-
0
2
2
-
1
0
7
- 2420046f-c7da-478b-b4f6-b139710153c2
- Shaded
- 1
-
255;217;217;217
-
255;207;207;207
- 637934503936665928
- XHG.⠀⠀⠀⠀⠀⠀⠀⠀ⵙ⠀ᙁ⠀ⵙ⠀ᗩ⠀ⵙ⠀✤⠀ⵙ⠀ᑐᑕ⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀ꗳ⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ꖴ⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙁ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ߦ⠀ⵙ⠀ᗩ⠀ⵙ⠀⠀⠀⠀⠀⠀⠀⠀◯⠀⠀⠀⠀⠀⠀⠀⠀ⵙ⠀⠀⠀⠀⠀⠀⠀⠀◯⠀⠀⠀⠀⠀⠀⠀⠀ⵙ⠀ᗩ⠀ⵙ⠀ߦ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙁ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀ꗳ⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ᑐᑕ⠀ⵙ⠀✤⠀ⵙ⠀ᗩ⠀ⵙ⠀ᙁ⠀ⵙ⠀⠀⠀⠀⠀⠀⠀⠀.GHX
- 0
-
-7986
2086
- 0.7361501
- 0
- 0
- 1
- Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null
- 0.4.0.0
- Mateusz Zwierzycki
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Anemone
- 0.4
- 16
- 845527a6-5cea-4ae9-a667-96ae1667a4e8
- Polygon
- Create a polygon with optional round edges.
- true
- c32e2c8f-4778-4bc2-9867-6b598d66936b
- Polygon
- Polygon
-
10287
-2583
138
84
-
10365
-2541
- Polygon base plane
- 722cc4ea-7631-4a18-b8b3-77123b6813c1
- Plane
- Plane
- false
- 0
-
10289
-2581
61
20
-
10321
-2571
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Radius of polygon (distance from center to tip).
- 0394dc63-f902-477a-9f22-cb4810a5ef1d
- Radius
- Radius
- false
- 0
-
10289
-2561
61
20
-
10321
-2551
- 1
- 1
- {0}
- 1
- Number of segments
- fbdec676-d8ad-4a56-903d-458de35f7d61
- Segments
- Segments
- false
- 0
-
10289
-2541
61
20
-
10321
-2531
- 1
- 1
- {0}
- 5
- Polygon corner fillet radius
- 7b622367-7833-402d-9de3-9225d138fe0b
- Fillet Radius
- Fillet Radius
- false
- 0
-
10289
-2521
61
20
-
10321
-2511
- 1
- 1
- {0}
- 0
- Polygon
- 00c165b0-8023-4d7c-a3ee-6dd325055cf8
- Polygon
- Polygon
- false
- 0
-
10380
-2581
43
40
-
10403
-2561
- Length of polygon curve
- 21178a73-56b3-4008-ab19-215e4415994e
- Length
- Length
- false
- 0
-
10380
-2541
43
40
-
10403
-2521
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- d27c77bd-c1bc-404f-bbd3-ad207fd112bc
- Fast Loop Start
- Fast Loop Start
-
10482
-2600
124
64
-
10547
-2568
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- 482c2150-cccb-4a5f-921c-5c4bf1d652e8
- Iterations
- Iterations
- false
- d4afe634-ad9b-42e5-aaaa-4ccec09e72a1
- 1
-
10484
-2598
48
30
-
10509.5
-2583
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- afbaf20a-76a7-4ba6-a0ee-1fda4c673c6c
- Data
- Data
- true
- 00c165b0-8023-4d7c-a3ee-6dd325055cf8
- 1
-
10484
-2568
48
30
-
10509.5
-2553
- Connect to Loop End
- cb18168a-3ff8-4804-9804-e5b9d493cd63
- >
- >
- false
- 0
-
10562
-2598
42
20
-
10584.5
-2588
- Counter
- 5910d3f1-011b-40d9-9836-c70b3edf7e5d
- Counter
- Counter
- false
- 0
-
10562
-2578
42
20
-
10584.5
-2568
- 2
- Data to loop
- 44a0f611-f086-4667-840f-a2d4306061dd
- Data
- Data
- false
- 0
-
10562
-2558
42
20
-
10584.5
-2548
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- d4afe634-ad9b-42e5-aaaa-4ccec09e72a1
- Number Slider
- Number Slider
- false
- 0
-
10273
-2694
198
20
-
10273.4
-2693.647
- 0
- 1
- 0
- 4
- 0
- 0
- 2
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- 08e980da-b410-4779-ab70-71dbecc1c46c
- Fast Loop End
- Fast Loop End
- false
- 0
-
11450
-2713
106
64
-
11495
-2681
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- 23e774e3-a53a-487b-b9c0-a2151a83dc4f
- <
- <
- false
- cb18168a-3ff8-4804-9804-e5b9d493cd63
- 1
-
11452
-2711
28
20
-
11467.5
-2701
- Set to true to exit the loop
- dbf7a74d-8837-41d7-a9fc-f6d78eeb6876
- Exit
- Exit
- true
- 0
-
11452
-2691
28
20
-
11467.5
-2681
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 342502d2-1a7a-4a64-addb-7e47eface7b9
- Data
- Data
- false
- 22969a88-0731-4e3f-9159-c038bb93e0a0
- 1
-
11452
-2671
28
20
-
11467.5
-2661
- 2
- Data to loop
- c238fae5-7f30-4327-b240-053fb6bb4b2d
- 1
- Data
- Data
- false
- 0
-
11510
-2711
44
60
-
11525.5
-2681
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- 896f54c9-8432-4771-a66f-5a173616b3c9
- Explode
- Explode
-
10627
-2479
136
44
-
10694
-2457
- Curve to explode
- 8a552996-8409-410b-83cd-49eb8237b5f6
- Curve
- Curve
- false
- 44a0f611-f086-4667-840f-a2d4306061dd
- 1
-
10629
-2477
50
20
-
10655.5
-2467
- Recursive decomposition until all segments are atomic
- eeb81561-52c5-4749-afbc-054ed21093cc
- Recursive
- Recursive
- false
- 0
-
10629
-2457
50
20
-
10655.5
-2447
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- a1d058b8-f503-45b9-b6b6-930e301acc63
- Segments
- Segments
- false
- 0
-
10709
-2477
52
20
-
10736.5
-2467
- 1
- Vertices of the exploded segments
- d99d83c3-0b65-45a6-a783-15709df10351
- Vertices
- Vertices
- false
- 0
-
10709
-2457
52
20
-
10736.5
-2447
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- 8e11f79c-a4d4-4116-9257-17417a244835
- List Item
- List Item
-
10815
-2499
100
64
-
10863
-2467
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 434a0754-68b6-4d73-896a-4456450793ec
- List
- List
- false
- a1d058b8-f503-45b9-b6b6-930e301acc63
- 1
-
10817
-2497
31
20
-
10834
-2487
- Item index
- 7c87461e-5ee9-40d1-a17d-da1b4bb13c74
- Index
- Index
- false
- 0
-
10817
-2477
31
20
-
10834
-2467
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- e7317fde-a84e-43c1-97a4-305e6e550762
- Wrap
- Wrap
- false
- 0
-
10817
-2457
31
20
-
10834
-2447
- 1
- 1
- {0}
- false
- Item at {i'}
- 413714af-3bd0-413a-814d-a4e26dd3a053
- 1
- false
- Item
- i
- false
- 0
-
10878
-2497
35
20
-
10889
-2487
- Item at {+1'}
- 5ff2bc81-9ece-48c9-a84d-58ef38cf0ea7
- 1
- false
- Item +1
- +1
- false
- 0
-
10878
-2477
35
20
-
10889
-2467
- Item at {+2'}
- 1bf2dbce-bb7b-47e7-b2e1-61e870810e5a
- 1
- false
- Item +2
- +2
- false
- 0
-
10878
-2457
35
20
-
10889
-2447
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- e871cacd-1603-433f-aec5-934c351c2452
- Area
- Area
-
10763
-2352
130
44
-
10831
-2330
- Brep, mesh or planar closed curve for area computation
- 332f4793-853e-40fa-bb47-e5b961df9945
- Geometry
- Geometry
- false
- 44a0f611-f086-4667-840f-a2d4306061dd
- 1
-
10765
-2350
51
40
-
10792
-2330
- Area of geometry
- e87ba9b8-7201-4ccd-90f2-880400bffbe9
- Area
- Area
- false
- 0
-
10846
-2350
45
20
-
10870
-2340
- Area centroid of geometry
- e7a779ab-d827-466b-be26-0d505cc4b336
- Centroid
- Centroid
- false
- 0
-
10846
-2330
45
20
-
10870
-2320
- dcaa922d-5491-4826-9a22-5adefa139f43
- Circle TanTanTan
- Create a circle tangent to three curves.
- true
- 403933a6-fb3c-4ed4-be22-242a70758c7b
- Circle TanTanTan
- Circle TanTanTan
-
10944
-2435
110
84
-
11005
-2393
- First curve for tangency constraint
- 576da730-dbb1-4142-9196-6da784c76ac8
- Curve A
- Curve A
- false
- 413714af-3bd0-413a-814d-a4e26dd3a053
- 1
-
10946
-2433
44
20
-
10969.5
-2423
- Second curve for tangency constraint
- b2bf3be5-80fa-4f52-b773-e0405f028de3
- Curve B
- Curve B
- false
- 5ff2bc81-9ece-48c9-a84d-58ef38cf0ea7
- 1
-
10946
-2413
44
20
-
10969.5
-2403
- Third curve for tangency constraint
- ac0e4108-2a79-4c95-be62-a6a581b46925
- Curve C
- Curve C
- false
- 1bf2dbce-bb7b-47e7-b2e1-61e870810e5a
- 1
-
10946
-2393
44
20
-
10969.5
-2383
- Circle center point guide
- 426fe756-21c1-4fa1-b1f1-f74a4e7a0e97
- Point
- Point
- false
- e7a779ab-d827-466b-be26-0d505cc4b336
- 1
-
10946
-2373
44
20
-
10969.5
-2363
- Resulting circle
- 6f737568-7c0d-4e3d-8deb-68f2711eb87d
- Circle
- Circle
- false
- 0
-
11020
-2433
32
80
-
11037.5
-2393
- f72c480b-7ee6-42ef-9821-c371e9203b44
- Region Difference
- Difference between two sets of planar closed curves (regions)
- true
- 156bdf56-04c5-4776-a9c7-af018d9c833e
- Region Difference
- Region Difference
-
11371
-2463
117
64
-
11437
-2431
- 1
- Curves to subtract from.
- 2a6d60a9-b8ec-48fd-8cd1-2b91ec3ec521
- Curves A
- Curves A
- false
- a2aada8a-2dc8-4ffb-99dc-6f07fa112833
- 1
-
11373
-2461
49
20
-
11399
-2451
- 1
- Curves to subtract.
- 94fa11e3-6c16-496a-89bc-23d3c13c2c58
- Curves B
- Curves B
- false
- ce370a35-b20e-4c43-be49-0e28e6121e92
- 1
-
11373
-2441
49
20
-
11399
-2431
- Optional plane for boolean solution
- bde40c10-8108-4914-8f3e-ccfcc97876ee
- Plane
- Plane
- true
- 0
-
11373
-2421
49
20
-
11399
-2411
- 1
- Result outlines of boolean difference (A - B)
- d3c2b6ec-d945-49a2-b682-abebd92293ff
- Result
- Result
- false
- 0
-
11452
-2461
34
60
-
11470.5
-2431
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 4e032f72-3b99-4226-b038-ceb0e85dde23
- Scale
- Scale
-
11100
-2649
154
64
-
11184
-2617
- Base geometry
- d16e0e0b-4996-4dcb-b223-a3047671d91f
- Geometry
- Geometry
- true
- 44a0f611-f086-4667-840f-a2d4306061dd
- 1
-
11102
-2647
67
20
-
11145
-2637
- Center of scaling
- 9f263265-a1df-41e5-864b-4e05e5a84216
- Center
- Center
- false
- 0
-
11102
-2627
67
20
-
11145
-2617
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- a5f646e0-3f6e-4510-8eaf-bbe4ed014f06
- 2^X
- Factor
- Factor
- false
- fcdf2e96-aee9-46f2-8b87-4fc84bdb601f
- 1
-
11102
-2607
67
20
-
11145
-2597
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- a2aada8a-2dc8-4ffb-99dc-6f07fa112833
- Geometry
- Geometry
- false
- 0
-
11199
-2647
53
30
-
11227
-2632
- Transformation data
- 238ba3f8-8fb0-47a5-938a-ac9af376f7fe
- Transform
- Transform
- false
- 0
-
11199
-2617
53
30
-
11227
-2602
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 43184c6d-929d-4b7a-a621-21e60a967c0b
- Scale
- Scale
-
11137
-2317
154
64
-
11221
-2285
- Base geometry
- 22e86a43-93bf-41d6-80e6-fd606c786485
- Geometry
- Geometry
- true
- 6f737568-7c0d-4e3d-8deb-68f2711eb87d
- 1
-
11139
-2315
67
20
-
11182
-2305
- Center of scaling
- 7acb9574-5180-43dc-8318-e25d75330118
- Center
- Center
- false
- 0
-
11139
-2295
67
20
-
11182
-2285
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 811137a8-ea5f-4574-b03f-d6a5368d85c9
- 2^X
- Factor
- Factor
- false
- fcdf2e96-aee9-46f2-8b87-4fc84bdb601f
- 1
-
11139
-2275
67
20
-
11182
-2265
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ce370a35-b20e-4c43-be49-0e28e6121e92
- Geometry
- Geometry
- false
- 0
-
11236
-2315
53
30
-
11264
-2300
- Transformation data
- 8599796e-03ab-45a7-99ed-71820f61ecc5
- Transform
- Transform
- false
- 0
-
11236
-2285
53
30
-
11264
-2270
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0b92d63e-1a57-4936-909e-20f8122c90a0
- Scale
- Scale
-
11466
-2563
154
64
-
11550
-2531
- Base geometry
- 30fcbb1d-2506-4355-8181-fdc1f7cdc766
- Geometry
- Geometry
- true
- d3c2b6ec-d945-49a2-b682-abebd92293ff
- 1
-
11468
-2561
67
20
-
11511
-2551
- Center of scaling
- 68f944cb-757c-41fa-9a8e-ba570dda37ef
- Center
- Center
- false
- 0
-
11468
-2541
67
20
-
11511
-2531
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 3559628c-7001-4d9e-aa48-1a7d0c716953
- 1/2^X
- Factor
- Factor
- false
- fcdf2e96-aee9-46f2-8b87-4fc84bdb601f
- 1
-
11468
-2521
67
20
-
11511
-2511
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 22969a88-0731-4e3f-9159-c038bb93e0a0
- Geometry
- Geometry
- false
- 0
-
11565
-2561
53
30
-
11593
-2546
- Transformation data
- 57bfb727-c033-4ef9-a950-0f5c725abaca
- Transform
- Transform
- false
- 0
-
11565
-2531
53
30
-
11593
-2516
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- fcdf2e96-aee9-46f2-8b87-4fc84bdb601f
- Number Slider
- Number Slider
- false
- 0
-
11093
-2813
198
20
-
11093.44
-2812.036
- 0
- 1
- 0
- 16
- 0
- 0
- 6
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 47af2cf9-4ae4-4000-ae1d-28bb556251d6
- Divide Curve
- Divide Curve
-
11605
-2353
125
64
-
11655
-2321
- Curve to divide
- 34a88188-b23f-489b-a921-dd3ea5abc34a
- Curve
- Curve
- false
- 6f737568-7c0d-4e3d-8deb-68f2711eb87d
- 1
-
11607
-2351
33
20
-
11625
-2341
- Number of segments
- 087bef7c-08dc-42da-a877-50e686f592d4
- Count
- Count
- false
- 0
-
11607
-2331
33
20
-
11625
-2321
- 1
- 1
- {0}
- 4
- Split segments at kinks
- 5afde181-ae9a-448b-b49b-36f1d3799013
- Kinks
- Kinks
- false
- 0
-
11607
-2311
33
20
-
11625
-2301
- 1
- 1
- {0}
- false
- 1
- Division points
- 5395526a-3f8e-42fb-82df-9975f84a9de2
- Points
- Points
- false
- 0
-
11670
-2351
58
20
-
11700.5
-2341
- 1
- Tangent vectors at division points
- 632bbbd8-4e7e-4b39-9aa3-c2bf88c02a0f
- Tangents
- Tangents
- false
- 0
-
11670
-2331
58
20
-
11700.5
-2321
- 1
- Parameter values at division points
- 0ffb3729-b77c-42ba-8ca6-cde59f772c53
- Parameters
- Parameters
- false
- 0
-
11670
-2311
58
20
-
11700.5
-2301
- b083c06d-9a71-4f40-b354-1d80bba1e858
- Sphere 4Pt
- Create a spherical surface from 4 points.
- true
- ea4f6f54-0443-492c-8cc3-a4aaae35a89b
- Sphere 4Pt
- Sphere 4Pt
-
11979
-2404
112
84
-
12035
-2362
- First point
- a264308b-c64f-41eb-acf3-f2e31f018b41
- Point 1
- Point 1
- false
- 0c70aa68-310f-4962-9a10-6427a6c2dc70
- 1
-
11981
-2402
39
20
-
12002
-2392
- Second point (cannot be coincident with P1)
- 360b849d-89ef-4f26-850a-4ba85f72def2
- Point 2
- Point 2
- false
- f930a972-1070-470f-957d-ad0863b3745f
- 1
-
11981
-2382
39
20
-
12002
-2372
- Third point (cannot be colinear with P1 & P2)
- 72057e41-ddd0-46cd-94b3-600c06e5863d
- Point 3
- Point 3
- false
- d1806fa9-ecef-4414-a7de-1a6a02fe456f
- 1
-
11981
-2362
39
20
-
12002
-2352
- Fourth point (cannot be coplanar with P1, P2 & P3)
- 47dec928-c316-48d2-8ccb-fffba4e31444
- Point 4
- Point 4
- false
- dffbe627-b190-46af-9801-49046809ec79
- 1
-
11981
-2342
39
20
-
12002
-2332
- Center of sphere
- 60be2206-6b49-4bd0-ba4d-e76b78498c51
- Center
- Center
- false
- 0
-
12050
-2402
39
26
-
12071
-2388.667
- Radius of sphere
- fa93d116-4f07-454b-b135-c4263f9ab07b
- Radius
- Radius
- false
- 0
-
12050
-2376
39
27
-
12071
-2362
- Sphere fitted to P1~P4
- 655b6be5-eb1a-44f3-81b7-032dac32d751
- Sphere
- Sphere
- false
- 0
-
12050
-2349
39
27
-
12071
-2335.333
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- a8436ec8-ce7d-41ea-8ffb-09835048b767
- List Item
- List Item
-
11808
-2404
84
84
-
11856
-2362
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- b79561e0-d326-408c-9374-5cb70bcab89a
- List
- List
- false
- 5395526a-3f8e-42fb-82df-9975f84a9de2
- 1
-
11810
-2402
31
26
-
11827
-2388.667
- Item index
- c2179e9d-c3fb-4169-97bf-f0b46b512105
- Index
- Index
- false
- 0
-
11810
-2376
31
27
-
11827
-2362
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 59e639bb-22db-48ff-aea6-fdd9a89c4966
- Wrap
- Wrap
- false
- 0
-
11810
-2349
31
27
-
11827
-2335.333
- 1
- 1
- {0}
- false
- Item at {i'}
- 0c70aa68-310f-4962-9a10-6427a6c2dc70
- false
- Item
- i
- false
- 0
-
11871
-2402
19
20
-
11882
-2392
- Item at {+1'}
- f930a972-1070-470f-957d-ad0863b3745f
- false
- Item +1
- +1
- false
- 0
-
11871
-2382
19
20
-
11882
-2372
- Item at {+2'}
- d1806fa9-ecef-4414-a7de-1a6a02fe456f
- false
- Item +2
- +2
- false
- 0
-
11871
-2362
19
20
-
11882
-2352
- Item at {+3'}
- dffbe627-b190-46af-9801-49046809ec79
- false
- Item +3
- +3
- false
- 0
-
11871
-2342
19
20
-
11882
-2332
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABHTSURBVHhe7ZzHbhzLFYb1Bl54YcCA14Zfwk/glbeGgLvx6i78AgIMGBaUdUXlnHMkJStZybqiIkUqBwZJFCmRyiTFOCRH8if+VN2a7p7u6p7hzDRv12LQ09PTXXX+859UVT1nTtZmgQS+Zi21EphWP/r/vxpoly5dunXr1vXr1y9evOjpjn66evXqz1Pt2rVrV65caWxs5GIO1G7fvs2/Lly4wN/Pnj3736l2/PhxPk+dOlVfX8/BoUOHOBZe+Xw+HLjR0VFuyKNrQDbBXaD/tQIhYqI1NTUBCQfgAU4AxlcO+Hr58mWOGxoaTky1LVu2HD16dO/evXV1dRysX79+6dKlwAZCnDly5MiiRYu2bdu2f//+JUuW8Llz587ly5cfO3aMrxs3bhRyY2Nj4ShmELrqLvCAU0tLCzTi+Pz58zDm9OnTILRu3TqOV6xYAWZnzpxZvHjx9u3bQQjMwAMsDx48CHJczK/wD6ZCTR4sJeDT8JUDzvDr3bt3bfL19/d//PhxZGTky5cv5jzgvXnz5sOHD1yfsTAASMkXmcIzjB7S5yt4QJEdO3bs3r0bqA4fPgx79uzZg/XjAijIxWr8XfZTkIC6mpCDysWEzjUnT54EdaB6/fo1IOVyuWfPns2bN2/hwoWfP39+9epVV1fX4ODgnTt3Nm3ahHKgMdzTVRkrfl1FDSniFgxghj3EIW3dunXZsmWYPplHPqHXuXPnbFfH9eIowLjIB/Bu3ryJcgSiyK3gK89i5IAH1WRI6QyqAAvhIviNj4+3t7cDHrc6cOAAT3d5dFWumVkIkRdyUdABbMgO67dr1y7cEiQDLXwYnMB4Gocnn+cPZADyxo0bjgaNO4TgjbHl14mpFhnOgOiv0ZCKbYwcl4YxJCAkvli1ahWAQTsYgIgVWHIN/o8DxZ+KaPyNX2GDuyi5Ax1QWOTRBh4N4TDOw8PDL1++fPHiBQchQSm//loiUhPocwCxNmzYgP3ZvHkz4IEZ/EMQijARIpIVZoQefIUWxcAz54EwrpmCaoGE5iS8V0ZBs0MYP5YY1dkMIbLA5Sj8+89UAzBMJb4N8FB2RYPGkfT29hIv0AYGBhANCk7jK8c6r8ZXT+Pk8+fP/ZliCKhgj7oAvJ+I4uiDBw8eP37c3NzMNWhSscaVcVWnwtfH9oWKLGQniRLxari0tWvXknJhMIn+oRTIiW0MRu4QMcHLvr4+qXlPTw+hoBq4Erjb6o+LIpoQRSanGr9i8VARP6vCUYSIdCYQRfpJx5SGohzYfM74Wyy9qTB4epwThCY+RILAhihXrlxJ1oxHWb16NXaScZokTPghF6PdHBCJkMORfpmEmpxaUNEIC3V+sH+Qz0+fPhHWE/GDNAednZ2giOnjidzZXUyqD0CvYkGQztM9/LFiJcdwyb0PFbgyGELFkDSJDJAQHxiQXwMeVCPjBkvRC1NJQwSyRQJMqZvcnhq5HebRZhvIgSKRvXjW/bCl/cTcrvvHA4MLWChXGkvKXBwZB3GNMhaA1P1jPaICIIU/ogBCyR1KETpiHsl/FyxYQA5AeoSHw7dhZ4QWnDDOg6+yq/J5dmBins1tcZPQy8CDkZQVhW0YUgznnT1zb/77Nx0tDYEQcjF3c0wN7TELnnBUFF6pxEqTENICZAGEuDR4RjCCY8PJgRk2U8UOShV80oqRLFJGYAwLsZ+BCE1MfOm4Uddx9/xk/ivsJBuTgaWpjEk4gzFAXdyzQwFJx6RkkZBI+dBRYhwU1KQ6VedZDBYSj1AZYQyYFJUraTKV4SSLHCR6gEKQWlA8IxsDRUL5d+/eEeBQnCTgtHEFP7wg7KTWReOYM/SE2jR2AjVKUCsJTDACuy2kQV0OssYzCm84g/Yx1EBPFqnC4SgCIdYYTpPgg40JasguaOHJtS4mrsH78hSUKSRCKYYKWhiYYBTrNuPFkfMggBSDS5RApJYnvsAbzgR6ssR3N3/ktqBINZnw8u3bt/CPhguEgmo6Y9r7qcZXftLx06dPTQVHs4axZMrFCeirbmMAUG7VCGM9tHS5udzBKalwuZHLNRo/MRFJmEtDZLBHV9r5mXvJ29ahBPQ10Rn/lYmqQQdZUQhdYLaFDn6BYQiqwPkEcY2mEm0moRy4/0h9IiPS/AnWGAOAFvK1RhhZ0xAqLCwGfFzDKKtoJxiA8ejRoydTrdVqbW1t2G2dt5suJkMlPOYADauF2k3tQqhoopimcz6BYeRfohEHMEmzhgqPiaqUzGi+kJpDYPJjn8Svq3YRy7qU/eIahVD5WXgyxzUJ4hpNJSpqI0gm+0QEfFJkIM4ibuKTY8IoGy1OktvoJ4oMHPArdyDGTpDhlBfF2oUQugRWqO3xJ4tr0AzNn2AYQ9gGNd+/an15r2E8l4OaJK9DQ0MQlE8oi+CwohQdMwiDNVJWNFJbFde4VF48t4KIGFIqvTaEVGthGEQkB2XGa2ho5O6Wvz3a+seel22BRpWVGdwkspMzfUEtshBgYi2zSBDXaNkVpUQbG8p4FBmm185MTHzseXJt1Z+aG+pyU8bW3wiAMgiDFVRBh+Myi8RxDSwHeyLPe/fuqXKL5bRJmZ+c6P/0XsgxTYYvpNRAdRB3SGN2hUyDmYCqL26LYGG1wi0XK2pnkP6EL9J8MTSWFtBYe6jgBfxUm+3u7jaz04LQEBRHqKgVvLkDUzq15Qvxz3bTlGGkLMp7gVgVq55JBxLENYyU9BwKUiLACxo7GbmaxlxJ+lhzhhRzQUMB+WRuDyODuaewVMkEFgiRqaMVtYmYIK7BBrJ8pqOjQ3MycVtkwFxe5S52twJDKv3Sii5SJdZVEDRj7pn+raTFj2VF7YEliGuUXAaumok8WS0v48GyAMKRiW/2RBBiT7TaUyXByihUMiuqviWOayBfXNJXRhqOTymA8KeGH8b7v82+asb84cOH2BlU2yxHc7xp4stkReNOJAXGNaq/RDazlKRGKJVAdAUQLp/7++fHTrLDQEs9WfLEcl52qFBGijstkKAr+osWByf+u4lrzAouBWVqnPQ3rbSYJRA29Z7+ZW/W168qzLNkFrFWAEKEiHzjxqIesMVjgCQx0Lob08gEiDwDG0mFTHFi1aniHwPCGZJWrYfQoi52Z2FtWP40071UtazYjiT3p3MHVtlQ/SKuVlWaT8Jsz4Jju9pS+3tfQoYfACGn0F+0FSuqBdosWiF/QrXdJ9wTREAKDkuxohqndhAymUBc5tkvQaA2/Lbja/6XLFBAAmGFcyd3jYy8sgBCLV2hzovC8kkxiYKvlh9qORcixq7e/944BtrAhkQin+25IHzltfvdUDWKJlr3RqOeotb/eWi0t+NJ3R/u/3wcBWWA2r9BXZRRY2wqX8dwH5QrC+31B6IRzNDGMHCiJAiiBKsUonAw2NuQlWfwGFG6e5dyWVH6jCFlSzcJO7BRoEAdYSR+oW9odODG/ub5f3784FlnVxc/aVMHP+E4WevMH8si0wrfJKJGKhRRT0Ib5EKOgVy04IyRI51iWyxR/7gQhi+zcJSLVIFGD21vp+PJ3Oib9tYnT1vNLg6dx1MmsPyOXZrpy6IhlHfBkKKk6KxfLoFn4kII3nFXhwaKhq7yKgQ2orLCRR3T/B9E9Cw4truNOrobjJmARNYupIV0zwlC/o9HZL8u1gnnAQvhHwf4G+azc8PDQ993nRm5oObuGTr3j1xm4SI47qPtVKwZZxm46QzGH+cXsicbj1DJOrA/ESIO0F6DwKYF9cUCPVcIiWj27dtHpI4sFAUA0reZl4GBvWvWbF237mlLy2Q+z0/wD0/JAdGs+hpYIrGHIdGXXoY1O2A4wOZDRDXiMhqrlcwZzwHpbxVZSAgCN7SfEjyIonVstldyQOfZ0RA4seUKoZZQ+g0phbgtK1asXrLk1KZNQKhQVgu0eeMH3OVf2kmjvSnanqHNiFIrZMcB12ittJoL5/y6bM8aaoGoY+PiBE8sy18QBS9mQRogASVIYbUwRw04tXOPYidTm/gIydNuThCaMA9thV48BhMKSExKjfT3tzU1NdbXt16+bHsXaKot7XzSVO7S1lGwVA/MfkQu09YFrYfwY+zncaAtKos3LQswLjeRpjJwdgshDaRHqI9J16I6T2MimrQn0J65Qoia8FIYHAxKodUJ/sTZfqqSCrP0NtyWYqUFnjyiH2PxuBiJTeaj1fLJSOwi9DJeQycZr9ldTFbjwWwkN72LT2UWFh8z5ac5AE9zhRAmsXBWMQKmGbLj8DxvvLI7oYhU8wDh5DBLfgOppq39IrEB2MZY6GoHpMaWgMRlxCbyVtIwZEL1Q+4fwVIsgRuqReQn830D/f868dfWx9cQqfZC49rZ8SnIPa0AQnuS09ZlJVvkhczji39KmWnF3vgBwMoLoYUeGUgOKWNkDT2ExMIYcZRCYs/9I2FgUJHbMDwXmMhO5FM1X8MnfkbygAcXCbs4ONxQ/88ff3fyHz/kx6cXleO8ik1BF0CIT9JWXlk281R5NZ5HXKSdt6ber6/+BsZmsTp/ROkCdyDwU4JlFp5oVkpgR0MmJrJJbDxxMUNte2K58MBwmpPIB94QYqiZiiMH1EBM03mVIVW9M+SzcxjKXizDsW3YWC7X2H3g4/C3F4FQrCfMIQoB6WgW2m92JPghiuWpwk/rRCQRl+ZJYvgvww6cHE+8zMIAGbmDN5LECrVsT2zeJGAianliPkmWMGsYNymuJ/og3NP7dCCTQQXXQ+Vd29ylFqbzMlRwwx/C6IzeMiZfqHcaeFoBCwl7zFoubaqm0wa/YhleoIA8ZlPwcyu76sZJehNpRUPMmix8gtXc/oA20hOLxPCAOXDEgrpr76p5E4skDoSaKtC+CzVgJiXwgKc+IAESbm4O1fRmRg5sOBU/8hPzRYHZfQGE9j9xexhfG79IDxF+ATICP6UZArh0K8qtUO0SOxb5dxtdGINYqNj5SfOirc2z+tRcAwbF9AzzxgIz9BiogB/sbfpyByJHQFWNGoNszIM5KIBQO6dRH7SGmwJ76ROwHr+F0hmh4/C1idcxAbcvk+ejk+XtYSSc9B8WMgTEqlk5vYmlt7PzxO7dZMOcgUkQETHS9CsQEk8WKyAwFrawm/WrpiijN1+pYWmxi9EsBH+9FI2nwhimfEsvevlNlt5cwJ3x4agzVl4FMNPoLidN05ZMT8OgKayIFHp5L5Dd4+mIFRQRF64HWwp+73p6kJvOay0u8tSUCBCyBSdkMgRpI5ZiDQaHrEArYKGZ8kV94GxgGlC6RMQetqQYi4E6Yy4YM9rD4D2WJNDPA7NSwBnqZMgwIRPapkqmcipw6vv+ViQMmJ1oqQAChOHWQkFNGWYq7FRmpiv3zAfpfV6MENiktlpL7vEo2oxCSY/CAgd88hfwgw2Vn2cHCQITaKHog0zOs5kUK8pJvS6HAxr9h6m8YRxHUPqyEr9uFbCwdIa53wEMwtn2vrutvfGngffdmCbCP71wT69iptMYiapsSVGVSiWOkCYiGjrCQjzZDLGiOhAiiDVr1thzsNpVhAFHbQkScuMTd3b8/cHK33bcOxMoKS6r1jw7nccRUA8yzbMZw/5Jx1ow7q7fsa6sDoSYfrTS3k+kQEANHzP0eaBl/1+aT9SN5b69mNSPItFNFWeIlFrEarFQiXVxdSAkAEORVZeR58Pm4F1Ut+MtpZwZy00vS4aseB2KhFpRxwHXqLTIZ6zRzsqLqwYhq3VJsObPn29WSJBR6W3BnnqHCKoX2tM0BUrhsRZeVVALOlEdCBk5tojNiyAByabJZ1Caes+saQpkPI1kcYaig1pAJVYfqgahggL8vJZixG0zEZ3HElztXFw1CFUjDc9nk6W6tSPcyvSkmhBWZoSz/ikZhKmHOIMwgzD1Ekj9ADIWZhCmXgKpH0DGwgzC1Esg9QPIWJhBmHoJpH4AGQszCFMvgdQPIGNhBmHqJZD6AWQszCBMvQRSP4CMhRmEqZdA6geQsTCDMPUSSP0AMhZmEKZeAqkfQMbCDMLUSyD1A8hYmEGYegmkfgAZCzMIUy+B1A8gY2EGYeolkPoBZCzMIEy9BFI/gIyFswvCwDe8ZCdrXwJzsjYLJPB/Y5ndEKvQgAUAAAAASUVORK5CYII=