diff --git a/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG..Ξ©..GHX b/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG..Ξ©..GHX
index 569c96a2..0e225a79 100644
--- a/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG..Ξ©..GHX
+++ b/π£ βͺβ£ββ£π’β€π’β»π’ΠΠπ’α©π’ί¦π’ΰ΄±π£π‘Όπ’π‘Όπ’π‘Όπ’π‘Όβͺπβͺπ‘Όπ’π‘Όπ’π‘Όπ’π‘Όπ£ΰ΄±π’ί¦π’α©π’ΠΠπ’β»π’β€π’β£ββ£βͺπ£ /Ξ©/XHG..Ξ©..GHX
@@ -48,10 +48,10 @@
-
- -963
- -3928
+ -1756
+ -5861
- - 0.8010696
+ - 1.17283463
@@ -95,9 +95,9 @@
- - 284
+ - 285
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
@@ -12570,14 +12570,14 @@ acos(cos(x*M/(4)^N))/pi/M*2
-
- 581
- 1700
+ 589
+ 1695
88
28
-
- 624
- 1714
+ 632
+ 1709
@@ -12595,14 +12595,14 @@ acos(cos(x*M/(4)^N))/pi/M*2
-
- 583
- 1702
+ 591
+ 1697
29
24
-
- 597.5
- 1714
+ 605.5
+ 1709
@@ -12621,14 +12621,14 @@ acos(cos(x*M/(4)^N))/pi/M*2
-
- 636
- 1702
+ 644
+ 1697
31
24
-
- 651.5
- 1714
+ 659.5
+ 1709
@@ -21726,14 +21726,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 729
- 3511
+ 679
+ 3406
88
28
-
- 772
- 3525
+ 722
+ 3420
@@ -21751,14 +21751,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 731
- 3513
+ 681
+ 3408
29
24
-
- 745.5
- 3525
+ 695.5
+ 3420
@@ -21777,14 +21777,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 784
- 3513
+ 734
+ 3408
31
24
-
- 799.5
- 3525
+ 749.5
+ 3420
@@ -27631,14 +27631,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 1079
- 2976
+ 1110
+ 2908
40
44
-
- 1099
- 2998
+ 1130
+ 2930
@@ -27656,14 +27656,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 1081
- 2978
+ 1112
+ 2910
6
20
-
- 1084
- 2988
+ 1115
+ 2920
@@ -27683,14 +27683,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 1081
- 2998
+ 1112
+ 2930
6
20
-
- 1084
- 3008
+ 1115
+ 2940
@@ -27730,14 +27730,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 1111
- 2978
+ 1142
+ 2910
6
40
-
- 1114
- 2998
+ 1145
+ 2930
@@ -31067,14 +31067,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 674
- 5192
+ 667
+ 5187
66
28
-
- 707
- 5206
+ 700
+ 5201
@@ -31093,14 +31093,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 676
- 5194
+ 669
+ 5189
19
24
-
- 685.5
- 5206
+ 678.5
+ 5201
@@ -31120,14 +31120,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 719
- 5194
+ 712
+ 5189
19
24
-
- 728.5
- 5206
+ 721.5
+ 5201
@@ -31155,14 +31155,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 702
- 5284
+ 693
+ 5285
88
28
-
- 745
- 5298
+ 736
+ 5299
@@ -31180,14 +31180,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 704
- 5286
+ 695
+ 5287
29
24
-
- 718.5
- 5298
+ 709.5
+ 5299
@@ -31206,14 +31206,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 757
- 5286
+ 748
+ 5287
31
24
-
- 772.5
- 5298
+ 763.5
+ 5299
@@ -31241,14 +31241,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 796
- 5167
+ 811
+ 5187
122
84
-
- 857
- 5209
+ 872
+ 5229
@@ -31273,21 +31273,21 @@ False for input values on the X Axis which do not intersect a graph curve
- Data 1
- D1
- true
- - 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065
+ - 8f5ab813-3691-4499-bab5-66b32b35b891
- 1
-
- 798
- 5169
+ 813
+ 5189
47
20
-
- 829.5
- 5179
+ 844.5
+ 5199
@@ -31309,14 +31309,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 798
- 5189
+ 813
+ 5209
47
20
-
- 829.5
- 5199
+ 844.5
+ 5219
@@ -31361,14 +31361,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 798
- 5209
+ 813
+ 5229
47
20
-
- 829.5
- 5219
+ 844.5
+ 5239
@@ -31389,14 +31389,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 798
- 5229
+ 813
+ 5249
47
20
-
- 829.5
- 5239
+ 844.5
+ 5259
@@ -31417,14 +31417,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 869
- 5169
+ 884
+ 5189
47
80
-
- 884.5
- 5209
+ 899.5
+ 5229
@@ -38097,14 +38097,14 @@ False for input values on the X Axis which do not intersect a graph curve
-
- 103
- 4387
+ 55
+ 4392
40
16
-
- 123
- 4395
+ 75
+ 4400
@@ -39700,14 +39700,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 620
- 1606
+ 1048
+ 1235
66
28
-
- 653
- 1620
+ 1081
+ 1249
@@ -39726,14 +39726,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 622
- 1608
+ 1050
+ 1237
19
24
-
- 631.5
- 1620
+ 1059.5
+ 1249
@@ -39753,14 +39753,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 665
- 1608
+ 1093
+ 1237
19
24
-
- 674.5
- 1620
+ 1102.5
+ 1249
@@ -39824,14 +39824,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 664
- 3346
+ 1205
+ 2927
66
28
-
- 697
- 3360
+ 1238
+ 2941
@@ -39850,14 +39850,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 666
- 3348
+ 1207
+ 2929
19
24
-
- 675.5
- 3360
+ 1216.5
+ 2941
@@ -39877,14 +39877,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 709
- 3348
+ 1250
+ 2929
19
24
-
- 718.5
- 3360
+ 1259.5
+ 2941
@@ -39948,14 +39948,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 1214
- 4767
+ 1246
+ 4795
66
28
-
- 1247
- 4781
+ 1279
+ 4809
@@ -39974,14 +39974,14 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 1216
- 4769
+ 1248
+ 4797
19
24
-
- 1225.5
- 4781
+ 1257.5
+ 4809
@@ -40001,14 +40001,182 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- 1259
- 4769
+ 1291
+ 4797
19
24
-
- 1268.5
- 4781
+ 1300.5
+ 4809
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - b22f5df6-1f13-43b9-950c-1163b6c19fef
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 121
+ 4469
+ 210
+ 61
+
+ -
+ 267
+ 4500
+
+
+
+
+
+ - Base geometry
+ - 483af9d5-b555-4d4b-b9b2-6cf0ef6b7bb7
+ - Geometry
+ - Geometry
+ - true
+ - f95021e8-3298-4a32-aa51-3b43667757bd
+ - 1
+
+
+
+
+ -
+ 123
+ 4471
+ 132
+ 20
+
+ -
+ 189
+ 4481
+
+
+
+
+
+
+
+ - Mirror plane
+ - f07b085e-18a6-4571-9855-90524b249013
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 123
+ 4491
+ 132
+ 37
+
+ -
+ 189
+ 4509.5
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0.5
+ 0
+ 0
+ 0
+ 1
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - e3a02c1b-9eb1-42f0-8746-b270098a9942
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 279
+ 4471
+ 50
+ 28
+
+ -
+ 304
+ 4485.25
+
+
+
+
+
+
+
+ - Transformation data
+ - cf68bf38-eff0-4518-9271-a0bbd5fa8831
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 279
+ 4499
+ 50
+ 29
+
+ -
+ 304
+ 4513.75
@@ -40025,7 +40193,7 @@ If False, all edit points are extracted which equals the same amount as the curv
-
- iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB4YSURBVHhe7d3flhVFlgbwfpW572eau3mBueh+gLno1dOrZ25mrV69embJPxFFRKAU0OKfUIBQhViAgmhrd4+2CmiriICo88v8suJkncw8HEqpQzn1XYSRkRE79t7f3jsiCwp/sYmfA37YxIbFiML/rfG3v/3t/fffT38CPvzwww8++OBSjeXl5TfeeOPKlSuXL1/OSDD2WPDWW2+dPn16165dc3Nzv/3tb69du/ZOjXTefffdP7fw3nvv0cdef/3rX+n2l7/8JY/RQWvEY5lTxv+foIfCcBNfTAaHfvzxx5988onWqhs3bnxaw0iQt0Mwn5CLFy9iLuRdv349ndBW4BFoVRTTGs+jrSGDRsq4kfLqZ4weCiGJONl4cz766COrwEwue/vtt8+fPy8XsfL66697lIX37t3LnAlA29WrV7UolILpFBYlYojxSic5F+bokFcG9Su6OlyOvfr5gQN7KGQt+xPIQwiFDx48+O677+7evXvnzh1s6dy/f19H69X333+fCUMwwWTchMLkX2EReaFBG33qbHwPK5ARqobITA5hEA1NMFiV4zoOYtHPjMt+CoG1bJ5srbe3b9/++uuvcclHaHAiOuck3+Li4tLSkqT8/PPPv/nmG3N6gfgvv/yS33EWCnMQhsX0cZBkQh6tdMJu+tT4+9//rmKnaEerPAap7TqFbJiey8ypo6IHxOb40CcTdLJw3TBIIdX5brJC5qAQDZ999hntuTUcACJxgNR//OMfJjSMdeDVF198YRdLTM5xiCqidAqjnJ6cC6O21skr4SKbKa/lymR2G9k99dwEYsmJwIdyadwEUUiCAiMWoXRIJmRhYUGw8oMtwGCzeL0wSCHE1CHz+L0UUgZgQj7dunULZ+lrGf/tt9+aMAF8QZSN2schFnknLFals77LhEUdj9ndibt161aaA7YM0iePBTdv3oxkhrz55pvPPfccJWNUL5d5BeRbaD6LGCjhzDE5tdoS2X/o0KH5+flXX31VcGQ7CmT5usGmgxQCjZteB3GiVXyn49H95cKFC+4yPMX18kNdFbOVZcNwalpLoCWlliIpCYdF0DfCd2HRfHPiSm8p0MgahlgRTHahG9fXFlTochmxeWXkzJkzkZ9YpG2O+cQKk9UbVqtD9T7VtFrw+sGmgxSygT1QArMNdhpXOiidAsKq2KlNP23M7oW3alRE4Sm1tE0hFBZDmxGOznyU+8qMixNJdq8cOQB7xSj6jxmVR5pkC8g0I2Gri6+++ooJig3bm6GawjHJjxs2HaQwYEzT64CuzFBkuFjOKWtHjhxxNkjEY8eOIcN1RoVhoTm94FNlKhRKhbHj0NbY0qlJvO4xLIJBlU3479ixo3ZdQ2HX3RSwihwVlRCK2asw1HV3RqgE4mPbtm1DYUFmm7wAhZGzbrDpJArZE5d1TQWDbMgXRYIxEJtOON5MdtZnfz+sFQTlHOLr9nHYZtEI6GvpY4kJVnH05EJKGVGi0DmYFb25uTlcWkVIhOtn98qkFmK7s6ARNB1CYWSuD2w6iUKgDVObhxaMl7NQpDtgOFouprhJRCni4MFiZdkwTCgUcmj3OASu9AjYDYtaSxxF586dC4VyhZyhohfIe3q2ObOkbFEG2/BKdFIycQn66YhO2h4+fPi1117zmC2euCyEeJapY+aFQu4DRgpzn2XmlGkm6DOpNm0QhcIswV+XQigsJgu1Vi0vLz/zzDORQw2faN2iRzfjElHG20JsUbsoCfr2ZaNdtFHbuGlCZPv27eqEgh/uqZTo0Zp26tSpK1euHD9+3NtsN2MKqRg0L1dghHltswMjqZNKk0TkKWYj0imlY4JW4NchOwifH2VHAvmo1FJ9iGchLBoJf1qv+A55tff6gTxLLCRcVdi5cyf1SMt22RfSt0W2S1RRDEMT5JusOIskVmQEhW2x6wCbjiisfvZcE8AvzfsadKJryZUC4yIUeJzfHRunT592hVHcdNxr2IZXNNd3lx6U60wRaJdCYQizNdQkrmLRKnXb9aR2XVVITZtcSMWZFLdLqNJm0+wO6dPBXvW277thDclkGsKgzfGMKeRT7qYZ1ySNCljFnrZyPGhOPgzK/aUNg+VtZegA8lHRCK2BnrFaGv6A07XGa/e+L6v27NkTD2pFQ7eQ2oIy6Ys2OtsuhgwRCR7N5IctW7YM3UhNYHXzsALbNSLWCzYdUcgeavHa1q1bEdlMqcEkb9u+DoVWsdASjnCLOXv2rPbkyZOLi4v5zJj+0z6wEZK6x2Hhz2SPxoOHFlKZp9YRaKaquH//fmW/7KUlk8BeIoEOk+WLj24Wti163LDpiMJAqCplY8Z4THkp46GQASikN6p0AiZpiUpnMgTymMEeFdKxWmprKCwa1BEuhw4ditpEmUyTPBbQwY1JdQEC5+fn4+JiSB5J6xLp0Vlw69YtpYJbfJaAXAfXN+2ZM2deeOGFgwcPepvtZpyFUUuQKlDoaaa0wMimV4OpOc9M5nFp5xRks1NQOkpBpyOZfGdOL7xyYxyjkFgM9SYiFBa1rpf79u2rXVdRRZl2QnQhXCQlCZGWvcqmhUjB6pFRbqQ7duywKgvdEqKqG4MJqD169Ch7GZuCBIpKkbk+sOmIQqWGlmx46qmnaNxMWQHNGA9FRZ0cn2hgQ1ygRWd8YbKr2hootLB7HEagTqVE/XWvb99CWy9/HE0+p0sU8wWWvl1IKGxlX9CPFeWVR/ndyOqAKHoqWgzJCAobWesFm44oDOSNM6NtWBtsS4dt3FfXwu+4KUVGBEji3GmZZ1wRM4Fzh6ACc1ZktoG/3iwE3tfSUCF1thFCbbsInW4hFWSk2YJWMub555+nlZHQE8l5rHatkVe2IFCGldvQGMxEWPOwghkX0pgU7zTvV8N4PBgjUz14MAErHlVgxWdpaenChQs6JitBlWXD4IUuhdmIB0Nhm8Vkj911bHH48OFQCMKl9HshyAgkpNmm3sjuBJLWDK1AFJL/9NNPC45m/WoI1ieOwjHzehGa02e/HGKGVrDzoA6oKukrlToTYK2FvVloo5KFoZBuQbLQKlDwC23dFAQxRJ/4WoGxFhIE9LdRWgLbg4G+MB3KQvBKTpfveqCDVeQ0Ih4/bDqi0HPbgF6YEPel74BhgAKVTwj3PZc0HxXuNSdOnJAiQpUH8dQLHLtA9RpMOObatTRe1gIazElhnFxIKSCZfKETWAop/YkipNirQ43IzyPYly3mU7UcEFpnhI7vLvbu3bv3wIEDrMh2M87CZuxhiKk6jBTj7SwEfd4UnlU+PgzmC4IhCrl4wnEIiBEoJQuHKh54RU8LxRkOskVEpR9kU9vhWP65p+zevRsr1uawl/SY08ErzcWrj07xSmY2ShY24tYFNn1kCqnIm0zNWcgej8adhb4ihHw+J+QE86Y5CyeUHfy1KQROt7WWl3X4LhRqpXuhsxeSnkyr4uUQRiYFit91PJJvXF/CTYgM12kSzC/ZvzGyEFKIFBMuo3TKKXvKl2WClE+9nexWiThEIQ9ypUREYWHRCMRxbk/PPvts5HC0mcWVBZLGuCW0klX5tG+zSA6xZSTIuHD02T50FlqlkDQPK9gwFLKQATqSDG3KCzozGI9IUG8lECJzoeiFV7gfohC8GqulEBaFkbyX8ZNDRJaLKkqqFgovSpBqOTnNHjXKSCGSCeTv27dvSL6zo/tqI1EobJmNhvw0laNdFs6fP3/x4kXfUvG7R+loTnV16cOE60xgI+S1KazYqxEFrI0ftaJhMp3iKbEV/cNZYERM2EXbZlF0qhMTWKSbJWXChqEQ+I7qYhzUEzzRvrrP1KgvK9X3hsEJUKMsJKcR2kF83aXQIAWEi++22nVVITWHzDwW4FUKIo8ySsWlS5fCUOGMnDKizRY6+HOcz83NiUJCrDXfvtFWx4iy7Dr60ksvqdLZjgLeridsunYKGWkVByV4eUdZ056usbi46FKDyMqyYfAsUY3QAfQWUk7kYsfh5MxTP5UEwJDJu3bt4vpCm06UzyPokGwXffseOnRIcEDKvlCAHA00Z6ArW/6WV7ZDIQkPtegnhE1XUWj7NjKpF6GQGcyjN6p0eFNLVDqS7KHgjskGUwNhhcXwB3G0wVCoxVZ2H4LrK48TaFVhESK2POqEWq0bKSWb9avBdkQiz77N0MyzkCUxJkjRAJYEzaIa+GOqw0zrmgAXLlzInxQuLCy89tpr+bRwUrIzJ18XlrOftOK+XtChm4j0af8lROQZTyG9d/v2BwsLl5aWPrh40TddSVP1kNoEWksasWVfAi1PPzDzypUrbrxDYUEC03Rw/NHHn2RwxhQyCW1QM1iZVEDdAo/muLzs2bPHsYcJp4VoFY/5yYWW/fkE5jV2oqoXUtAporg16gwjOtS6jAopXn0nFIYKHnz77Vv79h18+uk35+dv3rghvJRcKl2+fHnv3r0UC3NEFRa1BBpJP60djx071pUflOy8c/feqWPzP7zz6g8fv+V8t9TydQMFRhRmiOptZDCoU7G6xWj57ujRo1ahkFMw4YzhgqxK3nAcjrlgAhwthw8fHttoDN6GsIrAGoVCn26EUEMrhpIxd7/66o1du+Z27Lh28qRxgZKIMZ/OjdAaRJGT3bXsQpu2jDDKQrlFDuFQOiAslpaWXl+6uDz33w9uXLt357bqmrXrhh4KpwRFMWcVC6Ud93ErXjkFcxzBNR6ZZM4EmGB5I3QYcS6EPzAy9re5xU0y454j6tq16qeZ169LlkwAXEZPQhq5AywaQZ70VSF89ogzrwxGBxtFghx1ZBw6ePDEwRfe/fMHx48fL7V63cCuNVIIrHKL4RcWpmDmeNN+Uf9yE5hQvjG6SB3mEdK0E9CmMAgTRpBXE9QPF2bClfds5HjGLDKsrY2orKhDYtUfsXlrjkHfuJEvOHSkIyQFDaoBzkuR9OXt5o98vbWctpGzDrDp2ikEtGl9n7npub8cOXLkzJkzgtGn0okTJ86dOyfqp7nOmKbD3Y5V0AnyCPpcX2op53KxdEdJXKzFQff2aBfykWe581tWkZaUKrR1WSwjyOjKDASoEkK+WGyGNtZ3IbBTCjIDcmCwVr8K1LovVOXZZCDYp6QTxWma0B4CmSUR41zh79O+UKiCDbk7EAdYRx7NQxJROrGlpmzEokIqwyb/Wgyrm4cVUDLL1w02XSOFPMhlVvGLD2ePqoovCi3PuvtpPbYjdAjy9cCBA6pxcZYLzv79+3kw39GIIUcfAXUSVojHaRIKh1DV67t3Q638y6o2ixDatMZJru2r4FGBiZwpsfEo5HTeKacgL4ODMJdAg95y8QTwryon5Ckgg12RFCiXlF//+teqMbe6E8XRNt2yZYvJ4Y9/XTfU7cpzdRYa6WYhgaKKEKLefPPN3bt3I5IEcoxAhOuQr22zyEZJz5zEAYtYyjRtQOz8/LyvYYPZbiNRCAxmhmNMh0dY60SUkXLlnZV/RMZ1LnT2wnI0O88w4axyiIp6J5bOH/7wh507d9ZuqejRotZxGwrDgYXOtrzVYqu36BnkWfGBEhXbRpSn7RCLsUWACpHt27cnOj1anq1Nw7Swi8IupQlB2HgUss0Z5r7HMAY71bQKoMBPxyUlPPWi5vHr06dPv/LKK5hWeAUEIQYdk+GmgHd4P/61HafHj2PTJsAWVMUE5ZNh6Q+xqGXFBPmWiFoKC6+MhMKIXR/YdI0U0lJg0liFYQA+OEgVDSuKT0ZMUNwmAMGkYcJkArmDX8hEoRFvCyQ0n5pcZ0J16ec+52jtusE/qZCaCoPJgsmFVtHDIiF4CouVMTVqEkcsemu+LSjZyFoN0RbrmucaoXA9YdMfRaFVXCNUOVfOKXRsVkVdZwwCGirLhpH6RiAJBAJ36/fCNM41AYUeFbGH/lqMUHD4cbdqQat9+/bp1BY02UZUeUxkhEWasGUNvxaT5esGm44otHfQvJwIfjcTASwEeVNcWZmy0hGkrJoA6RVuAjLbbu2FrU0AM6VU2fGhUC3IT8QEHhMQsVqrX1gEaTpZfjzQPMw8C5UR2ge8EzA4aFasgJGAAK9cK/JF4Xg/e/bs0aNHnfAGdXxymFMffD1Qckt5LCCWzHJQdWFCVJVV7V+LUTB5MI8FaKODCs/XSSxtI6hGpIFORgqLWpdYSZyjQQdIg3SUgYM1yM92M6aQKyv2asSqNhjW7mjNR49iEvNU1BiWllU6jB870trwiotDYZjL7gkdW/SyaGZUdXedm5srWSImuhlDK9SCVTz+7LPP0qoRtAKvCm0ZydYOAp831ffE3btKcTlEdRzeCvK5c+eEmuu0sMh2M6YwQ1RsI4NtsA1iMJe5L3hkodYpiF3+0ubnIGK/Nm0QzirTrI3XEB94DHp1AK8Qad9C2+SKB1yvWoxlYUEElu1wk9hq18kxuCH7cGJ1ORSfCAqnBHcn9ASjDiINxuxiPAunoZDvUK7EWdKM1v/CpSCwS7VZBxztlSpXfjmNo7myW0gdxu00lT1DMiGah0UtgQsLC0MUktO1biNRCIwUfTLGeaZyatGpcKEzZUfJMkEV0vbCK8v5gii5yH2WBHjNeLNZB175AvFBWRjqfkoCTdRD0YA8UZK/hNiI6AMWw7G4tHDnzp1DFDK5GzEbj0LnmY8nDmKt64yvNN8VLjWuM0eOHPHNjlHHYX136UH7OhO29IMJ5BWY1r6R9mY8AsRKdJDZ+SfvmvUd2BR/WMwjFhE/9F0IXok2V4HmeSNSKI0oDdzElTAWs9wqOYbgLc9iopH4KOBc15nnn38+Gw0V0jYEHMqTZENgFH2wqKMVjkiiZM4Lg/Z1QGiFwrFjx1588UVXKpGaLSjQCFov2HSNFHJEzkJtik8+7RU3Kehz4tSpU86qh56FJkz26RB4E2flpzPQmy7KnZmKJxrUaqUiPyOdgLBoMvl79uypQ/RbqaZgoI2oHBwE+oJSnFlNZrbbeBTymmSSiwK8feYxD4xIjgmQteasjcIowHepBDQhUDCdP3/etZPk2qXV3+A2Ex/yRkiV3/KdDCy6YSESZ8RGVBe+iHKdpkBGRGQjYr1g0zVSGGBL6yvC7cNJ48NLLl64cEH8GtQKWOw6inrhlej+MYV09+7dWMw3jB3379/vDjk/P8+5tUtXQerQEz2NiIkQHw74l19+eYhCm4qe5mEFM87CXAKbN9MBB1yJA3CvwSJcvnyZHKeOwcdHISbsqIjVrquuo9yHVH5/44031ICM8zKkxjqxpt8LhcJCTAxRSP+SfAUzppDx01NoZgopGoR89TVe/8ssaRUrJUjUp75NgDxeG4WARWrElYHtKNNODkdX+SNfBL/wwgvlx9wPBQNZEfoLxh7HQIdm8XrBpiMKafyoFFqlo2BykIPdZcF1xqMOLC0tPb7rTM42320SPRIcS2KikduCQZ6Vpkpf/mw5EiaDdQxx4RyTmc9KOypa7VgJZkyhK0AzPAXYgLZ8GIBcFJ6gX6VDDY/aTBiCHPoxhVSU1K6bCjJeVk0ZMShUSLtnIaPIYS/+yqWpgL0Ua0SsC2w6opByzfDUYIwy5UBKm3/Y+fDhwydPnnQzdOdWtZCUC2oXXsmhNRdSZGCRnPgUuj6lgOTjVhvJm3wANOsfBixaOEYhkppeH2ZPoerUvJkOfIcGcCvRcmKIMS7D5KgR/SEIZGfn2ijEhAvwjh07HH68llOgW0jt4mLFLvmnyPvO656Flgd5JIdKWkdD99distwEdZuBzegKUBgJtaT1gE1HFHK6G02xZDJombOQg3yNcagY90Wh+LDcKcJfOpNjFnhhDQZTkhN9RdilETQFXK/4fYyqkCFTgQmBvkG2HD9+vFncAqOkezdcYA2V7EfCpqsofOqpp5SmaVgMhSzhFyxqU6CyNjkBTKpNG8QaKLQF/3K0TjKsDWoUZIQyVoUVrYALSQXGERmFyxZpyXe7Zp1bjDZw5Q6a5xZMe1RzfiT4cBWF7njNm+mgTDlj6A0qDH+pV7FcB1JUh6CQKoPc14hbDXK4o86Tyr/FrfG7TmCw8n09Exnhqc6l0e/U5TGv8qhTxAb1nj2o969+aiq405+MZtl6YRWFMkbkNm+mg6MutqmcPqjdZXxLnD592q3h3LlzbjRCFYv13aUHXg1dZ/iUl+kjCUCH3w3G+4Uwfaj4qZFH497WtI6yqg0jZXlW6WdymTAGg7Xs0d/PeEIwTmEzPAUYzBhl0MEgfaWUs4EESMegTt5qh4DFXgo5yzmHZoqBWPEoVpx/hbkJVOVxMsrMKenUN8Hb9uDMwTlrpzDXGfYsLy8bcZeRefraU6dOmeA6gL+KgWFgsRBQwKdciS2lOPmqSpNmZkVdnYWVd1dc6ZFnHwpiw1b6WRsUaZlgi146wbg5OvW62YMP10hhoE5yroMwJx84BfPobFcA61N/FYwrnunrmNOl0AhPcVPb4/GaNm/5N49aOuQPgybDjqbVPwqsfgqoOHeZsBH54L+2tVFOipyg0URsPTksrqLwkX46E7AEaoMbywvyCsJB4JH9vF/GdRpZLfBO5jTPffC2+BQx3Y/6LhIu7lzIQ+GhQ4estVfI0Jaj98bNG7du3vr8VvOPkVUjK2GayCMkaswc7BpR6HLYDD9O8Bp64rUJeOi0vOLKXbt2qeG8jx6M8m/NVw+UGfmHb5aCz3bxJA4SClINVH7Hs8nXH1x+/r3f6+Skd+rnXuZIdk1zffPVm8+V2YKGIwp5rRl+nOB6LuPu5nkYpjW9YajbJ06c4MpcmnKZii1vX3vn1CuvLJ4/79ErbRtGrM33K/5odfTo0f3796vz9v3q6p93/f6f/+Xf/umLL7/57FY1Amqp+X/84x9/97vfzc3N7d27V3Y2eswObBlR2Iw9OlI2OWIamBl3ZNUQvDUn5VQ/0Lddu4gZ9ChLal5GkDQL868e3L4NJR6lpoQzmUxCqMH7L774oj7yADcmuDFl+dfX3zv7n/9+4H/+68NPmn/WqcCn85kzZ8i5evXqE5eFzdgjgl9yhVHKpge/x3eTQT438TjnXrt2zaOF+sV3QxR+8umnB7ZtnT+wX+XMSMogRn2fpC/nEhOB7RhiAnzum/WHH+4++N4dKSMF1oIzMurNHEz7sRTygoiOX6aEybkUdK+RZUQncGihXDo6qGyk0/6f2aSQIpVDDaLTZPnhq+bCwoJLJI57P2xKIY2cAuZMA2KbBbMGW34CCvmOB2UJV04PNwKwaqzThRKnfC0uLtrLjjolA2y9e/duE7AuLHAsZV03EFkzVUHRQ39Kd2q41kwLCXxCkmnNYOCIwh9jjOTgmunBiVjMhbAZGgAKtWaGThuNpQ5iZHZNVgNZ3vRWIBEhPzMCKaj2+qh4cpJpzWDdiMLcHYyugUtLHhVW2bF5WA0khScuxh+a5Vbc7W21XwvG5aIULFB7k5RBKcvt+uxUU0gbERsZ4xQqOOJdq89rBaH2pwUyStC0gRI7eoU5bdBlrg1Couf0eBwWzQSrKBSb9SdvE8KJ2bROjsdRc8jEU5V39Y/NeLaunaMfZRnUGkm/WbaJFlZR6ArQvZ0Ha/jx6TTAHLZwI88+/fRTHwAUuNtBBt02N1nsAjsjCnkK3NOee+65t99+WyLKyPxgSS4uLy/zeLPup4P0cuzZ1I76Lizty2Qbjq5NCrvgmRGFINi3bNnyq1/96uWXX5YWLo0pbrz8pz/9KVeMnxyI8W2HIeECvX8nBTYp7AXPjChUqW7evHn27Fnfzi+99FLttwa3b9++WP/vxJt1Px1ktihRSPNh8H39izLZdAybFPaCZ0YU+loaygCvHlMKgk+C7du3q6I2wh9Ss+kYNs/CXvDMiMLqT0JryDltbqeBr6jH5z7cvP7664ismRqEaWhu1mxiBTwzolBBG8Jj9V1qqUChg0J67/790888c/3UKQ/379+vvsPrf4uw/tyofvm2WbaJGqsobMbWHfJv27ZtKaQovPPNN4e3bv3XX/7yP37zm0/q/3uyAnDnzp09e/YsLCz8PH6k8hPiiaBQYi0uLqrVdAje2rr16r596jlGHc85oS9duvRu/S8ANcs2UYNnZkxhqui1a9dUSzo8qH9BUKs/Bhxv8tcFz8yYQkXSPcVnDCLp4PAbutdsflT0gmdmSaGs8kXoFFQkk4UTsElhL3hmlhSiBIXa5eXlz+t/ukUJTaeLTQp7wTMzo7CkYAppbqQovHXrVsVYB5sU9oJnZkYhPsofU1y5csVtpVw+0xnDx/XfFG0Wb2IFM6OwpKBbjA92Ix/VvxU9AVm4iTGsonATGxQNhZvYwPjFL/4PR6AaJJomcN4AAAAASUVORK5CYII=
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABvGSURBVHhe7d1bdxXHlQfwfJL5CrPWzPOsmfd5nc8x82JIyPJLEhsTCMbEDAjsYGDMLeYiMBeJmzESSIBAAiEMxo4JvttcDAbjSzDzU++maPfp0+ojZc2cA/4/1Kqqrq7atf9779p1Wti/+BlPAh7+jJ7FYwqvXr166dKly5cvv/vuu1euXHnvvffef//9v2T4IMNf//pXj3QqPb127Vo0P/nkE+96RY/6l19+uWfPnt/85jcPHjyINeD777+fmJi4d+9e3m7BN998Y4bbt2/fuHHjzp07xn/88cf79+9XEsAqlvjoo480lfWIMYSJVwYHB1966aWiMO0wNTVFhrxRBYKZNlukW0CqxxR++OGHKEEhJAohKFTSiIox6kFevGIk5uzNW8Z8+umnBmzZsuX+/fvZxnP8+OOPea0KKGRAFy5cuHjx4vj4uIW+/vrrefPmmdOEJg8i9VsUSQ25ZE9DQ0Mvv/xyEwoxVGNk0O0U2jAdtXNE3KiHKj1SllgMncYjSkfA3/72t2zjHQDNwAW/++47ZrFp0yZThawxf4gBQkLqrAHxPvvsM+L98MMP+RpzwFdffdXtFNJLkcJQFoQXeqpOKUpKCY9UN5HBYAbQY/Dw8PC3336bbXwa6PRiR3rkl3woBE0wv5IklgjBwinjaSuCQmATZKiPBGDAO++8cz4Dtkrj796929UURhcmKr0wsaikl3gULOqJF9VVrl+/fuDAgYULFxZjFw2ePHmSa+btBkDhF198UUnPtKV8/DExCBAShmZbB3/++edjY2Nr164VIY1kQ9zaMBuBOCyjbhJNWzhy5Mjx48f37dunLFohdLsXatsbpXDEIoWhI/1gk1G2sujdYJGOHGlr1qxBW7bxaTBnR2ONE1Ax06EjFuDI8S55BNJ23ASiPwggTFBSHGy2gYGBP/zhD7EEq+KRkXOp2II6mpUG6zSPw/jWrVv2NTk5WToau/0sjC7coCFgh2BXAQpS2gNlKSkunhZZ1IOJ0IsjLdt4I/A5LxbTGVFLOiNLDKMhWw2RQCQjw6rUozOejo6ONozh3E4IZYtAmNIWeoNCG6YF2oxtoEQzeFKiTTNc0GCdlSyCE6XohczfhaFJWshTKQ7Ywa5du5hCLGTdeiIhHhkWMpOWqLyN6pvnVoQUMCpjRg8EUqAFO293HAIFKe1Ev8H6VeKRV5QOsGPHjoldRcNn3Vyho7OQElM6YyFkxFoNiSRhyMyZtm3b1sQLjfdu3qgC+XuAwgDyihSC7YVGaFDFTqZJ++ADe44B0fSW10dGRpYuXVrUGtN2Z28YzQJFCgNFItlZ9MSjSnjqLNy5c+fvf//7fNJakN9beaMKzsjeoNDObSZiaRYUHzti4k+PkUmVKhAOikUDSoF0RqRfZyidsQukpt2zZ08E0iJKRGpC/qwFojGR9u7d25H1tEMveSEdlbwQ6CKxSHdKIw1QBqkQ/UCtJa1hJa9VofjrzMTEhLXo65lnntFMt/sizN+ESGO8LjNqcgwHyOns9EqrwCysZyikDqopshjE0GwQGVQpgzzjUasCXj979uyqVauKlyoe6X5W//MVyCDA4Ehntm7dGgthopIhncl6VFrHxICjR48yCA4tqSGVEI0hUNEklYrSGNGe67sR7t+//9SpUyUr7I10JmDndJdiaegoKAzmNKk1XDA6I2Sp6Dl06FDpak8XnhZJnRHx60xIYjmvh2DT8v0UwVNIWCISJaLo4sWLkaefGGQO07S7c+fOxa9Rwr4AoJ/TOzuZIINzt0FtLk2GXgqkAfssUQgpkNJpKI5qlHpUPAoi33rrrY4Ia0VQSIygxLRWKTGUoBOCbKunYaKoe96GDRvSpQKLwNf18Dx1pgaaOlGOOeYI4jkZ4q1Az6QzASqgNYaZKAQ9AcoKTUXTeMP4pYphntJF0loT0Ka1RCq0KdFvqj//+c/pICRPWIx1oxn9ReiERGTI417YkTDIi7xM4EVq3puh97yQCoLCYJFSAnHshUINC/I0VUKzotMbb7xRjELONsGqxi/Zu4A2NTVlGD+wCn3Nnz+fAHSaiTMN88fqylirFdGfiNScnJzkbflK7SFbqT+te+ksDNg8LaRYmtGXx8mwU2pSxqFocDxi8oODg7/73e+KZyEKW39yrATDp27j+d+OHTtMC7lAGTStaCEiqZSeJkS/SQYGBpYtW1YUph0YkI3kjSr0UkYaoAUkFWPpNIc/veAr6TGa3MUYr2hu3769lAt0Cq/HL9GWa+VJT4QBT6MZ/SUIyydOnFixYkWTQCpHLR1+JfTGb6StoMSgcJq9DOFtEanwp6TBIE/FYG9RR0dnYStQGOmM5WKhEk/R9NSKsXT0F+EtdkDaOQoT6LF0JkAvdCSWUmIgI3E6kIJH4XNgMFUaH87x9ttvF08+GjSg5kASY52gdPTFF1+kdGb37t0IMKdV2vGkJ8yIVK00B4XCgwkjEc3XawMDZLBivvPYpno+nQkQunQcgu0pgy1jlJRFxTqdhQcPHnz++eeLx4/bev0nXxFMxHYaIdJ1zTwGz5s3L9KZIk+WqySSSIRUqqcBssrTp0//6U9/YiJex6JHpjKM/SltQQlmDmPduHHj0NCQq70IXMq/etILAzYfFEJsVWnb4YXK0C/tKI3HRKeffIug6NC1SwUfChlAj0VJQo+JpIToIRgZ0oD4E4L45MtKWJUJ5Tj6sWsk++D34ak67cW93ut25LJfyr969SwMxaVYSkdgq2G5tqS04egx3sjQS+tvjB2B+kwLRbbUrZi8Le8tIAaQkzzRBI7YUBhuhznzA0MsvdWrFAI92lLiDyhIGZEzVGaYMUqdMOtPvgkpIzUbGjJBphF168aixUeB6CGhAZjmc0/XJ99KUAqNJBaDP9pRASqOMriURs7iky+fw7pzVHy7efOmoGfdzZs3c+hgokSVps5WghN0sjxjpCdbt24tCtMONuXFvFEFaXYPU0j0SkcM2sJNjdRD6TKXTj/54swMFy9evHz58sTEhHmKv85Mr5fpt4ggyeokybtawBp27dq1aNGifJlahDXkjSr0sBcGKCtAm8FfOKIyEKrEhNiFiWIg7QiCHrJNIi2MdIZmTW7pqE9LU0A8Kp2agXjRPE28cEb06qUiQBdIKjpikKcSjmhM6FEncxYPS7lAp9mN00hOFKsDAUxLAMuVqNLU6ZGlS4/IwxQEwObHMMtDFbQK3Hs/sJUQ0bJIoTKcj3KVwSXyzpw509fXV/RCdWlhKUevh9BqRciXL1DVev5FMwRLzagY/NZbb6GEYPzbqQwkAVaibiEVJabdKw4fPmw8x3UclHy35ymkDjzRIDWpBIqOSN3qrJ4KFi5cWEwC1amSvvJ2CyjUQUiDIqcDjE4tt23bNvObtkiJ0lqWTp0JeowveqoDeM+ePUuWLCGAHpR46nx180mffDVlUq4QKmQ4ePAg8ljhk/DJtwQqiFA2beoZ6FGpU2lvSsMMMHJ4eLi0/3oYjBiqDM2amb6kM1QckwclCTpjuRIMQ3nimEG4573++uvJnoRHRLowKNmNUowFA3SifHJykhWapOc/+bYDxVGQko4CyRGj1AQEFL2wI3gRJKI7duzAAW0WHSugbpVw/RK7AYLFUzNQfXNh8McowUmcdz1Cz3shJMUlCjUTf2H+VM+ZXMWKYZPti1StgXT68twm0eCX6Q8vgkVqLbGop5XdQHrqXW5dOtUq8QR+8q1E8IQwCBYhEanO6g8cOPDb3/62+OsGCgW0Yly68cEHkzt2TJ0+fXhg4Orw8I8tRNImPwhulO1YjH4CFPsDeswgMXnxxRebZKSMzFR5I8unbCpvZOj5dCZALzZW6Yg6DYj+7du31yQvcPvTT89u2XJhYGDPwMD5nTvv3Lz5zqVLpV9n1q9fz6eDmygtUWIr9Vu02B9A4cjIyKpVq5oE0tInXzv679WvPrx/6+F7ww8/mdRz5wkIpEBNXCFUllgEnUFk1PlQvda+u3v3/PbtI9u2berr++jUKUkFD5AQxscmkzh45s2bJ7nAYr52hkq2NK0eNlQEHxUVyNP8LEz47vvvx8bPPTy5+uHlww8/m9LzhATSAH0FaFOZ+AslKo8cOVL0Qhr0tHhZ/vzy5ZHVq0cHB3euW/fJ2Fjem8FgkFbI72O2bM0c2GrHIgeNwy89CgpVCONuOuPXLvGW0chFXSompt49ueXFh5+eyp89GelMIJQVesScugogUkllVP/cc88Vjx/qO3XqFBXkbWfh1asX9+795No196+rQ0P3b9/OHzyCdCbOwlgrXzuDzmnzyf46Le/KoEnFWFTGI2HZuq+88oqoYBJJjc6QE8yQ6t7SFAMc5G73tvD2seFdq58/MXLi9OnTQrGnwuwTQiGwbhqxK5un4tCFHv2a4uGrr75aOgvrnaD1UTEjtYrJi4RVdoImGfBBDPXr168jQzpjQvKwKmYRx63JzcDgjNGpotMuxsbGlCaR3dy6c+/27TugB3/d/qWC0B0BbUGhkr5APYzaU3ppkscn3L13j8ri1xlJDf7IJycSTlUqCUudefsRYox+gqk4SkXFhsKws8hLr1y5whDF8/xBhm7PSNkm9TWEwXiiJkoE/NGX7enRr+kKQR3ZxqfB/N2vazL74q8z8S+bmPwzzzwTH5vIGoRZpcSitYLFYn/AeI+8TvUlMioRkUBJ8qLwCd2eznQKcSnOj2kOMxZBhd8MDQ0tWbKkaPgGj46OYiVv14K6vUv1vJBbJ25ULNfKojEkydsFeMSexsfHN2/e3MQLTWJ83qhCt6cz58+fr/GSVkgvQ6FBIT2q2yHIIJYtW1bUmpmdNE1cISHOwliiIYsIKPaDRXfv3v3CCy/MmIuC19lf3qhCt/9GyuqL0UMaFrmZ6wFttrJrsIjK8yg0/E8ZRJqaQitjUXOkX2cEQzMnblQsYbkiW+qU28qiuncHBgaK95lZo9v//KmEFStWPPvss+Lh8PAw26RHp5SKjINzaDoY1q1bpzP4o9bkiHqMLGmtXolirOMTZyzJ/Jrk27BhgyYaLGfyxI1KDYvK1B+OxRqaBxiZp605PksZNXR7OgO0zLFoTbYii1u5cuWCBQuWL1+uUwyhRwhXU3IyHJ84cYKaKDSIDLXGu0XODK7/5MvRvRtf74R0szl4fvnLX6Z0psSNSiWLhDEy8a1Ud6/gQLgUyS0U1wNQ0YwK2azIhg4dOnT06NHKT77dns5QlnxazKEFdyNRdO3atS7F8+fPt7FsCz8BkxwcHEyqpPRwQfNSgeOnePKpU2WrXVfCucVpaJw2WY8JEzfK4CY6mVQ9i/HJd/HixSZkCijxyE6jPHfunCji/sB04i7hIiHqqE//OjMxgeBcpgzdns5I6CcnJ4mobv82pqQjPZVpCCcT8aiJEhOCSEocGRlpSFg7UB/TMVXIaiGSBIvRE6hkUWkkYVgAPjZu3Ji2oBJ1JedTspgwGp2CjWgRk/TeJ1+wbcx5IBGfkQAUhjbtKhwR5SpK9Y7++rYS1MdEMjlzUKvJCZm3HyHCe5HFQLCLRQGwuTDGm82LVs+7HqHbvRAltKYXMfHbip4aOEJiP3QXFAa8zqE3bdpUNALjnXCluFSE2cQAZ7DZ6M7JZObiP9QOeEq/uCkRVsmipn6s8ycC5Cu1BydDUt6oQrenM+FSbJCUIaieemST5GpFXrigIyc++RaTQBp0zJTiUhH4NomTqZjOpH/ZFAsFLBdrlQjjnVYvdbLF+OQrVOYrtQcJTZI3qtDtFOZ9GSIEldRRA3TSKb1D6Le/v3/WZyF1i3uYe/PNNyOdKYFg4fczssitJZYNP/mysJo4Ad1+L8z7MoSOoCGLhlEo/rxCiSoi4RzPQtosnYUlVAbPEotsixEo5yhMoNvTmbzvETpl0d4MRiQNUq6rWNGinazU3eRASmAEcTTmC1ShMngWOxOFhHE3nTGckvPChQsi+alTp+yi9INAt6czeV8BtIASO8nbtTAYhXgSAPFX+i9eUJ+blpwlb7fAo/TrjAMMfyZct26dEvI1fgr9uEGYMo1JncEiIxgdHV2zZo0JbQRDxqDBvoDAhkXdU6ULYtwLHeet96Juv9pHly0lEJcWYnvxtAZG4s9gL1LB2rVrS/unvhon4CWhwWI686tf/ao1nSnCooQMFvOuAosesQb2tGzZMkuQh1WxEn7pyq9iRXVj1KW+N2/e1ONapUdFhoz4EC/Q7WehbZOPoSXEV+zEjUr+XhuYIRzRW97FWbbxjkHRyKbco0ePKvPZ24BUlkNY3s5QZBE3LhUNhRHqMcdu4pNv6a1up5Dc9pyJmoMq3fAiwjSh0IBEIU8qeqGpGH4xtM4IfikMFt2rHaxrUXIWJQwWMaHCHJukMylIYK6ScvN0NYWMDouZqDloXEh0V0NJ/sZMiB0eO3as9ZOvo6X+4lyCFF98i2lnBJ4YGQMqsSgInz179vXXX6+kpIQIyHmjCunXjO4BqR5TyJCpgJQJbrKsmNBFvcwI413F/vjHPxbzT9ZQ7wqWS7/OKDVNtWXLltKvMzXwIvlL0YLru1wuWrRoxlwU8Ge5vFGFbvfC2DmHS5iFuCahRC/SZkeffIVNNsTjuYIgbJJ2v87UwOrCqXkSiyo2Ir3s6D7TDr10tZ8L2HIosag1TiCWNnEFMIzXYm7v3r0zpjOtwCLagsVwLIll82PYYLkYtP4c+LRQKAyOjY2tWLGi6IX4c1kWHvN2A/DLL7/8Egf5vJ0gclEsAoceHBzk02xCJMcQOCPwoZNIUVGKk4Tv7+8/fPgw63F4l3y32wNp3jdn0HvlJ1+POgqtlMsFw5k6glcQH7lJ8ZOv2SQ1fNQBH2V88jVSKZsT/JXukSL5+Ph46/dCTD8VFAJ7Hx0dLV4qZgTCKC7CJlegLEysXbt22o9mxSJd44Yk7kXSopSR4jKCqrI1tvMzzMXp23uffPO+OYPtU4FI1Zp/0qMB9GtMiWBN2om76YULF5ymWFywYAFfCYV2Cqs4Ec3mLKwUph0YEEmAB+ddj/C0eCGN0/umTZuYMEooQmoQMc21YevWrW6Nu3btMiZTSwV4BvBII2eRziRg0UEIZ86caZKRktCJmDeq0EvfC+eC+Fly4cKFfI4T8KdLly45Whw/btmujJr8rPQzQiua/zpTA8Ls27dv6dKlpYBZCQchIfNGFZ4WCiOC7d69GwfZxqfjZ8QxdFKT0vnU6oUlLXf060w7MAKZcF9fX5NAasX68/vpSmekJ5E1FIEkwSpQ0intyA+9GEdppDMbN26c3UGYYLYIxSmdmQuelnQmcOjQIWFHHKM79zDWzcZropkB1M01ZfYpnWn9nxx0iqDQbO0oJFXRmOrj7dPihe6F+Fu0aJFAasOyCcQ4FN0ZUmidEVSJOVfyuaQzIJC6oa9cubIykMpxsMvd2U2kryjPn1XhabnaS+Kx9dprr7nIB/ABlKjMVNEI+HYW0mk+76wgDBw4cKBdOqMTKxJmC4GwAfmzKnj6tARSekdkkwyiBiis//OnJuBh/MylYo7CBJ6W30jj+HGLkNGEUYf/VfpBgvNyamoKZ97lOo4oU6V/qD0XCMjCaTsKO4oNT0s6g4bh4WGxy+HvgLFnKYn7Vv1Z6JExLhuXC/8ZveI/1G4OnpfAAiRHMtvKdEbOzOBYDI6ZjoXE1fxZFZ6KdIbW6OL48ePLly+nNXsWfByHEs7Ka0YlDOMcFNrf31+TzgRJgejBBxWzG8GTEUhSTLJz587FixfnU/8U/A9/xhhvIWkX+8ufVeHJ90KqpER5nTr1zfErK9bjLAySAtk6FVQBJ46KHv0RAAxWOXz48N/lLHzCvZB+bQ9/ylC36BSZXhNgC1QioEFMCE2oQmoSIyH1mFkMEKvBKRuVWYB41oppuwR/NwqpiTbjXpV0F75Sgs4iorNIkkmcf/EHpdhSRsUY42PmaX4KiM56xEJmMFXIGT0dIQnQPeiAQtIXkfdmoETap5qoRydk6s0RPV6kiCZeFePBK3rSYJXgsjhtR/BWzDO717sNTSmkMqmdwJgQnZka8w86UU/jW6lK0JOoMjJeidcD0ZOQOo33ohmCdfMEncUxTWCkGUzV/JWuRSMKbVVYK/2ET3fyN+qLuKQ5d6qaIL3Yjs4YADG+BiF2k5HdDFzUUUhNFOQocqVzMci4y0Fr7lueusap0wX8HalqgjT57LzTACx6t92AngAu2lJoY6ELm3Tjlk+757kngIpH9m+Mp6G1eCXe/b+HpWP1dnTGAIjxoG5wpDZ5Vw9iBgptnhZi2/ZZQhoGtEYX/+9EBkIklXZ0pjEQLGbv9STqKAzYfGKrBnShpCPjaS20o4eC7mX/3JfjzgLxA2b6DVMAuH79usSqnUiWK2La0DKohzkSL758qSRGVXTmU/QaqKWOQjTYXlCSd9XCMBoJTdGOpjs1JjL9dwy3e7q+kf0H19Hmyv/gwYPt27efO3dO3eSQL/wIRsbvAwH12zfufnXzTtQTYkKvK83/VfYXwHaaz9JToKg6CoH94qNVWTUw2FuIhB07dtAOjX/zzTc3b968ffu2kjNlHM0AmqVuLLIGZiRv4pQrV65cv369OfWEn8WiyDBz/uYjcONLN4fev34ub1chvheGf5swZush2MIMFOIDhbPYGy2Pjo4+++yzyONPaEAGjU9NTcmMMu11DBF1z549ciuzkcqEwFCIJz3ev3///ew/qJb9ac70n4C6Bi0Y+9flI/+prl9Iv3XrFjO6c+cOCY3hefv27TPnxYsXjx49evz4cdYW8vcKbG1mCtm7rXbkiBDjt23bRmsCYDrPElB74sSJq9c+/Mvk+TdeWTN0YiR/0B4m8VbSchxyxBMn16xZ89prr3lKVHRyz3vXPjy3YdP8tf/wX8v+5f79B+wG66hC/8TEhGsSx9VcvHjxr3/96/Hx8d27dy9dujTY7SFQywwUAk3ZfN7oBFgUCUsXygSxi0fu27//peeee3Pzpnffy/+Ak5d4ERnAq7gO6MQBUzhy5EgpsKsjFSv9/f3xlSrm+Xhn///80z+u+vd/nvcf/3Zy4rye9Ch99rK1devWrV69miRmHhkZETzyeXsEdvGYwjhaWksQrBhv6vFmqigpUajMJizDsNLPOiVcmRgfXPJC3sgQf8qGElRxjpMnT6rIGGUxMqO+vr6tW7fy7HyBDMZHYpJP8Qjf/vDDrR++vXXv6zvt/yIGr8C/HYpMITbVQ7CFxxTaQKQe4lKxpJ1UGoAwcCBFCseiPXImKWPSInTWJC/vXLq0a/26vuXL371yhc/lvdkn38hjUYVR+gXzKDdv3jw2NkawfIGfgtPLSnLcuHELLc6+r26bJ+9sgUeA/nyKXgMtPabQMSBeBdSjmUrayPqmjwrHTxyQnINmudrChQvjC1/MG6DoM2fO0I4ZUIIYfBivot9B+PLLL+9b03fu/PmDBw9KOKfZqwUKqdu07XyFJLNGPkWvgVoeU/gzehQ5hT+jh/GLX/wvBa6X54jFBiUAAAAASUVORK5CYII=