04/gHJvi6sI5faCQLeGmIJP9mNhOcw/XJCSeLBSyQ4+7tSGOCBzg+BQVCLODnS5LUvIlMMBWbIpfsPAvoXN3hLxbNBO/deWS2isMKqmppO1M8YYLZlqxpEwRYwapXzFVtfkywa7HSexkdVlCXfVDcxB15fsbsPINerCAMWz5otkOe/5drrOlZrOCxTNtcrhETHOuoXWI5zApy73jzaqghz5/faYYClw0kYrGQLbrEBIu7ggsfpdjAAtF407ELTLCwTONL/dtsIJfQLcp2BBN8AUvl6tYrNjCZn6ujmoQJNjS4nxXSxgYukT2i90RlgksiAnqpj9hAH0lqlh8bjHCKMmIoi58dxHCLM1KaZYSD3nQRypiygxo1UV02vYywArqATXgwO1hgRoUj/YkRXtNi2pzKZwe/B0bifC9nhHc4NqIlB9lBYgSD5KMcRlg/Qp027oQddPS9pHWUyAjTuApg7XNygFCP3vjNZ4xwIWZBKYoqBxi1yHjlayAjHL2vvk7gwAGadHBvm9xjhF8ESV5giuAAx+YqNxsdGWFLKHVc9AMHWHe9aojZnBFODnjmr9bDAZ7cR4lwv45M+hy2uumXOUDTCZ3aRDVGGIv1cv8KBid424g6D1ZghF/FMkrWMnGCIU/jv01LM8Ltk8yxzy9ygmRCgfQnwowwucq27i0dTvCAa1aUHplkXqyxdJ2z5QRrVHPii1gYYckvMK61HydYKXvyTZWOEV7KrQxajOYEu40ouabIGGH6HwKiFu84QcuEAj9vfEbYahiPcaSGE/TRuf2WAoMRLsMN2PinpO8T8f8+6Ysg/oekL/W/SPoy/rngP4Lf0B1DmfsFOMvvPrWoXO3/caa/jO8/jQjAAM8y6S39jOwPRGc6/Lc77ZRn+vl12/c0yfRn+moJq0bSNPOZdjy8jt0qwHam+R90PIouYz/TGs0oshA615nu7l4T0aLkPdM6o5M8M5wCZ3ppw4ZEikHoTOd4TYahZgif6d/PW/RM/37eYmd6FUPxxAiQONPvn1Z7s7VInmlXIrGdZS2pMy0Uk+taMiJ9pjep2VbuW8ie6aLEV7aKy5fOtAcL2RyhB3Cm6fquCDr4g2faJw7FqUv+8pkevVGdI4otf6al6e59i28726/GRTmPnimc6er0xYVjkStn2vRI3lmv+mwHnErdvsqueKbD//iF7iz/HGf/Pqj7eUUm8uRxgoqRuFUjSwywuOHIvtcrTnAZaC563cMAcxASWuU94QT3KxqPlCoY4KprAYGzXpwgjlfIpZ1kBpjWPOM9kTUnmB/gMpIYzACnszyPzNPkBLnpo69J2DLAEX5yDLLSnKBh84cLTSoMcKIS73gDOyeInhtfqMfLAL99rdonT8wJPmG9az6LzwALeWEvVu1zgJIVRoLu3+nhaKGJgmsTHGD2Eme83Cd6uHomRLwH5gAn8tJciJPo4VhRhiWtdA6QUOlyx4oHPSz7dudbZwgHKB/tgDOuRg+75fUvqyG/lIe7Vu5MsdPDRdMlS17IL22h1/2v7Xfo4N4gYC2FiwMsJ6gXJWmigx8odKh3YnKAWjUjzkMv6GCDQ64rJ3PsoJXz1I8aWzp4N80o9EI9OziukbACX6SDKytQyd0S2MFrzkcK7Ch0cMnjSOIyV3bQNuXueEEzLdzKLO++q8wOfrTISzB/RgvHcayb8CPYwdo9C90LN2jhxqUeCt1dNjC/xIiKDEELb30obvfuYAMTXXVGdr7SwMHin3Wi0tlAL52wjPX3NPCGJPvnGF82kPd52MmBFw2c4k4U6a/DBuJt2lSTAzTwu5OXgA4PG3h//j7GJWwauOAp2wYHChu4OhitZtNFDZNZaTybHWQFtwznmFLiqWHR9UbNJ/msIHVJ7e7yLWq4gJ1WhC6IFZSIxRHX4KaGy/DdUxONWMEUlmGp9nUq+Ojeroe/DCtY1OZew9tMBX+g64i/wcAKglmV0y+TqOAua/QvPMcsoI/Ju0UaDyo435654McEC+hxc8wv/yoVrGkQqNZQywKqDzWxGLJQwVVqn0p2sllAUT+iZ22YVDBhRAk7VxwL+P2GhKzKEiU8FUqgZvCABUwqo1ro6qSEeSgqJ546sIBpgo3XLIspYdtGZfdqfRYQJzEQFf0lJdyolqj7RBK5vZY1etOZEm7iz76vT8MC9l/hHTlWpIRjrHdpefaZwRtp97G5GCnhlE+UhaijzOB3dXcrl20KmGTzGsFMJTN4q6ZBZaiNAtYUiBUyi0JO6rNG2MrjKGAmCxaTZVtm0O47CkHXLQpYRrekMlCOGVx9oLHAxEsBW/EIOnJTMoP5YSO7b7fJYZdnpzYpQwiQ2cVwSAsih6naU3bWghBgrM5I+fFTcpg04fsHRREEWEOkYd+rRw7L5070JUwxgTR8KXdbEORwBHHGo5VwJrCrY9l/cokMrumnl5SRZgLLFnT5ScvI4O8J0ctPFxjBRNTqEYWHZDAaXJHRH8sIFkaDAjFqZDCHLyo3rTwj6BNFgHNETQbnHJPp6K8xgBHW1S2+c6Swhb+ya2giAyhEY6JB/IEUpjv1jaxVZQD7Ww/70nxIYQz/vpTFXXoQzySM6aoSKQwl8prip9ODQT+Kt9DISGEyGwUYoU0PfjOLeNMyQQLjAAA6zwkdaDK88OxVNgl8Qi2jJJJLB3Zryj9w9CSBY1Ho7IUM6EC9AcbSq5dJYEJmeiVKTDqwtIFFk5eQBJY1iHqDWkQLEpbKucsWEcP3LPvE2m7SgldWDADKq8RwmTNlayw+LejP5o6/OkMEo6mzvZapoAHVrfI6y72J4CQzyQMFaxpQt1COiJKMCKZoaJ6qIKUB0/0GBnqyCeF3lQnSYC016LSd1VJ1mRCWLnKIa75NDYo7+FRljBDAX+UCrM2pqUGv8Ccj1XcI4HD7BcWmBiqQJNfaIhOXAH7Mk3Eg5EoFMlwOys5JxYfLtxkiIxiowOemtZofpPDhRSiWZamFEsTw2dsp7sGDdV80xVz0pASnGDQOK+zx4JyguZQHLJQgHykDbTMqHmz28Isy1EEBDtEtdo8k4MJmmG+Of3hTgBilGbPbwsj4qUGxECcFKKRpsU3cigNnx36+a9lLDo55E5mJWuDAzzIFRKL8ycHJu+zvbx1gw1oSah1VvOQg3lpo7YtobNj8SxXb/CAZKJ16RDzCiw27x/L5EASSgbd1nc3pG7DgQYuVMBFBMjAJXN6yM8aCR7ko/W+MkYKaTsEZ9VuY8PzXGKr7IaRgdBttH3c4JtyQ9uJbiigp+Pgpbvxrdkw47WZC5acpEvCe8r4RUQ0GfIOauWkpjASkt75SGnEdA066P/uS5CIJ+Nat+SPtKjp8Q2Hm1LmFGJQruMxb9BgdVtyk5IKYicGjK0Ex+gh0WCL1qgaxNxFYOdJ0dFCOBv8oie807yEEEz/13MzVQoNHrSLGy3gIQRNfJhXbRVT4yCVDkegRAUgjM0tx4REqzLGGyLIdxQfFckcIT+lQYTXnVzh1IvigBn0PVncxCuxjfteCIQwP/CxzxJerhgLnPgnS9J7DBQWh+RBE2ynkFvxGekgGFzRbuYd6cHQCHaBWPxKPxQHD1gLx5i+cQEH+w60xK9hgxWYkeafZMdThs+uyeQUbnGkjyWuOPoIm64p6tJKwwEflggxdjYdQ3aUyhfc7mGDp9Wehs7sHUCM5FyeeBibIIZxIhcJzALUsxuPYZGKAcQTZaYzG+9AyrZcxfIIOynNYqilG7EFGnIHeNDfQwZes9wQ9oR9QEfXjJqcPaCAF8QeT3I1dyG/5xwsIGw0U49jc+MK2C6lA9rakZqigrox4CLP+DhTiebXqVgUKSOUbFHTryTZEaiA5mU2CAqZwJ5ykVG5BL9tFuSd7TgAckVvscyub0JbJowqTR8cAp7gpyI7YhDS+d6uMiRwBVy4am1hrb0DPN94dq88dALTiUc4ZgevQ/Cz3SlHMPvD4xnrCJ4c1qIvHNAX7yh5gFvZgWLL7OyStM92nur0LHMfmdr4RW4EyfSyxw9N3gFfJg43YCUtQTJB4ZZXeNnDol+hmffwN8vy6GDWIsQXI0PJ9LTNfgHReLGWMlmwA95sCxw4/fYEYcu4VNlutA6NbuQISvPOQ1lO0qtzXq4CagGmfS/8sNEDRqP/OaQVgpEXjSPOfgfpeee8GAUtAx6Uy3k7uaahpMsRYgfQbEHdtw30lYwK6auH/cWH2C5A+/bpP6mAUonE52L5HMA907okPCVUOQzhAWtkP8VngqHRugcNnELq3nPvY5tY00EDnp8kg3Q8t7FQUR5NOAIMTkrepD3ogYCHXXdVqBCix6IkR8eiCWExLy+pfDwJon3diBAjaoRvZRK6ifX1Ayya1vlB6C/TebXIqBa8HUCcmH5OV/QSJ0eB0Uge1A6VYR8K6/XVQf/nl/OPNJoADITT2dbgayoB44ic16oF3sjHSCL5ySEWz+iT2ehVgaNRsZO1XCJke9781ICwC1gvetlm/yYK+2b+tQglLBaa+3/8m9+Ql9PcnY3Kx9m3/mtRn/vhE8/NZNRKsPxL1vz6rloT6v8/0rVH/soOf/HwOD+e/yPTxUP79WTX8bt7gnqJrf5oamx1MaNf40//2rNDP+my6EBvTyLRACEbOB9+lWwDYQ5mPRKYFEGLuu7Qm0Ao95fmwKFrUCJz6kHD7X2gFtOnijBMZ2iG5F2m5M5h1gGel60w0Qzug4JeMWqLfCUVx4qI6jJQC647EIjX6nQDyW9lseqcTOj2NKSzKKwRggsPmiZ1OoIqsy/lzVxfEz/xlbposDahBlOy3dXUBlzwfhVWjdkPYvGLMnsdRwA+dXJtK1G4gC0SVLTztgsbU01pyLkXWhidy4BSfdgF2KJ4T/3RbZuL/0FkZ/9RZeP9FZxGg/Ptv8RsP9uha6xX+NAGFczrWGvinwydHpTgvyv7pf/uN7Wf9jnV+b5TJdP7eMmSjxIX83iirc631JMUdkMM21yW7iBdy034LqwNcPUBzqRoPsXUb9O2DLAPDlnptMuz5fkqjF2DWT6BUqm+CLPj13BNqPeR4JlI0uBP6gYdslPcz7BshVJkNrPpI99rEsodvY6oHgCOnlMyF1FqoyOepjWJ8tBwvaAgsNg0BMW93q6sZPkJX1u564YXmyKnFLfvK5w4DL99sLbxDzYG2Lbixr3jk1L6cxyS58RU5TMh1IBRJX0Fe1S++m3Sv1Rp1OenKSo8CBd88ihT9H9ZO3xY2WnyRJXfwWaIxSmoUYI/f2P+nzjZF+993NgfaP3Q20X/R2ST/XPA3vHt71ukNMcH/aco//eKrV95HLY4/3YanOSLqKv6n2xdmXG7Rgn/633Lbn/Wn2Y9rvopsNBBX0HQB2WiNfzTalSvhRYpxntARf1fZXrQnMKD11ZgM2cgvyHom2IqCISONesPhomAggDD4bZvoKJAlAVAT+sdBuQjN0Bm/OOBZlfvXROJR4A2vT49c/itoN2dyljP/FcBg6KaBtjkClC9R996cSYdmcolPXWbSgSaXqUNavxGAf/duilVuNqSFgollm5sNmLIXB27jjQBkDaHOjRnFUPSSb/fHjGIgqB8Nhd1nCGg5HPbLjCuHNue14/PjygHcdLzI+7yDQHVGlgorHQT5eERf5KKDgJNWCVTK232A3kngYrF+HeTm5NOLNJDUcZt8eL8HkExYEzAdaYQgZdxYpIGcVJLxb1ydQODKB0KZqCboVE5hlSu6CSid03ogI90G2AYR/TYCTprE+f8cAVdrhvh/joA8WqD/P303VOL/0e+of7kCU/H/8wqkbjFTnvvLFZjLHVn78wq0/7WDX1cg1h/Lz2ED97+8EtlTlQgbopqhs0z4hAux6U0F/t34GrovXiSy/YdL6a5TqIxxnumfjzWNGaPx4jMzw2c5ocJlmQ2D5D+9y6aETvIOOMuOyGM1thUtlJB2Q49s8gnatvSgfZe47aPRLsBITXOogKIbuib0LiHoRSzQcClB7fl8F/BywjQrdL8LOh2kVb6lnAE0Q/dv0Jd0AWFbOgJ8Zl0QRmYELDf9ARhR+7peToEsH3gn6cJ6B8QlFIPTyVwJ1FNsnxg+6wCay9U/ECy3Qa53xyJS4Dog0wD6hmfeBqSkVeIsj7VCR89Dyu8cNgACIfwSDBKtgDxOo4ZPw2dohuPTtz6JJsAib5ssGO0zUKKwu4aR1gKNDeyy6Zq1AAPN3RZ7dc3AB9dHmoy3OiAXdHGTvg596JmGnVyUTg8QfZjla2PYASmMrc1IKscC2LWMH7aR63mS36g3SnRA6C7b0MpyOmBQlJGbcLkH6LJwYCx+2w4BYXRaLkkfgHJT1xXfnW6gzNYWn0egDcp7rGJHvv8RKFt1DP/A3w3kdG85+ct8hkKdjWd2+uuAb4WaRnYyncB2qEbjI54WiFGVcEqKqxG4vxTqsEHaAaioNcl96mqCzJtxvFMYmoCbi9yVotFtQMVpXYlKxieIb84qWlWlBYjneqKlqt4KSCVkG9941gp9YhrFyp4whCauufOpFvcCFz7dwvNEro8eOOZSKY0BGFYrI70regGv6zjXdpRbIZ55ypR63XQgqj8E+TnqBfhI89GIMz9Dy7nB1Eph7wFSJhf1NKleAGfmaYXzcTP0HJGlGsL/EaCIPq5P1e0BDkzvsjzf/AStcL7DCneoA263cWOrXuwGjhO/31vWRI4WBmR5CywNQJUQXc3pm04ABxMFB1+0AXrQLGD9yPoToFjvyZln3wHwxAldt71bD62mzt/kJGgBvoitpPimtgP9HO9GWPubIcz9cCvqaBMo5bW23yX6fqDZFx6Z7m2GJn3QymTwYoCqGphbmq0fiL1yJfRKcDP0mp1eWmz0LcD29lk23lYf8IzobcXI+yZIcjZqJzg9H4gger03FtIHXHcrbXryrRF6NLH7yay6AuDNnTDbetkLsMRIGs331EOBuSnND4E6QJdxVWnUowcQVMxy84msg7DtQlcPrRuAgTexvaGN3cDA22NqV5Q6qKpkxtVWqwmY1cW1VvXuBtyIu/DbpmAI+y61zGHuZ4CZysPjgXM3sHRM7529Xw9ZevWP596wgAj7BnHS/QaBBGd3ugvf6yH5Il/dQKlogOArvDAZMQhU3f1IkXWvHhIVSxLilnkLhNnaLxSpDAKduxubpGl1EL14pnh0fD6Adk0xZKx/AOgen368RgBBlImXV/jcK4ANcDA3u6QfuGUcIZmwUwkVeS9qcirUAd49ZktgFDJz+Dz6+Xp4BaQvNCYxE9QAfNca1+2d7AUks2qCOTXKoU/MEk8ITZqAfTF8poHHvQDZk/BOQcdyyNzKz5P422fgGWoKiWhML9AmVxXL0VYJPRhMSz3M8YTsWPVNp+yGgfllmsyeGORxVzrY+IIigTbVCFnPZ8OA+b5j94PYj5Dea5E55/1UgPqmodl7+WEg8/vCYHxEOSRaP95KU5cLUHyfUQysGgKuMCUqWswXQzp89j3TshUA4SnqTdEsZCY0+AxDWroASmXgbrh5uQ5gZtXGx4seABahQMsBnHwos31wjqenASAVfPyql2oAeHtxaSCvIRdie4kW6/C1CcAwKScUX+kHMt+PO5C250GE/crV8xHIeXk3bVMU7QBwghtjrNlXCq2IjEyRjvpDHN53m6soRgC66PtSd56XQmLkzzfAT6HAaUw4h8PVEWCyB1fhjmkJJHixjXGoPwWYkOEuVNsZBmQ6n4VF3CuCgvjK762Q5QLvvgetY1oOAzc970l3UL6HLPIa25jWy4EnO/i67/WHAEPlDy8+T2ZBbXdSXslp1wG7gi11pD6DgJ0Zm8HGSjoE46DLyWw2AKV29lOlxIPA4Jejh1iC6dDSj2RXE4ZmwC/M8Zb18QBAKm/bGN6RAaV1s7RHjLUCVgn338heGQT0V+0WS5bzIKUPROnsjE+g6zEUP5IqRgDP2E8Jb1jyIJcuUHbh/SPAVhLq4UTOVua/NX++g5kD6fDf5hNoTgZOtcztNItGgPBaYkZO40xI1MIWf8YpG8jhKLQ9YBsBnKp81uT1UyGO/qDhNz3lQOqS4brz02Fg4sIzSYHwBChTsz5y7l4d0FJlHXprfwiIf/dx3zQzDhKfw6HUV2gEzJ34vJbrh4CvNlOc9/FfQMOPDnguP28GDA2TKLUnhgCvfNLTYqrXEJadI7u/cxugfcfSnF9rGJCiCw0HTV5D2YHDLhlqUdDWtl4xGfoocCvva3stYQJkwHB/pOmlK9Bs//YJh94oMK4jMvHcLg56Fa1NcF/1FaB+wV00nWkUuOBwKU09JhJisjOaUPPIAm7EsX/dRLbPCaHlSiHZA6g5oHA7maEcEGC5jfMkbASwCk255d3qAKmv69pLu9QB8Spdy1UPRwD1WqLK514m0FHlyd7Nm42A6LrFpOXTEaDm4jHmycwd6PHW08cBvc2AXJ6La9jcCBBQ/oN4MjwEalt8dtlhoA2QOSCuoYsdBaqvxtN+a46GAAOXqKaOaIgp7hTdjnQUyCh0Nx+++hyycHVFdApZA6TFLztdb44C4hHTYi/uPYV6sH6oqI2+BAY33AVAsVFA8NWP4DczvtDdNg/GyIFMAEWJgsZrcgSYkpmoxTi9DLkYtsN9s2VAFnWecFTXCHADS+fjxW/WwPX3C7YLNsjPF+qNXoHVEWBHO22oj9QZqLxRUh5j3ghs8oggYJxR4GMA88dBUmnAx1WI6950M3Cc4pq64zkKPHxUuGst5w/xXX0icPi9DbCTfIDHITUGNKLJ67gaBkGLaz2BlfqxEKuXax4N3SigKE9dPYvuD6252OgOFmkDVBhfI0ZujQIsgo/QNjlcIcTH1+ujNvEAr7J/NefFUWC/KeIKOqc+4OXqvch2IRNIUf5QZb0zAvAx2zd7lfsCp5mXD7XTywCaA5qnBsh6TsYMS1FPPQQ+WCTffmFcBwTemyha1Ea2s5RRs2vwIyBvn9ytB3leWMQ/BsUejgIaDgrXnaY9gDsLMS/Kl5sB4CBMYxJtDBhKtAcjQxygrMvrOtgY7QDqHlcU6egYwMYRNs6KZQjtdYR4J43EQax32dY3kddVUlHU9bUEPSD1KhmaG5YMhOe4VLZnOApUzj5Wv5rjBoS7EqlNbcUBSTXaj92Ekf0oqWnnGxgIKEYm0z0PzACYvHUbWlFHgV3ZFW3SgXDAeHZnj82yDMDTpmB/icxOqK/wfJKRiASidUREODXqAF/isGb+glGA4cn2SO7tCMA2+SUnoVkj0CTxPhdzdxSIFbgkq/c1EEhWxvmM2GkG4Me2CJuIMWBa4cpLczF54Kvl4OAdmnbgR1pnA7rPOLBRNc7x11k8u/CU3M9ZfMKvOfOvSTj/we9pwEm1acDPNOBGAvFvacCvRzV++st1Z/y5clS5n7P+XtXfc28Tb9uOAmTuTRL9e+79q/yv//b5673zrpiXVJDpGYl0gfE3ZHo29Ud6hvZHWbS/lM++WGL2s5IDf6/kL37d+fl1J+fXAX8dVECBYXlWgg74e7m/lvl1Q+LXDYVflfhV5tc+/l4O7W+V/cmvPPSvJ4/2l338vdy2PmPhzxOM+/udl387ub+26F9bFoWMLIoe/wLyABWP+DPG5P7tvf9GL6Nocs3el9Nf/nXy/9Q4f+2l/1EHlOFg73wMZB2SsvQkhP6jwf6vdfh7A/+1cf+6/n/UYfo1MJXEDKCsP00hfsH7Hw3+f63D+rPbgT87iOOP7SS/Dvaro/56tfxE4FVo0M83CP8Rk/5jb/0L2uuP5n4lbL8GoF+J0K8B4u8f7N9qR/3HMX6m4BR/BH9Nwef7hzSUF/tIoS+/p+ACH+lNfqbg41S/bxd3R/558h/1+XvKvQ78Spt/pbl/prB/pKJmnlqdqjcxQeKENDf5uSUg4jigljqwu8x/+LIcsIlf4jJ0WS6qvUcOBeUB8JcF+svyt3U/W+7nJ+SPKlD+ast/as+/f8x+8W+3pkKuLFyluTEI/O6y397325X1KuEni8Dvx6b8o/ivvsb4VWwkQgqXT7Qj/NdGHFQUbFw0VBw8dDRcfAx0PAJMDHxCLEwCYhxsIhJcHGJSPFwSMnw8UnICfDJKYiIKKhJiSmpSEioaMlJqOkoKWnoqSjoGaip6JjpaRgQ9HRMzAz2ChYePm4eRl4+HhZWViZGHh5WJh4cNwcTKLnCBX4CF+4IAOwcHK4uAAAergACnkLCgEDu/sBAnFxcHu5AQF4eQkAinoCAKePmyPApyuYKCoohy5YrCFXl5VAAE5QBU1EtyaGiX0GRlZWTR0aVl0NFBFFRUbEUlJSJs5KKsokJBpKKipExEJIeKhiaLho5OzUBDI42OgUGhoqqqiI2CIiWNgSF5ERMT46KUlIQkFhYmlqSkiysWlrgEFhYG5sWLomJubuJ3xMTcxO7cuSOOhXUHy9XVnpyMzJGAnNzOnoaGjMbensbWzu42ub29C5azszMWIaGTMyGhoxMBgRMhAQG5g6OjA/nt26pXaWmvXqOlVedTU+O9pqamcUFdnZGWl/caL3IdNx+f+gVubj5eNbULGvz8wvyamhqa/PyCwpqaWiKCgppagoIiWtra17V1dPRFtLVFuDg5r+vo6enq6ehc19fWNmdGIJgtGRjMEWZmCDYzM3MLZmYbBmtrG1saGisGS0sGK2trS2YLCxsaBgYuYw4OA0MuLkMjLi4uEQMDA5EbN26x3bxpepONzYzt1i0TUw4OUzYODg5jExNjLiMjVg42Nv0bIiK0FKqqVpgoKEK4NqG/XVWimL9fVfdGCT/5Xhy4y4C9nq4l3cpLzPEx3SKdSJrYf6r8mpuvTcw1bYoJ0YEgC135JEMcytT+GD0Fg+gnayFukKd0ftMVxZysV56GurKMZUOAIGOS0AF/PD6PumqFVVWMD5WvaM2YTnUCDsvcQ1FHblZSYjms51ftqY2/++CM1Q92Pz3RlkhhCpa9JpmD23vl9B63SPtK9rd3pJmLj5nvPwTE7T1xa5Q1U7L7Qt7z+rWtMPZtmJVxPSV0MwiwxxvfSly8qS1jbBcb9E5fxs1Xuj4PnYz064XMYwVR7W/0YRsk5LxhQldGF/24y70yBxXz5QsXDR03S7OyTytFwxIZrDRUuHmFwwpD1YJC+e2OA6m+HrIy0r1t0hM4aaFg++yqOcDRAYmRMMfMnvR/SU/rY857XxvEOJK5zTEYPOEX/ezATcEt7NKnCxRJgWUfiCjFxQpXqxnYF7tYXwcRqwHLFHgMX2OchKi9cuJmnqV81KMrCs0/MiCgJiS9/izJrAG4eXnV2Zrsk1gRydh9q5WEqxzCkkGzC5J3fI8vDqmX216P51uvGRICGGPrGCitXSVWvnyop3tp7E9ae9LfTP2RAo/pw/L08eWmS1hOw8vbRtz9y3vEon3DYauvXQ8zY6eSXwkwyE2G8+xS3/vmI1ysiF7pPuf9SjGNhGniIX+f1oUOIfOqemNhq4twebPmMA/loKWA3OZhXwB5np6DsHU+7wRtL5VRaC4J2/2vk4ysl3tuhvnzLiRkx3nhqeKLTUlsHF+mDkrtIHR1u73gSfTsu/6yGKv501iAuKDUV2wQ1aHYMdnc08RV2EmhvbTYZG2BoqpQxml4ZbWZsMkLf4PU1O7bnfQCZ+XGHxct0hrjkvljwKx2yu/ayRQfOwh60ZMrbFcUYtIItAoasT2Hjj8HJFHJOu81eK8qGb1NI3LJj3g5UxBM5E9na0hk3O1YFHMyeRRdIz6CWzMoJL3MbjmYb96dyKRBXs6bYOVzUQ+L7bN6cjMVgRLriPCrUctnBXrNdi87Dp/y3t0vPG3G+xAoVjD8wNCXEWOHkfVLk3Nq5hqJz/KcXa9swIy5H0Mkz6yKNMPNqPwnDdphftsLWFxtig06w5jOGU2MIm2Vq3rsXHkZW10SBvobuuu100r2EzkvrnUlPfxibVxpmeqSzZD0rFZFtHKPU3McKiJZdaF6fjUg5GJ5NgH2zdvPFyaVXxyI8t053r7o0tVRIL2djdUQg9h6mOqfq85Sri2n39DBWW748YJLU6LpyPjXBgf81dFI4QHGI/WOtNbp9AsvR9oXomrU4zoVRPTUpIxluDZuZpQ9Y9BA9PPpT1DkPbvbeqfkWnbZO13Ve0bMyo5m9/PZuW+2UH++c8/Bz2n5hQ/LYg2BcS5FKdF1vFSPCdNtk/4vongeCdANroOrjnvtOvReG9fpSyb3N4LXjl4ehFJhYIa433G9SG4oXj9i0LoTkcFvns5E9JXr4/t9VZuYduH7p7IBrqey9EzZj8vqrsu1TfNuKXBE0upvODbwljn6Solh0++F1mGV8adRYMtbVzPrNdXiCcjruAt+uL1qTTtlqvT5m/uk6EHiU7UtYfXtZEHyGlso/CuL1j7+M+2T+uolN1e/DyIbNa3ckR2NgJs4XUyuOZiImvAU69g5DXWXH/NGmm3fh57i1BcvgialnXz0siIso9lwEtOVP8VsF0zrM1Q7htsl5ZOyNv1ouOTBkxAsEPxxgmk7SSjrpZo7xtrEY/cvFlc/sjz2d2YmGGP3yFd4FGQspyVLodIrMB3ejn6KSn73+QPSW4rRP8fRBJ7q57+No1z/7zjaF2ZMaIMcR/u+e1TmUGa1vZKuzI3UXfDwnBQspFNlYR0oCGVMLWqZ01GgNuql69BKD1N9iq3tE2BKYaPQ48iaEcFVgpNN6XRav+Att7ok0npP0OKSCaqpL3b0wZolXe68CnFh+tOE/Lwck8feZJZL1cfRn/yWH1NYkhK+wIu6OBs0Wq99gVH48vfrvomS9xuw3drNxxzwu6R5RrgMi8uW8V4mRmn92H7raBmEJhmj/lnRLV7g/vzD2jee3xT26TnveDWz43zrfkK0xGoStSLWuOygXjgySqpjrN76RLy+6Y7xtl6lTuqCR9mtladNzz9v716n1O2Is0yIEJ6wuZQn3cIoHVKarSPeerRttV7Lx1xFX/mEwLVOEo/wtopI47tWVI7LGrFevsJjidOEA7r4oyaNCZkxDLwIBWmyvi7enKwZVeh5pwSuUIVJ6JM+uv5d+aBRNt3UvfHH80O1Nhqsj9d2E7qPQySHgxdvqhT2pRZ6rxk0VxAQTbzS49dXXnLgsTl43Tum+Ho4XfxhN0F3JtCwVnDBwo6bbuFjAEEhbt2kazl1NzEuGs0xu7JXKt2nJidzoIxf3v0+cPfe3ZCMkM662Dy5kxvDKJbEtmhOjPffSSU73StGY/vhP5PJ90FY8QaNHFXsZq/CZQLGDZxo/XWsHsPMqyYPm6VHt5cTJKwX+lxXLmUqG7IYG8w+MmuXcdF4HKgZ2ylGfXBKv7TinT5PTsVckhN2Y4iCD0HZlPYDBAR5r9r4bLEy293vKo+7Y62pK1YkorlhbKTzRVWV9WXo1pf3t4rmEHNmL0fqL/lr6kow3Ap7V+LorMNv6f9Q9UnvaQvjIaDon0jZboyZXtZBpuCQ97zcRMUUzT3PvSQooRL1o61mY0SDTcsN0dSp8XDzr8xK07jC3jUDgQsawvVN/C1phvhHiVKPePPeVZmH13iVyn/7MeixtOP+wtw5UJWurJHjh+HCBeNGaiktAzM2XWAVRbQrO1bPtDPZQ7qBty8ip2zFHPWmc4WksZJUQ12egNHj5b5LTwjfiX7wZaqoVNTAbtXnFhWnFOrU0vKJ22vd1ZOaxfrSTy2hR8+pz1x+Q4MSm/D+whgfiZeihi/x1fvkgZT31nsDeds6fRSNfSz6+GjVr2W0XfVz6W+/8zZXuEpQeXU78FBfefTOYJstz5uH2LcH08W9+mw1lZndctXsb7xY6Z0b1nr3Amdx2EHVaSDMeq+q6NlUm3BeacUJ5aY0XcUJbsKH3GPpxpWWBcL9N3txoxyWpi4oQ6d3y9dyPxv3vLr7dhKYN0iymSPCuHV7ixB/0rj8nizl8R25nawFGb6Ou1mzD/fMj326vL4wNH+/uHAxYoGqoqBQnUerTXdD3VZPzdeIrB7f7Z6X1oXiCIOwmVWL2tK0oEvJiMB3A9R7uwPUCT73KGZtS9f3Wqi8thvJMMrK3OemvSRWEKE3Oy74c8+Q+pJfog6zSN7QDrTNu+0oUR2Idc+qBSXGsB181ENyN0G8sfX2UXe/ZOs15wiRAV3BvWYclQYjFMWPDNgvsmOCa6WDkkT6ZftTwvLpKgq0Q4O7TiEJY/zMxfd7IQ5RM1gsdEqZrKw3VLpSCJ+5d+Ko9HDO2Thtr96Vvxz6RE6U1HxRQ1mPc/E5q0mQYTbRt81ujkH2+jR+37xrfRxvjqUNbtmFmEpUeiwGXsBacmTx5mOVEUSnKNe8vFfwXM2Gzlz5NcYqn/jnomaM3ByndcWndNmUT6KqR+i4gudMjFxQA7I+7xFjhOv2ZfFner9EZq7XpV+x/TZ21qH9GjsV2534B8xpsFylg1jX2j8b7zHrclP5Ji/UxsenUTwOojQ0flVeYOd4sfNKi3aCRPFsS7bKTp2jdqpitj5Lof1kRGNJq75f9ip0/Y1/1ZvlyuSePSKWrti6b4h8C8po1lxlkfGb+J8fXJRRLTYCVNeKVAhOZ9FL2OyVeyPTGVVlor3Yv2PJxV/97YXKaBRyS3zR8IUd1aWYfq5sTZ0p19tGS1H9bNnKOl1lasQ8XL/904weuSalivxn53Vtjb0G23o13nnTRTM5m2LCz+b05DSA79PBTZ7JWve4Tc84i2NExj0dlvQfyJfTKkEexpRUG4XFmBXWPMGAf0JkRqrweCMrqqE3SkiBUB7NxjyT4pNULsZ7amHYN/VotlIlifaEFV7n6kdEfREoVEqgyiwPLwh9wFORsBmrKLnzYOstUSafS1DhtbvDfnFoRQuvEh5qMreLvxvZzCPaltMtTgh265n5YD731W/FYAGTZUyifRTfAxa6F/nFALve6sfdMtl3D+5fQ0+e6scRdZAYZ62iNgikPq3LSnVljs7iKVkPynwZj5CsCymk8+8eIv20TvNGaPPKhIuSvESYwVCp8pUpooZX2J8fcXBOL1PzmlskPvyS7ZRWmYsyV33rKc4PE1nJDHTzONqWgc7u/UUKorG9hsjnV/jx1TEUdrQTYbQWY1xlrmNeoR84dcM/dsySKqm/hxpf/hGKkPbxkNcrp5YuvxSyFPedpuYORXu5tLk7LNuO8VlY6jufyTXxhko5Af73o0GLgT4045WonnKOl68P0MW2G6Tl2DLRUTsWenhiFL1I7Ol/j1iKH9c6BbFbqGtcxZXRM4trK5aVBMbplINSt9bdXRE3T+Kw8I9Dui/tCql5KZk31CRpuUsyKZREpGokBb1e5gwaG+h75/bxgglfl5mqEB614oUTrLwCS7FvNzPJ/yXB/w0hZJbaZLEI/y3rsu4x1IqxpcGcLsCSJzAXZg/iJ3mEw3ot7J3WFk9ZyjDtnI4AHYx3tS6NgiIPh8BIMT2NQrsHTaPQg9voxnM0/w/4Cor5kY6P+F+QKF2j4C7C4d5JWwvouSm35b+Q2P4mb3pYvlYT4i09iggJg1GLTnZyxfMHVmVZLLc6PHulkwXmdIfKf/CF74eXirNWFbGKNt2hvJanFENAQ694uvvw6yqO+hN808wCn+aV1DvEEb524wpzTHQ/uiu4bmsfCGzZkP+KQ5ouia1GcFBNWgcbiRzbrShbAnSHPcNTAS0Wq02vJdQQdIfdwyFNtSnO2N7GVYwxypZMEd5iX013MBVnUYV/C/eV4medtUPCvZ81/eDZZzsuvR7Zzng8Jef7xp7VM77ec6Jv/enNnlP/04A1ZDWymA4eUn1jV2OKuDuuTCy5cz/DIVZ0reee5E0Xqphb843jO4rPehcEwlIE+bsGFUPFPbbXHarQHZ71bPfYCjhPTIhl23AtC1oLZwQePnNZokshxyT6RLukIy1XkXV1xy28DKPc5gLlrZQ4Ce36kjr70Y0Sibc9ayId3S8+Jr0Ue1RV9DiMMs1hu+sJc0SsNVYC080Fv2t8i41xd4h9dS+whwRbya7mpb1mk4vYf9ERUjL4xObH64H+Tucka45muqbPt3cUPQUGPl57FVBWEPzxaLJ1L5HeI+r1qO+LYBSd+qT3FKup/a4letp1pPJFp4GWb4xRCMPmJWrFirHplwsNZgm3PdqWngowYFfM39f8OET+7WhM+853Ex4M9se1xTboE0PfKutfCWD75f54jZuq/2XPWm/JjVxqRSQphpk68t3gVwaqqxHzrrbN8xYPXynSTSryEBfMrx/e0x6KzeeRIjElc/WRx/phWn+XoNyYZMfV5SgcstbqfV0o8430zfwXo6GtAystva+ey9+s6XudezMre9gDvxlWGelsYqQrWW6vm5QSuL02HVe4G/rk9TNO1wVc2vSui9EBPvno2VF2LoLPYh/mWlROTt5Q2i24mhPfZg0a+L94yKDcy/ZZKjpAEw8/OIw1NCap5e6H74TobzMKggc81oM0Lutb+ey7TapM96/aqL81UiV6bMo9mHmNeRNXuVd/Wb7WkHLrbX4hRsVNd32sDZOW4MaUwvAfU3wsja4P45VUhymxvqLxCcdKrjgVct/lTNgYj3m8u7tudXl0PwcXE3dtpZJLOxQWWHPoKq/D06EXG6jqVsYxVrPQePVFJiqZ8CQVt5EoaGYEM/lSpJX1S1ztDxQw56cVlJoQtqfqxSv994XJTZTeLF+NmQ9y2HJdtH1aZtbYSR/kJyKfjoleF+II3/88ULx2ihst9sI0oGSYbjuJuAiQXQOvzn83tc3Jm+4cwDJvtBD2plm0GxhqCanGDBs87mFnDV72u+YrLZDKnyl+t0GfRWokYxPLmKlCf8dPROoC8/hrUbKbwa4zh+GrB6aGok/Nu8NqWo8ZzJ7pb5aFOql2bDg5x4nbaJ30ej+55ax+hJ3s9J1BGDPqlsNINgofa81e9fcbmuTddHkJyaZmqlj1RXOXLMPhEMtteZ0OjkNiL6kPcrYoc8qilknS7aoVQ83+GuWZi5wxDojganEOzzEm+inDi4q6O4CnSywdeRFLm+l9z8THh2+EDVJFmFmZ7kGbNKmMnbaPSz2uxskIzNpdC7GzW/8idXvw5W3Gu0Vs/FqaIfP3OwRzWK7XsnPw2iRHSoR/+3rr1YruxJPX29P5SylSnxNGnA+o4uIv2PpeHvc7ILYKkywYWzUR/zl8pv/lVug/3YG18UU/+f3Vvz2u9Xf+vy/3s16yrO4RKCjo+RImqH/91Yt+CjPj52lg/loRsYbW+9NHUa3bfy2I/7872DnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555zz/xv+Hw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 495fbba5-b009-46ba-9e60-22062083d2ac
+ - 1
+ - 7403b86d-90af-4769-a222-5bb0cd23db2b
+ - Group
+ - ✤
+
+
+
+
+
+
+
+
+
+ - deaf8653-5528-4286-807c-3de8b8dad781
+ - Surface
+
+
+
+
+ - Contains a collection of generic surfaces
+ - true
+ - 3eb4d453-6f25-47f4-a279-e2c0b4d145df
+ - Surface
+ - Surface
+ - false
+ - 0
+
+
+
+
+ -
+ 3681
+ 2199
+ 50
+ 24
+
+ -
+ 3706.517
+ 2211.432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 7bt1WFRb//dPd3cODUp3CSykRVJCpTsEREkBFSUEFBBQpAQkBQRpRAT2IqW7G0WUkFJUVOAZ73O8f+c597kvvs/1/f3Je649Lz5r1uyVs/Z6z2wwMDEwMA7R+sVfIsFCP50/5+J62VPV08PD87Igu6mjl7er52VFGWExCWFxMQlJWfQfoqJiguyqvu4+vl6OipcdfX28bN0F2Q187dxd7c86Bhh7ujleVpSSEheXFXOUk7GXkZKSkhDF/VUK9b9OLqzp6Onh6OMVIKzi5XgFB52O7/dHOUS2XvYurn6OEg4ehJ5XHC9f9vWy88ZxsPWx/ZWJgIAA61cVKfgwMMTRfPCTmIQQG/0H+a8nKiMMDKzvwVgYeEZ/NOfHIRYGzZ9NU2323OLPIdBIn3g61NrHL33ioFj+J/r1vnN/vC6OcQtD+QnvHwHFr9P9qu6vs7WR/+fZGClLrQyJRyiRAwyKUEzOLW2mAPpfZ4v5My8F1p8Z8dBHFsbftQX+I+mPdOTvKXnoI1olCn4JVIdHMfhQ7pI299G0/Kly2bhe7UjW56683xc/mqkzErw/76seSXmmax+SulWO5NT5+iIJ/KMZmIjh0a9y+kgyDauJuN1UPpI+HFRvSX3Akax4nOqsvqZ4JHfoudav2ykcSdEHz65UTcofyStkkrtrBnJH8nlUfQBXh8yR3MBRPzAD0kdS8FZvSEKN5JF0/2GC3yUkcSSL/ObuYeaJHcnVbScKORbRI3luau7kIq/QkRwY2BQ3oOU/knqvMRQQbL4j+Ue7uY/kH+3mOpLaVZx66QvsRzLOxPk5QwbzkfxjXaA9kpTWpnmFpWRH8t3MXlRMMM6RLGjr0NIe+YocReKWgQe0z94dyT+XwltH8dc6+8KHAlWTYA1iuWuL9FusELz1HcnGuCyEJ0ow2v55MnIJRD5mIK9AWCisM8/WPkWWPZJPnjZ9hXz+mH+9JbocmaDfMn+m14wwa9imOyu+QDaD7wWp7bQjTBd5mRg36hGK5tCPDSE9iM3KWNazhSZEjyISM59wEBmt6z9nrN2G6AwYIeuDw4g4kQAWXlUHEqj8ZUk8dQx5pUJzA7L2IL7Xnp7ztptEntAy+N+O6EcWe0vLrMlnkTAJAdQSzhDCqLhJyGG1gJAWYAiSaowg997aH0RKvkEaVnPi5CLGEPlEQ5wloiXky+MzuY4dE0jpTuyYyOI7pP1R4scYwmmkAlvhwJb8A4KXeC4msWYWsemKenVTcRURTyNe6xZbQGIfGGmHuK0jvE03UjQjFxGz59N6bikbiBilgMmruTfI41RLkXT7LaRifm6bR2oJYdH+8CqnchtRnlO5Uz74DtEqWr6ahP0JefdNd1bk8nvEQgQsXjP6jBDWJS9kEK0g+uM/BbVzdhHeSf+ig/xV5INCyijppy+IwPmkE4aq60hIttTNQZVviOhoTX7O/Eekua0sNCJhD2GpoJv8ELSJlBlGnhN/8x1pwLZToYzeQsxiQ66MiP1ErnvYbZ0020YUPk03e97eR3Ayk9SVT+wgrBekaIkHD5DogZ5U0y87SNrOl159Cgw42ymddKn1E9Im4l5IX4sBOQf3aW4mfEauuV7tmrXGhJvRQagHNruIS6B4VzY+FvzBWfX+mfAX5MK9T53OpVgQ/+V6WevPL0iE95UCgfPY8NzJBbnFrq+I1wTll40DbKg1KVKCnfINuWJiwFeRjwOXbPoMhZ33kCtTF5/76uHCb3D4kr3Ud+Sqtb2U3BdcSMIxGZqM/QPxXpeh2k/Hg8kX1SknBn8gr81rypvU8SEy7n2O+8lP5Cblj9sRH/FhT1rkneDL+8hCP8GsXiIBxHgv2bWmcICoxdLJ0ikSQmnxRdILxIeIsclH1vklQpiAw2M7OnmIsAWdXimMJoJJt6O2xY0xIPfVjgU/SWKo19raGf4KA36j2KHTmCGG7TEJ7EucmLCnjFmXNowEKp238Ve5iwk9v79vWhYghX5PoU7xNiaMjjIJrxsmheYGb8I5L2LB5PEhr7ggMsjA7LiVB7Ggud2pA2cucrgl4sUucwIbsn3MiQLd5LBdLdig4z421J0KuhgtRwErc+g0nL9iQ81WmoCAGAoo7UOVRGONA2NlQoucFikgqb5Q+kA7Dox88kPKSIoSZj0wMU0TxoUhhD5NIIoSSk/cIHd6hAtFXL7kC8xSwqg7lUHgABfupKqepBOjgu/7zyfwOeFBPtOLZgdhVLD2W9MBax8erPFP2n4zQQWxrvTMcUjjQ7WU0cjXgtRQ9/1YI08GPuTnULhTcIsakpfcppLBI4Dqce1rYSPUkILb57zJZQIYE3C/1OwEDfQZqH58c4wAWr6nHj5xnQbGSdopVCgRQmGT5C9f+mlgSTLZzLt8QhilORHQwEULw6p4xrjIiWDvUm7/NX9a+MSV6YyLPxG0MWZfE+imhd8llO6/mCeC7jIT+P0oOvjg3qNnBFrE8BpTHLeXFx0UfLvx+mIZMdy7EqaC204H8TqC6ooZSOBqLonBY0Z6eNFKvIH5Ngk0Zf7e8tOdHtK1cdhbrZBA/lAlmsuQHgq5CGT3G5LCw9UQh3lqBqhGLLWoXEcKldRQ8bbODLB69cLLBU4yuNz9eFGvjgH2ruV1LNwlg9eCop0ekzLCuRnmQ99PZPCt9AZmuw0jvBsIRPbNyaHejn76ZiUjlGWwtw5rJYf3X3Lp7+IxQWWx1NabdBQQ43zeLUwzJrgyWiw1oE0BY6+gEj4VM0F3EQtPrmAKeFWtA04eMsGCUCOF0EoKaMLgtYmcY4Zvx7UJ376ngHH5OqdS85jhOO9dV30WSgjWQ+44fWOGuBcLBjsMKKF5vszqibMs0NDk7ZhROCX0mhPpWExngTJIw6Odl5TwLt2J/NQtFog6mWwav0EJH/fYH5xRZYWZGFSDqlxUkMagJ207kRWe/fSaiPQCFdQ4T/0i4QMrzLjtEr0ZTQVFycAzkVMouCNIY7/RRAWZ2y5l9sSgoMYEIvfxCxVsFAhyd1xAwbQnfo4E6HlUi/G26qc4G4w7o8KnaksNG/jeBiaEs0HOsvXRjEfUsPj0g0LhCTbIRC6xwNFDDftKONwdadkh1eWA1VxMGqhQNfiiRokderWZG+jL0EB3/YMIGhd2KBE15ivsQQMrVmjHguPZoertE9TqOTSQkdY/4WsdOyQm+SDzYJIGPt1FrCmn2CFnlf+wLhYtnJShEhDfY4fwQPIZnwAtfD6OLX2RgQM931ps2Y1p4WrbK/xwGQ4odbO3UPoGLUxV6LlVacoB9XoJzrrk00JH6XHeG24csKo4vGauiRa+zBv4rnmLA6rG5p+xnaWFIlehE3UiB0wgxXbb/EYLMV/xv5or5ICxz7gtImnooN2C+dnCRg7IMtllISBKB32S87gmZzmgF2vrbOZFOhjZeFkFf58DjuQ+xRQIpYO7PklWYiyc8K7Dx1NdxXQwnfyloMkpTqgB4ucCx+jgWMj46BUzTsjUaJYuj0EP2V8XkayFcsJ5SqrtJRl6qNvW22Fawgkf0t/kKPKkh8HRjAWlY5wwoKGwMewpPZzrv1mwc8gJb0Fd2yvz9FBhqzKQ7SQXzJi1f+hGzwBTKFZ0dM5xwfrvAa+d9BngF9KNLbsgLrgphnXvagQD9O/yqbbL5YLVPTodUQgD9BM8S6PXywVvLTl1lX1lgFRjEn78X7ggv7z28kcRRlgWzDKBx8YNx+8LYQm4MML1K/SKI5rc0JFrSubmE0ZIGxGEl3SFG3ZbL95cn2CET85JFJmkcEOdU98JblIywc9m3yapm7nhU5EyalltJrhRZYT57i03vLxpHaIbwATHOPsmqnF5oGzcyYmbBUxw8sPG1Ug+HqiOUYbfP84E72QJWlme4YEVU3jXAT4znAvVQYm58cD1jlHKHmlm2P7xjFR5BA+8LPh9aNqKGVrrKfqL5vLAHCpU9OEdZnj+qgNNCeSBhGeovkqWMkPjSZFJzlkemPyiqdVvnBmevHfhbMweD9xHZX9oOGSG3950j5GT88LIpGTuUygW+MDa4N09bl44U+vg+UqBBeaH6tw6kOOFviWDM/LmLNCHx6jJRZ8XPmJiWqgNYIE7Zla7LQ688GJOl7FQMgu8HjyFk+DHCxN9VvTjy1mgygnFDJNIXqhpGZC/0YU+f+bsPGMqL7R97bGmt8QCXRosZdqe8cJTUTaPkvdZoEHHPV2PBl7o/aqEe56OFd6TZ71xGIz1e4/4b1P/jvR/bupLSP/B1Mf8L0x9PPp4WWSwYZgorXwUB82HS7MOj+ZydsokT7DMkfR5th2fyid7JJ2y3D3ubR5NDZk5Oc8FuSPJ3auPZzQofySj93Pn98NPHcnrHbNtngdH88038UymSoUj2Ryb63aQo3gkn3DTyb55qHQkb9VF4LSHgyMpUnD9g/Ep5SPJ5l3d1155NMmVNqpkBU8fyUMCvrSi3KO5OWx9m4VV5UjOZyQ7xyYezX7XQV0MMtUjiUgSSXrdOZqlhypMSwdHM7MrCMPUX+1I3k+sWn69eTSDbT72yLmoH8mA6SJ58Z6jicyPPXJn1ziSmth1z4RtjuaQeVC0aeLR/LWO/X3RdJKZvbb3lBdaZ9Rha6FY4btA/urQBF4oVG94q5yHFU68SBzGuMELV9W4olBCrHBWrLHpljN6UU6UcYySZIUiU4nX9w15Yc/jA7NPp1ih6fpeo4gsLzQOZV4cV2OFeowZTpYodHn33zC/0mWFvvh82vdweOF7QGObasoKvQpIimpXeaBbz868jzUrlG1IWlse4IFi8BrDGRdWmN8UTtf9nAdSefp+2/FmhVrCoLssmgeepqZ+Fx/MCikj0lJSLvFAhdleMq57rBADCkve0eKBdJyz33IesULzaRwtP14eyIIz0keVzQqFkmweEhxwQ5Xg2JLcUlY4tnKtLXOUGz6XDKFhbWCFdMxLyadKuOFtS6HWa12sUHVHNGIqjBtqh5qZVY+j64dTtxtowQ1ds1u6BpZY4blg2cdjAtzQNP/+1bTPrPC7uM8VyR9cEN7u+i6Fg4Iqz05FxndxQcYXS6OPqVHQpdvZejWFC+q1Wzr1cqKgw/XAEXlXLlhlr6ffJoaCdkIxZ+7JckEmTCDboIyCsp53LIbxuWCl4NOA6/ooGKaLqUc+zgmZ5WdcMKxQcGSRbUUhnxPur13IUHdHQRIPWnELX07Y3nGbQCsQBX0TewsqDTihxWX2ic4wFIQFepTYgpyQZt2alvc+Cu6vCzto43PC8KW7pOYpKOhRMqlx9w0HrG3/MeuUg4JSnN5DLQ0c8P07jyeaJShIcWUyDORxQIs8B//ZShRsqH3jWBvNAQk0ywVs6lCQj+F6h7APB3x4QlmoH6JguhYxXY45BySrtFs7+RoF5S7cgbSqHDBM49q0Zy8K5m8qwdMoDliTk9wyMYaCQopElJfQm1rOUeYZKvTm22VXUDxuhB2ufZEyZFlBwZAp6/7qUnYopxV4+dM2Cmp1LPLP3GWHTsFbg4++o+D3UrnvLy+yQ21UrCkzHhs0kHrHnHKCHX5iEVlWpWSDP09hEO9tsEGRz68kSVnYIMryZlV3NBvsOVuJ7cvLBr9shsXm8rPBhfaZB4GibLA/5J7LjQ4U/Hwaj/uWPBu0jmDytnBCwZsLtr5camzwyYTqTUX0ODNjBabb67LBaD6ZCyj0PGPUyaFQNmWDboSjH/YBKxSe2/9Za8UGtde8AmZnWaDalQsrYs7o8m1ewVdBLPCK9pKepicbdODyzk9iZIFDOelme35sUCe3hOfqC2YozcS1q3WTDV566xqgZcIMR1AtWLJo8xHBydvL9okJXuGyp+BDt2OKzWH3cxwTVK9hja9OYIMlF4SFOoSZ4KnBUtd3yejy9HV2U3oYYTapie/LDDaoMjhpdekSI/yaIPpCKpcNOhk5d8gTMEIdBpK98kI2qGjrMEyYzwBjl1mvjj1ng6PxKhXjqgwwSKqC8GklG9R9kDads0gPCQr9yE/WssFD4r1bHsH0UK0uJcaung2Wh5nyyrDSw1vd9cSPIRtM96nVPKijg26BSlgxrWxwHVN7H16gg3Oxj84odLBBU9HmqBtfaGHFy3sJ5d1ssLLsap7MQ1p4eujO4kYfG6QQ42jaFqOFA6u3RQWH2KANNoF7IdqUM2yHhIuNssEOo8gwa7SZesGW5YaNNmMV4XVPaYlp4NeiXum8KTZ4Lgxl2FNADbHCWUqZZtngdkjI9xANakhm7cYXN88G1fUY+OWXqOC7iBmdyUU2CD6nZezcpoJrLx6V7L1lg8wbRanFbFSwJXz41ed3bFDB7r2QSwMlNMVxzu19zwatxriauMwp4WrI9+j8FTbY2hqztvCNAspWLOlbrqH7Pzn7ReYjCtjq2IraXWeDvbE6W9aSFFA91Hr7CnpeTiVcuaOSSw7NMM6GDW+iyyPQEmybJ4OXb0jTS2+jxwM3B0+bmQzSmnldCt5hg4EiH64MmJLC8ifm8hWf2KCkgVLc+QQSeCeHD3/wM7p9F2Ji5nqJId7BLeq5XTb43HbmriMhMbxzYYpt7Qsb9DjH7bSuRgRLiZrclr+ywaDDZg2vW4RQJAdffugbOp7+avrlFQF885MprmwP3b8iZvP+X/HhWGKATOh3NkgbVu+8J44Pu4Un5kx+sMFSAx2Xa5fxIBZ+yDjLTzYYP5t14nMhLsxUxF2bRMdxXlNk7u9wYL4s5dPYfTb4qXqzYJ4dB34m4bZROECP/x6OqpEFNlRZlGZcRcesa1/impOw4HisQX/cIRvkjn/NJjSMCS3fBq0xYLDD67JZuQlkmPArcTOPMzo+aN/c3DmDAa/7KkRVomPMZ9f98okOEYz5mvVDdGzxCDvV4vY+4hnlGKCNyQ4/PKdew//2A6EcxMt+gI49HB8rFFz+jsDnwY3T6Ngl/r6f4rtvSIKLOSkXFjt0aAgpGzL/ithzylhcQsejVgtDFkO7yPla39kydHwjTeX1tNZnZFSiuP8LOpZNuh+tj+wgPVdWzytgs8MrUR7ytVLbyByCHXobHSe/e09FNbeJFNFQr9ehY+HZcpdcg4/IuOpXms/oeHn5ZixfyyqyseKMI4TDDrm+fG9Ik/qAYC/u1zii488n1vQxC94hyx2GzBnoeDkgysTo9ltk+On5jF50bGog8SPVbBHRVR5Y+YmObacLaMud55BpG4UvArjssLqG7ioD0xTyM7my1AwdMz3EEvPoGUVQh0Y4UejYp7i+/ubdIeRJZCBdMTouEltWJI7vQ7aJJzf60HGUYNgjbNIOJKQgK2gbHXv/PLy/GtmEYLzC6qXGY4dpkhfVAwlrELUf+yVS6PgaeYHw1Pl8RKm8Yd0QHRv4RUm/jTNCrkRYznqgY8kantkxVB4Q3X46GYWOZ/DJPc54VIPFIX7qPHQsLWMc/4gHArPDQHGIjkPIx93/yfQ1EPzPTV84wT+YPtP/hekzQx9XNwabDjcN4FEMUG6I+dlwNP2qVPMObx/NTUIaEyh+NFtZrMPtCvWPpIH07LmGdr0jOaNvzs6wpHskXVwnP3phHs3PIedf9aJ0juStx6ORJxTOHkmSGiPT0IvaRzK5f5Brzu/MkeRe0d+Wfah1JMuw+hoflGseySRi3FTfXY0jGVGTt/fF9Gjeyqg4sT+nfiRj/7yj4Cj++jz8/cM3vRgYLSQIgS9r5pUbk2xwb2eYOlscgsiMWlm/PPTFaL1bhFgWAhvhSGa9q2xw5nQC9WVFCMxlxbd5FdEXLwHhEG0VCCg668N3CNhgmQ47H5sWBM+Zr/oad/3adJmaietCcL3W1yjnHgpyOt9OrzWEgGchlXRFBwVFG4RuR5tAgNU4a8tDhoJL6m+yXlyAYD2UJNqqnxXyK/IKvbeAYNFpgeHKdVZ4g0pRYssaglM5X9mun2SF0c6Oxl22ELi9j1SJHmOBvEacav526PomepEUh7JAZquJtm306y+s5gcXRFlg06amsRE6jiZZ5XrcxwyH5dokcdHnmxLDxvV1Z4a7E245OOYQFNEz+PoRMcOpj4IoPXT96CLVMXIKmOAH6oXROXR73icXc+xpMMGkZCq4ogbBt4r6Br1BRmiyODLvIweB92nHFwvmjLBIIEs9UACCG8XpB8+W0ZsuB9THLSYIPKDfUu5VBojh92SkCx8CWXX2qMaf9JCIXP3amRUEYHV1Ck1E0MPrb8+9bmlAQAGiGk9FTQ8ljYsMV6IRUI93K8cmgw4+UuF59cgUAUWGibuVJ+mgr3GoZSETOj+NHz9GNS00dlo8fDXXCPLHTa11lGlheRrntER6I6iiwvaP76aB52/MVm+YNILnn4OoWkxpoIW7yXYnATp/mkrZ2CI19Lo7aFxS3QC8PnJdanenhpEFurVxdg1ACeBy13ylguW7varXCRvAzCnM77dDqKCnYlq2QVE9WJJct+UipYKCYQocROr1YCZWmTY1iRK6BcdoxE++ApIfSlRXOChhUeCcG8PlV+DeaWYv2WIK6Mo/L+Pxsw6cTs1itpGmgIHK6gTtYXWAb+BD08gtcvg1hV22E68OeL0Ip33xkAyarX3F5Ql5CUJi3YNcCkhhg0L/8K39WpDgaLTIWE8C8e5kAymvWuAsGHYxtZ8YFgR7p7AuvAC3+TFDv7whgsXDMrvKmi9AhRfKQPkLIWR/Hrqz/rQGaN9U6osjJIQPIvs3kwlqwJsoK51FFgLou5Id22uHvphduB0kK4oPQ+7GVQ3WVAGCfl6+56p4UEnZ4S0PbhXACGLhsjqPC5M1Ze7r61UCisse8jZuOHBHj+hUQFIF4LBtNLQLxoarT2fsr02XA+20S2E1D7Cgr2We7TBTOVg0I2jyKcCEZzQ+xVCZloHWFxkW5Q0YcPpH5oA4cylox3/iuJF/iHC7XQxXvlsCsJ9gUQUO7SOk10QfzW4/AzV0aRIMhz+Qralx07FzReD6q8erc4Lfkcskp+OKSwqAypnNrUHzb0h+hI5UDdZT0PyKnXzm3hck/1OWjPGTPOCNE/C4lWgXsbReCfgklwuqFG09Pe5+QjIxAyRe92eDM68C1buIdpBWFuzsLdsssGNoJtR6bwu5pY0Vpr2YCYqG8IXdmDYQhbEKKSzvdFBworOxM3ENmWDhqR88TAVKY+N7g5QriKdOfuT3iGTwlXKk1jx2GfFfuC/ZT/wIaD7A3OElXkL2ZhfzR+89AGV9kYSfIhYRmpw7Tg5P44FgdnsYu8o80vz0/nDU7fvgZaTOrrnPNIJDZ/VZp+weMH7SnKqUP46UUXe3TU5HAAxdLe258WFkbFG35SZOGGBaZZx1IBhAMMacbxcO3AKhJLVWqjWdiHLVZ/8MqSDwPe6TnLRZC9I2NdQr1+ED1NNxB4r2XyK37wvsni9xB/KUlBsMgUXI3+9gkPVV8fvrZib/axvDr3vVKPD+3KD89V41S6z/+Q6HB+svJ/ilX/fhkf0vdjgUGP/9XrXtTLZGGUblf5MKZyqR7qrUv9l3UvFKgiHPv/n4ZrRvqRnt34j7b/5Z5K2/81f9bT5WhDKe6kAqpXp4P8p3gH2++izKUx2gM0P5kCe+HdFo1bpCn9AO1qvb1jXku0Fd7Znl05OtiELfILHqZCuoIvHtojrRB26GERA0mTYhs55TW42mTaD/StFq/94gaGp6So/HjCBvZtJ53qJXRouVMBXMS8PglE8CIH/0AnmQR5mu9egFiG/0w2bkHwNh099+ROZXIk7zEVNu+ZXgYhLJux8B44DI/B2rc3Ehci2qvvR2cSFIwbRDDRFNgi6Hr7h5b3IRkqkljdg3uQBT6G4U+Y1J8PBsbgtbaSoibWljQVKaCpLzfpB+254EnUhGd2dwIpLDPO/rFZwIHn+Lf5pNPgXOyUswSFeFIxkCFdpuVeEgki32cERiCug6X+3KSPRF5GVX8O0e+gJZ/Js/duSmgFo9Xc+zznillWdJhg7r8Up8lzI6HqHTyxOs2P5pOz2L+T+fbHmY/zDZiP4Xk40E47//htKnrxh1VVrh35R+H+Za/lH536R2unB1oUn13/xv343+qp9CjNj55+hOsbKWPeuC7hSzPzslIWwvuYooFZF0qV5vrnvTKCWLZz2DTjcoWSqr3ytEiquIgHF9UeNmW713+PIkkAskMQqhe4lQRjRWNX8rVKIf9GRgLJ4AZuUjelJpjQjdoC/rBmGyUtyDwzSKjnFQgh8e/tipFel1wV3jErvVqFN4OfuwYRR4boxsPEPaERi054f7IFAptNHs1uXUEXBnUXwu0b4buUAJlOW8zRov3OSBT/SHgCHi1Gxa0YvszMxIyaTkKDl2TWTKnBgEgueV5csP+5H7omYT6Z9SGmVBxELFYT9gJp7J/KfBTv9/GGzHfxpsgv/FYP8aiP/mlbANeIZ3u/X+zR4haW38irP/5n/bu/6qz3etPzqhECwXJqM7IVH/j07g5XQIqsIcQEQ2w7WvYSYAWbq778oxB8DF9SmCl/39yD2jlK1EumzwMR3Pt76/H3w6eCV/a7cP4bZ6Y3ynFH3tjdtWvLHbB2aLnswomPYheM9HAx1mqgFJQfaaumkfaHMxHeRm6UFO5rv4TOE1gRxpMklWlh7AXhPzPUeoC3EPz7Uoq2gFqgOuA8LCXaBvvvJfK5rTZ4sTv1a0L+8Fnvxa0QbslB/807WhjvjPAcD8ywhmEf/nCNJ32Gi+/csIPjsR2/hrBF1/n+D3COL9efz62BH+L0by1zVi+sTt7JkpXngUGXHT94Ifc/0HV1WfzrcG0P0HtR68aGFEXoOj+OvnXKYz3Fgv2djhUdTlbHq7gUXxH+zmXGmsxioAR9EdXZa4P0eSrJoZYgNbaHMMEpEzvG1YnwSnQNDle7oRQRagOTOSv8aOBZQ9LOGWU54C+aUTmFnDl0Gtbg8/o+Mj8Pzcd5UE8ymQjPkjc7v8DqDhOrfn0ZgHnJfdGSVaJ4EWDeuSH2EYyE2UHjh3qwZM1Ly500I+DZLqN7EN7e8A8wfi1w/GINgj6dPyOzkDOhUPi71NooDyLP537pstIP1NyJxG/gywV7xxkzY3EvhGWjC627SD5G/48bsaswBX4HRbln4oKEaY977Ed4LJ7HYxDZo54DqKo+0aHoakC+wuE/Y/QMhwim1xT0yB1G2PW2x415EDAfkwxtNmIB9fEK9CYwoIWaHyFAK8kVK/rqvl00kg4OBDUa3tFEgiPPE66o4zoIi59yPCLR+0s5HMS1RNAiyyOZP8FUeg1x1LE9JeA7CCarbtOqfAk7qP2TjMfiD2YKPN9SME6Uzhmjxp08ByK/lmzclgEN1Ul50V0wIIq6/3fNydBozkJJ7+xreADrfnQOqldnAn5OBw3G8GTNhV5SfkXQNnss3aBZM7wSNJNlYS3lmgya028Hw2AfF26hYa1UpAuMUn4ldQU2Bb6xKmVOx9JENDtirQxRXMbhE27qhPgXGhgcB8vntIypKZUrZ+Cpj8nkiLbzUFwkeEqt42+iJUBGsBTtRPgVO6U/ONtEmw5I6L2U3ghdyWxqL/RvACTHbdmB65PgUQYpH9/ZdcSLHU0JwFZhPYk/72bo9wGlSSZqff7HUCXZ7CQqupLSAqZed1u/o0UB9NPsfC7wkm3aqCFrzaQU78qUKtwmlQTGu+FYXrADTy1IMHH3eC1o93DN4pzACfExd/kl9NQ96FPaWO7opDmh92chmj9wnGD/k7X4cmI0KjLwzPF3kB3LM655JOTYGfz0+teJ1+hAhQ3GUUq08FPQeK+t5npsDDcQzKrfB7SJpez15t2VMA1c2MMf0mQb9aiHSeawRCHzRZiqi/AM2fgvNteacAj4ECVa6JP6Ih66eJTdUEQK80SaHXFPCtcWzfY7RFnE6GX6LMawGWjzq57ydMAe4Jf+ZsZSUku3as0+FaO/C/OOKNmp4Cip6Vw2feGyO3OFbJSTI7wW2BuqanJtPglcvI+6ydYoRr06oRTywCcYk0VSNsngTVz7OI8/ufIQ5XD5gM00NBF52erMjXSfDyIo7njetFyHk1tiIomglu1plMzS1Mgg6j1th7WXmIlWg+Dn5OISj+srx588ME+Hyjlo89JRshkKGReoZdC77vRdsML0wA2bLkuKW9FISrVIn1lBx6vAJFw4vOT4Dw6I5NapaHyOyrr/b6dS3gbRLHZjLrBFh/YBxkZxeH5NGay7y43g5E+s+pvSCbACkzQrKPR2IRcRPHp+YpnWCkT1YsRnYCtAbgk8sOVSOxOZ/ODJ+8gazadznmMk2CZhRzXp1FNSKlR7Xn/fgemBDOqkkUmwTkm1qfZGEV8qBE04Vu/wkgfx28hS8/CYRw1IRNOCuQTub9APJTz8BW4Y+H89ITYEvgcObSrecIFdEPyWjOWlAm5LAkajcO9Bo4LE0FnyI6ZC07dSJNwIQOS+azzRg4Oxkv/e1aDnLxdZZDHHoeyhkrAcK1UdC6fW/eb/MJ0nFCMSjhXDvIxaaczMkfBR+0GP0tpjORuwbjnB3unQDvvQuz9ZNRkHpCdpm6rQ6hMfEaHuH2QR4oTkfOuU+APFK6FUf7OqSyws7HROM+UKTvrOK4MQEi08S6DPnqkIJg3ZPk7NmAFXeejCRlAlhrm7y0cX2BtJ5/1u488gycK1Wtc69C11+OMzeIpAp58/jGqxy0U7+Wf4f47fMxoH1XJHgTvwxxkpkk6xZrAnJ1aS6ut0YBjT7L9wyGYmTRhZk8M70FKDySQPV+HQGjnKyfMw0LkfOvxJs70O0K/bRst5E+AoJthIsNqAqQchQzf8ulTtDcSo//OGQEXK68P8i424zEhFqnyBjYIPJC8Q+6g8eAG1c/99XFZmSnrFyd5kYCYC+qt3scNQamC8W9+NHp7Neb309q5wDXoYrPVJljgBBv9Ft0VhPyRqnWKsKrBPimVoqkTI6CwZGcg+/vGxHVaxU3VP1rwUjDY9P0ghGga3Kac0jqFXLb7RLPXasm0BXdPhz+ZBhkYnp3EzXWIr3dSFdXWgu43VnUZrA0BAZ/YvgHcr5Ayg4ufLFQbgeNsYV0d64MgQ0NiI2dUIMwZVne6fHuBKuG24Ha2kNAO4mG6enga6Svy3vdjcwcyeZxn6JiHQELT1LTlDpfI6Le56s+sz8Avcuu5xnYR4BLm/Pd8t7XSID3d7rgxRyQuSzE8IBrBAivug6OtLcjP1yv8swUlQAW23Nf0u8Pg5hycf6kuVZkreLNDEV1LTCo4jJIejAEtC6XR/ysb0YebD5k1JRqAv5t6SMCroPA7bDoRm1uE0Kzl0ZQc7sFmGwICtgNDYByVFvFd9ImRBPj4+ht9PXLTddIx/v2AOAL0sVL7IGIgF7kOVv0Oq+119TjbD8AgFz2Ok5MF3JgeUqkmNEMkaMNPHeqagiIkPeRjUd3IYUxrWZFLx+A8C7jVFg7BBIWUZ80c7sQJ/l7ZNuhueCD6cCPttdDwC8w1ZdorhNZPcRofSFQCt7FFo2YXBwCdVOEAcOqHYhOENWMY8pL8G7rAYNq0CAgbR4T0JpqQ4JM218+Mm4CijfYSTj5B4DPj2I9R71WpDVn+aYEdwt4n17U3JzWB2J8+AmT5VqQV1hGLc6X24Bx/AQuyrMXXOgO69/2Rc+rxb61bJIOIDLYmu/2uAdEutQ7+1r1Im0KDQpNvOcRmzLXM5xGg4CT9uLV0ya9yGdFppZCjYcgP7jp0N9wEDgkGHfdletFUsRiBm9v5IL2O6rLJ9QGwadgp9j5tB7EaCAmVzezFLCQLD+S3xkA0gpz0wknu5En7e9lXb6+BDdkCTMTBAcAq3v461WZTqSk7icH9UQTOKXU2q4m1wd64ZX7FjwdiAqTTyEpTytY7lhZu0bWC0Ietp8MG2hH3DfM1V1Q7cBQtW6sJ6EbzJN7UBnltyGSGTsbFGfQ/v2NiLqnThcg2p1bnqccQLQ3eh4d7hojTqdeNmVP9QPNnOKmfpoBRL1m93NW+kNAiP2wKnypH6gyG26e2OtHTKPH39/QzQO72Wc5iav6gX3MusC6VT9ClGyEkf2hFFQb4Aio0faDWvsO4vqPveh29d4FPHXgjo7QS6+4XoCL3bTrstKNPEq38RtqagLvrMfTbth2A9EZx7vF012Ipv3r/ZKfLWCVZsqyVroLEMo7o1RbOpFbzhUSP6Tbga2v68MBzE7AbeTIRJjTgdQ/HHOTsekAu0xWuPJNr0H92ffsf93Fc4vNK/3axaf83jP/3oQnOf1hA0gSH/L9sgHf8T//ywb8/onqF6em8WLzX2Aq/dr1Q+5cyhK0d83FddFzQntX5T+96+/8v//t8/d7qQ3+sEMssuyn09B2yEnzDzuE9WderL/kH88WmvpVydG/V/K3fn/z82d463eBvwsVUmVZeyPNBP6e7695fhv634b8dyV+5/l9jr/nw/pLZX/7xN++76+Nx/rLOf6e71m6uPqvBib+3cz+t8b9tUf/2rMYGJuXrH6yAwx2+rVSlMB/NBjjCA2xSmQ0fHt3+Ju/G/9PnfPXUfq/6xBJ1Wr2HT2tcpJNBrj/o8P+X+vwu4P/qXP/Okv+rzqEDJ3mvSOEtoq8JBctZpT+/t7/1zqUgg7+XwPE8+frFL8L+z1Qf50tvySUejfs1xvE/owp/3m0/lmGWyFvfy80v43c7w/wb0P1e2P62yD9KsyE7s8yfllwtT+Dv1rwpZFxPc2VYUrk3R8WXOgls8UvC07yZ14pD4x/miR/t9xb4Ldt/m1zf1vY31aU1JyCRV36J9Apd2PEdlkFMfvBjTOD12vuTpxWcteNlXQfP630smdQCV0a+MuB/OX4W9qvnvv1CfmzCrS/+/Kf+vP3x+zv6RT/pb8j1N5rM5wfA3+w5l/v+9fMSk35pRXwR9m0f2b/PdY4v7NNxsgRCkj0Rv9+EYOXj+cE5smTJzF4eLAFBPkFME8ICmDj4GBhCgjgYAkI4OFg4xLi4RIQ4eMRkhASEJMSEZJQkBCTU5KSUFCRkVLSUpDT0FFS0NJTUdIxUFPRM9HSMDLT0TKx0NMxszLQs7AzMbJxMDOxc7Iwc3CxsnByo1i59Hn19Az49PX1+Xh5DU7y8PAZ8PAYnjAwMDhx8qSuno7OWR09Pd6zenpaGCdPYp3ExDzDi55n5/j5zxnh4poQGBsb4xoZmRKbmBjyCwriYqPTcfn5CXCNjQlMiIlPGAoKavOeOcOrffbsGQwtLSzNkyfVsXBwtE5qampiaWhoYKmr46ipq6vhqKqqqOLj46ni4JxWQRNfVVX5ND4+EVBWxidSViYlIyJSIlJUJFIC4JQCGZkimYICmfypU1TyZGREZIqK54lNTcnPX7hwgYac3Izx4kWaCxcvmjOamV1kpKGxYWdjs+NgZ2djNDdnM7ewkKeiprZlt7GxtLKwsLVDp1vb2FizWVk5cTo6OjhycnJyODg4cNjbc9jZ21tYsbE5cXFyyspRU1PLycvLyFJTM0jLyFAzyMiwSjEwSEqhUAxS0tLiEiiUJEpCAsUtLi7FikJd4nZ15XLh5nbjvnRJnFtMzJXbxcXZhYtLlFtEhFtUTEzEXVjYXUhY2M0dHbuJiDhzOTmdJycmZsHFwOCapn7+r1mzhfPHrLk2RTocIzPqz4K/pVY4cIfVlpsxq7huafvrjSROxw8P3QO9AneME4KM3qeu6rEYctuqq6e8Mw6bnoncdPaP2Eme1kU9kHdMSJcUEEh0Lz1crJboTO83+ck98u1Flo0rVZL8EoEQsZnocu19/IBXZfOlMjbcVWGa9+6G92P7Uy6k9cvMYaS9KCAr31ZU8HkrxGFYgsPqsihG5Znv2JslWPLm6ZfHjq8rPbO+pfM2WBnySeqUtJd/I79e0JXk28W/uNVGrDftPfnqvWNBmUyepkha+OlPXpJAmrtECFMQKcTxNO3NHvmu4ERtRhI+SHMpbt5+bUXcvZJ++EfFjxCnKVoahWqui9OBfu8nRCYC/FFCSRY2Zwj3CE6KZV9U9ejxuSScqr86xPLxDO8jB1u7Rvq9+74Eebv0cUr+ch4shHah3jtP3K/k06ruuTs7kfHmyw0YuUn9GN6U7Lq0bFTtQnSuW//JvGJyvS8bIXFQn42rEbvQVE2Kx6P09vNzNyX93ouvReq2gO/PXCbecJyNZ32dQXn+3GtXuGqP1f70xllPxWixrJPq1adpAiyvcXL75MEDR1lfEWLbTp7Ob+eD8NOtLFulXXiava1F30X7VSTnt8jOUShbvjUyZGI/XRhPX/0+GcrJkJj1Wf20KuiyfJFPqk7LO6PGJLROaNoEOu6+L6lfWTZ/HjL9muZ5A+jN+eFEHF36cQHbXI+IK73EJdiqLw98CaxXnMB4NuF9fXn3+mKRCTWJoPBO9ctEVGqirsvHL7kdwvq5/kHZhapPViyxzEwaC1x9sp7Q0ZPMkIU9t1CTEFB/Ul9SJvdWedUdvziaMJx76FHNZrV6GUVM73NTmg2n8KxO1QsSrnrOfL2D57laSh10wh2ifca5exKZEhpHKN5LnBMdvindUJEW8+G9K0OwaOgUqueWysMoezvdHWq35p0rZJzO19+wVYNyiq42sxbDgzGbhykIEtl+MtRCyTFuZZJO5UVJUkTNboUSIlDLmPMm3o7WnP4mqavI6rUFA9azMS9vPyMuqi31oH02zxMRpUuYNPVQlPz07fjnWM9HLeF6e9GicNcbb7WLxWKJquNKKV8neCqhGI8GZ+vPi2HJut7Fmns/2JV+KkWmCLtC5nDm4JIr9qURqWWFI9HBJ8Ts+8eqVZ46Zo81BqhsHWaRWqMMxg4ETYkiNEw6iPQLGmgesSsMGr09/VTj4zsy0sXAeKb4g6eP1V6JP6YpuWSxKmc9naNUfKH2dIzabGnAG9+oZm9l3DM3GOZH5gwZfd+geiblboryax3EWEss9UpZZEx94L7aeE+16LXC3GeRp7rxwdDutXOj/Pe7w/5M1SfcMnRTaB/EvtClLTBIG8aY51tFrPEq49SrVF6ffbgUQJspMXvSqqFn21CFo1l8LI6/pdkQ+abwCPUz45GAp2z7mLO9/8JlfiI6uYCveS1eWWGX3yXJbtxIj6amFl9tePL943oYSaE242QJIR3VQ/HkXda8beQVzoPGnAFz/7Da+zwSFv440u3bPkqnIoVEY1+ranUqCET5KhMFBAu2kVo6xOyXX0kW5k33w52WtYy+W3fi7nS23dfVbAMH1tMcQ/TFs/JYSs3C/I/lOlFEr7a0QZjZZ5+tJnaclneHh7NOYfs7No/LiXI7ZM+6V5OFuRUDj/sXwhZDDy5YrKrePmuxENCCf4jZsOur5YCRsfJrERxWNIz91yL48f9bBPujAJ0fC/6VF6/LEwNmFFUyPiw2teQw3Jx/OBgjZN6Xq9snntfDOcKfZ29WaOzWW+0zIb907WbmirqRVXb223c61WH0pWSau7kf99nqe8/KlP9EaT6fqyAkJzvoC5EICfDyp2oFDyUyVXCDG3iJ9mmF1v3eXWrMshP64M4qUIL0e9uZ2g0YdLJYcl07WJChMPUtH8vnu773jXNm7UazShrvt4iDvS09qdzlWBsrq1oc59hnCWUbjP4zH2M+mzxYf6onxUD7Kqdt7o7X7M8AH4kmDW8mj4sT3fh3l9gL8XzbCrlODTM+5Zf68AZPSrbmVEuxhYqmieXexE391nTpfJ9d6UafIdo6FY+6im9c/qnLIfUGvqk5hZhr4s4X1kfZ719jlV0+SzG/pDOZ1Fs74i7cxxd5wsOa1DpnDW9ULrDq1Hue0tLELCHlmBkPqQW2DawSe6Pip4tGF6a1B2RXtSOUXD5lPL18ZbUyT53v3t7qWXFucdW7V9fe9n+3LBM8c4/qhski69to5qEX7vaDPgWoRBi8FyQ9axK52DU5sRv+GEeOSWErVcB9h8UltN0WNb8c1qbxqKrxRaK5p1+YA4LZIC/alDdIpfDz8HJyKfnVp6yXw+6X31PipTjV0/4pniT/VE7R5QF+1t2kkOSO+WRnGc/TMVailTcUSi43lZMQjKU7dw2F3y3GPimaxGbz6Cz91sNBmuvBeQ8aimaytV4xEW+XoGeU6OP+e9GqKUFclRL7euXFQpQt8kY6ni54fe33yg46aJgZxDTvXeOVTyoY6sOkdtevVsk8ly5+JrKTyM2B1nUw/u3w9nINqd0BRZzpF764ufTwrNOs4l7DLaW+NZFEo3ma5323Nh4y0IfVOQyJ3LL56h6p6vPBPhWD8KLfNx4L5bOWOBeS3e7Pj7kYrWJ7PKTtuX2IEtLeHr2zU4EzLS950iWRjndenn1c54G2WmptJo96aSpeYqZJhG2CBEp71OVpCZODiAMFY2Gcbx2RmX739vmWIL9p404RxdSI58VXpU1k2sebiXV1c9zP/yD4KpF2n7atf3LX+XDH2/6mFvOqk6H67AyXO6Eg10ZFgIn/3g/c01tCl22yozQaG765Pa6/kjL70HRb01q9ufsbCbEA/yLAv078cKkyZCB0RoGbklHsak+tUNSm75nwxpcS00UPd5JjVgio/H4U7yA5DJXdagsEnyYN3XIY5stJ87PIpGTp1ny/vZXmbp35PHmKZ0/heyDd1Ne9yghSnmrbyptqxh0c0sP59WMdHKQh1MESvdR11aMVDu7awU1FnEjx5Y8X7p3MV8fjikGZbqosnjuRG4oZ8eyLO1nIwQedKYULVz9+GMZYyp14cMbGercteNk+vZSa9hKvMfPmtsr3uOg7bNZbkqJbyq1xzOo4DV/cM8Xo+YnkOl+/OD9vsRx7m8+rq/dkASPNK66PeY/b7dwUH+jOxld1p/vFEjbsVyxpxcYPp4Mc2mq6jWSSq1wetL6NFe2knkMOubxWTUbc4hfoThkObCtYeX4Is8HHv+sh9FajgeqhR3VOUPzujL4tPkk/p8d7/Jn1SKHndGbxar6RzjcvxWTYUaZvGHhZalJmyKQ9WBTSzfVNO01noyLA+5liwhVrNqRfa8UBI0eVV/Z8kb5lgEZkoOvdrpdmVefaSGbvCZbtNhLxOJhBJZ2wQ4zMV042Ap5B8i5oc8ix/Cb/XytgMdbvFVBxIFin5yrL6+0lMke+muwSMzNElr/3/pvGzK9no6oSe+6TXrUcnLL1fSB89avJM43YsgOXfdGZsUcCTvl5bXcvGBub34uhpT57xsjDNH/yx/Rq6eu5za+fMvs1G3jjmPSFeN6Xfw54wVqn0/hd3NEpwMpgNrtnfcYic1xvRT2nK+OdYveP10lSC4rdQX6XrU89v3OC2GBDcP5iY6X3V3/c298cx06ydv/xsLR4o5Rn//Jfj/d1klNRqzY5Q5Uzvx/PEoMrorIk6d81VE61riOTalke4z+Dt2c+nji3fNHDzucNVl2l47fCPs6RVOyIH64s/JK2mgOExhPRW5OBNIx5hVd0ZW+tdHEr6EdFGO1ifk6zHwgGmH3neeqfz+N2NhI29d/KJF3LCqQkHJ7GKA5ijH1SOqd1eZTTuYs1pffgW7lF6L5+ve1A0dXV2/hzSTpGDTcY38yTGG33tm15/dDiqqBGrZw68cL5samkZHz+9bgelK+PeNb9Pofz8V+CmFk3Xmrf4Yqpkl9WeDl3Nc6Em/IO/xlaAcO1Cjcf0emIbE6hh98XMq+ErRUeOt3TYsIMp6OPXDt5c2kxj/K19uNCqebn3r0u1A3tZzmXbGM6xOWM1HJ1P3+Myq426uS08UaRMreofV3w0P5qzb2e17uUMC+c2EoWF2z5Mjc9JauBNWXo5dvLkX13H931/5FdIK3cRULcMlxLm+DKE1evzuOr9/H0hxdnLHtvobAzQuWrHBfu15z/+iMrOsqk1IcjRrwIrzRygpeRrbHAxTY0ujFGrCpLT2Mj5rq4aYdo0Fxe63XGzI2quEn2t54jzvxRceWW78Ie3HNgaJ8ZGHXF9d1r7ndS328Qnblb86ZT/cmlIaykVrVvE0IX3mSQ+Nbj6rIyfiO3umfRO5cW6/Bf7PK/NICHgaHDmZX9hzPG/T25HYfcJEcCGODVpFRbHXs70VTXA3uSktH8pdQd+pOJ4trjtOb574y9RR9LDBWaJlUyFIoWDE8+JOk+1xr24dBnOj+2OLtHPGtK++0jSUtRp6ByZNL78453xvu9xsBz9fNGVmUsiz34VLu6+MRkS8a2P1UiPFmmqJPCMitDBZnft32+2iOqqfGJPONF2QlQYxurcAMl9j7DuGycyThqSayOeLjsfvSX+EElvus/uznFW/4VPd18e7H4+Qy15EJArbRnvZ1rrabG144PqIDvN5QtDF+3UHNfkObVJ77LwRzYURAR/cfTc+QjS6G1pPoTlPgqR86vJ/1NS9KWG87xvmo3wjW2W/3hgKbGDYeRP5/2Hx4erLyf/jT03kh2geO5UIX7wSESN8iyT79Ta2BjX5f+tTc4K8DQjfLUIeb4rya4dfrEcvIx9S+PJ0XMxnJ2aTK+PYufQfW60txTWMuNY2HAvzl6e7yVvlqp3jspdevMx8rx7/epwtuJ/aKwrSlTzoqkSa8BKhWRtt1gaRIq+iSZD2mRZ7Jb5ZRrGgMfMmDKSDBeJrn0qbXzNJvQon/3qynGNExWqdfP+lqcm1dv5tddvovz2sK+ju2ODlUXw7vuOedlaNn4UXuBS3H7y77467xe4w+r5PQsRZJ3uFxv2Dq+F8TsOTBzi3cg8sx5yByz74wtsqu2QTefspDKR9RTWIV1I4Zdei6SRCrGjsFJ4snSpvC8rrZEWX1cZaDWJWydry1Nm3qGGNI/pygULhNv+hTyaEwXUlyV+FEsGEvo70PkRJWJR/zI4senSeqg2koKaryYCyEVl9dKICwNfjLNErTFyPpFAM/slcDkk4C+Apv5FNK2FSP7fR0yhhTR/vsmF04zGm0cfDiBl/eO3s+xq5jjifiU3Nnm8JrIs75RriQEcu8MDPZDsY1/TLmO8U7cqnKuubA7gzkz2Zv+wLAGknlQWcZtK6eeWx2mc8LP5rgYZBXJxaC+n7FK3xE2mxmuGv82lj2xQ6o640vZ1c7BiC4ipfWXsqfN1uXxY9sLLlLH61FscV71x7+Pq2j1ktEhVcJnWAjwT7pTnMhbU+vti/NpSJh3O0Xv0nYzg3RRj6Lkpfh1bn9hkrkYkfh6r7BX+yuDdaWH4vpxTybSmkOr1BZrJvZZ4sY9CIdSTt3SvBSVU5SGTTpHXLiMYqjvrM2SXb7TlLCgVe6Gw3xirghLRgxPBE/vjg/vZGhariBSxIBtst6dT/uyZoHHu3B8pk053fpVqJkHKaWQ86p1oViH5Qcaq2lt/Lonihdlbp2mn6EeNKYTNWHovjRs98Q7ZefkC84m/DNrnWFnSNi17L2cGiivpc14Fku/CWHvr4HzZmc7VmUrXvNaTBS+YvLUDT6DQ/JQePNxE67IZuTwnt4tz/GnddhRxHwX8yUXeSGw5PagNZATFWhYPN2kB3X9Ns2lXPrwhPzT6xRxtm4Iu03xOHnbDDwcl7Elu+apc6GeL5xQKBs7JNoGC4i6L5VmTzTHoC5WMG7iCdNN8vCZi9qofxh99Pmsbq3b8GRqC43ANUkDd99vN7kyJvuSeviGm0Ly459VrF39uCY1P96X24xi3ruzMSivINz1/v6LQPHIU8SZO2B0YWlopyaUOp+9VNFNovqj+Jzxt+6yrfSMC5RsTC8DHRkP3j55fnV7gO/Ntn500Sj53a2DjN71kQxKTnL9C9WqQUxJdY4lubu7VIdYYX5Wn5sP1v7180ruX746/KdvLJ2CsA/++Ou/3d70d/3/n+9XvRQ4vWMwMLAzX6aS//VXIuZ53LxfzcD9nRCziTX0i9JWQc5/zUj8PyvsWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWf9X/AQ==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3eb4d453-6f25-47f4-a279-e2c0b4d145df
+ - 1
+ - 5d1db3ba-212c-448f-a1dc-d0034f6ddb5f
+ - Group
+ - ᑐᑕ
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 30377d3c-57fd-4ec7-9de3-54b95b3a7509
+ - Relay
+
+ - false
+ - 6457973d-18aa-4d88-958b-85acd494ab86
+ - 1
+
+
+
+
+ -
+ 3868
+ 1829
+ 40
+ 16
+
+ -
+ 3888
+ 1837
+
+
+
+
+
+
+
+
+
+ - c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1
+ - Simple Mesh
+
+
+
+
+ - Create a mesh that represents a Brep as simply as possible
+ - true
+ - cdfd2e32-3620-4bee-8dc0-2ba01d9099b9
+ - true
+ - Simple Mesh
+ - Simple Mesh
+
+
+
+
+ -
+ 3755
+ 1961
+ 81
+ 28
+
+ -
+ 3794
+ 1975
+
+
+
+
+
+ - Brep to mesh, only breps with triangle or quad faces are supported.
+ - b34b199a-6755-47c7-b5fe-1b6eb1592ff1
+ - true
+ - Brep
+ - Brep
+ - false
+ - 30377d3c-57fd-4ec7-9de3-54b95b3a7509
+ - 1
+
+
+
+
+ -
+ 3757
+ 1963
+ 25
+ 24
+
+ -
+ 3769.5
+ 1975
+
+
+
+
+
+
+
+ - Mesh
+ - 979517f2-242e-4e4d-bb88-dd2fc0fa6486
+ - true
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 3806
+ 1963
+ 28
+ 24
+
+ -
+ 3820
+ 1975
+
+
+
+
+
+
+
+
+
+
+
+ - 4098ec7a-819a-4ced-9eee-86835d7e21c9
+ - a4634196-add1-8181-6e78-09a045132c7c
+ - Weaverbird's Catmull-Clark Subdivision
+
+
+
+
+ - Calculates the type of mesh-based recursive subdivision described by Edwin Catmull and Jim Clark, at first in their 1978 paper. The resulting mesh always consists of quad faces.
+
+Provided by Weaverbird 0.9.0.1.
+ - 2
+ - true
+ - 94698773-e34b-4d6a-ac31-6a2b9cabaed4
+ - true
+ - Weaverbird's Catmull-Clark Subdivision
+ - Weaverbird's Catmull-Clark Subdivision
+
+
+
+
+ -
+ 3850
+ 2278
+ 271
+ 64
+
+ -
+ 4008
+ 2310
+
+
+
+
+
+ - 1
+ - The open or closed mesh, or closed curves list, to subdivide
+ - a403f36e-5ebb-4a70-8900-39dfe797cd24
+ - true
+ - Mesh/Curves
+ - Mesh/Curves
+ - false
+ - cfcc5b9b-e104-430a-a736-e9cfea660979
+ - 1
+
+
+
+
+ -
+ 3852
+ 2280
+ 144
+ 20
+
+ -
+ 3924
+ 2290
+
+
+
+
+
+
+
+ - The number of subdividing iterations for each face
+ - 494256ce-cd82-4dbe-83c0-389cdffc6084
+ - true
+ - Level
+ - Level
+ - true
+ - 0
+
+
+
+
+ -
+ 3852
+ 2300
+ 144
+ 20
+
+ -
+ 3924
+ 2310
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Defines how to treat the naked edges
+
+0: Fixed. Naked edges will not move or be modified.
+1: Smooth. The naked edge will tend toward a spline.
+2: Corner Fixed. Corners (2-sided vertices) will be fixed, while other naked vertices will tend toward a spline.
+
+ - 773239cf-a433-4ccd-8537-488735c8a6b5
+ - true
+ - Smooth Naked Edges
+ - Smooth Naked Edges
+ - true
+ - 0
+
+
+
+
+ -
+ 3852
+ 2320
+ 144
+ 20
+
+ -
+ 3924
+ 2330
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - The mesh after the subdividing process
+ - 156aa48f-fce4-4895-8383-96df0d79a77b
+ - true
+ - Output Mesh/Curves
+ - Output Mesh/Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4020
+ 2280
+ 99
+ 60
+
+ -
+ 4069.5
+ 2310
+
+
+
+
+
+
+
+
+
+
+
+ - ba2d8f57-0738-42b4-b5a5-fe4d853517eb
+ - Deconstruct Mesh
+
+
+
+
+ - Deconstruct a mesh into its component parts.
+ - true
+ - 6d37f241-df29-4586-8ffc-34261d5d76c3
+ - true
+ - Deconstruct Mesh
+ - Deconstruct Mesh
+
+
+
+
+ -
+ 3962
+ 2151
+ 97
+ 84
+
+ -
+ 4004
+ 2193
+
+
+
+
+
+ - Base mesh
+ - 3298fb38-51fd-4709-add7-31344f6a21d3
+ - true
+ - Mesh
+ - Mesh
+ - false
+ - 156aa48f-fce4-4895-8383-96df0d79a77b
+ - 1
+
+
+
+
+ -
+ 3964
+ 2153
+ 28
+ 80
+
+ -
+ 3978
+ 2193
+
+
+
+
+
+
+
+ - 1
+ - Mesh vertices
+ - 6123bda8-5a08-4619-9c3c-d457a3a15fa2
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 4016
+ 2153
+ 41
+ 20
+
+ -
+ 4036.5
+ 2163
+
+
+
+
+
+
+
+ - 1
+ - Mesh faces
+ - 92ba6328-0787-49b2-ab59-e16ad3eb1812
+ - true
+ - Faces
+ - Faces
+ - false
+ - 0
+
+
+
+
+ -
+ 4016
+ 2173
+ 41
+ 20
+
+ -
+ 4036.5
+ 2183
+
+
+
+
+
+
+
+ - 1
+ - Mesh vertex colours
+ - 8f47148e-c5df-4a06-b5d8-f6781deb7dc0
+ - true
+ - Colours
+ - Colours
+ - false
+ - 0
+
+
+
+
+ -
+ 4016
+ 2193
+ 41
+ 20
+
+ -
+ 4036.5
+ 2203
+
+
+
+
+
+
+
+ - 1
+ - Mesh normals
+ - 1887784e-e294-4b5a-ae68-6c35ec59ba53
+ - true
+ - Normals
+ - Normals
+ - false
+ - 0
+
+
+
+
+ -
+ 4016
+ 2213
+ 41
+ 20
+
+ -
+ 4036.5
+ 2223
+
+
+
+
+
+
+
+
+
+
+
+ - 902289da-28dc-454b-98d4-b8f8aa234516
+ - Pull Point
+
+
+
+
+ - true
+ - Pull a point to a variety of geometry.
+ - true
+ - c26cf418-61ae-489d-9e07-58009252dd8b
+ - true
+ - Pull Point
+ - Pull Point
+
+
+
+
+ -
+ 3938
+ 2008
+ 139
+ 44
+
+ -
+ 4000
+ 2030
+
+
+
+
+
+ - Point to search from
+ - 00a77e54-a567-4ff5-9386-fce2c71d125d
+ - true
+ - Point
+ - Point
+ - false
+ - 6123bda8-5a08-4619-9c3c-d457a3a15fa2
+ - 1
+
+
+
+
+ -
+ 3940
+ 2010
+ 48
+ 20
+
+ -
+ 3964
+ 2020
+
+
+
+
+
+
+
+ - 1
+ - Geometry that pulls
+ - 40c604d1-5534-4087-8cf4-55151c63f882
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 30377d3c-57fd-4ec7-9de3-54b95b3a7509
+ - 1
+
+
+
+
+ -
+ 3940
+ 2030
+ 48
+ 20
+
+ -
+ 3964
+ 2040
+
+
+
+
+
+
+
+ - Point on [G] closest to [P]
+ - 73187cd7-38cf-4d36-a9d3-fa8e4d0e469c
+ - true
+ - Closest Point
+ - Closest Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4012
+ 2010
+ 63
+ 20
+
+ -
+ 4043.5
+ 2020
+
+
+
+
+
+
+
+ - Distance between [P] and its projection onto [G]
+ - 43b2cd99-a1e0-4008-9a4f-32bcb292aaed
+ - true
+ - Distance
+ - Distance
+ - false
+ - 0
+
+
+
+
+ -
+ 4012
+ 2030
+ 63
+ 20
+
+ -
+ 4043.5
+ 2040
+
+
+
+
+
+
+
+
+
+
+
+ - e2c0f9db-a862-4bd9-810c-ef2610e7a56f
+ - Construct Mesh
+
+
+
+
+ - Construct a mesh from vertices, faces and optional colours.
+ - true
+ - 4214bc60-7b85-4968-9449-f2b31fe09985
+ - true
+ - Construct Mesh
+ - Construct Mesh
+
+
+
+
+ -
+ 3947
+ 1936
+ 108
+ 64
+
+ -
+ 4013
+ 1968
+
+
+
+
+
+ - 1
+ - Vertices of mesh object
+ - 59597aef-9298-4776-b24b-00258fc8d699
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - 73187cd7-38cf-4d36-a9d3-fa8e4d0e469c
+ - 1
+
+
+
+
+ -
+ 3949
+ 1938
+ 52
+ 20
+
+ -
+ 3975
+ 1948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 4
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+ -
+ 10
+ 0
+ 0
+
+
+
+
+
+
+ -
+ 10
+ 10
+ 0
+
+
+
+
+
+
+ -
+ 0
+ 10
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Faces of mesh object
+ - b42f14a1-c792-492a-acfc-8d8c5a821524
+ - true
+ - Faces
+ - Faces
+ - false
+ - 92ba6328-0787-49b2-ab59-e16ad3eb1812
+ - 1
+
+
+
+
+ -
+ 3949
+ 1958
+ 52
+ 20
+
+ -
+ 3975
+ 1968
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+ - 1
+ - 2
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Optional vertex colours
+ - 5e9b3fa3-40e1-4c58-9578-6375f7b2765f
+ - true
+ - Colours
+ - Colours
+ - true
+ - 0
+
+
+
+
+ -
+ 3949
+ 1978
+ 52
+ 20
+
+ -
+ 3975
+ 1988
+
+
+
+
+
+
+
+ - Constructed mesh
+ - e2eb27fa-4759-4c6b-b0e2-999e4b9cb9f0
+ - true
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 4025
+ 1938
+ 28
+ 60
+
+ -
+ 4039
+ 1968
+
+
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - Fan+3
+
+
+
+
+ - Private Function appendprepend(ByVal i As Integer)
+ Dim srsEnum As IEnumerable(Of Integer) = Enumerable.Range(0, i + 1)
+ Dim arrVal As New list(Of Integer)
+ arrVal = srsEnum.tolist()
+ arrVal.add(0)
+ arrVal.insert(0, i)
+ Return arrVal.toarray()
+ End Function
+
+ Private Function matchDbl(ByVal a As list(Of Double), ByVal t As Integer)
+ Dim i,k As Integer
+ k = a.count()
+ For i = 0 To ((t + 1) - k) - 1 Step 1
+ a.add(a.item(k - 1))
+ Next
+ Return a
+ End Function
+
+ Private Function matchClr(ByVal a As list(Of Color), ByVal t As Integer)
+ Dim i,k As Integer
+ k = a.count()
+ For i = 0 To ((t + 1) - k) - 1 Step 1
+ a.add(a.item(k - 1))
+ Next
+ Return a
+ End Function
+
+ Private Function evalP(ByVal op As point3d, ByVal tp As Point3d, ByVal t As Double)
+ Return New point3d(op + (tp - op) * t)
+ End Function
+
+ Private Function evalV(ByVal ov As vector3d, ByVal tv As vector3d, ByVal t As Double)
+ Return New vector3d(ov + (tv - ov) * t)
+ End Function
+
+ Private Function evalN(ByVal u As Double, ByVal v As Double, ByVal t As Double)
+ Return u + (v - u) * t
+ End Function
+
+ Private Function avgVec(ByVal v() As vector3f)
+ Dim i As Integer
+ Dim tv As Vector3d
+
+ For i = 0 To ubound(v) Step 1
+ tv += v(i)
+ Next
+ tv /= (ubound(v) + 1)
+ tv.Unitize()
+ Return New vector3f(tv.X, tv.Y, tv.Z)
+ End Function
+
+ Private Function roundClr(ByVal r As Integer, ByVal g As Integer, ByVal b As Integer, ByVal i As Integer)
+ r = CInt(r / i)
+ g = CInt(g / i)
+ b = CInt(b / i)
+
+ If r > 255 Then r = 255 Else If r < 0 Then r = 0
+ If g > 255 Then g = 255 Else If g < 0 Then g = 0
+ If b > 255 Then b = 255 Else If b < 0 Then b = 0
+
+ Return color.FromArgb(r, g, b)
+ End Function
+
+ Private Function avgClr(ByVal c() As color)
+ Dim r,g,b As Integer
+ Dim i,k As Integer
+
+ k = ubound(c) + 1
+
+ For i = 0 To k - 1 Step 1
+ r += CInt(c(i).R)
+ g += CInt(c(i).G)
+ b += CInt(c(i).B)
+ Next
+
+ r = CInt(r / k)
+ g = CInt(g / k)
+ b = CInt(b / k)
+
+ If r > 255 Then r = 255 Else If r < 0 Then r = 0
+ If g > 255 Then g = 255 Else If g < 0 Then g = 0
+ If b > 255 Then b = 255 Else If b < 0 Then b = 0
+
+ Return color.FromArgb(r, g, b)
+ End Function
+
+ Private Function evalC(ByVal oc As color, ByVal tc As color, ByVal t As Double)
+ Dim r,g,b As Integer
+ r = CInt(CInt(oc.R) + (CInt(tc.R) - CInt(oc.R)) * t)
+ g = CInt(CInt(oc.G) + (CInt(tc.G) - CInt(oc.G)) * t)
+ b = CInt(CInt(oc.B) + (CInt(tc.B) - CInt(oc.B)) * t)
+
+ If r > 255 Then r = 255 Else If r < 0 Then r = 0
+ If g > 255 Then g = 255 Else If g < 0 Then g = 0
+ If b > 255 Then b = 255 Else If b < 0 Then b = 0
+
+ Return color.FromArgb(r, g, b)
+ End Function
+ - true
+ - Replaces selected faces of a mesh or the interior of a curve with a frame around the edge by creating 3 new points along the edge and removing the face's vertex.
+ -
+ 251
+ 91
+
+ - true
+ -
+ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAABHhJREFUSEvNlXlQlGUcx01hBgHLYYXAOAaEXZblFiQFARFSFGE3d9ldgpC4lEvlEhY0iNtIrpBzWA6VQ7lW0RrQ4ajAKGVwLJsiQQtQKQIiEhq/PS8v/tExJsUffWa+85vnd3zf93nfd95n1f8NeQaDEULianq5wmhpabnb2NoNq6ur715KrSjKW7ZslfH4ghtWNjbNZK1Ip1cIfVPjg1xPz37vgIAPuZ7Cz3SN2W8tlVaEWB01zXucTcxRIz3Wdxx95pi26sZhkj9Kl/8bu7a9qI1Wjhf6zALQZeKH6yQ2G4lhs04TpO5It/071pgqqt3utA5ClaUYM7wsjLqnYNojE1JzITo3B8JQgTFA+l6g25dPhNTKC7M++cjeLsZwcD7GwoowFJiDbFsR5rzyUGzGp3YRRLcvjw1uG41+nA4oxM9xNTgrisK1iJOYz7+C9pAM1AmjMBNdick38+CsZviQ9K+nx56foqqdAUBSI2ZOyTCQKkVF2HGgbRBlhxJwK0WK6awmPJHUodTOh9pFDj32fJj6sWyf1HOPoFAQhrsFTUDnVyiLT8ewrBvlcWnA1S/xTXY9CngH0eAWDm896wUyZ0iP/wMaCuuuff1GJuZTm3A9qRQ5h47hg+Kz6K5tRXFaNnrOtaAtvxI5QTH4NLEI84n1uL0/CQx5pStLFs+El2G6D7+FSzGVfgG40A/0DaG9phGS0KOwMjHD8YhoXK0itc47wJmPMHniHBYCS/A26zXqUbnSNn+P8qvKrwyNuJ7ATZ80dIRmoDEmCzVJ2bhcdR4xQaFQeWk94kMOo62iDtWSTDQeSUdHYCpuCpPxrVMcrBXV7xCftbTdXwkI1LCC1EKEcmd/tPgmoje5BD/IejHQ3IGK7HzUF5Sh4t18DDa241FDFz6WFKJJfAxl9r6Qmgjg97IFtQtv2u5PrFZSiPLVsMSUcxImfHMxlXAGCyUdGCqVISskBlOffIGGnBJM9txCZlAkhotayGd7GT9FS/FIeBKTDokQa5hhtdLasCXLP6Bm7+JySVNHZ7yV/AYmuBl4EHIa9yRSpPD8MVJ6Eb9c7EdZZDJ+lfVj6P0mpHj44X5sOcb98zCx5x2cZwmguUlvzMHFpZX4qdC2S7DY7ES+UPy5I29ftxNDb37CMRGjnllIsROgP/wUZnMv4UFuC0oOROMhibPvydAbnIXUbXyM8dIwbheH7Rt0H+/kc7v4AsENfSYzdsma3Lqa2lbHHTsG+SJRr39QcKe2KWfktL4bak1E6N0dDURUYy6aKKEW1a9H4DGJc5GVQIgUPU6HUW8sQp6eK3TNOXepeYGnuM/ewWmAnH5WTy8gZrLZlQYGrGo2myPVYRmUK66R+96dwUIqcxfijVyQYL4HEsu94OpZIsHSDRJTV8QZOiNV3wV7VZhQlJO7r8NilRmy2VLKh8lkV6qqqgoWL0CgTidqcYDIh8iLKJwoaRmiXiw1R81TPvuJFIgW2UxEFakkJT6RB5HbMsQlouaeelB+FkSLyBPJrbxWyf8OYp1ITVZZkf8AAAAASUVORK5CYII=
+
+ - d83cd624-e7c4-45b5-b4d0-2a3985556ca5
+ - true
+ - Fan+3
+ - Fan+3
+ - true
+ - 0
+ -
+ Component.Params.Input(0).Name = "Mesh or Curve"
+ Component.Params.Input(0).Description = "Open or closed mesh or curve"
+ Component.Params.Input(1).Name = "Index [Face]"
+ Component.Params.Input(1).Description = "An optional integer or list of integers which specify the faces to be modified if the input is a mesh. If no value is supplied then all faces will be modified"
+ Component.Params.Input(2).Name = "Along Edge"
+ Component.Params.Input(2).Description = "Evaluates a new vertex along the input geometry's edge"
+ Component.Params.Input(3).Name = "Close"
+ Component.Params.Input(3).Description = "If true then additional faces and if needed vertices will be added to the mesh, covering the complete areas of the existing mesh"
+ Component.Params.Input(4).Name = "Color [Vertex]"
+ Component.Params.Input(4).Description = "(If applied to a mesh a list of colors corresponding to each mesh face, if applied to a curve, a list of colors corresponding to each control point plus an additonal color value for the new averaged center"
+
+ Component.Params.Output(1).Name = "Mesh"
+ Component.Params.Output(1).Description = "If successful, a valid mesh"
+
+ If G IsNot Nothing Then
+
+ Dim bM, bP,bmC,biC As Boolean
+
+ bM = g.ObjectType = ObjectType.Mesh
+ bP = g.ObjectType = ObjectType.Curve
+
+ If (bM Or bP) Then
+ Dim msh As New mesh
+ Dim crv As curve
+ Dim av As point3d
+ Dim ac As color
+ Dim h,j,jj,k,u,v,w As Integer
+ Dim cv,cf,ce As Integer
+ Dim x(),y() As Integer
+
+ Dim mv,fv,ep,tv As New list(Of Point3d)
+ Dim mev As New dictionary(Of String, Integer)
+ Dim mf As Rhino.Geometry.Collections.MeshFaceList = Nothing
+ Dim mtv As Rhino.Geometry.Collections.MeshTopologyVertexList = Nothing
+ Dim mte As Rhino.Geometry.Collections.MeshTopologyEdgeList = Nothing
+ Dim ev As New list(Of vector3d)
+ Dim ed,en As New list(Of Double)
+ Dim mc,ec,tc,cc,fc As New list(Of color)
+ Dim xf As New list(Of meshface)
+
+ If clr.count() = 0 Then clr.add(color.LightGray) Else biC = True
+
+ If bm Then
+ 'Start Deconstruct if Mesh
+ msh = g
+
+ If msh.Normals.Count() = 0 Then msh.Normals.ComputeNormals()
+ If msh.FaceNormals.Count() = 0 Then msh.FaceNormals.ComputeFaceNormals()
+
+ If i.count() = 0 Then I = Enumerable.Range(0, msh.Faces.Count()).ToList()
+
+ mv = msh.Vertices().ToPoint3dArray().tolist()
+ mte = msh.TopologyEdges()
+ mtv = msh.TopologyVertices()
+ mf = msh.Faces()
+
+ cf = I.Count() - 1
+ ce = mte.count() - 1
+
+ 'Assign Colors
+ If msh.VertexColors.Count() < 1 Then
+ msh.VertexColors.CreateMonotoneMesh(color.LightGray)
+ bmC = biC
+ Else
+ bmC = True
+ End If
+ 'Assign fake edges
+ mc = msh.VertexColors().ToArray().ToList()
+ Else
+ 'Start Deconstruct if Curve
+ crv = g
+
+ I.clear()
+ I.add(0)
+ Dim nc As nurbscurve
+ Dim pc As polyline
+ Dim nps As Rhino.Geometry.Collections.NurbsCurvePointList
+
+ nc = crv.ToNurbsCurve()
+ nps = nc.Points
+ pc = nc.Points.ControlPolygon
+ If (Not pc.IsClosed) Then pc.add(pc(0))
+ av = pc.CenterPoint
+
+ msh.Vertices.AddVertices(pc.ToArray())
+ msh.faces.addfaces(pc.TriangulateClosedPolyline())
+ msh.Vertices.Remove(pc.count() - 1, True)
+ msh.FaceNormals.ComputeFaceNormals()
+
+ mv = msh.Vertices.ToPoint3dArray().tolist()
+ mte = msh.TopologyEdges()
+ mtv = msh.TopologyVertices()
+
+ 'Assign Colors
+ If bic Then bmC = True
+ mc = clr
+ If (clr.count() - 1) < (mv.count() - 1) Then mc = matchClr(mc, mv.count() - 1)
+
+ ac = avgClr(mc.toarray())
+ cf = 0
+ End If
+ cv = mv.count() - 1
+ ce = mte.count() - 1
+
+ x = appendprepend(cv)
+ 'Match variables and colors to vertex count
+ If (T0.count() - 1) < cv Then T0 = matchDbl(T0, cv)
+ If (clr.count() - 1) < cv Then clr = matchClr(clr, cv)
+ If biC Then fc = clr Else fc = mc
+
+ 'Edge based vertices
+ k = 0
+ For j = 0 To mte.count() - 1 Step 1
+ If (bm Or (bp And (mte.GetConnectedFaces(j).Count() < 2))) Then
+ u = mtv.MeshVertexIndices(mte.GetTopologyVertices(j).I)(0)
+ v = mtv.MeshVertexIndices(mte.GetTopologyVertices(j).J)(0)
+
+ ep.add(evalP(mv(u), mv(v), T0(u) / 2))
+ ec.add(evalC(mc(u), mc(v), T0(u) / 2))
+ mev.add(u & "," & v & "," & 0, k)
+
+ ep.add(evalP(mv(u), mv(v), 0.5))
+ ec.add(evalC(mc(u), mc(v), 0.5))
+ mev.add(u & "," & v & "," & 1, k + 1)
+ mev.add(v & "," & u & "," & 1, k + 1)
+
+ ep.add(evalP(mv(v), mv(u), T0(v) / 2))
+ ec.add(evalC(mc(v), mc(u), T0(v) / 2))
+ mev.add(v & "," & u & "," & 0, k + 2)
+ k += 3
+ End If
+ Next
+
+ 'Face based vertices
+ Dim xv(),mt(),ei() As Integer
+ Dim xc() As color
+ Dim xn As Double
+ ReDim ei(3)
+ u = 0
+ v = ep.count() + cf + 1
+
+ For jj = 0 To I.count() - 1 Step 1
+ Dim tcv As New point3d
+ j = I(jj)
+ w = v + tv.count()
+ xn = 0
+ If bm Then
+ If mf(j).isquad() Then h = 4 Else h = 3
+ ReDim xv(h - 1)
+ ReDim xc(h - 1)
+ mt = mf.GetTopologicalVertices(j)
+ For k = 0 To h - 1 Step 1
+ xv(k) = mtv.MeshVertexIndices(mt(k))(0)
+ xc(k) = fc(xv(k))
+ Next
+ av = mf.GetFaceCenter(j)
+ ac = avgClr(xc)
+ Else
+ h = mv.count()
+ xv = Enumerable.Range(0, h).ToArray()
+ End If
+ y = appendprepend(h - 1)
+ Dim tev As New list(Of Integer)
+
+ For k = 1 To h Step 1
+ ei(0) = mev.item(xv(y(k)) & "," & xv(y(k + 1)) & "," & 0)
+ ei(1) = mev.item(xv(y(k)) & "," & xv(y(k + 1)) & "," & 1)
+ ei(2) = mev.item(xv(y(k + 1)) & "," & xv(y(k)) & "," & 0)
+ ei(3) = mev.item(xv(y(k)) & "," & xv(y(k - 1)) & "," & 0)
+
+ 'Define new faces
+ tev.add(ei(1))
+ xf.add(New meshface(ei(0), ei(1), ep.count() + jj))
+ xf.add(New meshface(ei(1), ei(2), ep.count() + jj))
+ xf.add(New meshface(ei(3), ei(0), ep.count() + jj))
+
+ If c Then xf.add(New meshface(ei(0), ei(3), v + xv(y(k))))
+ Next
+ fv.add(av)
+ cc.add(ac)
+ Next
+
+ Dim om As New mesh
+ om.Vertices.AddVertices(ep.toarray())
+ If bmC Then om.VertexColors.AppendColors(ec.toarray())
+ om.Vertices.AddVertices(fv)
+ If bmC Then om.VertexColors.AppendColors(cc.toarray())
+
+ If c Then
+ om.Vertices.AddVertices(mv)
+ If bmC Then om.VertexColors.AppendColors(mc.toarray())
+ End If
+
+ om.Faces.AddFaces(xf.toarray())
+
+ If i.count() > 1 Then om.Vertices.CullUnused()
+
+ A = om
+ End If
+ End If
+
+ - Imports System.IO
+Imports System.Linq
+Imports System.Data
+Imports System.Drawing
+Imports System.Reflection
+Imports System.Windows.Forms
+Imports System.Xml
+Imports System.Xml.Linq
+Imports Microsoft.VisualBasic
+Imports System.Runtime.InteropServices
+
+Imports Rhino.DocObjects
+Imports Rhino.Collections
+Imports GH_IO
+Imports GH_IO.Serialization
+
+
+
+
+ -
+ 3778
+ 2164
+ 72
+ 104
+
+ -
+ 3817
+ 2216
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable G
+ - 02277887-37da-43cd-9045-2ab622639ff1
+ - true
+ - G
+ - G
+ - true
+ - 0
+ - true
+ - 979517f2-242e-4e4d-bb88-dd2fc0fa6486
+ - 1
+ - c37956f4-d39c-49c7-af71-1e87f8031b26
+
+
+
+
+ -
+ 3780
+ 2166
+ 25
+ 20
+
+ -
+ 3792.5
+ 2176
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable I
+ - 8bd25a8a-91d9-4eb6-9e52-e603199172cb
+ - true
+ - I
+ - I
+ - true
+ - 1
+ - true
+ - 0
+ - efe48ae7-2987-421b-a33a-1f7be1c3f050
+
+
+
+
+ -
+ 3780
+ 2186
+ 25
+ 20
+
+ -
+ 3792.5
+ 2196
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable T0
+ - f73ae574-ad64-4c32-ae83-7e8f37868e39
+ - true
+ - T0
+ - T0
+ - true
+ - 1
+ - true
+ - 0
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 3780
+ 2206
+ 25
+ 20
+
+ -
+ 3792.5
+ 2216
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Number
+ - 0.00390625
+
+
+
+
+
+
+
+
+
+
+ - true
+ - Script Variable C
+ - 541f6166-b28c-4953-9587-28afbe302f37
+ - true
+ - C
+ - C
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 3780
+ 2226
+ 25
+ 20
+
+ -
+ 3792.5
+ 2236
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Boolean
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable clr
+ - 14fbe32e-4185-4da3-b3dc-3e17bbd88a35
+ - true
+ - clr
+ - clr
+ - true
+ - 1
+ - true
+ - 0
+ - 24b1d1a3-ab79-498c-9e44-c5b14607c4d3
+
+
+
+
+ -
+ 3780
+ 2246
+ 25
+ 20
+
+ -
+ 3792.5
+ 2256
+
+
+
+
+
+
+
+ - 1
+ - Print, Reflect and Error streams
+ - ee0a4ed3-d78c-40ef-847e-90017eeb7dc0
+ - true
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 3829
+ 2166
+ 19
+ 50
+
+ -
+ 3838.5
+ 2191
+
+
+
+
+
+
+
+ - Output parameter A
+ - 16e90cf5-2746-46b7-bcf2-2c1b43dfacf2
+ - true
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 3829
+ 2216
+ 19
+ 50
+
+ -
+ 3838.5
+ 2241
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5fa3dc85-5552-4797-8ef8-852841306048
+ - Relay
+
+ - false
+ - e2eb27fa-4759-4c6b-b0e2-999e4b9cb9f0
+ - 1
+
+
+
+
+ -
+ 3938
+ 1794
+ 40
+ 16
+
+ -
+ 3958
+ 1802
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cfcc5b9b-e104-430a-a736-e9cfea660979
+ - Relay
+
+ - false
+ - 979517f2-242e-4e4d-bb88-dd2fc0fa6486
+ - 1
+
+
+
+
+ -
+ 3782
+ 2347
+ 40
+ 16
+
+ -
+ 3802
+ 2355
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 8ca2ca44-079d-4e4e-83d9-78c3dacd6aa1
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3669
+ 1416
+ 305
+ 61
+
+ -
+ 3910
+ 1447
+
+
+
+
+
+ - Base geometry
+ - f0451bfd-6b26-4476-a72d-80f6e314bf50
+ - Geometry
+ - Geometry
+ - true
+ - 8ad5c4e2-d150-4afc-a797-fd8b0b4ef95e
+ - 1
+
+
+
+
+ -
+ 3671
+ 1418
+ 227
+ 20
+
+ -
+ 3784.5
+ 1428
+
+
+
+
+
+
+
+ - Mirror plane
+ - bdda47f8-b994-4250-b1b5-b26f29b09a23
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3671
+ 1438
+ 227
+ 37
+
+ -
+ 3784.5
+ 1456.5
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ -0.707106781186548
+ 0
+ 0.707106781186547
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 3b6274c6-0db1-455b-9b83-56ddcc437d14
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3922
+ 1418
+ 50
+ 28
+
+ -
+ 3947
+ 1432.25
+
+
+
+
+
+
+
+ - Transformation data
+ - c350c7c4-7044-46b5-b160-4695143dbec2
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3922
+ 1446
+ 50
+ 29
+
+ -
+ 3947
+ 1460.75
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - b05b3657-d031-4156-a0f9-5d9aa404e206
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 4043
+ 1516
+ 90
+ 64
+
+ -
+ 4088
+ 1548
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 343f6de4-eecf-4785-b593-7aaf75b8cc9e
+ - false
+ - Data 1
+ - D1
+ - true
+ - 3b6274c6-0db1-455b-9b83-56ddcc437d14
+ - 1
+
+
+
+
+ -
+ 4045
+ 1518
+ 31
+ 20
+
+ -
+ 4060.5
+ 1528
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - bd4c1892-0bf0-4db4-a530-98e1456b3833
+ - false
+ - Data 2
+ - D2
+ - true
+ - 8ad5c4e2-d150-4afc-a797-fd8b0b4ef95e
+ - 1
+
+
+
+
+ -
+ 4045
+ 1538
+ 31
+ 20
+
+ -
+ 4060.5
+ 1548
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - d82bb646-e7ea-4620-a4e6-a21543407c90
+ - false
+ - Data 3
+ - D3
+ - true
+ - 0
+
+
+
+
+ -
+ 4045
+ 1558
+ 31
+ 20
+
+ -
+ 4060.5
+ 1568
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - feee9bed-0a55-4a71-bbe4-7083862058a6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4100
+ 1518
+ 31
+ 60
+
+ -
+ 4115.5
+ 1548
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fca5ad7e-ecac-401d-a357-edda0a251cbc
+ - Polar Array
+
+
+
+
+ - Create a polar array of geometry.
+ - true
+ - 4b3c5c37-6f6a-4f2d-90a7-ad7b24cb571c
+ - Polar Array
+ - Polar Array
+
+
+
+
+ -
+ 4163
+ 1400
+ 207
+ 84
+
+ -
+ 4290
+ 1442
+
+
+
+
+
+ - Base geometry
+ - 035d7fb3-c2cf-4600-bfd9-842d930e39d5
+ - Geometry
+ - Geometry
+ - true
+ - feee9bed-0a55-4a71-bbe4-7083862058a6
+ - 1
+
+
+
+
+ -
+ 4165
+ 1402
+ 113
+ 20
+
+ -
+ 4221.5
+ 1412
+
+
+
+
+
+
+
+ - Polar array plane
+ - 1786f70d-6c1f-4d8e-8097-e7d5e5b74c63
+ - Plane
+ - Plane
+ - false
+ - 8466f10c-3993-400e-8742-e7e3f179651f
+ - 1
+
+
+
+
+ -
+ 4165
+ 1422
+ 113
+ 20
+
+ -
+ 4221.5
+ 1432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Number of elements in array.
+ - f62765ec-b9fe-48ee-8fff-50fd1b505801
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 4165
+ 1442
+ 113
+ 20
+
+ -
+ 4221.5
+ 1452
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Sweep angle in radians (counter-clockwise, starting from plane x-axis)
+ - 9185d11f-78bb-49dd-ae7a-cb85f32ff4e3
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 4165
+ 1462
+ 113
+ 20
+
+ -
+ 4221.5
+ 1472
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6.2831853071795862
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Arrayed geometry
+ - 26507737-8959-4703-bb00-8b5255606029
+ - 1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ 1402
+ 66
+ 40
+
+ -
+ 4327
+ 1422
+
+
+
+
+
+
+
+ - 1
+ - Transformation data
+ - 6bc65abe-df40-40c0-a453-3d1d34aa5b25
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ 1442
+ 66
+ 40
+
+ -
+ 4327
+ 1462
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8ad5c4e2-d150-4afc-a797-fd8b0b4ef95e
+ - Relay
+
+ - false
+ - 30377d3c-57fd-4ec7-9de3-54b95b3a7509
+ - 1
+
+
+
+
+ -
+ 3896
+ 1581
+ 40
+ 16
+
+ -
+ 3916
+ 1589
+
+
+
+
+
+
+
+
+
+ - 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd
+ - Brep Join
+
+
+
+
+ - Join a number of Breps together
+ - true
+ - 01d148ee-870a-45cc-bfbb-e2465dfc7da2
+ - Brep Join
+ - Brep Join
+
+
+
+
+ -
+ 5155
+ 1649
+ 92
+ 44
+
+ -
+ 5199
+ 1671
+
+
+
+
+
+ - 1
+ - Breps to join
+ - 4d43e18c-3dd9-4f9d-b1f7-1358aa3bb75e
+ - Breps
+ - Breps
+ - false
+ - 26507737-8959-4703-bb00-8b5255606029
+ - 1
+
+
+
+
+ -
+ 5157
+ 1651
+ 30
+ 40
+
+ -
+ 5172
+ 1671
+
+
+
+
+
+
+
+ - 1
+ - Joined Breps
+ - b2e8ac92-d227-488f-9a7d-6fc35ad071e2
+ - Breps
+ - Breps
+ - false
+ - 0
+
+
+
+
+ -
+ 5211
+ 1651
+ 34
+ 20
+
+ -
+ 5228
+ 1661
+
+
+
+
+
+
+
+ - 1
+ - Closed flag for each resulting Brep
+ - 417bd4b0-621c-43ae-9ab6-150fd0b479a2
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ 5211
+ 1671
+ 34
+ 20
+
+ -
+ 5228
+ 1681
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ed77bd18-58d4-4267-ac22-9e4405a9d12f
+ - 1
+ - 04455d3d-1211-4e5b-b842-2b17c98b256d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cbd6bf4a-bfcb-42e9-b3ba-b33cb2875e0a
+ - Relay
+
+ - false
+ - 26507737-8959-4703-bb00-8b5255606029
+ - 1
+
+
+
+
+ -
+ 4700
+ 598
+ 40
+ 16
+
+ -
+ 4720
+ 606
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b5c58a31-491f-4d81-a1aa-0359275d3db3
+ - 1
+ - 7f6e71e2-326a-443d-97ac-6752b7db168d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 94347365-95e5-483e-b7c7-f613bb3f2fc3
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5675
+ 503
+ 84
+ 44
+
+ -
+ 5719
+ 525
+
+
+
+
+
+ - Curve to evaluate
+ - 7a47381a-6694-4e80-b968-e72f67ac3c75
+ - Curve
+ - Curve
+ - false
+ - dc0a229b-2ac1-4c88-9aee-6746b5f562db
+ - 1
+
+
+
+
+ -
+ 5677
+ 505
+ 30
+ 40
+
+ -
+ 5692
+ 525
+
+
+
+
+
+
+
+ - Curve start point
+ - 1c94eca2-11fb-4606-8145-1db5e8b44d1b
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5731
+ 505
+ 26
+ 20
+
+ -
+ 5744
+ 515
+
+
+
+
+
+
+
+ - Curve end point
+ - 9cf4c8b8-6c1a-41ef-8458-52521bc601c3
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5731
+ 525
+ 26
+ 20
+
+ -
+ 5744
+ 535
+
+
+
+
+
+
+
+
+
+
+
+ - 71b5b089-500a-4ea6-81c5-2f960441a0e8
+ - PolyLine
+
+
+
+
+ - Create a polyline connecting a number of points.
+ - true
+ - 7491cb30-7543-4fc8-8cad-5303265e3a90
+ - PolyLine
+ - PolyLine
+
+
+
+
+ -
+ 5688
+ 436
+ 116
+ 44
+
+ -
+ 5752
+ 458
+
+
+
+
+
+ - 1
+ - Polyline vertex points
+ - 63e58511-a5cf-40e3-a72f-eee51282716a
+ - Vertices
+ - Vertices
+ - false
+ - 1c94eca2-11fb-4606-8145-1db5e8b44d1b
+ - 1
+
+
+
+
+ -
+ 5690
+ 438
+ 50
+ 20
+
+ -
+ 5715
+ 448
+
+
+
+
+
+
+
+ - Close polyline
+ - 01b4a71c-9c5a-4ed9-84ff-3bac40bf0e75
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ 5690
+ 458
+ 50
+ 20
+
+ -
+ 5715
+ 468
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting polyline
+ - 960f7236-e5a9-422d-a2d2-dbf7ecde4556
+ - Polyline
+ - Polyline
+ - false
+ - 0
+
+
+
+
+ -
+ 5764
+ 438
+ 38
+ 40
+
+ -
+ 5783
+ 458
+
+
+
+
+
+
+
+
+
+
+
+ - 71b5b089-500a-4ea6-81c5-2f960441a0e8
+ - PolyLine
+
+
+
+
+ - Create a polyline connecting a number of points.
+ - true
+ - 83c357b9-c90c-4adb-835a-dcf1c2a9f8b3
+ - PolyLine
+ - PolyLine
+
+
+
+
+ -
+ 5695
+ 561
+ 116
+ 44
+
+ -
+ 5759
+ 583
+
+
+
+
+
+ - 1
+ - Polyline vertex points
+ - 07b52f89-bdf0-4629-a8bd-df05757fa70f
+ - Vertices
+ - Vertices
+ - false
+ - 9cf4c8b8-6c1a-41ef-8458-52521bc601c3
+ - 1
+
+
+
+
+ -
+ 5697
+ 563
+ 50
+ 20
+
+ -
+ 5722
+ 573
+
+
+
+
+
+
+
+ - Close polyline
+ - c0fe7c7f-7b81-4dc7-83e2-3f3cf9c27dd5
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ 5697
+ 583
+ 50
+ 20
+
+ -
+ 5722
+ 593
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting polyline
+ - c4c58973-5656-4a93-b5f4-7f922145a19f
+ - Polyline
+ - Polyline
+ - false
+ - 0
+
+
+
+
+ -
+ 5771
+ 563
+ 38
+ 40
+
+ -
+ 5790
+ 583
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - caa43b0c-401b-4a94-ba5f-b71094d611b8
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 5835
+ 478
+ 90
+ 84
+
+ -
+ 5880
+ 520
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - c3f92e5c-13aa-4aa4-9e8a-6b6e5d46cca3
+ - false
+ - Data 1
+ - D1
+ - true
+ - 960f7236-e5a9-422d-a2d2-dbf7ecde4556
+ - 1
+
+
+
+
+ -
+ 5837
+ 480
+ 31
+ 20
+
+ -
+ 5852.5
+ 490
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - eadcbce8-4ffe-4ce3-9f36-22d89ea5a6a4
+ - false
+ - Data 2
+ - D2
+ - true
+ - dc0a229b-2ac1-4c88-9aee-6746b5f562db
+ - 1
+
+
+
+
+ -
+ 5837
+ 500
+ 31
+ 20
+
+ -
+ 5852.5
+ 510
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 332375c1-75cc-4094-95bd-3e2b9dd9beb3
+ - false
+ - Data 3
+ - D3
+ - true
+ - c4c58973-5656-4a93-b5f4-7f922145a19f
+ - 1
+
+
+
+
+ -
+ 5837
+ 520
+ 31
+ 20
+
+ -
+ 5852.5
+ 530
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - ec0d2213-c395-44fa-8252-84c28b05a9c3
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ 5837
+ 540
+ 31
+ 20
+
+ -
+ 5852.5
+ 550
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 446b2bfe-0568-4af3-9307-9469b9004843
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5892
+ 480
+ 31
+ 80
+
+ -
+ 5907.5
+ 520
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - fe5348a3-5ee4-48b0-b022-2fec8932261e
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5935
+ 397
+ 116
+ 44
+
+ -
+ 6002
+ 419
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 47db604c-122d-4e91-9e09-294570fd4e1d
+ - Curves
+ - Curves
+ - false
+ - 446b2bfe-0568-4af3-9307-9469b9004843
+ - 1
+
+
+
+
+ -
+ 5937
+ 399
+ 53
+ 20
+
+ -
+ 5963.5
+ 409
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 93973b6d-12f7-4df9-bddb-18e489172b10
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5937
+ 419
+ 53
+ 20
+
+ -
+ 5963.5
+ 429
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - f61c9871-6dd5-4e62-9ffe-944bcec4b67b
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6014
+ 399
+ 35
+ 40
+
+ -
+ 6031.5
+ 419
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - ae439274-4b57-4bf2-ac95-fa797e86c7fe
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 5813
+ 669
+ 97
+ 28
+
+ -
+ 5846
+ 683
+
+
+
+
+
+ - 1
+ - Base list
+ - 3b579c72-5756-4a2a-a5a4-864e1d2c08aa
+ - List
+ - List
+ - false
+ - 1c94eca2-11fb-4606-8145-1db5e8b44d1b
+ - 1
+
+
+
+
+ -
+ 5815
+ 671
+ 19
+ 24
+
+ -
+ 5824.5
+ 683
+
+
+
+
+
+
+
+ - Number of items in L
+ - 5176ee17-f00f-4dc4-bf80-3d61c1a195e2
+ - X-1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5858
+ 671
+ 50
+ 24
+
+ -
+ 5875
+ 683
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - a5965183-28db-41dd-84cd-2e9a37a5bae0
+ - Length
+ - Length
+
+
+
+
+ -
+ 5831
+ 607
+ 92
+ 28
+
+ -
+ 5875
+ 621
+
+
+
+
+
+ - Curve to measure
+ - 9825f30b-0541-4076-bd3c-e4be37e5992d
+ - Curve
+ - Curve
+ - false
+ - 960f7236-e5a9-422d-a2d2-dbf7ecde4556
+ - 1
+
+
+
+
+ -
+ 5833
+ 609
+ 30
+ 24
+
+ -
+ 5848
+ 621
+
+
+
+
+
+
+
+ - Curve length
+ - 98e7a99f-fc29-480d-8bc7-52142eb63c61
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5887
+ 609
+ 34
+ 24
+
+ -
+ 5904
+ 621
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 0db1380b-f0b6-4336-b810-4c4b66674c7c
+ - Division
+ - Division
+
+
+
+
+ -
+ 5940
+ 651
+ 70
+ 44
+
+ -
+ 5965
+ 673
+
+
+
+
+
+ - Item to divide (dividend)
+ - 2d71cd90-ebbd-4d4e-8c01-8ba45b50c897
+ - A
+ - A
+ - false
+ - 98e7a99f-fc29-480d-8bc7-52142eb63c61
+ - 1
+
+
+
+
+ -
+ 5942
+ 653
+ 11
+ 20
+
+ -
+ 5947.5
+ 663
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - d1e7b488-2f79-453e-b31f-01e7869fee64
+ - B
+ - B
+ - false
+ - 5176ee17-f00f-4dc4-bf80-3d61c1a195e2
+ - 1
+
+
+
+
+ -
+ 5942
+ 673
+ 11
+ 20
+
+ -
+ 5947.5
+ 683
+
+
+
+
+
+
+
+ - The result of the Division
+ - fd629647-51c5-410e-893f-43972bd72792
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5977
+ 653
+ 31
+ 40
+
+ -
+ 5992.5
+ 673
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 48c25c70-aed7-43b3-a589-68dea61ccb3c
+ - Division
+ - Division
+
+
+
+
+ -
+ 6002
+ 499
+ 85
+ 44
+
+ -
+ 6042
+ 521
+
+
+
+
+
+ - Item to divide (dividend)
+ - ffef8501-7fef-4d22-8a72-75509c883885
+ - A
+ - A
+ - false
+ - fd629647-51c5-410e-893f-43972bd72792
+ - 1
+
+
+
+
+ -
+ 6004
+ 501
+ 26
+ 20
+
+ -
+ 6017
+ 511
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - b2864792-7556-43e3-a2ef-a5a48026b087
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 6004
+ 521
+ 26
+ 20
+
+ -
+ 6017
+ 531
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_String
+ - false
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - d2521a95-eb69-45eb-8202-b014e1e92713
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 6054
+ 501
+ 31
+ 40
+
+ -
+ 6069.5
+ 521
+
+
+
+
+
+
+
+
+
+
+
+ - e1d84941-0fd3-48cc-b46a-9954138d76cf
+ - cc201624-ce0d-d105-495c-210b876cef63
+ - Mesh Pipe
+
+
+
+
+ - Create a mesh pipe.
+ - true
+ - 9a724de6-9512-4244-bafe-8a6ecd1b0d92
+ - true
+ - Mesh Pipe
+ - Mesh Pipe
+
+
+
+
+ -
+ 6198
+ 395
+ 122
+ 124
+
+ -
+ 6278
+ 457
+
+
+
+
+
+ - Any type of curve
+ - ef9f3ee3-106c-45ee-b4ce-6387a6a66cc1
+ - true
+ - Curve
+ - Curve
+ - false
+ - a2cbc265-1792-4819-901f-64d28abc1a54
+ - 1
+
+
+
+
+ -
+ 6200
+ 397
+ 66
+ 20
+
+ -
+ 6233
+ 407
+
+
+
+
+
+
+
+ - Pipe radius
+ - 87b88a55-abbb-4b96-a103-7768917315b1
+ - true
+ - Radius
+ - Radius
+ - false
+ - d2521a95-eb69-45eb-8202-b014e1e92713
+ - 1
+
+
+
+
+ -
+ 6200
+ 417
+ 66
+ 20
+
+ -
+ 6233
+ 427
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Accuracy defined by angle
+ - c320b426-e4ae-4295-abc1-2f719aed7a1f
+ - true
+ - Accuracy
+ - Accuracy
+ - false
+ - d2521a95-eb69-45eb-8202-b014e1e92713
+ - 1
+
+
+
+
+ -
+ 6200
+ 437
+ 66
+ 20
+
+ -
+ 6233
+ 447
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.00390625
+
+
+
+
+
+
+
+
+
+
+ - Profile rotation
+ - 5a652c81-aa43-42da-9b55-617480a591f1
+ - true
+ - Rotation
+ - Rotation
+ - false
+ - 0
+
+
+
+
+ -
+ 6200
+ 457
+ 66
+ 20
+
+ -
+ 6233
+ 467
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Number of segments
+ - e7e0b34e-28ba-4d02-9154-39cf1fa40f71
+ - true
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ 6200
+ 477
+ 66
+ 20
+
+ -
+ 6233
+ 487
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - 0 = none, 1 = flat, 2 = round
+ - cd539be9-f24e-405f-a783-918ccdbe442a
+ - true
+ - Caps
+ - Caps
+ - false
+ - 0
+
+
+
+
+ -
+ 6200
+ 497
+ 66
+ 20
+
+ -
+ 6233
+ 507
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Mesh pipe
+ - bccd6fd5-bc5b-4b5d-96a4-397d577fa9a1
+ - true
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 6290
+ 397
+ 28
+ 120
+
+ -
+ 6304
+ 457
+
+
+
+
+
+
+
+
+
+
+
+ - afb96615-c59a-45c9-9cac-e27acb1c7ca0
+ - Explode
+
+
+
+
+ - Explode a curve into smaller segments.
+ - true
+ - 2277355b-9950-468c-94f1-70f0a862e9ee
+ - Explode
+ - Explode
+
+
+
+
+ -
+ 5950
+ 314
+ 150
+ 44
+
+ -
+ 6021
+ 336
+
+
+
+
+
+ - Curve to explode
+ - 504c3d38-2253-4f4b-9ba3-6079d80c1a94
+ - Curve
+ - Curve
+ - false
+ - f61c9871-6dd5-4e62-9ffe-944bcec4b67b
+ - 1
+
+
+
+
+ -
+ 5952
+ 316
+ 57
+ 20
+
+ -
+ 5980.5
+ 326
+
+
+
+
+
+
+
+ - Recursive decomposition until all segments are atomic
+ - 29d86200-7f54-4ab3-a988-b6c00b5b7adf
+ - Recursive
+ - Recursive
+ - false
+ - 0
+
+
+
+
+ -
+ 5952
+ 336
+ 57
+ 20
+
+ -
+ 5980.5
+ 346
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Exploded segments that make up the base curve
+ - a2cbc265-1792-4819-901f-64d28abc1a54
+ - 1
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ 6033
+ 316
+ 65
+ 20
+
+ -
+ 6057.5
+ 326
+
+
+
+
+
+
+
+ - 1
+ - Vertices of the exploded segments
+ - 6f006227-fa50-496c-b20d-f2e982ae1b76
+ - 1
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 6033
+ 336
+ 65
+ 20
+
+ -
+ 6057.5
+ 346
+
+
+
+
+
+
+
+
+
+
+
+ - 4bc9dbbf-fec8-4348-a3af-e33e7edc8e7b
+ - Mesh Join
+
+
+
+
+ - Join a set of meshes into a single mesh
+ - true
+ - 18130b4d-c813-4e4b-998e-75e0a8523219
+ - Mesh Join
+ - Mesh Join
+
+
+
+
+ -
+ 6276
+ 335
+ 94
+ 28
+
+ -
+ 6328
+ 349
+
+
+
+
+
+ - 1
+ - Meshes to join
+ - 886d406e-913d-4f08-ac88-3019462a2213
+ - Meshes
+ - Meshes
+ - false
+ - 0
+
+
+
+
+ -
+ 6278
+ 337
+ 38
+ 24
+
+ -
+ 6297
+ 349
+
+
+
+
+
+
+
+ - Mesh join result
+ - 51766a1d-2d59-4384-a9f6-12dda58bfa62
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 6340
+ 337
+ 28
+ 24
+
+ -
+ 6354
+ 349
+
+
+
+
+
+
+
+
+
+
+
+ - f1f51397-fc4b-44cf-b4b0-0ab80a80a6e1
+ - 14601aeb-b64f-9304-459d-d5d06df91218
+ - Mesh WeldVertices
+
+
+
+
+ - Merge identical or vertices in threshold range
+ - true
+ - 913d118b-bf32-4679-b703-23113feda584
+ - Mesh WeldVertices
+ - Mesh WeldVertices
+
+
+
+
+ -
+ 6204
+ 279
+ 218
+ 44
+
+ -
+ 6328
+ 301
+
+
+
+
+
+ - The open or closed mesh
+ - true
+ - 28b6a808-15d8-45da-951c-13844aee25aa
+ - Mesh
+ - Mesh
+ - false
+ - 51766a1d-2d59-4384-a9f6-12dda58bfa62
+ - 1
+
+
+
+
+ -
+ 6206
+ 281
+ 110
+ 20
+
+ -
+ 6261
+ 291
+
+
+
+
+
+
+
+ - Weld threshold value for Vertices
+ - ae08dafa-9ed5-4a71-a880-1dd8fdb48d56
+ - tolerance
+ - tolerance
+ - true
+ - 0
+
+
+
+
+ -
+ 6206
+ 301
+ 110
+ 20
+
+ -
+ 6261
+ 311
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.1641532182693481E-10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Print, Reflect and Error Streams
+ - 49a66483-dffd-4303-9d93-3a4274f443a3
+ - RuntimeMessage
+ - RuntimeMessage
+ - false
+ - 0
+
+
+
+
+ -
+ 6340
+ 281
+ 80
+ 20
+
+ -
+ 6380
+ 291
+
+
+
+
+
+
+
+ - The constructed mesh
+ - b013ce48-f199-40ec-bce6-4f6f401e0259
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 6340
+ 301
+ 80
+ 20
+
+ -
+ 6380
+ 311
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - bd83284c-228a-43b1-98d1-bae48669ddd4
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 6516
+ 263
+ 76
+ 44
+
+ -
+ 6578
+ 285
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - fb5d3d05-1b0c-4ea7-ab20-d08752d1e286
+ - Geometry
+ - Geometry
+ - false
+ - 4c36b0a7-9a92-4045-9c7b-9705ffc8e3a1
+ - 1
+
+
+
+
+ -
+ 6518
+ 265
+ 48
+ 20
+
+ -
+ 6542
+ 275
+
+
+
+
+
+
+
+ - The material override
+ - c3a0bae7-938a-436c-942e-3cb1bb637bc3
+ - Material
+ - Material
+ - false
+ - 326fbc08-dea2-43c0-83cd-c5852522fa30
+ - 1
+
+
+
+
+ -
+ 6518
+ 285
+ 48
+ 20
+
+ -
+ 6542
+ 295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;255;255;255
+
+ -
+ 255;76;76;76
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 913d7b0b-9ad8-4c75-9e6e-79ffbdefa903
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 6428
+ 376
+ 149
+ 104
+
+ -
+ 6523
+ 428
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e0c739c9-5087-464b-b265-665f8c51ed12
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 6430
+ 378
+ 81
+ 20
+
+ -
+ 6470.5
+ 388
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;255;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 28cee4bd-1a24-43e1-868f-385a08024a2e
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 6430
+ 398
+ 81
+ 20
+
+ -
+ 6470.5
+ 408
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;255;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - ef1c2dee-aefd-4179-97bf-7712dadef0fe
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 6430
+ 418
+ 81
+ 20
+
+ -
+ 6470.5
+ 428
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 426b9a64-97a9-44e8-9e95-0216b51823b8
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 6430
+ 438
+ 81
+ 20
+
+ -
+ 6470.5
+ 448
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1796cfa4-59c9-4dd0-ab45-9d85a728a169
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 6430
+ 458
+ 81
+ 20
+
+ -
+ 6470.5
+ 468
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 326fbc08-dea2-43c0-83cd-c5852522fa30
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 6535
+ 378
+ 40
+ 100
+
+ -
+ 6555
+ 428
+
+
+
+
+
+
+
+
+
+
+
+ - 12bb406c-41bc-4c8a-9b96-6924df61b6d6
+ - d2580c41-5c48-4997-87c5-b6333b5e21d7
+ - Mesh Rebuild Normals
+
+
+
+
+ - Rebuilds Mesh Normals
+ - true
+ - 4ad1e8d2-5eec-4a0b-ab32-27566d3371b2
+ - Mesh Rebuild Normals
+ - Mesh Rebuild Normals
+
+
+
+
+ -
+ 6365
+ 213
+ 84
+ 28
+
+ -
+ 6407
+ 227
+
+
+
+
+
+ - The Input Mesh
+ - 67d0048a-9807-4193-bec0-59a715e5ae19
+ - Mesh
+ - Mesh
+ - false
+ - b013ce48-f199-40ec-bce6-4f6f401e0259
+ - 1
+
+
+
+
+ -
+ 6367
+ 215
+ 28
+ 24
+
+ -
+ 6381
+ 227
+
+
+
+
+
+
+
+ - The Mesh with Rebuilt Normals
+ - 4c36b0a7-9a92-4045-9c7b-9705ffc8e3a1
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 6419
+ 215
+ 28
+ 24
+
+ -
+ 6433
+ 227
+
+
+
+
+
+
+
+
+
+
+
+ - 4bfe1bf6-fbc9-4ad2-bf28-a7402e1392ee
+ - c2ea695e-1a09-6f42-266d-113498879f60
+ - MultiPipe
+
+
+
+
+ - Create a branching pipe around a network of lines/curves
+ - true
+ - e65bd057-1477-4024-bf3f-a43c107821f5
+ - true
+ - MultiPipe
+ - MultiPipe
+
+
+
+
+ -
+ 6525
+ -181
+ 186
+ 184
+
+ -
+ 6674
+ -89
+
+
+
+
+
+ - 1
+ - The curves to pipe. Also accepts meshes
+ - 9d5ac057-127f-4e4b-b6df-8548a8e2f2de
+ - true
+ - Curves
+ - Curves
+ - false
+ - c6bade99-c83e-413c-befb-c3d58ce01183
+ - 1
+
+
+
+
+ -
+ 6527
+ -179
+ 135
+ 20
+
+ -
+ 6602.5
+ -169
+
+
+
+
+
+
+
+ - 1
+ - Pipe radius. If one value given, it is applied to all. Alternatively, provide a list of radii corresponding to each point in SizePoints
+ - 8799a98a-0c75-4383-b675-a8bdd2e6b449
+ - X*65536
+ - true
+ - NodeSize
+ - NodeSize
+ - false
+ - d2521a95-eb69-45eb-8202-b014e1e92713
+ - 1
+
+
+
+
+ -
+ 6527
+ -159
+ 135
+ 20
+
+ -
+ 6602.5
+ -149
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - If you are supplying multiple radii for NodeSize, these points identify which node to set as which radius. If only some of the nodes have their radius set this way, the values will be interpolated across the shape
+ - 176f6124-ddbd-40b8-97e7-372416d6976a
+ - true
+ - SizePoints
+ - SizePoints
+ - true
+ - 0
+
+
+
+
+ -
+ 6527
+ -139
+ 135
+ 20
+
+ -
+ 6602.5
+ -129
+
+
+
+
+
+
+
+ - The distance of the first edge loop away from the node as a multiplier of NodeSize. If this is set to zero, no intermediate edge loop is added, to give a smoother shape.
+ - 4833559f-205f-4c7b-8c61-5a9d655a6a5d
+ - true
+ - EndOffset
+ - EndOffset
+ - false
+ - 0
+
+
+
+
+ -
+ 6527
+ -119
+ 135
+ 20
+
+ -
+ 6602.5
+ -109
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - The size of the struts between nodes as a multiplier of NodeSize. <1 gives tapering struts, >1 gives bulging struts
+ - 13260dff-63c9-4a5a-a106-7475f418b115
+ - true
+ - StrutSize
+ - StrutSize
+ - false
+ - 0
+
+
+
+
+ -
+ 6527
+ -99
+ 135
+ 20
+
+ -
+ 6602.5
+ -89
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Approximate spacing of edge loops along each strut. If set to zero, no additional edge loops are added
+ - 441666d9-3257-4d33-94db-64e10261e09e
+ - true
+ - Segment
+ - Segment
+ - false
+ - 0
+
+
+
+
+ -
+ 6527
+ -79
+ 135
+ 20
+
+ -
+ 6602.5
+ -69
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - When the input to 'Curves' are smooth curves, this sets the maximum angle between consecutive segments when discretizing
+ - c77d7fd1-e082-41c9-ae77-a131386c9277
+ - true
+ - KinkAngle
+ - KinkAngle
+ - false
+ - 0
+
+
+
+
+ -
+ 6527
+ -59
+ 135
+ 20
+
+ -
+ 6602.5
+ -49
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 90
+
+
+
+
+
+
+
+
+
+
+ - If >0 this attempts to fit a cube at each node. Should be a value between 0 and 1, where 0 = never, and 1 = always, depending on how close to orthogonal its connected lines are.
+ - 1cdffb78-f04a-4d16-9fed-7de9da78bb39
+ - true
+ - CubeFit
+ - CubeFit
+ - false
+ - 0
+
+
+
+
+ -
+ 6527
+ -39
+ 135
+ 20
+
+ -
+ 6602.5
+ -29
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Cap option - 0:None, 1:Round, 2:Flat
+ - 5811a0ea-ed73-4508-ab04-c5f12074a47b
+ - true
+ - Caps
+ - Caps
+ - true
+ - 0
+
+
+
+
+ -
+ 6527
+ -19
+ 135
+ 20
+
+ -
+ 6602.5
+ -9
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Resulting Pipe SubD
+ - 1867f002-ba43-453d-9003-2fa07903686d
+ - true
+ - Pipe
+ - Pipe
+ - false
+ - 0
+
+
+
+
+ -
+ 6686
+ -179
+ 23
+ 180
+
+ -
+ 6697.5
+ -89
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - d98270ba-9afb-47d3-9937-cf8259edcdee
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 5889
+ 732
+ 90
+ 84
+
+ -
+ 5934
+ 774
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - 86ac1872-92ab-4b63-a9e4-484713be52be
+ - false
+ - Data 1
+ - D1
+ - true
+ - 960f7236-e5a9-422d-a2d2-dbf7ecde4556
+ - 1
+
+
+
+
+ -
+ 5891
+ 734
+ 31
+ 20
+
+ -
+ 5906.5
+ 744
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - 179555f5-43af-48e9-9fc2-4f3b7acfb0fe
+ - false
+ - Data 2
+ - D2
+ - true
+ - 0
+
+
+
+
+ -
+ 5891
+ 754
+ 31
+ 20
+
+ -
+ 5906.5
+ 764
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - fcc88034-d9de-4584-9e6a-4b7aaab42489
+ - false
+ - Data 3
+ - D3
+ - true
+ - c4c58973-5656-4a93-b5f4-7f922145a19f
+ - 1
+
+
+
+
+ -
+ 5891
+ 774
+ 31
+ 20
+
+ -
+ 5906.5
+ 784
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - 65b533b7-98c2-47f6-a1cd-017b3924e9a2
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ 5891
+ 794
+ 31
+ 20
+
+ -
+ 5906.5
+ 804
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - 64bc1acc-a9db-4735-b25d-7fc33d153fd3
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5946
+ 734
+ 31
+ 80
+
+ -
+ 5961.5
+ 774
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - fd92a202-6283-4250-8b87-a63ec2749b47
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 6021
+ 807
+ 116
+ 44
+
+ -
+ 6088
+ 829
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 81a540c7-0c42-4b17-ae37-fcc96a189b33
+ - Curves
+ - Curves
+ - false
+ - 64bc1acc-a9db-4735-b25d-7fc33d153fd3
+ - 1
+
+
+
+
+ -
+ 6023
+ 809
+ 53
+ 20
+
+ -
+ 6049.5
+ 819
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 8c16c48d-153e-4180-ab2f-c3f6b58158c7
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 6023
+ 829
+ 53
+ 20
+
+ -
+ 6049.5
+ 839
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 54ebf683-fd9d-4ded-8395-0a2c3898d0ef
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6100
+ 809
+ 35
+ 40
+
+ -
+ 6117.5
+ 829
+
+
+
+
+
+
+
+
+
+
+
+ - c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1
+ - Simple Mesh
+
+
+
+
+ - Create a mesh that represents a Brep as simply as possible
+ - true
+ - cdeb0ed4-1a13-4341-9034-684797145956
+ - Simple Mesh
+ - Simple Mesh
+
+
+
+
+ -
+ 6228
+ 693
+ 81
+ 28
+
+ -
+ 6267
+ 707
+
+
+
+
+
+ - Brep to mesh, only breps with triangle or quad faces are supported.
+ - 3948c631-d998-4834-bfdc-3fc92eb3b4ed
+ - Brep
+ - Brep
+ - false
+ - 0
+
+
+
+
+ -
+ 6230
+ 695
+ 25
+ 24
+
+ -
+ 6242.5
+ 707
+
+
+
+
+
+
+
+ - Mesh
+ - 49844cd2-dce1-4c0c-bd49-b5e0b6dd8e38
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 6279
+ 695
+ 28
+ 24
+
+ -
+ 6293
+ 707
+
+
+
+
+
+
+
+
+
+
+
+ - 9266a2bb-918f-4675-9c91-f67d0dd33eac
+ - Quadrangulate
+
+
+
+
+ - Quadrangulate as many triangles as possible in a mesh
+ - true
+ - 8665abfd-c7fc-4786-bc40-b494c4bfa4bc
+ - Quadrangulate
+ - Quadrangulate
+
+
+
+
+ -
+ 6228
+ 612
+ 148
+ 64
+
+ -
+ 6332
+ 644
+
+
+
+
+
+ - Mesh to quadrangulate
+ - 2f0e53af-4c1f-4ce1-bb65-8ce06ec8be50
+ - Mesh
+ - Mesh
+ - false
+ - 54ebf683-fd9d-4ded-8395-0a2c3898d0ef
+ - 1
+
+
+
+
+ -
+ 6230
+ 614
+ 90
+ 20
+
+ -
+ 6275
+ 624
+
+
+
+
+
+
+
+ - Angle threshold. Triangles that exceed this kink-angle will not be merged.
+ - 7dd61ecc-f1dd-424a-958c-4cdac6b8c9e0
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 6230
+ 634
+ 90
+ 20
+
+ -
+ 6275
+ 644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.034906585039886591
+
+
+
+
+
+
+
+
+
+
+ - Ratio threshold. Quads that have a ratio (shortest diagonal/longest diagonal) that exceed the threshold, will not be considered.
+ - d6e66e82-f7a2-44db-84b9-4e87f8830fd1
+ - Ratio
+ - Ratio
+ - false
+ - 0
+
+
+
+
+ -
+ 6230
+ 654
+ 90
+ 20
+
+ -
+ 6275
+ 664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.875
+
+
+
+
+
+
+
+
+
+
+ - Quadrangulated mesh (not all triangles are guaranteed to be converted).
+ - a7da4a92-991c-4900-b5d1-360021364e54
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 6344
+ 614
+ 30
+ 30
+
+ -
+ 6359
+ 629
+
+
+
+
+
+
+
+ - Number of triangles that were quadrangulated
+ - 9700fcbf-be9e-450e-b55e-ba2b4a83e357
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 6344
+ 644
+ 30
+ 30
+
+ -
+ 6359
+ 659
+
+
+
+
+
+
+
+
+
+
+
+ - 4c0d75e1-4266-45b8-b5b4-826c9ad51ace
+ - 00000000-0000-0000-0000-000000000000
+ - Divide Curves on Intersects
+
+
+
+
+ - Divide curves on all of their intersects.
+ - true
+ - 2f177179-4697-4a93-a401-219c588e7391
+ - Divide Curves on Intersects
+ - Divide Curves on Intersects
+
+
+
+
+ -
+ 6164
+ 808
+ 174
+ 44
+
+ -
+ 6291
+ 830
+
+
+
+
+
+ - 1
+ - curves to be divided
+ - e220dfce-a878-44d3-8a16-63de991c5b32
+ - curves
+ - curves
+ - false
+ - 64bc1acc-a9db-4735-b25d-7fc33d153fd3
+ - 1
+
+
+
+
+ -
+ 6166
+ 810
+ 113
+ 20
+
+ -
+ 6222.5
+ 820
+
+
+
+
+
+
+
+ - ZeroTolerance
+ - 00c0f45e-ba64-4d33-9e88-f6c1deb34897
+ - Tolerance
+ - Tolerance
+ - false
+ - 0
+
+
+
+
+ -
+ 6166
+ 830
+ 113
+ 20
+
+ -
+ 6222.5
+ 840
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4.768E-07
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - aligned curves
+ - 6da19130-89a1-437b-b23f-cb65a54edfae
+ - curves
+ - curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6303
+ 810
+ 33
+ 40
+
+ -
+ 6319.5
+ 830
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 2f9c982a-f0ff-467e-ac38-6065e3546417
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 6235
+ 865
+ 77
+ 64
+
+ -
+ 6292
+ 897
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - fec5ed95-cdff-42cf-889b-c85d2af22ad9
+ - List
+ - List
+ - false
+ - 6da19130-89a1-437b-b23f-cb65a54edfae
+ - 1
+
+
+
+
+ -
+ 6237
+ 867
+ 43
+ 20
+
+ -
+ 6258.5
+ 877
+
+
+
+
+
+
+
+ - Item index
+ - 0e1643b4-dc6c-4a34-9c1e-50d0d823a23e
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 6237
+ 887
+ 43
+ 20
+
+ -
+ 6258.5
+ 897
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 3b1b18e4-5dbf-4177-a14b-2f72fd73de68
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 6237
+ 907
+ 43
+ 20
+
+ -
+ 6258.5
+ 917
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 2f6f0afd-993f-47a5-8a5f-5b97369eb913
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 6304
+ 867
+ 6
+ 60
+
+ -
+ 6307
+ 897
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1
+ - Simple Mesh
+
+
+
+
+ - Create a mesh that represents a Brep as simply as possible
+ - true
+ - 916b40c9-fae5-4a15-b308-c086513aa6ed
+ - Simple Mesh
+ - Simple Mesh
+
+
+
+
+ -
+ 5635
+ 128
+ 81
+ 28
+
+ -
+ 5674
+ 142
+
+
+
+
+
+ - Brep to mesh, only breps with triangle or quad faces are supported.
+ - a3400c94-1368-45d9-919d-f308d19cb831
+ - Brep
+ - Brep
+ - false
+ - 02d977a4-4efe-4e2d-8407-51dd988709ae
+ - 1
+
+
+
+
+ -
+ 5637
+ 130
+ 25
+ 24
+
+ -
+ 5649.5
+ 142
+
+
+
+
+
+
+
+ - Mesh
+ - c141638f-f968-4458-8a65-656377164c14
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 5686
+ 130
+ 28
+ 24
+
+ -
+ 5700
+ 142
+
+
+
+
+
+
+
+
+
+
+
+ - 8307c31e-e307-48e9-b7c3-f970591e86d2
+ - 2cd3c35a-cada-1a81-ddba-5b184219e513
+ - ggNetworkPolygons
+
+
+
+
+ - Polygon from Curve network
+ - true
+ - 03dad908-8250-4fe7-9faf-aac50ee62be7
+ - ggNetworkPolygons
+ - ggNetworkPolygons
+
+
+
+
+ -
+ 5713
+ 387
+ 134
+ 44
+
+ -
+ 5808
+ 409
+
+
+
+
+
+ - 1
+ - Input Curves
+ - 0124ecba-9dc2-4ca3-80ff-7428af38b8cc
+ - Curves
+ - Curves
+ - false
+ - 4cb9ae17-9c50-4f01-abc2-ce86d43083b0
+ - 1
+
+
+
+
+ -
+ 5715
+ 389
+ 81
+ 20
+
+ -
+ 5755.5
+ 399
+
+
+
+
+
+
+
+ - Number of edges considered to be a void or perimeter location
+ - 5e4caa1c-831b-487e-bdd5-a88cf6ee8f05
+ - Perim or Void
+ - Perim or Void
+ - true
+ - 0
+
+
+
+
+ -
+ 5715
+ 409
+ 81
+ 20
+
+ -
+ 5755.5
+ 419
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resultant Polygons
+ - c3015044-b271-488b-bb89-63d99aa97c9b
+ - Cells
+ - Cells
+ - false
+ - 0
+
+
+
+
+ -
+ 5820
+ 389
+ 25
+ 40
+
+ -
+ 5832.5
+ 409
+
+
+
+
+
+
+
+
+
+
+
+ - 3c5edcba-b7a5-4710-b076-4b19a7080a2b
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - Center
+
+
+
+
+ - Returns the center of a geometry and the Diameter of it's bounding box as the Dimension
+You can Right Click on the component's icon and choose "ForAll" option to have center point of a group of geometries.
+Besides You can Right click on the component's icon and choose one of three provided options (Spacial/ Planar/ Basement ) to have Desired type of center.
+ - true
+ - 6ec8f57d-f6b6-4f61-9fa6-ea4d3930062b
+ - Center
+ - Center
+
+
+
+
+ -
+ 5821
+ 249
+ 129
+ 44
+
+ -
+ 5885
+ 271
+
+
+
+
+
+ - 1
+ - Geometric
+ - 25a6dac4-741b-4cf2-b6c4-46916348ea4c
+ - Geometric
+ - Geometric
+ - false
+ - 83c37836-d997-40ad-b3dd-9f1c8098cd80
+ - 1
+
+
+
+
+ -
+ 5823
+ 251
+ 50
+ 40
+
+ -
+ 5848
+ 271
+
+
+
+
+
+
+
+ - 1
+ - Center
+ - 5be92eb5-02c1-4a50-802c-7ab01a573a0e
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5897
+ 251
+ 51
+ 20
+
+ -
+ 5922.5
+ 261
+
+
+
+
+
+
+
+ - 1
+ - Diagonal size of geometry's bounding box
+ - 8fe3d4fd-0f58-4b7a-8a93-086ba2ce3425
+ - Dimension
+ - Dimension
+ - false
+ - 0
+
+
+
+
+ -
+ 5897
+ 271
+ 51
+ 20
+
+ -
+ 5922.5
+ 281
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 22249883-3dfd-42f2-938f-5dbb9209cffb
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5621
+ 192
+ 191
+ 64
+
+ -
+ 5748
+ 224
+
+
+
+
+
+ - Base geometry
+ - add7ea7e-611e-4934-b67e-62bdab122d97
+ - Geometry
+ - Geometry
+ - true
+ - 83c37836-d997-40ad-b3dd-9f1c8098cd80
+ - 1
+
+
+
+
+ -
+ 5623
+ 194
+ 113
+ 20
+
+ -
+ 5679.5
+ 204
+
+
+
+
+
+
+
+ - Center of scaling
+ - 15215e10-f506-4266-8884-84f12e90ff86
+ - Center
+ - Center
+ - false
+ - 5be92eb5-02c1-4a50-802c-7ab01a573a0e
+ - 1
+
+
+
+
+ -
+ 5623
+ 214
+ 113
+ 20
+
+ -
+ 5679.5
+ 224
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 9bb0c08c-8fbe-4370-9fac-438da46c2bd9
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 5623
+ 234
+ 113
+ 20
+
+ -
+ 5679.5
+ 244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.33333333333333331
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 02d977a4-4efe-4e2d-8407-51dd988709ae
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5760
+ 194
+ 50
+ 30
+
+ -
+ 5785
+ 209
+
+
+
+
+
+
+
+ - Transformation data
+ - 4354deec-6b6e-4a5c-b887-e54017812829
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5760
+ 224
+ 50
+ 30
+
+ -
+ 5785
+ 239
+
+
+
+
+
+
+
+
+
+
+
+ - deaf8653-5528-4286-807c-3de8b8dad781
+ - Surface
+
+
+
+
+ - Contains a collection of generic surfaces
+ - true
+ - fef8f6d8-5af6-4935-8408-78241f7e4d7b
+ - Surface
+ - Surface
+ - false
+ - cbd6bf4a-bfcb-42e9-b3ba-b33cb2875e0a
+ - 1
+
+
+
+
+ -
+ 5709
+ 68
+ 50
+ 24
+
+ -
+ 5734.366
+ 80.0396
+
+
+
+
+
+
+
+
+
+ - ba2d8f57-0738-42b4-b5a5-fe4d853517eb
+ - Deconstruct Mesh
+
+
+
+
+ - Deconstruct a mesh into its component parts.
+ - true
+ - 2b056227-09bd-4857-a416-66e816e2af0b
+ - Deconstruct Mesh
+ - Deconstruct Mesh
+
+
+
+
+ -
+ 5806
+ 79
+ 97
+ 84
+
+ -
+ 5848
+ 121
+
+
+
+
+
+ - Base mesh
+ - 2f090a6d-532a-430f-aed9-fb570dbc2522
+ - Mesh
+ - Mesh
+ - false
+ - c141638f-f968-4458-8a65-656377164c14
+ - 1
+
+
+
+
+ -
+ 5808
+ 81
+ 28
+ 80
+
+ -
+ 5822
+ 121
+
+
+
+
+
+
+
+ - 1
+ - Mesh vertices
+ - fd84477c-fe0f-4f05-9828-1aa854d22749
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 81
+ 41
+ 20
+
+ -
+ 5880.5
+ 91
+
+
+
+
+
+
+
+ - 1
+ - Mesh faces
+ - 3a3c7504-af86-4050-b2f7-9453abe99352
+ - Faces
+ - Faces
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 101
+ 41
+ 20
+
+ -
+ 5880.5
+ 111
+
+
+
+
+
+
+
+ - 1
+ - Mesh vertex colours
+ - 67e990b8-5886-40d8-8adb-301eb5ef3b69
+ - Colours
+ - Colours
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 121
+ 41
+ 20
+
+ -
+ 5880.5
+ 131
+
+
+
+
+
+
+
+ - 1
+ - Mesh normals
+ - e9911c19-aa82-4eb7-972b-742c9fa9c1b9
+ - Normals
+ - Normals
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 141
+ 41
+ 20
+
+ -
+ 5880.5
+ 151
+
+
+
+
+
+
+
+
+
+
+
+ - c77a8b3b-c569-4d81-9b59-1c27299a1c45
+ - 4Point Surface
+
+
+
+
+ - Create a surface connecting three or four corner points.
+ - true
+ - 140a7fa3-efbf-45de-93a9-9b001402de09
+ - 4Point Surface
+ - 4Point Surface
+
+
+
+
+ -
+ 5867
+ -111
+ 111
+ 84
+
+ -
+ 5926
+ -69
+
+
+
+
+
+ - First corner
+ - b447b76a-5b18-454c-ac4e-5f4de363bb13
+ - Corner A
+ - Corner A
+ - false
+ - 64d36865-d3f1-4c4c-bf2c-20e12ebb979a
+ - 1
+
+
+
+
+ -
+ 5869
+ -109
+ 45
+ 20
+
+ -
+ 5891.5
+ -99
+
+
+
+
+
+
+
+ - Second corner
+ - 9e6cf3c2-1f54-4b56-9f99-bf9d38cc819e
+ - Corner B
+ - Corner B
+ - false
+ - 74af7f8c-4972-48f4-a54f-946189bf5d2a
+ - 1
+
+
+
+
+ -
+ 5869
+ -89
+ 45
+ 20
+
+ -
+ 5891.5
+ -79
+
+
+
+
+
+
+
+ - Third corner
+ - 2b9d2811-1f8c-4f07-8019-be84c8e99f79
+ - Corner C
+ - Corner C
+ - false
+ - bd2d42c9-bdb0-40f4-aa7d-42fa0dcb40a7
+ - 1
+
+
+
+
+ -
+ 5869
+ -69
+ 45
+ 20
+
+ -
+ 5891.5
+ -59
+
+
+
+
+
+
+
+ - Optional fourth corner
+ - b5e907b3-657a-4177-99cc-a56aa1218a24
+ - Corner D
+ - Corner D
+ - true
+ - 4ed9e364-dab6-4d93-b744-7a68d38ae5ba
+ - 1
+
+
+
+
+ -
+ 5869
+ -49
+ 45
+ 20
+
+ -
+ 5891.5
+ -39
+
+
+
+
+
+
+
+ - Resulting surface
+ - f7eaf9e9-2e8f-495f-8820-1e62755dcf19
+ - Surface
+ - Surface
+ - false
+ - 0
+
+
+
+
+ -
+ 5938
+ -109
+ 38
+ 80
+
+ -
+ 5957
+ -69
+
+
+
+
+
+
+
+
+
+
+
+ - 74cad441-2264-45fe-a57d-85034751208a
+ - Explode Tree
+
+
+
+
+ - Extract all the branches from a tree
+ - true
+ - dab07f0c-7563-4700-9044-e120c62bc889
+ - Explode Tree
+ - Explode Tree
+
+
+
+
+ -
+ 6127
+ -46
+ 86
+ 84
+
+ -
+ 6166
+ -4
+
+
+
+
+
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to explode
+ - 2225f176-6c63-4a2f-a067-8a199b82ea77
+ - Data
+ - Data
+ - true
+ - bbe30c4e-befa-4eeb-ad0f-e836224c20ae
+ - 1
+
+
+
+
+ -
+ 6129
+ -44
+ 25
+ 80
+
+ -
+ 6141.5
+ -4
+
+
+
+
+
+
+
+ - 2
+ - All data inside the branch at index: 0
+ - 64d36865-d3f1-4c4c-bf2c-20e12ebb979a
+ - false
+ - Branch 0
+ - {0;0;0}
+ - false
+ - 0
+
+
+
+
+ -
+ 6178
+ -44
+ 33
+ 20
+
+ -
+ 6194.5
+ -34
+
+
+
+
+
+
+
+ - 2
+ - All data inside the branch at index: 1
+ - 74af7f8c-4972-48f4-a54f-946189bf5d2a
+ - false
+ - Branch 1
+ - {0;0;1}
+ - false
+ - 0
+
+
+
+
+ -
+ 6178
+ -24
+ 33
+ 20
+
+ -
+ 6194.5
+ -14
+
+
+
+
+
+
+
+ - 2
+ - All data inside the branch at index: 2
+ - bd2d42c9-bdb0-40f4-aa7d-42fa0dcb40a7
+ - false
+ - Branch 2
+ - {0;0;2}
+ - false
+ - 0
+
+
+
+
+ -
+ 6178
+ -4
+ 33
+ 20
+
+ -
+ 6194.5
+ 6
+
+
+
+
+
+
+
+ - 2
+ - All data inside the branch at index: 3
+ - 4ed9e364-dab6-4d93-b744-7a68d38ae5ba
+ - false
+ - Branch 3
+ - {0;0;3}
+ - false
+ - 0
+
+
+
+
+ -
+ 6178
+ 16
+ 33
+ 20
+
+ -
+ 6194.5
+ 26
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 41aa4112-9c9b-42f4-847e-503b9d90e4c7
+ - Flip Matrix
+
+
+
+
+ - Flip a matrix-like data tree by swapping rows and columns.
+ - true
+ - 5c3315c2-4ed7-49d9-ba94-5932f5ed6d48
+ - Flip Matrix
+ - Flip Matrix
+
+
+
+
+ -
+ 6078
+ -109
+ 78
+ 28
+
+ -
+ 6117
+ -95
+
+
+
+
+
+ - 2
+ - Data matrix to flip
+ - 554838b8-d1dc-4b9f-af0a-b2ea3db31d70
+ - Data
+ - Data
+ - false
+ - 2b256b17-932e-4163-af83-a68fa4ea869e
+ - 1
+
+
+
+
+ -
+ 6080
+ -107
+ 25
+ 24
+
+ -
+ 6092.5
+ -95
+
+
+
+
+
+
+
+ - 2
+ - Flipped data matrix
+ - bbe30c4e-befa-4eeb-ad0f-e836224c20ae
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 6129
+ -107
+ 25
+ 24
+
+ -
+ 6141.5
+ -95
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2b256b17-932e-4163-af83-a68fa4ea869e
+ - Relay
+
+ - false
+ - 49f99a2a-f14a-4075-a6dc-0a135d69b67f
+ - 1
+
+
+
+
+ -
+ 6042
+ 21
+ 40
+ 16
+
+ -
+ 6062
+ 29
+
+
+
+
+
+
+
+
+
+ - 902289da-28dc-454b-98d4-b8f8aa234516
+ - Pull Point
+
+
+
+
+ - true
+ - Pull a point to a variety of geometry.
+ - true
+ - b738ccb5-41d6-4db3-b30f-cdc99e0c7518
+ - Pull Point
+ - Pull Point
+
+
+
+
+ -
+ 5816
+ 7
+ 139
+ 44
+
+ -
+ 5878
+ 29
+
+
+
+
+
+ - Point to search from
+ - aa392bc1-0d76-4dad-912d-4d464e583d3c
+ - Point
+ - Point
+ - false
+ - fd84477c-fe0f-4f05-9828-1aa854d22749
+ - 1
+
+
+
+
+ -
+ 5818
+ 9
+ 48
+ 20
+
+ -
+ 5842
+ 19
+
+
+
+
+
+
+
+ - 1
+ - Geometry that pulls
+ - 2d09e222-291d-45ad-8871-6ef246d242ce
+ - Geometry
+ - Geometry
+ - false
+ - fef8f6d8-5af6-4935-8408-78241f7e4d7b
+ - 1
+
+
+
+
+ -
+ 5818
+ 29
+ 48
+ 20
+
+ -
+ 5842
+ 39
+
+
+
+
+
+
+
+ - Point on [G] closest to [P]
+ - 49f99a2a-f14a-4075-a6dc-0a135d69b67f
+ - Closest Point
+ - Closest Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5890
+ 9
+ 63
+ 20
+
+ -
+ 5921.5
+ 19
+
+
+
+
+
+
+
+ - Distance between [P] and its projection onto [G]
+ - 5dcca0d6-b970-4c6f-a28c-7955010326e0
+ - Distance
+ - Distance
+ - false
+ - 0
+
+
+
+
+ -
+ 5890
+ 29
+ 63
+ 20
+
+ -
+ 5921.5
+ 39
+
+
+
+
+
+
+
+
+
+
+
+ - 4f8984c4-7c7a-4d69-b0a2-183cbb330d20
+ - Plane
+
+
+
+
+ - Contains a collection of three-dimensional axis-systems
+ - true
+ - 526a380a-258b-41a2-b8ed-a01e73585fda
+ - Plane
+ - Plane
+ - false
+ - f7eaf9e9-2e8f-495f-8820-1e62755dcf19
+ - 1
+
+
+
+
+ -
+ 6017
+ -190
+ 50
+ 24
+
+ -
+ 6042
+ -178
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - dc0a229b-2ac1-4c88-9aee-6746b5f562db
+ - Relay
+
+ - false
+ - 3b58b110-1934-4c21-a53c-1748205444ac
+ - f0028a92-2a63-4249-a32a-9cd5a1743c39
+ - a4d48d00-c057-4f44-939f-4eaac307020f
+ - da78b85b-9b6a-4d91-b5f2-fc3fd6d24230
+ - 4
+
+
+
+
+ -
+ 5614
+ 530
+ 40
+ 16
+
+ -
+ 5634
+ 538
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 83c37836-d997-40ad-b3dd-9f1c8098cd80
+ - Relay
+
+ - false
+ - 99a26741-3c3d-4624-b950-f1e8394a24e2
+ - 1
+
+
+
+
+ -
+ 5771
+ 305
+ 40
+ 16
+
+ -
+ 5791
+ 313
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 63102b19-cbb6-4d16-b5eb-33dad90e6ac3
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5939
+ 211
+ 201
+ 64
+
+ -
+ 6076
+ 243
+
+
+
+
+
+ - Base geometry
+ - 77e794aa-d313-4010-bbd0-243be7e4b928
+ - Geometry
+ - Geometry
+ - true
+ - a2cbc265-1792-4819-901f-64d28abc1a54
+ - 1
+
+
+
+
+ -
+ 5941
+ 213
+ 123
+ 20
+
+ -
+ 6002.5
+ 223
+
+
+
+
+
+
+
+ - Center of scaling
+ - 3b83d96d-293b-4bd4-af58-a5e5663f4bc1
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5941
+ 233
+ 123
+ 20
+
+ -
+ 6002.5
+ 243
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - fc6f9fae-a589-40e7-a296-3c440afcc328
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 5941
+ 253
+ 123
+ 20
+
+ -
+ 6002.5
+ 263
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 65536
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 4cb9ae17-9c50-4f01-abc2-ce86d43083b0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6088
+ 213
+ 50
+ 30
+
+ -
+ 6113
+ 228
+
+
+
+
+
+
+
+ - Transformation data
+ - 5c1b57dc-5246-4677-9c80-84b5adc77728
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6088
+ 243
+ 50
+ 30
+
+ -
+ 6113
+ 258
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - df4fe4a7-fb78-4dd9-9804-c9b04275594b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5603
+ 326
+ 217
+ 64
+
+ -
+ 5756
+ 358
+
+
+
+
+
+ - Base geometry
+ - 4ceb9468-d213-45d3-ba6b-459dcc211422
+ - Geometry
+ - Geometry
+ - true
+ - c3015044-b271-488b-bb89-63d99aa97c9b
+ - 1
+
+
+
+
+ -
+ 5605
+ 328
+ 139
+ 20
+
+ -
+ 5682.5
+ 338
+
+
+
+
+
+
+
+ - Center of scaling
+ - 28dff7c4-4eca-439b-9bb7-a5abe2e62658
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5605
+ 348
+ 139
+ 20
+
+ -
+ 5682.5
+ 358
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 329a191e-6668-4ba8-a670-6ec4ce2d278b
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 5605
+ 368
+ 139
+ 20
+
+ -
+ 5682.5
+ 378
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 65536
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 99a26741-3c3d-4624-b950-f1e8394a24e2
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5768
+ 328
+ 50
+ 30
+
+ -
+ 5793
+ 343
+
+
+
+
+
+
+
+ - Transformation data
+ - 03ba88d6-8c59-4ac2-89f4-2a1ef5a5552e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5768
+ 358
+ 50
+ 30
+
+ -
+ 5793
+ 373
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - d7379ddb-3dba-4a3f-b4b6-cf894a58c7fc
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6303
+ -181
+ 201
+ 64
+
+ -
+ 6440
+ -149
+
+
+
+
+
+ - Base geometry
+ - 374227ec-9115-4eba-9fdc-106c64ddf590
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - a2cbc265-1792-4819-901f-64d28abc1a54
+ - 1
+
+
+
+
+ -
+ 6305
+ -179
+ 123
+ 20
+
+ -
+ 6366.5
+ -169
+
+
+
+
+
+
+
+ - Center of scaling
+ - f36ab5af-6f5d-4259-95db-e5fb3d9fbfb8
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6305
+ -159
+ 123
+ 20
+
+ -
+ 6366.5
+ -149
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 1af924a7-d0f7-4aa7-8b5c-b91467042342
+ - true
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 6305
+ -139
+ 123
+ 20
+
+ -
+ 6366.5
+ -129
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 65536
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c6bade99-c83e-413c-befb-c3d58ce01183
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6452
+ -179
+ 50
+ 30
+
+ -
+ 6477
+ -164
+
+
+
+
+
+
+
+ - Transformation data
+ - 235011f7-6dc8-48a1-9af2-0ea3ae056c88
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6452
+ -149
+ 50
+ 30
+
+ -
+ 6477
+ -134
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 44ef72d6-e49a-424b-b2c8-da31a2f961ff
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6517
+ 24
+ 217
+ 64
+
+ -
+ 6670
+ 56
+
+
+
+
+
+ - Base geometry
+ - daea148d-68b4-4f0b-941f-0cb811ebafcd
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 1867f002-ba43-453d-9003-2fa07903686d
+ - 1
+
+
+
+
+ -
+ 6519
+ 26
+ 139
+ 20
+
+ -
+ 6596.5
+ 36
+
+
+
+
+
+
+
+ - Center of scaling
+ - f92784a3-424b-42d2-96df-553ffe9f35ce
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6519
+ 46
+ 139
+ 20
+
+ -
+ 6596.5
+ 56
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - f2729fd9-bd1e-45ec-b701-00b183194f85
+ - 1/X
+ - true
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 6519
+ 66
+ 139
+ 20
+
+ -
+ 6596.5
+ 76
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 65536
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 1df4d207-6be9-481c-bf38-6e7f80376999
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6682
+ 26
+ 50
+ 30
+
+ -
+ 6707
+ 41
+
+
+
+
+
+
+
+ - Transformation data
+ - d35894e1-d039-4e23-94f6-cba23f5c9f4f
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6682
+ 56
+ 50
+ 30
+
+ -
+ 6707
+ 71
+
+
+
+
+
+
+
+
+
+
+
+ - 14df22af-d119-4f69-a536-34a30ddb175e
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Output
+
+
+
+
+ - Output node for shader graph
+ - true
+ - 536c2163-e3a7-48e1-9730-f12fdd82a0af
+ - Output
+ - Output
+
+
+
+
+ -
+ 5793
+ 1508
+ 189
+ 64
+
+ -
+ 5946
+ 1540
+
+
+
+
+
+ - Surface
+ - 9baed2f1-d82b-4dec-a6e4-8afa4eb39eaa
+ - Surface
+ - Surface
+ - false
+ - 7c6d8f1c-4c4f-461e-94f3-2c74172646e8
+ - 1
+
+
+
+
+ -
+ 5795
+ 1510
+ 139
+ 20
+
+ -
+ 5864.5
+ 1520
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;128;128;128
+
+
+
+
+
+
+
+
+
+
+
+ - Volume
+ - d64aae33-94da-415c-b1d6-118f242ddc3f
+ - Volume
+ - Volume
+ - false
+ - 0
+
+
+
+
+ -
+ 5795
+ 1530
+ 139
+ 20
+
+ -
+ 5864.5
+ 1540
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Displacement
+ - 22aec640-69e3-4366-b33d-ac5ac7cf8276
+ - Displacement
+ - Displacement
+ - false
+ - 0
+
+
+
+
+ -
+ 5795
+ 1550
+ 139
+ 20
+
+ -
+ 5864.5
+ 1560
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - tree as xml
+ - 93c680ea-e472-41d5-8423-6b7bde478543
+ - Xml
+ - Xml
+ - false
+ - 0
+
+
+
+
+ -
+ 5958
+ 1510
+ 22
+ 60
+
+ -
+ 5969
+ 1540
+
+
+
+
+
+
+
+
+
+
+
+ - e79bd4ac-1aa0-450d-aa4a-495cfeb8cb13
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Diffuse BSDF
+
+
+
+
+ - Diffuse BSDF node for shader graph
+ - true
+ - 6c113c08-0dc4-4c5a-9d9c-00660025f8f2
+ - Diffuse BSDF
+ - Diffuse BSDF
+
+
+
+
+ -
+ 5563
+ 1543
+ 185
+ 64
+
+ -
+ 5705
+ 1575
+
+
+
+
+
+ - Color
+ - f433b984-df4c-4a47-b539-7af7de35aca8
+ - Color
+ - Color
+ - false
+ - 02a05b24-4806-4377-a23b-9f50202cd909
+ - 1
+
+
+
+
+ -
+ 5565
+ 1545
+ 128
+ 20
+
+ -
+ 5629
+ 1555
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;255;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Roughness
+ - d43fb00d-754f-420d-b1fd-07d3d2ab2ffc
+ - Roughness
+ - Roughness
+ - false
+ - 0
+
+
+
+
+ -
+ 5565
+ 1565
+ 128
+ 20
+
+ -
+ 5629
+ 1575
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Normal
+ - 31eb9cd1-4589-4608-98c9-9330a3d575e6
+ - Normal
+ - Normal
+ - false
+ - 0
+
+
+
+
+ -
+ 5565
+ 1585
+ 128
+ 20
+
+ -
+ 5629
+ 1595
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - BSDF
+ - 3d378a36-7867-44df-991c-370080dbdbd1
+ - BSDF
+ - BSDF
+ - false
+ - 0
+
+
+
+
+ -
+ 5717
+ 1545
+ 29
+ 60
+
+ -
+ 5731.5
+ 1575
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 39aef241-4876-469e-bb2a-78a4444c14e4
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 5708
+ 1400
+ 88
+ 44
+
+ -
+ 5782
+ 1422
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 6862c86d-8674-42d6-9f7a-bb0add461769
+ - Geometry
+ - Geometry
+ - false
+ - 0c1bdd4b-9e34-4b52-a1a4-9803ecfc728b
+ - 1
+
+
+
+
+ -
+ 5710
+ 1402
+ 60
+ 20
+
+ -
+ 5740
+ 1412
+
+
+
+
+
+
+
+ - The material override
+ - 6ffb44b2-547a-48ad-8d36-efb6a6c18c3d
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 5710
+ 1422
+ 60
+ 20
+
+ -
+ 5740
+ 1432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;255;105;180
+
+ -
+ 255;0;0;0
+
+ - 98940742-2aaf-4e00-8c9c-f6a11d81aa62
+ - <material auto-delete="false" reference="false" hidden="false" tags="" notes="" instance-name="Cycles Xml" instance-id="98940742-2AAF-4E00-8C9C-F6A11D81AA62" type-id="8B544B3E-D86F-4BCD-8494-FB660CF15E1C" plug-in-id="9BC28E9E-7A6C-4B8F-A0C6-3D05E02D1B97" render-engine-id="99999999-9999-9999-9999-999999999999" type-name="8b544b3e-d86f-4bcd-8494-fb660cf15e1c"><parameters>
+ <automatic-dynamic-field-meta-data type="string"><xml/></automatic-dynamic-field-meta-data>
+ <xmlcode type="string"><emission name="emission_bsdf200" color="1 1 1 1" strength="1" /> <connect to="output surface" from="emission_bsdf200 emission" /> <!-- var shader = new Shader(ccl.Shader.ShaderType.Material);var emission_bsdf200 = new EmissionNode("emission_bsdf"); emission_bsdf200.ins.Color.Value = new ccl.float4(1f, 1f, 1f, 1f); emission_bsdf200.ins.Strength.Value = 1f; shader.AddNode(emission_bsdf200); emission_bsdf200.outs.Emission.Connect(output.ins.Surface); --></xmlcode>
+</parameters>
+<simulation>
+ <ambient type="color">0,0,0,1</ambient>
+ <diffuse type="color">1,0.411764711141586,0.705882370471954,1</diffuse>
+ <emission type="color">0,0,0,1</emission>
+ <specular type="color">1,1,1,1</specular>
+ <reflection type="color">1,1,1,1</reflection>
+ <shine type="double">0</shine>
+ <transparency type="double">0</transparency>
+ <reflectivity type="double">0</reflectivity>
+ <ior type="double">1</ior>
+ <fresnel-enabled type="bool">false</fresnel-enabled>
+ <polish-amount type="double">1</polish-amount>
+ <clarity-amount type="double">1</clarity-amount>
+ <transparent type="color">1,1,1,1</transparent>
+ <is-physically-based type="bool">false</is-physically-based>
+</simulation>
+</material>
+
+ - 0
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 60e7defa-8b21-4ee1-99aa-a9223d6134ff
+ - Mesh Brep
+
+
+
+
+ - Create a mesh that approximates Brep geometry
+ - true
+ - e19d2997-97a1-4f9c-a2f4-8c76b132cf89
+ - Mesh Brep
+ - Mesh Brep
+
+
+
+
+ -
+ 5114
+ 1746
+ 243
+ 44
+
+ -
+ 5315
+ 1768
+
+
+
+
+
+ - Brep geometry
+ - 5acd35d7-7cb7-4b11-9649-42f4756dab81
+ - Brep
+ - Brep
+ - false
+ - b2e8ac92-d227-488f-9a7d-6fc35ad071e2
+ - 1
+
+
+
+
+ -
+ 5116
+ 1748
+ 187
+ 20
+
+ -
+ 5209.5
+ 1758
+
+
+
+
+
+
+
+ - Settings to be used by meshing algorithm
+ - 10202ec6-28b5-4036-bfef-f072e99a6044
+ - Settings
+ - Settings
+ - false
+ - 0
+
+
+
+
+ -
+ 5116
+ 1768
+ 187
+ 20
+
+ -
+ 5209.5
+ 1778
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+ - 16
+ - false
+ - 0
+ - 0.0001
+ - 0
+ - true
+ - 0
+ - 0.65
+ - true
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Mesh approximation
+ - 3d8a3b34-5f9f-4136-9b4a-0132f9f9f022
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 5327
+ 1748
+ 28
+ 40
+
+ -
+ 5341
+ 1768
+
+
+
+
+
+
+
+
+
+
+
+ - 12bb406c-41bc-4c8a-9b96-6924df61b6d6
+ - d2580c41-5c48-4997-87c5-b6333b5e21d7
+ - Mesh Rebuild Normals
+
+
+
+
+ - Rebuilds Mesh Normals
+ - true
+ - 3ad178ee-10ba-47d7-a412-33034a385333
+ - Mesh Rebuild Normals
+ - Mesh Rebuild Normals
+
+
+
+
+ -
+ 5287
+ 1690
+ 84
+ 28
+
+ -
+ 5329
+ 1704
+
+
+
+
+
+ - The Input Mesh
+ - 780c1a5b-7483-4d30-8b3b-10c0fa59fe92
+ - Mesh
+ - Mesh
+ - false
+ - 3d8a3b34-5f9f-4136-9b4a-0132f9f9f022
+ - 1
+
+
+
+
+ -
+ 5289
+ 1692
+ 28
+ 24
+
+ -
+ 5303
+ 1704
+
+
+
+
+
+
+
+ - The Mesh with Rebuilt Normals
+ - 0c1bdd4b-9e34-4b52-a1a4-9803ecfc728b
+ - Mesh
+ - Mesh
+ - false
+ - 0
+
+
+
+
+ -
+ 5341
+ 1692
+ 28
+ 24
+
+ -
+ 5355
+ 1704
+
+
+
+
+
+
+
+
+
+
+
+ - 339c0ee1-cf11-444f-8e10-65c9150ea755
+ - Colour Picker
+
+
+
+
+ - Provides a colour picker object
+ - b279421e-2553-4d16-b9d4-404d37f54979
+ - Colour Picker
+ - Colour Picker
+ - false
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+ -
+ 5390.678
+ 1749.451
+ 180
+ 310
+
+ - 2
+
+
+
+
+
+
+
+
+ - aa365407-8e36-4400-b1a7-46cde5b21de6
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Emission BSDF
+
+
+
+
+ - Emission BSDF node for shader graph
+ - be94942f-a6b4-4427-ae18-a5a577277398
+ - Emission BSDF
+ - Emission BSDF
+
+
+
+
+ -
+ 6041
+ 1533
+ 131
+ 44
+
+ -
+ 6114
+ 1555
+
+
+
+
+
+ - Color
+ - 787252f3-49c5-4d72-b615-363d5c453290
+ - Color
+ - Color
+ - false
+ - 22d9e85c-cc9d-4640-9780-11ca168dc2d5
+ - 1
+
+
+
+
+ -
+ 6043
+ 1535
+ 59
+ 20
+
+ -
+ 6072.5
+ 1545
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;128;128;128
+
+
+
+
+
+
+
+
+
+
+
+ - Strength
+ - 6701893f-4eca-4e8b-87e6-b464cf6feb21
+ - Strength
+ - Strength
+ - false
+ - 0
+
+
+
+
+ -
+ 6043
+ 1555
+ 59
+ 20
+
+ -
+ 6072.5
+ 1565
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Emission
+ - 7c6d8f1c-4c4f-461e-94f3-2c74172646e8
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 6126
+ 1535
+ 44
+ 40
+
+ -
+ 6148
+ 1555
+
+
+
+
+
+
+
+
+
+
+
+ - 2aeb616a-649f-4fc9-afcd-c9f2087a5955
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Wireframe
+
+
+
+
+ - Wireframe shader
+ - a6528aae-6ebe-4d13-b422-999f66ef7d12
+ - Wireframe
+ - Wireframe
+ - false
+
+
+
+
+ -
+ 5602
+ 1652
+ 87
+ 28
+
+ -
+ 5655
+ 1666
+
+
+
+
+
+ - Size
+ - eee71066-4952-4080-a697-93e6e2af69ef
+ - Size
+ - Size
+ - false
+ - 0
+
+
+
+
+ -
+ 5604
+ 1654
+ 39
+ 24
+
+ -
+ 5623.5
+ 1666
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Fac
+ - 5bf2f0f0-d70a-46e1-bd95-8b15058e7bbf
+ - Fac
+ - Fac
+ - false
+ - 0
+
+
+
+
+ -
+ 5667
+ 1654
+ 20
+ 24
+
+ -
+ 5677
+ 1666
+
+
+
+
+
+
+
+
+
+
+
+ - b9cca29d-2c77-42cd-a99d-70eb880c02ac
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Fresnel
+
+
+
+
+ - Fresnel
+ - 4b7775ac-d136-4f75-a33b-7ecedb7bdbc4
+ - Fresnel
+ - Fresnel
+
+
+
+
+ -
+ 5738
+ 1649
+ 159
+ 44
+
+ -
+ 5863
+ 1671
+
+
+
+
+
+ - IOR
+ - 23d2e5a5-12ec-4dae-bdcb-7ba60210814d
+ - IOR
+ - IOR
+ - false
+ - 0
+
+
+
+
+ -
+ 5740
+ 1651
+ 111
+ 20
+
+ -
+ 5795.5
+ 1661
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Normal
+ - a385e3eb-8a58-4245-b3fa-90431c61edb0
+ - Normal
+ - Normal
+ - false
+ - 0
+
+
+
+
+ -
+ 5740
+ 1671
+ 111
+ 20
+
+ -
+ 5795.5
+ 1681
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Fac
+ - 0ac388bd-9008-4974-8129-0aeb9208e00f
+ - Fac
+ - Fac
+ - false
+ - 0
+
+
+
+
+ -
+ 5875
+ 1651
+ 20
+ 40
+
+ -
+ 5885
+ 1671
+
+
+
+
+
+
+
+
+
+
+
+ - 1268d35e-8912-45c1-9642-0b29ec4f1ff9
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Geometry
+
+
+
+
+ - Geometry info for the point being sampled
+ - 885180b7-d18e-4185-88a4-a535cfdd8035
+ - Geometry
+ - Geometry
+
+
+
+
+ -
+ 5747
+ 1748
+ 88
+ 164
+
+ -
+ 5761
+ 1830
+
+
+
+
+
+ - Position
+ - 343e95b0-006c-46d8-8c51-b0db3d4c89d6
+ - Position
+ - Position
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1750
+ 60
+ 20
+
+ -
+ 5803
+ 1760
+
+
+
+
+
+
+
+ - Normal
+ - c8dc6d4f-b1b5-4f49-811a-c2bbec95fc16
+ - Normal
+ - Normal
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1770
+ 60
+ 20
+
+ -
+ 5803
+ 1780
+
+
+
+
+
+
+
+ - Tangent
+ - bffa0c5f-4586-4586-b590-a481b599b8c0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1790
+ 60
+ 20
+
+ -
+ 5803
+ 1800
+
+
+
+
+
+
+
+ - True Normal
+ - dbe75966-cf55-4dd8-b0fd-e6e23dea0b14
+ - True Normal
+ - True Normal
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1810
+ 60
+ 20
+
+ -
+ 5803
+ 1820
+
+
+
+
+
+
+
+ - Incoming
+ - 74430691-7599-435c-8ffd-9eaadfa07bfc
+ - Incoming
+ - Incoming
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1830
+ 60
+ 20
+
+ -
+ 5803
+ 1840
+
+
+
+
+
+
+
+ - Parametric
+ - 3ab367e2-c29c-4476-a63c-c0cf547788e3
+ - Parametric
+ - Parametric
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1850
+ 60
+ 20
+
+ -
+ 5803
+ 1860
+
+
+
+
+
+
+
+ - Backfacing
+ - 996eaf15-916f-4913-b3c7-288f97e911b2
+ - Backfacing
+ - Backfacing
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1870
+ 60
+ 20
+
+ -
+ 5803
+ 1880
+
+
+
+
+
+
+
+ - Pointiness
+ - 6ecc08a2-6a42-4c29-97b9-b52ae23f1971
+ - Pointiness
+ - Pointiness
+ - false
+ - 0
+
+
+
+
+ -
+ 5773
+ 1890
+ 60
+ 20
+
+ -
+ 5803
+ 1900
+
+
+
+
+
+
+
+
+
+
+
+ - f63a2c72-5f84-4e58-a80c-73a5fb72e145
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Dot Product
+
+
+
+
+ - Dot Product
+ - aad5fdfc-1cdc-434a-a3bf-d05874d0fa04
+ - Dot Product
+ - Dot Product
+
+
+
+
+ -
+ 5960
+ 1780
+ 99
+ 44
+
+ -
+ 6012
+ 1802
+
+
+
+
+
+ - Vector1
+ - 75b53afb-82fe-4281-abd8-5c5781b35307
+ - Vector1
+ - Vector1
+ - false
+ - c8dc6d4f-b1b5-4f49-811a-c2bbec95fc16
+ - 1
+
+
+
+
+ -
+ 5962
+ 1782
+ 38
+ 20
+
+ -
+ 5981
+ 1792
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Vector2
+ - 408e429b-25e7-417d-8993-61783a59341e
+ - Vector2
+ - Vector2
+ - false
+ - 74430691-7599-435c-8ffd-9eaadfa07bfc
+ - 1
+
+
+
+
+ -
+ 5962
+ 1802
+ 38
+ 20
+
+ -
+ 5981
+ 1812
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - c02f6d24-eacf-42b9-b78f-274816861903
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6024
+ 1782
+ 33
+ 20
+
+ -
+ 6040.5
+ 1792
+
+
+
+
+
+
+
+ - Vector
+ - 41d8ed32-6cae-4076-ae39-b7899258f998
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 6024
+ 1802
+ 33
+ 20
+
+ -
+ 6040.5
+ 1812
+
+
+
+
+
+
+
+
+
+
+
+ - c2b99ede-3050-483d-ab90-35a1548d2d22
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Subtract
+
+
+
+
+ - Subtract
+ - af32a398-3147-4ed4-b84c-aeec6cf42fa0
+ - Subtract
+ - Subtract
+ - false
+
+
+
+
+ -
+ 5922
+ 1647
+ 108
+ 44
+
+ -
+ 5987
+ 1669
+
+
+
+
+
+ - Value1
+ - 9fd3551f-7d20-4d2f-98ce-7832d58574b4
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 5924
+ 1649
+ 51
+ 20
+
+ -
+ 5949.5
+ 1659
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - c7dfbb94-7b95-450f-a2c7-536cab34d8da
+ - Value2
+ - Value2
+ - false
+ - c02f6d24-eacf-42b9-b78f-274816861903
+ - 1
+
+
+
+
+ -
+ 5924
+ 1669
+ 51
+ 20
+
+ -
+ 5949.5
+ 1679
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - d4c3ec65-1815-4d9d-918c-b98325ab1d69
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 5999
+ 1649
+ 29
+ 40
+
+ -
+ 6013.5
+ 1669
+
+
+
+
+
+
+
+
+
+
+
+ - e229219e-9a14-48c4-a36d-75152b81471a
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Combine HSV
+
+
+
+
+ - Combine three float values into an HSV color
+ - 7463232b-d55f-4c70-9258-f2a6c30acbac
+ - Combine HSV
+ - Combine HSV
+
+
+
+
+ -
+ 6077
+ 1640
+ 83
+ 64
+
+ -
+ 6119
+ 1672
+
+
+
+
+
+ - H
+ - 0da2be51-7b55-4aec-a49f-4cc3f848500e
+ - H
+ - H
+ - false
+ - 0
+
+
+
+
+ -
+ 6079
+ 1642
+ 28
+ 20
+
+ -
+ 6093
+ 1652
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - S
+ - d0e99a25-18b9-4031-8b0f-e789a2878725
+ - S
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 6079
+ 1662
+ 28
+ 20
+
+ -
+ 6093
+ 1672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - V
+ - 4e101a47-068f-49a6-9d11-4f9cc7bd6f9e
+ - V
+ - V
+ - false
+ - 3253c72f-dd51-4cb8-acbe-ca38c118c946
+ - 1
+
+
+
+
+ -
+ 6079
+ 1682
+ 28
+ 20
+
+ -
+ 6093
+ 1692
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Color
+ - 051a0b63-1442-46c7-9b94-d972e10a56e7
+ - Color
+ - Color
+ - false
+ - 0
+
+
+
+
+ -
+ 6131
+ 1642
+ 27
+ 60
+
+ -
+ 6144.5
+ 1672
+
+
+
+
+
+
+
+
+
+
+
+ - b0972558-a3d6-441f-8b8a-4f557872ad9f
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Normalize
+
+
+
+
+ - Normalize
+ - 400a390c-3741-42e5-ae7d-f246f01f7e97
+ - Normalize
+ - Normalize
+
+
+
+
+ -
+ 5930
+ 1848
+ 174
+ 44
+
+ -
+ 6057
+ 1870
+
+
+
+
+
+ - Vector1
+ - 202949ad-5e66-4de1-b1ba-e11e6cbf59f8
+ - Vector1
+ - Vector1
+ - false
+ - c8dc6d4f-b1b5-4f49-811a-c2bbec95fc16
+ - 1
+
+
+
+
+ -
+ 5932
+ 1850
+ 113
+ 20
+
+ -
+ 5988.5
+ 1860
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Vector2
+ - 15328e3d-91e5-4ce2-85b2-a9103d353251
+ - Vector2
+ - Vector2
+ - false
+ - 0
+
+
+
+
+ -
+ 5932
+ 1870
+ 113
+ 20
+
+ -
+ 5988.5
+ 1880
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - e7942714-e366-4dc1-9eb1-1243ef7042a5
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6069
+ 1850
+ 33
+ 20
+
+ -
+ 6085.5
+ 1860
+
+
+
+
+
+
+
+ - Vector
+ - 5af088d4-a06f-46d3-b999-dee31a1a33cb
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 6069
+ 1870
+ 33
+ 20
+
+ -
+ 6085.5
+ 1880
+
+
+
+
+
+
+
+
+
+
+
+ - b0972558-a3d6-441f-8b8a-4f557872ad9f
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Normalize
+
+
+
+
+ - Normalize
+ - 96411eea-25f2-4408-8013-fa87894818f5
+ - Normalize
+ - Normalize
+
+
+
+
+ -
+ 5950
+ 1908
+ 174
+ 44
+
+ -
+ 6077
+ 1930
+
+
+
+
+
+ - Vector1
+ - 22d4da13-a4c7-4514-8f17-0094c6cf7c5a
+ - Vector1
+ - Vector1
+ - false
+ - 74430691-7599-435c-8ffd-9eaadfa07bfc
+ - 1
+
+
+
+
+ -
+ 5952
+ 1910
+ 113
+ 20
+
+ -
+ 6008.5
+ 1920
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Vector2
+ - 71c3df6b-23be-4979-9834-6f323e84dd5e
+ - Vector2
+ - Vector2
+ - false
+ - 0
+
+
+
+
+ -
+ 5952
+ 1930
+ 113
+ 20
+
+ -
+ 6008.5
+ 1940
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 7005a3ec-2e6f-4799-b551-3ff40509fec5
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6089
+ 1910
+ 33
+ 20
+
+ -
+ 6105.5
+ 1920
+
+
+
+
+
+
+
+ - Vector
+ - 144d13b2-0af4-4eaa-9433-a72adec759c0
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 6089
+ 1930
+ 33
+ 20
+
+ -
+ 6105.5
+ 1940
+
+
+
+
+
+
+
+
+
+
+
+ - d78aa03c-713b-43b8-a478-7edfe75cf148
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Texture Coordinate
+
+
+
+
+ - Texture Coordinate for point being sampled
+ - ab720d64-8ea7-4ad7-84ac-26c16dd956e2
+ - Texture Coordinate
+ - Texture Coordinate
+
+
+
+
+ -
+ 5571
+ 1839
+ 161
+ 444
+
+ -
+ 5585
+ 2061
+
+
+
+
+
+ - Generated
+ - 67163df2-72a8-4b03-b706-24b5cef2d9ec
+ - Generated
+ - Generated
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1841
+ 133
+ 20
+
+ -
+ 5663.5
+ 1851
+
+
+
+
+
+
+
+ - Normal
+ - c93d31fa-2afc-4f4a-ac08-24993db98c9f
+ - Normal
+ - Normal
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1861
+ 133
+ 20
+
+ -
+ 5663.5
+ 1871
+
+
+
+
+
+
+
+ - UV
+ - 6f959048-7cab-4aec-8d4a-2ea9a9966a7b
+ - UV
+ - UV
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1881
+ 133
+ 20
+
+ -
+ 5663.5
+ 1891
+
+
+
+
+
+
+
+ - Object
+ - bc3918b5-fbd9-421d-bc02-0ff160ef9b9b
+ - Object
+ - Object
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1901
+ 133
+ 20
+
+ -
+ 5663.5
+ 1911
+
+
+
+
+
+
+
+ - Camera
+ - 38117092-4836-44fb-8184-ae36e113c1e6
+ - Camera
+ - Camera
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1921
+ 133
+ 20
+
+ -
+ 5663.5
+ 1931
+
+
+
+
+
+
+
+ - Window
+ - c034e0e0-28f7-4d5c-af5f-8e7e5d126243
+ - Window
+ - Window
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1941
+ 133
+ 20
+
+ -
+ 5663.5
+ 1951
+
+
+
+
+
+
+
+ - Reflection
+ - c29ff51a-7068-4e37-b6c7-01b1dbb699a9
+ - Reflection
+ - Reflection
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1961
+ 133
+ 20
+
+ -
+ 5663.5
+ 1971
+
+
+
+
+
+
+
+ - WcsBox
+ - 7e322de8-1f04-4080-a321-c7df12dedb37
+ - WcsBox
+ - WcsBox
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 1981
+ 133
+ 20
+
+ -
+ 5663.5
+ 1991
+
+
+
+
+
+
+
+ - EnvSpherical
+ - 73037561-c84a-4587-9257-e270d3223509
+ - EnvSpherical
+ - EnvSpherical
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2001
+ 133
+ 20
+
+ -
+ 5663.5
+ 2011
+
+
+
+
+
+
+
+ - EnvEmap
+ - 758e6067-8852-4680-8203-30814a099e75
+ - EnvEmap
+ - EnvEmap
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2021
+ 133
+ 20
+
+ -
+ 5663.5
+ 2031
+
+
+
+
+
+
+
+ - EnvBox
+ - 49c5f84f-5667-43ed-bb86-095e4463d053
+ - EnvBox
+ - EnvBox
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2041
+ 133
+ 20
+
+ -
+ 5663.5
+ 2051
+
+
+
+
+
+
+
+ - EnvLightProbe
+ - 26d16c3c-478c-46f2-9c08-d508a12f7a9d
+ - EnvLightProbe
+ - EnvLightProbe
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2061
+ 133
+ 20
+
+ -
+ 5663.5
+ 2071
+
+
+
+
+
+
+
+ - EnvCubemap
+ - 0da533b2-b169-4aa4-9ab0-a441c26cd684
+ - EnvCubemap
+ - EnvCubemap
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2081
+ 133
+ 20
+
+ -
+ 5663.5
+ 2091
+
+
+
+
+
+
+
+ - EnvCubemapVerticalCross
+ - a03156b3-fe16-48f7-82c6-b549012811c8
+ - EnvCubemapVerticalCross
+ - EnvCubemapVerticalCross
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2101
+ 133
+ 20
+
+ -
+ 5663.5
+ 2111
+
+
+
+
+
+
+
+ - EnvCubemapHorizontalCross
+ - 6c35a902-9520-47af-82de-3ed6bb4f9318
+ - EnvCubemapHorizontalCross
+ - EnvCubemapHorizontalCross
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2121
+ 133
+ 20
+
+ -
+ 5663.5
+ 2131
+
+
+
+
+
+
+
+ - EnvHemi
+ - 9059be6e-62a7-4a5d-a44d-0b4fa21fa418
+ - EnvHemi
+ - EnvHemi
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2141
+ 133
+ 20
+
+ -
+ 5663.5
+ 2151
+
+
+
+
+
+
+
+ - DecalUv
+ - ca34dd59-ed07-42ab-bf05-059af30ce4e2
+ - DecalUv
+ - DecalUv
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2161
+ 133
+ 20
+
+ -
+ 5663.5
+ 2171
+
+
+
+
+
+
+
+ - DecalPlanar
+ - 66a5e9c0-16cc-42fa-8258-2815036c8fa3
+ - DecalPlanar
+ - DecalPlanar
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2181
+ 133
+ 20
+
+ -
+ 5663.5
+ 2191
+
+
+
+
+
+
+
+ - DecalSpherical
+ - 705ca212-ab36-4953-90d1-06c941186b2b
+ - DecalSpherical
+ - DecalSpherical
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2201
+ 133
+ 20
+
+ -
+ 5663.5
+ 2211
+
+
+
+
+
+
+
+ - DecalCylindrical
+ - aee19c1e-cf3c-4f58-9005-6fa51efab837
+ - DecalCylindrical
+ - DecalCylindrical
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2221
+ 133
+ 20
+
+ -
+ 5663.5
+ 2231
+
+
+
+
+
+
+
+ - DecalForward
+ - 4d8d0d1a-9d3c-4664-bbb1-af801f20b076
+ - DecalForward
+ - DecalForward
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2241
+ 133
+ 20
+
+ -
+ 5663.5
+ 2251
+
+
+
+
+
+
+
+ - DecalUsage
+ - c27149b5-b9c7-4a5c-a012-42890f6affc9
+ - DecalUsage
+ - DecalUsage
+ - false
+ - 0
+
+
+
+
+ -
+ 5597
+ 2261
+ 133
+ 20
+
+ -
+ 5663.5
+ 2271
+
+
+
+
+
+
+
+
+
+
+
+ - 35c5f912-4d8b-4a37-ad5b-1e0384a45d7e
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Cross Product
+
+
+
+
+ - Cross Product
+ - 528e585e-2aef-4e2d-a0d1-97002b990750
+ - Cross Product
+ - Cross Product
+
+
+
+
+ -
+ 5953
+ 1729
+ 99
+ 44
+
+ -
+ 6005
+ 1751
+
+
+
+
+
+ - Vector1
+ - 632c80ab-41d7-45b6-9750-4eb5da20f84d
+ - Vector1
+ - Vector1
+ - false
+ - c8dc6d4f-b1b5-4f49-811a-c2bbec95fc16
+ - 1
+
+
+
+
+ -
+ 5955
+ 1731
+ 38
+ 20
+
+ -
+ 5974
+ 1741
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Vector2
+ - 677b71fa-7b31-46a4-a8c0-be2730e801f8
+ - Vector2
+ - Vector2
+ - false
+ - 74430691-7599-435c-8ffd-9eaadfa07bfc
+ - 1
+
+
+
+
+ -
+ 5955
+ 1751
+ 38
+ 20
+
+ -
+ 5974
+ 1761
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 9e1afdf4-f101-4cf0-b7f9-f85760f82eff
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 1731
+ 33
+ 20
+
+ -
+ 6033.5
+ 1741
+
+
+
+
+
+
+
+ - Vector
+ - f4ca8020-b5c2-4b5b-8753-9643aaf8a981
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 1751
+ 33
+ 20
+
+ -
+ 6033.5
+ 1761
+
+
+
+
+
+
+
+
+
+
+
+ - c2b99ede-3050-483d-ab90-35a1548d2d22
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Subtract
+
+
+
+
+ - Subtract
+ - 4bcb3aaa-2308-4bcd-a934-33e19afb9a78
+ - Subtract
+ - Subtract
+ - false
+
+
+
+
+ -
+ 6403
+ 1742
+ 108
+ 44
+
+ -
+ 6468
+ 1764
+
+
+
+
+
+ - Value1
+ - 04d2e967-4daa-4b94-b48d-e8971da20fef
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6405
+ 1744
+ 51
+ 20
+
+ -
+ 6430.5
+ 1754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - 38f449da-8966-4440-953d-cfec6487459f
+ - Value2
+ - Value2
+ - false
+ - 22d9e85c-cc9d-4640-9780-11ca168dc2d5
+ - 1
+
+
+
+
+ -
+ 6405
+ 1764
+ 51
+ 20
+
+ -
+ 6430.5
+ 1774
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - af6cf05a-be9c-4e1c-9a39-b5b1e7eb9fbf
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6480
+ 1744
+ 29
+ 40
+
+ -
+ 6494.5
+ 1764
+
+
+
+
+
+
+
+
+
+
+
+ - 5576ff9f-99f7-4611-aa42-dcc4b6c621ac
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Layer Weight
+
+
+
+
+ - Layer weight
+ - 767a7238-f76d-4d83-8497-132672ad59e2
+ - Layer Weight
+ - Layer Weight
+
+
+
+
+ -
+ 6086
+ 1766
+ 117
+ 44
+
+ -
+ 6153
+ 1788
+
+
+
+
+
+ - Blend
+ - ce80ee53-cb34-4dd1-9150-423e11bbd109
+ - Blend
+ - Blend
+ - false
+ - 0
+
+
+
+
+ -
+ 6088
+ 1768
+ 53
+ 20
+
+ -
+ 6114.5
+ 1778
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Normal
+ - dcedb2e7-59bc-47c9-9815-b9c18cd75a2d
+ - Normal
+ - Normal
+ - false
+ - c8dc6d4f-b1b5-4f49-811a-c2bbec95fc16
+ - 1
+
+
+
+
+ -
+ 6088
+ 1788
+ 53
+ 20
+
+ -
+ 6114.5
+ 1798
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Fresnel
+ - 4bed5614-7cbe-4ca8-9de2-5368083c2ee0
+ - Fresnel
+ - Fresnel
+ - false
+ - 0
+
+
+
+
+ -
+ 6165
+ 1768
+ 36
+ 20
+
+ -
+ 6183
+ 1778
+
+
+
+
+
+
+
+ - Facing
+ - 02a05b24-4806-4377-a23b-9f50202cd909
+ - Facing
+ - Facing
+ - false
+ - 0
+
+
+
+
+ -
+ 6165
+ 1788
+ 36
+ 20
+
+ -
+ 6183
+ 1798
+
+
+
+
+
+
+
+
+
+
+
+ - 2e74876b-33f9-4262-9791-cf53466a63e3
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Power
+
+
+
+
+ - Power
+ - fbb34b4d-3b9b-499c-812d-2358e4bea999
+ - Power
+ - Power
+ - false
+
+
+
+
+ -
+ 6299
+ 1806
+ 91
+ 44
+
+ -
+ 6347
+ 1828
+
+
+
+
+
+ - Value1
+ - 8e6d96ae-d084-4e1c-9be8-858c27960476
+ - Value1
+ - Value1
+ - false
+ - 35c2022f-dbe7-4313-b929-071a7b6d4b73
+ - 1
+
+
+
+
+ -
+ 6301
+ 1808
+ 34
+ 20
+
+ -
+ 6318
+ 1818
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - d26dfba8-4e7b-4afd-a403-efd3c1f17200
+ - Value2
+ - Value2
+ - false
+ - 799a14c5-9775-4696-9504-61f8b2b6a61d
+ - 1
+
+
+
+
+ -
+ 6301
+ 1828
+ 34
+ 20
+
+ -
+ 6318
+ 1838
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 3253c72f-dd51-4cb8-acbe-ca38c118c946
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6359
+ 1808
+ 29
+ 40
+
+ -
+ 6373.5
+ 1828
+
+
+
+
+
+
+
+
+
+
+
+ - 623ee461-9576-4981-a85a-7aa4a30e2e98
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Divide
+
+
+
+
+ - Divide
+ - ff2fc1bc-bdd7-4c28-9141-47ee2f202df1
+ - Divide
+ - Divide
+ - false
+
+
+
+
+ -
+ 6218
+ 1940
+ 151
+ 44
+
+ -
+ 6326
+ 1962
+
+
+
+
+
+ - Value1
+ - a9e663e7-4ca5-44f2-b4ed-da9305f48ca8
+ - Value1
+ - Value1
+ - false
+ - b865fa85-80b3-4f66-b461-6c4dd231e7a2
+ - 1
+
+
+
+
+ -
+ 6220
+ 1942
+ 94
+ 20
+
+ -
+ 6267
+ 1952
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - 20de1e4f-e38f-46a2-9110-eb52801c96fc
+ - Value2
+ - Value2
+ - false
+ - 0
+
+
+
+
+ -
+ 6220
+ 1962
+ 94
+ 20
+
+ -
+ 6267
+ 1972
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 19.48046875
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 799a14c5-9775-4696-9504-61f8b2b6a61d
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6338
+ 1942
+ 29
+ 40
+
+ -
+ 6352.5
+ 1962
+
+
+
+
+
+
+
+
+
+
+
+ - 623ee461-9576-4981-a85a-7aa4a30e2e98
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Divide
+
+
+
+
+ - Divide
+ - b6472cfe-a335-4bd8-b5f9-107b38194327
+ - Divide
+ - Divide
+ - false
+
+
+
+
+ -
+ 6037
+ 2007
+ 140
+ 44
+
+ -
+ 6134
+ 2029
+
+
+
+
+
+ - Value1
+ - 4d640c7c-f3ff-4ae7-9098-8ac9d01d2a31
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6039
+ 2009
+ 83
+ 20
+
+ -
+ 6080.5
+ 2019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 18.765625
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - c4dff4ae-4af1-4aed-ad35-b72376c72607
+ - Value2
+ - Value2
+ - false
+ - 3a095817-d86d-42b2-bffa-d1f86c466df9
+ - 1
+
+
+
+
+ -
+ 6039
+ 2029
+ 83
+ 20
+
+ -
+ 6080.5
+ 2039
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - b865fa85-80b3-4f66-b461-6c4dd231e7a2
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6146
+ 2009
+ 29
+ 40
+
+ -
+ 6160.5
+ 2029
+
+
+
+
+
+
+
+
+
+
+
+ - 2e74876b-33f9-4262-9791-cf53466a63e3
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Power
+
+
+
+
+ - Power
+ - cd844fea-0082-422f-ae1d-219f5ae81105
+ - Power
+ - Power
+ - false
+
+
+
+
+ -
+ 5896
+ 2011
+ 108
+ 44
+
+ -
+ 5961
+ 2033
+
+
+
+
+
+ - Value1
+ - 71214e03-b2fa-4c05-8421-2d31487f6a16
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 5898
+ 2013
+ 51
+ 20
+
+ -
+ 5923.5
+ 2023
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - 32b9ea87-4c1f-480f-8aa4-2af40bf11021
+ - Value2
+ - Value2
+ - false
+ - 0
+
+
+
+
+ -
+ 5898
+ 2033
+ 51
+ 20
+
+ -
+ 5923.5
+ 2043
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 3a095817-d86d-42b2-bffa-d1f86c466df9
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 5973
+ 2013
+ 29
+ 40
+
+ -
+ 5987.5
+ 2033
+
+
+
+
+
+
+
+
+
+
+
+ - 623ee461-9576-4981-a85a-7aa4a30e2e98
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Divide
+
+
+
+
+ - Divide
+ - bd90579a-4785-463d-abb1-df12ae5a9948
+ - Divide
+ - Divide
+ - false
+
+
+
+
+ -
+ 6470
+ 2047
+ 124
+ 44
+
+ -
+ 6551
+ 2069
+
+
+
+
+
+ - Value1
+ - 0083215b-bfc3-4d05-8fc7-02366c8e53bb
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6472
+ 2049
+ 67
+ 20
+
+ -
+ 6505.5
+ 2059
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -777
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - de5af6fd-0078-4f55-b3ce-76d064f2d2ae
+ - Value2
+ - Value2
+ - false
+ - 7ac6c5e1-9f52-4728-9dea-83acf1854e06
+ - 1
+
+
+
+
+ -
+ 6472
+ 2069
+ 67
+ 20
+
+ -
+ 6505.5
+ 2079
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - de3af38c-5285-4e70-917c-af1ac30ae3b8
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6563
+ 2049
+ 29
+ 40
+
+ -
+ 6577.5
+ 2069
+
+
+
+
+
+
+
+
+
+
+
+ - 2e74876b-33f9-4262-9791-cf53466a63e3
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Power
+
+
+
+
+ - Power
+ - b1f545e7-cea0-4760-8aad-61c878aa3353
+ - Power
+ - Power
+ - false
+
+
+
+
+ -
+ 6340
+ 2081
+ 108
+ 44
+
+ -
+ 6405
+ 2103
+
+
+
+
+
+ - Value1
+ - 6bb1b28a-25f3-4b13-bbf6-4f46ac92c4ae
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6342
+ 2083
+ 51
+ 20
+
+ -
+ 6367.5
+ 2093
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - 6cf4b1b6-cffd-4f20-8665-07de7a7be250
+ - Value2
+ - Value2
+ - false
+ - 0
+
+
+
+
+ -
+ 6342
+ 2103
+ 51
+ 20
+
+ -
+ 6367.5
+ 2113
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 7ac6c5e1-9f52-4728-9dea-83acf1854e06
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6417
+ 2083
+ 29
+ 40
+
+ -
+ 6431.5
+ 2103
+
+
+
+
+
+
+
+
+
+
+
+ - c2b99ede-3050-483d-ab90-35a1548d2d22
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Subtract
+
+
+
+
+ - Subtract
+ - 9d24c783-62b9-4a84-8be5-065f75d7e89e
+ - Subtract
+ - Subtract
+ - false
+
+
+
+
+ -
+ 6455
+ 1983
+ 108
+ 44
+
+ -
+ 6520
+ 2005
+
+
+
+
+
+ - Value1
+ - 61a3eb42-0ac3-4a28-b8fc-2c809b584b84
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6457
+ 1985
+ 51
+ 20
+
+ -
+ 6482.5
+ 1995
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - 3abe45be-c06f-4572-8796-77626e4bcf19
+ - Value2
+ - Value2
+ - false
+ - de3af38c-5285-4e70-917c-af1ac30ae3b8
+ - 1
+
+
+
+
+ -
+ 6457
+ 2005
+ 51
+ 20
+
+ -
+ 6482.5
+ 2015
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 551398f0-1e41-4be1-975c-0ce4ccdf2e19
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6532
+ 1985
+ 29
+ 40
+
+ -
+ 6546.5
+ 2005
+
+
+
+
+
+
+
+
+
+
+
+ - 4a360292-b84b-4808-ad8e-67f2b77b0e15
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Multiply
+
+
+
+
+ - Multiply
+ - eb082014-229a-45da-bbb3-02e1704f3bd8
+ - Multiply
+ - Multiply
+ - false
+
+
+
+
+ -
+ 6574
+ 1888
+ 91
+ 44
+
+ -
+ 6622
+ 1910
+
+
+
+
+
+ - Value1
+ - c3e7e1e0-e3ab-4c5d-91f7-156804235b0e
+ - Value1
+ - Value1
+ - false
+ - 3253c72f-dd51-4cb8-acbe-ca38c118c946
+ - 1
+
+
+
+
+ -
+ 6576
+ 1890
+ 34
+ 20
+
+ -
+ 6593
+ 1900
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - a5a7c3a6-2c0a-437d-b891-657b7d3be064
+ - Value2
+ - Value2
+ - false
+ - 551398f0-1e41-4be1-975c-0ce4ccdf2e19
+ - 1
+
+
+
+
+ -
+ 6576
+ 1910
+ 34
+ 20
+
+ -
+ 6593
+ 1920
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - b0f4899f-89b4-4811-9ad0-0af869106f99
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6634
+ 1890
+ 29
+ 40
+
+ -
+ 6648.5
+ 1910
+
+
+
+
+
+
+
+
+
+
+
+ - ec3b4eb3-7cd5-43c8-8ef7-deb2200df882
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Add
+
+
+
+
+ - Add
+ - 24014033-77cc-4aa7-80f7-483cf3e34ae1
+ - Add
+ - Add
+ - false
+
+
+
+
+ -
+ 6700
+ 1923
+ 91
+ 44
+
+ -
+ 6748
+ 1945
+
+
+
+
+
+ - Value1
+ - 7033f1fa-aa43-43c5-bf73-08347b501343
+ - Value1
+ - Value1
+ - false
+ - b0f4899f-89b4-4811-9ad0-0af869106f99
+ - 1
+
+
+
+
+ -
+ 6702
+ 1925
+ 34
+ 20
+
+ -
+ 6719
+ 1935
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - 47b045e1-527d-486f-a82d-fc7e9421b50d
+ - Value2
+ - Value2
+ - false
+ - 839ef08d-004a-47c3-aead-e0827982a0a0
+ - 1
+
+
+
+
+ -
+ 6702
+ 1945
+ 34
+ 20
+
+ -
+ 6719
+ 1955
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 22d9e85c-cc9d-4640-9780-11ca168dc2d5
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6760
+ 1925
+ 29
+ 40
+
+ -
+ 6774.5
+ 1945
+
+
+
+
+
+
+
+
+
+
+
+ - c2b99ede-3050-483d-ab90-35a1548d2d22
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Subtract
+
+
+
+
+ - Subtract
+ - b64fee4c-3231-430c-b53b-ae0246a1a3fa
+ - Subtract
+ - Subtract
+ - false
+
+
+
+
+ -
+ 6170
+ 1846
+ 108
+ 44
+
+ -
+ 6235
+ 1868
+
+
+
+
+
+ - Value1
+ - a81e2f02-a6fd-4f9a-8d11-4d247cc53fb3
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6172
+ 1848
+ 51
+ 20
+
+ -
+ 6197.5
+ 1858
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - fd7b3337-4e9a-4fbf-b9f1-3003006acbda
+ - Value2
+ - Value2
+ - false
+ - 02a05b24-4806-4377-a23b-9f50202cd909
+ - 1
+
+
+
+
+ -
+ 6172
+ 1868
+ 51
+ 20
+
+ -
+ 6197.5
+ 1878
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 35c2022f-dbe7-4313-b929-071a7b6d4b73
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6247
+ 1848
+ 29
+ 40
+
+ -
+ 6261.5
+ 1868
+
+
+
+
+
+
+
+
+
+
+
+ - c2b99ede-3050-483d-ab90-35a1548d2d22
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Subtract
+
+
+
+
+ - Subtract
+ - 8768b9f3-a590-44b4-82aa-27c46944e0c5
+ - Subtract
+ - Subtract
+ - false
+
+
+
+
+ -
+ 6662
+ 2052
+ 91
+ 44
+
+ -
+ 6710
+ 2074
+
+
+
+
+
+ - Value1
+ - 558c205a-44e5-494e-a24a-9b75e7183058
+ - Value1
+ - Value1
+ - false
+ - de3af38c-5285-4e70-917c-af1ac30ae3b8
+ - 1
+
+
+
+
+ -
+ 6664
+ 2054
+ 34
+ 20
+
+ -
+ 6681
+ 2064
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - f866be10-3e4c-4748-9e74-6acc33bc20e8
+ - Value2
+ - Value2
+ - false
+ - fa91bca2-e5a8-4ac6-9932-daf848d7a1d6
+ - 1
+
+
+
+
+ -
+ 6664
+ 2074
+ 34
+ 20
+
+ -
+ 6681
+ 2084
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - 839ef08d-004a-47c3-aead-e0827982a0a0
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6722
+ 2054
+ 29
+ 40
+
+ -
+ 6736.5
+ 2074
+
+
+
+
+
+
+
+
+
+
+
+ - 623ee461-9576-4981-a85a-7aa4a30e2e98
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Divide
+
+
+
+
+ - Divide
+ - 85ccd02f-3c53-414f-b0ff-b446188180b9
+ - Divide
+ - Divide
+ - false
+
+
+
+
+ -
+ 6467
+ 2199
+ 108
+ 44
+
+ -
+ 6532
+ 2221
+
+
+
+
+
+ - Value1
+ - bb610946-e504-48ba-985c-6cef27811840
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6469
+ 2201
+ 51
+ 20
+
+ -
+ 6494.5
+ 2211
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - e8bda61d-e3b2-4e71-a33f-dfce6c63a7da
+ - Value2
+ - Value2
+ - false
+ - c231983f-5aac-485f-843c-69e38f341663
+ - 1
+
+
+
+
+ -
+ 6469
+ 2221
+ 51
+ 20
+
+ -
+ 6494.5
+ 2231
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - fa91bca2-e5a8-4ac6-9932-daf848d7a1d6
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6544
+ 2201
+ 29
+ 40
+
+ -
+ 6558.5
+ 2221
+
+
+
+
+
+
+
+
+
+
+
+ - 2e74876b-33f9-4262-9791-cf53466a63e3
+ - 6a051e83-3727-465e-b5ef-74d027a6f73b
+ - Power
+
+
+
+
+ - Power
+ - cd1364e6-9534-4c25-9f03-1236e48b728d
+ - Power
+ - Power
+ - false
+
+
+
+
+ -
+ 6332
+ 2227
+ 108
+ 44
+
+ -
+ 6397
+ 2249
+
+
+
+
+
+ - Value1
+ - 0e3cb908-3624-4afd-847d-6313e47d175c
+ - Value1
+ - Value1
+ - false
+ - 0
+
+
+
+
+ -
+ 6334
+ 2229
+ 51
+ 20
+
+ -
+ 6359.5
+ 2239
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Value2
+ - b6148af5-3b78-4251-a78d-cab6c343dfe9
+ - Value2
+ - Value2
+ - false
+ - 0
+
+
+
+
+ -
+ 6334
+ 2249
+ 51
+ 20
+
+ -
+ 6359.5
+ 2259
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Value
+ - c231983f-5aac-485f-843c-69e38f341663
+ - Value
+ - Value
+ - false
+ - 0
+
+
+
+
+ -
+ 6409
+ 2229
+ 29
+ 40
+
+ -
+ 6423.5
+ 2249
@@ -41634,7 +66524,7 @@ Note * For surfaces and breps
-
- iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACMLSURBVHhe7d3pj17VlS5w/oB779/Q36+udFGH6GYeFTIHMjVRPkRBIYkiui+5SXeiToJQlI4QEY6btAewjTG2ifFQjucBM4cpCYPnCZvyCB4xHvBQtrm/9zzHp47rfeuttwa7bMLzYWvvffa01rPW2mtXFeaa9/BuwDvv4apFL4VPXEY8/vjjf/7zn0+cOLFnz55XX3311KlTJzvAsWPHjh49akp3d/e2bdt2F9DcuXPnjh07du3apV/5+uuv61FRwpkzZ+bNmzd79uynn376scce++tf/2rHF1544bXXXosKRgvE6enpKRvvvNNz6tTpt9+mitPHj5ddnWE0KTx06BA9bt++HQEDAhlVZd26dWvWrFExvT0s/tZbbz366KOLFy9+8sknUfj888+bOGPGjOeeey4qGC0wvrfffrtsDAOjQyFgce/evbS8ZcsWHtMhONCGAps3b+aImlu3blWmXu8J1Pfv379+/fpVq1Zl02eeeUb/s88+a3BUcLVjNCk8cuQIFteuXXv8+PFOYimb5UCiJeKZMJiuB7XqHFQTEmBBp09Wxt/999+PNpsKp3hVMp2oYLQgCJ0+fbpsDAOjSWH0zhvotEMYLABiveUsrDRX9u3b99JLLyWQ2lcpuj788MMialQwWhAemFfZGAZGh0L8PfXUU2+88YZ46GIrYuTAiAsiAHBjYnhKwNSTStWTEoVSGNdhtbW4+sorr7CeqOBqx6hR6E4SG7GyadMmuRl7FCfbwGDDxF5J6cGDBxGAyPCa4KnCrZU+MQ51MODs2bN87o9//KMESjojnOJ15cqVXDkqGC3InAlVNgaPc+fOHThwQGXUKHQbiSRJGrlLhxA/eZtSXSRMT/GlN6OpKkps4dtInIU/zwleOHfuXK5ZqGLUIFX24Ckbg8f58+fZtMroUAhYZIbcBXDZIfDNa7EY7pXhLJWEWRVl9VXWIGy6C/H3t7/9TURFHhfkoIUqrkrgr6yNLoWHDx8WGBkja+oEQqg42WDs4nc9MtTFz3RqBuq+ClYrVqyYNm2ap6R9+WKyG2VUMFpwQhdE2Rgk3nzzTdcHPaiPGoXACzlKIwheCIDtwbHw9Je//IUjVv4Xh4PmHtCUzmzcuFEslYuyG+CFCxcufPnllwttjBpc/+6zsjFIuOBNz5ukl0Kylaq99LCX5IJj0bLgJpaeOHEirtYGvBbZpihxycNAE3lCqE5upx80A5+sLHguWrQojwpbu4aFVoMLbTTQ09NDKW4mFaBZTRU9qQRpKoNqTIU0TS+Gl7B+tUg+aapAPR72h4zP+pmY1ZSZ3kuhFFGQuTxE2sV2Qih1u9jEQ/ccd2kDA3it8a4xtIU/KChr0ImtxM+qE7AokM6fP1/+grnsziNnzZpVpTMUIbUzUe4DqD1+/Li9eDCzsILjOYBP9hXMbeTMGWav2JOvRQhoRHhjGKVPGzZsMJ0NmaLuE0M02FelZTGRM/QHA2yd9W1KCfkpsU3tpd+YXgrdDaRKtImolxQ2IlLEzvkGhGGO7mkvpdT0phRRQQWae0DdnWG8HSu5BIAlS5bQaaGlBmLauCx8o+Ecsfc6+nhMmvXOTK/qFTIX6p+KJTuKooZVZ8tcvBazGzCgl0ISMk83BB2pVwJfIlhfrsgRGWlefgPCSEbNunkDp2EB7DE96nEXFc34opKdmmi76dOn8/tsDeq+FirqFAll3MiCPJv6XEXqfFFT3eUEDumTSg7sE6Ur1XUiQ2lw4FO5+jDQSyHBBNKnnnrK5fTiiy8KO5oR+FIAhcICpYcMZXtkDEoYGd9SEZ3qyKXYBzolvQjLL5uytdfFlClTpEVRQSegazdxkkDLOglKxMPswlx8Io5TiRM+iX46hQEl1o1xZsKqEyQ3gsqAgbQTXEQh0GyewOIqIdOTTyMLy/IbsgmPgwLzWrduXcJmHc09QHE0JWZWF4Qytz5dRwVDxoj40PDRl8Ig0qIQkejUTM8IwoLsOlGoQ7DueiBl1MCc9eCJNaSn4bMX4KuJCPMurAIpI1i2bNnwKaxD8Dx48KDnGqfnjvIjooEezuqTKyPyqugxzCdxtZw/DLSmMCC54ENgoVWAHdm4isIqkOKArjuE8/CteHAdeIWqXlVoyu0+b948stj0hRdeYJfjxo1z8UcFIwJkkEI4TS6qwnSwRUDmJa7qVwqk2DUAqVKBkb8Lm9HwvscfpwI3EJnTk0/DhHVcCZjwRENJnKY9SO4qMj6/o0iOqqwqjTh7cT/QpuaKFSvsKBeVdausXLnSalHB6ALTyX2SXg4BA1AY8D93CeHZb37eX34YBugxP13jKNyRGI1Y2T8M8CQKkdwLMQycETRC54Xf/cYJlOlXAYYviowfP54hqhBEROGU7CB5By8BhxHleIa6uY4UR9FUMZL3JA3x1XkSIdWtoN94K9jOFCNNycrOLH6qaCa6GkkKA6ywevXq5cuXsyfaUA8lXJNarGOYBY20nUXsknVyME1fje+IQrAHuE6q5+MwibSaA7mQOEqZe3QAXuiGFhI4VtlVIA7Hm7OaSvqTzngXLl682LFzryvvu+8+jFJopW665gpUQ8XppEes+ETXPin10xrm6FSPMXoy2MSsxmLUzaX0LBuyLQtm6VexspFJzdasWbNx40bmVTDYoDCLGJbdma9Z2Uipx/q+qhvfKYUB+ZW5TkYqzckig0UmKlkSw3Kk9POwhMoKxjA4hOE+ZqdTBbWFxkYTeGKUbhOmjJKyd5AYHIUB+WmKBYFK1DQEFBoe3NxqfCpOIrCz33oPRisW04/CjElTXjNjxowqcA0HnuccRThN9oQSjsJTESMM8kv0iHhiBpIyQFOdX0K5yvAwFAqh0E+Z5vCA9OTTZYMdkzBjqL47Fh0sLGoq1fMWzBRnnjVrlkASFQwHchDXpLinFDMFWK910VKg0+OrTl81QeXMmTMZbySUqwwPQ6QwoBHqy/Ox0lH57RLDRokE4c/Wjz76qBJkzsA7Eamp1FSJdzotFjVHPZC686BsDAPDojCgDvqq0pzLwGJMJ2Hc7nry6wvxSrCaNGnSvffeK7hpIsypXNtK0cJ4TOPygQceMD0quKTgkSKtUzmMVEsWw3QkWYItXPKnfecIbYw9z0fN9Iw4LBvOUJJrGD1z585NetXV1TVt2rRbb731+uuv52rSvFWrVsn3fDLFRJ2IdEiPCmlqVHC1Y2QoDOiIWiUODDzBqvwwJBRm0As9Frcsj/e6twVb4WTqLjZ1bE2ePPn222+/+eabv/jFLy5YsAB5Dz74oPFcNrej8Vwwi8vm8+OeSw0P1grNzWFihCkEqsEcq2fp9JWefGqDBkU16MEW1VuH6vmNpQJ1xCAMl8ZkrtgoNEnK5Xg875ZbbvnVr37l8eRdaJhZiaUJ8lkfzHrk6sfIUxhETXSHSLqrKy71CnoqthDThy09+n0NW4xDf8u8SRNDYKRN0ZylrKCn2Oqi8e8aXCoKgcqquFrdW0p84KDyrQQ3dT11tgqd9yI9RhrWMj6HVD6HM2ta0FLF1HcncxVGjMIoq4KeOluuKxmjMm4B2KLuRDbaryMrQFYONOOUBpRdBTLSXj7Vr7qskzHvbgyFwmitgp6w1SYSGgBUnDTHJZSJiXtF/OuLYqsS+LCOBTMLip0bkdPi+q3MUDTTnzF/JxiAwmikgh4a74+t9pEQMMFF8nw04MCBA95MJy5AvY5Dhw6FErOsbItqEXOto8c6jsEm8kn/3yEuojCKCHwbMlvFyq2Rr1Q/YcKEY8eOnTt3ThrZ8se7p0+ftjh/jZ8lMGLL7qYr7V4tOOpwTk8aZZ9KVXdOSnP+mOAIgq56KayzRU0VW0x+CGy1gYlz5sxBoU2xCA3SCrx9+lRP8TOnU6dO2ZHMjqHiGDmSQ15RAdMxnMc17wGjzO+ilenZsmWLyvr166UC06ZNw6hUeWRPTle9FIYtWhtBtvoDY/Ru67nw99EEE2D37Nj3h+f+efFf7zt/9uzRY8eMWb16NdrA2a7Mq4665s2b51XqqBhyzt27dydm4JJcXFDnb3/725tuuumGG27o6upauXIlWcr5w8ZFFEZBUH68ZGAiY8aMee2117zEdxR/i7d06VJOOX7S9F//7H9P+ur/Orh6/eFjx8aNG8fzDL48pxoa0DNx4kSlt9PGjRvla9xOqOCCevSriG3XXnvtHXfccd111/3sZz9btGhRboERwUUUln2XBTiTwtgUBFKhhiFv37rz8W1TX96+6vy5c8ePH1+8ePEVy1wdvIo5vv766+InKUQXpboeNqri66xZsz70oQ/deeedGzZs4JflzJEABY4ahcQjreTTtYfFbdu2nTjR+++t6BTVrwoKQWB0Wj4HPCwVPenklMIJp4RcUkMGhRTpUS/oahQoJMbdd9+9a9eu/DHI4eK/MiS5y7+gr4FkpFcLhc45IDIs44cG02lJrK6DrnopXDFIPPLII+Xag4fg89Zbb+V3nlxQXrN3717BUyVwNSZ/KSe8hyeeoHApUmHhF6GXwlcHA2u9/PLLcrBy+UGChwkyIkwFaadrv2wUj85y6JWHhk91hnLCCAGFNB/a6uilsA3iLhXykhMAOVO5/OAh826PctyVB+GBCTYj77E6RvDxAANTaJAXqPTJJWn7PXv28Ayq9GIT2dBWwUsO9u3bNxwKr0bEtwieP14CdzaFRD9Hjx6VZuuUiymZeDlthDAwhbIJnDElSZR78oXiLzO9dYQ1B83oCn+fFDJo+qmeQyCj7t6x48ibbyplZ/kLa49ddYz+4Q9/oMNy8rAxMIW8zd42dsl5n0ooJPo6PU6ZmAHyxmJKCcmkpKZc/u8DAuNDDz0kUMnFvIgaOHp0/vjxS+6++8nly6MW5p5nEna7urouK4U2Q1h3d7fRzE3S7x2jU+nr7Nmzx44de+bMGXmjU+7cuVNGM+R05moEnYhMU6dOpSLWXPxl6FvHTpxYNGHCn/7jP54t/gYioVWIoigUjiB/MDCFfM4LdPXq1Rs2bOCFYil3ZHFKV+OECRPYHP6UIgl5uKCsUqXc4V0NZEiY6YcjYi66A7GKrrq3bl1b/D0casXS/fv3C6ei1JgxYy6rF7oIxUxZTH6UkD8l0mkauJzrN6J4i901a9ZEqncxkeGAmFyQmJpkL7XQFjxyyZIlWWREMDCFmFi2bJl0NDfc0qVLFy9erGR9GVqHWL99+3aJDxtEpIopIxs3RgrFz6EGh0oQFRGIQcvpYqZ6mDWpBac2SBgb2dftwBSuW7dOCN20aZOS/61fv14PsD6RPaMrCPeuQ+KRDX/Cb+S00xVFpAQyQSXI7eDKV4GytwkuCFLgTMUwYtbDDI4lAQPCsHLCCGFgCgXG4s9TL4IcVUQVQrFYQZMXuhLISUFWZ24kV2ehiNQP2XgUQe/E9miLqHD+/HlhUMYYQcreJhDceymXn3WuBFlgYArzY5c+0MnhyNwH9OLqZp4xcxanjj9iR3KkjjqRXGHixIl1CkmEHsm2dBHK3iZICBgiQa4Q8oKBKcRB57CiIENI5Im0uSoIrA54VWJUpR6CLiccxu0uNtQp7BCyyiswR6NqkbI8Yg29FDZcpmMQD5FIUrc6TZFZRT8604yD4nK01EFmqZkoElGBF8r4xVIu6IFU9jaBmzL5cpUrA5Q5b948unW8AwW8W/KXY70UlmM7BmJQqIJFS6uHJ03sYjGuyVnV+Ws+NWZeLgikkyZNqt95KORh4Gmbv786/NL8Ffd9Z2HXHHU3fjGqkRZcaT87pMYHH3zQqRzP+bds2SLr9CjQHDqF+EBbgqp6df+lCb5C6igMqWkWC1xa2IXYkvs2aQu8+qffjPn0NStv+u/HDh/s3tn4p7Xc8XLsyZMnO2251pUBFln/rXiFYVEoSFZpSzyv/FagCqqCgJjGa43HNM1mSjnu0sD6Npo/f35FobCTPxI4VCA/rd6yasYrv/7HDQ+OOXXy9PnisQQM3BM51tk57EjMEUG54sUQ27e1+t+j9EthoeR+kQGsNY5VNXlb/dpTD7U+qafJNRF5qTMd57HRzJkzKwpdgcXPpY96DnG1ZKQN2pr+Y2kZKUEcNaJ1gmzHRGIfjZ+AF0hzUNi9e3cWzMoVBs5Iy4GdwQbAzIlabaYSbqoeSD0JapqYS6aj55JmOl7x/Kn+c8E+6C/Genjgj9nVBWmJiEMKXvvwww+ba82Qx90hCw4KDmzB5q0HQaGYS3IJmwtf2RK0Yxgm0FBtphJumrfXUwVVMmsCC9BzKTIdq9mI3cyePfuN4t+DAgZOszuKf76JpeOJFJLPKKIOnaJZXbQ+aJy+eLTEiEmhKWM0V8bk3XyyQJunZxuI8MOi0JmmTp3qhtOTn7s7UDHyIqwv/kdWdopvVbAxxSVsll0XoCdBtR57weBE2vQUY4cL69jFml1dXd6F7FqZ1wUvoSNCMVCWKjuPRHXgW+5HNAcuV7xwWmAcVvYV8Edj9EC6ly78KyhYTCUQXTdt2sSS7CsfYUPYlfRu3bpVpRxUw3ApdOjly5fnnxJwlPq72JVxpqc8HOFRaBti2C9zK6CkuZNdOwSQmX5NV1dSlpLRjGCmYwXKtcvatWs5HPUBc4wvoo1a9XBHZeGivTDMLEfCkxUSM4jjhNYMcz4hMhvl68KFCyX9DS2dP5+N9u3bp3T1Gp/fSalIqTZv3mwp7wEHe7VVejJcCnOg7u5u/DFYJSFffPHF7Vu7n+tefudjN5892bg/9FjRYD5HmPp+6phw3KpThWWIWiwD9+AobHDdunV6gjVr1hAsKauKKdX0IcBcB7AOY0IGNGznkUdQ4mypOJJKvvYBa7OCAbGqnEqpHuUG5WbFE5nduw4LlTbA9OMAGN24cSMvVPI/krIPMZw7btq44fU33rzwFu2F8NtHpYHTdkQh2TyHV6xYkWuDQTm3u+HZZ1/8xS+/fdfX/sdLY8dzxzlz5rhmCBlj77Mfy6VBE9Nv2Ny5c5m8XRLHiq37go6oz+npy3SzmqNxh6BTKygTD6yTeuVVoBlbKecUxGdH/XG41atXq9QdrhjYAhE5ggiP1Q+cNZWupMQzTukrJZDumedf3j7/n/fc9z8PrH365MnTJ082fvIs2kuYW/5goVMKibpo0SKOks+AP83NG1598dXHFr1818kjjZ9LEZLdGU8phGyWLSpLXdiZMGGCAEIwSRqziGx1+ITCSr/oj+GHgKzTIUx3PHNVRAs9miqYqJbyycrVL5I0VchiVvZVN8zJnWTAA5i7YMGC+++/P4IwVn4mkAqbzZKCAQ6z79CJp/7zxgN3/rc9t16z42/PvH7gEJ8R5IW9e+65J3ZTxyAoXLp0KX+XdrKX5DIJ68X4EsJCoo2doqxMr6AnGjFMhV7yA72AYLg823P2YM8bz+5/Ug/JKbRaRyUrsAN6TE8+DQgjTQEV0zmH3clVX0EdMVQvvBtpDLBFZOdrQDr9KpnVBvRrtUg3IOhWOF23bu3BY+8cXv3Mxv937dH9vf+kHk+lNKuVS1/AIALpfffdR7zildmwC+mc/ZBRT01xLOgZTzX9CamT7mjBTS7qcmW3OmtwRHMbxv78S5Nn3/HLX/zDnsef7jl7TnDuE0AcgzD8wO7WUW+PuIt9M14l/4WiSh2Vw/nkGI6np/zWJIgxZCwb/YNEFsGNa8JlplSnMVHRwQxAAOnAFiTSNOXIkTcp89TF1yHPYVXNrj8ILxQhOVk+J6a7F6leBRKvZR+hEPoT0ln1M3N6HD9+vDUJxvlQqF8wYTD/de+/jfv3a7f+acnZc+dkdPSeiVmBqBYHzpSUJ83+wI0yPRRW9ESJepodjqbsYmQzeaDTSANafq1gC4F08uTJaKMokRBUQGJI9XwgmwIp8tedzKjlD8xoyZrNO3ZKIdCvQ9uMwClJCPTiKCixd8WZnRwuqm8GBeHPRMPk8dkSuKPTHDl8pOedkzt6GsdiHIbZzvrxCSmVTdlQ7n/BQMl69EDWCdIDrB4xNqUgcx2y4KuhO00VJ292OOMNsHuz4RtTXatlVz8w17DyQDXwSLYr/SZvoC4d9ahQsuZyXA0odPLmHVGYX030QQsKwXxn6oPYcrjMmJTkb2mnevS74biCq571yYzciNIZZMizyZNDQCjk2bQcb3vooYfy8w4xwCz3PMet/gDw+NtvH+juPtTdnWZg2Rgfu4n9qfBgNEQpzYcM9NuxZfgCnyqTbQlfGRyU5yh+KgLVaZvBXwf7tHc2smCxDuNbU9gfCiU0whQz53kW1aR0wquUgy5AD/6oz1d3of34kDjMMHmMBFWQKc5cgqYallJkGVRvi3piXMepM2fmLVgwd+LEgzt3Hiye6iBqIXv69OlCLlETKuJ51izP1D+clnWygD6DI29LG63gwNXTPhAzRBrnKdtNkB6yMMcu2zWIJS0pBGfji3UYPzgKAwsRKbmcOi4J2WdLTeQlyTSGdhBWXRL5+YWyquzevdv4LKIkg8URyZCTHSjZrErj/zWyefPyKVNe37fPsSkrmbMBTJseqaYyLwfTzLLtkTG4N7c+Xp2wzQL2ge0c2AGCnBbKdgGkgk5SqBBcpfxWA14t2MmZYYgUgg1oGUO4YYMtKYwrpN9gY4RihiNatkR9BXTOnDlz7ty5BGbLiJceC01CsVtLnD3dKkZxcXq0ke0sYkH8Daj9CoaRhVC5L8veAry5rPWPbNofLEgo6nIkI4GttJ/SCUg9RArBmYCCRLx4W/nhwnH1l+2ihy0nVJZdAwGplhV7XZMCbyMbvvDfA3M6XW6+PmDUFAQ5jBKjNq2frT2MpFn7pl51ErMKEm1gQDOIHCt3EpWEh/Yol+sAF1HIRQYLWuZVTEnCgqHClxovDYfggtRXP42j57Lp/IgEpjiuLBMGcVX0pguL6G8J2jfGkaIpcwdFIZhofeevZqnoqSyjcxhPBAcguLMNdnonuIhCkgMyKqRnQNCaDEJ6Scs8LyGi7oIVfKKastEZKBRUwo3pQB0MKJ/q0Ikz+qI1GjfLSM2WutPZH7JOPQI7uTVT7xAsmBKo0cSGcRX/LuQQUC7XDy6iMEjSKChJE4SvsncwoGvq6+OCgZ7cVdRddnWGhl6LjJFGlLZAZIJSOaKAMRbXr2IjI4Pm7VBCp0ytGem3iC0qFpWY0J/mgDDx97///e233/6LAr9qwi87wM9//vMxY8Y4SbloK1B4XwrlDhKH/DoNi2VvE3p6zj45Z+629a882TVHRlj2FvBaYH39iaqfTjvXRR2mMA6+SJt0ZJcYSn0pn9Cjkk5Nr0y2XB+GUT35pQHIZuFM8QthTTmhZj6ZG4MAftlhLHUqj9qvf/3rX/3qV7/xjW8oP/e5z33pS1/6YoEvfOEL6r76VIeePp033njj9773PeJEopZw5r4U9gExyIPLQswG0tNz9uzmV575v7d84ulH5/tePMwaT28JRVdXlwuy3KEJVIA/Bt6JLpoR7SOPHcTPeGTljio4q1ZWIbwB+DaSe2XYkiVLpk6dKq0/fPgwY3VykvYcO7b9iSdIqpMRx4JnzZq1aNGi+EGfxdvAwcaOHYuPb37zmzfddJPyhhtuwEcFTZ3/dAEVc5///OexG7KVyPZ1ypQpFiyXboKT91LoBcYF82OF4gFzzN2WHzrkv1LLf7oGmqseWfWnSWOfe2ze6uefkCiSVvhFrTo1xXLLTZrgU3+RthOYFSMAi3AOjMY/kFSFvsBJYi6mYLHuo0R2WmXjJ3NHjsy97ba7/uVfjhw9Wr8+6oKomB4628NetPTtb3+b/xWu1WAIZ3V87Wtf81X5la985Tvf+c7NN9+MWj0pgy9/+cvf+ta3Zs+e3eZGdMheChHAALGoRCeQmfzrin+aUTYoquTHfequi+5XGz/dOXmi71/4eHkz/LoeW8LKnaijJSxubo6HMyqjXJsqsVjfOl6o1Am+mpUI7PXtyie18sDWrT+68cbfjR2bN4xYyihVDGYiWVBpFqTZBsaMGzeOq6EnlHCv66+/Xjj97Gc/q/z0pz/9/e9//3e/+91dd91122233XPPPT/60Y/w2sdZ+eItt9xCunLdVqDwXgoduvG2ugBNEUaq6W6rsKlA6uX/F7r4j8pFV9XG7XHyJMpDTxtRK20OqI7+kImJkGGOqMJG1qyWDYWVreg3TPP+++8XLUX+Xbt27du3z+W/ZPlystAD2UXR7du3i0MzZswQhColmmivavH+gPV77703kbCIi40KFpEXoPAHP/jBpEmTxNuJEyf+9Kc//eEPf4hLNGc8/wMjv/vd79o9kaMlLqLQ+fqA/wpQ/SFLAz1KMZi2ozNAn/Qo24sq3lJHEo2ya/Aw10bWgariJBjNtQfsyVGzi9IJNQU6Ig8IU5ywPt36NNNYt38Y733MpT7zmc9grg/QCejhkR/96EeFUM4qYPJCFOr8xCc+8alPfQrNH//4x32SGXUaSJ2vc1AQLRCGggCRzo1C5NmPBnUaVu7TD8zK3DQt2PjB7SCxsvgXWm0KHE6PfR3DYejRV0p3nhxGGQ70GIxsd4S44o5wkvRU0CQUyuuxlKFUzf5gzN13340JDKHhYx/7WCqf/OQndX7kIx/RgyEszps3z02pUxNQiHX8Baag/IEHHrBjuXQTLqKw7OsA+KO1XCqRB+hFT0VJPXz1B7NMp9MsKAx2d3fvKOBCTeW1C/+f5TbYtm2b8ULi7uL/fa+pc+/eveoqYr7F7WVHR7Jd6iwG0KyJJ1BhAXryCfQgm0FkihKp1Qr9gVDTp0//8Ic/fN111/2fGj7wgQ8o3//+96f5wQ9+0FWHJ3WfKugP3ve+93FlB4hKW2LQFDo6kFbkJFh68gl0VleRSpRSfusH1cj8DwXlEW4gZfIpTxQHGyasgzlWYq8GUU2n0vSVppyEUPSlWX5r+rmMwZptdAq+Wu03v/nNj3/843+twZ1X1gpo3nrrrT/5yU9Sb4bbUcrDaMp1W4GAnVIYOS3HzyIDI41elKCJwigIWGLoLOf3AwPoV4orcRAJqVuWkVJu7NGWvH9ASKbklvnRUn66pJQ/i5BSaKfKXk7eX2xoHLr4WSgBRcL0pKzP0uwklgJrMHGYyEnagOwdUei4ZCAbjTgZIoGh1REmVCIbjsXS9tYaoJ9GrCwMFnQMBfgWS2WS+QUk7N+/XyIg61u4cKHrBItOSCntVZ+vBhM25uh49IjafFKSMaH1EqE4SKcge0cUYoLwnvyMvXpC9MHRo0ddZhWFSlqoJG8DAyhrwYIFxhd0NP6yxi2IA77IsdLZDJt6D5SNJnBf56Fr2YqHQXYJK+XG/cMYIpsrkDTMs/jL4PpE/ZV16h9ZZNkOQdKOKCSDtypLp1CPRcZeaOkiiF3croowSmIPaPVggGFyM3rJUrTPSlyEyjY/ajfALE7W/soUlt2yNkJJf1G0JfhfHJdczEuzLpoeFpabO0idKQ8NphOEn7B7e+UMA4KAHVEI8+fPt41hfXR64szbJ3oaf1/qKiIYVHKSn/CZ3gbRCP/geVlzwN+QuCP5FksSEniDHLL80ApszuLsw2E6V00Fx3Nr5HdGJMoK3iozZ85EoTBgfVARNpyn3HVIcH+TPeaS3QeEWZ1SSE1OzNV4hp3ylt+5be+Df/n1pJU/OXviJCtavnw5OcsJhfC0xoNDan/w1SU6bdo0HlwI0vj3htFDKa40e6WzDqmTp4K9PEKYLRWXH1pB8KAUx3BmtpIds3WHoFATE1eVjIakIr+YJJjTiYoy9XLXtiAUvoWHxs+jjxxxQu5LotwmSgKWew8Eq3VEIR15q3qiUausgWaZIcd/YPrcO37xyXHf/IedKx53irFjxzpBFaxoisAwoMoot6ury9VVCNgIpNFIS/6AC27ZskXCWflrdCFOcFCglCq6Us2yZcvWrVvnYEk4VQbFosHMC3CptIISqdXuzBqLHSbPYHB1To7BZB2eEijZXlOmTPE8re7a9rBaL4Xv4SpFSeF7uIpxzTX/H8WP2hMniLgBAAAAAElFTkSuQmCC
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB90SURBVHhe7Z33exNXusf3T9zf9v/Y3/a5IWyS3b3Jc8lelhAIl5IAoZgWcIyNYwy44SKrd6s3S7as3uWS+5l5xyNZlo3kBgF/d5kcnTlzyvs9b5sZyX86xceA30/xh0V3CldWVsLhcCQcLhYLc3Nz9+7dM5vNv/++FQ0FDIZ5s8PldbsTqfSjR48uXLhAgzfbmJycfP78+Z07d+rVcjAcGRsbnZiafDUxNTc3PzI0NDo8/HJ0NJlIpNPpQqGwmk5ns7lkauXKlSuvX7/WungXXr16xXF+fp4pLSwsTExMSM2nCchqUVitVjc2N9ebDYSr8qihXq+Xy+VGo0F5vdmE1Hye/+frjcbQ0NDAwMDU1JTW35s309PT8P2fCxc2GjWnyzP+cnTRaDSYrGaLBfIG7t798eo1m8UMhewPH/AH0pnc38+eHRsbgwytlx4AbbQXIjl+skRCSovC2fl5BGoyLrqX/BtbWwp774Lb7UZ7OhQIUb58+ZLrNzc3aeByuTxu98jz54rixuNUcuFWW/+5XG5wcBD11a7vB6dEIsAWhVuKYJXDZm/8AeiBLa2zbcDozMzMxgbboKd+KpUKetyxD/qC0KYTqdd8CkCALQpXV1ZTKnCEUngnDAZDh7AwpA8ePPj+0qV6teQPhnshESvNhYehUKBrpMlk+nSIRIAtCo1GI9qDQUOxfvvtN5wThf2xW+4IcXR09Pbt279vbVaqVZWjdwAfzIWHp1AgRBLmfCJEIsAWhVghwOIXFxdRL+ikBevvS7i0f/v2LQaW8AdDyhE090U2m2WIo6JQ8OkQuYNCPrNadBFjCCCS9SMFuES+vXNJM8RHpmFVIbsB5cbhSc8daA9ojxY6kR+xj+ykkBUiU1mwrHZ2dhYu4RVBcKp3LmkGoIeu6IHLKVMzPj4up3T0uDMODIb4iDWyk0KAQIHsXDgTiaNDaBVEAqQgAWQvgtCbYV11tZbLgbQ5GbQTKfciPg4iu1AIoI2QBBGzYERP2EJoQ4ADOAUBiABAMFLglGB/SjhL4/atQIGPVJ4klx8fkd0pZHl+v39JRTweD4VCym0Un1QseVUEAoFEgkw9rrdEIr2IQzhjH4gcUU12iV4vbY4bHxORnRSysKGhIVjiYzvklkoHNjc2tJIKJIJW0UMvZIhSUiDSId5BlBz78rWHBwMxYRld9t9uP90LTmzndQWSb1HIVNCJf/7rX8bFhXg0bFg0OF1ul8sZCAaDkcj6xs4sfWsrotzyXrA6XV6PO7my9ujRoxs3bjidTjohCOqLSxpL3IQ0xdeemGgYSIi02WwMzTQEkCrsAgpa7S7QjMu1vt4HoKJFIf6JZdy8edNisTQbjXw+VygUi8VCuVJZV+6W/c4HpIxdVTn8vdlU2mRzOf7V6o3BwcG7d+8ifV2x+jKSwiXiQI7iLBFQj/vg8GDO9Xpd1qVhayudTov/WFtbww7tBdwKoYDW0YmDmbYoRPoSraysrKiL6AQ5+J///OfHjx9rn3eC1UIA4hYy6F2PQmEUGVHTCx/SBqMqvqqvaw8A5ozvuHLl/+q1SigY9Pn9q5nsciIRTSzPvp15Ozc7Nv7KaLZqi+wGjNSHQiGf4e/mzVsWs6lYKKxlsooOFgrlchlS1zc2KYTD4VQqReNysbCysoqW5vP5YqnYaK4PDw8/efKEHqRr0MEligUrPTq8jmvhkmvpXK8/KtDnL7/8cv78+Y2N9UQs6vZ4wpEoMVoqnTGZjB6vx2A0mSw7KOy4fe9wOD4UChENW/6f//yXybiYWo4vGhedTuVZkT8Q8PkDjeaO4CWfXbNaLSazhdgH/1ep1ZXHhP/5jwR4AjpErYGkJXyEP7GxkmLL2b0gVAlnWFR6FgMr7ofK/TdBX2BiOAttbdtYXl5e8i5hSVFKj8fz9OlTpk19ajlmtZjtLk80Eoklkq/fTPz73/9uX/hJgvm0KGQSVqv1+fPnTFdZQZ9AoCMjI8iafkW4Lpcrk8nk8nlUWfGYKlDiWCyWTCZxMJzVgTbTph2oglhmdapKnwClQY7iaI/KWXI5KW+9Vms2m5ubmobVajUpCJgPBlNcTL1WTSWX44nlVDKZzeUJ5C9fvixe/+TBfFoUIhSqWA9BDdNVc8GegMOPRCJmsxnVEWki6IGBARSObkuF/Ep6jWABAVWrtfm5t6/fvB4dG1/y+TmrA0Yr1arcEm80Ghubm35/4Pbt2+iHOlUN9C+ctWcjlPV6rV3PYKp493PnzjXqNYfdOrcw7wuG7TarzeHqMDx7geUztNbdiYMJtCjUCRAjhlKy3zkKKLd/FOiVyJHAjFCWy+mEyq+++opO6DYWDswtLMwbFgOBoMu9NP5ydHZ+fmZ+0ebylhOJ2ORkLhDY2tqMRiMOh52ufIGgw2pZCkb8geDf/va3vXa3cEZht7ME0qYX0BhVfvDgAbFlo14vlUuVSqVcLpXLFYWfHvABhTPsZbY8tosTSESdXn/AQiJHLqcTPAeSpVJ5FWDb/6+vrzsdDpvdZuc4P790/7792jX7jz+WEglpgBylwCUYUiQr89kHcACXNIP+AzhL2kA87pzYDe1X+SONwiJUS3uDxjTD2FKw2+04e627EweyalHIMgCCI0L75ZcnxXwWQRPIBANk9tFwJFKq7HAPIJNOOR12p8ezvJyMxhJGo+nChQuoBXpM73oG2Q7IxKiCQjRqv37dfeeO7dq1nM+nnW4DplXUukcIZ/Ah2QgbSDT4nVxyVi7ElsgOQC/FFMmpruBCjA3txYxLzckDQbUo5DNTZ1p4IDhcb9QT8Vg0GltJpZKpVKlcaRK0bWxIGCLq0qhVlxNx2CV4S66smszmS5cuERMhejKtyYk38WgkGAwT0RGpJ+Jx9sPGdryw0WiEx8YcP/4YHB7ebDTyuYzb7Q6GQrE4gcLy2lqW+P77778nZpG59ghEiegptDtLPZORNl0hDZCAaDM7oN3FdgWnUHcx42wXqdS6OykgyR0UyrQ4Ekyqcu4ElhD/dObMGbjUqtqAIUVYrJzQ5rvvvpucnCjksqSS7IDVtbXleMwfCmtNVWAta9nsltoVQQxR3tKSbzmVisciPn+IeP7bc+f6pVASGECQOTo6ykekTCdsTebG6uSsDmq0K7chEtB3wP4ulkra0+B9EYnoOikE5BWUkWm1VocqokSO5VKpTgK/vo442KfUrK838QcUiCGpp4BXILpjI9MJ0kGrFKIOing8jtzf6Qt1MCiiJKoiPGbfhLHjoRD/JdwIBAJUks9gLdTqFlC43SwCeqNeV0qwTw4jjd8LkQhqB4XsU2zg1atXBwbuF/MZxamYLS4yfI/H5XZn8kVVthpqlZLNal4wGNwuj91uW06tGk3mz8+cYc3SOxuZJR0ERiMa4HA4kFpX+XYF8n02+KxQyOvRE9jcfEdigOVAWbUuukHIQDLiYvcxy1J5wkSyhBaFbDQR4NDQEFaIGmJ9tEu5lUup2/MmgDJyGhWkjBa2Z3LMnqDgAECDRRB98cecz549Wyrml7zuufk595LfYSfUWqo312WqXbG6uoqs3zkQa5E27ComBkNiIajsIElaIgRpdtxEsoQWhXyW4TmiixK2ZLNZ9eaJgLodoEoayBEjJlZUej8M8KYIqPeuaImw7t69m8vlmg0lvSsp/8p4AZaGqc/n8xh50oZqpazc+K1U2Z3UWyzWkZGRvsw1ImKHQSEMwRPjUt/Bpd5MjPDxEdlJoQ4GIxDoC2gPk9auPwToBLlgjfvqjcYYOpvNRj7HWjqABD/77DOJ0TLpFeOiYcFoXPJ6PUuB2bmFb775WrIXOulRyjSTxuIs4LJr1EOZZqKRECkhbnuDw4MVdafwfYHlIW4k0hd/AsR0/fr1zFp6dXVlOZnMF0uFfD6RWK7WG8QysKuQqQKnoERjuICtLcZ68uQJR7B/8NkVtGSqKPE+UY+00U3r0RLJcloUSr/HAW20fUEzUWXWyYJFs3sE14pl++LLL7GekVDAaDJ5lvwuh8PmcNXqyney9kIikWA4gNzbaWBKVPY4eaCsU4169kpGpUwl/QuRffW/F1hCi0LWcEx450Rl8fg/8hCPx0PBarWiN5g+p5NY2E10Sk1XYAMZAolQpp9icUfY/E4QkRI9yTREpjoNB1ZKChL1wBbbgunpbEkDIRIcXiNZQotC5dX5bcg9sMpBUa3WpJ9aTSmQ4e0fL7CqhQXlUVw7MHekdLBodzgIRrTabkAWiAxxIHe/388mUF6p6w2wJULXIVJG7odUStqLbWBW0Mn0qJdO5OyREMnyWxQSb6bTa/LUrlgspDNZVT4HQa1aTiaTqdXVSrVWKBTDkciVKz+wHm3YnWABN27cuHf/frNWcdhtVrsjnlj2LXmXguGZmalFk2H05Wvv0o4nUx0gmUFjZJcgLKwxCYZy66UHIEqZxm6IuNuVknJfsqal9M8axRGKZu9FpNTLtT2C5bcojEZCGCWfz+/1uKOxeDqba2XIvUGyQ1CtlDxul8li8SsPmLyBUISAcC8KWcPPP//86PFjcs/V1VQsHle/HbfCHiJTdbmds/MG79KS9AzI3NFs0lXts+oC2Ox0hQgQBHa4X0HsAxE0Q6CLIusDK6VEPaKUeieCA2sky29ReBgg1vv373/zzTddLR6G9Ndff93LlrIA5k3QqLVuQyqViqool8tcfu/ePafLxVihgA/Da3N5PC7Xylruzp2f0WM9P2On7zaPh4dIVldKjv0qJWBWXTuRlAw5CJFUSkvtsr2BlPakUGLuarVCWAEIKEi5cP4SQRDI4fMcdjsfbTY7Pm9wcPDChQtEE4gYaL2oSCWTxI1sZG3YXYAezm6sN0nIq7Xa5uYW6XlhZ2DCEBBJMk652WwUigXlhY58odFcJ2d/9OiRruWsHOnA6JGzCOhcum1XSibfo8QF0km7ZkvUA5EA/qSyFyKRRovCgN8HG36f8oJ9OBwKhCP5fA5Z/Prr0zdTU2Nvpjwe99hvI2PjL19PzbydnTMZFwcHf5mYmhp5+UZeaxOsN2set3O7K28ssRwMR7766su9DCnLuHLlyu3bt5v1qtlsnDMYfP4A2fdSILRzJ+wJtlf7OikjDolUexdrv6BngJRR+nZ96mvf0BggGb0T8Yi9E8nyWxSWS8VUKpnJZglrsIeFYgnnhBGbmpqEj7kFQzqdNhkNi8ZFs9WG7sVi0Wn11Nu5BYIXVZgaSsWC3lWpXIlGY//+9tu9KETQmNkXL15oFytWWfvef4/AEqDlWncqWLPcIthr5UcFnTPRJ0bsyCKkjZq+7gmiKuIvCuIsoZPeKPdCJMtvUSgvbymiU29q8w9bSmqhPbsJhymvZTKhUIhYH26waRCsnAiFsLF8FCgWeGdXy4mENuDeYPGoMoHMKv9TsMp/qOkFLFvk2A5q2NSIY/ep4wDCBe36pCsl01tWHmIT8Ct3jlZXVymoIVsL8hFNAJzFrtCDpCLSLeWuRO6gkNa7wV5mTiILPjIbyoACH+UUoJnavDv2CmTawbRkSx4A7UtqB/VEpyJKreqYwUCyY3SlZHTlFQjl7b0qOqDu7M2uN3LbQTaMXnItsqUTeSrCR4gE7UTSuEUhtQL0V5PNEYEOta5PRCF0sEhWDova5xOEcAmRRHn/c+7cerPhtNtm5+eWfAGiwUAktv3+SXcQjoi4AGZZNgTkoSqgnUgatyhkVMDw6I00PQ4wIVnkyYBFyvopaFUnC/wcATMZszgmxdGo3zECuCByIcmmspk1JXrI5SvlcrVWHx0dJUnTowehRqw0a+EoBXR0B4UoLI2wkCTOygjbwJ8xA4Y/GNqfFdMV+YnMSSZ3AoA89mxXf3kCYMtiBtqFoANr+Ze//EVeT1lNJSxmk8XuINONJ1efPXt26dIl7Ge7oCjLEtAEyGNR9My1LQrZrbS4detWpVQIBAKxeJwwBB+LK84VS8qYB8JKcjng90cTy3jzQrE8PDz8008/oegyrRMDq2WDnuTWAZhxDOnVq1dr6tem/AF/Wv3aVCgcaa4rHhGl7OoXRf/a8yKOmltSfxUIQBbNaNyikPEePHhw+fJlDDfDuT3eaCRK8Jley1RqO7979y60/xBfLrvm9Xo85HoB/8palv31/cWLbBd1jScE1o/ngMX3QuHF77/f3NyIRcMutzsSjS15vaFITH8ZsyvwhVhgNjosis+j7HA61Uc3Ldjtdhq3KGRIVkhTtZODA63961//iinXPu8E5proRlZ4kkAK2CWMj9iikwFjYfHYrxsb3d882gtQJbfgJRxTo5M9edlBIdeAZrMhN6xxXRzxwXhHvFowEMCj4Eg9Xi+5v/obUYb5+YVsNkuCKKecLnepVLp58ybCUq9V3k7UuwI0wwjICnsEU9IsyOHAuLDIpqasdX3MYObIhEEJPdCn3sEkdfuJ57t3796dO3catYrVYqYjVNnldEQS2u2UFoVcRtPvvvuuXMybTEazxepRnr/ClydJup1KvRx7Mf5qfIrQeGERfR4aejY9+/b19KzJuIjFfvnq5dTbuek5Y/vPKGTTKwTD0hU2IF+qPHny5Pz58xApi+wFNLZug+Xphb4glxBM+Xy+jjDh+CAUooWyh3pH+/RweJi0hw8fogfZbCa1klLvEqzV1De7QItCdHZoaAi2Kdeq1WKxWMMLVyocm+vKe3w2qxVq7XaH3eHM53Jzs2/tDodh0Yjl9PmWoIp6o9msP3IS6F2Vy2U+jgwP3717l+2iTfBdQHX8/v0eFh4AmUwGMWkDHCd0Cg+zY7iWoGaf96pbFMoF2EaReDuImuAyk8nKG9CEqfARjyfC6uvSlHP5PEVOJZNJPuqQHaCDpAcPLNOS4fYHi//666+JtjPpFWyIy+uLRiIEBdlCf29XdICJoYjIVxvm2HAkFMIfqkUkj0NTnsaXSqSWtWolm9Me6HZSCPYaDzXFrwIJedEk+UiZYaQsp/ZBX4th8UTk+PN6rbq8nIgvK1+sXU2nd3+pei9I4ixpre6P4/GYTPgwku0FR0IhvhAh3Lx5a71Rs1pM89tPcnzbT3K6U3h80MboAayfxRMIxGJxZaY70SDoatQxD2pBedmHHEvCLowGZbJp/MfIyAiNi/kMqsziA8GQw+kOhCJffvkFFGojHRuOypCiGHQgC9+NLhR+IGDqxCCEP3abDY6wfvVGgwQLhrDhkxOvxl6OGxYMY2O/vSTJnZiArZfj4+RhE9Oz5EzEzHLzAmxtblbKJeUJmvJLOqVgKEz6+06DcXgcFYXsNjLFGHs5sQPxuLK5P1AKmTcGBCb+67PPzCbT2mqK4HzRYvO6PQSWJjOhlWHs9cTiwvyTJ4+GXoyNvRgZePhgdByzM211+yPRaPvthQ6QBeEUtJGOE0dCIaAfYhTmPDo6Sr7YDpbzgVLIpDGhpBPK+zJOpyp5JbnE+KNSa5mMw+FgYwYCgSWv1+32BINBr8dD2Eb4CgiasKhy1W6gjn3dXqCxJrA+QTh9JBQCnDdGRfvQBpbzIVLIgomVoBAimTq5qfoIuIV0Ok30K18c5KgV1BoAhdFotOOZqg7qSQ3pWRvsXWAC2HM1Etf6B0RJjMhAUk95N2jGPiP0PRIKmTAbGl3smPkHSiGzZK76yrs+v6TNPuh6iY7eVRDbhXOFD+TTDkyxevfDbDJb1te1FHs3iLbQQjzC4SkEdCLPkNt7Y5QPkUI2PnPVPrxXsI0+//xzr8eVWla+cmxR/9KR2+O12mxmq2nRbBqfnM1m1lS+uqBSKeO5j5BC+EMyR0wh3bGpjwRoDx1yRFhAPr5fILLr169jyUksS6WSEs8q9z3qBIdoIQb27dwcGskpQBojfy6J4Jnsm8QGg//06VMM4JFQCJDJovoasS6cHRRqLnhf7BYrpgZbgd3jKKCs3ZPk305Qzwy0drvAzKRPNtrJRIzvBKJHh9LpLnomrzPlc7lKpTIwMEDYVSqV15t1p8M2Nz/n9QWQQSqd/fzzM8gNu6L1eGhIXKN3yExaFC6pv8aF3SfS83YD9R0Payjb2r63J9jY2Airf1LL6/Vwkd9Pn365nM7Zm7RRYsudoBJZ0CciO+FHQvsALbx2/brb5SwW8slkMpvPl0ullVSyUFTu93bF1tYmEmCZHDOZzJ07Px8hfwDJtMc1jNiikAwaen3+TtfdDpbBnpK+kPXVq9eGh4fr1TLxvNfvJ1ZU/h5aMDwz/ebx4KDBaHr44O71n27eunN3cPDZwJOnNqeHMFHraxcajQbpNvx1eOz3CIT15ZdfsToSU7PZZHW6SV1MZnN25y9H7AXCmaNyhO2gQz2uYZQWhRPjv03Nzs3MGTf2DrGIyLkM0BF274cffvh1aAgHEImE0DU8RDQWiy+zWiOZuNPjtdksk1PTE1NTrMRgNNud7mRymX5yuZzctJQ3TgW4EHYWk/tAVBCwpdChrt/36AX1ep1ORFxHCDrU4xpGaVGIEVeeFpnMjbryczME01i2Rl153qTc2VJf6iUce/jwIatSaFTfxtHz7naQKilvCAeDHKORSJR/6vvEWFdUjbFv3Lih3M9s1NxOx6JxMRiJul3udLbw7bfn+n0gfKxgjTMzM6yRFcXjyu0tyQjF13AEqv/pDi6kB62vIwWSx5ZiJJB2i0K3x4OVwEfD09mzZ4kJ4Sy3tmoyGpS740zI7bXYHF988Xf8HyrIRhgZGZmdfYvthw95TEi5Wu38qbYOsLVROKW0tYmPQbPTaxmMcK5QvHjxOyg8WudxSMAB0TLZJFIjyMKcIDgAtcyTU0x4dHSUoxrw7QBXab0cAxhdbgK3KJyZmpyamTFbHeFQiLkqIlawtd5sYhDqtXqzue5wOO7cuSPxJ1sMQ0rQXCsXjYsL80Yj29NoMATDMe3SPsEgJ/D04MAQqwNnFIRLhIDnBhT4SKW0ARS6QuvrKMAonVpomJs2WKxzBjMWUxVpF4gvlFky4wcPHrAk6gnAaqRL9UatViUlksb9Aj0WKWhz/CDB3gdSZqpMGDnCorzVwRY3qt98kGa70ePqdCHvDxF+i0Lftn1X5dkdqVQK+6APw9Fut+dyyjf9yHn1o/pl775B570v8uSBnpEL4jJAXdmvdYKGXC7r8/mV26bqTVECADJ9ThFA7AYBKk6qF+uKr2EfvBM0g5Q2CtWfaJZfn9sL7DWY18ZR0eN+6QUdPX9QYHrXrl0r5HPp9GoylSyWK2xVXLjN4XTaLS9eDD8fGXkzOfF6ctpqd6i7vTuIhnQd2A2ECTDL7BDiR4BlorBBkiB7ZyckyW5RqNwA3v4lyL3wIUv5+IBtePHixRdffFGtVCLhoNli9voDLqczEl9WXiqIRsL8Lxr1+TwmmxMK5U5F16dd5F0whBjZE0IY0EchFBgaGrp9+zaxuhLGR6P5QnF1ZSW5x18OEbQolI5O0RXId3h4uFTq/GIClOBKXNtw2O0YMyhUY/VZGqRXkrgnfyisfrVwbXp65tatWxgziCQqlGiIfSCwWq3kcpcuXdra3AgF/bjWYChMmrCylm2lz7twSmFPgEKOHRTu9UuZ8PrkyROxcpVSMRj0e31+8uJEMjU5NX3+f/+XZADPis7hzwiIpHOARqKd1Eg/HYB4dgYb4vetrVgk7HDYfUHlJ3o/CQrF0XaAepGd9nkPSDMyv//++utiIedf8prMpmAk5vN6cYTlapdvm3T9HpOAcIYMUuynQJlfG5gqw+H82n+VBbeHFrIzSORICqgpFQvK7ZKokr995BSKjDBxRLyEynn1D5pwBHH1TzPGolFiyL2AvIj6ECvqcuXKlUqlLD8jkE6vKd8jX1kl1lBk3DPC4TAhhcxtNxjl3r17ly5fbjaqdpvVYDSGIlGH3ebyLHX+5bo2fOQUQsDAwMDC/PzmxjoUVqo1VET5cy+rq+RuM2+nx19PQJXIoiuwePSDEUO+0N/6GQH1LDELBrN3EPPvk1Sgf+g9LNIzu4WJKRkax32/HPiRUzg/P/+Pf/yDQqmQMxkNBrOF6MDlcnt8gcnxsUXT4vTcorzKB7XkbapMWiCmpwcCDYhEF9kQ4sAOBrknJxPbDQwGDUzqj3yRRErOIEf+y9y6gkl+5BQSGjx79oyoT2VE0R5xVOVy2ePx+P1+h8NBwo59U/+q1gKnEol4LBbN5AuZtTXyPwJImJPekDJEHga7nZ8OThHmMBYFmO4RTPgjp1BEFgwGWWA7UC8cocPugMharXbmzBksmHqnnmAvZLValtTML1esfPvtucePH+ssHhNgF3XXH+Qy7R7BWj5yCjGAFy9eRBdLxZzb5VoKBFdSqWAg4HC5XwwNvn7zamTsNTqXTqe7ZuJ4OpJ6ra/jBPrU/jpF72CSHzmF5Nfnz5+Hwka9Fg6H/EHlsR/6h5LNvZ2yWM1v5wyJ7b8YtRtY3RN4EYv+MfVzB/pBByb5kVMIiABJKlRGWiArV59KhwMBP4ZUq90FVJMQ41gpxBgS6cgjeK2qHzDJj59CAA1sczyNDrmbBWw2G2Wtdie4hOBQ6+LYAHPwB4unFO4HpKPeaTkItC6OB+i3PG48sKJ/KhR+yCCKwVUfTAXBKYXvE2ge5vqQ4dIphe8NqB25Jip4YP0TnFL43oDmyX27Uwr/kIA2yIPCw5hQwSmF7wdQeMgoRscphe8BaB4hDBnn4VUQnFJ40kDtUD5UUPt8aJxSeNJA80jkZ/v5A7f745TCEwUqKA91j4o/cEphH0Du8jJtv9DftIDCw9wO7YodFJ7iDwqNwlP8gfGnP/0/iqdQlpms50IAAAAASUVORK5CYII=