-
0
2
2
-
1
0
7
- d3b98059-03da-4b8b-a57a-069658ce8766
- Shaded
- 3
-
255;199;199;199
-
255;84;84;84
- 638252831365521843
- XHG....ⵙᔓᔕⵙᗱᗴⵙᙁⵙᑐᑕⵙᴥⵙꖴⵙᑐᑕⵙ◯ⵙ✤ⵙИNⵙᗱᗴⵙᕤᕦⵙИNⵙᗩⵙ✤ⵙ◯ⵙᙁⵙᗩⵙꖴⵙᗝⵙᗩⵙᴥⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙᴥⵙᗩⵙᗝⵙꖴⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᗩⵙИNⵙᕤᕦⵙᗱᗴⵙИNⵙ✤ⵙ◯ⵙᑐᑕⵙꖴⵙᴥⵙᑐᑕⵙᙁⵙᗱᗴⵙᔓᔕⵙ....GHX
- 0
-
-2012
2942
- 0.7955364
- 0
- 0
- 10
- Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
- 1.0.0.0
- Michael Pryor
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null
- 3.3.0.0
- 00000000-0000-0000-0000-000000000000
- Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null
- 0.4.0.0
- Mateusz Zwierzycki
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Anemone
- 0.4
- BullantGH, Version=1.5.8.0, Culture=neutral, PublicKeyToken=null
- 1.5.8.0
- Geometry Gym Pty Ltd
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- BullAnt
- Bubalus_GH2, Version=2.1.5.0, Culture=neutral, PublicKeyToken=null
- 2.1.5.0
- 月之眼(邓国超) && 好多猫(萧启明)
- 8df4d222-85a2-467d-a510-b8dde333d730
- BubalusGH2.0
- 2.1.005
- GraphicPlus, Version=1.5.2.0, Culture=neutral, PublicKeyToken=null
- 1.5.2.0
- David Mans
- a48ac930-c378-48dc-84da-26b2af9d8302
- GraphicPlus
- 1.2.0.0
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- Meshedit2000, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null
- 2.0.0.0
- [uto]
- 14601aeb-b64f-9304-459d-d5d06df91218
- MeshEdit Components
- 2.0.0.0
- NGonGh, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
- 1.0.0.0
- Petras Vestartas
- 20563e24-568f-4f4f-b61b-71a1781ef92f
- NGon
- 2.3.0
- WeaverBird.Gh.CommonSdk, Version=0.9.0.1, Culture=neutral, PublicKeyToken=null
- 0.9.0.1
- Piacentino
- a4634196-add1-8181-6e78-09a045132c7c
- Weaverbird
- 0.9.0.1
- 279
- ac3c856d-819d-4565-a2cc-8d1cbdc05c97
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI.
- true
- cf580cd3-8c86-4628-8244-702ca09bb9a6
- Palette
- Palette
-
190
-1052
256
1344
-
432
-380
- True = Custom
False = Standard
- 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb
- Mode(Custom/Standard)
- Mode(Custom/Standard)
- false
- 0
-
192
-1050
228
20
-
306
-1040
- 1
- 1
- {0}
- true
- This input does nothing, it is just a spacer
- c8adee2d-568a-431a-9a3b-65078c21d9d3
- Spacer
- Spacer
- true
- 0
-
192
-1030
228
20
-
306
-1020
- Component_Normal_Deselected_Fill_Color
- f6b959c6-305e-4556-851e-dfe3db8616ce
- Component_Normal_Deselected_Fill_Color
- Component_Normal_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-1010
228
20
-
306
-1000
- 1
- 1
- {0}
-
255;255;255;255
- Component_Normal_Deselected_Edge_Color
- 58f3f6bb-4870-4132-b2ed-38ba0cd16373
- Component_Normal_Deselected_Edge_Color
- Component_Normal_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-990
228
20
-
306
-980
- 1
- 1
- {0}
-
255;201;201;201
- Component_Normal_Deselected_Text_Color
- 44b220b8-34dd-484a-947e-534161ff26b0
- Component_Normal_Deselected_Text_Color
- Component_Normal_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-970
228
20
-
306
-960
- 1
- 1
- {0}
-
255;82;82;82
- Component_Normal_Selected_Fill_Color
- 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643
- Component_Normal_Selected_Fill_Color
- Component_Normal_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-950
228
20
-
306
-940
- 1
- 1
- {0}
-
255;224;224;224
- Component_Normal_Selected_Edge_Color
- 3e3bf076-2f8d-473e-8fb4-f92db28df2ff
- Component_Normal_Selected_Edge_Color
- Component_Normal_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-930
228
20
-
306
-920
- 1
- 1
- {0}
-
255;186;186;186
- Component_Normal_Selected_Text_Color
- 095dd5d8-570e-49a2-8e67-cea92b6be7a3
- Component_Normal_Selected_Text_Color
- Component_Normal_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-910
228
20
-
306
-900
- 1
- 1
- {0}
-
255;92;92;92
- This input does nothing, it is just a spacer
- d905c0b0-8e82-4b7f-8eba-51505c30c8e7
- Spacer
- Spacer
- true
- 0
-
192
-890
228
20
-
306
-880
- Component_Hidden_Deselected_Fill_Color
- 321957b9-2793-4637-848c-5ce91391c786
- Component_Hidden_Deselected_Fill_Color
- Component_Hidden_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-870
228
20
-
306
-860
- 1
- 1
- {0}
-
255;255;255;255
- Component_Hidden_Deselected_Edge_Color
- 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2
- Component_Hidden_Deselected_Edge_Color
- Component_Hidden_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-850
228
20
-
306
-840
- 1
- 1
- {0}
-
255;140;140;140
- Component_Hidden_Deselected_Text_Color
- d4ff0608-c217-43bf-90b9-c3174669c5b5
- Component_Hidden_Deselected_Text_Color
- Component_Hidden_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-830
228
20
-
306
-820
- 1
- 1
- {0}
-
255;66;66;66
- Component_Hidden_Selected_Fill_Color
- fe81550d-42f1-474d-82fa-fc63ded3a33c
- Component_Hidden_Selected_Fill_Color
- Component_Hidden_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-810
228
20
-
306
-800
- 1
- 1
- {0}
-
255;207;207;207
- Component_Hidden_Selected_Edge_Color
- d242f68d-4dde-4615-b1e4-cfc397eef79a
- Component_Hidden_Selected_Edge_Color
- Component_Hidden_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-790
228
20
-
306
-780
- 1
- 1
- {0}
-
255;148;148;148
- Component_Hidden_Selected_Text_Color
- bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1
- Component_Hidden_Selected_Text_Color
- Component_Hidden_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-770
228
20
-
306
-760
- 1
- 1
- {0}
-
255;0;25;0
- This input does nothing, it is just a spacer
- 4673c598-8f3d-4e72-b57e-b181a741ced8
- Spacer
- Spacer
- true
- 0
-
192
-750
228
20
-
306
-740
- Component_Disabled_Deselected_Fill_Color
- 7bde9353-e2ff-4945-b4c9-14b806259c72
- Component_Disabled_Deselected_Fill_Color
- Component_Disabled_Deselected_Fill_Color
- false
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- 1
-
192
-730
228
20
-
306
-720
- 1
- 1
- {0}
-
255;173;173;173
- Component_Disabled_Deselected_Edge_Color
- 71159c9b-1e20-4c06-97da-3c2eb5b91d32
- Component_Disabled_Deselected_Edge_Color
- Component_Disabled_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-710
228
20
-
306
-700
- 1
- 1
- {0}
-
255;135;135;135
- Component_Disabled_Deselected_Text_Color
- 4b17e381-1311-43c2-8544-d1d5b9458697
- Component_Disabled_Deselected_Text_Color
- Component_Disabled_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-690
228
20
-
306
-680
- 1
- 1
- {0}
-
255;66;66;66
- Component_Disabled_Selected_Fill_Color
- 12baaaf6-1012-42ee-86b6-cbdc737d8de1
- Component_Disabled_Selected_Fill_Color
- Component_Disabled_Selected_Fill_Color
- false
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- 1
-
192
-670
228
20
-
306
-660
- 1
- 1
- {0}
-
255;145;145;145
- Component_Disabled_Selected_Edge_Color
- c8896686-befd-4231-b333-7faff2e2c4fb
- Component_Disabled_Selected_Edge_Color
- Component_Disabled_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-650
228
20
-
306
-640
- 1
- 1
- {0}
-
255;122;122;122
- Component_Disabled_Selected_Text_Color
- baa2bdde-0550-4e7c-abf0-07aabbc25870
- Component_Disabled_Selected_Text_Color
- Component_Disabled_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-630
228
20
-
306
-620
- 1
- 1
- {0}
-
255;110;110;110
- This input does nothing, it is just a spacer
- 156de1c3-5ce0-4b3c-b550-7dc589cf19f9
- Spacer
- Spacer
- true
- 0
-
192
-610
228
20
-
306
-600
- Component_Warning_Deselected_Fill_Color
- f011810c-2c52-41fe-a8af-3048783663f4
- Component_Warning_Deselected_Fill_Color
- Component_Warning_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-590
228
20
-
306
-580
- 1
- 1
- {0}
-
255;255;255;255
- Component_Warning_Deselected_Edge_Color
- 9edde004-fda3-4653-99de-fbc2c5927c8d
- Component_Warning_Deselected_Edge_Color
- Component_Warning_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-570
228
20
-
306
-560
- 1
- 1
- {0}
-
255;125;125;125
- Component_Warning_Deselected_Text_Color
- a7c322df-e6ad-4443-833b-a5027d642b5a
- Component_Warning_Deselected_Text_Color
- Component_Warning_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-550
228
20
-
306
-540
- 1
- 1
- {0}
-
255;0;0;0
- Component_Warning_Selected_Fill_Color
- 4332093e-f0bf-4490-9902-f6cb75830c83
- Component_Warning_Selected_Fill_Color
- Component_Warning_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-530
228
20
-
306
-520
- 1
- 1
- {0}
-
255;230;230;230
- Component_Warning_Selected_Edge_Color
- 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2
- Component_Warning_Selected_Edge_Color
- Component_Warning_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-510
228
20
-
306
-500
- 1
- 1
- {0}
-
255;0;50;0
- Component_Warning_Selected_Text_Color
- 4ad8f30a-a901-41f6-9368-60f73d1feafa
- Component_Warning_Selected_Text_Color
- Component_Warning_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-490
228
20
-
306
-480
- 1
- 1
- {0}
-
255;0;0;0
- This input does nothing, it is just a spacer
- 83a35c52-95be-4aa6-b663-9f62ca3af846
- Spacer
- Spacer
- true
- 0
-
192
-470
228
20
-
306
-460
- Component_Error_Deselected_Fill_Color
- 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c
- Component_Error_Deselected_Fill_Color
- Component_Error_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-450
228
20
-
306
-440
- 1
- 1
- {0}
-
255;200;0;0
- Component_Error_Deselected_Edge_Color
- f2d5a1d2-54e4-4d9e-849a-7a321a51c71f
- Component_Error_Deselected_Edge_Color
- Component_Error_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-430
228
20
-
306
-420
- 1
- 1
- {0}
-
255;60;0;0
- Component_Error_Deselected_Text_Color
- 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1
- Component_Error_Deselected_Text_Color
- Component_Error_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-410
228
20
-
306
-400
- 1
- 1
- {0}
-
255;0;0;0
- Component_Error_Selected_Fill_Color
- 3c282599-5602-4c4f-a224-4e67e49976af
- Component_Error_Selected_Fill_Color
- Component_Error_Selected_Fill_Color
- false
- 0
-
192
-390
228
20
-
306
-380
- 1
- 1
- {0}
-
255;255;255;255
- Component_Error_Selected_Edge_Color
- 1cce579f-e827-4b62-a4eb-2db9743078b4
- Component_Error_Selected_Edge_Color
- Component_Error_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-370
228
20
-
306
-360
- 1
- 1
- {0}
-
255;0;50;0
- Component_Error_Selected_Text_Color
- 45c987ff-932c-44a5-a12c-9b6313e72b8a
- Component_Error_Selected_Text_Color
- Component_Error_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-350
228
20
-
306
-340
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 5b2574b8-2175-4877-90c0-7d3edea60d33
- Spacer
- Spacer
- true
- 0
-
192
-330
228
20
-
306
-320
- Component_Label_Deselected_Fill_Color
- 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1
- Component_Label_Deselected_Fill_Color
- Component_Label_Deselected_Fill_Color
- false
- 0
-
192
-310
228
20
-
306
-300
- 1
- 1
- {0}
-
255;50;50;50
- Component_Label_Deselected_Edge_Color
- 602244c8-bf52-4371-a87b-388a0612939a
- Component_Label_Deselected_Edge_Color
- Component_Label_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-290
228
20
-
306
-280
- 1
- 1
- {0}
-
255;0;0;0
- Component_Label_Deselected_Text_Color
- 4f76b9df-5ef3-4336-a982-66c0a18b2f8c
- Component_Label_Deselected_Text_Color
- Component_Label_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-270
228
20
-
306
-260
- 1
- 1
- {0}
-
255;255;255;255
- Component_Label_Selected_Fill_Color
- 4755f628-28f0-43e7-9567-c9f4a6347eb7
- Component_Label_Selected_Fill_Color
- Component_Label_Selected_Fill_Color
- false
- 0
-
192
-250
228
20
-
306
-240
- 1
- 1
- {0}
-
255;25;60;25
- Component_Label_Selected_Edge_Color
- 1a80ded9-3255-4d13-b155-c6a4b3fbc080
- Component_Label_Selected_Edge_Color
- Component_Label_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-230
228
20
-
306
-220
- 1
- 1
- {0}
-
255;0;35;0
- Component_Label_Selected_Text_Color
- 7ceb31d3-04c8-461d-811f-f33619dd34a8
- Component_Label_Selected_Text_Color
- Component_Label_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-210
228
20
-
306
-200
- 1
- 1
- {0}
-
255;190;250;180
- This input does nothing, it is just a spacer
- d652999b-5a4b-41c8-a7b9-a9ae76fb5699
- Spacer
- Spacer
- true
- 0
-
192
-190
228
20
-
306
-180
- Galapagos_Deselected_Fill_Color
- b9fafc3f-9f97-4907-93d7-d61a29223c7f
- Galapagos_Deselected_Fill_Color
- Galapagos_Deselected_Fill_Color
- false
- 0
-
192
-170
228
20
-
306
-160
- 1
- 1
- {0}
-
255;252;252;252
- Galapagos_Deselected_Edge_Color
- 74a688e8-b34e-4091-9b76-27007c49de29
- Galapagos_Deselected_Edge_Color
- Galapagos_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-150
228
20
-
306
-140
- 1
- 1
- {0}
-
255;100;0;50
- Galapagos_Selected_Fill_Color
- 1e33c84f-2937-486e-bb9f-9ab17866e471
- Galapagos_Selected_Fill_Color
- Galapagos_Selected_Fill_Color
- false
- 0
-
192
-130
228
20
-
306
-120
- 1
- 1
- {0}
-
255;255;255;255
- Galapagos_Selected_Edge_Color
- 200dc3d8-e55f-429e-aac4-6083a05e41e4
- Galapagos_Selected_Edge_Color
- Galapagos_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-110
228
20
-
306
-100
- 1
- 1
- {0}
-
255;0;50;0
- This input does nothing, it is just a spacer
- f728dada-ea5d-41b0-b98a-8de512f00fc4
- Spacer
- Spacer
- true
- 0
-
192
-90
228
20
-
306
-80
- Wire_Normal_Color
- 0fcc9cb5-ff01-4adc-80db-8249b1cb1362
- Wire_Normal_Color
- Wire_Normal_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
192
-70
228
20
-
306
-60
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Empty_Color
- 78a2afee-b670-426b-a371-999235a7e337
- Wire_Empty_Color
- Wire_Empty_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
192
-50
228
20
-
306
-40
- 1
- 1
- {0}
-
180;230;55;2
- Wire_Selected_Start_Color
- d41f6915-a75d-46dc-b44c-982c253a5b9e
- Wire_Selected_Start_Color
- Wire_Selected_Start_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
192
-30
228
20
-
306
-20
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Selected_End_Color
- 2410a63c-6af9-409a-b554-f2e05e8d3950
- Wire_Selected_End_Color
- Wire_Selected_End_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
192
-10
228
20
-
306
0
- 1
- 1
- {0}
-
255;230;230;230
- This input does nothing, it is just a spacer
- be73375b-cea8-4bb4-b84f-47c1c53dba45
- Spacer
- Spacer
- true
- 0
-
192
10
228
20
-
306
20
- Panel_Default_Color
This does not change the color of Panels already on the canvas, it changes the default color for new Panels
- 29278a69-6358-418c-aba8-2f26dfb10578
- Panel_Default_Color
- Panel_Default_Color
- false
- 0
-
192
30
228
20
-
306
40
- 1
- 1
- {0}
-
255;255;255;255
- Group_Default_Color
This does not change the color of Groups already on the canvas, it changes the default color for new Groups
- 99defed7-0c8b-446e-be4d-436c05592d1b
- Group_Default_Color
- Group_Default_Color
- false
- 0
-
192
50
228
20
-
306
60
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 19fc00c2-190e-4e70-998b-e26dc4f9f8af
- Spacer
- Spacer
- true
- 0
-
192
70
228
20
-
306
80
- Canvas_Background_Color
- 8b28a632-1507-43a4-8735-9a181ad39bcc
- Canvas_Background_Color
- Canvas_Background_Color
- false
- 0
-
192
90
228
20
-
306
100
- 1
- 1
- {0}
-
255;255;255;255
- Canvas_Gridline_Color
- 72826570-5a41-4ef5-936d-59e648e96383
- Canvas_Gridline_Color
- Canvas_Gridline_Color
- false
- 0
-
192
110
228
20
-
306
120
- 1
- 1
- {0}
-
255;240;240;240
- Canvas_Gridline_Width
- f2e7af00-bbdc-4f45-a020-e3f2020b5345
- Canvas_Gridline_Width
- Canvas_Gridline_Width
- false
- 0
-
192
130
228
20
-
306
140
- 1
- 1
- {0}
- 2
- Canvas_Gridline_Height
- b32ba782-b9e0-40b1-9b49-c17de5b67dae
- Canvas_Gridline_Height
- Canvas_Gridline_Height
- false
- 0
-
192
150
228
20
-
306
160
- 1
- 1
- {0}
- 2
- Canvas_Edge_Color
- 5859d87e-580c-4f1f-af8c-3683e3dc94d8
- Canvas_Edge_Color
- Canvas_Edge_Color
- false
- 0
-
192
170
228
20
-
306
180
- 1
- 1
- {0}
-
255;207;207;207
- Canvas_Shadow_Color
- 6f769f3e-eb42-4a27-af68-d95482a87942
- Canvas_Shadow_Color
- Canvas_Shadow_Color
- false
- 0
-
192
190
228
20
-
306
200
- 1
- 1
- {0}
-
0;237;237;237
- Canvas_Shadow_Size
- 57186c1f-9afb-4410-9800-b9138d1f1a74
- Canvas_Shadow_Size
- Canvas_Shadow_Size
- false
- 0
-
192
210
228
20
-
306
220
- 1
- 1
- {0}
- 2
- This input does nothing, it is just a spacer
- 288db22f-a056-435a-ba44-1260facefde8
- Spacer
- Spacer
- true
- 0
-
192
230
228
20
-
306
240
- True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color
False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color
- d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee
- Monochromatic(On/Off)
- Monochromatic(On/Off)
- false
- 0
-
192
250
228
20
-
306
260
- 1
- 1
- {0}
- false
- Monochromatic_Color
- 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb
- Monochromatic_Color
- Monochromatic_Color
- false
- 0
-
192
270
228
20
-
306
280
- 1
- 1
- {0}
-
255;255;255;255
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- b5a6a551-46d2-4806-81c1-4e694142c31a
- Colour Swatch
- false
- 0
-
255;209;209;209
-
48
-223
60
20
-
48
-222.6212
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- Colour Swatch
- false
- 0
-
255;255;255;255
-
48
-1003
60
20
-
48
-1002.621
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- a5070296-591f-454e-b939-4e1ba45b08e2
- Colour Swatch
- false
- 0
-
255;115;115;115
-
48
-263
60
20
-
48
-262.6212
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- Colour Swatch
- false
- 0
-
255;227;227;227
-
48
-943
60
20
-
48
-942.621
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- ab85a55e-b675-4974-8817-fc5f46ae741a
- Colour Swatch
- false
- 0
-
255;222;222;222
-
48
132
60
20
-
48
132.1281
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- Colour Swatch
- false
- 0
-
255;168;168;168
-
48
192
60
20
-
48
192.128
- de131812-96cf-4cef-b9ee-7c7031802751
- 00000000-0000-0000-0000-000000000000
- InfoGlasses
- To show the components' advances information.Right click to have advanced options
- true
- c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24
- 0
- true
- InfoGlasses
- InfoGlasses
- 0
- 0
-
255;255;255;255
-
255;115;115;115
- true
- true
- true
-
255;59;59;59
- 1000
- 8
- false
- 0
- false
- true
- false
- 2
- 1
- 8
- false
- false
- false
-
235
-1174
176
28
-
340
-1160
- Run
- 72e93834-66d7-4933-aef0-991e6bdf6f81
- true
- Run
- Run
- false
- 0
-
237
-1172
31
24
-
312.5
-1160
- 1
- 1
- {0}
- true
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- true
- c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260
- true
- Derivatives
- Derivatives
-
551
-4719
120
144
-
630
-4647
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- f3ee6bc2-fdad-4aa8-bc05-a096970cebc8
- true
- Curve
- Curve
- false
- 0
-
553
-4717
65
70
-
585.5
-4682
- Parameter on curve domain to evaluate
- 04c36552-d571-45f3-874e-eb0200b47d22
- true
- Parameter
- Parameter
- false
- 0
-
553
-4647
65
70
-
585.5
-4612
- Point on curve at {t}
- baaac401-d9a7-411b-805d-a15c35db80eb
- true
- Point
- Point
- false
- 0
-
642
-4717
27
20
-
655.5
-4707
- First curve derivative at t (Velocity)
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- true
- false
- First derivative
- 1
- false
- 0
-
642
-4697
27
20
-
655.5
-4687
- Second curve derivative at t (Acceleration)
- 2639343a-12c6-4387-90cc-a3114bd783d6
- true
- false
- Second derivative
- 2
- false
- 0
-
642
-4677
27
20
-
655.5
-4667
- Third curve derivative at t (Jolt)
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- true
- false
- Third derivative
- 3
- false
- 0
-
642
-4657
27
20
-
655.5
-4647
- Fourth curve derivative at t (Jounce)
- 92510296-d128-4ce9-a581-482c09cbc15e
- true
- false
- Fourth derivative
- 4
- false
- 0
-
642
-4637
27
20
-
655.5
-4627
- Fifth curve derivative at t
- ce3af00f-0726-43e6-b974-248803cfe0e6
- true
- false
- Fifth derivative
- 5
- false
- 0
-
642
-4617
27
20
-
655.5
-4607
- Sixth curve derivative at t
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- true
- false
- Sixth derivative
- 6
- false
- 0
-
642
-4597
27
20
-
655.5
-4587
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- a28e949a-03f8-43f8-b244-d21a8d6e41e4
- true
- Line SDL
- Line SDL
-
433
-5982
179
64
-
576
-5950
- Line start point
- 79adb25f-f822-4463-a547-0638ba3af362
- true
- Start
- Start
- false
- 0
-
435
-5980
129
20
-
507.5
-5970
- Line tangent (direction)
- 03636d62-1370-4942-88f4-857a65464d92
- true
- Direction
- Direction
- false
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
435
-5960
129
20
-
507.5
-5950
- 1
- 1
- {0}
-
0
0
1
- Line length
- 71e8a980-e875-42d1-82e8-80286c8cbc52
- -X
- true
- Length
- Length
- false
- 0
-
435
-5940
129
20
-
507.5
-5930
- 1
- 1
- {0}
- 1
- Line segment
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- true
- Line
- Line
- false
- 0
-
588
-5980
22
60
-
599
-5950
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 391756f9-4358-45d1-936e-c496ba6104e0
- true
- Create Material
- Create Material
-
471
-6106
152
104
-
569
-6054
- Colour of the diffuse channel
- 99cd1941-02ef-4b60-9081-2924d6df2987
- true
- Diffuse
- Diffuse
- false
- 0
-
473
-6104
84
20
-
515
-6094
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- b4fa067f-1df1-4344-b55f-bc629475264a
- true
- Specular
- Specular
- false
- 0
-
473
-6084
84
20
-
515
-6074
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 38f16f51-687d-44ec-9aab-4b4c5db2f705
- true
- Emission
- Emission
- false
- 0
-
473
-6064
84
20
-
515
-6054
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- f0216951-6a43-4fe8-8f72-957347479ac7
- true
- Transparency
- Transparency
- false
- 0
-
473
-6044
84
20
-
515
-6034
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1a0cdefa-8194-428a-b2af-d416a232075e
- true
- Shine
- Shine
- false
- 0
-
473
-6024
84
20
-
515
-6014
- 1
- 1
- {0}
- 100
- Resulting material
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- true
- Material
- Material
- false
- 0
-
581
-6104
40
100
-
601
-6054
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- d7be4360-884f-4c85-be96-44fb8a798a7d
- true
- Custom Preview
- Custom Preview
-
584
-6169
76
44
-
646
-6147
- Geometry to preview
- true
- 7d2280d0-5877-4448-8407-b4d0b2e99066
- true
- Geometry
- Geometry
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
586
-6167
48
20
-
610
-6157
- The material override
- 0ab4a55d-2d50-496f-9431-24974e37bb78
- true
- Material
- Material
- false
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- 1
-
586
-6147
48
20
-
610
-6137
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9
- true
- Evaluate Length
- Evaluate Length
-
476
-6253
147
64
-
559
-6221
- Curve to evaluate
- ece5eb15-d68e-4325-8ac6-14e1983b8848
- true
- Curve
- Curve
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
478
-6251
69
20
-
512.5
-6241
- Length factor for curve evaluation
- b7b17610-8182-4eb0-beff-f9003e5cd200
- true
- Length
- Length
- false
- 0
-
478
-6231
69
20
-
512.5
-6221
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- e9204942-5fcb-43c4-9bd7-bad7da1f1095
- true
- Normalized
- Normalized
- false
- 0
-
478
-6211
69
20
-
512.5
-6201
- 1
- 1
- {0}
- true
- Point at the specified length
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- true
- Point
- Point
- false
- 0
-
571
-6251
50
20
-
596
-6241
- Tangent vector at the specified length
- d4d0d2a3-7672-4c9b-847d-0720f0276387
- true
- Tangent
- Tangent
- false
- 0
-
571
-6231
50
20
-
596
-6221
- Curve parameter at the specified length
- 4821c9f2-9535-42fb-89a8-46c9b7c32eca
- true
- Parameter
- Parameter
- false
- 0
-
571
-6211
50
20
-
596
-6201
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- f8bf8b17-5f64-4003-9ce1-9026aaac4695
- true
- Interpolate
- Interpolate
-
388
-6357
225
84
-
561
-6315
- 1
- Interpolation points
- 5b1939bb-f0f0-413a-9564-dbeb140f85b7
- true
- Vertices
- Vertices
- false
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- 1
-
390
-6355
159
20
-
469.5
-6345
- Curve degree
- 03f9d6bf-b682-46a6-9e8a-34324164c9b0
- true
- Degree
- Degree
- false
- 0
-
390
-6335
159
20
-
469.5
-6325
- 1
- 1
- {0}
- 3
- Periodic curve
- cf0efaf9-d364-4835-a799-f77814defd1e
- true
- Periodic
- Periodic
- false
- 0
-
390
-6315
159
20
-
469.5
-6305
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 68ab4f2d-155f-49e9-9089-6cceba7398b5
- true
- KnotStyle
- KnotStyle
- false
- 0
-
390
-6295
159
20
-
469.5
-6285
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- cd554e84-a87c-47bc-a79c-19347e2f0445
- true
- Curve
- Curve
- false
- 0
-
573
-6355
38
26
-
592
-6341.667
- Curve length
- 84582cb4-6638-42b4-a325-f4e841513b71
- true
- Length
- Length
- false
- 0
-
573
-6329
38
27
-
592
-6315
- Curve domain
- 2d16f12e-6fb5-4594-8c47-80e046dd4a10
- true
- Domain
- Domain
- false
- 0
-
573
-6302
38
27
-
592
-6288.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 59480eb6-f67d-4aed-af3c-80bcc65b0c97
- true
- Create Material
- Create Material
-
471
-6481
152
104
-
569
-6429
- Colour of the diffuse channel
- d0a233c4-5cbf-47b6-b827-30877f3c0605
- true
- Diffuse
- Diffuse
- false
- 0
-
473
-6479
84
20
-
515
-6469
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- f52f3c21-e882-40ff-8233-68e3e5495edb
- true
- Specular
- Specular
- false
- 0
-
473
-6459
84
20
-
515
-6449
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b9730379-a406-4b51-a3c9-a8491583fea5
- true
- Emission
- Emission
- false
- 0
-
473
-6439
84
20
-
515
-6429
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 34d39782-03a8-4ac3-8ce4-9b4b5b91336e
- true
- Transparency
- Transparency
- false
- 0
-
473
-6419
84
20
-
515
-6409
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- cbcb1a83-292f-4d78-a691-b5e20a9d993d
- true
- Shine
- Shine
- false
- 0
-
473
-6399
84
20
-
515
-6389
- 1
- 1
- {0}
- 100
- Resulting material
- d1ae5845-db5c-4627-82e9-c54c822208ed
- true
- Material
- Material
- false
- 0
-
581
-6479
40
100
-
601
-6429
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 570796f7-f90e-4361-858c-c1f014778449
- true
- Custom Preview
- Custom Preview
-
584
-6544
76
44
-
646
-6522
- Geometry to preview
- true
- 501744d7-62ef-4952-a5df-acf7700d473f
- true
- Geometry
- Geometry
- false
- cd554e84-a87c-47bc-a79c-19347e2f0445
- 1
-
586
-6542
48
20
-
610
-6532
- The material override
- e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8
- true
- Material
- Material
- false
- d1ae5845-db5c-4627-82e9-c54c822208ed
- 1
-
586
-6522
48
20
-
610
-6512
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7bba5658-4cbd-432f-a660-fc5cb3f3794c
- true
- Quick Graph
- Quick Graph
- false
- 0
- baaac401-d9a7-411b-805d-a15c35db80eb
- 1
-
547
-4882
150
150
-
547.7125
-4881.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 167436ff-de50-491f-8e47-5da60e700291
- true
- Quick Graph
- Quick Graph
- false
- 0
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- 1
-
547
-5051
150
150
-
547.7125
-5050.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7
- true
- Quick Graph
- Quick Graph
- false
- 0
- 2639343a-12c6-4387-90cc-a3114bd783d6
- 1
-
547
-5218
150
150
-
547.7125
-5217.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 8afb402c-3b86-45d3-84ea-d3432b3a52a6
- true
- Quick Graph
- Quick Graph
- false
- 0
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
547
-5387
150
150
-
547.7125
-5386.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1
- true
- Quick Graph
- Quick Graph
- false
- 0
- 92510296-d128-4ce9-a581-482c09cbc15e
- 1
-
547
-5557
150
150
-
547.7125
-5556.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- efd6e82c-6389-40c3-b1fa-a1f3d7f406cb
- true
- Quick Graph
- Quick Graph
- false
- 0
- ce3af00f-0726-43e6-b974-248803cfe0e6
- 1
-
547
-5727
150
150
-
547.7125
-5726.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- dc664508-b5c0-4996-9899-a06cb3c1f6cf
- true
- Quick Graph
- Quick Graph
- false
- 0
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- 1
-
547
-5895
150
150
-
547.7125
-5894.101
- -1
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- Colour Swatch
- false
- 0
-
255;196;196;196
-
48
-727
60
20
-
48
-726.6212
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- Colour Swatch
- false
- 0
-
255;176;176;176
-
48
-667
60
20
-
48
-666.6212
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21840820-7b03-45cf-914e-8d05118a8772
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.03000000000
-
675
-3066
250
20
-
675.8207
-3065.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3086
250
20
-
675.8207
-3085.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3105
250
20
-
675.8207
-3104.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3125
250
20
-
675.8207
-3124.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c6aecd68-308a-4a6a-b29f-68933f542f84
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02100000000
-
675
-3145
250
20
-
675.8207
-3144.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0200000000
-
675
-3166
250
20
-
675.8207
-3165.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0200000000
-
675
-3185
250
20
-
675.8207
-3184.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.019000000
-
675
-3205
250
20
-
675.8207
-3204.688
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
875
-3027
50
24
-
908.2197
-3015.688
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXFNJ13dQmqCCigpiCRZEpNp1dSVA6E1BxbYS4QLRkMQkIFixN1TsiA117QXs2LHr2rB3V10L6rriWta18c3cEnIryUOAPO/3uD9duCd3cu//nDll5sw55r6y2OQkRKoqAX+MeDyeCfhbWy5JThBLh6QgCqVYJoWkCHAZkuEfM/gR4r4ARBSHKOBHTHCyBUEK9IWXa4BLwxLzWqTvvx20f/nEG6Nv/X7HLEKBpIiRkZBuAeimkYlglDgr/HIookyMSpMjkFwd/+JaOC1MpkgSSSClJbi6evXqEuKuSESCxKqQOIImFotLbHyReLFUrAJvEaGQyRGFSowoiWHhX2NfkQr9HnPwy67HSTPnTbtnbumLKGMVYrkKf3n4iDzjMFESQvz2pnp0gL+b25M9S1+tnAH+fbIkF/z7eMmOx0t2oz+gv+5eB/+dNwf9N/PxvEXqTxZmhcGfF0yGIyyGtzxZ/qv658cLFzxeuEj9scdLNqlHwz6GDfJqyS54fekE0lcT9+KPhFM3kR9vRen3zsxGP5zB9XP2ZvWA+L/4Fc670J/xN0K/UeMBNqmfDX9O4rFLP4NSsXfEvxR9dxxVdAQcH+JeOpIYwjja2BcRjMD5go9GYh8OL8pZNzf/gOgavYGEwamgJKYJ/FOLuOojS8YmUHViCgBhGwaEEZefavhl0yiRIgFBP9kU/Lroz5KSJs2AZA2QyZKIGXRh89eeJn2BOJO+qga8QvuaGr1j5SGiNFmySvOzFv4KWbKc9uGa/gGCEPFQhUiBTwEjfGaZkD4Kr5hhn0tDnxm/3VqgVCJJQyVpfskSieZUEEQkx8cjinixMtGF3xfTGD3au3nA/1z4PskSVbIC6SFFklUKkcSFH5E8VCKODUbSomTDEWkPKRjNihi6b6m+gSOb4aOYCpJViTIFcblWqDg2UYRI+BGKNJmiWmAcoWVWF61oPMSzb0iu6VzxjyKLUaQZa1H6mGYs31OnVFmED4XsU8PkCP6xxK6RwILXTbHrEKNqOH7G/n1KdZ/nr71PDczd5LfxV6vzx8d9XEx6KhOUVzV8ZFKVSCzF9KgTPoqpt0yBq1aCMaY+MoksWUFoOPh/Jl3VVMBPgOPyZfF8f4VIqUyUyYHu48uwt6oW6ItKD/i7oPerMf0/JITNdH/t9uVl8mJAMsJJJTF3b/z+oGXwwl47hmRd+M0CkKrhJMXoHy5FHpa+ub/l/mmfF1wfkKrjpCcO3UQFbrNCtqzZ4vkGsXICJGOctOOMIOWLvW3A0eeP5naxdngISCY46f2NJ/lr6hWF5Dx/MXhy9JaXgGSKk1Ydam9z43tN/8NG1fLHNc36AkhmOEmeG7Jyi1U3YXqDOYLAVuNGApI5Tpr46RCv9hHj8LxDXYyu7PP/FZBq4KTpJ071OfpHrZCtk5/M6/Lyc1tAssBJ0r2ur06/3C7c/GhLTFen/f8CkiVOqn5w+A2Trj+8ct7Mf7TTvf8NQKqJk2aOa/Xtzc2hfotqRbz5EGE/AJBq4aTUjw0c2sqzgteOm2W27POMfoBUGyd9e9Ky28U3HYP2dY10HbE65gMgWeGk7wcEKwYsWuubXaPkyto7k80ByRonNWu24vzsDo8D5q08e3Kn/5cFgFQHJy0Nfh1SsKVLyPy9bRuvHNDLBZDq4qQ3a2s2zntoHb4zplfcA/vmJwGpHk5yqHGsrUfwO0F+1LeCeSYNugCSDU5qNEi+om7nt4GLjPdbjqgduASQ6uOkh68+bJg9uUHA9mPDn1pvXbYJkBrgpKLWwtNfM3v6HFwmcI8d++kxIDXESeNnZ5mfffvdb7rLtdzf1k1IBCRbnBRfP/Jfo6lj/KYZ7VNIHYKnA5IdTgrPyp+YWj1MsGZIQt3X5pO/AlIjnHQmuX2Hv8elhx56uO7ODfO0CYBkj5MudVowcv7xwqC8uhsO8k9PcAakxjgpa8r1fV9WJAm2vXOoHSfNhhLVhJgOJ8VT6zbMEmb+LWx3PKTHa0BqipO6X212fcHKo4J1Y7ZOTBo+ejMgNSPe6+HG/humdAyfEP/iPo+3cCgg8XHSSnHSwt1r3YTrTLJvH/rRd695oO8QkgZxgJo5UKpUiaSxiH+yWK3MJikum9w5Wi3g6N7Q2Y8KRMYMasM8TBw7XPMyz0KgUinEQ5NVmIbHVTehooz0pqI6V6KKah+Vv+Rb4C2fjT1fdhbsu6rSUFHy3U1yTc2ShLm3XDrOmPhqkIaK2pJ7afvEN78H7xxqHfOmVk9rDRU1oU/Yx7PrU/02yWYETPdOO66hop7+uX/VO/9A7xlt28zlBfCfaqioXbnHfgTs6R8yu+ms4vNLCqw0VFSfqMZnmvYrESw90SGnRtT3DxoqKqq7XdLUlq/DZ4UZfZhUK/iLhooa66+SDVvn6X+w2rXJv9c8+l5DRS1rG9bU7+svYTuUy5ZtcJ6wQ0NFfclK9d0cyPPf2WBWjxeT+vytoaIWTBd2KLQf7bem21rh85O7WmioqOLxdepcnhoasCyg2e4o1zafNFSURWinT1dWNA/IDbrd85eW1y9qqKjCiL/zXF+ECje1WNO0lqfSTUNFzWy7Ns0+IsQ/My3bfufV3gc0VNS+pSfN7M0UIev73WxqduNkfw0V1Wb33bPvPr4Ozlj9zj2yX8OFGiqqWo+d80ftHxe++J+ferSbXnJdQ0Ud/zPi70ZWzsFLXVassNjgt01DRX3M7etnkesVvL+Fe52E3j23aaioe0P44gM3egcsd7jW++aQg6s0VNTMYYLPGRdWBe5Ie18v52loqoaK4v2R0DliT7F3Zst3bwdndL+loaJ4kf1fFFxfG7Tzmt1+k1l362qoqN6demTVi2wr2D1oRpDT3DeTNVTUNLuR9tm7LgTPGi1qePLPYXwNFdU3eYhP+5NpwbvMeuTZfFC00FBRIZdsT6/Ir+O3smB8fP1d7Uo0VNQHzwXCru+KA3b55By4PrhlkoaKMvlrRrKg/8yA6b0EAy/KArw0VNTW9+HrO39u6bvHYsffxyYsUGioqBaffvvTy+GY/3LTrfwp0cb1AMkBJ3V1PhTi7tPZb8eZwE6C4TvnAlJznDTcz7OP6a5V3hNqTckY9+AcdAFaEA8fNXnQluXGfkuHflrf8OConoDUEicddni7OGaarWDqmYW3e2w/fBSQWuGkdKfMzS2azvM+2OZA1JIBj20ByREnjQvZM+BM0ka/fUmdl83p16whILXGSa73+EvjPvcQzuq8omG3fkr4XU7EE/a7WntZSpug7A3Wji9P9pwJSG1w0qI6JWGd4saErnjd/P09ZWgvQHLGSWtd8xbcdpvhNZsfNTXi5Ny7gNQWJzVd2+O380mJfrvXbr+zgtfRB5BccNImo14tz4ZE+ky9mj3ErLvlOUByxUmn51ub/vzu99D1v654FHbx8GFAciOm3tQ1p2vWehu0vpebdXRQc3tAcsdJX+06/vpLu2ivw6v/+SPknIuMZjc82OzGlA0vogWO5wImvDyTYWE1trYe7EY1NrtxZH3Gzxu/5wbtKegedfagsi7pu0zDkpOGIgqy4TDDh2IyCe74J5V8ET9WJpFg8RM0EPESmUgllibw5TKxVMWXogMrGV+fai2YHon2/sT1cPR5sNUFNJoyjQSmLBYhTNGGx0vtxt7pErb/8rjE0LaFUywxMi1+osCpDv+8wQfj0EtwrvDynIW8GPkpHi/Am8crEJhEiFNk6Dhw1vK8XIQXM2WnakfAYEWpQqQqX5FKxB24mXorACCJPA2G0T9kHCFSJRKvXn20x1jjQBWSxOOVLvCYYgjDzxDhH4+X6YWLQ3U2cTiMrN8s/X4+ZLbLqV0eirqDSdjX8ElWpIhgLEiWCGhfTVkk4idhikiSLFIhfFUiwo8lBoAiIUJ/RfgiFfhRKUdixfFiJI4vFynAd6oQhZtpgDguDpGq8WKUFqoDwfLENIEpJWnJ6kInIU8+FrD6C2B1ujeF1YUugDr6lCX69EPEUnkyGk6a4SAzQVPHB319lYyP4BgxvuCYty+d/1y4JjBjoGW7Pms+TCBrA3QM2svhl8uaDFQ3qpyToRggFDEWnwzF1MmQDqfKGBJCRmUg1CqCkAU+0CKYtMTJkoDglYna/NQWuT2Cuwdvu3HzQMOsJgqyWKjHpYtFKaks9H70mycpqpntN616ulv3vtN26wE9IEEc6KWPOlUTQ0+WrMIFzJQDvvoRqK5VQwcm2mjVWEa47AcuuL/YM8Jrj9XjRn43+keShQwdhy5k2GUaTEw48LTHIdMVl6LuAIccKg7m7kJe3hgyDkZl4NBQPdX5KUD5yRRcSMQ9MTcN8ZkVsjrw5y6/vit8rbs+qRBErMdwIQLkhoRINe0RiRUrYiWcsnG+362SgPXHQjeLJH+dtHniZSCIFI7iQsRj1Cnc1sHAkNHWub0Y6vBN8Tl4Yf/rt903brYhvVdNX3GKOA7ho4qUbu7MWIBtg99G2DYwQYCiGpEskvAliDRBlchXIglwY0WplXGjhsDsj0hDn0TVEtZHQAVZpwJYPzGZOODN8KxTdDJxVmoTF4c+DeNL9lyRPO3O85oBk6cd2Twn8OQPwzVwvDZCXvFIgA+fSey8gIqOGMlo4Nj85bqY1wq9IUIuGCEqTK0T42inClth8fxit1HTNlAggq/DABF6uSyIqGGKHiDKS+GCCIhQFTvE8CY+5IgGpwiNycaphpFyiVil5hLUl8PF0uEsEcxv7Y1Xjm4WeHD2lxcNRszsT2ZXMLyPzi7ssr41JeSHPJmLH4WqKuGH2VCZTIKI1AqQR3NtCMViKoiNRZRKzeEZdQ1UeHBPCAsxmTmz4r7IdOOth4I17U2eCeOCjpBjS9ShobOGuK533rji6mQQE2/y3VB1QvN0dISleZRImgAYi7s+qOTGaYHUnsbIxpXBswSTQm9NX3Qg6DEJKXN8UDpWpZSKQAvVLKxoAc1C84J0RKtFacQBowtEa7iowQBl45IYlQ6YJq0iIEMnPytkYPLjbpIJj8VNWjV68Y2/iob7bNzW5vuly+1uMJhnsn9UgwPf1qwLREBoEIU4FvObtPOOqNbdLFQkl4ulCQRS8HX06Ew8aW9cr8aDg6FzVi0c5hQe0KmcllIOdK+HH2DOTIalowHdXIXTYoQEc0zZmDPUaWqLbOMjXnuiW9puPn+nAel1rXyRWBnATZEcq+ILFLF0N9aEhU0/9UbAKyAp2KrNUJES4cslIiniwleI4sTJgHvSOPA3QaKOx+F6jpQvUsRqt2pD3aXhfG4aw6gf0BLxdGALIyYAxC8wubc5bQE1XSf3tjH4bj4IJ32wGAq6uaUPxvjeD/emv7J/N8Bv/7B2mcLwk/dJ712d6V3Ri2WJJjVEK6do5gCgvCBQOQIgp7Q4wBkFSqelCHtvtQyhooLhhsWejECtvWy08Z5Hqt+BZj3rt1Yua0LWp+hoEXA0uj7VoOlbn8a44LhEM+lTa6BPi9N1XJrojc0nrTDx3XPo+JFZD3xnLrzZbtxIy3/Izgs2Et15wa9XBBY56VxYUGWkrEUJvkBToTiBv1DZiKTKNjg8jKCY55+uZ/wh12f72xWqV8WfHpEVPjokXeFjlysCEh4nJDHjCY1ORIU0je4+f2xak24//Ob16TiLt6z/ErLgh4P5E54CvJNoujKvzoJrPR9ZEoAfTDw4+eDNqdopaep+Oduj0OdgKU3bxU+gcQozAXR5ALpHVOhyALAxmTqpZstA+CnMiWN8uWUv6vw4tb1P+OaGZ9rdihRRVjz7wvvocoNdLksbUzdxy6mNrYG+LYDYFAkY9pg+O6PY6KSNa4ajH+NA53XccLuaA+qH7/FKudv+2qNsiqpBlMkS+ooDcV3v88oVB+AzEwDRbigA+LwyZ5tXI46K24rDNvvsOxIuefF04FvSG1n2SgbvArNY5InMzqyW8UNLX7ESWLk0uKOFqKDeSnMlAgno8ybAb2BEnJqBwvp8NNhJRBr2NSJlClW4ZooPg8RSM0i0lFj1aNS4wwmwZDFgWAMf+Jfi2lo4CX2jF5+qRSR7B0rjkFRiOPh/nJU12Fj5um9YiLH7vz6L1l7wWx0eOIAElXEIYB1dORqzMMzBR4HA3UkRXwI+zh+KqEYiiJSvGinDoz3tVCU1SYj+SDS2oVd18FwL5+CeqwfNcwXzgz9HJ/VoDb+cD95DocLek/Gt2tgtf2L0arVw9qCJW37U2mVLlslI9G7mvSESsSx9Sd180oP3WgDBimBc8gJuvnyOTtuQtVGwEBDysEP1dM/PHXa7PvXedKWvqHde1wzyJokQ3MsMlAapLJioLrEeYOJzwlQ4W0ezggkVtkTKiFJiUlpA7wd7fLYddak2ZcS0FtpOE/2bFDdcRvIEcGmU6qq5o9DgesiCTQ+dWyYK+d61of/E9U3NXrUYTV5MNEfBiPQN0T7q9ibrIhxIEFPGg1/j+EPTNCesC1+FL+zBWBzbXHIbq5WyoqYtMj83fWmPoGiJsRcQMKfdAOP7TOH2I6C0nHZVgNKKanBxW1TPIcIpCZZj3G9Z+JEdO1Qv0R077HIlK6oYAJAtBEjONAMLwAw8u0un7SRbFCBCLpzixApsfa0NI1DjExuKNob8LZy1NKDe7jYRlmSV5UvcTFdZpaSyAKNupusBsNRdXIABiaqSzSVscR1+pj2P7U9xT+qGE+GsMgYwKC+xec2cXX5VdKYgLV94wCzg3+kOe6zrBkpViAIwQ5gqVwBXVWOsaq7RZAc+BB2W7sDj18tiKzVZVg9svb2Ti63Td1b1nmFpEl1xTz0bxegDE1783bIoLOPB5852i/surjKjmOOG66M8pmW/CHd0euFG0ZLHYhT7Nqs2fOEOa+/9qyVvfxprHkBe2VVnA2KSpn1ixX4j9a2kvMFYRAEH4MeLsMQeiUyawBerlIRFxL8Ipyv5sSIpcPL5ymS5XAKzDYfKAFFMZEglS+Gt0KBK0TOq4lHgI+hFN75PItSr6IL4wLDBpWmKcNlXJUuAS1fq6AF8BkYQSbI4RMsAgnpegBM2+oI45QNaMpwP4rTMQ6fgEhGDhY4AFjrzYEWkNNofep+c7G4VMvHlji1pB2+s0OMmDXUylVM1eQGE0g/hmzQ01ZQIt3AO0Uw0Vx5Bc5I88uPhii+KGQ4Y+CgjZLVNI+b027dbOM/Y77ejMyfGlE+fl1NRQFQeHeRCBciNASlsXRI9OgTG86MUyYgLOovJ3BIrNfWCk4ebB38c39PNg9m/MtuC5Gxa5hg4edthm9VOHT6Tl0/D1APRl081aBXBOi9O1hUfMIh8ECOdrGwTLNUVmATItdJkcg7/af6DCdUz7Y8EbV146Uhv0Wvy1mnlprzCrQFUywQwMSXHHdUyOu0rOZKzPnQCxqPr9Y42ra19Vt6ucfL2qkLysr8ZPjANGjWhIsBBlQ0rOEDZ6LTR1BqzUqUWXBd04lKXLKze8UDIxrzjD/zbpM/RR2K5HhDy4kQIzGncb6vJY/HbhALntiU9rgs2Pmy66erKt+3Ja31obCGXSYBFp/ts5iw4dyTWM6QwD5a4Pw43eKpEhSw5IbF0pVyX9VbqGUrWp6WvTGoQtT3k00rIKzgK8BUBN2kj1U1K9xDy5EdobpI5oR612ziwKX2sMjKNYt5dsYvanOo3xzj5RODeW7PIqzd9YX0U8IX01Rs1pSwXiqoYy+lCFQL08iB6zXwYpPMs3L46qpMLVRObvnFIggJh9i8v5tR2NB+5QDjrzMqFz368dyY7S77ojXRnCb+u79kJ39+a8/0LjlS1s6SWTB0cJfjIYlkckbLFyIit83e4He6WL9w77I/0AzEvn5FllRiALqtqSkUwA0xWDmbwq4YZtHRYTVZUL4MVbsFSmQqYL1EsPGHp5NEDhKwgskhy4Xv2iE2UKeJc+O16KEcoVOgvzN7q9KYW08esHOA79bzn48TMktNkuwa/IFKVxpBLoUGqCGYVHuZiVvphQ5g5cCjdDmZhG+WQWdJkxVAlxwzK/Mdmcvefi4MmPbGXvpzU9G55QuXyhg6euCK3BW5GIZUd8nbCPsKjunmpuCbn8La65HbyODLkUujc3udCG3rs7l21YS8A4NERHIDbDABA1aKTJ0qYMjTliRGAkTsskzuFOQrXLa3T/7Pl78UUU4beyGDKsOsVAYA5FwCbsw8TjmYtHouj+Z+dOGdDUC8nzqllN/R64px6nL2c7hS/LVB7x1lOnA844CL0tT1O8KA2Gw90zuk252CBXnO6qWVO9Lg0SFWlemCE9TEuRmwsIBhhxcYIfkKLvdNnz/BecGJryNJ/948mv25vRCJKY2YEJaxg8wzqCfgjxQqEr4Aj4ZV5GHGnZgAxPAgNdyN+mZhT88jKmzMPc7Tn4aeZ0qkKKA8eUJxHYG7NhnmNyCUp65OH+ea++Yx05m8ix45WeMwaCv5RiEUS7XcoGpVGu+FyROofwk/Cx9AupKWW6uF8LPoOAOUD2uZdtgaQ5UONDlysQloehBswaXtpoS2XK9oEqx0FZz9cUokTx8cnKxF+bKJIKkUkjC9+x7XjkxP3s7wObfzl0ihHv3Pk9SZfbAT6ehNB0PtqipOQx4OQbGRaTYEFP/L2VYnXaQKUq0xdleuff/4p0SVq5pMZA9e6kiUiBT9RnJAoAX+Z1cL5Id8vTz8+IXTDt++L7Kf9OEEO4CLxQegBnJpSEdyJ2cfFHWtD4E5JCa9El2C6mTBJrFSKgS8YS2IToUIYmSP7devKm1tXB++uOeF108nPD5GZg43IkL9RSqkI5hTs5WIO0CZVzxzIH13C686CJPiVKE/A44A4W4FIY9OwDaAefJlcNALuF3miv5V+gnlG9cq+p2jiZB8yd8b47/IdPyWSj/RHaYxPP9JPolYE8/iczCvcU9XRdumm3iPSpp5xGRzsUcpBZaJYmiYFrhNgH2CXVAZPtXmCnySykSgR/uoBSUmiVOwC89JW6K3lt1784z17m8M/SxUlCZQ0s0SmtA38ckVwLn0PF+c8qpxz8KY4no7rJHVL10k4FeHKEGEvPwdT3/zde99dG/GrCVkRsvpMpRS9r1y54T4E9FPP0twqD1QR4n5qHR6Ln2pnPDry+MEP4UfNc585dhrtQnqr2j7JSpUsiY8XTie7qRBTttNArQUSIOlKPPMAjoFuZicgsiREpUjjy7EBlVaB0lhJchwSKO2NSPHTA+zOK7WYJNez0vhAodeGhbLlMoXKTyxRIeqa0dpiHwH3sPcD7LOYcuU94F7ZftbdGsYYyp/ARiUj4NHKozevNj73zEtH/6m5ki1167WfTxZLYlS6WKoplZzsAk8kP4LIeTHpkWIQe2Xu1ykftX6UhguDHj1TsBWBadI1u8ujBu8C96/zHtyuBSX6+Y+mMAUrqo7QA1ZenFgV51eqziVaN5jhIRf8EHR2HuQ8KDFHcI+PuOjt4V1igto2qlU1JwID4qPw/zU13R7yHTyiwmRdNjVmoOE2tcZt5YXbMVzhduGgig63125opHw0q27A0tmrn1m8OrzUAMLt4iFczkvEEAOIGfLy8ioh3C5aLjx6P6aZ36Jnj/MRVdtXBhFu5/3CGW7/YgDcqZRw++Y/a6xFT9/4TDRftWL82AcRBhFuywdzRmyDDIA5vKoMt4tmvrBay3/us+PL2Vcpw9rNNKhw22MQF/MyB1Z10GZA4XZWYNfTt5p39N7Rxyrco+CX4VUcbhcP4LRYA6qacxUabmdcbPVnx5s1fNa+a1fT3Kp2nkGE26gPwRpuA0WI+6n1eP8Hwm1qF4YqDrfT47nCbT5SOeF2/zhL9+6DewROanKvfyu7Hbv0Hm7ruZooDCFj4rlCyAKkosLtfYVdJ0muPPXfJGkvC3H+6xe9h9tUHaEHrIAccWCVHvf/Vbhtw6bGDDTcpjaHqbRwe/oZrnC76FRFh9sW0zdcz+zfz2dh+IIfzccYrTaAcDv1DJfz4nTGAGKGhw8fVkK43S7LaV2XXq3D5ya0q36u458HDCLcvn2aizvTTxsAdyol3L6VFWK/I3dV4MLX99KeRDlYGkS43YWTOUCbVD1zeFUZblsE7mx+vZ+FYGF684d5t34EGVS4nXWKi3kBVcM8wwy373VZa/3joKPPBI/ZO1taNdlSxeH255NcnNt4sqo5V6HhtlXbFg5dW0YHz5p5cF73NOUmgwi3UR+CNdwGihD3U+vz/g+E29T2hVUdbp/jCrcLz1ZOuO3d1mfJsN5pQXOWxVw7+rvdG72H29RUcD2EkPJzXCEk/1xFhdsv5j+op1JFBe26Nf2r1d6fH+g93KbqCD1gBeSIK9w++/9VuN2ATY0JfqQo/1SNC9yV0OxHhCJmFiWuVbdZYigtCr+GrSxlE1+FCKix3uAlZHzKKFoekaY2VjUNkcUOR+LUN3E+KUMETv6AloLkAXcIpbCSuDdThRnYtEFCU1dcDQQcsBNTUL+XPhFaVRVE42jpVa3A+eFuN29EntgnZ4BTWBqvfQdOcAyqBxGa3pTEVrYRTs2IJJ3UWJNIUZJcAr0QgJpSrEojojN/1lq1+T+//aOoY03fBXUVP+xeLfyNEz0zX2xYhjUOnKBv/wRClCfhgggInQF4jKiM61ASrnZkrEiC1s9nLyPcymZqfPPzc4M3Bc0I6HeylTW3YKMDMjjy6OWyBJvanlkPgi0fzsW1wmGGwDUxT20VGvJYrELyv4fa78yJCl76PXrQjJ9WTic7jL7iBLGKHxmrgIfldOiu2yIsOQk9T6fEb0XVoFKMls3nOt9I5RSnUFAeT6tTX2wT1pwYBV4kbLgp+gXqo2uwIokpcI7jxamlX2ECuxaoi0JbosKXHK/xEbwWOwFZPPGNPIxz2ja8awmkKhHI3CgfuswNeNVSOK0gkYhkbNmY7dP6gnvXSb+H5PitfqfqakduVVGrN5IkkvOxs6JK7fvmtsbuw7mK9REU8aXISHgJFQLs0LBW1o7aLZ3jCWnsJpO1NfsgZs/ZfAoWhGMp/ZqzSafCcrVRbsMQRQEfh7lZ4n5Fkv+AC/6bxj1aOyPrxEM9VvSnNo4vr6qDdfcgPNlMqi4fppZu1smG18Keh+sguUXzjtKz/nL/nZ+C78UJ3M3JZ5yx++lnnPHrZeETcfDaK+sLF0N+TVkV0evfI/X0gE/xJi58gPhUhSkwR6v0pGBAdOdR/+hWaa5WlEiRgKi4mPZpcK/t+3vbBO/vJxw8Z+57cjFNU+x+OtPw63p3q2B7Z06u8AyUKzoty1mhCk+OxOHKl5Exwb2Kg85/vBuyUBLcZ7vzYvLpH9NQ9H46Y/DrFVG3FVUncD2O1jn6kbuQZ7tZt8Ic9moMYC3UWIm4LDy+jDWyDDt3KmT2948Jwm5X35EjAB9sAHoEQBAqApGcTVyIOG0i7Lodj8Wu580P/jDwp26BUz98V5mfuEsuk45/o/ZdeLqri7uTDTh/ZKI4NpGPSGNlSXKRUgk7hfAlYAZBPx83/9oF/Lw/EjpH7Cn2zmz57u3gjO63mJ6XLpPYdR1KultvxEu609r0PIItoTaUtxJaY9zVgMZejK3SwgK92JMwvrjk1V4Lhz5R4atUI/PCnVMOk4WPzbFREyrZ+MNq1zyIoYc3QzebAmcUQ500VnciLsDKvpDKEEtkIxEl1iMA7oXDn0t9Sv7oMOaW31R7XqVVZ2B7ExQwWybA4GYEAAyfzI3YJrPBFNqgSpOeCm38hx18WBeAQbidtZ6r0Eb0egJze4PHnFqvXk+Y1zL+smJvmL9gyadV4xuOTPtDD5jn7+DCPHUHgXljNszD9vldOsc76ZM+wO4n8augOuTQPhTuN8ol4li0yiTdeLEhbR8KfDDgEqjAnRJ+EmkUrWzTNLuR9tm7LgTPGi1qePLPYXyux6LvoJHp2vZMApr0dh6AM4Npp8wawOmUd6qWuior4a0SNtwCbSBH4iX8JjP0cmAcIQP9487OMTpaw/fAXw1Da7WtV0jQjVjolljrNZqMmGPX2QfGngd9XPgRrmC5iZ9YAfS8GLjJ6AoRmV+M/HEzm4yM27vIL3t+/WdtUgaTG8wbCeizQ0CbHUaU2dHk7bH7SxznBy4fnjh8+4hNa8rbrgiw8yxkp4eAIfqAXfBS805pgGRUBkhNI2Gr1jidUEpa5jRm/u8vwzfM/nPm26NScnEqI286St5lovSby4kG56vPCT0646PDa/O6y/SAkhMnSrdzT+EyqJYlLt/CFktSgM6oFgBRNWKVtg0sdMElBrYNpPV4OuuKIoXr0yZs+nRx0ccVrn0yQvb/Fn7MvySnObmIe2mrFe1XcRuUNrKQ8hH1ABb0ti11/MJ7hwqinJqP9ujWe2xzl/A2WunavslDfNqfTAveZdYjz+aDogXnaq/G19Lr0JfStG043lrIC5gEIO/kwxIf3J7IoHONcbgYdK4Rg87N+p5+YPW86MC9GzaFeT1re09fOpUzTaIUC36KSCEWDWVp0is7/+7AbMdYr+W/jXnUSOUs5ka/Lz4UP5yuPMLLVB56bjTKB9zrMglXHjRHO7U1yj2q8uDSsTalyqNU0BlR8zcb6efU4CevDOvj85JXruzBiRqbItFlZ0LbDQJPHJICLwZIrNuhkOA6pCmbDsnOf9R/2tPPgQfy9xzYMfxxCKXTgEiKSOhNR9nUh5OAL4d3aKQ48aUyFYK1rVEhqXhbV+ZQOeSS7ekV+XX8VhaMj6+/q10Jw6PQYOUxoYru6/SGlgBe1Gy2QZFRKmfZZNS8jxJRRIHHJ762la8sGc6MWAnsbgpbysSJVfi7A8sNVxifpK+n8FG9x0Q9CeAo5NlmAD529eGlT/OxCBUpEsTSECSeJBSW2OXeMGFc83oN7HqUTK55lbJb9Lej0Nc645QVCmKEQiaH9daxpzIjngrLUoeXiOQTS5joESiNg5XZ1dJeA16Ey54al1AfWILntGDKH6ahi0USH9hlSM0a00iVAhElqX837qcQyUsVCCaqzdhE1WBCtg+eC4Rd3xUH7PLJOXB9cMskPYVsVPnXQ8hWnMEVsuVlEOqBb/CYU82JnjCntq3XA+aFE7gwz5xAYO7Ahrnnr71PDczd5LfxV6vzx8d9JPdcM/FXyJLlZMwtCcy9ZZq9lI3YZjVDwCHgJ8BxoTX0V4iUykSZHOgInCHKaoG+BGBUBw6QiHCSKr+AVA0nUWcMIFXnMfsJ5oG+Q0jwQweMucrZ+/D1nT+39N1jsePvYxMWKBhwotsLCiN5BCMxnjRn48l/oavd4tNvf3o5HPNfbrqVPyXauF4lu9pOS7lc7fys/+Ou9hHjBa4lt3f7Lg+y7txKtKpfRbraIVGTB21Zbuy3dOin9Q0PjuqpB1fbdimXqw24VzGu9rUn2XsmHo7x3+MkO/b+duR7Q3K1UUhYXW0ACa5DWrDpEANytbs6Hwpx9+nst+NMYCfB8J1z9e5q0wwtlbNV42rLgatdvBrWRa8wV3sUcLWLVv93uNot2UTVYNy+4X6efUx3rfKeUGtKxrgH5+rrye2jyr8e3L7EtVxun9NaQj20MnjMqebEcHcB85ZwYS5fQmDuyIb5l6EDz7S32BC67nD177zE7wuYWrhon0bRNBQRKWHOP7q5jXXnBDYP7wmsXaLEYYe3i2Om2Qqmnll4u8f2w0d1aSqj7dpzGyEvIhogl8+UKJEJkeunUwKktbqzbhIGAOObnZi6SBg9cm/4zPbP/IfnxlGiZkM6xlAMAPKAABUzOUCPnFGAdGu0XWYzoY5Gdu9m+8h99370Ssy7PrtqmwnB7sooAOZMWQ0xbigA+NxqzTa3DHS3N90pc3OLpvO8D7Y5ELVkwGPbStrtTd/GtdtbuPV/u704f7YPb7lxfsoE4caBvgdf7UvurYfd3kV1SsI6xY0JXfG6+ft7ytBeetjHlG/j2sfkb6vo3d5Z9r+Hd/15p3DL+on1kwYpbfWw20tNG9UDSkCsOVBK31qBu73UHf4q3+1FJYZ1txcghetTJzZ9ajD+4biQPQPOJG3025fUedmcfs0aauMfMgSPFe8ebjzB5R4mniAgb2PwkA/vd7X2spQ2QdkbrB1fnuw5Uz+QJyalBfR+sMdn21GXalNGTGuhjwZYczkbYM0lIHc2eMipRkM/kFPdPD1AnrqFC/IuWwjI27JBXj9+f272qXPC5VufjDrfeEwOOUVZmCqXyOIYOmubsCDsiN9BxD3Y+TBlkgg9FahEEpIQrVtpL+j9akz/DwlhM91fu315mbyY8dHo2dM4QVv3DDbVKjwF12UY3LNiAGLE5f8wHkKwB2F8tz9s/BqG777it3da/09fOguX6TEe0nN1ihx45OkyACiO6XBNIswKv6xTl+yOvREgGmjRrTgEni2QKcWQzgfPJ5bwgaSo5YQvApNVBGulxDKieNn0XTWrNcF+2TOmnKrXKYEsITXU30NvDVxK0ntOuBMqMRxw8S4bRB9nI1oMS0i1lschXPGJFlfKLlWiSMVPEg1H+MlydB1kqAgWIWTtIbyx+pBWK7cog5dab0iYNWurNaXMHT4sQ5k7gqJv7uW54sLuy8S9Lu6osNMOLOkInAPR8J6oZ4BQgWQEa5nLodjJs3sHZ79QRDfdnkHe8TQnxqSDpaZUBFgRnGABUcftjwuPxf70bVZt+MId1t77V0ve/jTWnHyQ0Eq9Tcq2GsdWFXS/UekOK26JgGiCHwEY8CRKvChWBYItkUQmTQCxlxJfnXHDvwinK/mxInhqha9MloOIA3BoqAwQwf3YkMlSeCvcc5HKFMDGoSWd0ItufJ9EkTQBWw0cGDaYLycCfGgZVLIEeDJe8ziMaqSMnwQX8bWzjSUxd2/8/qBl8MJeO4ZkXfjNghM2es0Uygd0KVV3FTC8PtPh6RggDllXdLKVdUptJf5AjC87rJ3Qyu/m8oBtIfYjb20/WUePxpKqgcppLOHx8ukQoTls2r/LVZ2MZXOSPOL7fRAzHDC2CLiH6tun4WOvhu64EX4gunuPqCpdUYSoFF3hQgXIjYGWOCzrrHSHwHh+lALWoYSzmMwtsVJTL6BlK8fBcpVtmLOj52eMmpbfJ2T/xi7f1n4qvEZOEghTD0RP0dCgVQTrAjhZ97nQQN0ZruWkJhFo63VgEoiivOJ4qN451uiTz13xNF35PnDCfen+oQXTKRtj6Hh0JYRd1jdT+G64lglgYkqeO6pldDpW7RgFjRVAJAXB7KIOwNiVVC90c/5NuGnhON7CWa8pESQ+MD1MIwgVAQ6qbFjBAcqGBE61MsBpjVmpUguuCzpBc3flnrBKCpxd7WFGanvrReQQRb3sTw9RSkkVgVAAJ0JgTuN+myuPxW87t0wU8r1rQ/+J65uavWox+gjZGw0BPho/0jdE+4UDb/UpdJjfQHjCIEKMB78CvyuND7BVqPhyOKOAssXlFfpeuOs2VivHSTH6h0uRh6Vv7m+5f9rnBddnfm66F01QdDiPXljtNHYenbHOTES10zotK6APoIEBc2m9nd27dqvnG7B5wV99RIenXqIU1YJ3MxTVQi+X5SlR9Z8eDpufhQDJmYSwoC2ItMgAEYEWmyG2RQEi5MIpTqwA4gvozMb21ublTzNqTfBLrycakF/8ZDd5WvoSN9OnZSmpLMA8PT44hz9bFrRyudE2ox/n4/UAWConYECiqsSJwmwG/Ex7HtsfegEarnpyligvObSqYvIBlePQd/4z6ksbjJp0wqIuWmgFMIOeQGsq8I50im5TPgeYwtqkvBlHU0/Z+02uPXyZRQvVBD2w1omTtbwqYi2Tf5ypW9WamiEa+pyRmTY1zFxaZzv6LrKbtr1P60PkDlrGIUwVvbGrFVGcBdVJeQLIC2pNUHd0iuGG0Y3HYhi9rzd8kNJ5l9e2gb/Yzup7mJzoaQO3DlRw6RO20UBgYVdEh1It7j6yJAA5toGBDhNXOgwaHJZWaIkDQqKVRXzi0E1U4DYrZMuaLZ5vECunsh+Yxg7GT2m7qAATkh4Ab6SIKSGJ5yLkPbpf3sotghANUOByA0zMhN6GTMp3IqqOAPRQw4r+hOk0JVyNlo1E4piNyPXkGTY3PUSh+5b81Hp/tqczWcegBdwY6trg18vSMQv9nJ2DI38OWPQi3PP8oK7ty7syAWD2gjAbM2X1dHFGYS7vknArDfarV7diZVIlEpuMigfMcmBe3Rz5wIn3Pait98rDkYGD0pd0J2FpWTouPfwlEfWtEgpccNgGMcGW6obChqsEdzaVcL52i/eenWShU/9+G+x2bbyQWuVQLhHFIvywZImEQRewOcyuxH1SeB+UWbE0RSQRx2FCPlIM8w9BmKLQXhPsOCNI+WJvG3D0+aO5XawdHnI8J1M1Rg2ytoYPlhu8B9C1ZNp8g0WYH90t79xvAI0aWrNJBWsMQSUJEWNOrLl04vLWq0F+izKO/9r/w4tAsvuMDkR3n7HLZU3niZ8O8WofMQ7PO9TF6Mo+/1/LOZ3htmU6RG4Nk8tgDlwGj3ushRq1RM5ejZyCJGpQtJiz604/npbGC/HbdcaszfWes76Qe6zgAsK8pUOm6nsWQ7SAJHGglXm3UlexiAc1j0qTI5o4tNA4gOcWDFxaROIGP6N08w8YAp3cBERBKfsL/5RXcTdADSRkLBgCBNVpGKsZuUw1TOWZJOXtwOKOz4JipjQzngc6C3RaCLPFaq9BXwG1VYToxzFXIwsNdry2NTNoe/KE1TfjP1PKN6FvxbAxgV6uCChQEWeFAog4bqg8eCyGqs33hrbb+dWFe7yLvyJNE8iF+ixRGdE1Lb4JW1o89FO12+t6f+NJ/pp6RSE5z18Mnhy95SXrU9FdAw2iDn0Bbj/EVQXNHfWCqWMPy2uSanjDbXEIAHMhtubSUyZLxwmWjwoKb901exo1HlLShQq7WpYNovpYeqiLfhZClSVg8I2KnFGodIoVbaizTyzlhzBi1HLC2IFW1nHhi+//WPj7FP+bVbq/xXPFgWDMmIfdHAEQ+NzzZJt7qvd3+zsc+iVo4sQ+xl9HvdxOXpFCBRkqUXqnDjiaFZQoPHVbGoekar4Eo6PeGwEvhsBdcWIZOxZPQVbIknSanasOtbe58b2m/2GjavnjmmZ9YXlu+kqamqRD65fiPwDKmUxLqmjmxhOGRHqimQlDIj38q2sivXx/NzfhlIN+kySN6zwTWV4i6MRh9xn3Fp1HRHt9lgv6VTs08F1nfZ9L1o+KuTn82pho0d6AScL1YyIWtPrNUFVMJoxL/8ArbDKujGX+wZRtz7awaAHlDWgVMEUYcemDTI+fPG5J0No7Hl3t968Iovg28D4G3wa9XBYy/wzz/WfWsi6CdWmfFv7BWxmuB2S8OJEBs8EAmlLw1FMPZVBZ2+l28KQqxiAYeKCLWUNlrAV295697tk5foF//vx3R3eqDvUjyzEciy7H6FV9mwDIjpwnXOyIqBp2UPfJebqc3a+JTheRij9a3Jq5Hm+HIlvPLU8GC1flf7A/6rF+jFlosgrWMlB/HZkjjJbASKx3dsjdcL0Bj+zTVnLhOi+YHbhFbsdjscg7hoQ8HzR5R9CMOkPaT2lwgFJKPRIBBlSH9Rp79QanEr1T5yra8tyQlVusugnTG8wRBLYaN5LpcRj6JKDXtT37COLkmMcwiGAysbDcccwjndpSN8KOgGHvCb05dN8cfSTmow7PHnobN3AN3nmwbp1BVu555dm/LG9ABdelIRYqphmdCjdlHle1gtWsbqZLVlnLSBUi5yvFo7B+ZYgoNpGvTEYdC7hKy1FOv8ZMzyHNu64J3mHvcrXvh7nfydMbDktXuOjVimBP3iMu9gBRNVD2lLX92bQ0DMLKeGgxc+60b1DYfni9wMUDb9258RfvGMeOaPVoV8/yrFRQHBtqKFZOxwYy1pqTsQW/VzVj4U2ofSznsludSKopYOQt1XXURfPrfeLBA+CoXvzMtEka7Y5OPNy0tuexmFaDOehFXZbXz0Ev6iFJfdS8v8NZ8/4OAXkHg4d8+olTfY7+UStk6+Qn87q8/NxWP5BTHVE9QP75KRfk+U8JyDuyQa5zLb/aao1V8bX8qNv+GrX8qPuAGrX8qGuxGrX8qAtBgGSMk6iuKyCZ8Jj3xQDJFCdRBYVWHBBqW0YRk+51fXX65Xbh5kdbYro67f9XD8UBO7ExuXnwSdcHOyz8NhjHDb350prM5HpY6qiPRKaEm49oOrD2rfaa+4lhOa9EWP8KGwBNUIBZCzqVlal+cPgNk64/vHLezH+0073/jTIfkQYO04e0XSUG9jz6BphJt5liClj/Ivq6TodG7LHcbbQpuAytXyqDZ0zZT5k5T798+rFYGp63tFbNGo3qjS9P5nbFJkXKAVYBN/BNHFp3qBhYVOE6464uG1b11QdsNLFibhwW182quF3rwAVL+v3SNd7kvuFW6IEoAZnhQOnRNd32HVwiiHmFTjYUM2LKwcQB4iQje+Jt0kjzYjv+/vC9QzL7xfdt3LA8MqaHehOoEDGmd0P37fN13TZFndWL6hAiDB68RxgwMyTdxNx8YVh0g6/Kr4FrbFS3Ll4NJBd/qpoceAjSxutcIEVf1+2UQCtfMfbm6sSnUpHBmtWxKqjNJ/g3vyyzDz1gtah+17GLW5Jz0olx6TnpakpFoGPOiU7+NcL76cxjMYyv+4aFGLv/67No7QW/1eGBA+hpnXRLyNZ13oF8OkB9cHKkDM/Z084QzhzX6tubm0P9FtWKePMhwp7hkZgzTbVNM4FJ/7cAbBe8GdKZ4PIZ/5ZutQS0SvrfZCa52ihptvfGzctbnn84bCJ5fxxdHWMx6yRimUnPFBVX3roCAKwCCBZjV20v4H/Lb+lk62qjYCFgprFDlV09eP3urn38Fs//WOd91DEpWRMJwb3MQGmQKtklgDDxOWEqvKljOboyE7KpJxeqLCEbahpURmBCNq10Ekx5AdDgeqgLmx4y/C7YqR8bOLSVZwWvHTfLbNnnGf04nlB/XbA9vp3i6ILt8VXvXbDffnxs2fznS147P2+sa+Vbp7Eeu2B/PyBYMWDRWt/sGiVX1t6ZbK6HLs98CA9rP+HCr/rugt1E1omvMBEFTah3p0+3oXe36rUL9s0WrT+FCDoItjfpcHL/S8V9PeCT/pULHyA+BtlvWc9dsB1dZ4wumbXed+4BI2OHelNaVXkX7EdfuLiS+cWQuFJ8lOCK/rtgRx089sDb7LEgw7wrktTF6XGVd8FG1Qlrz+eNXyu4C3anHj6nN/aaIJy7buo85TY7SimtKumC7fGVC5H8L4Rd78pjsev/bV2wvz1p2e3im45B+7pGuo5YHfOhgrpg5/x7iqMLtse/ld8F+8Igryuy0L7Cg+03b4o7du4fPXfB1rPxh4cxMyGGrF2wAYZV3AWbas+rvAs2ChhrF2wAGD6Zu7FNZoPZnaJKk57q31P3MvSwPeX0mWt7qugfAvOf2DA30BrdzZqtOD+7w+OAeSvPntzp/2UB12PpsUZ3B6PTHDW67/NO/69GN8afwrSTXe4eKPSf0qNdbVOJxws91Oi+uezsnEcOLcOXf6t2PzfGqtxrJoCdLpCdrNWnjY1OV3CN7gWS1VfXXlwftj1lq5tzh3hfPdTontaxkD99/xOf+aE3kSjBuiI9oATEmgOl3bzTFVejm1pDocprdKMSw1qjGyCF69Pu/2X6dGnw65CCLV1C5u9t23jlgF4ulaRPrUu4eh7E/PhfzwOcP49L2n26fH+m34Ylnuk7Hh/YpAd9+mZtzcZ5D63Dd8b0intg3/ykHjQFr4Srmn/ej4ruedB3xNzAFO9k35kdm1Zb0811tB70KXWRQA8oAbHmQMn6RwX2PKDa0CrXp6jEsOpTgBSuT3uw6VODiQmo08lgq8Gbf+cKCc5+IyD/mQ1ynTPWahGQV0LGGnWbRCNjjbq2opGxRg3oNDLWqJGGRsYa1WhqZKxRpYGWlgbnNKMcOdQ41tYj+J0gP+pbwTyTBl30kJbWU2+crMw+wtTK/hqcpBY21uAkNY1Ng5PUjX3t+wg3GiRfUbfz28BFxvstR9QOXKIHnnix8eS/sI/ww1cfNsye3CBg+7HhT623LttUyX2EbYtOcfQR3vji/3gfYWnb9Yu/5E70y2v7au26li27VWQf4fj6kf8aTR3jN81on0LqEDxdD32EzYtOcfQRBtyrmD7CLZ3XC5beuhW4PVl1/u/jg4YYUh9hFBJ4KJGxjzCABNchAjYdYkB9hItaC09/zezpc3CZwD127KfHDI9Svj7CxT2pR40onK2aPsLFjkJeYTHgY9cK6yP8t6PQ92zxf0cfYW82UTUY/3387Czzs2+/+013uZb727oJiXpa06fKvx4c+IJ3XA58+jtCPfgYPOZUc2K4+yg5z7kwj3lOYO7LhrlBu9pUB07D1abKr4arTZ0xGq42lbHau9rhWfkTU6uHCdYMSaj72nzyVz242kI2ntSIXJKyPnmYb+6bz0hn/qa/yf1R8L3+UPAPcJkk2reVaURkCUj54XJE6h/CT8LH0C4H4Exy+w5/j0sPPfRw3Z0b5mkTOB+L3raF8gFtT/UDZ+us8WkezxaojULaaiw8EFCdVoucKzOqCSakRPsiWIM2GfZ5ShRJgblifHGleEjkgM5x3hkjfH9JUrV8Qs4B8MVGoOcAEAS9nx53AroWQrKRKVcqD3YkMa6SissmsQBa9fQvLi4u0eVcP5/MGFjZKVkiUqCpBRLoiDDyJuvE9qyRK38KPZpV/2vHv7fsonThwgdh6MJFUCqCO3JO7gQYAneANirRJaGwmTBJjBVYiCWxiVAhjMzZ3Ue+r3jgrPAJJzx87U9sGUNmDjYiQ7hdSqkI5vA5mQO0SdUzB/JHkznEwhwbczoLkuBXojwBj6MEtyLS2DSsa08PvkwuGgGb/Hiiv5V+gnlGvTv/a/9dqd+813X+q/WjXR3JhXRrRmmMTy+ESqJWBPMKq3Mxb2PVME+LTkzGZXCwRykHlYliaZoUuLOAfYBdUpkUsg78JJGNRInwVw9IShKlYhcY+She1Kxbr3V/hM06cX+VrK9fIaUcTSLTSQj8ckVwLp2Tc9FVzjl4E1wf0yk7ri62ACOWJnArQrd7sUeWi90CpyeObvnyXNuPZEXI6jOVUvS+x+WG+xAwdjhLc6s8UEWI+6l+PBY/1c54dOTxgx/Cj5rnPnPsNJqyOe+DLclEKJAUMTKSXvqRLZm1tQCWrVdqLOugHcgSEFkSolKk8eXYgEqrQCyBM1DaG5HikQi783qp04KR848XBuXV3XCQf3qCM9ez0hMJyPTafcE/cplC5SeWqLAvZnL3WXPdgbw/NQHYZzElGHgAzmSY0FxaziVZfwIb9Kw0+oxaefQum+us2JfeOHzyjSszx7+aQS41YE6MShdLNaWsiJfaHaO8ES/M+oHIeTHpkWIQD+820anvTv0oDReGL0tBFAoxS9PjhpbBv9R0uCVcV9Pk7KQT2+uVfwpTsKLqCD1glcGJVZxJpepcYkXSDA+54Iegs/Mg50GJOYJ7fMRFbw/vEhPUtlGtqjkRGBAfhf+vqen2kO9Qh9v+bGrsf11c/6MurllTru/7siJJsO2dQ+04afYXTtj01cWVDzwJX7PTsKgHw+G/CFch76SpTq3JtOziesAna9jEB8eDDlQPb7OK1+SpHgtM6FlHegGEukOEZjLNe9j00saMpiMrootrkzo79x68t8xn0rCGO2buTwqu0irXEJU/TblQAXJjMLGDbmf99NfFdUJiz3prZ9cJ2OKxQvAyaOtgg+jiClm3nJN1qqphXaV3cTV5PmnT2SM2vkuLzze+fOxNd8qeZWXWaYELr6iWYSyykeOOaplK6+I69Zez3+43Tvff5n2g6/LZM8i5SZXfxRWCgyobVnCAsqm8Lq6Hb3gcP7L5tPdGk+WhWz7euGMAFWwgQss5EQJzGvfbAngsfptQ4Ny2pMd1wcaHTTddXfmW3MvFEj23K5dJgEWn+2zmLDh3LN0iEZfej5e/AYgrZMkJiXxYBRldqtGlfMuCk+KpdRtmCTP/FrY7HtLjNevT0gudaBC1xDevlZBXZA7wFfnARRcKvukgvPcyZw0xtTxLaVP6WDAXCMOC8dXNnJ03PB4XGbhIGThp3Wn3InLo1BemBzA15iullOVCURVjOV2oQoDeI4heMx8G6TwLLE6+uU4uVE1s+sYhCQqE2b+sNdVyQXb0h6DJl27WtDxwvRnlUCR6I8OhSOy63heHwPtncr5/onlVO0tqydTBUYKPLJbFiWM5yllFjRlq6fptb/AE2wkLH3fqakKWVWIAuqyqKRXBDC9OZthWDTPoxfl12LFwC5bKVMB8iWLh2qmTRw8QsoLIIsmF79kjNlGmiHPht+uhHKFQob8we6tXOr+onZfx2HvOOfmVdEHAJLJdg18QqUqT0KeNBqkimFVsxsWss2aGMHPgUDp5q/VLF7qlyYqhSo4Z1PZcp3x+Xw+feScX7x8x+dY/5QmVyxs6eOKKHJ7uLqSyQ95OuGWzuW5eKq7JObyt0Oi6IabN54TvGPT7nt/k13dWbdgLAEglALjNAABULTp5ooQpY68rk/bN2D/mk1vIpss/fbVv0DOjSs/3QwBqcgHQ94YZ4WgG8v678nG6X212fcHKo4J1Y7ZOTBo+enOl5eM8teDKx7GxqOh8nJHP69S/PHS71+5Pf89bPjIz2ADyce5bcO1u7rYwgKSCmzdvVkI+zvhf3whq3d4WuupJaFz7kuHdDCIfJ4OTO3GGwJ1Kyce5fdKo9VkLZcjCcSWt+rV+etAg8nG6czLHxhCYw6vKfJwdZp2N5v8RI9hlbyv4w75nC4PKx/mzBhfzTtaoamfXgPJxZJk7+76P/yk8f3ZE/C+3B9pXcT7Ock7OqaqccxWaj7MkKTTb56Vn4FzxuKveHueKDCIfB/UhWPNxgCLE/dQg3v+BfJzxDzf23zClY/iE+Bf3ebyFQ6s4H+dPS658nIWWlZOPE98kdIGq4UCvye+ybnnPG5qp93wcamyuhxyTp5ZcOSaHLCsqHydkfFZIilWy1/6loaGtmtesrvd8HKqO0ANWCzmxklj+f5WPE8ymxkYcFbcVh2322XckXPLi6cC35J2SXsnwFKS/QiRPpJ8V1WH7oqWvWCmH58DUuzlprnjDOhEsk5kAv4FR8laKkxbuXusmXGeSffvQj757WZ+PvpOjSaTJX41IoMLCNQ9VMUjlf3jSWT0a9Zw68ASKP53i8Rr4wL+Uk5wWTkLfok+nakUiEsAwJI7UnhtlK8bKEDZW6ny6zEkt2xV/uswqI63b5I51vI+ctNrXJazaLI3TZRnv3zdOv3PHf3Li84FNWpiFa5wum+v5TuS92T9si9vX1tbGDks0Tpedjz4QfNdlsfeewvjZThfdZ2mU5JhrHdpmiX+m35qWd4ZktztcolGS49LgmPvClp/CN/87bkZd37vuGk2kuoVdPbPY8WRAZr9eiiVNpuUCkhkx4GPR6ai7cmGupEG3A5GbPAHJHCctbfLYPn5ad+/NabIHK3Kc4Km5Gjip3eW1PzbEBws32MwauLrG3amAZIGTjiqvPUy2uB46Y2XhOM8z9XYCkiVOmt81+dmC0b8HzhPN71LPUekHSDVxUt26zVt1MOIH5U55cS0w/pcZgFQLJ021iBreMzjOf/PDk42Uvl2vAFJtnDRkCH/Ds8j2fvPm5Ix7lXJ5PiBZ4aSuF4IPTQuOCJveVt5w8OhjIwDJGie12RYff6f9xaDcaqZBq6J/hAJSHZzkdurR4ZaeJ7wyRkUNvbZ82UVAqouTCps4T987/L7fpJ8/N7qaYTEGkOrhpIADAalLixMCch8nN8mqdnc/INngJHmzdrXCruwWZB0tvjqof4MEQKqPk55FHi25d62G4GBTsee/QUd+AaQGOCn24s0abdZkCw83e9Nmyl9dJwFSQ+Lhrz2ND5z6PWTmz515voNP9QUkW0LYom1mHllqJti349Lz073inwGSHU7q0Cfccvhhr7Bd43+sWTEhWwRIjXBSrdi1NhfGDfU/MnH7+fnGbaYAkj1OetW++N+Y14/CVk94uO9MxJwugNQYJ3nLOnxe+TrRd0Jmi91v/905FJCaEFy+i/x7ZW6B90qzca/HFZydCUhNcZLn1doNUt8eCF972nVso5ov/gKkZjhpa7uGr0/cMPHObN5B2vDjefhefJxU5HPSpujUYu+t3YY9r1b/sIJ22NKBx3LYcmndjk2KbF/4TPOyafR2wMVf9HDYMpRNRdWP35+bfeqccPnWJ6PONx6TQ15MFKbKJbI4hgwCtk7Jjvgd6pxPtLuCMkkkkQAlhDeu0DJlgKqgGB+Nvs6JE7QtdwcsAK/OaahfGbzfYlipxFqnjErr0oxK7EEY362dSc29LvZFIbPeX4i16DXihx4TKvXs5OYAgD5bA4Di2PLPCq11ygbo2Bs4TAp07S4OgZW5ZUoxmkIBnk8s4QNJUcsJH3hQfBEMuWIZUXwW2/jSz/2X+ExyqNXmdtfx5KI8NdTfQ98CLSXpvaKyEyoxHHClWxvEfjU9XU/HBriu+ESLK2WXKlGkAvHLcIQPHBB15zX2vdIfT5vK8m+uC1748Z/HDj1PpVJWy/FhGVbLCYq+uZfnigu7LxP3urijwk7bMdUROAcisYdYtEaoQDKC1bv+nr0fs696ZzQpGLV69OfE8qcR6QGsjZxgAVHH7U8Y73+nD/R5+oDqoVfK6QO4bhpS9zRsTclw+iAGiMOFOhVx+uD3yanrU29MD9hr4ti0WSvbcXo0llQNVE5jCZsz+UKE5rBp/8Z1K+X0weq5YudVa8Vhe6Z6Rj+p325VlaZhQFQ+1OFCBciNge6UVN7pgyl3c132PU0Lmrt2Ye1VFyNXGMTpA8i6XzlZN6ZqWFfppw9eNDgtXbLF0Wdm4HGTRWuPX6nC0wd8N1zLMKaP57mjWqbSTh+cmZS9JfSbue+Cux9aeryIdqzi0wcQHFTZsIIDlE3lnT4Y1nd9m35pX7xXppo+rPnTn+QaIFVz+gAi9CsnQmBO435bOI/Fbzu3TBTyvWtD/4nrm5q9ajH6CNkbRdtURvqGaL9w4E3uEot7wiBCjAe/Ar8rTbOVKlC2uLxC3wt33cZq5ThR1y+Zn5vuRRMUHbo5FbY9jXVzYuzSGNFWt2UFrdrJyqZMc7TvIfNel/9Hs1/5G1pTNtnh3Qyb7Ojlsjwlqv7TQ6umsxAgOZMQFsDabm112juzRQEi5MIpTqwA4gvozMb2/IAtEyzGuAkzB54cer/VMXJZ8Bq+xM30aVlKKguwv/rOObW/f6bfhGvNJDdbB5f3QDsELJUTMCBRVeJEYTYDfqY9j+0P/UinOQcvLVFecmhV71k7/szsmCo86JBwbNPu+H/qoodxADPoxZNNBd6RTtFtyucAU1irsJo7+7ndjNA57Z8Pvtor76AeWOvEyVpeFbGWyT/O1K3nY9kti/09at0yee7iPd3KJOBzu37pVdayGLY2RHUSbFksp52ud0enGG4YI3gshtH7esMHKZ13eW0b+IvtrL6HyUV+bWDxTBVc+oTZuAjcH0Z0aHTo7iNLApBjJTzRYeJKh0GDw9L+hnFASLSyiNRtu7IfmMYOxk9pu6gAhH9jQwB6kTdDqXCei5Anb1jes3qCEA1Q4HIDLMoLvQ2ZlO9E9OwD6GGH+OBPmE5TwtVo2UiE5QTONT8n+/bRi/zmNMudKdkTakXWMWj7Y4aukPj1MvMvavdt2NG8u8+Obi7ff1V0aFfelQnYXhLCbOzNUMC6izMKc3mXhFtpsF+9uhUrkyqR2GRUPGDXGObVzeqbk1J7/3LCP/eGT595ooux5KyC0nHp4S+JqG+VUOCCwzaICbZUNxQ2XCX0YlMJ52u3eO/ZSRY69e+3wW7XxgupPcLlElEswg9LlkgYdAGbw+xK3CeF90GZFUtTRBJxHCbkI8WqRL4MhCkK7TUBdZee4zmZeplrkLU1fE5A4TYA6Foybb5FQHQblHfuN4BGDe14qoIdOqGShIgxArDz+K8pCUXXwua/GeV/9olpAdl9Rgeiu8/Y5bKmMzUroZzTGW5bFkDk1jC5DObAZchqwOo+a4mcvRo5BUnUoGgxwrfIb3Xyo4uXAg/ZuIWMPPbmFTlVGxcQ5i0dMlXfsxiiJedEK6BBpTpYxIOaR6XJEU0cWmjk7LgFA5cWkbjBzyjd/AOGQCc3AVFQsoThn/Iq7gaogYSMBUOAoDoNYzVz8jDFMJVnkpQ3kdsdnwXFAga+8jzQWaDTQpgt1rkY+gqorSJEP44Riom+7SzuW/j55B/arUhYMtaYsjEB34phYwK9XBFQyDmhACKOG6rePBZD1eZ7Q9vt/OrCPd7FX5GmCbfIRhiVEbaNODaXtUkoIlImK7CNMCyig+Bifqp2e13UDDHWp6K7BhpEbf0k4AlJbHFVQXNHvYA70MG2vCaphjfcFocAMDcb/3ph2Nz1nkGHqz+/0v1SdC1qPKSkCxV2tSwbRPWxymmDYOJ4HIQqS8DgGxU5o1DpFCvaUGefWMoPYcQoNc5s0PjCOf7bfSYdbZTm+rxK97d4rjgQ5kxOIjwUCoDA514k29xTvb/b3+HQL0ETJ/Yx/jrq5XbyihQqyFCJ0g8uwNGsoEThXY40k1R5LEC36o2AF0PgrjixjB2Lt3RUyJJ0mp3UJE2W56avpKlJOmSQf24EUM5kWlKFyQipjRgaPUOIYBoqQ08p+FfXxqTy/d3chFMO+k2SNK7zTGR5iaAT+bEz7i06j4j2+iwX9Kt2aOC7zvruSaUfFfNP4OU4u6IOXocvmW36a3fKZUNVMZmA58WN8PPrjCtjZxsxdYNmW1i0gPIGtAqYIoy4NKgz5OoSZIX3ApfC/APVw29TfBt4H4Nvg14uC5lq9YIskbHzfHYECW7ku3eYrQdkcjiRAbPBAM6w8dRTD2VQWdvpdrBLEcYgGHigi1lD0TdnLsLpf3fsrVHm/ovntF3SfJSDKVmO4Vh0OUav6tsEQHZEcLLDqWrYQS9To0PftprodBGp+KPFrccyMuBGtaZrexXLQrfkDTP5lvHGyyw0WQX72Km/jswRRktgJNY7O+RuuN4o8GJYyYXrvGB24BY5isdikXcMCXk+aPKOoBl1hrSf0uBAAtnHiESAAdVhvcZevcGpRO+ETg6+9KidoaUeeWB6HLrLg13XtroFiJPz7GAQwWRic4CJ9bDTqbpFI6ylNvae0JtD983RR2J8x7yeDx6ITjmE74lp+FMD8b4Z5dm/LG9ABdelIRYqphmdCmZ0ul1VK1i2kqllZZW1jFQhcr5SPApB18MQUWwiX5mMOhZwlRb7AmaFe7JjR7usBv7r2w8MfzxlJmWvBg5LV7jo1YpgTzQnezwMlj1lbX82LQ2D8CN5Zc+cOoN2+rZYszog483l7aeemPzEsSNaPdrVszwrFRTHhhqKldOxgYw152TsI9uqZiy8CbWP5Vx2qxNJNQWMvKW6jrpofr1PvBg3XC9+ZtokjXZHJx5uWvvwWEyrwbQ6pC7L66c9fAV0OrxQH6+OwNjpcGt9AvK+Bg859RCmfiCnOqJ6gHyMPRfkg+wJyPuxQa7z8d/aao1V8cd/GU7rEmscDKd1ieUNhtO61Xmsp3XVx3/pp3WJ478Mp3WJ479UQaEdoITallHEqId59XCAMpqNyc2DT7o+2GHht8E4bujNl9ZkJtfDUkd9JDIl3HxE04HpIYMpy5Rq7ieGrZwTYe9jbAA0QQFmLeCHWrSLHKgHmMt8RBo4TB/SdpUY2POt9cBMus0UU1iDmeRST6dMSHssdxutLSKDrAF4gF/YT5n97j3+qsPCGV7TFotizhy/sL48mdsVmxQpB1j9Wg/fxCmmap0YWHm4HuOuLhtW9dUHbDSxYkTpTo3cKb/fby6cEjL6WdK7HTyKh1ieQzYT+oR9PLs+1W+TbEbAdO+043pAyYUTpeK6uu07uEQQ8wqdbChmxJSDiQPESUb2xNup3w78JEJ+Fy5zSDpjvVJ1pzwyVt5aSi64EDGmd0P3bUw93TZFndWL6hCiWI0KqNDMkHQT8zFdwatTl5dvDZgiOnbVamzxPAPIgYcgRXGC5FJPt1MCrXzF2JurE59KRQZNU2dXUJY/zhy+kXI5cOkS/z+u8deS+zeYE+PSc9LVlIpAx5gTnft1Ce+nP4/FML7uGxZi7P6vz6K1F/xWhwcOoKd10i2hMQu4DuTTAeqDkyNlOjUhoJbr0DbTVNs0E6CYimwAbBe8GdKZ4PJZpk0FJP2ntetXzzRtl/fBDOPd15znHifvj6OrYyxmnUQsS4tTVVx56woAsB5BsCKYZMwL+N/5NjrZutooWAiYaexQfbc7f31hwzyvxc/rhS7rKfElayIhuJcZKA1SJbsEEKZMTpgSbXQzdmUnZFNPLlRZQjbUNKiMwIRsPs13dEehwfXQADY95NP6gnvXSb+H5PitfqfqateEmtWYJJLzsQU3htV8Nte8NXYfkTuMVjkR8aXISHgJUYhjcQOplVqilgrieEKmvEsNsg6nOm1bn4YHsFlOJ2U56qSoaqNJzViqIHgcxrcc1Tb3zNXT2wJz1rU+v2RDZw+yi4QOQHeRsMtlzTlq1aTyJrYAeKwhPNlMcy4fOJhFjjqdTaqFPQ9X2fixy6buuHJ+keBguvD0pejq/SlrfOj9DGt82PWy8Lm+8dw4ZMkMv8NNXnaa/lQq0QM+BY5c+ADxqYolWnN00TsFA6I7j/pHt75ytaJEigRExcW0jivssnv2Whu6r2GdNSOFBymHjLD76UzDr+tbWUKuyDm5EmBQXCk+SnBFJ/NlhSo8ORLHtU3lfKnHvT3/Lg+YbRux0n5y0HIyY0LR++mMwa9XxLEiVJ3AtURavPoIWLHrjroFZPZqDNDAQiIuC4+zJ5oNCH832neibQ25/Hn1FPIZbR9sAPoZbYJQEYhkOXIhMsiRsOsDeSx2PW9+8IeBP3ULnPrhu8r8xN33ZB5j36h9nmp3dYRBNuD8kYni2ETgVsJKVSKlEtbHVJ+x0mn/nlr1j+l56TKJXdfl1HEr/NQxLXn1EYjqslqVN3m1Me5qQGMvxkoew+1Jb/YknfAVfpZT/irxzenvfuHw5plkw2/G5tioCZVs/NGDyRBDD6ZkzgJnFEOdNFb3MFyisCYvpLI/8HSZElsfgI0lEHWyBLrnOzqMOeuGas+rtMcMjGtRwGyZAIOVvQFg+GQexDaZDWZ3iipN2uxOGfHLFFLqXoYetqdsWnFtT31oSWA+mA3zsH1+l87xTvqkD7D7SfwqqA65BnkoLCQvl4hj0SJDdEXKhrR9KPAHgHlSgTsl/CTSKFrpSWqdU67HopdGJ9O1XbiBuerOAM4MpoUbuEdxvw1DajFhTxhSi+E36ZpaTKXrK3WYK3BrgiVoYanfMgWFX4z8eZo1+Frkx4LAKSsDhw5/Pt6ZxB8jAX12CGizw4gyO7rUjO5+wqNb4KZuw+YnPHdUlXfNBLDTBbLTQ8DgCX8GVGNnpqxhNpCaRiKxMqChdUGpv9PMI18+JftuDvjyPmfL0qtklLzpKHmXidLL4qIDH5xXeC0csKmR+feTA/SAEhBrDpR2tzlNzRblPDuFdZ+AjpEWAFFrKJBtGDYU3Ybh1ytiwRuVmM9MC01nXVGkcH36y3+ZPqUWh64kfTrdiUufejj9T5/i/Klrfnz/zCYzwtZ86tV9xc2EIj3oU2rRbz1oinQnLk0R7VTR+nR1yPpJdtdfC1Y9y1qcf7T/cj3oU+oigR5Q8uBEydypAvUp1YZWuT5FJYZVnwKkcH06hE2fGkxMQJ1O+slY62hk9262j9x370evxLzrs3vrISSY3JorJIhrTUAewwa5zhlrtQjIKyFjjaGjAqHqGToqEBlrDB0ViIw1ho4KRMYaQ0cFImONKg20tDQ4pxnliNpwQQ9paSK9cdKyEjn5n7UeYejDQXCSurFP44kxG0+onS70wJOhbDxZXPRxhWufjJD9v4Uf8y/JIZertyhN1CczhmtjqUFplWspLCOOD2BBT/qv4xfeO1QQ5dR8tEe33mObu4S30cp5pHb7MA2RxQ5H4tQ3sb0CvUhtKU3bU9WthbyaTYBC6+TDsph5vTGDE2mMw8XgRKJ+CcWJzPqefmD1vOjAvRs2hXk9a3tP3+d1GQ1PKRb8FJFCDA/MMaL/cvfftYZlmQXm/3x6pLXdvtvc6PfFh+KH072h8DK9IWoblnKaIz7gnnET3BuiF05qjXJPl7OINqXeUKmgM1fx6TnHz6tax9Cde7qdadX9JzdO1Ng8I6Y1vXI6RY88cUjgoUR6mYB2KCS4Doll0yHZ+Y/6T3v6OfBA/p4DO4Y/JpeXM4kQSREJvS8Ym/pwEvDl8A6N5oZ8qUyFYDXtVUiqCj+AxIgztd0Pw6No4xZZRsYqZBJJb+jawouap6YoMkrlLJuMmvdRIooo8PjE17bylSXDmRErgQ3IYL35OLEKf3cQisDt0Cfp6yl8JDrE0U5JOoKAxwHwsasPL32aj0WoSJEgloYg8SShsMQu94atojWv18CuR8nkmlcpncf+dhQ2i3I4bYWCGKGA5epUYuypzIinYjLKCtHIQGkc7PaglvYa8CLco9W4hAb1ErybHab8YQNqsUjiA1sQqFljGqlSIKIk9e/o2elSBYKJahybqBqM/05tPqWnNX2q/OvBgX/kwOXAFzgQ6gExeMyp5sRw91EiGnNh7qFWyfFsmBu0q83Qro1wtRnatRGuNkO7NsLVpjJWe1eb2s1ND652AhtPakQuSVmfPMw3981npDN/09/k/ij4Xj/RC1X7tjKNiCwBKT9cjkj9Q9TdWrXLAaB2reN8LHrbFsoHtD3VD5yts65wgxY40oW01Vg3Ie+zi06n+ptgQkq0L8IbqPJjE0VSYK4YXzyy7anpx5+2Dc1Oqd96z77J5NDHzBcbgZ4DQBAqogN4gStXB/As1yrJlTKJBdCqp39RUVGJLuf6+WTGEK1p0dQCCXREmKOMN7uGzstt5L+ky7whR4p37qB04cIHYejCRVAqgjtyTu4EGAJ3gDYq0SWhsJkQ7SoMzxaR2MTZql1+NernZt9cBNmm2SL3pt8vkJkjxPsU05mjplQEc/iczAHapOqZA/mjyRxiYY6NOZ0FSfArUZ5oNG/Guvb04MvkohGwyY8n+lvpJ5hn1P73c15OVr72yR82wvbTwgvkYwY1ozTGpxdCJVErgnmFLlzM21g1zNOiE5NxGRzsUcpB2Kk7TQrcWcA+wC6pTApZB36SyEaiRPirByQliVKxC4x8PNanvePD80t9ttttP5QQOIu8iW8Smch0EgK/XBGcS+fkXHSVcw7eBKNBnbLj6mILMGJpArci7LnX7kWjM6N8Dm0osGnZcRu5tcl/1PC+vHtcbrgPAWOHszS3ygNVhLifmshj8VPtjEdHHj/4Ifyoee4zx06jXcib8z7YkkyEAkkRIyPppR/ZkllbC2DZeqXGsg7agSwBkSUhKkUaX44NqLQKxBI4A6W9ESkeibA7r9S+ylzPSk8kINNr9wX/yGUKlZ9YosK+mMndZ811B/L+1A2WHmVKMPAAnMlwY010ZYxr/Qls0LPS6DNq5dHHf1zU3f3Ov4FrhekWp82nfyKLJTEqXSzVlLIiXmp3jPJGvDDrByLnxaRHikE8vNtNp7Mt9aM0XBi+LAVRKMQsTY/HvNvnPd9uROjkFcn3YhY3e1H+KUzBiqoj9IBVBidWcW6VqnOJFUkzPOSCH4LOzoOcByXmCO7xERe9PbxLTFDbRrWq5kRgQHwU/r+mpttDvkMdbovZ1Nj/urj+R11cqe3oK6WLKx/2KPU4DYt6MBz+i3AV8k66V0QX1711lI27bZ4WPDOhVfPrU+p667HAhJ51pBdAqDtEaCbTvIdNL208KqWLa40FGb6rNj4M2sybeP1uSoJblVa5hqj86c6FCpAbg4kddDvrp78urn99a3LYrukfobOu9XBdZHnujEF0cYWsW87JOlXVsK7Su7g2vC+uqzy823/O0B9Nm1zreYuyZ1mZdVrgwiuqZRiLbOS4o1qm0rq4+tvXzr53rJf/Vsm4/ddr/0vWzpXfxRWCgyobVnCAsqm8Lq5GtR+U2MgCgzOa56ZeaDpwjwFUsIEILedECMxp3G8bxmPx24QC57YlPa4LNj5suunqyrftyaVD0HO7cpkEWHS6z2bOgnPH0i0Scen9ePkbgLhClpyQyIdVkNGlGl3Kt8y/i/x7ZW6B90qzca/HFZydyfq09EInGkQt8c1rJeQVeQJ8RT5w0YWCbzoI7708y3uW0qb0sWAuEIYF46vXvHIxeJjvYb+8watFF5cvakgOnfr+P/a+A6yJrHs/7iKiKFYQG8aOSLNXFBJCDUVQxLJqDBGigcQQBMSCCCpWVOyo2BsqNlQsuK5iL7urrr2tupZVse2ya/vfO5kJmZk7Q/IlkHy//+fzuCtzmMnkPfeee+657zkH0gNQjfnKJOW5UFTDaKALdQWg9wCi15yPGJ1nwIpzsKNeLlRN9fSNkkQrJWj/8sany0s//isL2jV/596ZOb3jKEmR2I2IpEj1daMHh8D3z2L9/jEdTe0saUamHo4SfGWpPEoqZilnlbJn+TTHP2oFLU1/f21M4TMJeawSD6CPVY2kIpThyaoMe9Mog16cX48TC9fAOLkKLF8iMYydOrp7gC0r2FnEOnM7eohj5MooZ24nj/hxShX2A9pbXbFr25XVbs9DNnc+eahNdIft5HUNfkC4KllGnzZaoopQVok7m7LOuJvDzIGP0stbtS0LdMclKEfFs8ygW5zlljZPqwQfe1XkXFDqOMuQrbKhW4eOuCGH2d1XqOpQdBJs39ZRPy8Vt+Qs3tYZ4WGZXe91vps2VU25GReeYtptLwAgiQDgBgIAaFr08kSJpYy5rszO270b/nLLzTf7yw9BKyaq2lGWssrN74cA1GQDIOKaO+FojuX8d/FxOv5iY5f0pjBkfbHLpMY1/3hdaXycx53Z+DgNOlc0H+fvp6OGf3rWL/hA7fFVhMfm9TcDPs6dzmynm/s6mwGp4PLly5XAx8n6bd/yoT5i/02hg7s2uHAhxCz4OHNYtRNlDtqpFD5O678XD4rLqeK5KNfttE+t0bvNgo/Th1U5DcxBORxT8nHqyvf3j65u47f1rF+MxYW+P5gVH+fPTmzKO9nJ1M6uGfFx7i8O6+BQdMRn/o49fRdPuNrdxHycHFbNqUyuuQrl42R2jzqc1OeRcIu1W/T06ZlbzYKPg/kQjHwcYAhxP1XG+T/Ax8nr1PDlT9eq8rJadolr+PF8hIn5OH92YePjZHepHD5O/e1W1yLvBQWu9Piz4Zb7rRcYnY9D3ZsbgWPyuAsbx+RIl4ri47gvz/gtcv4y7zV7Vqwausf+ndH5OFQbYQSsslmxknX5/4qPE8tkxsYVSTtIg7fxDxwLkf3xeOgb8klJ/wSYBemrFCli6LmiehxftPaWxitgHpjmNCfZBW9YJ4JlMqPhJyBH3jP+yQbPTi3h5fUa8/Q726NKxvejn+RoC2njr3o4MGEh2klViFH5H2Y6a55GzVMHnoCsNRiVdnz4l5LJWcNR0DymdXGtcIkM5u1FkdpzY2pVqzKOSZV6Z5c5asZ2xWeX2WU5/Nzm4xNh2q22oc6lae+0ssuazw8e0d6tVsDW+l1qv9rS5qtWdtn1b1/eenbaI9isrCJeGZ51TCu7LD5CdKlutZOBh/uHjFr9LHGCVkmOvdf95EMKuwStHnMzmt8jWKRVkuP+prm+pc6vQqbd9+Umr3n4p1YTqfEc+YG/bIYI983+zr7qubV7gagaLuq1+GybJ1ume+54YrnVNik7EIiscFF2SN+bMb8+91l86MpBcciJuUBUHRddrb9UsGaYtyDn0PBa/cf9/AKIauCioCOL3o25FxK86S/l3Q3nQ1sAkTUu8qvxTSlyFwnmrld26Dn23VogqomLatT7IftT/sjAfSe8007G3twMRLVwUfqk25PH9s/mbd1jdzIl/dFVILIh3lA81zKy7gHv9bK6Nd/8m1oLiGrjIqeZg4dFt9oTuCHp1Dy/NZ1SgKgOLsocrLobGL8wZPYThzCbM64Qw7q46PbKXuNGbxsSuLHhMJcZK2ssA6J6uOjEmTGH2x4c7L8pPonbU3YTark+LhqU2LXVZ2FTv1RbX4t5vnVaAVED4q6Ch+Frv0T4rL07YOiWX1QQeVtcdNd1ZLXryznei9b3nvWpzeJ0ILLDRfPnL73X8e9GgTtt3DNlz8YmAlFDXHSgNHPWozN9fNcWDghKG7p9BhDZ46KfO2Q2VzY+wS989EIYfP5MFhA1wkUpHqkNT0l68I6EtD+7If5uPyBqjIumvwh17DbmvfesXLfeOxq+vgNETXDRRW952K2vhT5L6jTZlHvIpw0QNcVFuyLW5fwy60/PnMktBjxbchEOtmbEiLKUzX90J94z3a7/5x5fnZKAyAEXrXu2yqNreiv/HfX+5qVMTlcAUXNc9HTtzZgkwT/BB5zEHgvWpU0EIi4uqtVz60TnO9cEhcl20ceGP39DS7ZswWFIttw2a+WrOy2SgtN+WD7//sPs+0ZItpQzmSjb0Yd2rTh1VpCT92jC+aYTc8nBREGSQiaPQjAImDolt8Xv0HA+se4K8bEimQwYIbxxhY6UAaqBQr4aPc6JC3QtdwezaroXQ/uK8H5LnAWcpO769X0pY1SqXwT53Sw9nhe6rnbmr7+0o1MLh8PGJFQa2cnNBQCdgQBFMfHPcrvrxQboGgYcJiUWu4uSwMrc8ngpRqEA7yeVccFI0YwTLvCguCK45RIjUXQclD/k3k/3eQeXxDRLafv9B/IRqOZz6EegZSKjV1R2xEYMC1yh3c3ivJpO19OzAa4LPtGiytSlihGpwP5lrIQLHBBN5zXms9KJdhefZbzvE5Q/vXX9p0O9G1Ci5fhjEdFyQmJs7eW74IPdG6W9Hm7YYKedmOoJXAuC2EMErSVUIJFgbf1aOmRn5Dnh7D0XBGcPtso3nEZkBLCSWMECQx1ffxQchvXnf9kH/1H2AdVDr5TsAxg3bdqzGLamRGQfjATDIadHRWQfuCTbPuapFvgfvNaunuMHH38jLpZUC2TgYgmbMzWACM1jsv5/9qiU7AP7hT69jjRN9zyUFvnaP/tLqElpGBCVkz3YUAHjxkxPSiov+2DqQ6dPuzoc4BUom7Vd2GxQP7PIPoCqU7GqTmga1VV69kFUYJ57jdRf/Wcon+a3fxE11YTZB1xX3Mog6eP5bpiVqbTsg18HTwhY8a9DQG7x/j9Odml11MTZBxAczNgwgpPToxKzD1wja3SOujzXd+vcIXs+uZSQ25mbJvsAIqRiRQjMadxvG8dh8NvOrhQJv/Rs6Ju2yaHai1Ypx8jeKNamMtxbqHvggEfuEot7wmCHOBr8CPyuZO1WqsDY4uMV+l646zZJJ8eJGr9EvzfdiyYkenRzyg3DuzkhuzRywyqgnezmdRmnPmc9C05P7XFzXuGlN5RDdng34pAdu1yep0S1f0Zo1bQMAqRADcLjHQQcRZheZ2f2GEDEuHCMkiph0rM8Dr3YDhjer+RA5y4B85v+3erv5KYryNPSm7iZPi3LROUBtvtS6YSJi1r5zLz3YuaHomaNjACYHytgYESZxIlSrxnwdzpzmP7QUzqtWHRpjemSxaoKr0wc89bpdsjy11fOTcn9/Xk9LBkHKINePNnSixfuGNneMAeYotr1t4syV504EpT2Z57dpG8DdhtBtaX92VR7pb/5+MdZ+vV8LL9l8fOs73x32L73ObR9cO+Xz5U2JmtZjLU2hFMMtixW0LLr3bAphi+MSg7Dwsi72vDu+O57PXcMHW4/O+IouchvA1g8UwVDn5CNK4HnwxI9Gh268eWxAHJ1CU/sMVFlj8E2h2X9DaPAINFpRaQe25X/wjR1IH9L16ACGPxJfQHoz3iIUuEcZwHHs6+huXpeQi1QYLgBFuWF3oY8jutI9OwD6KmT+OC/1DYtHkaj5YkShgych5Mz1o/tdlBQmFpzzLmf59wg2xis/TGiKyR+vTwb07r2xw4jPnfnbbg51+HIgfX2hkYmAMwKCLMFD1HAuocTBrOhIeE2WurXRLfE8rh4iTgBGx6waww6urmtf3bd47/X9s20yJ038DmH3F/Buuy59O0vSWhsk3DcGYdtGAq2JFcMNtwkxDOZhPM2rd537CYPmv7uTaDrr1ME1B7hCplILOEGJ8hkCFvA5DC7EPfFwfvgmJXGjRfJpFHqQZ4oVcVw5WCbotTdElBP6VneE9XLXEus68LnCAyuB0DXGnX4FgrR9TB07tvBRQ3reKqCHTqhkYSIMbR5vRja9U51r4zmwaO6rw5+RXafsQfR3Wf15fKmM5WVYOB0hseWWRC5dSiXwQq4DDEejO6zjsg10SCnJA01OLSQ8KX95lJjZtgvwdvuNhqU2LDzIjJVGx8g6CMdstTYsxii5cmKlr1HpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WNzqKgLEyGTBJDidxu+Cwo8ULoleOOzQK9AmH26s7F0FfA1ipi6EchobCqtST+a/Bz4WHJ3tDbDZ4/pBxMwG+FOJjALlcEFJ6sUIAhji9UKg7DQtX+S0P7ndzvBft5JZ8kDtHkCivW2BhhOohjclmbBUlE8QlK9UGYekcHwVX7qbqddVEZYoxvRXcNtIS6+knAE+rTDzcVNHfUE7gDFv0MXZKq8+CxOAQA+X2dnj3O627T3+/Ih5cnDz8/OYe6H4qnDyr11fLWIKqPZeAaBInjXSBUy7wQvtEzJwwqvfaKDaizTxrHFaIbL0qXdhCv+tF7mlWB5c8ZtXxNer7FccGBsEI5iTApFACBz70Eprmnen9rcIsjwwPS0gZafJrwfCc5IoUNZGhE6YkL8Gm14YjCuxxpk1Q5DEC3CZOALyaBp+JEGFuMt3RUymP1mp1UkibDe9MjaRqRHgzyM14A5SxUSBWSEfy8ED2lIESQhoroKQX/6tuYVHGol6sg47DPNFnTuk9E1pcIOcGPzby9+LxEVMDP8Rr03ZGhb7sbuyeVcUzMloPB8lFdqvG2/dv2xHGXJU/N1cRkAZ0f98Lz15GRsWVeqO6lTIHFGnC8AasCpggSl59vrRHnzZ7ju6bGmpT96x1aUXwbeB/Ct8Eul4fM89LT2+t0i+Gl9R+3acPrHrlGQEbBigyYDWaQw8bRTD1MQeUdpzeCXYrUCoIbDyyYNQr75ugsmCrXLN/FXAhe1PJAtyfPlpOjvFjHI/o4xq4aewmA6uCyqqPU0yzOyTn69G2riU0XkYqbIm03Ce0Bt0jZ2SbqO//5g/uPclp0P7VaUIIK9rHTfBxZI8iVoIrU6OpQuOJ247gnIpIL47xgduAr8ngOw4q8e4Tw6bD03QGZdUd0zrArJLeXtAyXgAVUj3hNE80BZzx2J3Ry8NCjbgstNeUB9Tp0l0d9XdfqFrBQvSfcRKCW2FywxHI89apu0VjdUlv9PaE3h52bY6+EpkV3tX489ssp/s5xI3NGTHv11JDzS0M3VDAuDbFQoWZ0Emw+ZZoZrUPJ1PJYZa3DVRIFN146QYLFwyQicQw3PgFzLGCUVv0BSAX9ObfFZtv8EyF7x0lCMi5fI6cLWMDH0g0udrUi1OPIqh6O2aqnvONPh7JtEJ6SV/7MsW63s5e4w3Hh7KJ7R/eXdjnBciL6faRLR0MiFRTHhroVM9CxgYq90Y9Nsfn9TK1YeBO2PhoYdqsbTl0K0AekFNdRH8tv9Ik30hW3i6WoQ9JIN2zi4UtrIodhaTWbVofUsLxx2sNXQKfDnD5snQ4n9iEgTzJ7yKlJmMaBnOqIGgFyIY8NcmceAXkyE+R6p//aaCxWxaf/IrJ1iRgHIluXCG8gsnW/5zBm6xLpv4hsXSL9F5GtS6T/UgcKLYESWlvkEKMm8xohgXICk5JbBp50ubu7hs9mi6hR15/XISu5vpo6ypfJ4+HhI0YHpm8ZLBmmVEsfKWzlHAN7H6sfgBEUIGsBT2rRbedATWAu9xVp4KB+SdcoMVjPJ/YCM+kGak9RB8ykzz31YkI2UXO3sdoicqgagAf4gTnLrJEyYtvsYfGee56dnGw31K2PIcztiiVFKgBWql74IU4J1eqMdBJwevRCnuoyYWWrSbDRxgrtQF7+FGoREclfVFBv/uqqK5oaMclm6sDgj2c2JflslWf6zeQlnzACSp97sqF0vKd+5w7OocS8wiYbhhkx5SBxgMhkZCHefu4y/mvaMf8C785pM7jSkybMDrjijA8iJL0bum/CXvodijppguoQIrFWBVS4zJBsExKc+ZN7tVnxcoPXQmmDltwm9UeYAQcegtSaFaTPPfXLEmjjLVV/cw3xqWzIYDR1ZgOV2PhpxErrO8KZ4sif5/24/BKZk048l85J10gqAp2rjAkmEJ28noT3k8JhWBhfRgQLLdz+4S9ef8FnbYj/EDqtk74SWjCA24KcHaBJnEyU69WEgFquQ1emqa40E2CYDvYGsF3gIehMMHw2sncFkP4v9cwIOeY6KHjptSf1elu0oTSCwKJjDMs6SVieFaeaOEPrCgCw8iFYoagx5gn875m99VrrbDCwJGCmMUPlWX1x7BC/08INwsvjC13XDSRbIgG4Fw2UlqiSXQII00hWmHr01m+xK5+QTc1cMBkhG1oabIxAQjaX5ju6YdDgdmgikx3it7vg1nPafWGuz9q3qp6NmlFZjbEiBVcdcENE85lc83bq+wjuMFblRMSNkyTCSxKlVIwvkDqZJWqpIJY3RPEutcR6ZHU+CyqGCdgM2UkxQXoZKhuM1KymCoLXQRed9LDNtvjSiz+jbvQ+v75Dyd+yKvYAuoukvlzenKNWTTKU2ALgeQDhWYGacwdhA5QgvXKTaqnfh61svFPEt7w/njt4ZV8ZO7DNwHWrKDE+7H5EjE99vTx86jduaOXx+KJwY+HnobVn9HU3Aj5ZrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0mSep3b0uvHN86DF+y9bLNtTav2r76crDb9ubGMJteLJqhV7s9JKSRGhFb2Wr9qYwVNIotiOqVSLbYsmNJjlf/Tzw7XXc0c1ISsmCLufrhj8ekWkFWHmBMYSafvVB2AV2xCk34asiQYDbGMhk5aHh03M6EvjllzwyuOITr0SzE8m52jz1Q+g52gTgopAJIYVEecgYl2fxGFY1/MXBn4Y2ruX//QPX1RWP916T9ax+hN156n20ewwyAs4NzFGKo4BbiWsVCWKj4f1MTU5Vnqd31Or/qHelz4m1df1yToW4lnHNPLqA7CrixEaSl5tirsacLGXqksew+NJHjNJZ7LvpNQAf3/fzY0e3hp6256cFlCNybHRCCp58ccSkyGG7igy53EnDEO9LFafYHxEqZu8kMr+wOyyeHV8ADaWkGjIEtiZb0owmnVDXc9N2mMG7msxwOxRgMHK3gAwfDJPZprMZnM6RR1NupxOVeGWO0ipZxlGOJ56HMh2PHUykMB8ChPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueowAXsOKnADzyjyQhHUYmI9QVCL4SfpSy2myo1FHWbbuDVTE7TU1G+5kqIvpH6Onmp58af3YT6blAvX2NunkBOcq3jRZ4cXbXZUocyObgV2/bMCegbNatpyut/xbhMNjZkAdX4OhSbcC+EJlwLp1VAUa5gJJIdwiVgOLLQ+KLnv2JBr3cuOl3csI7D35W19ySjx6CjxykXp5UDlpg2jXXg7rwRGXcz+RWEElPJYUUoPLaayRVlzp9TdJ6BjpANA1BoK5DVM/Sj6GoZfr4iANzZiSlGBpjMuGFK4PU39L7On1OLQlWVPQ1jtafD/7Cmun44Hqj8v7HTRa9uKwesybzRtYQR7Si36bQx7GsxqT4Mr2p4uq/84ffuehX4HlI0sx2yp0t4I9pQaJDCGPWVFKT24Au0pdQ01vT0NZrWnwYQ9ncpkT81mT0CdTsZhrHWt0ujtXL7Cu+CjZ0z+1blhRtgSDAhm2xJ00UCexgS53oy1WgTklcBYQ3RUIEw9oqMCwVhDdFQgGGuIjgoEYw3RUYFgrFFHA42WBuc0chxRGy4YgZY2zWiatK5ETf5nrUcQfTgITVIP9mk6sWDSCbXThRF0ks6kkyXPPq5yGThHeOhcyI++33Jbkiu8lhH1yYphO1iyK6tyHQfLiOMPqEEn/df1CQkL8hrg2DLFvVfYpJbOIe11ch6p3T4shXLxWEmU5iamr0AvUlsm0zWrup2Ac4cPDFo3PkMwcwMf4URa4HAhnEjML6E4kcu+pBauXRDpX7B5a7Dnkw63jZ2vi1x4yrDgjhcppTBhDol+ixq/t+uTPsdzjsu9DmGpO0Xs6Efgj+KG0L2hkHK9IWobFgOXIy7Q3lU+7g3RCye1w7SnTy5igzJvqGygo6v4JA7fPXniJt78FZFVqjz/3osVNSbPCBXTM9ApetARhwQmJdLLBHTCIMFtSAaTDVlx8MHgGY9L/QsP7i/cPfYhOfpSNVQUJ5HR+4IxmQ9HL64C3qHV3JAbJ1dJ1DXtVZIkFZ6AhKb1Udr9IF5FF7fIOlyslMtkYdC1hRe1s6YoY5SqWaYxajUwXqIcAF6f+Ng23vIEODPEMtiADNabj5Kq8O8OtiLwOPRR6iaKHokOcbQsybYCDtcP6LEnn5M6g18jSKSMlsYJJaNJg8JafTkMtorWvl5dfX2AXKF9ldJ57F1bQfOmfsW1MRBDlbBcnUqqfqtqxFuhFmWlKNE/Lgp2e9CM9urwIjyj1bqEbepleDc7tfGHDailIhkftiDQqMYyXKWUiGI1P2O502UGRD1UpzMNVbPx36nNp4wU06eOfyM48Pl+bA58lh9hHmaYPebU5cR8z1G4fDbMORqTPJMJc7N2tRHt2ghXG9GujXC1Ee3aCFebqljdXW1qNzcjuNqZTDqpHr50/KaEMd67XpVKunO3krfstfGzfqIXqu5tZRoTLIE4bohCEucr1HRr1Y0DQO1ax/pa9LYtlF/QNasfOFvLBsADWuBIX6FFY10FnDPhemX1N1MPUqJ9Ed5AlSuOEcWB5Qr5xd+vsvnQ/ey+kDldhn3aljZkHZkD4K1+Ap0DQAgqogN41gC2DuAxA0zClaoqBtBqpv+DBw++6ZPXzyUrhmhNi1ELZNARQepmZXbQDyfnL/PK8X2ZUPgk6ROlCxf+EEQXLkJSEdrxZNWOvTloB1ijb/oQCpsLsK7CMLeIpCbWVu2H/q2f+mb0zqB9NV9c79+3PZmxbiXA+xTTlaORVIRySsLZlAOsiemVA/WjrRwiMMeknO5esfAjMZ1oNW9Wd+3x4MoVonGwyU9H7Key30DPqGt9Bcf3HfjOa0XG3G+7ov32kQuhDtB6Pr0QKklaEcrLZVVekmmUp0MnJotyNOhRpkHYqTs5DrizQH1AXXHyOKg68C+ZPBETwh/doShWlKS+gNTj52Oxl1tenR60eU9ox9xLo9Mo5WhiUJkQ+OWK0Fwoq+YcTa45eBOMj+nFjqunDsBI46LZDeGuH1ou//HiX/57Rzb7Y//7fAvDG94besblivsQcO9whuZWuWOGEPdTZ3EY/NRGFinhJw5/CCmy2vWkbbcUZ/LhPF8dkglVSsZLJYn00o9MZNZ2XrBsfbxWWAfrQBYtkcdKVMpkrkL9wPja/moCp39cmCQO34kwO6/Uvsps70onEpDlNhHgPwq5UuUjlanUH4xy9xm57mC87xsIS4+iCAbuQDPDBjISXZH7Wl8CGyxXGntHnTz6jovPhclrhggK0w/2mnc17hZ5WBJPpQ9LjaTcuoGU7hiG7njhKTVEzhNlR0rAfjh9oF65LbYDtFwYrny8RKmUMjQ9HrKyoFb/TfVDZlg5D7fduG6T4VOYghXVRhgBq2GsWHUZWKk2l4hIVsO3XPCXoLNzN/fuNysJ7vERF3nuvG9VsbWNuqpaERsD4lfh/2tquz3kOzTb7dlMZux/XVz/oy6u1Hb0ldLFlQt7lA4qhkU9EMl/oS4CTnZERXRxLV7Q/j7PMtbnwJ9jS9cOmP/aiAUmjGwjPQFCNSFCs1DzHja9fBxRKV1cIzKdztptrOeX2T+qRr3ZfWqbtMo1ROVIBBsqYNyYzd5Bv1w/43VxrWc9d0t//wBBXuy2RmM3xJAD8Kbq4gpVJ2NVnbdpVFfpXVw7D2gqiB4aGpRWffWHekdH8U1YpwUGXjErgyyykeuGWZlK6+K6YIWwycTHK/wKh1j+s6TuVXIhvMrv4grBwYwNIzjZEZXYxbXB9Jb/1Bm4Mnhu6M8fOyufkStomaaCDURIxooQmNO43zaHw+C3CbycOnzzuOq15Z7D1l9Wv6GUDsHydhVyGVjR6T6bFQPOXcuOSKRl9+PlbwDiSnlCdAwXVkHGQjX6lG/pZSmb/+hOvGe6Xf/PPb46JTG+Lb3QiZZQR3zz2wg4ByMBviI+DLpQ8E0F2/s6kYbmUjYoey3IBVJjgfzq/6xfU7+2tLf/4ucxh69eGUgm8VtFQHoAqjFfmaQ8F4pqGA10oa4A9PIhes35iNF5Bqw4MyP1cqFqqqdvlCRaKUH7l2fTep14e+MJf91M22O31pdQWoJ4YzcikiLV140eHALffyTr9+8RaWpnSTMy9XCU4CtL5VFSMUs5q75b/KdlBocHZDdQBaVuz55NHqvEA+hjVSOpCGXUYVXGs0Fm4f5w9DmxcA2Mk6vA8iUSw9ipo7sH2LKCnUWsM7ejhzhGroxy5nbyiB+nVGE/oL3V8GnXbhSfbSVYMPiP5yU3z8rJ6xr8gHBVsow+bbREFaGs44PYlLXMNMqizBz4KL28VduyQHdcgnJUPMsMSrtrbes2KoSffjh3Uei7bm0M2SobunXoiBtymN19haoORSfB9gmR+nmpuCVn8bZO2GVGWVV/5HVgTkZBb7/SDNNuewEAfgQANxAAQNOilydKLGXMdWW8ix7XmX44xHv23ptD9jTr39ik+f0QgDuDWACI2DiIcDTncv67+Djrnq3y6Jreyn9Hvb95KZPTFZXGx9k3hI2P83hwRfNxuNsTU/YX3eCtf/Ljn29uTPrJDPg4eUPYTjfTh5gBqeD06dOVwMe5NaLKwW4Dh3vvuK3aWzP6dZJZ8HGGsWqnizlop1L4OEUhnJFtQ2r5zW6emt9i+Q9DzIKPU5NVOcCamF45HFPycfr/nPXk+Gl+YGpu59mH8ndamRUf58hgNuVlm0Z55snHcavZ5GntvGLhtN+ftJh1pGcvE/NxZKya8za55iqUj+O8Keo6/7fVvou3zVuV9cPeHLPg42A+BCMfBxhC3E+dx/k/wMd5uvZmTJLgn+ADTmKPBevSJpqYj3NkKBsfJ2po5fBxUi/nTM4+nes7Jyl7sOxAp61G5+NQ9+ZG4JjsG8rGMZkztKL4OPNOBq58lDDMp2BDdLuv3x/fYnQ+DtVGGAGrKFas+gz9/4qPM5/JjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvFo9t050vnNNUJhsF31s+HPm96Of5GgLaeOvejgwYSHaSVWIUfkfZjprnkbNUweegDusxWfHh38pmZw1HAXNnQOLa4VLZEBhkihSe25MrWpVZjGpUu/sMkfN2K747LJF4/5N/L5ZRPDKOav7Tp1yup9WdtmZrguP3K/m67Wjm+2b7r23vtbKLqs9OtPG6twFr8xeblnPO7dO1cou8+n17cc//90RtKregXl3p/aL1yrJ8aDh+ZGx+5y8tv3Y2rF0efYerZIcbeS93343bYpX7oKDUnHR7y+0mki13vXU4te/zvnOnXHs85WrvdYDUTVcZLvi15Cp10YEzDgc+HXbsX86AZEVLjpcc3zJQY+zgn39fncUJiZ3AaLquOjllAZui5p185w54++pXh+3bwCiGrjo07TSz37dsvmLDrk8PfS3nxiIrHFRvVMOJVMLNgtnW1zz7Tfw5k4gqomLzq1YVO1T5yi/eZJqR1/ldvkeiGrhon8C7gQMmrItYHe13VvPnd53HohscFFW7rMbp5TX/NbNjHrwZ60d94GoNi6qLt2wOu3Y55A1+/Y+2fvrXfgadXDR68Y+m+YdTwvIHX7H8vflzvCz6uKidn9Y5dU+ti1gUed0ydKsezFAVA8XnQq3+a2kyznPrXVlz4ZcWR4LRPVx0Yg5G2dxPFx4R4rezL0X5vgbEDXARUrfC/d2BGfwdgfWXhL2T/06QGSLi85eOJGjOtfGP+tRUYeXa3JHAZEdLqoa27uoJCvfd4u9Q+H4Y71HA1FDXDTMMXPl8CUrQ9YuvRXX8NSHM0Bkj4s+Ll3fv/Tdx5DVeX4uYUObPgOiRrjI98GgE4HXtvhPv9/99Mee+3oDUWNctLnEberuzA2+U1d9Xe7eXgzvaoKL5h+0tuqUdzl42pMxPYYPO2MDRE1x0VvpoTcve58TpM3q3Gnjl0xfIGqGi35vYuNw61oJb3qHFnv7vax3HIgciO/VcVqvjyfTvPa5pds6RUYvAaLmuKi7+91BTRLtgxek9H556+6tpUDExUW8J7GpypUXQjKmbHc6fLv5RVqyZQsOQ7JlTkmn+7ZzH3gtEDfv9Gzxe2eE2dA32XIBk4myHX1o14pTZwU5eY8mnG86kdyfspogSSGTRyEYBEydktvid2g4n1h3hfhYkUwGjBDeuEJHygDVQCFfjR7nxAW6lruDK4CoGNpXhPdb4izg3BipX9+XMkal+kXQfPysxTU2FvYM3nn5cuyKdS8KjEioNLKTmwsAcoQARTHxzzgivdgAXcOAw6TEYndREliZWx4vxSgU4P2kMi4YKZpxwgUeFFcEt1xiJIrbvXpuXNVEGVzYpVrhspsTb5OPQDWfQz8CLRMZvaKyIzZiWODKH2kW59V0up6eDXBd8IkWVaYuVYxIBfYvYyVc4IBoOq8xn5UWZwjP/ui4zmvXU17uW573Ukq0HH8sIlpOSIytvXwXfLB7o7TXww0b7LQTUz2Ba0EQe4igtYQKJBKs7xbUcb5d1TJoeQjn4PWLoqqG04iMABY21BnBAkMdX38WchjWn/9lH/xH2QdUD71Ssg9g3HTiqGLYmhKRfTASDIfPoorIPrj4pMT+dvWWQav/7dO9Wc3zNkZcLKkWyMDFEjZnUkGE5jFZf+GoSsk+uNH0UvKzLjLflU6yQSdexZ4wKQ0DotKaFRUwbsz0pKTysg+WbFzw14ePQ3yyf19xXP4pkRxXMVX2AVTdVRGb6vJMo7pKzz4YssIuXuZbVZjZakiN2Xl/9DBh9gHXFbcySPp4vhtmZSot+6CNg7DunHih59Hxt7/VjLCSmTj7AILTmhWcz6JKzD6wS3TrOOnOHd8FXfZfsF5gcdQMsg8gQticZkQIzGncb1vEYfDbzq4UCb/0bOibtsmh2otWKcfI3ijWpjLcW6h74IBH7hKLe8Jghzga/Aj8rmTtVqrA2OLjFfpeuOs2SSfHiRq/RL833YsmJHp0c+JMxLs5Ibs0pqZUQDvZR7wpsmvjtgdnVD2zcnjhO3vKITu8G3HIjl0uz1Oi2j8jtGoqTQEAKVCD8HgHAedKil5nZ/YYQMS4cIySKsHwBXL0YrvttKBg6qRJ/IwfA39ef/vWJPK09CZupk/LMlF5gB29HH7nU1V+4KqeDntGuDs1MAJgW1gBAyPKJE6Ues2Av9OZw/SHntJpxaJLa0yXLFY13lY1YuZTV96utU1ufP756Zt6WDIOUAa9eLKlFy/cMbK9YQ4wRbXhfls5P/QpDNx73ccpbnqQpxFUG8mqWncTqRblH2fp1/Ox/JbF76uFZ+dYe/ume7q1XF7zQIjJWhbD1oaYTYItixW07Ho3bIrhC2M2h2Fh5F1teHd8972eO4YOt58dcZRc5LcBLJ6pgqFPyMaVwPNhiR6NDt348lgAubqEJ/aYqLLHYJvDsv6GUWCQ6LQiUo/tyn9hmjqQv6VrUAEM/hvRAPRnPESpcI6zgJMbbWiunpdQCxQYboBFeaG3IY/jOhI9+wB66iQ++C+1TYuH0Wh5ooQhA+fcTxsncs/OCVj5s2RNh8ART8g2Bmt/jOgKiV8vz8ZU+/zVQvLvEO/5Xm/7PHooMJR/4Q5gvgJhtuAhClj3cMJgNjQk3EZL/ZrollgeFy8RJ2DDA3aNQUc3A+s//8mWvyFgTZ0ogevMYfXJrIKy59K3vyShsU3CcWcctmEo2JJcMdhwk7CYySSct2n1vmM3edD0d28CXX+dIqD2CFfIRGIJNzhBJkPYAiaH2YW4Lw7eB8esNG68SCaNUg/yRKkqhisH2xSl7paAekrP8p6oXuZaYl0XPkdgcEcDdK1Rh2+hEN3Rhs59O7ioYR1PVbBDJzSSEDE0qSpkleef6wd7Lany7fgnB+lTsvuMPYjuPqsvlzedqawEA6czPLYsgcitQ7kMVsBlODOa0X3WEbkmGuSUpKEGhxa6tem03x89uTbNd+Gd8I9e3wr/JVO18QGCPtIhS409iyFauaxoJY2uVAeLeFGrAckKiTYOrbQ4O66BwKWVyFzh78S7+vqNgE5utERJYQnDP4YabjtsgYSKBY8Am+pktaqRWqYuTIZMEkOJ3G74LCjxQuiV447NAr0CYfbqzsXQV8DWKmLoRyGhaJ9rEbtRnuG/vOBg+JSkNbsoBxPwWyEOJrDLFQFFLisUYIjjC9USDsNC1f5LQ/ud3O8F+3klnyQO0b+RF2FsjDAdxDG5rM2CJKL4BKX6IEy9o4Pgqv1U3c66qAwxxreiuwZaQl39JOAJ5cTgpoLmjnoCdyAqxtAlqToPHotDAJDf9+Ha+q0vDPjLM/MlP9TOYlFL6n4onj6o1FfLW4OoPpaBaxAkjmdDqJZ5IXyjZ04YVHrtFRtQZ580jitEV+mdet9lQvIG3uxTzS60eDZxj0nPtzguOBBWKCcRJoUCIPC5t5Rp7qne3xrc4sjwgLS0gRafJjzfSY5IYQMZGlF64gJ8Wm04ovAuR9okVQ4D0G3CJOCLSeCpOBHGFuMtHZXyWL1mJ5WkyfDe9EiaRqQHg9xxLEA5CxVShWSELWMQPaUgRJCGiugpBf/q25hUcaiXqyDjsM80WdO6T0TWlwg5wY/NvL34vERUwM/xGvTdkaFvuxu7J5VxTMyRKhbffvDbFpw9l/9vE7mV3FxNTBbQOXcsnr+OjIyVjkF1L2UKLNaA4w1YFTBFkLiMfhbLv503zm9l41t75fY3m1J8G3gfwrfBLpeHzIvNSc0jBcXeaxTnZpVMuvrFCMhcGcOGDJgNZpDDxtFMPUxB5R2nN4JditQKghsPLJg1Cvvm6KhBSfTbhVFFgtQer9o+ir/jQh7H8Fn0cYxdNfYSANWRyqqOSNOog16mRo++bTWx6SJScVOk7SYhFSD8NCGsYHKNkDSH31RzYh43qhaUoIJ97DQfR9YIciWoIjW6OhSuuN047omI5MI4L5gd+Iq8jMOwIu8eIXw6LH13QGbdEZ0z7AqjyT5GuAQsoHrEa5poDjjjsTuhk4OHHnVbaKkpD6jXobs86uu6VrcA++QHUriJQC2xuWCJHSnVq7pFY3VLbfX3hN4cdm6OvRLyO2YEt5hZJPoYsN3pjti64b/7DDm/NHRDBePSEAsVakYnwYZfUlMbWKaSqeWxylqHqyQKbrx0ggSLh0lE4hhufALmWMAorfoDkAra+OuOm4K8/KDlgxyS/a+tKiRPb/hYusHFrlaEemayqmek2aqnvONPh7JtEJ6SV/7M8bqb9fwBJ8RvdffDa7tej5nBciL6faRLR0MiFRTHhroVM9CxgYrtwarYOiZXLLwJWx8NDLvVDacuBUjdUl1HfSy/0SfeSFfcLpaiDkkj3bCJhy+tyzkMS6vZtDqkhuWN0x6+AjodfpawdTq8IyEgX2H2kFOTMI0DOdURNQLkeWPZIJ8zloB8JRPkeqf/2mgsVsWn/yKydYkYByJblwhvILJ1v+cwZusS6b+IbF0i/ReRrUuk/1IHCi2BElpb5BCjJvMaIYEyh0nJLQNPutzdXcNns0XUqOvP65CVXF9NHeXL5PHw8BGjA9O3DJYMU6qljxS2co6BvY/VD8AICpC1gCe16LZzoCYwl/uKNHBQv6RrlBis53fEYCbdQO0p6oCZNEysFxOyiZq7jdUWkUPVADzAD8xZZlP2NTs34qRNcJrfruZ7j2zPNoS5XbGkSAXA6qoYP8QpoVqdkbB+qhh5qsuEla0mwUYbK3RG0brdBR0CN/vMOjPhrX+v6lOMmGQzdWDwxzObkny2yjP9ZvKSTxgBpWGsKHHF+p07OIcS8wqbbBhmxJSDxAEik5GZeBuRdW71xXbzfXfcG+ff5PnDN4aMMUNrKTnjgwhJ74buW55Yv0NRJ01QHUIk1qqACpcZkm1CgrOqu/C3d72PBy+7ljpXsKYHuYe3aTjwEKR0VpCGifXLEmjjLVV/cw3xqWzIYDR1ZgN1fLn04UH3WP+Dfx1pMOfSpclkTjrxXDonXSOpCHS6sKJTU0x4P6s4DAvjy4hgoYXbP/zF6y/4rA3xH0I9Y4hDlBWwYAC3BTk7QJM4mSjXqwkBtVyHrkxTXWkmwDDZQz/9Ag9BZ4Lhs+NRFUD6n90tYNOFsVHCtZdDr/b05q4mn49j0TGGZZ0kLM+KU02coXUFAFh1IFihqDHmCfzvZ1F6rXU2GFgSMNOYoYpc0aLP3JAI77QHI/dntepOzqGuLgD3ooHSElWySwBhAqOGBaZlUfotduUTsqmZCyYjZENLg40RSMjm0nxHNwwa3A6tZrJD/HYX3HpOuy/M9Vn7VtWzUTMqqzFWpOCqA26IaD6Ta95OfR/BHcaqnIi4cZJEeEmilIrxBVIns0QtFcTyhijepZZYj6xOv8RimIDNkJ10ZrxehsoGIzWrqYLgddBlq0snXYhe/hdvvc152eINHvXILhL2ALqLpL5c3pyjVk0ylNgCe5hDeFag5txB2MM8Ua/cpFrq92ErG+/68MP0ze0fem9euc9ibF69y5QYH3Y/Isanvl4ePntHvPUv6fGzX6owefiMRZK/jYBPyXg2fMDwMUWI1goLeo9XA9GHQ/2jX1+5WgNEymiJik1pvtWl8UETrnsV3Ve4db244ApZaer76UrDrxvbWEKt5LJqJcmstFJSRGhFr+WrNmbwFJIotmOqiBZF37UeW91rzcjrdxYutSRnE1gGYffTFYNfr4i0IsycwFgibb/6AKxiFon6bciaaDDANhYyaXl4PC0eKT/0Z13hTJuX1dt270EulFSNr34APUebEFQEImfGsyEyZzyxrq/hMKzr+QsDPwzt3ct/+ocvKqufbr0n61j9ibrzVPtodhjkBZybGCMVxwC3ElaqEsXHw/qYmhwrvc7vqVX/UO9LH5Pq6/pkHY/Hs45p5NUHYFd3JsFQ8mpT3NWAi71UXfIYHk/ymEk6TTJvtj6wca1w5jdFaUHN9eTKCdWYHBuNoJIXfywxOaEYbuAQZM7jThiGelmsPsH4iFI3eSGV/YHZZfHq+ABsLCHRkCWwM9+UYDTrhrqem7THDNzXYoDZowCDlb0BYPhkzmWazGZzOkUdTbqcTlXhljtIqWcZRjie8k5gO55qrcF8LRPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueoTAJxzUIEbeEZRcwKCWkysJwhqMfwkfanFVLmxqMNsG7dmaoKWmvotV1L0hdTPJlGNzTVWP/XZv/lK9amusm4k/VTxos8OL9rsqEKZHaf8/35Sc54F79jeWVa72xfPMTRmAtQ5DKrT3QvhCZfCnjcTUKxhJpAcwiViObDQ+qDUcaNn2vQpS/13jMlfnCPKGEVGiUdHiVcuSn/Z9G7FL73uvfzz6svVJjVJMgJKNVlRepxcTGWLsuZOqbtPQMdIB4CoNRTIa5j6UfQ1DL9eEQFvbMSUogJNZ1wwpHB7uu6/zJ5Si0NXkj09mMRmT0cm/c+e4vqZddx/Tcmlgf75a5r42H681sYY9pRS9NsIliI/ic1SzEyqaHuaLl3/qk/HKb6Lf29ka+vXsacR7Ck1SGAElEayotQjqQLtKXUNNbk9xUYMoz0FSOH2dD2TPTWbPQF1OhmHsda1SqO3c/kK74KPnjH5V+eGGWFLsC+RbUuQnUhAvoEJcr0Za7UIyCuBsYboqECYekRHBYKxhuioQDDWEB0VCMYaoqMCwVijjgYaLQ3OaeQ4ojZcMAItbaPRNGldiZr8z1qPIPpwEJqkHuzTdGLBpBNqpwsj6GQTk06WPPu4ymXgHOGhcyE/+n7LJSd21ygj6pMVw3awZFdW5ToOlhHHH1CDTvqv6xMSFuQ1wLFlinuvsEktnUPa6+Q8Urt9WArl4rGSKM1NTF+BXqS2TKZrVnU7AadPLDBo3fgMwUyLWIQTaYHDhXAiMb+E4kQu+5JauHZBpH/B5q3Bnk863DZ2vi5y4SnDgjtepJTChDkk+tFPBHPyJZ+CD02v/mXJvy3msqMfgT+KG0L3hkLK9YaobVgMXI64QHtdYnFviF44qR2mPX1yERuUeUNlAx2J2nLFOyuPhruCU91nWC/5JlexosbkGaFiegY6RQ864pDApER6mYBOGCS4DdnMZENWHHwweMbjUv/Cg/sLd499SC4vVzVUFCeR0fuCMZkPRy+uAt6h1dyQGydXSdQ17VWSJBWegITEmdruB/EqurhF1uFipVwmC4OuLbyonTVFGaNUzTKNUauB8RLlAPD6xMe28ZYnwJkhlsEGZLDefJRUhX93sBWBx6GPUjdR9Eh0iKNlSbYVcBTjgB578jmpM/g1gkTKaGmcUDKaNCis1ZfDYKto7evV1dcHyBXaVymdx961FTSXjSuujYEYqoTl6lRS9VtVI94KtSgrRYn+cVGw24NmtFeHF+EZrdYlbFMvw7vZqY0/bEAtFcn4sAWBRjWW4SqlRBSr+RnLnS4zIOqhuoVpqJqN/05tPmWkmD51/BvBga+jZHPgS8YR5mGr2WNOXU7M9xwlVcaG+UgZgfk2JszN2tVGtGsjXG1EuzbC1Ua0ayNcbapidXe1qd3cjOBqb2fSSfXwpeM3JYzx3vWqVNKdu/UduT8KftZP9ELVva1MY4IlEMcNUUjifIWabq26cQCoXetYX4vetoXyC7pm9QNnq3QSPKAFjvQVWjTWVcBxnKRXVn8z9SAl2hfhDVS54hhRHFiukF98WdtrVkM2Z/jt6RY+dt7j5qvIHABv9RPoHABCUBEdwEsmsXUAPzPJJFypqmIArWb637x585s+ef1csmKI1rQYtUAGHRGkbkISw35rIXsXkv7jqswJ8unWlC5c+EMQXbgISUVoJ5dVO0nmoB1gjb7pQyhsLsC6CsPcIpKaWFu1L/7uYOTPky8FHvvc9XJM+K2xZOUI8D7FdOVoJBWhnFBW5Tiag3KgfrSVQwTmmJTT3SsWfiSmE63mzequPR5cuUI0Djb56Yj9VPYb6BkVW6UkJzyqMKjo+cIJMYsOTSMXQh2g9Xx6IVSStCKUx2FV3o2Jpi6uwNSJyaIcDXqUaRB26k6OA+4sUB9QV5w8DqoO/EsmT8SE8Ed3KIoVJakvIPX4691Hfp8/+YUUyG79dXl9yhpKOZoYVCYEfrkiNJc/kU1zM02uOXgTjI/pxY6rpw7ASOOi2Q2hlzjXekAHle/Mb706NGgUwTe84b2hZ1yuuA8B9w5naG6VO2YIcT81j8PgpzaySAk/cfhDSJHVridtu6WQW/3a8NUhmVClZLxUkkgv/chEZm3nBcvWx2uFdbAOZNESeaxEpUzmKtQPjK/tryZw+seFSeLwnQiz80rtq8z2rnQiAVluEwH+o5ArVT5SmUr9wSh3n5HrDsZ7gymw9CiKYOAONHNkMiPRFbmv9SWwwXKlsXfUyaPn1g0b93fSIcGufzk+YcIRy8nDkngqfVhqJOXteKndMQzd8ULWD0TOE2VHSsB++PFkvXJbbAdouTBc+XiJUillaHpc9PV+a98XbXyWl2wedsVv4ErDpzAFK6qNMAJWYByxYJU9uVJtLhGRrIZvueAvQWfnbu7db1YS3OMjLvLced+qYmsbdVW1IjYGxK/C/9fUdnvId2i22zuYzNj/urj+R11cqe3oK6WLKxd4Er1Si2FRD0TyX6iLgPNhSkV0cR3n+O3QZ9sBQbM6/Hbq+eitZN6oYQUmjGwjPQFC3SBCs1DzHja9bJlaKV1cH31pP7rAuUHQ3lrTpgbV3tTOpFWuISo2rKiAcWM2ewf9cv2M18V16O9rGnH6xgQUDNmzp2VV5w5m0cUVqu7CFDbVbTCN6iq9i2vcsvjG1ebW9Fww9Pah1V0OLzNhnRYYeMWsDLLIRq4bZmUqrYurW/Gadg9+ieQtzJ6yceH4AksTd3GF4NiwggOMTeV1cX1do8GwBdIbnscSPY5tnvTrDjOoYAMRwuY0I0JgTuN+204Og98m8HLq8M3jqteWew5bf1n9pjO5dAiWt6uQy8CKTvfZrBhw7lp2RCItux8vfwMQV8oTomO4sAoyFqrRp3zL701sHG5dK+FN79Bib7+X9Y4zvi290ImWUEd889uAjdJUgK+ID4MuFHxTwfb+YKqhuZQNyl4LcoHUWCC/+o+dSy07nP6dv3DMpaCO1bbnkrdOEZAegGrMVyYpz4WiGkYDXagrAD0riF5zPmJ0noHOgn4uVE319I2SRCslaP/S1uXWg6eCXN4M600/Fv4xex0lKRK7EZEUqb5u9OAQ+P4PUtm+/4VUUztLmpGph6MEX1kqj5KKWcpZLd32RFiYWhqUIwl81PxdRAvyWCUeQB+rGklFKOMgqzI2mEYZ9OL8epxYuAbGyVVg+RKJYezU0d0DbFnBziLWmdvRQxwjV0Y5czt5xI9TqrAf0N5q9R0FNwPGz/JMH9FhhsUE//7kdQ1+QLgqWUafNlqiilBWFquyJprFzIGP0stbtS0LdMclKEfFs8yghK/NOwyfvjb4cJXqL378recDQ7bKhm4dOuKGHGZ3X6GqQ9FJMPCVnl4qbslZvK2jUosJG9tu8j9qe7N5i5zUCNNuewEAV1NxAG4gAICmRS9PlFjKmOvKtIxbPiXarqrnbPd6J6OETo9Nmt8PAVjNBsC2tFTC0dzF+e/i41TtOK3Xx5NpXvvc0m2dIqOXVBofp0YaGx9n3dSK5uPcfFk8asetML/cV8322+VPqGcGfBzLNLbTzXdTzYBUUFRUVAl8nLEtj65YnCIWFr7gcDq8zC02Cz7Ovals2jlnDtqpFD5OWtOZ9W+GnPHe6yNds1d4yMos+DgFrMpZZw7K4ZiSj8N5/HfMb6XDg1a/vFNFWnvYfLPi48xjVd4E0yjPPPk4Ee490jIOq3wLimolfent+sLEfJzRrJoLM7nmKpSPYxvbpc+44kLPNZHj+16W9BGZBR8H8yEY+TjAEOJ+aj7n/wAfp7v73UFNEu2DF6T0fnnr7q2lJubjzEtj4+OMSqscPs5lu533vDfu9p9ZVDgnc5DygtH5ONS9uRE4JrPS2Dgm49Mqio8z5Mj1hs6bZvmvbnrzt+4PPp41Oh+HaiOMgNUoVqyC0/6/4uPsZjJj44qkHaTB2/gHjoXI/ng8lNyOwrp/AsyC9FWKFDH0XFE9ji9ae0vjFTAPTHOak+yCN6wTwTKZ0fATkCOP9yQ2VbnyQkjGlO1Oh283v8j4fvSTHG0hbfxVDwcmLEQ7qQoxKv/DTGfN06h56sATSFWBUWnHh38pmZw1HAXNJ6qKa4VLZEBhkihSe25MrWpV7mFSpd7ZZY6asV3x2WXDxHX7/DH6lGDBg/fn13daL9LKLuN++jX03od6vmsaddzm/2neAa3sslrWUxOvf1V5rRk2pptNemOVVnbZzp9s73zNueG3aF2+w+QTkWFaJTkajTjcY1yfHN8ZvSYelspaFmmV5PCKVDy7u1YQMPeR6/7J3U9FazWR+stZsTk1YaJ3tkP3qmMWjhcAUTVcNMjm5au8Ti8Clg+KPHhzYcp1ILLCRVa7Pl/YV0UaWNgotdnmY5GfgKg6LrIcPPBv/tpjgn1PT88cM2BXHBDVwEXt7wavfpKZGLIx9+vnoa87nAYia1zUrP2/79+9HeWTvspzRC2bN6+AqCYuuvfo3cb4v8WCpeHWw3ff6xQLRLVwkfDJH8O2bkgPzju/ccl3F2JuA5ENLpoRYuN+27fYq3CxRdzKD1V/BaLauGiC5aklaV2O++QsuMjdP3SvExDVwUXdnxcnjwkXB2/a8+zf9j3dAoCoLi6qUluQd7fxDt+pvg1vXH20tRiI6uGiNn6DH9XxmRWyIq5dQHBh3ZtAVB8X3e6WXNQ5IpE/fWTYbOdWq84BUQNc9OTQioxT82v5T33V4qe3q6vuByJbXLT78v7pjWd2ESxf8jKtj+Uz+JXtcFH/s9uepataBOxP2vDy1EShCxA1xEW/dxvf2/O3IMGeJjMaVG+/fwoQ2eOil5cH+I36vj+vcE27r54X5HCwNcJFNSe+e76s/5SgWcedxlwomL4RiBrjovwl9cbFX94cmD7CYu37NDsoaoKLmsfc6dW3VqfgtR2XZJy4dgp+VlNc5Jt+qO3eW35B85rY7q1edZ0FEDXDRfa7ol9vP7E+cFt+6dnGtr2XAZEDLuL/npm0MT2Pv9HexeNA3X67gag5Ltqksqv7cem8gCzV8pb1v9sCX4OLi7bueXHnqyBSuG7ubMe+63qdpCVbtuAwJFtGNbCv5X75ftDCkT9svRjhFoMwG/omW+5lMlG2ow/tWnHqrCAn79GE800nkg+nqwmSFDJ5FIJBwNQpuS1+h4bziXVXiI8VyWTACOGNK3SkDFANFPLV6HFOXKBruTuwAsSlF0P7ivB+S5wFHF66fn1fyhiV6hdBfrfhPGFYw6jvvDbc59Vv59HmpREJlUZ2cnMBQGMgQFFM/LOIdL3YAF3DgMOkxGJ3URJYmVseL8UoFOD9pDIuGCmaccIFHhRXBLdcYiSK4t8/euafsgpeVvzDM887n0PJR6Caz6EfgZaJjF5R2REbMSxwuaabxXk1na6nZwNcF3yiRZWpSxUjUoH9y1gJFzggms5rzGel4e3Xn/hsWxy488q1yEWPTvSlRMvxxyKi5YTE2NrLd8EHuzdKez3csMFOOzHVE7gWBLGHCFpLqECiK5DVmbjQctPfXgWXVnAiI55mGU4jMgJYPFawwFDH1599nP9lHxgz+4DqoVdK9gGMmzbIKIatKRHZByPBcLiq31qpY/ZByT3VmJXf3vkdbrKlXrX4oTFGXCypFsjAxRI2Z6oDEZrHZP0/67dY/qfZB/6P3i3ov+o3731zU9r8NCFqqUlpGBCVZ+lsqFw1zZqow0lJ5WUfTE9/vK2//Z6g1IEf+u2JfXfCLLIPoOqOs6ouz1zdGSNnH7QL+ef9pJxGPoWdVza58mbNDybMPuC64lYGSR/Pd8OsTKVlH6z/Etvyw+ad/LnNbHKa3ptIjgdWfvYBBAczNozgXE2vxOyDTo3/mXu2+wbfw1PtG1gGj/1qBtkHEKHjrAjlafy2/RwGv+3sSpHwS8+GvmmbHKq9aJVyjOyNYm0qw72FugcOeOQusbgnDHaIo8GPwO9K1m6lCowtPl6h74W7bpN0cpyo8Uv0e9O9aEKiRzen6wvwbk7ILo1LFlRAO9nnYsdvO7su8ZsW8GfX+TX+PUc5ZId3Iw7ZscvleUpU+2eEVk2/QIAUqEF4vIOAc2yBXmdn9hhAxLhwjJIqwfAFcvRi+4B38/q+D78JtwhF0yzTY16Tp6U3cTN9WpaJygPswE/Xl3X+dXZQRpVD7q+PN5YZAbBtrICBEWUSJ0q9ZsDf6cxh+kNP6bRi0aU1pksWq3pm1enJwvSfQvZOu7oos6a8qB6WjAOUQS+ebOnFC3eMbG+YA0xR7aD0u/Wbjv5DkON9ot+0p89KjaDaNFbVxplItSj/OEu/no/ltyx+MaXtsnZdbvln/qAK2zU3NtVkLYtha0PMJsGWxQpadr0bNsXwhbGAw7Aw8q42vDu++17PHUOH28+OOEou8tsAFs9UwdAnZONK4PmwRI9Gh258eSyAXF3CE3tMVNljsM1hWX/DKDBIdFoRqcd25b8wTR3I39I1qAAG/4kZAPRnPESpcI6zgLNphqG5el5CLVBguAEW5YXehjyO60j07APoqZP44L/UNi0eRqPliRKGDJwm8W7Hd3c8wsuuUfRlpEWElGxjsPbHiK6Q+PXybMxs4c0Pn8d38lr3+9u7S7f3HWpoZALAfAzCbMFDFLDu4YTBbGhIuI2W+jXRLbE8Ll4iTsCGB+wag45u5v70fa3XVzJ9th4+PPdK+oiuZFZB2XPp21+S0Ngm4bgzDtswFGxJrhhsuEk4wGQSztu0et+xmzxo+rs3ga6/ThFQe4QrZCKxhBucIJMhbAGTw+xC3BcH74NjVho3XiSTRqkHeaJUFcOVg22KUndLQD2lZ3lPVC9zLbGuC5+jgBMG0bVGHb6FAnTbGjz37eCihnU8VcEOndBIQsTQXGPemQ3LvnYRLr5bevqBe18vsvuMPYjuPqsvlzedqawEA6czPLYMhsitQ7kMVsBl6DWD0X3WEbkmGuSUpKEGhxYSvsHTmrg3frgnZPaoOWsnTm+bSKZq4wMEfaRDlhp7FkO02rKiVW9GpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WN1DJ1YTJkkhhK5HbDZ0GJF0KvHHdsFugVCLNXdy6GvgK2VhFDPwq9aD0peJe647pPlvVGh5MPnsymHEzAb4U4mMAuVwQUbVmhqKdZqA5yGBaq9l8a2u/kfi/Yzyv5JHGIJjc5ssbGCNNBHJPL2ixIIopPUKoPwtQ7Ogiu2k/V7ayLyhBjfCu6a6Al1NVPAp5Q65m4qaC5o57AHbCaaeiSVJ0Hj8UhAMjv29nv3cKDF0pC1to1+tx/SPJN6n4onj6o1FfLW4OoPpaBaxAkjnMhVMu8EL7RMycMKr32ig2os08axxUiMYq/tzF/RuBR321eB476qQYVmPR8i+OCA2GFchJhUigAAp97h5jmnur9rcEtjgwPSEsbaPFpwvOd5IgUNpChEaUnLsCn1YYjCu9ypE1S5TAA3SZMAr6YBJ6KE2FsMd7SUSmP1Wt2UkmaDO9Nj6RpRHowyMdkApSzUCFVSEZwykT0lIIQQRoqoqcU/KtvY1LFoV6ugozDPtNkTes+EVlfIuQEPzbz9uLzElEBP8dr0HdHhr7tbuyeVMYxMb8s2b9uW+qQoL2P3vWev3XdZnM1MVlA56Mz8fx1ZGQsLBPVvZQpsFgDjjdgVcAUQSdGOfBqh/V1DyrYLHC4+9fYBIpvA+9D+DbY5fKQ+XdcY17RyxRB7qKT+z9c3Mw1AjJ9WZEBs8EMctg4mqmHKai84/RGsEuRWkFw44EFs0Zh3xypL8eV8uF1vrMULJnKdbgsmulBHsfwWfRxjF019hIA1WHHqo7vTKMOepkaPfq21cSmi0jFTZG2m4RUQN8aa5fKfhjkOYtzt7vV5fMTqgUlqGAfO83HkTWCXAmqSI2uDoUrbjeOeyIiuTDOC2YHviIXchhW5N0jhE+Hpe8OyKw7onOGXSHZ77QMl4AFVI94TRPNAWc8did0cvDQo24LLTXlAfU6dJdHfV3X6hZgn1wMHZkS1BKbC5bY6XTnl206N1a31FZ/T+jNYefm2Cshv2NrofBNg5kLvGbufRBvuaf/TUPOLw3dUMG4NMRChZrRSWBG75xpagPLVDK1PFZZ63CVRMGNl06QYPEwiUgcw41PwBwLGKVVfwBSQXtWiG5fmcf1neN2eYnz0dJfyNMbPpZucLGrFaGeFazqmW626inv+NOhbBuEp+SVP3P+npix67p0sueR/otfro2vNo7lRPT7SJeOhkQqKI4NdStmoGMDFatkVexwkysW3oStjwaG3eqGU5cCpG6prqM+lt/oE2+kK24XS1GHpJFu2MTDl9bDHIal1WxaHVLD8sZpD18BnQ6vTmfrdHhyOgH5EbOHnJqEaRzIqY6oESDPy2SDPEfjQB5lglzv9F8bjcWq+PRfRLYuEeNAZOsS4Q1Etu73HMZsXSL9F5GtS6T/IrJ1ifRf6kChJVBCa4scYtRkXiMkUB5jUnLLwJMud3fX8NlsETXq+vM6ZCXXV1NH+TJ5PDx8xOjA9C2DJcOUaukjha2cY2DvY/UDMIICZC3gSS267RyoCczlviINHNQv6RolBuv5SUhWvoHaU9QBMyk9Qy8mZBM1dxurLSKHqgF4gB+Ys8wG1S2ZHMbjBW2/fSguJPevG4YwtyuWFKkAWB3PwA9xSqhWZySsB5aBPNVlwspWk2CjjRUSpZMWsqn3XReGbPuyvc7oTo+aGjHJZurA4I9nNiX5bJVn+s3kJZ8wAkrprCiNztDv3ME5lJhX2GTDMCOmHCQOEJmMzMTb2bFHnRYH8IVpdxIkE+PSXU2YHXDFGR9ESHo3dN/yMvQ7FHXSBNUhRGKtCqhwmSHZJiQ4tdPP9uqb+o2/Kfdew5UNA8hNSk3DgYcgLWMFKT1DvyyBNt5S9TfXEJ/KhgxGU2c2UM7Raz1Cb/Tz3VB30Kp8J4EFmZNOPJfOSddIKgIdBSs6wzII76eIw7AwvowIFlq4/cNfvP6Cz9oQ/yF0Wid9JbRgALcFOTtAkziZKNerCQG1XIeuTFNdaSbAMI2CfvoFHoLOBMNn3aZXAOn/ruhk/yo+Mp+9SX+qRhTMrE8+H8eiYwzLOklYLiGRYuIMrSsAwBoOwQpFjTFP4H8HTNdrrbPBwJKAmcYMVVLgd34Tn60RFLXb3L5O+5QRZEskAPeigdISVbJLAGHqxgpTy+n6LXblE7KpmQsmI2RDS4ONEUjI5tJ8RzcMGtwOHWeyQ/x2F9x6TrsvzPVZ+1bVs1EzKqsxVqTgqgNuiGg+k2veTn0fwR3GqpyIuHGSRHhJopSK8QVSJ7NELRXE8oYo3qWWWI+szgnzi2ECNkN2Uq/5ehkqG4zUrKYKgtdBR7Ge95y5uVG875IFrh3v7/56huwiYQ+gu0jqy+XNOWrVJEOJLQCe8RCeFag5dxBWspuvV25SLfX7sJWNH5szbuqW2RsCsi/HWR2b3WEcJcaH3Y+I8amvl4fPjG+uf2zc8tV70c3HS4JvRWwyAj7BrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0m43fT3K6WFOUPZmtwP8V622kJWmvp+uNPy6sY0l1EpbVq3UMyutlBQRWtFr+aqNGTyFJIrtmGrB1Ae/tY4eIdy+eOkPW+Y1JvM4LIOw++mKwa9XRFoRZk5gLJG2X30AVrHI+fptyJpoMMA2FjJpeXg8G/24u8+rIl5GMe+GW8IvnuQcbb76AfQcbUJQEYj0YkWk6XxiXf+Rw7Cu5y8M/DC0dy//6R++qKx+uvWerGP1J+rOU+2j2WGQF3BuYoxUHAPcSlipShQfD+tjanKs9Dq/p1b9Q70vfUyqr+uTdTwPzzqmkVcfgF1d4TxDyatNcVcDLvZSdcljeDzJYybpzH/YplHC11o+K6Y8XrQxv8FR8uBjcmw0gkpe/LHEZIihO4rMedwJw1Avi9UnGB9R6iYvpLI/MLssXh0fgI0lJBqyBHbmmxKMZt1Q13OT9piB+1oMMHsUYLCyNwAMn8wnmCaz2ZxOUUeTLqdTVbjlDlLqWYYRjqeS5rEdT8VoMP+JCfPgAz6XznJO8lOHNOotfRFQl1yDPAgWklfIpGKsyBDdkDIh3SQI+ANgeVKBO2XcWNJTdLKT1DqnbK9FL41OlusauIFcdZj4OwcVuIFnFHeyENRiYj1BUIvhJ+lLLabKjUUdZtu4NVMTtNTUb7mSoi+kfgYs9N6ypMrKwPQDJ8+kjG5CHjZVvOizw4s2O6pQZsfqeU8aHTnnFFI49KrDYIuRhvYAzwXqtIDqdPdCeMKlQFqShWINM4HkEC4Ry4GF1gelR+3GfDzWZIf3vJWLCl5ceVGLjBKPjhKvXJRKa+XfLZGE+qw/nXkqdnPJWCOgBIY1C0pnsoqpbFHW3Cl19wnoGOkAELWGAnkNUz+Kvobh1ysi4I2NmFJUoOmMC4YUbk9P/pfZU2px6Eqyp52y2Oyp5f/sKaGfiRsH7fR/vydw8Z0RKZ+dJj42gj2lFv02gqVwZbUUjSvcnsaOa5XT6lhf3pLrirgbHi47jWBPqUECI6BkyYrSu/kVaE+pa6jJ7Sk2YhjtqaXGnp5isqdmsyegTifjMNa6Vmn0di5f4V3w0TMm/+rcMCNsCfLns20JcjUxlWImyPVmrNUiIK8ExhqiowJh6hEdFQjGGqKjAsFYQ3RUIBhriI4KBGONOhpotDQ4p9HhYkrDBSPQ0k4bTZPWlajJ/6z1CKIPB6FJ6sE+TScWTDqhdrowgk7OMOlkybOPq1wGzhEeOhfyo++33JbkCq9lRH2yYtgOluzKqlzHwTLi+ANq0En/dX1CwoK8Bji2THHvFTappXNIe52cR2q3D0uhXDxWEqW5iekr0IvUlsl0zapuJ+CoZgFT1Y3PEMyMnIVwIi1wuBBOJOaXUJzIZV9SC9cuiPQv2Lw12PNJh9vGztdFLjxlWHDHi5RSmDCHRL+/ouu5pQsLPQtW8627/nG2kB39CPxR3BC6NxRSrjdEbcNi4HLEBdpTzMK9IXrhpHaY9vTJRWxQ5g2VDXQkatfGNmr5PoHjvWdS2zvXd//1jhU1Js8IFdMz0Cl60BGHBCYl0ssEdMIgwW3IWSYbsuLgg8EzHpf6Fx7cX7h77ENyebmqoaI4iYzeF4zJfDh6cRXwDq3mhtw4uUqirmmvkiSp8AQk9OiktPtBvIoubpF1uFgpl8nCoGsLL2pnTVHGKFWzTGPUamC8RDkAvD7xsW285QlwZohlsAEZrDcfJVXh3x1sReBx6KPUTRQ9Eh3iaFmSbQWcWXOAHnvyOakz+DWCRMpoaZxQMpo0KKzVl8Ngq2jt69XV1wfIFdpXKZ3H3rUV1J45p7g2BmKoEparU0nVb1WNeCvUoqwUJfrHRcFuD5rRXh1ehGe0WpewTb0M72anNv6wAbVUJOPDFgQa1ViGq5QSUazmZyx3usyAqIfqOaahajb+O7X5lJFi+tTxbwQH/t4cNgf+0hzCPJw3e8ypy4n5nqPYzWLD3FJjki8wYW7WrjaiXRvhaiPatRGuNqJdG+FqUxWru6tN7eZmBFf7IpNOqocvHb8pYYz3rlelku7cre/I/VHws36iF6rubWUaEyyBOG6IQhLnK9R0a9WNA0DtWsf6WvS2LZRf0DWrHzhbvyyEB7TAkb5Ci8a6CjhjFuqV1d9MPUiJ9kV4A1WuOEYUB5YrdEu7NvZdpp1+E5LXqdqAO12/l5A5AN7qJ9A5AISgIjqAX1rI1gG8cKFJuFJVxQBazfT/+eefv+mT188lK4ZoTYtRC2TQEUF3thiysiAqvX5QToPId03tV8ygdOHCH4LowkVIKkI7m1i1s9ActAOs0Td9CIXNBVhXYZhbRFITa6v2mh+eeHx//ydBxi+z7x9abtGfrBwB3qeYrhyNpCKUM5lVOWPMQTlQP9rKIQJzTMrp7hULPxLTiVbzZnXXHg+uXCEaB5v8dMR+KvsN9IxKO9eiy5cfOMHHTrmuq5uzkdwco+YArefTC6GSpBWhvAhW5fFMozwdOjFZlKNBjzINwk7dyXHAnQXqA+qKk8dB1YF/yeSJmBD+6A5FsaIk9QWkHuW/XlxbcqU2/1hDycfQ1vbtKOVoYlCZEPjlitCcK6vmGptcc/AmGB/Tix1XTx2AkcZFsxvCx7/NPv9+/sOg/QFzpk4eP+aq4Q3vDT3jcsV9CLh3OENzq9wxQ4j7qZc4DH5qI4uU8BOHP4QUWe160rZbijP5cJ6vDsmEKiXjpZJEeulHJjJrOy9Ytj5eK6yDdSCLlshjJSplMlehfmB8bX81gdM/LkwSh+9EmJ1Xal9ltnelEwnIcpsI8B+FXKnykcpU6g9GufuMXHcw3kcugqVHUQQDd6CZLosYia7Ifa0vgQ2WK429o04efQdbIb9DwCfBltli+6653HrkYUk8lT4sNZLydrzU7hiG7ngBcsMgcp4oO1IC9sN+i/TKbbEdoOXCcOXjJUqllKHp8YH96x6Iby70PnK6R4mVg9zC8ClMwYpqI4yAVRdWrLiLKtXmEhHJaviWC/4SdHbu5t79ZiXBPT7iIs+d960qtrZRV1UrYmNA/Cr8f01tt4d8h2a7fZnJjP2vi+t/1MWV2o6+Urq4cmGP0uxiWNQDkfwX6iLgXKHbTiN0cX358PjZd//2CCwY3W/OuberHxmxwISRbaQnQKgmRGgWat7DppeldBtZEV1cBQGvQ/79c77n0Vd5N4/Va01uHljZVa4hKo8XsaFypXKtIeveQb9cP+N1cc0pnXNu7vkqwXOmTvzncOOhE8yiiytU3RFW1W0xjeoqvYtryul6HWt9uixMazZcYT1joo0J67TAwCtmZZBFNnLdMCtTaV1cp2bV/nXXgan+myyeOdW46HXHxF1cITiYsWEE58qiSuziyhnT//U/mVu91/Qt8MtKaUhuN2CaCjYQoSOsCIE5jfttVzgMfpvAy6nDN4+rXlvuOWz9ZfWbzuTSIVjerkIuAys63WezYsC5a9kRibTsfrz8DUBcKU+IjuHCKshYqEaf8i32u6Jfbz+xPnBbfunZxra9lzG+Lb3QiZZQR3zz2wg4j+D0FPFh0IWCbyrY3s/LNjSXskHZa0EukBoL5FfvfXS0y6q0+/xj6xJvdJL/SO40YxUB6QGoxnxlkvJcKKphNNCFugLQuwfRa85HjM4zYMU5l62XC1VTPX2jJNFKCdq/DP2j48xHf34vyPlUMqSP6+tTlKRI7EZEUqT6utGDQ+D7F7B+/3XZpnaWNCNTD0cJvrJUHiUVs5SzOuJycfsx95kh0/zWv0tO/qEReawSD6CPVY2kIpQxj1UZE0yjDHpxfj1OLFwD4+QqsHyJxDB26ujuAbasYGcR68zt6CGOkSujnLmdPOLHKVXYD2hv9e6cvtGPR+0X7Bg8OyFgR83D5HUNfkC4KllGnzZaoopQ1mhWZYWZxcyBj9LLW7UtC3THJShHxbPMoOcFb//4YeLCgKn91u96MXvPUUO2yoZuHTrihhxmd1+hqkPRSTDwp2z9vFTckrN4WyXcQN8Tjnkhs85NEmx+GJ5h2m0vAGAbAcANBADQtOjliRJLGXNdmbxdn9ddbrFbsKJpzOsrbV/XpyxllZvfDwFQsQGwLTKbcDR/5vx38XH4v2cmbUzP42+0d/E4ULff7krj4zxYzMbHSVpc0XyczV+DXvjZVA1cGODa6W2d92Iz4OPcWcx2unlmsRmQCg4ePFgJfJxHEf8ohyy/EbwqaeAfOf8E1TYLPs4+Vu3kmoN2KoWP07mEPyf09ZHAjYtP3Ij9a2+yWfBx5rAqJ8kclMMxJR9nQ/il7TuDJ/ovaLZumWfsuodmxceJYlVeqGmUZ558nFcHD8urDm/vmfboxKu8bt9yTczH6cOqOUeTa65C+TjcOfK0J2OFvFV1WxQND2i0zCz4OJgPwcjHAYYQ91N/4fwf4ONsUtnV/bh0XkCWannL+t9t2WhiPk7UEjY+To8llcPH6X+vxo/Z/e4Ktowr7hfhIRxkdD4OdW9uBI7JyCVsHBPhkori43z0cphiN+hc0NzFb7LFn3O2GZ2PQ7URRsCqBytWrZf8f8XH+ZXJjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvK17Xtz5KogUrps727Hvul4nGd+PfpKjLaSNv+rhwISFaCdVIUblf5jprHkaNU8deAL1YC0+Oz78S8nkrOEoqF1nXnGtcIkMKEwSRWrPjalVrcqrTKrUO7vMUTO2Kz67bLOgS5MGrlf5ixWTxAeqeOdoZZddX1awe+IvSsG+/bykR1EzH2lll12rM1c2q9Er7yNvJcq+OSc9tLLLgjr+Hp7rlC1YfiB9x5BHB5tpleSYmbx6yuBp3KA5Z1xHdP7Q55NWSY5mz08tkRY3ERQdrn576ou8K1pNpLotXswRttrrv/Vo5Nwr73x5QFQNF809NmQC95xv8I6UpdETDt/6AERWxANHr+/Raus63/ymLd6l1fj+PhBVJ0TylYVNHaZ5LlhxrZ7X0eYyIKpBvHyj4Vdin8QFbXYfsFU143YdILLGRTvD//T5+GNy8MyNIz71/XfobCCqiYsGDZfPKy1I9FonEvbYKN8Hy1rUwkVrV7W+M2V9hPe0JR3aBTWuFwNENrjoTlBW4gGPo8KMkdfv1ek6vy8Q1cZFDfeeuZoaetNv9tC8e52Ob6kPRHVwkbzmiqM/efTw2tA+utXH3U3tgKguLnob51FnVcIQn/V7XwfUq3NzOxDVw0WcZY5BNwZY+mz86eTskEHTfwCi+rhoe5XsFEW1DyG7m7T121XwpDUQNcBFvdbUPTXfaU7w3DujL/07Keh3ILIlXuNhP27iKwfvfTOriW97HM4HIjtc9G2045s2Y7Z4TZ8+MeDVcJkfEDXERUdFnKXrznf1mxXW/Glwz9RSILLHRWOnTBy761BC4Iz8OT88eHKtFxA1wkVdn7zalRpQFDRryPROa088ew5EjXHR7HGq4GHT6gozhiTkLUxbFgJETXDRj5YvLldLbSDc0+WTVY2D424AUVNc1GBkQMvOPbf5HPnyQNlC6p0NRM1w0eSiyQeXZMkCFv10stG5B+cg8g6EvqRNN7Ta8Jv/ke9Pf/N6EAgHQHNcdNEv9CfZh7+DZ7Yc10g+YOZSIOLiot+nPU+a/KK616ozF461nH3Lh5Zs2YLDkGyZc2mltUva1IDttz4Nu/yt1juE2dA32fIak4myHX1o14pTZwU5eY8mnG86kbwtqyZIUsjkUQgGAVOn5Lb4HRrOJ9ZdIT5WJJMBI4Q3rtCRMkA1UMhXo8c5cYGu5e7ACvBuaTG0rwjvt8RZwCleql/flzJGpfpF0P6/06LhX0T1gjKWcUdwD/zW14iESiM7ubkAoNcQoCgm/tmtpXqxAbqGAYdJicXuoiSwMrc8XopRKMD7SWVcMFI044QLPCiuCG65xEgURTnPTwi2fuQvk92TV73VdDn5CFTzOfQj0DKR0SsqO2IjhgWuPUvN4ryaTtfTswHu/2vvOuCaur5/UEQEBbfiwLhRWWqdVUsCYYYh4LZqhCdEA8EQEGcdrbvugRu3oBXqYoijKtRZrbuOuq1bnLV1/e99I+S9d98jzwSSfz8/Px9beZf38vI9955z7rnnnK8budCii8WljVVowf5lBCYGDoiOeY2HPCu3Znif91d99n3Vq02nu9dkjGg5+VhEtJwaMbX0stzIye6Dkl5nD3yys05MBQLXmErsoYLWGBNIJFhpvZ1F2zquDpl9w/FG18aPJManEZkArEJesMBUJ+3PRdH/qg9MWX3A9NDLpPoAxk1TUwshNSWi+mAImA59U0uj+uDV2yEpr85fCJl/4Zzf3qbVH5jQWDI1kJHGEpIzLYIIzeHS/hNTy6T6QONdOWDW/RDZ3KsVhy0Mm9HUrGkYEBUVLypg3ljoSUnZVR98Wpu0YPg3Dt57HK7vvrVibjOLqD6AovPhFZ2neURX5tUH53o16GebmOyfP8+j9dYTc743Y/WB2J3UMsj08SwPXMuUWfXBnKXe1qv6TZPuFw9QdViymt4woeyrDyA4Kl5w+qaWYfVBN+fkkFkXdvjOtO5X8VnvlIEWUH0AEfLhRQisadJvuyTi8NuOrVDIP3ap4zd5k3PFR03H0qVui9NURvjIDQ8cSOkssaQnDHaIw8CPwO8arU+lCpQtOV+h70W6buMNcpyY8Uv0e7O9aGpEAJtT/40kmxOSpbHexlKgk61e0fWEMj5Luv7omsV5FcKqMQ7Z4d2IQ3b8ckmeElP/mYCqqTcEKAE1CQ+2kYmkGwWdndXFAaLmhUu0UgOmLxhHG9uAgn09Hm7Ikqxq/+DAcZ+Vh+jL0oe6mb0si4dKAmznLy3qxEV+HTrfNut4lY4HjG1RDwFz5wUMzCizOFGEzYC/017E9Ydd0mnLI0t7XJY8WlVy/2rowN5H/FIDXBc4j7v9ujpejAOEwW6ebCORRrj0bWWcA8wQ7a4Pn9Y8uy/xXb6/x8QLY5qdMoFobXhF+3KD5fjH84RxPpZMWaxtcmd4/yZOfmtswzc18co7YDbKYkhtiOskSFmcwKqu98CXGGkYL4s4DKP0fJ3ryZ12ev00YFDdWb330Zv81oTNM7Uw9AmzcTF4PowJIDr08FbHAciJFp74Y6KLH4NvDov5DaPBJDHIIjKP7Up+YZY4kL9laFABTH7fFQD0B1JEq3CRq0zUeoWxtXoSuR4oMNwAm/JCb0MdL3ahOPsAekQRH/wXodMSYTRaPQrjqMAJCLwkaxOXIlnilKJ91f45nRXZBqc/RrBCktdL0jFvR+87Ffdhqvei7p5DW35Y9srYyASAWQphtpYiGlh3bo3DbGxIuLme+HXRrSh1fCIWlYRPD8gag45uDuvWpVOjmv+GrlqzYrx94X46c5x98XPZ21/aoKlVwkFXEraBKNhS3HHYSJXwB5dKOOHQ9FXbjurgqS+fB7mf+44e5q4SjiWoFFGYOCRJpULoAi6H2Y26Lx7eB+esMj5ZoVJGE5N8lFIbK1aDbYrGcE3APKXneU8Ul7nesKGGz0UmurgcoGuPOnwLA+hmLDd27deGRg1nPNVChk6oJCFi6JIS+7rH774uJ89998ewqVhyO7r7jD+I7T4Tl0tazsysBCOXMzy2PAuRW4dyGWyBy7B/Oaf7bCBy9XXIaWhTDU4tJHxLqvul1Z5XIWhpRm5k9/4Z39JTtckJgj7SoY+aehVDtDJ40VqyvEwdLOpFbSNHJ2D6ODTVy9lxDwIuLaZyh7+T6O7nPxg6uTGYhpElDP8Yq7hr4wYSChY8AmyqRxOiRkqZaZiMWSTGJnJ7kKugSIKQq8gTXwWCAmF1CeZi6Cvgtoqa+tFIKJ7vn7o4PviZf/aLmw8bVP29EeNgAn4rxMEEfrk0oMjghQJMcdJQXRFxGKpWH+vU3S4uL9stLXqPOcdcohthfI5wHcRxuawNgzFFYpKGOAgjdnQQXMJPNeysi5khxvlWbNdAb9BQPwk21FlBqgqWO+oF3IHZRrujlaTwWBwCgPy+eb27nn7QKzLw50XVak+YZtuEuR9KZE8q4mpJNojpYxlpg2Di+AYIVaoE4Rs9aI1DJWivWJO5+pTxYjkSo1ZzHo4cKK4bMn/i9vrfPT+x2aznWyI3EghblJMIi0Jn65zEq1xrT/vqSr/G+YMCJ0/uZf1+zEM6SWIlfCJDJcouXIBPc4QzimQ50k9SFXEA3TwcA18Mg6fiVBg7iqR01KjjBK1OZpImx3uzI2m6IQEZ5M9WApTnoUKqMBlh+0oEpxSECKahIjil4F+hxKQJuV3dZT/s9Z2ialDtnsL+N2qcyo+dcXXxCUyxx3ulpE+5/AEvOpmak8o0Kua7S2PsxxyY7LOj3sUFXdc0aWSpKmYekPmjlWT9OjIydnElir2UK7BoB+cb0CpgiSBxWdYwddXpETO8ci6M39tjyJALDN8G3ofwbfDLJSFTb8kFyaDb44J+8hl7qca960tNgMwhXmTAarCAGjaRbunhAirpON0JshQRAoIbDzyYNRT/5kh5nX7juPlBkaf/T3MzX3is7seYx/BZ7HmMXzW1CYDiWM4rjqnmEQe7TY0A3rbK+HJRaMVjlS3Ho32VLnFnW3tc81tav9XXdttjT1YMTtJCHjvdx9ElgrQEVkqTiyPBndQbB70QkVwY5wWrg7TI10QcFvnnwfL7A7//OXBGtcHtf6idF0P3MSIwYEAFxGvq6w44E/E7oZNDhh4NM7TMkgfU67BdHuK6od0twD45EMJWhDKxacDE2q0U1N2iHkGpTXxP6M3h5+b4K6Ht0st6zoHrJnjn7nzaLXTL+bPGnF8au6GCcWmIhRa1olPAim5ndgXL1TK1pKyyZhFaLEGcqByD4fEwTBEVK05Mwh0LGKUlPgApoDqHd+3s8tMr/8w+92qkVQrtT1/e8LFshYtfLQ3xOPOKx85ixVPS8adz8TaILMkreeUsa/DtoxYdg/3XbJn/ShLTtAHPiWj5vm5tjYlUMBwb5lbMSMcGCvbtCj7B3l5hbsHCm3D7aGTYrVoE0xQgZct0HYVofpMvvCHupF58hzok7euBLzzStF4XcZhWi6E6ZIblTUMPXwpMh32X8zEd+utie39aPuSMIkzTQM50RE0AuecqPsjFqyjIb3BBLrj810GnsUq//BdRrUvFOBDVulR4A1GtW17EWa1Llf8iqnV15b/sal2q/Jc5UVgFlFDbolMaGMW8JiigvMkl5CZBR9yu/2znu9k6eujFh1XpQq5BpI56q9SJ8PARTwdmbxlsOJZUE18lpHKOhdzHxAPwBAWYtUAWtRi2c2AWMJf4iixwUL9kaJQY2HP/ZWAlXUbtKaqClWS7TFAmZH0idxvvLaKGogF4gB+4q8z+HWZzeI26mU9O/tDOh+KL6D6rwMzt0k2KTABY+SwjD3GKmFpnSGuZqMUy5KkuF1a1dAU2+lghURrwesyB01YaSd6dlS1Cs/eWM2GRzaReIW+ObkrxTVfP8J8uHX3IBCjZ8qL0KFXYuYNrGLWu8MWGY0YtOZg4QFUycifexnxs+c3+lS1lk093WGEf1MzRmDlmbC8lV3ISIdO7ofvmuUzYoWhrXVAdQhSl1wEVmhmabkK3/grx6PT+7I7AnBZb11jJk+daQA48BKkBL0i2y4RVCTT3URLfXJf4VDxl8DR1bgWVXKPniH5nFwZvbZc964PMzYqek049l52TrhspDXRec1YIQHRu6ioEbok4DOPj3iFya49/vBevP+m7NjSgP/OMIR7RVsCaA9zG9OoAXeHkKLUgEgJmuw5DM00NTTMBiuk+nFQnpYh0Jhg+yxNm6gxL+t8/a8C5i3/c993p3iux7iLXyvTzcTw6xmHWaYMlaXGmijO2rwAA6zYEKww1x7yA//2bMFvngIOFgZXGDdWN4buGVKxZGLC6YPCd7W8L59E1kQzciwZKb6iMXQIIUx4vTJuWCTN2JSdkMysXzJaQDTUNPkdgQraY5Tt64NCQeug2lx7ybnnSo8uUG/I037UvtF2c6PnNVcKxOEWCmAi4IaL5XK55S+I+KncY73KiEMdjo+AlTKOMIg2kQWqJ2SqI5w1ReZd6wwKqOj+tK4QF2BzVSfvXCVJUDnhSM5EqCF4H+S3HnPao7Xt5vdePI61W5f2UOZLuIuEPYLtIxOWS1hyza5KxiS0Ann8hPMtRay4HOJj31wmqTapCvA9f23jZ+DDFmYVr5fujkjHfJtPLM2J8+P2IGB9xvSR8ugSPvP1x5Zvg3O7XTqQeevzCBPic5cUHTB9zhGht8aB3MgFENxHzjzBeuSqRCk0MpuUT2r+jF4Zm5vgGzw9/V2Vl6gN6YwIb4n620MjrplaWUCoZvFJZYlFSKTpASUWQ+XLEFV4CFs13TCVOHd23Y1ygdMo6m75VvhLl0wUTjN/PFgx5vTTKinB1AmOJrP3qTWDFrq0TtiGrr8MA31iolCXh8c+bjlX6ShyCpn964+bs8VVjeo22N/EAdo02NVAaiOznRSRtHWXX74g47HrWgqDXA77uGjD19Uet7eEr9Dxk8hMNz1Ptptth0A24eFSsMioWuJWwU5UiMRH2x9TVWAk6v2d2/UO9L3tOEteFVB2vI6uOWcmrN8GurgfbrgvMLGtAuhrQ2CuJlsfweFLKnaSTfO+fCu7PKvtlREjeXVu2gR6Nrcjl2OgGytj444XJEENPVDLnwdY4hoI0VrcQckYRJC+0tj+wuiyRiA9AYglMlyyBn/mODUFn3TDtuVk5ZuC+FgesLgow2Nm7h24x3+VazBZzOsWcTYacTlmJSy7/YZxlmOB46sNavuOpJ2spzO9xYR6S7fvbMdER74n9nb5WPgqkNwtwCIaN5BNUyii8yRBbkXIhXT8Y+APAPGnBnSpxHO0pBulJZp9Tvtdit0anjxsauIG56hsAnLNRgRt4RjFkAyK1mLIniNRi+ElCU4uZ46ZKHebbuDUkErSI1G+1hiEvpHxGdKxTWOH3+/J5va463d+9chJNPlYS9uqQsFaHFWN1tLRb+1zUaGTw6uvfRB04XXTY2JgJEOd0KE5PCcITfgdGtRtQWcNcIDlHYFFqoKGFoBS53rVmx9C3IXMXXUxrn/i7Dx0lKRslaYkozXjh+uLCqllBk93ctgzYNsbYXmUQpSG8KMk3FDKzRXlrpwj2CegYGQAQs4cC3YYRj2LbMPJ6aQS88RnzDhVoOuqGI0Xq0/v/z/Qpszl0GenTPev59OnM9f/Tp6R8evkeGf6Dc2ffbN/kqqcH99OYQJ8ym36bQFPsWM+nKVavL2192tV+ldu8S+ODlscO2PL1aut4E+hTZpDABCjN5EUpeX0p6lOmDTW7PsVnDKc+BUiR+vQvLn1qMXsC5nIyTcZaByunFz96J/jseeMVm3X+x3ATbAm+Ws+3JWimg/wBF+SCM9aqUJCXQcYaglGBUvUIRgUqYw3BqEBlrCEYFaiMNQSjApWxxpwNrLQ0uKaR84hJuGCCtLSHJpOkfRlK8suoRxA8HJQkmQf7LJlYc8mEyXRhApk84pLJkgdvVrn1mi3PPR76i9/nNHpht11xoj5dMHwHS7WLu1zHwzbi5APs2En/1XxDw4MlkS5Nxnp2DR/fxDW0lWGbcQbbh41cHTUCi9bdxPUV2E1qi8cMrapuKRO9gym4Hb05gpnXViGcSGsSLoQTifslDCcy9ePEvLXz+wbs2Zwe4nWvzVVT1+siDU8xFuJkhUYJC+aQ6N+ZVNdr4ItA/63rkq41PlQ0nx/93uSjxKFsbyi0RG+IScNipDkSA+m9XkV6Q+zGSS1x6QmpRaxZ7A0VT3R0V47z1Wsd6b/Ia8rV8cEj3u7vx4sal2eEiukZ6RTdbEtCAosS2W0C2uGQkDrkMZcOWZ5zs9+0u+8C8nJ25/084ha9vVyFMEU8pmLzgnGpDxeJOAHeoUduKI5XazGip70WS9GSBUhInJl0P4hXMcQtso+I0qhVqnDo2sKL+lVTjDnKlCzXHLXtlYhpIsHrUx/b3EedBFdGlAoSkMF+89FKLfndwVYEHofenriJIUeKIY5VJdlCJrJNA3Ls4i2aOM3bLlihiVHGy7FhtElhT1wOh1TR+tcrEdcj1Qn6VxnMYy9byBxt0godcRDDNLBdnVZJvFVF6q1QRlmjGBUQHw3ZHnSzvRK8CM9o9S7hm3oVyWZHKH9IQK1UqLwhBYFONDYRWg2miNP9jNdOFysQYqo+4ZqqFuO/M8mnTBTTZ85/EzjwQ9P4HPjwNEo9PLV4zJnmxHLPUZbzlvnM1KnkZ1yYW7SrjaBro1xtBF0b5Woj6NooV5spWMNdbSabmwlc7edcMqkUsTR5U9Jwn8yn77BO4nQ6hZojedZPcaEaTitTj8oSiBeHJmDxfnIdW6thOQBM1jre12LTtjB+wdCqfuBs9d4ED2iBI32GFY11l4mesXuR82VGNSQmKUVfRBKoiqNiFfHAXCG/+O6W8/adGRfivzD8qFbdZ7aYngPgQzyBnQNADZQGA3j4Jj4G8B6bzJIrVSEKQKtb/seOHfsspK5fTBcMRU2LpxaooCOClM3DJ952jhueBOYd65maPb6dC4OFi3wIgoWLGikN6bTmlU5tS5AO0EafhSQUNpLhrMKwtogmJl6q9g/3dgZ4HHHw/dmx6BssNY+evWwrI3mK2cLRjZSGcMrxCueZefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BW17sSFceFregYvK3duSezf0+ndFipH6j2f3QiVNloawruykU94hWYiESiZicm6BAl2L5YgZOoeHQ/cWSA+IK54dTwUHfiXSj0KH4Q/esKhOEUKcQHdjubhrNk2/W7Ipnzq91dT4CYy2tHEoiohyMulIbkdvJJbbXbJwZtgfExQdlx1IgCjjI/hV4QHC/ya1a9vFXAgbeSKRvInXYwnvDf2jMud9CHg3uEoy63yxBUh6acWiTj8VCfrsRGH9r4OPWCbea9Fx7Gu9MN5byIkE6bBkpXYKHbrR65k1pYS2LY+US+sgzOQxWDqOEyrGS1OIB6Y6BhAJHAGxIdj8eROhNt5ZfIq870rO5GAPu7QG/wnQa3R+ipVWuKDUe4+Z647mO93IfapqAQDTyCZnE2cia7Ifa0fhQ1eK42/o0EevbVH7bszNx+WTK6dnr1+2316CYAt9VT2tNSNlLTjZbJjGLvjBcjdhMh5ofRIEdgPn9wkqLalVqSeCyNWJ2MajZKD9PhR1d6zHO+oAzdfcbg9P33HNOOXMAMrpo4wAVY5vFhtKFs/lIpIViS3XPCXoLNzPe36Z1uM9Pioi1JP6ecKuG1jWlVbamNA/Sr8f2V9t4d+h267/YJLjf2PxfWLWFyZdPRlwuIqhhylmwthUw9E8V+Ym0wUubk0WFwTegS0Od7ydNCe7DbqrAMBO0zYYMLEOtILIDQPIjQTte4h6eW4zWXC4rrvXYP9dpLmQRmOHVsvy91DZykr6y7XEJVYXlTAvLGYvYOwWj/Tsbgm3Rjz9FuVq3zN71MGtG3ah95rx1wsrlB0XryiczWP6MqcxbX9imc1+tjN8F14QBEzbHrXumbs0wIDr7iWQTbZSPPAtUyZsbjO2lzxSm0rR/mai/NuVsrpXsvMLK4QnFhecCI3lyGL6yT1hluLyjX0m5ibueGbqom/WkAHG4iQFy9CYE2TfttLEYffJpO0bvO5+3nJlj+d08+uft6e3joEr9tNUKuARWf7bLYcOHcoPiJRFt9Ptr8BiGvUSTGxYtgFGQ/VCGnfMuHAhJwl81SBCw8fcTp+83gNzrdlNzrRGzQQ36zmMtGwLQBfhTcMujDwnQi299W3GFtLWbP4tWAuEIEF8qufeTHsq5jALaG7fz3WbNTR35fRt069YXoAipiveKQkF4qpGI10oc4A9IZC9Bp5I2bnUWBxQrYIcqEqE8s3GovRYGj/MrFeh642w2545Z24kTtiU0V6KMXGB78RURRJXDd5cAh8/66837/FFnM7S7qZKcBRgq+sVEcro3jaWdkeGjTKNf5dyPqavz85PrbZdfpcpR7Anqu6kdIQRnVeYXyyDPdHJOTEwj0oXq0F5ksRBWOnLp7dwZYV7CziXMVtu0fFqjXRruJ23RNHarT4D2hvtdzjvKo2yZv9M7Xlr2ju7fOm2zX4ARHa0Sr2stEbKg1hPdrMJ6yLZt9mUBkygrzVWsWB7vgkzdBEnhU0y37Lp5xX5YKyO1R1XSU93MSYrbKxW4e2pCKH1d1nmOJIaCfr5bdFmJdKanIeb+uU++O/qucEhc6O6p9wqGajSubd9gIA3CkALiMAgKpFkCdKmTLuvjKnDuxt3/jKscCcKTbvm7zZv4xhysq2vh8C8G4zDwAZ13SO5ivR/698nGvKBhuabrgUkF/+18+Sm0GzyiwfJzqdLx/nA9uzNHE+zp/Wp36rN7eL7+Ytzzd57koeZgH5OEPS+U435ekWkFSQlZVVBvk4jm+b/fHcsWvw5n+m+0YNG37fIvJxOvNKp5klSKdM8nESxz732HBkbejKTR0GdPvbtrVF5ONU5RXOB/PsNCwoHyfv6uqcIe7PvKbVsK9a9CBrskXl4zzYwie882bfJlpQPs4T69D3E+2r+/ywsvaHExsrvTZzPs5BXsltM7vkSjUf52nggNiClOOBs2rm3k593b29ReTj4D4EZz4OUISkn/pa9B/IxznlH3ZY9frvkOlNRjqpI6cvNXM+zoN0vnyc/PSyycdpsawwwvW7wbIlF9vcPbKj/B6T5+Mw9+YmyDG5m86XY3ImvbTycXrat3ja71nXwP1O07tkV5K8Nnk+DlNHmACrfF6stpStH2rufJw3XGps5AFlG2VIhnf2/lDVX3cHPKeflPRMglWQfhpFQiy7VlTA8UUzH2ViAqwD053mjHYjCesUsE1mDPwEdGHzlIcpEx5Vkqw6enJ/k1lXfDnfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDrNFYC++2t7wL6OS085F5jhnbWGVCEwFBIZF0+i5cbESonzLJUrB1WUuurld+tVle865NP54YYLvWvclJ988XzxCr7psTY8jrnXmlZfuVTTZdqdBUF296rIJyZPFnWy6BsyQttueJ49U6VWXPfrLPrf1ovd+Ox9HB4593aJIryXHwDUtqoqd0oNmfix/O+TUE6VeSw6/T78uU44pCp19uXpGcM07w/VIpP7otEQz/1FF+az+4dtWeictB0MVyaGMOzPWhmTtkGT2SfFskRi6DwzZkkPd47ZMmfDykd+6cWcLmle1TgVDlcihxclpBZGNHaQHNCtdPwwM3QSG7Mgh3zqb0z3S3vumTp31+7Y/F4eCIXtyqKG27lcvLmkk06+Xr7UrqCNsa1GZHOpc55xVjbMa+Y4aPRJq3Z9XEwxVIYd6/uhbNCjhiCynz9J/N3/uOR0MOVDfy/nsMv+AP0PSj5drVvNR7fZgyJEcSvnTZaNsQh1Jzq1F7+/P330EDFUlh86uGP+5SvZ03+lVFJE1+nlOBUPVyKGql7uNxeaVCz2we1iStvKRO2CoOjn0/Pl9hwcbbL3ndyiq/WJ1o49gqAY5FBIYm/bd1sSQtRfiHsw9l/8bGKpJDnm1kIXeb7tUkvnttx2th0X+AYZqkUOPq92b27763IAtf58LPv+2zmcwVJscqn5m0qPZD38JXdDn+vfK/KDyYKgOObRoc9eC3C6t5Wtr/VRuUBWrNWCoLjnk/v3s9UMPf/af+TxH2vnj2Y1gyIkc6vfN03baJu19F8++9vHHfbWglOuRQ1PCHdpV31HTP2PAUpdzdtp/wFB9csh/oebo0ftr/KY+tZ12rcHxY2CoATkU2czRQf0qUJJ9KTe/tqguxLAhObTUobBH56lf+eW8mbtXFVMvBgw5k0MBaV2fLN3/Vej8ov3hyYO2zwdDjcih2zaOE2rGBkiWa8sNaJkfNwYMicmhU2cHL+5Z4W7wVslev51L06NZxZaNRRzFls2wi39tdT8VMvHbfef6HXg60wTFln9zqahaw3Izlxcck63cdnvMiQbj0ujBRFlKgkodjcgg4GJKbkHeocv5xNkVEuMUKhVQQiRxhYEpA0wFhXw1dpyTHDC03R3kC8gohPoV4f0WucpEv2UI430pzqgkXgT53VaNfjZIYzXca0ncwnEtxtataswpUek6uWkAoLcQoGiu/LPbGYKyATqEA4dJg8fuojHYmVudqMRTKMD7KVViMFN080QMPCixAm65otA1PhsTDp6UP5OumvCLomm3EVfoR6C6z2EfgRYPmbyjsgs+Y3jgysuwiPNqdrqeQAJcN3KhRReLSxur0IL9ywhMDBwQHfMa91npcZs/kkbK2wTseNysdr1eHmJGtJx8LCJaTo2YWnpZbuRk90FJr7MHPtlZJ6YCgWtMJfZQQWuMCSQSrLc3d9Wp8V22z76+SzdZb+2/zvg0IhOA9RsvWGCqk/bnnYjD/vyv+uCLqg+YHnqZVB/AuGna1kJITYmoPhgCO+1uLY3qA6vpky6O27VWsmuVPK+Py8afTWgsmRrISGMJyZlWQoTmcGn/6VvLpPrg4NIazb99WVs2pffm7r0+zU4xaxoGREXLiwqYNxZ6UlJ21Qdn9shGno+dGZR/7cOKx3P/yLKI6gMoOjmv6DqbR3RlXn2wuc+w17mTRssyJ9xbOH3pPAYFWplWH4jdSS2DTB/P8sC1TJlVH3wtUg7dM7mLfFLRrontm56gn6qXffUBBEfLC86QrWVYfbDQ8bl4mDQmaFc1x7GnQ2paW0D1AURIzosQWNOk3/aPiMNvO7ZCIf/YpY7f5E3OFR81Hbuf7o3iNJURPnLDAwdSOkss6QmDHeIw8CPwu0brU6kCZUvOV+h7ka7beMPqEBjxS/R7s71oakQAm9PQHJLNCcnS2CSnFOhkjz3o2ahGmyteM60qnG2hqNOJccgO70YcsuOXS/KUmPrPBFRNgyBACahJeLCNTBSYI+jsrC4OEDUvXKKVGjB9wTja2Hp69zhZ81VSYP6CRo/DeoTPoS9LH+pm9rIsHioJsLAxl7HJQwqkGQ71lzlJXy40AWAdeQEDM8osThRhM+DvtBdx/WGXdNryyNIelyWPVj0fetb5zOdmPvM165L+buT8V3W8GAcIg9082UYijXDp28o4B5ghWsnIqu1H9m8om/f3mtnaofdCTCBaB17R/pttOf7xPGGcjyVTFr/69uioqSlFsm3tWs+tEObWzmyUxZDaENdJkLI4gVVd74EvMdIw/iviMIzS83WuJ3fa6fXTgEF1Z/XeR2/yWxM2z9TC0CfMxsXg+TAmgOjQw1sdByAnWnjij4kufgy+OSzmN4wGk8Qgi8g8tiv5hVniQP6WoUEFMPlDtgPQH0gRrcJFrjJRu+3G1upJ5HqgwHADbMoLvQ11vNiF4uwD6BFFfPBfhE5LhNFo9SiMowKn/7/NF/7jlC6ZX+5DQZ/frlyj6xic/hjBCkleL1HHXPzh3tMtu7225lyrPMk5JcPYyASAORDCbC1FNLDu3BqH2diQcHM98euiW1Hq+EQsKgmfHpA1hoNossXFiHKdOgdvKcRu3L4xvAM9q6D4ueztL23Q1CrhoCsJ20AUbCnuOGykSnjPpRJOODR91bajOnjqy+dB7ue+kzE5whNUiihMHJKkUiF0AZfD7EbdFw/vg3NWGZ+sUCmjiUk+SqmNFavBNkVjuCZgntLzvCeKy1xv2FDD5yIT/fkTQNcedfgWBtDd8ZOxa782NGo446kWMnRCJQkRQwLQ+Q+/PpV6LJBkVKu6O8TBuSndfcYfxHaficslLWdmVoKRyxkeW16ByK1DuQy2wGUo/InTfTYQufo65DS0qQanFvrcOuPFiFurxCFTy6UMd38d9h09VZucIOgjHfqoqVcxRGsHL1qrfypTB4t6UdvI0QmYPg5N9XJ23IOAS4up3OHvJLr7+Q+GTm4MpmFkCcM/xiru2riBhIIFjwCb6tGEqJFSZhomYxaJsYncHuQqKJIg5CryxFeBoEBYXYK5GPoKuK2ipn40EorTdR0cvruqkSyYdtmn19EKnxgHE/BbIQ4m8MulAcUOXijAFCcN1QcRh6Fq9bFO3e3i8rLd0qL3mHPMJboRxucI10Ecl8vaMBhTJCZpiIMwYkcHwSX8VMPOupgZYpxvxXYN9AYN9ZOAJ5S1nVQVLHfUC7gDi4x2RytJ4bE4BAD5fafm/Pxd9Ss5PlkLG/ZIOTNuFnM/lMieVMTVkmwQ08cy0gbBxPFtEKpUCcI3etAah0rQXrEmc/Up48VyJEYnKxwuSs6dHJJzfsf2tWGDq5v1fEvkRgJhi3ISYVHoIp2T+JFr7WlfXenXOH9Q4OTJvazfj3m4nR6RwicyVKLswgX4NEc4o0iWI/0kVREH0M3DMfDFMHgqToWxo0hKR406TtDqZCZpcrw3O5KmGxKQQf42E6A8DxVShckIezIRnFIQIpiGiuCUgn+FEpMm5HZ1l/2w13eKqkG1ewr736hxKj92xtXFJzDFHu+Vkj7l8ge86GRqTirTqJhOwdKw+T29gueJf4l+pBzy2FJVzDwg85eZZP06MjL2ZyaKvZQrsGgH5xvQKmCJIHHx/v3ZzuEtA/y35u6odnCE31SGbwPvQ/g2+OWSkLEKb7v4x133An5OP3+zVfb4QSZA5jgvMmA1WEANm0i39HABlXSc7gRZiggBwY0HHswain9zpLxiFUNXfY51D9ylnto53386veQLZzxiz2P8qqlNABTHOl5xzDGPONhtagTwtlXGl4tCKx6rbDkeTVD99e6Vfbf4+qytNmT1NA9HrGJwkhby2Ok+ji4RpCWwUppcHAnupN446IWI5MI4L1gdpEX+JOKwyD8Plt8f+P3PgTOqDW7/Q+28GLqPEYEBAyogXlNfd8CZiN8JnRwy9GiYoWWWPKBeh+3yENcN7W4BqVUgbEUoE5sGTGz1TEHdLeoRlNrE94TeHH5ujr8Smv7vXWGtlm0P+y44O/OvRnfC/Yw5vzR2QwXj0hALLWpFp4AV3dXsCparZWpJWWXNIrRYgjhROQbD42GYIipWnJiEOxYwSkt8AFJAq48PLm8X9JfPT3Py37dUBNJ5oKzhY9kKF79aGuJpwSue6hYrnpKOP52Lt0FkSV7JKyfrkeekW6njgleuGRX6V/8BuTwnouX7urU1JlLBcGyYWzEjHRso2E/b+QT7aLu5BQtvwu2jkWG3ahFMU4DOf2W4jkI0v8kX3hB3Ui++Qx2S9vXAFx5pWj+LOEyrxVAdMsPypqGHLwWmwyE/8TEdhulie/C5lg05swjTNJAzHVETQN45iw9ylywKcisuyAWX/zroNFbpl/8iqnWpGAeiWpcKbyCqdcuLOKt1qfJfRLUuVf6LqNalyn+ZE4VVQAm1LXKKMYt5TVBAWY5LyE2Cjrhd/9nOd7N19NCLD6vShVyDSB31VqkT4eEjng7M3jLYcCypJr5KSOUcC7mPiQfgCQowa4EsajFs58AsYC7xFVngoH7J0CgxsOdh28BKuozaU1QFK6nqNkGZkPWJ3G28t4gaigbgAX7grjL791hiYN8tdf033fQcey+w4FtjMrdLNykyAWAl30Ye4hQxtc6Q1jKR+zbkqS4XVrV0BTb6WCFRitvr/+jptp+8c2r41ejcM72xCYtsJvUKeXN0U4pvunqG/3Tp6EMmQKkqL0ovtwo7d3ANo9YVvthwzKglBxMHqEpG7sTbyHNHlvm8GO6fOmjY1L5Pro01Zo4Z20vJlZxEyPRu6L513ibsULS1LqgOIYrS64AKzQxNN6Fz4IMifP78oZJ8Uiufub99nU4/JjVPDjwEqRkvSFW3CasSaO6jJL65LvGpeMrgaercCupez39bj7jXOjizhv/vH1avnkjPSaeey85J142UBjofOCsEIDoPdBUC5bkM4+PeIXJrj3+8F68/6bs2NKA/O62TbQmtOcBtTK8O0BVOjlILIiFgtuswNNPU0DQToJiewUl1UopIZ4Lhs0PCTJ1hSf9LjhRpp3ac4rd6eX8n+bmLf9LPx/HoGIdZpw2WpMWZKs7YvgIArEcQrDDUHPMC/vdFYbbOAQcLAyuNG6peBcuq5a/u67tPu81ffMyFbuQqycC9aKD0hsrYJYAwHeKFafs2Ycau5IRsZuWC2RKyoabB5whMyBazfEcPHBpSD1lz6SHvlic9uky5IU/zXftC28WJzsJcJRyLUySIiYAbIprP5Zq3JO6jcofxLicKcTw2Cl7CNMoo0kAapJaYrYJ43hCVd6k3LKCq02ZPISzA5qhOKtwtSFE54EnNRKogeB3kt3RutGbgQre/A6ZGHFJfGnJ1Jd1Fwh/AdpGIyyWtOWbXJGMTWyBNNoRnOWrN5UCa7N2CapOqEO/D1zZ+dvkZvdc9nBC0M/xRW99bY6wYMT78fkSMj7heEj4J34z5ffVX2T6zagSu2N34VpwJ8Lmymw8fMH3MEaK1xYPeyQQQ3UTMP8J45apEKjQxmJZPaF0PpbS8etgmOP1skmZVr++e0oVG3M8WGnnd1MoSSmUHr1RWW5RUig5QUhFkvhxxhZeARfMdU3WcufWerPwCabZ93uabB4cr6IIJxu9nC4a8XhplRbg6gbFE1n71JrBid3cL25DV12GAbyxUypLwOLb3xr9LfB757vunYGT1Vp886DXa3sQD2DXa1EBpIFK4mw+RLbspu16By65nLQh6PeDrrgFTX3/U2h6+8oouY+ITDc9T7abbYdANuHhUrDIqFriVsFOVIjER9sfU1VgJOr9ndv1DvS97ThLXhVQd7yarjlnJqzfBrs6XbdcFZpY1IF0NaOyVRMtjeDwp5U7SkV27c2149BOvec/qXapQJ/cOffJxOTa6gTI2/nhhMsTQE5XMebA1jqEgjdUthJxRBMkLre0PrC5LJOIDkFgC0yVL4Ge+Y0PQWTdMe25Wjhm4r8UBq4sCDHb29tUtZhuLP51iziZDTqesxCVOUuZZhgmOp6x38x1Pvd5FYV6RC/OQbN/fjomOeE/s7/S18lFgNXoP8mDYSD5BpYzCmwyxFSkX0vWDgT8AzJMW3KkSx9GeYpCeZPY55Xstdmt0+rihgRuYq54N4JyNCtzAM4rYbERqMWVPEKnF8JOEphYzx02VOsy3cWtIJGgRqd9qDUNeSPlE/euVVr9mp+C18p53CsOyZtDkYyVhrw4Ja3VYMVZHv+/Ltd8+xzYou2ZS74BvZz41NmYCxDkPitNTgvCE30EO8GxU1jAXSM4RWJQaaGghKOUvXL2j8cvPXvOmNBt32juNXs9qJWWjJC0RpSa3nuytYveP9z7nPfeH/+VzwwQoxfKiFJldyMwW5a2dItgnoGNkAEDMHgp0G0Y8im3DyOulEfDGZ8w7VKDpqBuOFKlPbf+f6VNmc+gy0qf79/Dp0wV7/qdPSflsTG42v72LWD7zRLfmauWT4SbQp8ym3ybQFHl7+DTFpj2lrU8fLpcp54yfLl/Qbsoop4KMGSbQp8wggQlQWsCL0oQ9pahPmTbU7PoUnzGc+hQgRerTSha/J2AuJ9NkrHWwcnrxo3eCz543XrFZ538MN8GWoNsevi2Bqw5yO5NlrFWhIC+DjDUEowKl6hGMClTGGoJRgcpYQzAqUBlrCEYFKmONORtYaWlwTSPnEZNwwQRpafYmk6R9GUryy6hHEDwclCSZB/ssmVhzyYTJdGECmVTmksmSB29WufWaLc89HvqL3+c0OjW0XXGiPl0wfAdLtYu7XMfDNuLkA+zYSf/VfEPDgyWRLk3GenYNH9/ENbSVQc4jk+3DRq6OGoFF627i+grsJrXFY4ZWVbeUiUQ/A4XW0ZsjmHk3C+FEWpNwIZxI3C9hOJGpHyfmrZ3fN2DP5vQQr3ttrpq6XhdpeIqxECcrNEpYMIdEP+DQhojKAx77TXEtbKm68b4zP/q9yUeJQ9neUGiJ3hCThsVIcyQG0vuQRXpD7MZJLXHpCalFrFnsDRVPdCRqv3Vf2utv7J4s88PYoQ+Oas7xosblGaFiekY6RTfbkpDAokR2m4B2OCSkDqnCpUOW59zsN+3uu4C8nN15P4+4RW8vVyFMEY+p2LxgXOrDRSJOgHfokRuK49VajOhpr8VStGQBEhJnJt0P4lUMcYvsI6I0apUqHLq28KJ+1RRjjjIlyzVHbXslYppI8PrUxzb3USfBlRGlggRksN98tFJLfnewFYHHobcnbmLIkWKIY1VJtpCJ7HYCOXbxFk2c5m0XrNDEKOPl2DDapLAnLodDqmj965WI65HqBP2rDOaxly1kjrY7Cx1xEMM0sF2dVkm8VUXqrVBGWaMYFRAfDdkedLO9ErwIz2j1LuGbehXJZkcof0hArVSovCEFgU40NhFaDaaI0/2M104XKxBiqjpYvP/OJJ8yUUyfOf9N4MAP38nnwPffSakHR4vHnGlOLPccZR1vmc8CnUqu+v/S1UbQtVGuNoKujXK1EXRtlKvNFKzhrjaTzc0ErnY1LplUiliavClpuE/m03dYJ3H6Szo/CnnWT3GhGk4rU4/KEogXhyZg8X5yHVurYTkATNY63tdi07YwfsHQqn7gbA3KhQe0wJE+w4rGustEb9m9yPkyoxoSk5SiLyIJVMVRsYp4YK6QXzzw08Mat870lqxeNdu9sduaJHoOgA/xBHYOADVQGgzg/XP5GMB9c82SK1UhCkCrW/7Hjh37LKSuX0wXDEVNi6cWqKAjgu6vttXpUOq76tJtv2YU9hjpx2ADjyAfgmDhokZKQzrteKXjbAnSAdros5CEwkYynFUY1hbRxMRL1T4hwT1r9+uLvts8x2UWfMqNpgtHRvIUs4WjGykN4djxCuetefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BVVa86yXz/8ssd3/4b84+fafRhMb4Qaqfd8diNU2mhpCO92Dp/wfjMTiUDJTEzWJUiwe7EEIVP36HjgzgLxAXHFq+Oh6MC/VOpR+CD80RMOxSlSiAtIOXaZVnDR9omfZO6ZS66vEy8cZLSjiUVVQpCXS0NyebyS22R2ycGbYHxMUHZcdSIAo4yP4VeEY9p3m1l0uU/Ihrnj/mp0L6ai8YT3xp5xuZM+BNw7HGW5VZ64IiT91OpcfqqT9diIQ3tfhx6wzbzXouNYegMzB28iJBOmwZKV2Ch260euZNaWEti2PlEvrIMzkMVg6jhMqxktTiAemOgYQCRwBsSHY/HkToTbeWXyKvO9KzuRgD7u0Bv8J0Gt0foqVVrig1HuPmeuO5jvTyD2qagEA08gmYO5nImuyH2tH4UNXiuNv6NBHn2Hr/5ZIz0cHbJ47tKt65+dpaex2FJPZU9L3UhJO14mO4axO16A3AOInBdKjxSB/fD5XEG1LbUi9VwYsToZ02iUHKTHBbWby5u9nuq7Ia5chV/Kb9to/BJmYMXUESbA6iAvVtvK1g+lIpIVyS0X/CXo7FxPu/7ZFiM9Puqi1FP6uQJu25hW1ZbaGFC/Cv9fWd/tod+h227X4FJj/2Nx/SIWVyYdfZmwuIohR2leIWzqgSj+C3OTiQbmlQaL645DR0dPi+zkNemU383vJhcsNmGDCRPrSC+AUCpEaCZq3UPSy+/zyoTF9aqrW+SklACv3IbDV3+aOY5OzVPWXa4hKgm8qIB5YzF7B2G1fqZjcW2YtG/1QL/1wTM0qa2CJp8bZREsrlB0/ryi+8o8oitzFtd7jnebTBrbXzr7kM2qdTvCe5ixTwsMvOJaBtlkI80D1zJlxuL66UniwHER//gtvu3qdOjMpQNmZnGF4CTwgjMwrwxZXMv7Nk59Osg3dO2Cb9KqzY/PtYAONhAhf16EwJom/baaXH6bTNK6zefu5yVb/nROP7v6OT30a4/X7SaoVcCis302Ww6cOxQfkSiL7yfb3wDENeqkmFgx7IKMh2qEtG9Z6lDYo/PUr/xy3szdq4qpF8P5tuxGJ3qDBuKb1Vwmit8L8FV4w6ALA9+JYHtfb6+xtZQ1i18L5gIRWCC/+owddU85nnomnXrSNtPqUaVn9K1Tb5gegCLmKx4pyYViKkYjXagzAL3hEL1G3ojZeRRYnN57BblQlYnlG43FaDC0f/lpc4FVkIskaH3XxLQVf3ueYBRF4jciiiKJ6yYPDoHvL+X9/u57ze0s6WamAEcJvrJSHa2M4mlndTlCfGhjoVXwvsBpR1xyPAbS5yr1APZc1Y2UhjDq8QrDxjzCYDfnF3Bi4R4Ur9YC86WIgrFTF8/uYMsKdhZxruK23aNi1ZpoV3G77okjNVr8B7S3qli6dPCLznYhqd+F3ml09HIE3a7BD4jQjlaxl43eUGkI62Uen7D+NPs2g8qQEeSt1ioOdMcnaYYm8qyg7ILpXhWen/bLfLKuweFbbx2M2Sobu3VoSypyWN19himOhHayXqF7hXmppCbn8bYWY3WeH/dcKz2Qmx/Ws3P3q+bd9gIAOlIAXEYAAFWLIE+UMmXcfWXkF85lnh2bGrI7o8Ldo/fO9jZrfT8EQMQHQMZdnaNZ6/9ZPk5AWtcnS/d/FTq/aH948qDt88ssH0eVz5ePY51f2vk4i05fLDhR3S1gl6ffiNCAEY0sIB8nNp/vdDMy3wKSCrKyssogH2fN0qorInqG+++9sDJ4063uhy0iH8eLVzquliCdMsnHCR07ul1myvWAnQP/nnnw5de7LSIfpy6vcKwtQTgic+bjXDmU22iZKM9/RuHB20mh6b0tKh+naC+f8K6ZfZtoQfk4Pm/n/r1/ZW+v7KF9fQuvzVxs5nyco7yS22V2yZVqPk7EtKe3lX2WeS1pXm/voKr9P1lEPg7uQ3Dm4wBFSPqptf8L+Ti3bRwn1IwNkCzXlhvQMj9ujJnzcYry+fJxjrBd2lLJx2kzoKh310mZ8pUD82qMcyo32uT5OMy9uQlyTJ7k8+WYXM4vrXycGWvPXMv5Y7Fk3tkN3+77e/4hk+fjMHWECbA6wotVVtm6OubOx6nDpcZGHlC2UYZkeGfvD1X9dXfAc/pJSc8kWAXpp1EkxLJrRQUcXzTzUSYmwDow3WnOaDeSsE4B22TGwE9AzrxTZwcv7lnhbvBWyV6/nUvToznfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDjyBRbvArKztDf8yKjntXGSOC3YVVonAVEBgWDSNnhsXKyHKulyibL8rRNq1TT///ZkTg2cWZV5iaHkgPo1aRfSmF8BG2lGWAuZXFHEESoYjyUcRp1B4PtSIeLUWZ6cTRDe03i1r4WX3GV4/iiOnhh2Ze4XvjRF2iTYuoEv+kJACkeiIFJHTNMQVjMoLSiGnKfLCJuc761TeezM+xQ8VhceYMKfJxKQ5BwFCXhAhSJrDou2D/ipAyFg+w8be9DlEbqhD4Pxyg2cT7kgUG4wb+65Oy2fSXY+z/3ywuFYneriTY6JQ103tRordSKDEKCMDGQnSggtYAW+BQNXrg8HwD44Qfd2hEfpUZ8O+wrY3A+bLDsyT2Uy/TA/XkQ9jh+uogdLASBTMhxFzMpX7Aozw8y0ylQXgVOIsmvzN4syVV33Slz2bUDl4ywf6WoQPYyNEXi4NfA4G8eEjDiogFb8Tl+Jv9bFO3e3i8rLd0qL3mHMMXfHby2ELaq58Wq59SMNgTJGYpCHyWYkDGEK7w4bWhil35/Xdj5+Ii/XdtX77H6tEHbw534ptufUGDc3BgGq9J8DxkBTRAgayqk8MY6l1gTkYlaSQpgkCgPy+sxpHHpi+8ETIxsR9AesS2/gwuVAS2UlRxNWS9DtT6RmbcAH1O4QqVYJoLgJT/ABUnPodmZxSzEIMG/XhDanlSIz2TZqS9n6cT+CM3Ac7ljSL3SGEe7isj/MmupI4wbQpFk7z3HCcyKVZz4pYSqylad32tcTh1zP+6zt2vGKV2fRweblyKDW29sGqBoPb9pZn2sxVfnpgR9+Vk0d/RNKJ4etW7IcRnhqR/kI0ZRHsl6Vb9Wx2VB7hPfXs8sEVu9kf434zdhRUf1SAxyEOAEjnoxYvLgd/QT6ZWOeTxaDhQFMfdPpzzOGxbrKNu183cCkS1bBcF+0mAEwUQLpo7EbqrXHABMXynHwY80VHb4gmQ650auNR+XVJxhj/gScX/RLDOHYu2wwqLzcSjaqohQptKECDXKj1uWzol3Vc44tqG95xrYLETdqmrUEr027qusLKVZ4HburpXrVvYJP6pdhVDdKxDulVQNCxIlvziiILjG7Ny+yqxmzNW1pd1/jUh8Fd187/NTnkwxhZ8Jz57qebVXy6jaPL2hd15mWaShNQoXpBaSJ7zh4Fo2mRBQI68xqMkcjDZtm3b/wDp07J+D2+p7QzB0Zf1JeXqYZMgBGY0zwYDYkoENKX1/BOdJtvLXMa/0fnkNzTE2KD25z5waw9eUXu5FxB9uR9546jRCrUBlwKtfbtH32qdz3tvbbDnQOZR0f5IKwpOqRYjThvQMApsiOGaG1/yOMJVjsgdGY/8YEw5BilVsE4G5y/QDwxWDxOvIKbPHRi9e321jUqXd8bPGfNouEuof4dyyDVTndSx2TlayYTefoWwPAMtHikKBp+kSispGUuhi/p6n3c9XDtE+XnBB+Y8abxY9vqK76gq7exqA8BqHfOYqLu/F9GfVqHM+Lpube9FwRfxCIlGx+YCfW7okIG6o3+y6g/LHqQ97r1Kq9F/dPr2X480t9cqLdioi7+L6P+uJdm04ZhbtLtZ4KiTy06m2Am1HeFMVFv/F9G/a3D10293130WfZh9emK4+unmAn1mmOYqDf5L6P+rkrW9SIszHf9rzMK4jYXjTAT6jfnMVFv+l9GfcYL1xcXVs0KmuzmtmXAtjEyM6EevYGJerP/MupMMiwzoa7KZqLe/Au3TvAlyhz56sUxfpIQHr1Leu/UYcOgdn299q39+478mKsa8e6IXRJ+2eSotwYaRqPz1/8P
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII=
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 10
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- 70102562-363e-430a-afa5-f663fb2d93c6
- 867df14b-b84e-4903-880e-679477d08b40
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- d057826f-a473-488a-8c43-ba941c74c870
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 20d03587-b988-43e2-924d-d6655441a5e8
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 130433e2-dd09-4dbb-8e9f-946a284f4836
-
925
-3207
371
204
-
1282
-3105
- 10
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Second item for multiplication
- 867df14b-b84e-4903-880e-679477d08b40
- B
- SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- 1
-
927
-3205
343
20
-
1098.5
-3195
- Second item for multiplication
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- B
- SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- 1
-
927
-3185
343
20
-
1098.5
-3175
- Second item for multiplication
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- B
- FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- 1
-
927
-3165
343
20
-
1098.5
-3155
- Second item for multiplication
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- B
- FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c6aecd68-308a-4a6a-b29f-68933f542f84
- 1
-
927
-3145
343
20
-
1098.5
-3135
- Second item for multiplication
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- B
- THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- 1
-
927
-3125
343
20
-
1098.5
-3115
- Second item for multiplication
- d057826f-a473-488a-8c43-ba941c74c870
- B
- SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- 1
-
927
-3105
343
20
-
1098.5
-3095
- Second item for multiplication
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- B
- FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 1
-
927
-3085
343
20
-
1098.5
-3075
- Second item for multiplication
- 70102562-363e-430a-afa5-f663fb2d93c6
- B
- CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 21840820-7b03-45cf-914e-8d05118a8772
- 1
-
927
-3065
343
20
-
1098.5
-3055
- Contains a collection of generic curves
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- Curve
- SEGMENT NUMBER
- true
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- 1
-
927
-3045
343
20
-
1098.5
-3035
- Contains a collection of generic curves
- true
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- Curve
- CURWE
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 1
-
927
-3025
343
20
-
1098.5
-3015
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 21840820-7b03-45cf-914e-8d05118a8772
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- c6aecd68-308a-4a6a-b29f-68933f542f84
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- 10
- a65c84f5-46fc-4b72-8e74-2acff1ca258b
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
97
-3006
50
24
-
130.0588
-2994.617
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.190000000
-
-102
-3034
250
20
-
-101.0458
-3033.536
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.400000000
-
-102
-3074
250
20
-
-101.0458
-3073.099
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 0.02000000
-
-102
-3113
250
20
-
-101.0458
-3112.868
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b7d3231e-4e24-4334-aeb6-4329747a1277
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 0.00000000
-
-102
-3153
250
20
-
-101.0458
-3152.757
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 0.0000000
-
-102
-3194
250
20
-
-101.0458
-3193.056
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 0.0000000
-
-102
-3234
250
20
-
-101.0458
-3233.61
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
-102
-3273
250
20
-
-101.0458
-3272.636
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
-102
-3313
250
20
-
-101.0458
-3312.745
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 0.00000
-
-102
-3353
250
20
-
-101.0458
-3352.806
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.00000000000
-
-102
-3054
250
20
-
-101.0458
-3053.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 1.00000000000
-
-102
-3094
250
20
-
-101.0458
-3093.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 2.00000000000
-
-102
-3134
250
20
-
-101.0458
-3133.28
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b2df309f-5daa-4345-833e-d910c82a19a1
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 3.00000000000
-
-102
-3174
250
20
-
-101.0458
-3173.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 4.00000000000
-
-102
-3214
250
20
-
-101.0458
-3213.058
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 5.00000000000
-
-102
-3254
250
20
-
-101.0458
-3253.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 6.00000000000
-
-102
-3293
250
20
-
-101.0458
-3292.686
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 7.00000000000
-
-102
-3334
250
20
-
-101.0458
-3333.029
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 8.00000000000
-
-102
-3373
250
20
-
-101.0458
-3372.878
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTr+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpQVlCdupGum1alHbt0r7r3pbfOeOMzpyZc+I6Y073d/3/t1/NO3Oc+T7v+7zv+7zP5zlyRp6Ovh4sjs8P4EeKRCJJA//18HL3dWFzlvixuN5sTw7YZA28DDaDP7LgW/ifo7OYTiwu+BZpqFmB32RqBL4sD7w04dGL+DWhGebxXzhNLkYrPstac1l+bNYKsF0BaJexdQWu4tQTetmC5e1qF+DFAps7Q7+4O9Rm6cn1YLqDLUOBV1NSUn7wP2XLcmc5+rCc+G1sNvuHshHLmc1h+wDfwprr6cXi+rBZ3vzLgv91MWL68H6PHPCPY/c9wmNCbsl1NWJ5O3LZXj7QlwdvkdTFkunB4v/rZWd7uome3oO8nY27w4A/H8RlAn/ej8u+H5fL+wvvn7mp4J8xm3l/Rt+PiW15Z028Jfj3bUHgFXaAH3mQtL/l7/e3b7u/PbblbffjDrdcrfltzRdpjDsGvr5zvcCv5n8WuiWo9bDg7e36+XvDE3hvjsT6e0JaywWhP6FXMD/F+zv0jXi/EXYDh1vuDbpP/m3/fA+vtfk7Qr+U990hVXlXgPThf1ZYyWaFIbWbfxHfEJBdoKsJmA+Sl2dZPT0Tur28DdDDwKHgzR8m4E93/quGnr7NA6gzfwgAnc0N6IxQ/+kEvSxjx+S6sHjvHAj8c5cWiTRdDehZ8z09PfgjSGn++ZnSc4DuLPCr5MFXhH6NvI2jF4MZ4OnrA3+vggnX09dL6M3dTOhUBtuBy+RCQ0AKGlnSAm8FX5Ftfl8A756hjytSvb1ZHg7uATRfd3f4UKBa+zo7s7jObG/XEeQ5zR5j+lg9ffD/RpANfd19fLms6RyWrw+X6T6CbO3r4M52NGcF2HkuY3Gmc4Cr9eRfes5PfwNeWRa6igzV18fVk8t/ubsF29GVyXInW3MDPLmdTJ34XialYZf6ktFzGJkyW9jfGxRWCoxYhZ+3KYvye5R+OgsrB9B8LTJJA390bX5NQCzwdZnm10GNOkH6dTGZ/dP3jd5vU7kg8zDt0P6eZ0+u/bhD4K6kebaSN/Tk+DDZnGY/qg1dRcbAkwu5Vr5hZAw93T19uXwPB/6vKF81kEp2Aa9L9nQmm3CZ3t6unl6A7yN7Nn+rTqZGvN4D/Pd9yZHkozMaLUIOpscr2/oaA01SUBM3V8khuH+l+QHtK04a9R9fAU2doKb+x5Yk1c9i0bMis9dl9JxmDjR1hppke6vlOysqWpac/VuB4xVkADR1gZpmXGuw7JuezEi9fj2k+GbnRqBJGmoKNzAKl481oW/f3bBtjV/YdqBJhn+HLr1flTGvW224G+d3ikJvAppkoab8xytOVspUWYY4PKgK+R7ZBWiSg5rSPRgHvyjFWBTU6z5TyEujAk3yUNPLIR/OTl8zy3iz8bWzbAWX5UCTAtSkxRocpzw3jFYQsVSWpJu1DGjqCjX59ZA7UxCjx1h/e04GXa+xBGjqBjXt3vzwplf3y8axdpPZwRpTIoGm7lCTekRolzG6t6wO1r9ec2N67A2gqQfU9CLQ5fPStFT6cZl6I1eZGCmgqSfUxDY7SXa2fE7Zun/C9+cqlNdAkyLU1EVaRUdpuB8j69Nj0yMhX6cATUpQ03HnUaf8aTPo+2b3cFkrrfABaOoFNcV+X/DS1J9pnnNyR2OvKfesgKbeUNNyjbi7Jw1OMjZtHbI2PWZ5Z6BJmX/BnQOuX0+aRg2lzley3uUyFWhSgZq2KHQ/Q8o5YnmcnbA2rqyxDGhShZpG7B8c3meFrfEB//vU+9cT/wKa+kBNtzJjrmidljHLGtZtU7bFYGmgSQ1qWjxE2aKetMIk1LJSe8w4p6NAU1+oie7tprGs5yODmB9SDkn9S/WApn5QEyl9s6P3fF9a2SfLU3PHXNIEmvpDTZcTcpa/mLPSOJIZomNtKFMONKnzb35fjxxmigZl46X5ows8R8QATQOgptuDbfqEXw6hH3tnnqN3qRw0ykCo6fSJ+M8GPXrQ8s+OtpmXVb4BaBoENf35sjz629+ypml2us+GBef0B5rIUBP1eeipJV5ZFpur+1ksLm8IkzM1WiLgQQaDntmU4+3D5DiyTHzZLc5MSV/l0z6j72YpY7e+jH51q16E25CzZDsug79MUqD6+HDZDr4+zR4ect18FyWFm4sa1IEuqrTP0iMpC0Iti85+CrXRCbCFuSjaAd1y2VcvrfJedNZuYH2pgrmoo+waebPZ/U02PLnTcw3F/APMRaVneE88aW5KC+4jzaBVT1aGuSjjtRXJlNAms82LkjgGz/N1YS7q0kJZ9eLlewzzpqp+HDNPWgPmosrnelxd8NHXNHh0X39akOYpmIvyD6lctXn4BErKyLJUOY3ZwTAXxT6wtoQ17rJpajRp8ky9iiSYi1L7MZp0wUXaJEKp79H4SZQSmIuydjI/+CLAnZJ+XCskYmzXIzAXZTdMV/3Kk1KLBDkPTsjWSzYwFzU15/3gyddqLZNLV2vUjBlyBOaiNALchofeizKLq9lZZZcyZCHMRZ0M/yP2agTXMmLNiZsH1t5YCHNRjF2yav79WFaHT7JuVH5SmwZzUQ9TJ7wd8mQgNYW7y/6lbPlKmIuy3PhusGlssWlhjMVchTOqn2AuKrHo24PDO1MN8j1kNiekvdODuaixl1mM6bPkTYLyU0M1V/fbDXNR3Btxh4p6TbZK/XDi73kjjzyCuaj56zn5IyISLeMNHBJyfryThbkoIy9Nm3wFW7PYC3UNmywna8NcFLXpG0dtro7x7muRT/S5qkOExqsa2ngdUfJgTv7ijUaZlXZ7v02trcFhvHbCbbxqdeB4FbFu4I9XEesG/ngVsW7gj1cR6wb+eF11w733812mRgVB5Xb7z2hd/W9J8d+SohVLCuSsDFtSBBl2LkjX8KSmXzFWv3QiRRG2pFgy/0v9IupQ46P2UxiBAfulYEuKEVrj1E5bqNGSWScXelyllsCWFFfmTGCT0/cbH06ITD30JWMCbEmx5BhDmr7pqeF6Hd3yKUrTLws5m0Fozga5bMfB2XTGzdmodqCzEeFR+M5GhEfhOxsRHoXvbER4FL6zEeFR+M5GLkBN81VhrmX4WY/03bWPH8CcTXpTRsyiwi+MaAPqx8lr1obAnI0IP8R3NiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZJN05PMXt/mdaxA7Hwc/dVn6FORvk8BLqvD3ROi9ygsCh83ZB67x6Tx0Gf+U2mW+fd7Vu1KE0ZYHf1c2I7cd2YpENfbl+LME+DBoWNJOo3qkDfYxJdgQ/SGZzfDzJrOW+THeyO4vj4uNK9ma5gPFPbxk628mJxWkJtoiUA9mF0W9RSBWBVoRCLTEnA8AoTryXNMB/1x+vJNWlVpJInwxIpEADaWu2n6cPf01P0s8HWvdXdvVicpkeS9gcL19eYEMW0laUHD15v50MaODEuxuRX/LGhr3FixIG0NIKJ9bXzg29Lmhz0d8OetmK99uaQ768EJeMLeBCHFl8F+BhHeI8uvtG8+011jenft0U3bW5WSio1Up9agB9qkF9yIA+yVSkPkCrf6qAPlKQPp1Q9Oll6evhADov55Z+IVKivd1oX4NnDjfdFW/tPvdW7ViERODXESER7+VfSYScQHGQSBtTIqAL9bAGg2zePsD3NWL6MFvGAElUwFHGgAvI4UqCDWPhN3WxZvq48r9551X6a7qY+rA8SKSfBxMyHJ7U/A+B74NbCry0DIal+th6ubN9WqxEZvqQl7E5y0Sbq/Tr6/IRA84zMgtXfCpROqAvaC5z8HPC5mp+Wchcouwhwulh2SN0P5Y9JknGHrIOnp7uLGaLAyR1a7aGp68PwrHIUB0dWd7e8MuL9DWgwwNDt2QvTzbaQPoY9K33a8ullglbY9h0b9rfApaRseZ9UMg0/Ndxt00e5E4WirLNh1yeOxGQRartsgyxY3JcAMOS/YC50JPL67lOrVCqwVThUpfPW02CR5tnrecc+kNAKTnoosJa/WwRh1ramGoBnkVArU5tV0vDGvw8ywfwyX5Md19Wq+Va9uR+U8ONKfTseZnrr2rdHos4X+BfVVgweJs4JOMNflTJgMEPLZOkSSjLpDOJTMa3yX1MNhwYKNuosapMsCMwgFUR2daIIbxEkkaR2MCQy2L6gEskd/CzkEclO4HnKywnskMAGVCX69Ms9giyD9R9mRwnaAmlt6ZVayfkGl/0fQt3YH5LKzUOLKgk6e8DNNYwFLFmCgU01t8rtGbCmmkUeTcA00Dkt0v76ndvgGWYSfL5k8dry5NzBacYW/DTwlNM88t49zIvQAEyqMADUb0sA1g11uyVyBSjYOgJ7DLZHOgUfywJ/Qe5aMMykBrPQPx+qe3E5jaf5uqINJTXo6r4Hqy+9DS5l5oJz3r9JWAoeSP+h4WMBWsSh8EC92IZTF8yBpNpnqMEjfVmJpaxfrVu68ozVrPjEGmfLT00n3/OeWdQXJ+jMXrqciPBFQGD90HhFQH0ujgsU5+CZZnoFEmvnvmH/qBlhNZsMiT0ubUbA+bvRdoCuV0TsEUX8ONClmh+FW87aOdCLi2LChgF6dRrjvFGCDRx8nvfv2biREbAxDhxFqRjTZwFaSKDDe2bOJ/UubNWDZppsqXC/MtNQ1lKeyZOxFYaublo51YadAaH0rGcgX36/++8eskg5/3bCSbmx267+DhmzN9HkHlVDtNgQI8mzLzK//k5vyLnVazB9st5dayBT6LcskzLvZTArORXz0PaN68iRprqnX73fgRuo8XmU/wSbm+dhsNIc03DMpyahAzXIdPuVKnbMx7bORpkXYmQUpUuNZfotMvzeKjTLjCAoGmX3zmFpl3L47QLZ0inDAPn953KbjRTEvg2PSx83X3YXu5sRyZ468KTL1p/728B2IrlAXzKkelO9hC4SqtmVeQJEdZtCcmNaG+lnIrHAcEOAnJGAt1aHyknHejWcgcru7fEH/i9GpSBFyI1BR2BgC15XoH3sqkTfyzOc6reLFUub1T0qo9Fd93eNfx2KZT2rla8bis0GuSaX0e/cPP98G6XRMI+dxhAY3O9fchsYDiRnT25CHuJtE/NQHnNCd0GWsR22xz7ZdECFwH7SFGFTAK8hOz+UggvhTxya6eXIgHmPASaU58qwktdBdcDBythIkn9QqSBtixHT2Bx2BaVBul9pNhd7G60cd+9KKsLRXKCKhkIq2TwS5Wicw7GB6puYcRcowQ+Hn5zCw4qyWGqVHCgEuqDLX0Jy3+q2bC8AWHAM5pWCIScmQSnveZLCU970Ot4+9OGPKjHNFHBAwCEFu55PKUgfyqH5k93NHzcNXJ2JKPwT6sTJj+ShwhGNo39vbgsb28hX4q10FM1BmOrvK0Mh8xquQDsWvx3KtGsbCyodtpDVulPsVkzZISVTqt8LfLwHO2WhYOxP9taG2IFYykxgMQTgF1MPbK71QMSK8aI8LH8Q2kRPlZKhI+N/xZYlBJjb5p/8LAl5bHurY7wob1/akH2Y3LZTAd30ee3ah9KpM6NpNKT3/Quu39qXaWg2nOgj5KthJ2DVUe70ArAWl4xkHOoQFprewHPWm1xDso/ncPPjixSpbnpCRdotz+YpJ7su5U2wjehVY5Bioy7T1h6DJKggiJCAvoxngSQT5BH8wkJBfXzQh41mRYV5BVlL7vPENxEWzM5LHdBd8C/kigNtalkL/ATvDnI0dfbx9ODzPH0Ac9egNnJh+XvA53FiNQVmQ0j4laEM0ZEqerI9XR3twE9O99/Nf+8mYnok0hLovVJudneLK4dcPv8X6tp5OkLjgRHYAZZBiZFsJzYPtB3B2ZicGfxIPAAwo58cg5pR3phJUk7AbDjHENSYIihggWT68LmMFjOAp2ia/PLNmwXV0E6qPl1O08v+KuCnSHZuLCyCzmhsidPREFETpZ/V6KStrjMFaYcJ7YjDCWSB18Etzuwl3hrWjCU9dOZ23qxHNlMd0NPp5+fBfZ+PlwW06Pl313mcplePx1Gc1dVQOuqZBeN/NCoMINtf2Qwdn4pXCXYP2xY7swAwa4qRxJ5YojWe3tTySvYXBaZC14JykIT2VGRuVkibqRV4x/RG5H9v50eMh5YIC1NhPIFApHuoQmYz8iJfPfQlfCaI6cPnDRH5r7ioLlcNJbm1Vv4mndD07zNqZhd+Zp3BEomnM3I3x6KyGbkp2KKyGbkp2IiDSuUYQgusER2CWSyIw4Zht3RbLK8nK3LtkwzPF5m5f700YLXAr+r6yxfcBoAhPNyFZ4s25CzMNSI7e0FDgQm2ZvFW4oEjOQnLwD/D9gI+A0itUBmd6Len5AiAo1Cw0Xe1pPrYwXvVSIG0T9c2rVcDTkfgku7ZGAQqRqC/wkOolqjgsokTnJldz4HDsxPLH+ByzWbsgeaKUtZB9I4384yokZUHtPn9lokGG4GsxGZIMsqHFCSQbHa1JZNkI8ri5ctyrsAaD5+8ijTBzQpOCU6s1lOZC/+JkKvVZsgJCeAcsfCAfKWptbuMoEdd5YHoPxforJGwT1o1rI2ZY0qtWSNsiCNRH7BkdlrJ+46e8nssMUsk5Xzxp3BMW8USUu008HXAQpFgwrRAYXeIB08GKZLdheZN4qmkObPNCVgd9bcW5w8PYCO90vVSHbfvKf+rcjYPEI16erLWhXBbtFyXeFu8bPpV+p17REXW5anYxalpXJjo+sbHRzUA3oQhnoVbpVtComr8BL6fkoHDLRVPmtEyhUnN6nqWM44w/WL9VZ2jrhxFrG9AK8j3MmaX8Z75xaaB/WiaaJOKc7lVpLeuAunC2Lp0KdlqEPZgVhKDA/vbEzTVaPFr7s9Y+9Rr+y2+xOxKGLtjqUI0G+EUgJbqYgjm+vojtk3vDzMjlcbvaWWl+sYzDc2XUAQRRSXYSni5cZfSoIQxu8KRiBJtw4AIwJdscCIQGf8wYiPK0s2StncYGzcHfN190JKDXEnODDLfKkrVpZ5hYtYwIiiVPOl3Z8r0UMfW5xYlbF4K45gBJLAw0EisguWREAX+reDEYGhO90dpL5bJr0daUPp8ucFCYMR9Swse1BY/0dgxLprzy19xtOoqfF7FDUmbvgqcTCC505Q89YBdyIpMMKmbrjbF/UAy4LJnCdpz+2uEAKM4HkWVLUAzyIxMAK5GSAMGMEb/KiSAYMfWiYpklCWSXtW7ah91bDM8NARnW8XLo6pFTE9i47riNJ3GPROMGDj6Onu3pyiBs5/QKdhcdmOzeum1q2OkLO7rAXTy4vNceErBX4dHBcTSIy9nTMlGVxMWFeCKTPCJ1TnC/IqveKt+MZRQjOOg3awRkKXMkqe/VC1tLM3VAW+bk8jMPPB24fr6+hDpnIdW5+DO9WGBXwFll9z1MaB6c0ie7kzOawRZC7Tie3bfGQFDHT3lv04GM/hkJlcx9ZFbZDFGDDvW8hgyDe0UvFocIHGBRQ/J2p5Gwgsbyu82rS8VQd+NxnYTho276HAZe7PGxP5vbOSZ3z1sWHTkuZsHGHxx3bB+FpnUd+V9+KvuiZyi9bOrhkIhmpAoZJFJajx1rlebQtF9Ddo6UO8rtKsW/PeU6RQlIWqxp+KN5mmDGFxZ5xrWivoT3lXswavJuxPYW14+1NyPqSLvSh/Sge8LYnbxtCETfN4apUmezc2fZTV6my076rPwbzwJycQZ+u8K4lIuml+XRxaLF2OpQWyj/wqKEGmwh2KNvAf6GyYHG8dSB6Rotg92bAp5lKlUflc8qNd/at7CTp83iWFHX7zy+KQhOyFJUmgJ9+j90Lz6KO2rgkYMOU7LWb2+AhS4rw4wY5vBYwfKz9gdWIv7Mw7o+ja29DTA5AfGHjg4AM/7N86J40si4N2K8Jj8GdbK6WzB7eNm8GUWAMR+UUkQNisqDa55q68DKDmRZzIL3fS5P4OzloN0/ScCRdV3tQIJqpKzwE/J9xvml/+lTdG1vFppzemA9oogto0iMrmudqsTdtypZtTfzDUMfxb5mZiqZ/RkfimZ/2ZT1ZINL8vOQ8SoEmUAEPzeAJA46o32rgizGE98lQdp8N6pMXwOKzfgnlYv5mvuTKa5r9hTiWyqJeYcyr1/bFyKq1X/MtzKqtkhvc/ntvFLN8jY8Mzn21FeOZU4uyFwZxKRX+snErAWuLJqdS3u7hrAXOKediKqdpyka9VW+WMxZRTyZMANacSkADyCSpoPoFAOZXIKn3iz6lEWlIyOZV1IMC3CbDjZHHlVIZdLag067yJ2DmV/GQYVbSuSpwlA6JmJE5LBmT/x2HJYB+MtWRQC+a7hz6E1xw5feCkOXIPj4PmNT5Ymlv78DVXQ9O87EDkjEPfMs3yKqbZVRd7C26hZZqPKAVFxzrTHIUa4nV29wR8JMelOY5Obj6QE+2akeXaRN2S8P4Dev1XNhhTu0N5lLEmY6fZJrksu2Ol7V0ZgPUqmFDiDnJalPucV6l2fqmkjzx/zknRFKg79EXrDm0O+POHoNgD/shStzgG95FwMA59gn4EpU/c+phXSXucwR+X/dAM0eZc5xZf2AG5zkhbCKUmg79VpBWRZVNbk5osLSqNhd+lIR37o+l4ccDzZ5+2WlgEHd0xZOTSj4K50F0sPEUl+KCdjAy3A4amtzu4A9X2AD6pA25Em9UhM909AefGhE5aWxdjQz7aQfjehKF08NVW9sM3YKy+COiHX0Wx0WBcTbGoTXG17rzwugvLE9iTcgNEfqXCvsv+2tynyLA06/3CnaZ3JwmeHJtAHxU+OW5p+dXODtn12jlWwaynLFAjiqiwLe+YrqhtWT38PsLb//I6g+hDsKtDB6fVylnG1+wbdqyxv+CZsYyFp0hGnv/6rxya3nl/Ds1G3zxQ2U66K4O0BweRFDFFqigkXtEP/s9QSpvio71bBrkTdlfXfqc/QJN13Spe3b506MzsK+3u6niESnl9mS7KTHW5vL7cphOqZi2cwUfO8fqzE2BY0Z7MLFF5seZjRlTA/bdma3t/F0wTbbmKcJrozyaxBI4x1QA6LTR7qJNQZo90vcI5gy99Ntx+xb3uzZ3GOkSMqjmh2H7e/NYzEVotFa6gdGRnrqcHeZV/wMo1wBrJw8uTAybQtG7+QD7/B+3uhOOVP9vaUD4GjFmSBhqKOD4nAVrXHBeaS/i8vcgIGHQLq/xh31vktzSlLP9hS8tjRDiV5KqofInuZcrxYXGBniIc9+000l6Q77H/eW1hvgfe+CuPeupMTey24GPmCa+WZ9V5H+zfTo+6FJASDCqSKkR1zmRgagYEJ8y24U15W2bAFssG/MqyR+6QsgNeFVHy/MimvafOSBS03Tws281rg+3s7wQEWPhHGqRTByVInZ3a3gQJ0HZkTNsBQ4EwtmtbpmuL7Vb+ynYfBvZVZZevZuxJeSKlzBkSLmi7+Vi2m49lu/aGqcFaFcexjKNPKOO0aWmiCFkHO80IufgTXFk2X0J4ZQm9jvssnAs5OjlRYJMa0EovaNuapDskAkZdtnTt5KzvclrGh658u1uY0e+NROudggqAidjoCtgf569DBpBQ1iHZSxhPFgZlm4UpLRm7SbVIsHKTjC0LfKZp6/ex/VvWIN68T4Ibfigg17qFB/LpgqJuR1jg5tfbQMSB0Anpjah8PXDzqp/XpprT/ZrrZTV/TzJIEbqyoO8v8jsqvOvDVZv9yXhX8c68FeF5HyVYfboaTJABtRgnyqkpA601ecRxam9mtqUi5lBbH5YX2Zu9ksU7x2MxHV3J3r68cD7bjwWZS6SBXo30Xfed7myyvXaDsqp/4RfB6Al4WeHoCe9VcZgnMA/LPPqENQ8/TR7NPAN/QkpQTvyvR85GU1dzttYa42Oj7PaS7C8iHt3ZLmAJ+YDSdi7lQMvV52JZLjpX0pbjA0tCKwWUwy+0eVPJFunrRRoPudH5ZV79L9y9WPb1PGcI4p9C+clgQhgw2qD5dCAJZT7V+dZH7Si5s3GewZu/WQNdBJ/H1JUBWJvcvBxofablAAsW0xuEasHRAfGevEIH7sDVWjetIp/Mi3pXwmtqWGMrdfQHH+WUBeh4UlTWpReYApYlckffhj4nzwsYgwKI7mtf0pLmLuxpnq87OmDUeh/BbLgu4FcSVZTV+9duAmf00xWQyhWUKl5U+o/6cZ5UqAibyH3WT7cKlqbkeVWGSI1UGv5+MsfWjBET99ZjP8WrH3I8SgmNxw5e3yrmQ+KIOu3iwdqAONB4HIQ2HgmUGIScYnBPDBLqrXKh2SMP3V1lme6Qd9AgSrmbZBKDCgA7+h9riZeKITEoJD+/cvHyY3gkBpGEE4NI+BZbI6N11cGdNi0YlnfNPNLhGdX1PEcwO6G7BdPbm0x1AuwglNoKCt8FrcsCawwwCk72AD/PhD7/c/5ocRStmkeQz2rHuEWhrizY3IYDItccqHaA0EkjmKdSkN3euWQQLKnfu7mWL1wrPdGRgJ270g5Nn2KSabDZIu5UNeIUnXdF4aVo88u/mmOQjhkHdt4elLCOShKuY+t0nCdhm6JFfWBFfeFKiRQK6YMkmvM/KR/SIlTUslwbnFJy2s1G92FA4wq4jg/gI8hc3pcRPSns2lww9M2gdKPSkV3mj/v26r4gsmgNXaFZDuGlsNAbxCEY0D0wBHPN5s/Bg9EcW5szTnrxBe+AjBNkqgSsuh7yFAxWXQ8Zp4JV10OutWEPOkauAGAPOkZ6VtiDjvVebg8L3xFmvuNHry89h15YAnvQ8apns96OjtQyOkQa+0q6KCQY9qBjxYEHzxSaf6Buqj+aNm3l7XGwBx1PiJ5NCVF6bbVLPnM5c2rhANiDji9l1oZtKz3PSIxT77zH4fIPofwbsPChyI7858vy6G9/y5qm2ek+Gxac0x+H0oBD0DoU0UsDIh+D3qGlAf8hodByNVGlASNQSgP2pRVUnmZH/Lo0oAaaKX/X5zyV9ll6JGVBqGXR2U+hNjoBtmJ8zpPXK6znPHm9FMNzno5f3BR8wCHdfO/wInWFk1X72hOiFv9znpa+wnr6jOKr/9/nPF2efjP6y6Rd9O2Kpxk0le5vCfKcp4qXWAYDejThUr7E9JynHaRpUwwV7Gkpvfwaa08vO4nrc54UL7h2vWKobJYxcvTOwyNlt+Ew0siYhqt5IemQthif83TQdFp0dr9ZVntZ3ZKXul3dLdHnPPE8HupznoABBE27Q0ko0+5vyNDSDuiWy756aZX3orN2A+tLlZgZWvpNLIa27sa/nKG9llg9P1b1iUVpr9gdl248+ownQ2u8tiKZEtpktnlREsfgeb4uDgztpJtYDC1gLfEwtDnWL1I69z1ET1zr9C1TNvyAJBlangSoDC0gAeQTNNF8AoFC5UfZNfJms/ubbHhyp+caivkHfEPlpy90akAytEhLSu65JPUPxPlckk1GhZWd6h4Qm6Hlh8q10LoqYXjO9AzviSfNTWnBfaQZtOrJyiJu5J/wnMj+jwPPqf0Ii+dseMh3D8MIrzly+sBJc/+QylWbh0+gpIwsS5XTmB2MB0Nbh6V5dB1fc200zYke6Lq0UFa9ePkew7ypqh/HzJPW6NBA1z9cRqAFuqyBhYL2M5RAV5F5QWWS1rNfB7p0CD98Tob/EXs1gmsZsebEzQNrbywkbqUgtRqs4VN3kT98hqNpbnC1zx2/iccoRxYsVouYUyq4olEGv6oPmApoxHZ2ZnFZgE4iUl3RsnJG8eufcfmXcfp5Gd6q5+cBK0g3tWqPUz7X4+qCj76mwaP7+tOCNE/9+oaFTCXyXW3IWqPXgjXBRGXuWAMmqbva3tNWKgMmCrheAlcgTF4dObI2lD8GVixsrooL/q2lxLC7u+cKlpPoSFeNh/qfoxqWGAYmasWt1+2SishN53kzEbnpza//qm8nUaRPXr0whX4w6tLnKvq7l+3s2wWAzJNAmbuISmwZd5wnc3sLV2vCzE92YPmsYLE4vPx+lqMvr3vwTv1Favk89Mbn4WlPrFJPyFncuZknWBik68/rOgl7dXgj3pucN3mQbAtFyaacx5MNcgm6hHfDyOVGa9ywiC0OoqciTYdH8ZVrmMVXrvElH0F4ydkH1pawxl02TY0mTZ6pV5GEj+TI+RQHyd9cwpI86xJf8pFokhP6eXbIng87cUdaCHbijpwaYSfu1k7mB18EuFPSj2uFRIzteqT1z7NT+zGadMFF2iRCqe/R+EmUEhwOrfXQbHK2h8b70RM8LYLfvTbXu7LOWDB3yoYFrMAdWWRLX3f3NgA3I/mf44CfA2dLNgdYurOdmqfXFWwwV9jHFbBDq9cgSDUx7lM4x0ugubUFboGFd/0VoMd3NRSR4wXmmOhfae+qQ9WUlwwLLDeAm/HhLc9AxUQKoGl+btm6Xvom66cmW3S75tyISO0CLyQitYv38q98BbJ/t9NXKILsNKjcXlFHMufAJ+tcQa0x0Url+rcoxxXoamDXEinfxEHltSo9bhgcuV7edVFBRbXg04WgDuIh8jEPgq245xMX8HoShlr1lzv0AIt/o3J2AV4suA4aMAeqZ87icljueuB7vPVM6EtASN2FxUWAHOBPe5eMqrylOWhY4BJkJieg2dQirYxcErdnkLSXksqFRsEbqgi7WufyRkGbSFA1ZBI91PWdREpxpmBLatrBfMs0px0PVBcUCZ6ltZFKwkEKfUwpgC4OTVSjSCgTleVx2oUzpFOGgfP7TmU3mikJfJ8evACvlzvbkSk6ERltldbfAhgGLLDchyPTnewhcJVWzUt2w3TVrzwptUiQ8+CEbL1kg3VbQnoj2lvrMcAnFjQCckaKyj6mgyu1ZyLOAflhAxHngLyMAcQ5IPI4j98uhdLeEeeEA5qZVrD3N2dEC8gn0j6pL/t4D5o53jR3sfyYuXVp6gL2kaIKx5SoHX1QSAKxu0booFBodIAlzymNlTCRpH4h0kBb8LkcTm1Sqb5kg7N21CCLGIeeC29MviyYNyZlIKySwS9Vyr6xdbtG0CaD/UP/iL29LqK9T5ABVXrzDEul5GdtOk5Vg6WL/1ogZNaKRPPFwefv8noMWCNeKHfePY+nFORP9dH8KZELxU3NeT948rVay+TS1Ro1Y4YcEb63dheKk/uAVSjO/j3eheL+iIvdvWqMnnnCp6tWX3Ot03EvFIfMBMKhBlrTe6waaIfei6VQ3HyFddv31WcZpk5eu2hkhas2roXiznW3jJr5Pco0otjD+N0fsWdxEMkeUyS598TLGuT/iKtQHPkvx/fvx+qalro9KYt5MvREu7s6Hgg1ry+jlkYD+rJ4CsXFvHlgcLgXhxL7et76xX1WZBCkUJw9phpAp4Vmj9EklNmD2IXiNALchofeizKLq9lZZZcyZCHa3eFUKE7xHVahOMW3YioUVzZg++am+zONIvY7b9xpqZIpkUJx1KZvHLW5Osa7r0U+0eeqDsGh2BjpHVY9q6y3BErnFVOhuN0WjisMi7OMg/rvrl1+NSVETIXizh8fd8nhb12zw1LfK/de3/gMB9stfYtlO0Ui2U6oLgw+heL6NibuGDr9qnFZYMli5VPqKgQqFFfxBrMC4xviGEcsheKQiz+JF4rjOTrUMmmhb3EvFPdjpepzrfv1lnu+j7b0vPTMXeKF4hTfYikQ/4a/DhlDQlmH/K6g3u57I2Z2uxVgnO8/tnxU+K2uYgT1uqlUYYB6kcpV+IN6chd9aLqnd5pFJsbNKC6mC5ZHJhyo1wUUCBUfuq1c9X8L6hVu+LZq5Pw7Zql2yS9/PFAVfECc5EC9XGUsg0VKxmCSAPW2Nqjc13e+ZbZ5yOX9j4wjZuEK6inRCjSTNhVTjnZycDvZe9ZHHEaaE6bhpknIcB0C6qWOGXDj88juBkkG9q7nmMMFK7B1NKjH83iooB4wgKBpdywJZdr9DUE9taVZB1/QWZaFb2f0c3ctlka7ZZxAPXf5KgxQb5x81b8b1KsO7/fAIJVrUZZUMOvmlpHyeIJ6NdNkI54U9LQ6ntf1WUaNySocQD0n0FqooB5gLfGAeudTY59dJU1mJCrnnogfbGIoSVCPJwEqqAdIAPmEcWg+gUCgXlq+OnUjc49xsunIb6tM0p3F/7BLpCUlB+plda8SI6jnbFJYmXOke9VvAeqNR+uqhMn9vTdsts0a6S/0DQ3aG8sG6FrjRL0g+z8Oyb/WPaowkn/1e/DdwwTCa46cPnDSfM66WxutNVYYhI/QkTp5cwgHB82z5LA0j5bjaz4RTXOig3pHD8v5PGE2mux7YFWokL/zW4eCev9wGYEG6oEVqeoUq0SDegm0gsrvVxWrfgnqTUIz5W8Hje05e3zojaEcq3Dd8sXSnKVrJACNvZCpwoDGcmWEIl/EgMaKdLTHKfULpu064ttt+NGbkxBx6vZBY/231jsc3VfD2DqC+qchY3IiDtDYI1BmVGgMkFmC0FjaYbk/5ywaZZGtUBVNG/BZ8PmbkoXGeLKhQmOAbJBLmIzmEggzoyKnPnwIJqTpcJhQfWSxJlQ7Wb7kUwgv+fPEc1FcIz3zYNmoGLM532bhI/k7ysCupgkXzHJuPvW/nTw/CwfJKdJYkpOl+ZJPRZP8dwGU3l4e84n8eTT16H39rLJAj20Y94kfoDQJ9CGogFK9dHtnuLYASupSnzVuD1AyKF6583VRuj+CWmsXoITs7TgASvqgcqjIjZzg2gCe2SEuQOnJ2pd/p9hwLFK3vI8cGV7NJRSgVC+NpVaBdIcG7n9nQAm5/JIwoMQbBahUjhxi6farDIS2AUqjTocpjHWzNM2YvPjgsdevkyUMKPG6OKoUBS0T1TQSykRFUEDJf/sYh665+YwDD6duvb84hNZBgNKk3lUYgFJ9LxHnH/+fgFLgM6u53MgjFkf6q3JvMY8Y4QAo4XxAAqI3+r2rMNAbud5VYgaUmoZ1K8oKnm11aOFdRmFdTRAOgFLne9sfpBX1Mi8c9WydwY9xL3BQCejWGCoV9GrTMVLbACXkab3EASVej0EFlAClIH86Hc2fEhlQSto4bOXwHTuogX11PG5se3ZTDIBSfJ8qDECJ0kdk2hZqbuCvAaVpj09uNFa4ycgefT366XyZzbgDSsgMCBzYm2hQI1T2xrUP6iK+PYDSoWnGWld8aYz8soTkV73NnHAFlMiTPmkv6PbB9Jj3cLlLg/9wx0EkCqZIan2Ily3F/xEXoPTRzlGN8yaNVm5xLOPdsI8NhACUeH0ZFckB+rJ4AKUDWe5VY1lFlNJLI/onFR30JAigRMFUA+i00Owxg4QyexAbUBomlzn+04t7jE0n3d6cHXPTUcyA0nbVKgxASVlVZJio/YDSMJXLvmsSFloEvbqvPa6mIFEigNIChRDb7nJv6QdsrZTe//3nJhwgl0hQTlSOwkmVQGmMYgKUPnX5Y3zoAGfqVrtOJv3+XO0tJkCporYk0N5OkVoyPq229rEUHQfbTcO0nTKBbEeiiAdQWj11lJ+Kxier43GLaO7R60YRCFB6oYJlnFMqBDKOOAAl5OJP4oASz9Gh4jnWqm1bk7QCULoRNz9YXfUhZY8MlTwm1i9e4oCSMqYCdSr8dchMEso6pM01Dwe19F7x1zxEUkiwmofIdGlYzUNkdhms5iEynw32lEFkUAr2lEFkGhDsKYPILBLYUwaRp86wpwwiz4tgTxlEHtPBnjKIjJQCTV2hJuR+H2jqBjUhl3JAU3eS6ONUoKkH1GT4V40fM4Bmtnt+5fYfRT7g4xh7Qk2dB4WN3b/DzjJS0af6Uo7HO6BJEWp69uhcWR+pbKNAPSN6SkDnYUCTEtS0b/FEsvrpG4zjlwcxxj4fsgJo6gU1lb/qXG308ZxpePcJd6QszeYCTb2hpjdb3VlNUlxK3MFBm1LqdsUCTcpQk6LtcN3pu54abymTzjp8OmYE0KQCNfX86n32lUGcVcrwOYsVZzSaA02qUNOyhpe5svN30NeX2x+62a14AdDUhyR6ISZUD1ONhFIPc2XPOHrCxDhKqE5ZwbQFR/fjUA+TgjZeCXPCj+w8OKUp4ly8ives4y5YR/zxXfg+koqm+e8KcX67Ub/8xsKZFpsWmHZfq9G0UPR94wJxRupjQZzd9MUAcYbay6eHcrmMiNC+A9aMUbhMbIgzSB8LLVuo//8LcUY9rE5ziW+wOBhf1uPCQLYgaiw5iHMcpsG6ScZgkoA4FwyZl7nz7VHz/KndyrYr1WXiCnEG9vm+qdeiSsqeHL9eKqHPHHEYaY9GYRmuZBRxNmm4Q5zslwO8K0/Np4aWHY0tdn4bKFGIk+fxUCFOYABB064BCWXa/Q0hTrlZWjF3N7lY7PO/mRvzh3upmCFOkhYWxFmt+S+HOHv32Mo6f20u7eA13Zpr/YoRz7ZsH8Q5v++FQ9ecKijbltcdvRszLQQHiLNJEwviBKwlHojz9BqHs5u8rE12j1M46Oxw6LkkIU6eBKgQJyAB5BMM0XwCgSBOZlCP1RsZGxkHdr7T3fD22RfxQ5xIS0oO4vQZLk6Ic79RYSXde/jvAXEaoXVVwuzU4wu1Q1fdTTZN7BUUvH547gOcdurI/o/DTl1ZF2un/mE43z0YE15z5PSBk+bLT1ZM6CVPNwtPmDld/rxfe4vogppHa2Jp7tXikmlomhMd4hzvvcEvpGiXWZaec9wuqbMdC3H+w2UEGsQJPm0xeSQKxHnDvKBy0J6Rv4Y4TdBM+dtBnBTmvPsH000tj3C6mH8ivd326xvGHeJ0H4oFcY4bSlCIc7+FxpeEo8qGh19cLYnb2nsnrhDnthE7h9nm7DcIa7ieo7si3RsHiNNpKBbECcgsQYgz465V/NIuc2ibLPxMXYYtFsxRkizEyZMNFeIEZINcAh3NJRBmRkVOffgQhUjT4TChfh2KNaHebpHclPCSh/fo/dz28ljzAzcUl7iMeXsDH8nfhCfmpLkdYuytK+EcSllcjkchiiGYhSiG8CU3Q5P8d4E4B4ek+Go6DTMpPpm8/2n2rMkdAnHmamBBnAs1OhLiNJuSp6UxydUyZdE269GRaYhTx3ZBnMjejgPEmaGBhSUGaXQ4xFkUnmFr+WCJQcljldr5T24LYtmShjgXYqo1TuM/iLOVECdy+SVhiJM3ClDJRWAUiBHiHC4bMn3rJaphxsSG2KTURU8kDHEuxJQC6OLQRGVOQpmoCApxDtzd5+vA/REWmUudOzlqzx2CdVs4QpwlelgQp5PefxAnZJ9O8dXjZjd+Nso9GXb9yNttPXCAOHE+IAHxxFw9LDwxUk/cEKf7ScZ6XRtr+rYXEw0LJ2oLlpP+ZxCnhabKEeb7M7Toa3m3+i99eBkHlZwwVZqmJ0aIE3laL3GIk9djUCFOQCnInzLQ/CmRIc6/7DTNK1jOViWPmZOfJbw0Fr63dkOc6mOxIM5TY/CGOP0vBVcznRYzAoeUHdBifVLFHeJEZkDgwCcqj8XiE1+MEQvE2ePSgQM2OneNEiKHfe3d9Smi8m47Ic7d347fub/hlXHRcrtduhen3MFBJKCrYIiUNIZ42VL8H3FBnLNW1b+38tlA2bd09AS/cOp9QkCcvL6Mii0CfVk8EGeWH9Oe5rKZvrXfrUB1ZSPB3iw5iJPXaVHVADotNHtYkFBmD2JDnK9XVmzLaog33L/B3Kv6AGOsmCFOtTFYEGf8aDFBnJ7lN/sve+JglWZVv2prUI88iUCcH2Z/ORESFmixvtezs/5PC/vjAAIqjsFizRpGEyiNUUwQp+1K+mqO0myzIM3GCfrXTgvmLeAHcXZiePVhfjQ2KHHRy1x9qV6kY2mj7SpGY9kunkC2kxMTxKnqmr5laYiv2ZGqymtP9h8Q9IyShTi9MI1DJ5BxxAJxIhd/Eoc4eY4OFWG8Ohp3iLMfPWiQrYqn6eZRrOXAvkrwSSuSgDjjR2MpsHA0fx1iSUJZh7QZ4hzY0nvFD3EiKSQYxIlMl4ZBnMjsMhjEicxng0GcyKAUDOJEpgHBIE5kFgkM4kSeOsMgTuR5EQziRB7TwSBOZKQUBnEi9/swiBO5lINBnMjjVBjE2TdHUSv0RZVh6JlpoRV3S71hEOfsPudyh34LMM42W7Jgb97deTCIc6ROcUz0nUGU0qVSeTNH98qAQZw733RJvPLXB8tjg95tto11U4ZBnPb6qrmFro+sdmk6JNtF2tXCIM5o+2yryrHdrEq5D1Zt83DoB4M455+W4pydlcXIGZmxePmSgf4wiHOoQ7ViUmYD5WC1uv71uh7RMIgTudoSIjVBpFPk0J/ktSLtbPczZnG1m28tC/6wCwdS0wptUBLmGB/ZQ3DKRcS5ih94jk/GPMcntZzjW6Np/ruSmg+761+3Z/mabL6Vx3w07k8NMZKaQQwsUrMLQwyk5tzsr6vDjr80Kn//pUuFUtJLYpOaqxlY/Jgd4/+X1GxY7vFu6JBFtCM6myo2XulbSRBScwSmwbpIxmCSIDUZysnxtQMKjcIWXPQfr7MlA1dSc+ych4u2zb9hGGcxMnL9ZN1sHEbabXMsw+WaE2cnhjupKV0u9/ltKNu4vFEpQY0ZOliipCbP46GSmsAAgqbdWSSUafc3JDV3esR/llKxMo870Yt0dvmBfWImNbUNsEjNN9R/OalpcfNYYcXFtUY77/zYqP50EuLhpu0jNfOPDVsqzfiDntvtS5Za9bcKHEhNsgEWqQlYSzyk5uFcnS/1M+ZZFYwc8pTiZVUtSVKTJwEqqQlIAPkEGzSfQCBSc6aZz72GA+7UXJugzfVHtw4XP6mJtKRkSE3rwkrSIZo4Sc1488LKP/bTfg9S0xatqxJmp07uHMH4PjmbEup1bcdz1cYGnHbqyP6Pw06dboK1U9c24bsHO8Jrjpw+cNL8pWPkNPlCF4vSXVutaj0/PcNBcy8qlubWLS55NprmRCc15aaGUD6nKVATRktPP7Wm0/gOJTX/4TICi9SsMUUhNc+bFVQqnzP9Nak5B82Uvx2pua2r98P7DUqGGbLOftcG3TKXAKn5YSYWqVkyk6CkZr/dmssUtDNpUZM4lv3u+SXgSmo6fOYcpS61Y6R8W2DywKWsvVm8IKn5YiYWqQnILEFSU1M5yeXolUBK0FS5imG7R7EJRGryZEMlNQHZIJcwF80lEGZGRU59+GCDSNPhMKGupmBNqAspfMntCS/5NacZy3toq1oW9x8//viwol74SP69IDh0ydDJhilds+IMs3zG47FunIG5bpzBl3wemuS/C6nZI0f6jz3xH2gpCof0Zf58uKVDSE3KTCxSs2FGR5KaJvr7P2XW7zU7di6wjFGTK/hct/aRmsjejgOpOWkmFnuoOLPDSU3teqVJTdeCzCMNEwa4377gRihSs2EGlloVM/4jNVtJaiKXXxImNXmjABVPVJwpTlIzeKvJwuCmyQaRtbuHqyzcLkjidDypyeviqFJUtExU80koExVBSc0lXLktjJJtZptnk1OvpY7CvC0cSc0PZlikZpLZf6QmZJ+AdbKkJV6VZkf2VAx7ckZrDw6kJs4HJCCD+MIMi0E8ZSZuUjNw2y39kevKLFMO1ew3TWQLPoz6n5Ga77127sqfn0fJend57o/XQ0bioFISpko+ZmIkNZGn9RInNXk9BpXUBJSC/OkCNH9KZFJTvsymcMBCT6MtTdnZj1x8P4mB1LSzwiI1v1riTWqeWh3gvmNfmGWsVG+XweGHj+JOaiIzIHCAEBlWWBDiUCuxkJouQ5x69H750SywbrXqp3vBiriSmv01bS+uDr9Mz3wz/NYrhuUoHEQCugqGSFctiZctxf8RF6n5nlRgeOX6K+OQ/rSVZWefDm93V8eDTeT1ZVQ2EejL4iE1JyUt/WaQEmFW8o5UebDLd0uCkJq8TouqBtBpodljIQll9iA2qVn4OSrJdIkCfedLWwPa7ZM9xUxqWltikZo1FmIiNd+xnxla9ltFObp1Q6d91wIGS4TUVM9ySA0zO0HdfEfeek1sxQAcaD+6JRZQRpaQR+1IUvO7bLK5XvgYejpdL8F4+6SzYiI1VW0aQ18NKTQsNyv3HrXfZQsOtmuywLIdMBQIYztFMZGaV2w7W1I83xgHJXaXG6v1qR+BSM1DmMYJJJBxxEJqIhd/Eic1eY4OlVPsZok7qWniPUf5yc1zlLKQ/vEuE0YtkjipWWOBpcB2C/46ZBEJZR1CaFITSSHBSE1kujSM1ERml8FITWQ+G4zURAalYKQmMg0IRmois0hgpCby1BlGaiLPi2CkJvKYDkZqIiOlMFITud+HkZrIpRyM1EQep8JIzSXB1YnTOg0wjvgoZfLgXMAVGKmpdTelgVk4yaJc72LU3VcT98JITd+ziVGzA99aZAzr6pSaKhsEIzXTq95rlQdPYBxoTFmaUmtSACM170g9KXIbeYsa5r955fbXE0bDSM3MzOSZtiXuZhsyFUxuFn+kwUhNm6KR1BGKZy1CKoLUo/0GPICRmtE/7vd+do5hGH7vauyZJ4XGMFITudpqPamZNXqCpvuXlfS8ly+4j+6onxUxUNpKai5GG5SEOcZH9hCcchFxLtUHnuNXTMc6x0+ezneES9A0/11JTeSDccVEamoXVZK0ewEaB4vapjXkAIsjJaFtGtaCsHWkpvtTq5TAvEXmiVSdW6tfjjjVHlKzndOtGqAAGVRgvqGIBWAW0AeblIiCYoZnHlchNZEqoi4PVlj244dIuo+/HMIHxRxxS96+/zBX+vbPaZMKvwXPIwCKCRqsRgnLYIckYzCRwcWsmYL/K4xiYhnrlyjmh0+OPT0CiwxKOq2Y+sdy+lOJrlxBywRiWsZeQpbpENZy8Krn41gl9sZpqifcUmXqzkiMtQzNgVyaSNZSv9mpQxPnUtK/bOIc8mPyjg97cumlf12U33z262MxljgoccUqcTDNVQwlDr6OSpTpOsHfcNe2sVctVKZ+JXaJg1xXLPA60pUo8yraj/jmVb9Y1dNZhY9M4qkacfMOP9hKgHkVNJgTpsGmScZgkihxkBVPujR0Od0o9rCpuuK8w7q4ljjY9ddN9QFFcqb7Cxw4U0YObm++M2g4ZUzDvXD5F0+7E/c2Td1iP4uWXVidnjjg8ViJTbtgiQOex0MtcQAMIGjaZZJQpt3fsMTBfZPtWbZnJ9Li9R89S5120knMJQ6GLsYqcfBi0b+8xEH11phPU+RqjYLrow0snk0chmeJg13db1303ffcNO1h6YojW7S0cShxoL4Yq8QBYC3xlDhYemaEptYBN4PoZ7p2EbesnCVZ4oAnAWqJA0ACyCc4oPkEApU4qI4zGvpRoRMl59hp443P1+uJv8QB0pKSK3Gw30GcJQ7KTAsrz6c4/B4lDhzRuiphQtyZk8ffzAjZbhVT5Cq1WXvtCJxC3Mj+j0OIe6kjVoib4sh3D06E1xw5feCkedHb8mvLDnOpmcOsfUeFeKzBQfPcRViab29xySw0zYle4kD6jcpg/VMRBqGkqyODewX3Q70/cZQ4+IfLiJariShxcI6FUuLgA72gctAZ1q9LHDijmfK3K3FQbDCmTmk61yCtb5zn6Wo5LQmUOHizAKvEQcECgpY42BA850PPgdX05IcNWRce9VdCZLq0r8SB54/4/RpXtM22+ldRJqTUthfsAEscNCzAKnEAyCzBEgcaD/uNzVhrR0+ep98UenbzDAKVOODJhlriAJANcgkuaC6BMDMqcurDh7dHmg6HCdV/IdaEar+QL7kr4SU3LdZJHho10XDvtu4nXgUx8/GR/M/K2jlWK+8yUqnaul71c7fhILnRfCzJh87nS85Gk/x3KXHgu3O8xdSbVNPExQZxh4PXze6QEgfTFmCVOHg0vyNLHNRTV8grKMcZH0lRtPcrGWOEY4kDZG/HocTBuAVY0H63BR1e4qBP4t3K4jFJhpkfpsbtLpxdS6gSB4/mY6lVMv+/EgetLHGAXH5JuMQBbxSgcv3dFoizxEHJ4oUqXGZfxpb6tdETZ85AFEbq8BIHvC6OKkVJy0TlRkKZqAha4mDM2nPG1jfq6bncbIPopr6bOqjEQZ0zVomDQOf/ShxA9jl0x3TDi9qX9CAptVexJd264lDiAOcDEhDer3HGgvcPOYu7xEGkxpQ+5Mhs033F/Wt72jXMwqHEgdG6jc/CvvsZpxTVOd3ow3LCQaVATJXsncVY4gB5Wi/xEge8HoNa4gBQCvKny9D8KZFLHKTkXTQPqtY1LZqyLVrh4sPVYihxQF+GVeLgjRveJQ5sQoNX1q32NThePHmAdpDOYtxLHCAzIHCg9ynLsOh9tWViKXFAMc0sG2FiZLXNJGZKSrGfB64lDv407q89NmsyrWCYT44nIzwSB5GAroIhUrUb8bKl+D/iKnEwZcO8GXSSIy2za+NG5yjNNEKUOOD1ZVSoH+jL4ilxMGjE4KqBs9NpO+wyFp57LqNOkBIHvE6LqgbQaaHZw52EMnsQu8RB1O6MVcseW5rE5L0nHz6x2VvMJQ4YblglDs6xxVTiYDw9baRuaYJ5oU1deMJ45WyJlDgIMNW+YB20xWrThR4ulA/yWThg8kZuWCS2uoQ8akeWOPBXfdN4w8DBOG/cnX6699NTxVTiICVFcdpH+QHUozK9L/fvufo6Drb7wMayHTAUCGM7ZTGVOIhVebbSZ24WbUfd3yoD6QqNBCpxsB/TOKsJZByxlDhALv4kXuKA5+hQAX85N9xLHCya7G3x6eQZSrnmo4A+Lzj6Ei9xcI6NpUA0m78O8SChrEPaXOJAvaX3ir/EAZJCgpU4QKZLw0ocILPLYCUOkPlssBIHyKAUrMQBMg0IVuIAmUUCK3GAPHWGlThAnhfBShwgj+lgJQ6QkVJYiQPkfh9W4gC5lIOVOEAep8JKHJi8MNcJ2j2Fus1XZ8WWxcfOw0ocjDxrO8Bjb7ZR8XTHgd92DFWDlThYxD5qaaU02SrF/o+01MFV4bASB3/cV013+BJiUloaZD7HcfEiWIkDDXlbOd2BEfSc61dVWL1IprASB9akxY+s9sy3SLNUujhhj4MirMQBct0kVKwALHggchBz+5L9o1+PMg/aPTet8xnlQTgUK+CgDS/CHMgjbY1TViHO1WrBE/mSeVgn8knz+C7NE03z35W5zD11UnXG648m2cmHm07ZvugvRubSYAMWc9lpgxiYy4u2Xjr5GmzLSAuDPqphDxyIzVzO2IBFgg3f8P/LXBa/s0+as1TaZP3BA5ej4vdLEYS5VMU0WCfJGEwSzOWbfazzFyvemuZQOy+98re0L67MpazRFtkbTT7GidGrqpS/L9XCYaS9Wo9luJvribOnwp25PP3SZcRbtwUGR1W/asxq7JMuUeaS5/FQmUtgAEHTrhcJZdr9DZnLfeThTRcKc6y2/X1L7duD2YFiZi4jV2Ixl3Yr/+XM5fa1J9efZk6g5lVREsglxt/xZC4nJ9eWqC/vZBSfnDhs9y5FNxyYy6CVWMwlYC3xMJcyt183Wr3PNjj4TGbWg0X7FkqSueRJgMpcAhJAPmE5mk8gEHNpcO8KOzLnjvGGifJ5Om96cUXcCs7MJdKSkmMuS9aKk7msNC2sXFi89vdgLrloXZUwO/Vu+a/mTOtsbRjby3bEzE1DYnHaqSP7Px5PZFyH+UTGdXz34E14zZHTB06a50ldvpLCuUVdP6ariay8DAcHzWsCsDTPCuBr7oOmOdGZy43jl3QJs0ywCvHbEHspTN2wQ5nLf7iMwGIu3wWiMJd/0Qsqbd4G/pq59EUz5W/HXK5mz5y0zqOItuXFPfajzs8Mf33DuDOX3fyxmMurKwjKXLpkZIw2P8syL00u8kt8kJmDK3P5fbyX/Z6k74wtk+Iawj89vIkDc9nFH4u5BGSWIHOZZ2/V5+omPcq+W9P7GlxwKCAQc8mTDZW5BGSDXIIfmksgzIyKnPrwAQCRpsNhQt3ujzWh+vjzJV9BeMk1Jo3KUa8OMy5zm0Gx7Ze+Ax/Jb/Rabzt41l6Tsq+nSyhJ0/3xqNXhh1mrw48vuT+a5L8Lc7kjp/HEue7eBvGHD4cXzHrQC+M+8WMu7VdgMZekds9wbWEuq6c8bFrjn2mSUCA79GP2YMRRa7uYS2Rvx4G5tF6BRRFqr+hw5tLuc/iOr6XfzNJSP2cVsDMFC3xLmrkkYapV5/cfc9lK5hK5/JIwc8kbBaigofYKcTKXnFsLZuT1em2xY9TgT+sHNF6RMHNJwpSirmWiCiChTFQEZS4Dm7xKr3VpMix9Myf54eHLvbBuC0fmkrsei7mkrf+PuYTsM6XwuvGAuBSz9RsCGcbFUn44MJc4H5CANCFnPRZNOH+9uJnLK7NDrn+crGMWLfdFnz7hnWDQ7p8xlzKNJ3MNRp0ySjSzN6esXIeHSjRMlcasFyNziTytlzhzyesxqMwloBTkT1ei+VNCM5fmO2NHLZE3TJKLnq4/dv0z4XtrN3OZvxGLuQzfiDdz6X718eAeIa8oYX9fyDIpmHMId+YSmQGBA06YsxELJ9y9USzMpZbnLm6M0z6jY1sPK/1NfTwGV+Zyq1/XqVZDNhol6jGM13gYPcZBpHBMkfw2Ei9biv8jLuZSLedtYYRDMK1w/fNP3t/3d213V8eDMuT1ZVTKEOjL4mEuZefX3ejZ/YTloaSM/e4yxX8RhLkMx1QD6LTQ7LGKhDJ7EJu5bJqn2dVJx9UsuNScNX32dAe0u8OJuRy3EYu5/CCcAowPc6kfQH0btUzNYOM6Gr2Lz8U6iTCXplpcyx7y/alZcd1d3IKeHMKB29PfiMlcSsijdiRzqfnn325RJ/+kRpIarBu3eL4VE3Pp+nz1+FlPelsWnHLbGPFAOQEH28lh2u6DhHKHRdlOTUzMZYoOqXrt0y+UnQetKLMPxZoTiLms34AJxBLIOGJhLpGLP4kzlzxHh0oc9mrjmqQVzOWMQsPGIU/KaQcmhPYPOF9YI3Hm8sMGLAWutWRKryahrEMI/VhpJIUEYy6R6dIw5hKZXQZjLpH5bDDmEhmUgjGXyDQgGHOJzCKBMZfIU2cYc4k8L4Ixl8hjOhhziYyUwplLxH4fxlwil3Iw5hJ5nApjLmnDV9duqrUx3n7UPsht8ekFMOZSyTu0zu36FPPydyqjD3S6ngFjLt9bbo04O3wYbX3X9Een4l9cgzGXpfcPrPkQvcGsbLJm5kIrhfcw5jJjyMRjPTW/GWWHReTphmgpwZhLs96KJ63iZlseWEc/tuLZnusw5tJPbaA86/hLy0iT4GtvV3dVgz1W+tIflw+dnxhIOTpgl+zKd2p/wR4rjVxttf6x0oell6796OJvWqLW5ciK2L1xOJCaa9AGJWGO8ZE9BKdcRJyL7oHn+HW+WOf4Bb58R7gWTfPfldT0c5RKydq31yLtkSuNuv5Bjej7xoXUdI3GIjW1o8VAapqNbpp+rXEzfXtU/Kuynq+riE1qOkVj8WPW0f+/pKZ+5ZilTt2zzXetX0Y97Np3MkFIzWmYBtOWjMEkQWqWpy95sfOqpkHu8QmVB9x1NrVvYYsYaXe3DaudUGXFyL4TMiVwaeFgPJ6OiWk4koQM1yGk5hVjlVHOyfvM1yekDlIberdaoqQmz+OhkprAAIKm3XUklGn3NyQ1NTMfmEye2WhUxJqwTUlVapqYSU3tCCxSs1vEv5zUDJi0K9P5fGej0rsBhaFHeh3Hk9RU3EN+7hUSQC0ZftN0VnHVCBxIzaERWKQmYC3xkJpq9iOfOfoampfeV3Z4p3lPXpKkJk8CVFITkADyCYFoPoFApOaMmZN6yw3PNM8Y2yOr593c4yJuBWdSE2lJyZGarlHiJDUj6IWV512ifg9Scz1aVyXMTn2gXW2iy9Egav4rpRVpI+Yswmmnjuz/eFCDUVg79YoovnvYQHjNkdMHTppXnFL+njghzjQ/f5VG2Lple3HQ/M9wLM2Lwvmab0TTnOikZqfXWoZX7r83CQot/Xo06jytQ0nNf7iMQCM16cBC4etmFFLzhElBpd/fm39NagahmfK3IzUvnfPWMT3mRNt/8Eh+w3cVv1/fMO6kplo4Fqn5NYygpCbHZ8moH1O+G4bqZcn5FXDH4UpqBsjelE38pGGy/QqlH+PScQscSE3lcCxSE5BZgqSm2v2X6n+P/mKSXVXYY3ZsCZ1ApCZPNlRSE5ANcgmb0FwCYWZU5NSHDzaINB0OE+pCzAmV0TKhBhNe8mKXm4Mdjj6i7gyT772tJmsnPpJ/uL5/a/SDg/T8g9+Ca9xex+MguUEYluRjWnp5CJrkvwupGTkw957st/tm+ctdX+249D2xQ0jNsjAsUnNru2e4tpCaSkbjn7KGbzdPrjvxeu7tU4LBjPaRmsjejgOpWRSGxR4eCOtwUtPROlHhxokRJntvkU//8NouWJ9B0qTmVky11ob9R2q2ktRELr8kTGryRgEqnnggTJykptzYc6Fbk+uM8yf2smI9v+0qYVJzK6YUa1smqlASykRFUFLT8GKTlueZ+VY7x59zUNL80KmDSM0NW7BIzTlb/iM1IftUZaklxt7faJI0+N5akzxlwafS/TNSE+cDEpBBXLsFi0F02yJuUlPHTsPJxsDbKO6OV9mi5RTBknb/jNS8uWeMsbaxB+WQht3D+VU/fHBQaQ6mSgZbxEhqIk/rJU5q8noMKqkJKAX50zA0f0pkUvN77pS0V6tP0LKXb+65/loZVQykZnUMFqmZFIM3qWm+wq7HSK2VFjlJJSNnxZ8XTFDAg9REZkDgACGeisGCELNixEJq7k2Za/v6/BXzXVZraTUhNYKJBO0lNYfExrI+1gaaJvchOT6+MfwSDiIlYYoUGkO8bCn+j7hIzU0ji6372rmZpOd4a5XV/MFpd1fHg03k9WVUNhHoy+IhNc+rqCQX+t6gbvm6w23ckk+CXlZypGYSphpAp4Vmj3ASyuxBbFIzL3m7hV/QQVrK9d09ZoXu/ypmUpMWg0VqygjPJfiQml3vRVTemXHMPCa6YrvajDvDJUJqrnQfcsTPTdu4TOHE1XlLvqjjQPsZxGABZXoS8qgdSWreMtpCeX5Sz3zHu1EOeq+j+omJ1Iyt3RH9jPTaqDzi3uoi872NONiuH6btZAhkO3UxkZqBnYtvZR7eQ4mL+/GMNKFGMAQlWVLzXTSWce4SKD9YLKQmcvEncVKT5+hQOcWhbVyTtILUHBPK3N1p9x7TsPcBC84f7RQvcVJTBlOBhpZM6QgSyjqE0KQmkkKCkZrIdGkYqYnMLoORmsh8NhipiQxKwUhNZBoQjNREZpHASE3kqTOM1ESeF8FITeQxHYzUREZKYaQmcr8PIzWRSzkYqYk8ToWRmjfucL1fx00yOuT2N7WsrHMcjNQc63D2QUH+MYMdjSMujp019jCM1DxuldzN4QzNKGvxgQNPv+Srw0hN19QhKTV+blbR8wMWvN/r+BBGaqaPvVusqE1hxFE1/Q8qdkuDkZpjVl3hXDmXQikfGdeYvKxeA0Zq1hzsbpbmv5GxLf1LN72Yc9YwUnNKj7rJYW9dTeMyjE4/oFqMgpGayNVW60nNqKLo1D3HRhsmGT+8WOu4IVbEQGkrqRmJNigJc4yP7CE45SLiXKoPPMf/Hop1jv8qlO8Io9A0l7eN8zvg62aU+bKJNZF8+J3AV+0J7a0sgD+4bKa78K5MFkXqfvxdGYds5cXimDDIHtA1WrcTy9933PVmHwYl2TW3u8wiXU/M2xKyBfINrRTUHljrxJdVApMIsCerETogAQRtKqlE7smwVn8DmmcG0OP7uDan7/l6s8iOrkwOhyX6uD7ZuKa7pfo506BelkPXlD8ZIPDFZY2aryD0hVsa8J5swfTJUFCSQ6KWf01AD5xUVimJ5Z+0IyBty5z7+fPnH23hLcmChvH2Yjn6ujO5ZFe2i6s7mIAv0jbDvRZYV1glUA9/X9xzs90xweweOVvoIsIBqpYWcVinoRTLOvGlBLAOMAP8aMumaZCxB9vbG8wgdBQwE9+FiD6KurTs1fcX+yxS76nuq8k4P1fQOM1XFBEB/tkiDuPQMY0DeBPJGwe0D9w4nX9hnIlUD/BX8mwCxhqBj7I4jgFkbX09ffJ0sqcXc7kvawR5NO9fP98hekRtmXv1LuecBy3/4aWjun9b5wtm19jBri+cXSPQKg7jHSrBMp69ZIwncttbPxNuwS6/sOD0nxb0dmVzAjjA0gkwH2AujicHNB3wN3fPFbxG8J/6YJMH07/5BdEl7vQ+7+93z9Aqvl9KqOWmoGJEZQFXURwt9LI4LCeHabmCYklbDvwQmNfQpmBFr+ZTYTbHBdsR2qgZMfVXbaZv/xJU1M13wVJBR4i6ZvrZgvuxcy60hgDXqdVCy6pcniOE1qmbSSjr1L5dVtmeLP5gVS6X+VhrwipBPKiHYTOKaM1l+bFZK4TxZjTEYhgVzPj3huGM7JWwYyqyV/MFvXuachzdfZ1YphwbFgfa/qMvXjNGZle6zPOiJA072ljS69wBrHsVzu0RbO8xB/jDy5PrQ2O7+zT/YlFbLFSs/DigbjmgfbyoI+tJwJKWXi60pOVvq0TuofinbWAOJSRPq1b0U9bpOq4/1oOWOyxqSv0gu6ftP91D7K603+kP0GRdt4pXty8dOjP7Sjt3V2qAcg2gciLPaO3BtZWgcr8K46vYwZYwZE8/FpfLdhLtTp+cpX6u+UQyjZaPGjbWzZvU/iGM0ArpI3DQio6pVVPH7hL4JK4stOUC3wQudu4k3/khx4JWfPwXDfQNfkjz5jbkrCrH3xjw3wr+bzf4skfwEy0hji1obqzNcccW6K8D4o7ITTcs7oh0aUIBJPDbiuzLei+3h4XvCDPf8aPXl55DLyzBIYAUjaYuQYMZjF2yav79WFaHT7JuVH5Sm9ZhwYymz1jBDPtP4g5mzOg2XdbA34iWP6HQeab8kBEECGY0fMbcLn8mwI7szZs3HRDM+EP1Y94tXW/Lg1F/Nz5KpTIJEcygY1qn6RMBrNMhwYxOE5yr9uw7a1ps9fbdSY3FwYQIZhz6hLkfJoJxSJIMZlyMeFw6xSLTcFP9Jusvh3bTCBXMkMM0XsFHSW+JCRTMWCRjPl9hbqZB6r1XT8O2joqTcDDD9SOW5dQkbjmxBjN8qxLzq9aOMtxH8d03S3nhPUIEM3hrCNRgBuAIoXVqDOlfEMx4mDrh7ZAnA6kp3F32L2XLV0o4mNHwBSuYMelLxwQzNhrq5k1/lWkZnjyQ5L66Zzfcgxnkvxzfvx+ra1rq9qQs5snQEzhs0Ou+YG3QQ7+IK5jxZXjjbG+1WsPdnoHMEQsLB+EezED6CBy0moSpVUPT/1UwYyuaGyN0MAO56YYFM5AurfXBDMuN7wabxhabFsZYzFU4o/oJh2DGNjR1CRrM6DwobOz+HXaWkYo+1ZdyPLBvC89gRmDfKoxgRpaaULY8zsGMxypJ23vVTzTecOqO/PsflyYSIJjhD0qCujS07iuRxFzBHVlDQ0MHBDOi19nRPjX0pER4DqmM0ewdTIhghjamdUhEsE6HBDNqFvierRzRmXHIfWUe4/JRO0IEM+rUsIwDeBPJG4ckyWDGtmNTB1BJFIvDdl1P2LjrPyFUMCMU03hLJWM8YgYz1iRHcnbNzTCOmrxmxfWzf3yTcDBjEqblFCVuObEGM7ZW3hpZZ5hGTzvy19eC73o0QgQzeGsI1GAG4Aihdep20r8gmPHs0bmyPlLZRoF6RvSUgM7DJBzMWN2vCiOYMbQfap0wXIMZN695vHi1U8PgILdf0/vPgz/iHsz4aOeoxnmTRiu3OJbxbtjHBhw26D790Oh5cIPO6NemEgNtCGZYK2S+l02eaVCoGnLaQs/WFvdgBtJH4KDVUEytvnbsOlTSwYxYNDdG6GAGctMNC2YgXVrrgxn7Fk8kq5++wTh+eRBj7PMhK3AIZuxAU5egwYy+OYpaoS+qDEPPTAutuFvq3WHBjG7jsYIZ08aJO5gx3bx6R/dFkxi7hsaHj7i38iMBghldxmMtDW+PI8COrL6+vgOCGQs+a3wsPV9Ai/njnu4eudFRhAhm5I7Dsk4kEazTIcGMYYOPyEwfn2satt9n1KhOfRiECGY4YRpnGhGMQ5JkMOPkkDHsytpBlIID3ooDi5O6ESqYoYxpvBdjJb0lJlAwo6568stHVxpMQl/etOoW8U1NwsGMU2OxLJckccuJNZjx1zHOxa0jOBapy8OzKSkRxwkRzOCtIVCDGYAjhNapcaR/QTBjdp9zuUO/BRhnmy1ZsDfv7jwJBzO6TcAKZuSO75hghnG2wyafr06GxyZvln/1VqP99RKRG/RZq+rfW/lsoOxbOnqCXzj1Pg4b9C4TsDbot8eLK5hxtYK57fDwdxZxpYNfv3jKOI97MAPpI3DQKnc8llaR4/+vghnxaG6M0MEM5KYbFsxAurTWBzNG6hTHRN8ZRCldKpU3c3SvDByCGTvR1CVoMGNJcHXitE4DjCM+Spk8OBdwpcOCGZNmYQUzXK3FHcw41cOgWxpb3Wjf0c5yBZztZgQIZujPwloays0iwI7sxo0bHRDMUMvdu+jcRyXzkimBz1dtc0ogRDCj3hrLOgXWBLBOhwQziivcXhSvemhUsMpv3gL7iHRCBDOiMY3jSgTjkCQZzHhsUFG5w/2r4fZpL5b276yjRKhgBgXTeGqSMR4xgxlmgXl07WQ5+s4wxZ4xtcPeSziY8cYKy3LVVpK2nFiDGYYzB53QMt5NKVa4rBJVPpAYmAlvDYEazAAcIbROTSD9C4IZWndTGpiFkyzK9S5G3X01ca+Egxn6NljBjLpZHRPMeHzp1pqXci6MHfEXWGO7vx+GezDjPanA8Mr1V8Yh/Wkry84+HY7DBl3bBmuDTrIRVzBjwMJ7ufsP7zUJmuanqXx9Df41M5A+Ag8kZxaWVlkdu0uQdDAjEc2NETqYgdx0w4IZSJfW+mCG79nEqNmBby0yhnV1Sk2VDcIhmJGEpi5Bgxn5SVq3R6faGG68df3sMqd+rh0WzJjmgRXMcHcXdzDDzuFBZ9stnak503o4jg2yXkqAYMY4D6ylYTcPAuzILl261AHBjLS4yesUY/oYRe486GtbIp1LiGDGI3cs65S4E8A6HRLMmOQ8l7voiAEl8smfu+TGJHIJEczYjmkcdyIYhyTJYIbc8MbpcjNJ5hFTR0UY9ta5Q6hghhGm8dQlYzxiBjPGDIxe5jZmHGWn1OrqqyovoiQczPiwDMty55ZJ2nJiDWaMOvH6ylKp3sahOyvodtl6pwgRzOCtIVCDGYAjhNapu0j/gmBGmMHXp+zBncyOudhvMxgVc0LCwYxxHKxgxm2PjglmrI+59WIj7alVWdIynZL1XqdxD2ZM2TBvBp3kSMvs2rjROUozDYcN+ggO1ga9C0dcwYxpJX9NerzA32qv0oWZmfZ1LNyDGUgfgYNWtz2wtMrt2F2CpIMZu9HcGKGDGchNNyyYgXRprQ9mmLww1wnaPYW6zVdnxZbFx87jEMzYg6YuQYMZtOGrazfV2hhvP2of5Lb49IIOC2YcDcIKZtCCxB3MGGDyfGGXmzaMjZfOZhTH7btJgGBGWhDW0nBHEAF2ZGfOnOmAYAZzuePYOz28TY9p6T1gbi6mESKYsQHTOhwiWKdDghlZtxiyTqbPTHMW2hbfWpjfiRDBjPmYxqERwTj/a+9M4KHq3jg+KFnKq12bJpUUaX2l3YxtMDNki1bbhLKTtFOIUhGhshNCyJalkCKlRdpLmzbttEqp/71jRubO3Btvd+be1//t876fT91jrnt/z3Oe85znfM8ZApbFDJ9MitbJe8FqOcFDRTcPHZyPq2LGdETjyWJjPHwWMxy3jxHxkdqrtdNhTqbVmF2OGBczJBAt93k71pbjazHD2D9hXHP+IN2DiiVBi8fcm4eLYgYzh4AtZgCBkJWnxhF6QDGjv3vArdU35+iVvR88LVn4ZgbGxQwlP6RiBsFPMMWMgYQNt9e8MdXPuHJg3N+umzRRL2bI5DQX7bLy1yryefXZ/UeSJBpkhh/SBH2QH7+KGf7kmY3zZ5fRvF8/nmb3Mncb6sUMaIxAQSsColavBTtaYl3MiIcLY7guZkAn3Z2KGdCQ1vVixgf6vl01kyZo+UimPzkT+foGCsWMBDh1cVrMgH5HssCKGaKhSMWMmH38LmacPXWIMU5fmBLmU22V+NdzHxwUM4RDkVLDt/twMCOrqKgQQDHDaMD5q0/nJVCCAy49Fh1mIYaLYsadfUjWqcKDdQRSzJg+b3TL3IfvNQNOvhFS2nZxCi6KGTmIxonBg3EIWBYzNokv9HyvuVeneMxAqVP7zh3EVTFjJ6LxPLExHj6LGX3+zrw+SaWZHhZNafYnS/2NcTHDCtFydMwtx9dixqSCTQtrDQgaSeIqP29rBAfjopjBzCFgixlAIGTlqYmEHlDMmGFV01BYkEsOf6l0ecaiGUcwLmZsC0UqZpiGCqaYcdI7RH7UABn9PLNREi1WC6JQL2b4TS4xGGa8Wjs9x12+tPa0EwoT9C2hSBP01aH8KmaoDTt0X8flrk7AERXGrtbnX1EvZkBjBApamSJqRQ79vypmJMGFMVwXM6CT7k7FDGhI63ox47h+XF+rc1oa2SuSk59/LRiJQjHjMJy65w5ZUttmD9Xelizb5+XYjaWc/YYKaEo00qByVzF6w3RZMruKQXQAP+vOsHUEvJdow1gF/NOGaLWeCLyvmwfRxdneyUOJCLy7Ldhu6WRDdGA42XrYKW/uUmzcoWNusdi/VGvno/M2Gal7+/F+bu7+zm7pYjf1BlKjuBigm45VB/4BHQwCgIHYIoZrMEAKadLMB+ikAc+3s27eJj4p5qhmwRHNnxnvguZCkkPw0zySQ+bl3x767Ns28B3dgn5wX4g9xV3r2x/GMRdAoChQoAZecSwD/AarGExyRwl1Z6D72zsBzgj+3AwC/J/ulEFkmPZju62Cjb0b0LuA9om8v1y9/kalsukt/bir7yulG62yOOworsH+MJctOzWhnVqCBvNANJgFNgYT9QTeuH2SzW2spoW8jCX8m84myTRWe1zhaZ+EXNOlDsNPaGRMkR+eZ5zJeWaDKJX5QS7jsK//rqeZ988kb90/jh6xoiB89hoXCRR6GhXRcKoYGY7X/LppYbdman2pnUYLnqZa+F1JMsx6qF6e01ODyxZHOXHFXlRe0+X2q2h3IIU8VsTLJgFGgQ4JtbnMDsQadpMJMMNueOOn6MkmQdSi8/qntH/GyXG8jYSmFzBNYCZc3PMyOF8foulp6bCWtYDA6LhBp3uxf7K/lr4hjWSsILdx6hzDzXJK+hO7NOKKCv9YSTfcqZW5sGlYnOHZGLhH5jJDp7YuSlwLuPqGA4DEKsCo+xDq6g+BKdiKA1X9DED/YgDpO9vTe7HkkdABgwOXJ/dhXtaxYffPyDbv4vgQM52ClCN0taeKdyX1ma7K9Tmx9uu/PmhuU71HqExco/jtUFo/xYG17b+P+TgEVkSCnQv+0oLoaQlMPKwceM9nrL7tbfGwjtM6/jHR4NWPdZxfziRhyvooUZ9LbSF9Lo8XggSmuZsHpaZHauqn3Fw1dsPxapU/DEzlgLU8QWtNBTpEOdRaYYVMa7HE7RAJKRgMai/bgNn3L0fmqVK/L5cZG0L6qvu0PC8sX+S8gjN+t9+GWyEi6jHBIpclQbkaDwkouUwJWDEhBS4mHCx8aL7jSYtOcWF+8bE1jziPsO5tYOnEcOCe6MCFAwUS0QX8RKc6DdHJGXgNZqrtwfDyIILxguHO+9wVityRmeLV2jmjBpzeVeVymsejcM9AeKlq7ebs4GBoCVyHDg8Qn4RaEs4nxUzcGW7GwOOzf+14Dee1YE+wdgCeB6ywMGzsPVjvbg2oBYwnDd7JEDuyJ7tcldCiSkLxIcCOpuoE7x3qEjRLN1t7JypjFYdTSLZfNgRXvTpfF2+/buzs0vkqpzNM0y6q9C46VPUXU0QDN2dgXulh3/5UfdhPxWuW6ma5TsfJxt66/UeZ3VocvAgOz50u0cB6pwNrYt4ezMG1NHtLB3Vnm1+fBXIVD2Ci5tjx716L3SxdfgWMdldNhXNVou3YgoDdgeTQ0xnUA1+LNnL6hyHDwXI9p6uy62OiJGvgDdzZ+sB570AScR2QARPdwDuxpt08HdXhzpbbxbJG1NCG/vnEm2rSPB6kS/0feqYIxP//MEJGAskZMYpVzvXmKrAD45l0FDs8HMG95tDhAyXNY25qS0vlhVECh2f1OZ96aSgKmg8/gKS5REdIToPT3LXMXtGenqZ+vFTf4fmTpe84XlVy0Vow5GgDHccOpgLFqTzceDdOw97dBRTdEsiAmcPe+sntwZloCfxHtAV/A09TRF7Pffpt0RlKgs1uCelPdlthn4/LIByNXKYRN3J289DvXD3jYbB/mEZ03I3HKhQ9GjDYEHXwf06D2WgVVk6kRVf1M2I4AAZj2ACxkOHFcbt2U6bDmZJ8beg9z1m5akeXrpDZZXqSc3QdBHqtB7h8DlIhDLBOyXDnLnrBrYlMUXd2BJKb9r7DvI3Nr9swR2CwHObONK0NkKx2Kd82UBcZNzLpMC36rwcV7lti5X//wFxG5vlTXew/1ccrCXaRgDkayTxycAPw27wiYZdBuuj4JGonUcCxGxwNwSkMkB0rtM8q3YmAesxCGfNv7TUCoFOAi1AMG95Vl7HvD7RdsrXV3tsU86Fmil9vzqzQlNmzuGf1rOu/C1N2p62/qEkvpBTorvzy91Szpj8MU4WAzDagzL3IPDLHmceZMnNNpft0T+fxncxPtGJ4rGMwnMDkyJ1hvZbpHvbAlJ53JrgpKzb8ZHEKbd+VOZZ7xq9T5Ywwv+5rwx1hOjeinXA35bNkW8ZLtkH5TNlYISEDLiTgZkSFDn1dGVF5pNsQT4WaDoUBNSMSaUCN6pD8KO4ltzozkkEwjlLzjSa7zGk224qO5Nviaj/JyASrxVjepoSFnHqLguT7IpAk3xbBljwTTvIaqbEfpqk40/zfv9NTvrqVE4nvZ8gAMg9rBpG+1sGBx4gHt8wzmf05J/BzYGS2dwJSFnub9lC+zt7DjujsYcdw6/p4t2JObNXLiWb0LNLiO1HlN0QRnpPLMpzNXVSXCCQcUqBDS6rzWOhXANRtiPjTEW4IWCx1B4c24GE8mKkAqBhPAcSFFymZimXRvQ2l196g5xVzuiTzRtyLPu2Xf+eXUG//Q7+UBnc/gcol8CpFXwB3P0XALvR3UbkRHcq5cbga6Fo85ZPakkB33iVHSftsckVH/mUyJxjHchCwvMytImcr2mMVqFZDBJJalyIEWrhnP6iY8XoXRmcdxnZa7FbWY7g5MRyUwZ9xV9amrNRx8mDYMtwgTBb450/TkyHMNBA0LHALoqXT+nZT87QyNP36k07yh3atzmP1giYSD7sa5DF7AYc27MVFOCFk6ExtwYyYmZGxXd+GpxRvHs/KtKwYTY3Wv5CSusLQk1MK5ltxS9F+mR9SMF0cVopLHQNVFgFmoKIf17p0jnBG3XvJsLn2L3U5F+OkmIUtFwd7a7CY6MQ9UsFlBCNoQDdgOAKfsrZ0IDpy3KVL41JrndmXkKlEamw9wfXmIfktSI/FjaZxtnc1YgBpfy04FQ7ihaBRgIiRFM1j/YM9ReWx/sFcKYWsf0CXMdjtQjDtglgfGaVl7wbEAtD7mYMlp7142mdM0mj9b1JKuj51hEGmz+3ucthHiMRdiiIJeoGEAJjzQjRrgYSrd1wDv9oiuqqTSEK/EUnWiAFM3my6pVLmDvHwsNzv+ofviC1517dgPqdKZG6VyL9VafnUoq9EWVu1sNV5tAALdTEUVEpCVCk4ulvLSDK/lpG6IBB0tb5LS0ns66jzv/ksj2khgck/RAuHfKZSrHiaDRdPL4969eLzPhrNNzNcbrLFpzWcK+Y0Z09G1/P9ScytAw5gbUbBEfjkRHCVuX16RbR0cHayJVqyajNd26wW82qVm/pIU/UUueUHVs57acv9bNyr+eDVrpYHAF+SiQP0+84rgBLAraKxPLEtOF/qR7Z0Z3RAzry3Htst3H+xrzXp5NpFe9ykDvn9Ma0L7W9QAuIP+9tDQKNBcXAEKhHcbBvXLVp3ANtHmIvbTGfgKZQrdbdr2TsVcpyneNmMZzqpnD2N5sxzIGVf/91Mp3LxhuGmdWPJifVBi8+JzNJAQSTAVRBEuhWLP1qK/WecWrcgnIEdndwG2dXvbA0ek9eQppnfetPmdtDENX/s6n8aL+PyWb5M4WWmW3lMX+5WKt6uBTC4Orb7M1jG4L1zwa94r6a4CT0gSH+kceJaCOLXcRduxO9XEz/UYDotrBqA07JGj2MEmNEjXbnIdMyVL+phVx1uNd17eQsCoDC9j2hmvoR7DBGFkVS+Aw1u913iKjdnR+JGr/UbNhOtnR1dnJ3A6XfXxo8QacbPevEF1Jjd15rP6L+8Cfd03DDSr7ZucHfhoJqyvBBgArgfhHssESPAx8lBrEfY6NXpvXm+5fese+Zul/rolQxUcD5/fbTGAHAO7gZ4CjfUJTzZjLM0b/br3tyl+c6Nv4uot1vWXhXLV6f7jR1oqjTo5p9+F4kFIOc+UM5yXs4ZBwzNWzCKqDwxxrLujIAdll3/O8tOH3x0985IS7VkYSPziW4XOc/ekDRHsp15N2xnIK0wk6KaoRFITewf2yoai4LtViPazhRHtiOqdWcHdYftNvzOdqPPFJ9YM91LO1LOQlfvntdbTtstQbLdEiTb/SmDBhiHjGgcZRwZp5s7OaVZ1gEXLT3c1sIs6kCTP8jCL/MWPBZ+26+jPgrnsQKdGBmsi0HsIQO0esR2LyfpxxIBAWgfsyxbRPbDXFr86odiSiu+mf4Z0I6CAqaICqh25CE5BJg8pNvbv2Q7vJf/27+gu5A6bf+C4tJAkzCBN10GNImwmqA8G9DUi8C7KAU09WY1QTEgoEmU1QSlSICmPgTewBXQJEbgvV4ENImzmqDLdECTBKsJWikFmiTZvwsy3wea+rKaoKkc0NSPwHs5FWiSYjVNkCZ/WacwUeNIbmHj27nvrwBNf7GaqqMbbuQqZqtHql80jRrCaAGapFlNDz5cGVw7QE87cohBYsTtL/VAU39W06pow0GBR4ZR9i6I+rhkS2Ec0DSA1aSau6XmCWG9+vb4uuoxOY2HgaaBrKa79+dNz7t3XyNj9M1mPf01F4CmQawmy6t61uaMweq7JR7KHpAZKwM0DWY17b14fvpTmfu0gyfoEQXbS78DTUMIvLMtrl2DQwkwuwZ179w6vuTLCH3/OfNzrj76lMCjo3R312AuXKfEzTI+1ENQYhGlY4mvXHasJ52YdEdnUUmVEgrr+HTEdfwFHcsjeXCa4/TYKWhHFNixU6bxSMdOvY3j97FTE/svcG7xV9aINPONWpM2lpNXwObYKcN4pEM8FsTj4Oyc4uJiARw7NfkUY8+7AURKbLHRuPBDopxLiVgdOzUJ0TpD8GAdgRw7VXQ7ZIHVsQ16AcOnPn/rdp+z/ovVsVPCiMYBogn2xiFgeeyU6tRqlbONo/QjdBbq0C/ocR6wiPWxU3fiEA90w8Z4+Dx2augFieTH9aPVc3PE50WNE4JkiQI/dioH0XIxmFsO/BDfjp2qvVuyVG1ykfaJbIJn1iZdzowOq2OnmDkE7LFTQCBk5an5BJg89d907BR0qojxsVN18UjHTiXHC+bYqcl6BG8h0lB62EtZV8+Z8rWoHzsFXT5E4SilS/FIRykVx/Pr2Klv0xp6G+5Q0w2c+2Djypv5t1E/dgoaI1DQKhlRq32CzUOxPnaqAC6M4frYKR7VL3bdERrSun7sFLQ4hkIB6TicuqajhdeEHZMmF8U7vJu7WYzCWTXoOMqivTDd9WJGkdCvUzCAYcINmJhYeoB/ZbiBNyCusmQW0NuJJXsPd/aZU6xfxGp3J1pbOhGtgNnmWhcXB3vw2CpnoBH4fPst1zqBHwX30TuBfIADcyRiXlQmqtuBRwMxJ0FL6cuJLmxGk7kFwNnW1oHRsQEL/BmPdc5ER3BjdteKLRtfLGqeFiSvkUqY8bZ38Q5/RNm4iy2QH+hizFAD8jSZ05XAiMJrATwVGJlkKiq7A1P1V2fKCO7VZz0Q7/0QeT/mvRlTo+4PeI7cChXOI756M+/Bg29mXv5dVFV4P3XUeMZN/ciRZifHLTx29Q+j6lRAITFQoZ28oupIIOYWcir0u6qHHIc/spIeUDOWYHAQ48gzwS5BifHamcLTMrYdfaqK6fIPqIpdBZIqgN/gZmbWtLA7hY+ZOquIxm7g9BnsxZzWsnfvHBeYs+0t4Cyb92bVMDHVghmHhtIz59oSFOXInBMyCXrHjbhJlk5t/DBd9Skk03mdwsR0faycnR0Ylp3CZHcmZqMMwI3E4JDAriXarwLDO8KC6vXBU3rrRWdpBgZ9vntr16hCyEko4P24g1D7ZdTny/msKMMT6/LOY0aZbi0oyxuzzrFjAVndESYhN5IR7pdCP/xq9KAYNxrnyf59WDfmLn+zG/ghDjPYwIojAxFH+DfiTGgfpX6N4N1Rp3/qubiQ6Sc141+eixT725eTJhfv2LnBTQX+auKHQsw+DasQ0KdZeVshASZv0yRNUvw5/xop9b7skbqYdzM42RcmnubiDBKk3DmbGIzOf/9agLL/9Xkb1oDnYQfknbZ2xI6jMdrPAuhauiQtm3KuSO8jye9hZtq8DfUzYZ+Wm9Tp1NhFfb2KAAWrAH0t1cGSFkRfaUBfhUquNKmb20kH/XosEEpt14Lnq2edc1kQ23aYsl/07zyhMS2cX3UuZgoeOsTrxIhfLb9LoaCB8Q9TKDtAPTtQvdHqPLzzNTAxlanqVgrVt7372jBs3Ri880v9gMSWknxTUvSDaaPXUIMTOZMlDeYHuZMl1nW0eyf4/tWVSO/vVYl1stThmd1IlMBHtne2sbdu78+8v4gsiuG7ZU2B3qFhhnc/eVRrc/oq+wbcvtrRwg9jKCAa49YZXKQ/hO6sBynrOTl7AMOXpTVYmVaYOh+YsoL8uRJx2nxrO2c3GyXi9Pnurm4ezH/wzlZ1Di4yLM0sInm/uXZH7pof52ZIcfAXGHmsd+DuNp2a+GGsgDNIxlLFxliQnsOsu3QnWx38axnBaa2blTtCD7rwyDjEXKVN47DvwEdXt86p+ZOp8h+aIzuXFchlgDSjlgv6y600aavsXpbKiuQI2ZZE44tv188O096u8/jL9TDDBEynvaAAkZUsAW7xEAAMLd3KRNlDmbMjkFDx/lrqq6SQiNfimkmG2ywUPN2LIEMZ84M8hrL26/wQoPwMggBphmfYiWYR4d9FO6kEm6jt6P9OP1o8y9VybtEogdFOU89XItBOwdVcmSXKtJP9INXqzfZ9dVLuvA2jzfrZHwe0ExGUBHbtuPYcJkGfE9m4f/++AGgn++Kv2o1L02lJEpS5Jd+cTHBBO3mfQ7LOVDxYRyC00yPZvb0+HzxATrjtGtqyZMZbXNBOD6uRjANEE+yNQ8CSdvK+2XYqU/UmNUA35I5q/dbZuKKd1BCN13QW62QXR7TTu7mizfExa/WjbqS7LXTd+BJj2inuLJLlDDC3HF9pp3Opt96aZtZTS4aWjVZzmtOIC9qJmUPA0k5AIGTlqcWEHkA7aYwclzVGqpdm8Rmr0Ny3G19hTDsRL1Qi0E4uNbDFUlRpp2TzzaP2zVam+DwbL3Si/zMD1Gkn6NwcBYJHGlQOluApr+EqlKJEO8k+UtlhKJSqkWEip/Z+xqso1GknaIxAQSvAjxC0ItYINOZiTTuVwIUxXNNO0El3J9oJGtK6TjtdyboeGHryIvVQxEiRWKu6nyjQTifg1P2PdvpHtNOh4raGIwcOkwscRfccTHuvLDDayfs7Eu3k/Y0ftJOnmOTa12dHa+blj/Bc3H9rLIq0E7HV+sOHGYo6J1c/Kw15Nu4UCrSTy3ckOIT4XSC0Uy8Z4fQnrlRa8oBy5z4id6owp51qvyGpAvgNbmZmWNFOyx69WtBW2KKXmZ4immZtjx/aaSqi6R624mK5j++0k2GrBs1X25W+q+kN5eTrIw8wpp2YUQYWVwGijMBop2tiG4ZPUV9DPzh6YhGl4k4IDmgnZrCBFQcINoKjnZ5sFHntVZSsEWJ6++GPYc2iOKGdpiIqBPRpVt52ktAjaKcZdQzq/EXi2r4FhwPGbxoew3faqfwnEu3k8kNwtJPHq14uq5rHqKVVaGRT7LfGoU47QQMjCrRT9k8kZsHiJ8q0082/Di+S2qVKT2yYoWhSkpCJOe0kjfj+5T+wTpb4RTtJpnm0Hh1LIIfcD9nywVDuAC5oJ6CzIhiDiI0xMKedys/Wa57Iq1IrVrV6f/7arXic0E61bUjG8m7DQ8/hJ+009oWj2qrKLaSwkoNDJhDGQb/4QNC0EzOQw9JOmj/Rpp0s9r2Mr18xUi+579hlknpzjmFOOz38gUQ7AaEFZdopQFNfIXDsFXpoxNwBls90J2JOO4khCZB2sI2daJYS/l20k9vtiNTiAbP1D3889c188tEnAqOdLgghne30ncDvs52aWyfu9W5bpuNdYqvgWjrsDQ5opzNCSCdlRAnh4ICaGzduCIB2sml61j9H/xA5zML0zrX5heK4oJ08EK1DxYN1BEI7rZ+8fvtgkySST6WJ17zqjVRc0E7jEI0DRBPsjUPAknbau5jcqkeo0U5YJjV0+sT4y7iina4RkIyXgY3x8Ek7OdSpi05+Ea1/KCrG9YmnCNa0ky+i5ZZhbjm+0k52Sz8NnqIXrF0asqLJTjH7LS5oJ2YOAUs7AYGQlaeWEXoA7bTEx6lAadcheiTZ6mDOz/d9MKadzggjne3kICyYs53cyR7rW5OUKUfmD/nWkHfxBOq0E3RujgLBc0IY6byiMGF+ne1kf89Id+ZQX1JxsMiVqHopEdRpJ2iMQEErB0StNIT/r852KocLY7imnaCT7k60EzSkdZ120nAZb1ggYaS7/9KtRj/6bAUUaKdTcOr+Rzv9I9qp7K1ItcanCzo7+6ncE6LrLhYY7XRhRBUC7UQd0a0vyusi7aRdSZ5iHfKeVDS5qGwk6cBZFGmnT8bWMk5NaVpltNyM9xM+/SlDCsIhZ0CFYOGQqBFcIxA/aCezb6cvPXvsSY6IeJGXe3hoG+a0kweiKoDf4GZmhhXt5PpArf8pGS29nBlW971iTyfihnYah2i678MxMZ3AaacC7yGjWupH6GzbdOAyafv0dIxpJ2aUgcVVgCgjMNrJYq/Yx/BN8poxo5cEFj5SmIUD2skDURwqRBy+0k73DlWcnFX9iBrglX2rzJashBPaaRyiQkCfZuVtFYQeQTs17XNgtAi5qUWkjPaLvxW9n++0k8OoKgTa6cxI2Ak86rRT0zXlhLqJ0lohn91zLg6lTUOddoIGRhRoJxtQPVhmYd6obqVQv6ed1qz+Oqu4xlJt/xu5c0qRWw5jTjsNQnz/1yOxTpb4RTutlV9f7vn+Ksn/o5GHiMTfTrignYDOimCMKGyMgTntZGoyk6p4N0rjiHyO4iZay2qc0E4eiMai4qLn8JN26mt2a3uvFfJqh84lbf1R2m8wxrQTM5DD0U7pyqO6l6X+nnY6O6O/tKh7klqO8UoPv5lfIjGnnb6PrEKgnYDQgjLtVBnYssahzZCck/JGUXTK6XWY007BSAKYmo9kJ5qnCf8u2knaaJLi/OjnmntLe2cfORuiJDDayWw0Eu0UIMtv2mnoMerJaoV3tJSzcns2BF79jAPayWA00tqxwmgcIBuXL18WAO209lRNeNJic1pGZu2X4V4r8UE7ERCtc0sWB9YRCO104eu1trdFo/RSRb6cdntmVocL2ilbFsk4AXgwDgFL2ulYPvnJNQ0PjZA1Igs2Wiym4Ip2skA0nio2xsMn7WTm3yqZuE2TfqyELN7i8LgFY9pJGtFyjaOwthxfaae+dgMmrKnfrhE9puKijuLCg7ignZg5BCztBARCVp56htADaKe/vrvXvCVH6MdPMl0hveClHsa0kwERiXZqGS0Y2mnMCuGTbkPGqR//0TdA69q6CtRpJ+jcHAWCh0JEIniIRH7RTtSSfotHWIjopn8O8gnLjXyEOu0EjREoaNUyGkmrWsHOErCmnSrhwhiuaSfopLsT7QQNaV2nndY0vsnrsySc4lNmlnqnb8lSFGinKjh1/6Od/hHtdKCp16GrrR/puaPf7zHav3qQwGgns1lItNMtFX7QTkeeejrEfKapZ/gdfpGn8WwFirTToo0PP+h7bFNLtJim4rmT9AgF2slgFhIcojBLILTTtMrTEyVlh6gHBUy1eLhe5gfmtBMBURXAb3AzM8OKdprS77LP368TSQHVuxNCv9jL4YZ2ylZBMl0ANqYTOO0kkZGVqTKzTd//wfYXuUa9lmFMOzGjDCyuAkQZgdFO2XU+WuMZLzSP5rb2u3MnKwIHtBMBURwg2AiOdmruo2oXpPdOs2SOXq1jpNlFnNBOzD4NqxDQp1l521lCj6CdzKYOySuye6IfPd4qzjjI+DrfaacWVSTayUBVcLTTDLE6U5eXfrT0g0IpTyRrGlGnnaCBEQXaqUkViVmoVkWZdjK5u1jmcOU43WiD6CPZS7dex5x2ikN8fy9VrJMlftFORq16VQpz6yhxaxgzJe1DKnFBOxkgGkMBG2NgTju9Mh9/9/HlMPpOJw+/XhMfz8AJ7URANNatWXjoOfyknfQWid0blzmGkn15otQzx3fKGNNOzEAOSzsVq6JNO4V4peUMMEjUK2me+lexf7Mj5rRTAFsAnrSTgSratFNx+cYr2+kSOoErI9s0lK4NwZx2GokkgOnTWexEs5rw76Kdgs2O6VfO6Kt/0q1hY6ij1XCB0U5P5iDRToPm8Jt2Iu5X1SoJ2UzKi4rRzz6z+QcOaKf6OUhrx3lzcIBsnD17VgC0U9Xuxy0Dlk3Rz6Y8+6S67zkFF7RTEKJ1bPBgHYHQTilXTBRNtLZqRvcOqlqm1K8eF7TTPETjDMKDcQhY0k5bD2pWuQ+M0A+VeJDb+DVnC65op9ezkYx3ZjbWyS6OaCe7Cy8mvPAN1d62aLHnqzFORhjTTlGIlvPA3HJ8pZ0Sbj7+mLHwJOWIXuYk0UFT7uKCdmLmELC0ExAIWXnqOUIPoJ2WnBVyqlmUTc2ZnLHCdaWsF8a0U/1cJNrJd65gaKeT1NS+4r0e6u+WejPkxCPz6ajTTtC5OQoEz7W5SARPxlx+0U6bRe2rffpM0c2KI01RPrvEAnXaCRojUNDKF1GrZXP/r2in83BhDNe0E3TS3flsJ0hI6zrtNM6qWjoqq1EtpXrk1Ju3pIJRoJ1q4NT9j3b6R7RTetUH+TJ/FWryy3iL+OvahQKjnVyMkGinJkN+0E6mSX+lX05JomeJuw7r18eJhCLt9IFQqH715lvNHSO0NpTWPJ+EAu1kZ4QEh6gZCYR2Kv22Wzzbr49WSXKfJTGP3F9gTjvJIKoC+A1uZmZY0U4umzZsLHIN0j7kkHLo7895gbihnaoNkUwXh43pBE47TfGKuOQeZUg5+e6URngybRzGtBMzysDiKkCUERjt9O7FwJgVy5zIB2MbZScNGKiLA9pJBlEcINgIjnYSPdE7LyZzot5x74iCigbdozihnZh9GlYhoE+z8rYLhB5BO90Tela8evJdUqDXng1h71Sm8Z12kjZBop3sjAVHOwX2URzuuzNBI1xZwX/HWjlT1GknaGBEgXYSM0FiFh4ao0w7rbV5f3KudQ1lT0XOuqwWOTfMaadCY6T3DzbGOlniF+1k8frFCucpWdqZE2YGrTj2yBMXtJMdojHUsDEG5rST4pQBxcsSbUjRUY0blHs7peCEdpJBNFaTER56Dj9ppxup48RKb9ZQsuRCT1n+eEnHmHZiBnJY2qnOGG3aKbZ3X0nVC8lqh0e3BB0YfeEE5rRTnDES7WRnjDbttKh1IyGpbjMlXPneYtnaTymY004zkQQwbTNiJ5oXCf8u2ikrK26h0QkH3W1ZEtp3Sj5pCYx2+m6KRDspmfKbdnKyOTBvwdRz5JRJDZty4ietwQHt9NEUae34gikOkI2ysjIB0E7So5embp5QTwuPWSmndsx/Gy5opyRE62zCg3UEQjv9EHpWqV61XW/vrvV9pn03jMYF7WSMaBwlPBiHgCXtZE2IHaUzPIaSulTt6qqD5lK4op16IRqv3gTrZBdHtNOGmELL6Jof2gVV5+O+JEz5jjHtlGeCZLkgzC3HV9qJcNtpUl2WHTngVabiAH9Fe1zQTswcApZ2AgIhK0+9ROgBtJNh8WSSknQNbUe578hgz1ENGNNOHxcj0U5RiwVDOw0JFV14b+Rk/VD56j6E4CwT1Gkn6NwcBYLn9WIkgufMYn7RTgqGZvvG5KXQct0uVi8RHuWCOu0EjREoaBWFqJXH4v8r2ukyXBjDNe0EnXR3op2gIa3rtFPwz0cDX1ygqu98cG3/uWdFmijQTrWoqdtXgOpusl+outWxWGvv6wf2T0ReqHdSN1+o7mq8012Sz3RJ7T7iok5AkzCraazqlJyR1YGapasXqBkNTw8HmkRYTeE5L09d6OdOjjxyZGfhooYBQFMvVtPtAT5GYxYlaJd+P3tCLWo+N5zWG85c2yadUUqQfqS5bdNpaZVVac9QMNcVOHP9B6f9Izhtco3RKMeEYxol861l28LHyQgMTvN1RoLTejnzA05zfdrPYv5hV92IPOrH1ZstX6EIp83ZZr6AQrDWypJ8uX3V7vFpKMBpm5yRWB5jZ4HAaSuHGMlufBlJLhCLychooJZgDqcpIaoC+A1uJtJYwWkl2tm5JS/DaDGzVBeu3tPWjBs4rd4JyXR5TrhYneU7nHYvsnn9lY0LtGPSaZst37/fhzGcxowysHQREGUEBqddCha/KyZiTd5vSNIjqxdyJnfYwGlKiOL0chYgnDbbRXxP7t4Ktb3eq67Vz1E2xwmcxuzTsAoBfZqVt9URegScttw+k67ff7Z+vNnptMNjqnbyHU5TckWC03xdBAenXc12rxgUGKKe6m1+4qB0HmcyjwacBg2MKMBp41yREJPvLijDaTUafUfKLQnWy8vbneXl+Woo5nDaNRek989wwTpZ4hecdnCa+fqnx7T1gqyT8xPLV3B+9zJWcJovojGWYWMMzOG0fP3alHSfeO2suOnzzsZJquIETpuJaKy+uOg5/ITT6pN/LE852KYWNyN1UtbSvJQ/mSqjgCYxAzksnPbWBW047XV+aa1I9htKVN6UmkSfwmTM4bQTLkhwmq8L2nDatM3SFyZtLSX5Sy1MJFerQub9GMBpBkgCmA5zYSeaVwn/Ljjt9KMh6VZfd2ifPOmrZ2q9YrnA4DQZdyQ4jeLGbzhti/zyrKDvd0g7HS8VfC5cuAkHcJq0O9JSf6MbDgibwsJCAcBp2268sUh9dY4W2udzxiupOM6v18IKTit3Q7JOJB6sIxA4TUfZKHSDiLJGgEr5OFW6+mlcwGkuiMah4ME4BCzhtC/XVpV5XWtUD5x54FPvFV8+4ApOIyIar8UV62QXR3DaPdE1pBuXYvTjH9PTiBJFnGfHCB5Oq3VFslwq5pbjK5z2fNlEsVRLUXLkwzEpKqJ7kv+cbEEBTmPmELBwGhAIWXnqNUIPgNPGihuJKcruouTcvDaYMYCggzGcJu2BBKcVugsGTiM/dn20WDVDr6T4Y7TdMqsc1OE06NwcBeBKzAMJuHrozi84TXJSX5L2oVua+SLZFXZqsfdRh9OgMQIFrQrdkbQKdv+/gtOuw4UxXMNp0El3J3wKGtK6DqcZEFY80Y9dQkuj97+sEmsljQLtdANO3f9op39EO518lLz5Y/A23dLZ47OW6Ut8EBjtdM0PiXYK8+MH7VQ5/PkWcRETWvy6OwvWictPQpF2kslpLtpl5a9V5PPqs/uPJEkUaKdaPyQ45ISfQGiniiFSLkdKe1EDPk7/MUzKbzDmtFMqoiqA3+BmZoYV7TRJ+NKP5a1F5ILH80oVjq+vww3t5I1oOgdsTCdw2inb1c0z+roYNedDhOT9D7o0jGknZpSBxVWAKCMw2ulHWcTTRcvv6heU+L3cdLJPDA5op1REccL8BEg7vWGs9tpikk8O8PpKSu3zdSNOaCdvRIWAPs3K224SegTtlCE3K/ev8W0axwJ35SvukO/Pd9op1R+JdjL2FxztlKA11SrwjS8llhx6uOamliLqtBM0MKJAOyX5Ix5F5Y8y7bT1td7W2ydVKamvlhYdcZqB/VFcmxDf384f62SJX7STzsfXs0SPL9c9vkTNSSNN/B4uaCdjRGOoYWMMzGmnLY4DLWouNmmnp5upjFj+1xec0E5KiMaSwUXP4SftdH9G47ZZRfG6BTr0mqLoob4Y007MQA5HO5kE+qNNOzGuKt7MFF5HTezd+7CIe44w5rSTC1sAnrSTsT/atNM182ULy1ef1z5uMMjQSuyJIua00xwkAdJk/dmJ5i3Cv4t20h0oXaEfYUJP3krJXfci9qbAaKeYHUi0k8oOftNOSwylTqtHDyMH5+yQZ7zPjccB7XRwB9Lasf8OHCAb2dnZAqCdRvrK3pL1NqXGeprFtFVEVuKCdnJDtM4KPFhHILRTrOP1Ph+sHfUSZSfaHHPULsMF7aSLaBwVPBiHgCXttHtB886k2VZaAbuq6s62jYjCFe0kh2g8KWyMh0/aaWxTYrNHlSF5/1ylmnLxE+8xpp1a/ZEs9wwX0xS+0U4OS530H5gaa6Y8nDqpfsP4l7ignZg5BCztBARCVp56m9ADaCdPGVlxxvE39CBt/xvNmyRlMKadhgcg0U5vuVNavtBO9mXnfux4tZZWumeAz6u0kU9Qp52gc3MUCJ4hAUgEj3AAv2inC0SlsqNnX6vvC30TT3mjMA512gkaI1DQ6u0OJK3uCHa0xJp2ugMXxnBNO0En3Z1oJ2hI6zrtdOV0XerFWd5qmaOi+2x4L9OKAu10F07d/2inf0Q72R2Wi6/1XK0fvGT90g8J1o8FRjvJhyHRTs9C+UE79Tt9d//roEJ6jH5CevDhTcEo0k5+k0sMhhmv1k7PcZcvrT3thALtJBeGBIdIhQmEdoo933u75+tF9OioXs3HnOQ8MaedWkORVAH8BjczM6xop+HD9BZG7zPWPrT87WXDwFMOuKGd6hBNV4qN6QROOy0RDqv+66Aw/eA7/y2h2s1UjGknZpSBxVWAKCMw2ml3YP++lA3yugGRUbr0hPNfcEA7MYMNrDhAsBEc7XT+r9efJSqLSAXFab4zJmzNwgntVIeoENCnWXlbPaFH0E7pM+6XSCuoUSNI471SpPum8Z12ag1Dop2SwwRHO5EO7HpQFLmPtF+ylTFt8sQK1GknaGBEgXb6HIbELDR0L4X6Pe30mHrdRTL1Ai0s/vNWsWXv5mBOO11CfP/iMKyTJX7RTidPkQgyux6p71zSMCz2VM55XNBOyYjG2IeNMTCnnexVqfH7/36jHVg558vb2QmrcUI7bUE01mpc9Bx+0k5W4rQtyxTuUYOnl98t01zogzHtxAzksLTT3W5mqb+nnU6VHBaaliKhd8xnDOmHWJk25rRTBVsAnrRTchjatJPJq4VnA+/b6JTtX7tYbUxZMea0UxCSAGkuYexE8x7h30U7Td941enqhXi1sskRL+PWPBwrMNqpaT8S7RSwn9+0k9Jj6zEJcb104o9ta/25WlsDB7TT6/1Ia8e39uMA2UhNTRUA7XRgj1KT1ixDtb3yezxJC0JP4oJ2OoNonWw8WEcgtFOfQ7QxSjEzdXyd5b5a71m6ARe0UxSicQLwYBwClrRTfcXS1J87bOkJG4Ofbzk77hWuaCcPRONZYGM8fNJODTGxRy1U36jFHb8eLhWh7YYx7URFtJwq5pbjK+30vbXcfqxGsGaMVL/JxgOLz+KCdmLmELC0ExAIWXnqfUIPoJ1qU/rppnltp4amf+2rHHLBAGPaySEciXZSCxcM7eQ2Xu64SbK3bkJw6WzxiT5PUaedoHNzFAgeu3Akgsc4nF+009y5FzZv7fVSK/ToBNc2ofuuqNNO0BiBglZqiFophf9f0U4P4MIYrmkn6KS7E+0EDWldp53mSN2aHdhspxORoXG2gUSbggLt9BBO3f9op39EO62KNhwUeGQYZe+CqI9LthTGCYx22pCARDvNSeAH7aQa/vCzPmkKbWfgscJlYseMUKSd7mwNHpPXkKaZ33rT5nbQxDUo0E6eCUhwiFWCQGinJv/VYr77v6jnOpRtulxuPx5z2omOqArgN7iZmWFFO2lMrL2VtXkmJc85abfbtnVrcEM7ySOabgA2phM47TR/zgqipexCndC1KxclzmDsx5h2YkYZWFwFiDICo50mjb8+YtkAIe1SskxBxWjyVxzQTnREceYkCJB2sjyUcal4zALqUV/d8V8a64g4oZ3kERUC+jQrb3tE6BG0k2rulponhPXq2+PrqsfkNB7mO+1ET0SinVq50yS+0U51e9L9lq5xou0Pay1ctk9HGnXaCRoYUaCddBORmAWVRJRppwDzvaT+ymtoh3LCRj0K/SqEOe0kh/j+UolYJ0v8op0+T6kgbh6pQU1sNG5++uCpLy5op9YEJGM8w0f6I3DaSf/HiieU3X9pputTfI6bH96IE9qpDtFYpZhPM/hNO53Zk2MkN1SNliA6xMj99VB7jGknZiCHpZ2mJKJNOy1WMI4RCSzRPNZY0eDlttQPc9ppCFsAnrRTazcz0d/TTtHP6/uYmqdRwj/kOU0m3ZiAOe30MAGJdjrTkWg2EP5dtNPd+/Om5927r5Ex+maznv6aCwKjnTSSkGin+kR+0055ay7Jnig/pB7xvWjqkvDmDTigndSSkNaOlZJwgGzEx8cLgHaiyovd+qSxTC9YbmCvNwcjSnBBO8kgWqcXHqwjENqpok7qneZlDe2oVSseJBY/9sAF7dSUiGScemxmGjiinbwa6dH3Gq5r7FbNW7k8rD8VV7RTNaLx8jCfJuKIdvK7kVtFl63XSZnvr2PgY5qAMe0Uh2i5IMwtx1faiVyyvvys8lPtPdahnk2R87JwQTsxcwhY2gkIhKw89TGhB9BOllf1rM0Zg9V3SzyUPSAzFuuzncqTkGinsCTB0E6rfmQVL194jbS9YfSTjBPbpqFOO0Hn5igQPCeSkAie1CR+0U7qFz5pazTF07abNdUfHzGhN+q0EzRGoKBVGKJW3oLNQ7GmnZ7AhTFc007QSXcn2gka0rpOO+29eH76U5n7tIMn6BEF20u/o0A7PYVTl2g7tiBgdyA59HQG9cDXIs6qaW9DhoPlek51YZaF4LrwQBJxnb0bg+gG3oklIO898C1tTjKLJ2rG3Ah6NtVtiByPB+F+6d9HuHO1+0P9c/UOvnXNvuWeMuIPe20k+EUW7yrbx2VvrkwJGBsU3lWyJH+Ge8mXSuww6ifWTEk20u//4dt5P9xKTh1chSC50mB2KvQc95J/NPl6akegN81nwIsar+dFI3Ar+YWpSJJnTGVL3oh7yUdmWx0O1D1F2nNP3GDz/vJRuJVcjIYkeSOVLfkL3Eu+XkfhkoHvXn2/S1K2ah/Fs3Er+Xc7JMnr7diSv8S95DrybnQp8RGk7Ih+tqt9n6XiVvKgbUiSb9rGlvwV7iXf4CB31HO1gmapxKlr5iu/jsSt5EnBSJKHBbMlf417yW+3rL0qlq9O9xs70FRp0M1JuJW8KQZJ8ocxbMnfwEk+I49OnqNoTinN8qbtbMq6CSmIAGK7OTsQmTSnO/caY28YoVU0vYCpmHU7LchauWfdqh3YYm4dWOPkDPwNmPuwNip0bf3RRW1R/u595RoppeMuHitvakZ6Yh4lHI72LirtDUyis82AdPwMmQf+TwS3rptW8gH/t5qft2SW3CvN8GdG8dYrGcko4v+vvW2/WKQdphwXfahhJxoi9Ie+6AIoFAwq1EQC/gFVqKVdIa6aKluiLqJ/Y9Q5fYi19kQH/WsyiPEo81RxjXZkgbP0EM2T1VKk25fKNDnJABhHYV9Hu+Jans8SisirHkMEWpsWV3KxId0UavhiBrhSylSIs9/xVmjZ+5XNRktNtJIeua3PiPUv5VzZZt2Me2Wb3cAPjQwWI2kEdSbhf6AREwVjUd+ATr/zotarDcV6V1vJkRufTSmtqfrJ2RfBm3ErxLrMD32kTZH0cTFhVwfewgX+iW1DZTKJIpr55KZvDFlbzsAvSbV394DdegZXsh9FY1i6r3Vr3/rVziq1R3cH4G5dC+7K/Ye9SywbS81XIs0ptVl2HvapuHHlTo1dxZXBnaBLAR0rAB0fQnV0Ac9NWMIV1ruJK4uTLd0ZTAF4vu9xvYkfD5w5rb2LsWDkvWGinF/J1wt8Ja4Xbb/6u/gODXp/yiYDUhFBqSKB+F7OazcMIBVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auVasezqtUp4cGtuboSJm7juASYAD767p5eLG6KgXMyvNZpM5Vy8ETb5JF7B0AncYcOkUkM/UidU137G6ElfX7DXtI0nqbC0lUUXljlDW2NMiVHsrdlt8Y/TIldNMqVmie+1/NEpwQkgsSq6dz+56vyVqM9oztXZSnAimJIxu52W+6iKF6WOdSelXNUdeORUvDf9k3MBA59ZuZBxxRoDSJ3h1XtAO5YbdysmIHTmZLW85eJ8UcM2V1EZ21zwQ7Wxwgzr3jw7Z42+KZgEI5m3EStG4XLOxXbBuLXsP04D4CygaPKE7/dKqR+W0QJ0IGeNUowJlJ0w3G2Tns9SQ5tVRwTEUUIPVUZsIMGNoeOOn6MkmQdSi8/qntH/Gca4lSPwKT9yr3nAz1CG/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKXJaMUxKpY5XiOdgHtM7v2Vv9q6KGsqOE6sBGS9xWtRmwI62fLKfh07vNirjezoJKED9lSu1as+zMs6NuyeEdnmXRwfYqZTkHKErvZU8S67XQimXVKf6c9cPUes/fqvG5vbVO8RKhPXKH47lNZPcWBt+/MwH/d34WPgL62ADuFmb2nlwLsbtDbf36VrWKkTXa2SOfuBO2cElzBlfZRI4rKGEImrFwhBQgZ0qPzTCgNgTQJozakkHommAzjqr6jspJEQWhoNVX3rN6FvvN4ekZ29RD4nZsNoRObWiPxbjaBhCAWNAJ9G0Ii4vJLlgB2OhBRVB7XDRGA8/RUAeAfU6+GDpmiOpx7Q9RPLNs7lPOJPtP023AGVdR3tgGqQz/KVFhI4MYHocC2PqRIroDbDBdQhDbs1Bsy5rB7/9+OyrOp1nAdKCpF5r7/3b8dyeEhJkGhv4ijTsSgervIdzwV6IwYwf7ZhZqhMEskRxLxcHOyt4Q8gCM5JifQespcackPN++mkO3sh79AVl+2qLTr4NYgtiMWVBJmUSrASAw5uLNXf/yPV25MVgSs/gfUL3cEk1NnBAXh+MGoAncKWATwFezMd752fV01V7InpSZpHDgYdTv2aoSKAvUBwpigHCRsa1BQf/pEpJM0BKRxdnJ0YTh4CN8gg0/ZSycb1m389BU/1ze6tX0/zCiKnk0YfFKqZuxT2Hbjn8J0b0baEWEkl81AHQmlnS3zsyaHo2O19YWN9/chJ407vr9+6SwWjUER4CfX/Tz3Z/y8en3nF6pui7hGhH5UJN7e/wJH/uzRD/f9zT/Z/kQdhDWnFA/SKprzYSv458zVG/t84oAri/196sv+XXz/hbWYsTTrxd9r160+FKDjyf40hVRD/b+nJ/k8bP/io5YdzWsE38u+OsHhch5H/OyhD/f9rT/Z/YarLUMtPmuQTtspZm648JODI/6unQf2/tSf7/weXA9EFS/LVst/XLf75Tm4yRv6fpAv1/2892f+HGL4MeCtXpF6mW+Y+Jcl2L478n0CH+v/3nuz/Glu3vwj84akZX3zL5vZQhg1G/h+wCur/bT3Z/+Pjped9Eh9FyhQdWDfir003ceT/3+2h/v+jJ/u/6MuKPPKUMxqHdM301DZsXY2R/+v6QP3/Z0/2f7tXm/5e9GwgvfDM6u27GgYdxJH/990O9X9Qth7r/3dip2sqaDqqpY41fryk6qcHRv6/ZC/U/4X+ker/Ev/ffz08+AXhnUbZrgebivUSXuLI/2VDoP4v3JP9f/nUoq9EWVu1sNV5tAALdTGM/D81Gur/Ij3Z/w2kFWZSVDM0AqmJ/WNbRWNx5P9OsVD/7/WPLNG+4VngNhjwi5lzZ9g6MuBOPl2ZS+1N8Xuu7jNRsWxO//l1PJ6dx/oX8zLaqoNcUZx1R/3/fw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAJdJREFUSEvdk4EKgCAMRPfF9gn9WZ/W6sYWmZqRG0EPRorb3SFGv4P1GwLErdw5i4eZgDBh4zsDnog59Uvbm1QbIL4mWrTmRsmZjjSpG+zJIKDbIQqDU/puuieUBo7pQWbgnR7kBs7pwWEQIQ6uBm5XY4hBVHogqWGge3fkdx+4mm4wxtPU9RsweztvDR4VQqg4CBWvQLQBFW6Sxd+iMagAAAAASUVORK5CYII=
- fb371ae8-5b99-4464-8511-d9d8f0b30abf
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- true
- 20
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- 24f7bdca-045b-421d-96c9-07956873e094
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- 2edbebac-85ae-4867-9c11-da446ffbc094
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- 6da74475-a224-46e0-b568-d112ce0c308e
- 7cbc819b-232a-4183-913f-629dcf38d672
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- 8ee68260-160e-4c3c-8412-07c3b2899075
- a480cd9d-26c8-4bdf-8aae-345290e945da
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- f8a7e30f-9336-45c6-897c-5deca2663077
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- fd26031c-119d-4d02-99eb-e98e506dbc09
- e9837f44-fe89-4576-a1ba-d864d9176564
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 45329fda-4528-406d-a823-54e35ac6ff74
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 34281050-3848-44ac-894c-a3119ffa069f
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- f9b9305d-1e20-4067-946a-b44d88604308
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
-
147
-3386
366
404
-
499
-3184
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- true
- Y component
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- 1
-
149
-3384
338
20
-
318
-3374
- 1
- 1
- {0}
- 8
- Second item for multiplication
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- true
- B
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- 1
-
149
-3364
338
20
-
318
-3354
- Vector {y} component
- 7cbc819b-232a-4183-913f-629dcf38d672
- true
- Y component
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- 1
-
149
-3344
338
20
-
318
-3334
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 6da74475-a224-46e0-b568-d112ce0c308e
- true
- B
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- 1
-
149
-3324
338
20
-
318
-3314
- Vector {y} component
- 8ee68260-160e-4c3c-8412-07c3b2899075
- true
- Y component
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- 1
-
149
-3304
338
20
-
318
-3294
- 1
- 1
- {0}
- 6
- Second item for multiplication
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- true
- B
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- 1
-
149
-3284
338
20
-
318
-3274
- Vector {y} component
- a480cd9d-26c8-4bdf-8aae-345290e945da
- true
- Y component
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- 1
-
149
-3264
338
20
-
318
-3254
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- true
- B
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- 1
-
149
-3244
338
20
-
318
-3234
- Vector {y} component
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- true
- Y component
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- 1
-
149
-3224
338
20
-
318
-3214
- 1
- 1
- {0}
- 4
- Second item for multiplication
- f8a7e30f-9336-45c6-897c-5deca2663077
- true
- B
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- 1
-
149
-3204
338
20
-
318
-3194
- Vector {y} component
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- true
- Y component
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- b2df309f-5daa-4345-833e-d910c82a19a1
- 1
-
149
-3184
338
20
-
318
-3174
- 1
- 1
- {0}
- 3
- Second item for multiplication
- fd26031c-119d-4d02-99eb-e98e506dbc09
- true
- B
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- b7d3231e-4e24-4334-aeb6-4329747a1277
- 1
-
149
-3164
338
20
-
318
-3154
- Vector {y} component
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- true
- Y component
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- 1
-
149
-3144
338
20
-
318
-3134
- 1
- 1
- {0}
- 2
- Second item for multiplication
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- true
- B
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- 1
-
149
-3124
338
20
-
318
-3114
- Vector {y} component
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- true
- Y component
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- 1
-
149
-3104
338
20
-
318
-3094
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 24f7bdca-045b-421d-96c9-07956873e094
- true
- B
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- 1
-
149
-3084
338
20
-
318
-3074
- Vector {y} component
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- true
- Y component
- CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- 1
-
149
-3064
338
20
-
318
-3054
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- true
- B
- CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- 1
-
149
-3044
338
20
-
318
-3034
- Number of segments
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- true
- Count
- SEGMENT NUMBER
- true
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- 1
-
149
-3024
338
20
-
318
-3014
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 2edbebac-85ae-4867-9c11-da446ffbc094
- true
- Curve
- CURWE
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 1
-
149
-3004
338
20
-
318
-2994
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 329990e8-083a-43f7-baaa-90fed18836f2
- 2
- Curve
- Curve
- false
- 0
-
724
-2788
50
24
-
757.9498
-2776.794
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
875
-3047
50
24
-
908.2197
-3035.688
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
97
-3026
50
24
-
130.0588
-3014.15
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- Number
- Number
- false
- 0
-
725
-2744
49
24
-
757.9498
-2732.25
- 807b86e3-be8d-4970-92b5-f8cdcb45b06b
- Circle
- Create a circle defined by base plane and radius.
- true
- b62b684a-fb0c-49ce-93d5-ca3d0b737a5a
- Circle
- Circle
-
191
-1298
170
61
-
318
-1267
- Base plane of circle
- 31eb7c3c-31a6-4647-b9ae-f9b69c7b66fa
- Plane
- Plane
- false
- 0
-
193
-1296
113
37
-
249.5
-1277.5
- 1
- 1
- {0}
-
0
0
0.5
1
0
0
0
1
0
- Radius of circle
- 9bc6d8ef-2aa1-4dd2-888c-580e82c8ddd1
- Radius
- Radius
- false
- 0
-
193
-1259
113
20
-
249.5
-1249
- 1
- 1
- {0}
- 0.5
- Resulting circle
- 3af008e7-2631-4fda-baff-8cf92764a364
- Circle
- Circle
- false
- 0
-
330
-1296
29
57
-
344.5
-1267.5
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 378897eb-8264-4973-9a0a-4413d168ad73
- Divide Curve
- Divide Curve
-
824
-1247
123
64
-
878
-1215
- Curve to divide
- 4f7e161f-5641-4e1b-a832-2720623b23e0
- Curve
- Curve
- false
- fc35d6cd-8716-4f59-960b-72321690ea99
- 1
-
826
-1245
40
20
-
846
-1235
- Number of segments
- 8474d950-9802-4f4c-a8ad-de75c5a145df
- Count
- Count
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
826
-1225
40
20
-
846
-1215
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 29b144f3-3376-4784-8245-9176e17dc26b
- Kinks
- Kinks
- false
- 0
-
826
-1205
40
20
-
846
-1195
- 1
- 1
- {0}
- false
- 1
- Division points
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- Points
- Points
- false
- 0
-
890
-1245
55
20
-
917.5
-1235
- 1
- Tangent vectors at division points
- e3b72352-57a2-4fa4-98c6-4d66860142c7
- Tangents
- Tangents
- false
- 0
-
890
-1225
55
20
-
917.5
-1215
- 1
- Parameter values at division points
- aed1a17f-e8f0-482a-bab2-50082f42f967
- Parameters
- Parameters
- false
- 0
-
890
-1205
55
20
-
917.5
-1195
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2521b13e-bd87-411f-8135-7d6754f61478
- Digit Scroller
- O
- false
- 0
- 12
- O
- 11
- 40.0
-
515
-1156
250
20
-
515.7685
-1155.856
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- 57e66279-e327-42eb-b44c-c8b1a662be92
- Line
- Line
-
858
-1307
102
44
-
924
-1285
- Line start point
- 2995a86c-3802-448a-a71d-e01a4da30f75
- Start Point
- Start Point
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
860
-1305
52
20
-
886
-1295
- 1
- 1
- {0}
-
0
0
0.5
- Line end point
- a41e7bc8-b167-4f62-af84-bfa44f655bc3
- End Point
- End Point
- false
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- 1
-
860
-1285
52
20
-
886
-1275
- Line segment
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- Line
- Line
- false
- 0
-
936
-1305
22
40
-
947
-1285
- dcaa922d-5491-4826-9a22-5adefa139f43
- Circle TanTanTan
- Create a circle tangent to three curves.
- true
- 0072186e-adb6-4016-86df-38adab05701d
- Circle TanTanTan
- Circle TanTanTan
-
1222
-1546
98
84
-
1277
-1504
- First curve for tangency constraint
- 276f1585-d2db-414d-9cad-55a4df87c615
- Curve A
- Curve A
- false
- fc35d6cd-8716-4f59-960b-72321690ea99
- 1
-
1224
-1544
41
20
-
1244.5
-1534
- Second curve for tangency constraint
- 53f3852a-22a8-44ca-b5b6-a4aae3a2e682
- Curve B
- Curve B
- false
- 2d532bea-994a-447d-9721-0833770a636f
- 1
-
1224
-1524
41
20
-
1244.5
-1514
- Third curve for tangency constraint
- e555b2be-2f2b-4874-bb3b-a9ff53014d23
- Curve C
- Curve C
- false
- c5d3662a-855b-4143-86ee-307efe2b4d18
- 1
-
1224
-1504
41
20
-
1244.5
-1494
- Circle center point guide
- 31795280-140f-4d03-8b25-bcdecd96d4c3
- Point
- Point
- false
- 9074b0db-ae1d-4390-9ca2-eb6042869d1c
- 1
-
1224
-1484
41
20
-
1244.5
-1474
- Resulting circle
- 322c6252-a086-4536-8a7c-443661ee7fbb
- Circle
- Circle
- false
- 0
-
1289
-1544
29
80
-
1303.5
-1504
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- c4241e23-4937-41ab-8fcb-27b0b8bd3065
- List Item
- List Item
-
1008
-1546
77
64
-
1065
-1514
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 337e3aab-7698-4109-9c0b-6194b465d67a
- List
- List
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
1010
-1544
43
20
-
1031.5
-1534
- Item index
- 5c7057da-6c86-476d-9e81-41eaaa225bbf
- Index
- Index
- false
- 0
-
1010
-1524
43
20
-
1031.5
-1514
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 25f4b635-fc06-4ef5-877a-2666feb114bc
- Wrap
- Wrap
- false
- 0
-
1010
-1504
43
20
-
1031.5
-1494
- 1
- 1
- {0}
- true
- Item at {i'}
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- false
- Item
- i
- false
- 0
-
1077
-1544
6
60
-
1080
-1514
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 6669c0d7-2364-4acd-b8b5-66174500a89e
- List Item
- List Item
-
1065
-1409
77
64
-
1122
-1377
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 983e7bfd-2e9a-4ca7-84de-a16f5aefb645
- List
- List
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
1067
-1407
43
20
-
1088.5
-1397
- Item index
- 0590ebe3-53d4-4066-aad0-0997967ae5ff
- Index
- Index
- false
- 0
-
1067
-1387
43
20
-
1088.5
-1377
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- 877ee11b-0848-4611-9aeb-a835f314a3dc
- Wrap
- Wrap
- false
- 0
-
1067
-1367
43
20
-
1088.5
-1357
- 1
- 1
- {0}
- true
- Item at {i'}
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- false
- Item
- i
- false
- 0
-
1134
-1407
6
60
-
1137
-1377
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- 4f78a7c0-929b-42e3-bbb4-27f8aa0c2b10
- Fast Loop Start
- Fast Loop Start
-
1390
-1436
112
64
-
1449
-1404
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- a5888283-2ca8-4d18-b78f-11bfbe4bba8a
- Iterations
- Iterations
- false
- ff4be73d-571f-43d0-adf1-c59527de9e66
- 1
-
1392
-1434
45
30
-
1414.5
-1419
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- 29631701-bea4-4d59-b002-e57ad0a19213
- Data
- Data
- true
- 322c6252-a086-4536-8a7c-443661ee7fbb
- 1
-
1392
-1404
45
30
-
1414.5
-1389
- Connect to Loop End
- f5bac24f-6342-4278-a8ed-caa1ed396d7d
- >
- >
- false
- 0
-
1461
-1434
39
20
-
1480.5
-1424
- Counter
- 2b4ab7b6-8f40-4705-a551-4e65187356a7
- Counter
- Counter
- false
- 0
-
1461
-1414
39
20
-
1480.5
-1404
- 2
- Data to loop
- da1014fb-db9d-462e-8277-2a111e46636c
- Data
- Data
- false
- 0
-
1461
-1394
39
20
-
1480.5
-1384
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9a8e80e5-0815-4577-a696-b9bff9ec2be0
- Digit Scroller
- V
- false
- 0
- 12
- V
- 11
- 16.0
-
524
-1112
330
20
-
524.7685
-1111.804
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- Cluster
-
5ZcPbBNVHMeva9etHQwQFDRGLox/KiyL04TgH7Zepe2QrWEVDRDxdn3rbuvuzutdyaKBSaZEg4Gh+wNBtkVYEFREN5QgGfFPAkMFE2fEQLcOMIKKLjGgRDbfuz/d7nprl1GiiZe75O73e38/3997v3eZTpYSqwEjDMHLhGGYBT7ZXFAM0MzaMOBDNMsglxeakRtdGaiIWs8NSD/gUZF0xW1XXR4nMtug6cQCfIix/O3Y/N3Bw52v9xzK8PIgTIN1yG+HfmtpBWzFP0kxLwehCl8NB5DbrHQ8UfEVs3w1GUSe2VJvjbFapSAIKAH4Y75GzD/NCcpphhbgLLw8ywFeoEFIbRY9FicpSP1kwo+vFpz7ccaGM5lZThCieJoTlMmjIWKWYrIaqF8DJrcrt7+1dvhuOiC9dPV3Nl/e9UrMEm3YHW1oP91cfLmxo3/nkWj91mh9Q7Tp7d724SJNB6NNHdHtLyrOjj2wrPw+omH17twe361cGNXq2KM0AluTmo2V6W2HvSqt7jwCy8IxyYOLFUHj7mxGc4jrNtfltq2AlFE4hNRQQddE1UqwohxEZjUMIPBKKIjCME0xW30kHwBSyXvg5+bBoaFG+G5ZxbLVw1FUuyR9JZRU05UNWeK6sa2guCfIGlYURpa1u3hW5OIKTxkOh5IyNLhYB0j+LNmmqYXsVtmOGkhTotHienI4uhdu23e23jfXvWPWqsj1qS2EJlImEzRPBQHuIxn5thEsI5A0Iy8atNysqG+DkJtP8ABGJ07ilNyGQDIBuK5wgcWFCh4AnBL5MAjlTvAwIeijgEuk/eqoIvnLXQvW/+bsuosobs3945PEo8ospqmqkSVscgmfz2cvFASeLhMFeeXEhHRATn7JlIO+C55xYrXdBIa5HRi215HupcOshHGmJKgfenuJLI7kyeq1NMOJgrqVmEaZfs5Smg8J8hzxcpZXpk/V4BQMQoGHDAXDma+f+elzDUsOeV5ePMeyARvcr5l5BiG1Vxg3YVNhZonUv7y7SJFkLWVFngJSnMFnzfQJ17BXa5a1FGTb5q+5b2WW7NYEDKo3RmLHELGTkFheIYa1FuqI4c9C72kNMVMSYrNLAUTjHweyYLO9tCiy3fHxorynLg188bMRMkc8MkdSZHWPeCZt2va5u+X8UVPOG4MXU4GsJyGyHzTI0pIFma+C5sdDzPy0uzPiPlf0Xt3qTipy+aoRMSKeGJGUmHfzX/nNbas9G/efKAtO37QoFcR6ExK7oCFmTkLsTmXroOBOBHicYyEhPADJAENO3eHrd5+t8no2BnZ1VYqP9Wk4pXtR7XhK3qSUsoq+b9oxIBJH3rmYzT16HU8FpUsJKV0hJsiUYKpRdi9rAkyTV4CQGBRoJqDs3oZ0rFuW2o+WzHIdPr5l2sSVbd0aOlaZ9JiCyGj+2NjnXxsYuRXpN+++CimGlDyI+jPMgw++WbmBs3y0bN+5DE/VyYu8ZjLZktR4CYNLa0ObBW0JQM5/PEwGRZgHQygRSuuKFOBriAMUXU5TeJClSFTB6qb9fsCoSEyGwPVxk2iMceDtklmO2VTlCpsUVECQQVgx9epbopNOPdrESZfvxLAbULrfHSh0FZHSRhPpjv7XnLctPkW0PXS+68DxdU7D5GiszhRCDAlstdHh2C67RraFZSs2HcTU5no95vHn+jGuoFFlMCvHHw7KcEyVwTwuGdITLJFbKMI8pUNpobHBoHx4x9lyHEoBeLjU5POmoRD3v/XZl/N+rVq2b+cLdZ7by1YbTChOBjPBh1MuBDYXCvGtXgjL/0aIS3ndA9emFTo/vHps4Z+H7cy/JkTtHChERC9E+mhCDL70we6puRbHoTUzdrRzy/cYpUKtEvZbr8TYsviVX77J3v2wq+h999Y6LFBvH3cW1+UQ/elgjIecUQUJQ0HO6AWxjiZIy/ONPVd+qiL2vnvvja9PPdCTdGUkOjXeVEjrfyLGH9I6wPpN6yZPkdhiZetxS4B1p6iCAunvRMGe8d/Hrv8TSRl2/RaVCuyRhNgvEP8A
- Contains a cluster of Grasshopper components
- true
- e3ffa9be-aea1-4c8f-b91a-c84514c8d572
- Cluster
- Cluster
- true
- 4
- 34ba5804-6d3d-4e13-8709-da09a2a07b2f
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- bf133103-cd32-48c3-90cc-64afe677991d
- d0a8f850-dcc3-4c50-bbb5-eec5359d6b89
- f70c175c-8a00-4b79-9f40-0e09285c2a56
- 0ed1ecee-3ba4-4a47-b048-90840067910a
- f1ca30e9-14f7-4441-b3f6-c02df8b90a6e
- ccc3a32b-ed27-4b6b-aa9c-7c844915625b
-
1519
-1247
50
64
-
1544
-1215
- 3
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 1
- d1028c72-ff86-4057-9eb0-36c687a4d98c
- First curve for tangency constraint
- 34ba5804-6d3d-4e13-8709-da09a2a07b2f
- Curve A
- A
- true
- da1014fb-db9d-462e-8277-2a111e46636c
- 1
-
1521
-1245
11
20
-
1526.5
-1235
- Second curve for tangency constraint
- d0a8f850-dcc3-4c50-bbb5-eec5359d6b89
- Curve B
- B
- true
- 2d532bea-994a-447d-9721-0833770a636f
- 1
-
1521
-1225
11
20
-
1526.5
-1215
- Third curve for tangency constraint
- bf133103-cd32-48c3-90cc-64afe677991d
- Curve C
- C
- true
- c5d3662a-855b-4143-86ee-307efe2b4d18
- 1
-
1521
-1205
11
20
-
1526.5
-1195
- Resulting circle
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- Circle
- C
- false
- 0
-
1556
-1245
11
60
-
1561.5
-1215
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 4920cad2-a4aa-4cba-970a-be8f1633bf34
- Merge
- Merge
-
1608
-1276
69
64
-
1653
-1244
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 5616e63d-52bc-4ded-815b-6a91f20accbf
- false
- Data 1
- D1
- true
- da1014fb-db9d-462e-8277-2a111e46636c
- 1
-
1610
-1274
31
20
-
1625.5
-1264
- 2
- Data stream 2
- 7dfb52c7-d7ca-44b0-83e2-0a95f16ab918
- false
- Data 2
- D2
- true
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- 1
-
1610
-1254
31
20
-
1625.5
-1244
- 2
- Data stream 3
- bcc1d318-f60f-45d7-abe2-d04d42c1f9dd
- false
- Data 3
- D3
- true
- 0
-
1610
-1234
31
20
-
1625.5
-1224
- 2
- Result of merge
- 8493b426-1dda-425b-b6d3-9ed1898d1f99
- Result
- R
- false
- 0
-
1665
-1274
10
60
-
1670
-1244
- cc918e80-6e5b-4fb7-9853-33f1d22fc5b4
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- ggRemoveDuplicates
- Make set of curves without duplicates
- true
- be46addd-f598-4c6c-a12b-b846a9734cba
- ggRemoveDuplicates
- ggRemoveDuplicates
-
1677
-1332
147
44
-
1791
-1310
- 1
- Curves
- 69e3d697-da9a-4cfe-a8ad-eeaf1521417e
- Curves
- Curves
- false
- 8493b426-1dda-425b-b6d3-9ed1898d1f99
- 1
-
1679
-1330
100
20
-
1729
-1320
- Deviation Tolerance
- dc41779b-da02-4bce-a778-475ae7c17415
- Tol
- Tol
- false
- 0
-
1679
-1310
100
20
-
1729
-1300
- 1
- 1
- {0}
- 2.3283064365386963E-10
- Set
- 113f7f03-21ef-4013-a700-0832a33d97b8
- Set
- Set
- false
- 0
-
1803
-1330
19
40
-
1812.5
-1310
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- true
- 7c05896f-662a-40eb-95f6-3569356fae2d
- Fast Loop End
- Fast Loop End
- false
- 0
-
1713
-1425
88
64
-
1762
-1393
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- 2b213108-77fc-421b-8162-edd0bd8d62ac
- <
- <
- false
- f5bac24f-6342-4278-a8ed-caa1ed396d7d
- 1
-
1715
-1423
35
20
-
1732.5
-1413
- Set to true to exit the loop
- 3e82a6f3-a9ab-4f20-aea9-794c8713706b
- Exit
- Exit
- true
- 0
-
1715
-1403
35
20
-
1732.5
-1393
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 8d951d4d-5753-4924-a2fe-0609cdb0b092
- Data
- Data
- false
- 113f7f03-21ef-4013-a700-0832a33d97b8
- 1
-
1715
-1383
35
20
-
1732.5
-1373
- 2
- Data to loop
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- Data
- Data
- false
- 0
-
1774
-1423
25
60
-
1786.5
-1393
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
- Create a polar array of geometry.
- true
- 884a8abd-bece-40a4-9c40-2fbc52783232
- Polar Array
- Polar Array
-
1953
-1361
220
101
-
2109
-1310
- Base geometry
- 4a03bb7c-6332-4cfc-8cb4-83191ef7edee
- Geometry
- Geometry
- true
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1955
-1359
142
20
-
2034
-1349
- Polar array plane
- 2de7a79e-6a2d-4329-aad9-32ff2b3f0421
- Plane
- Plane
- false
- 0
-
1955
-1339
142
37
-
2034
-1320.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Number of elements in array.
- c7b61c12-1b3f-4a63-a0e2-fe7d18f25d42
- Count
- Count
- false
- 89017df6-cc07-4014-b4ca-46093b4ee03c
- 1
-
1955
-1302
142
20
-
2034
-1292
- 1
- 1
- {0}
- 10
- Sweep angle in degrees (counter-clockwise, starting from plane x-axis)
- 06e0fc82-419b-49fb-bdad-c0b0276962a6
- Angle
- Angle
- false
- 9075c566-f68b-451d-bd4d-d3c452889c63
- 1
- true
-
1955
-1282
142
20
-
2034
-1272
- 1
- 1
- {0}
- 6.2831853071795862
- 1
- Arrayed geometry
- a891ada9-7221-4e23-ba30-6e03eb1cc658
- Geometry
- Geometry
- false
- 0
-
2121
-1359
50
48
-
2146
-1334.75
- 1
- Transformation data
- 65c19d13-39cc-4b41-8185-7c0814b2acc2
- Transform
- Transform
- false
- 0
-
2121
-1311
50
49
-
2146
-1286.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 99221558-1d03-4a99-b409-69b169a9610b
- Evaluate Length
- Evaluate Length
-
1039
-1311
147
64
-
1122
-1279
- Curve to evaluate
- 29f9dad1-4402-41bc-ba2f-1eec8727eebe
- Curve
- Curve
- false
- 2d532bea-994a-447d-9721-0833770a636f
- 1
-
1041
-1309
69
20
-
1075.5
-1299
- Length factor for curve evaluation
- a4cfa37b-ee2d-4f5f-86c7-9629ee0fed99
- Length
- Length
- false
- 0
-
1041
-1289
69
20
-
1075.5
-1279
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 68ce42a1-91e4-4e52-a706-aa12f3978a8c
- Normalized
- Normalized
- false
- 0
-
1041
-1269
69
20
-
1075.5
-1259
- 1
- 1
- {0}
- true
- Point at the specified length
- 9074b0db-ae1d-4390-9ca2-eb6042869d1c
- Point
- Point
- false
- 0
-
1134
-1309
50
20
-
1159
-1299
- Tangent vector at the specified length
- 89b279be-c508-48a9-93d6-d81cc175ba13
- Tangent
- Tangent
- false
- 0
-
1134
-1289
50
20
-
1159
-1279
- Curve parameter at the specified length
- b3936063-6ef2-4e7b-bed0-70199a5d8f1f
- Parameter
- Parameter
- false
- 0
-
1134
-1269
50
20
-
1159
-1259
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- d69c337d-1a42-40e1-bb0b-af39e1305a7b
- Rotate
- Rotate
-
461
-1428
240
81
-
637
-1387
- Base geometry
- 0f1cf2f7-8d51-499e-b162-429e8de7b066
- Geometry
- Geometry
- true
- 9942603e-d6cb-45f3-bff2-04036f8fd571
- 1
-
463
-1426
162
20
-
562
-1416
- Rotation angle in degrees
- 756d957c-a3b0-49f4-ba36-2f251c9b8ccb
- -360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
463
-1406
162
20
-
562
-1396
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- b8f66b61-febb-4fef-917c-4e21a1921c98
- Plane
- Plane
- false
- 0
-
463
-1386
162
37
-
562
-1367.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 8dec1f28-7f42-485d-a5b4-945afa25340b
- Geometry
- Geometry
- false
- 0
-
649
-1426
50
38
-
674
-1406.75
- Transformation data
- f7d020da-bf61-466b-8676-e1bddbb3e8f4
- Transform
- Transform
- false
- 0
-
649
-1388
50
39
-
674
-1368.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fc35d6cd-8716-4f59-960b-72321690ea99
- Relay
- false
- 5627c44f-6c19-422a-a2e2-8b22223f4a22
- 1
-
739
-1307
40
16
-
759
-1299
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 644328d5-8117-41f1-b5c9-8ebd3c03dcfd
- Rotate
- Rotate
-
497
-1545
204
81
-
637
-1504
- Base geometry
- c6e09daa-b527-4045-980f-1e2ea94a67c8
- Geometry
- Geometry
- true
- 8dec1f28-7f42-485d-a5b4-945afa25340b
- 1
-
499
-1543
126
20
-
562
-1533
- Rotation angle in radians
- 7c65bdac-2c91-43e4-be39-00dfca78aede
- Angle
- Angle
- false
- 0
- false
-
499
-1523
126
20
-
562
-1513
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- c21b17da-2bde-4388-93b3-03d649e8bb53
- Plane
- Plane
- false
- 0
-
499
-1503
126
37
-
562
-1484.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 5627c44f-6c19-422a-a2e2-8b22223f4a22
- Geometry
- Geometry
- false
- 0
-
649
-1543
50
38
-
674
-1523.75
- Transformation data
- 7aba7d8d-6b9b-4d79-a677-618f9fd36d3f
- Transform
- Transform
- false
- 0
-
649
-1505
50
39
-
674
-1485.25
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- 989aac19-a135-4f2b-ba53-812a3d4664e5
- Subtraction
- Subtraction
-
884
-1115
85
44
-
924
-1093
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- ab9cbe1b-4ee6-45ed-b70d-45fb4e488a24
- A
- A
- true
- 9a8e80e5-0815-4577-a696-b9bff9ec2be0
- 1
-
886
-1113
26
20
-
899
-1103
- Second operand for subtraction
- e33a3f82-fc2b-4673-aeb7-9e7e29e2b704
- B
- B
- true
- 0
-
886
-1093
26
20
-
899
-1083
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of subtraction
- ff4be73d-571f-43d0-adf1-c59527de9e66
- Result
- Result
- false
- 0
-
936
-1113
31
40
-
951.5
-1093
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- Geometry
- Geometry
- false
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- 1
-
276
-1516
50
24
-
301.2639
-1504
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 9942603e-d6cb-45f3-bff2-04036f8fd571
- Geometry
- Geometry
- false
- f093ce94-87cf-40a2-9e26-1e909c7ce917
- 1
-
361
-1488
50
24
-
386.5
-1476
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2
- Geometry
- Geometry
- false
- f8b0679f-d422-4df4-9d8b-dcd720778acf
- 1
-
578
-1746
50
24
-
603.3241
-1734.302
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
- Geometry
- Geometry
- false
- ab4af088-af36-410a-84c1-ed38bd369a36
- 1
-
808
-1791
50
24
-
841
-1779.18
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 82dda64f-9f77-4cc5-acf4-97d513eb48e9
- Scale
- Scale
-
326
-1786
195
64
-
457
-1754
- Base geometry
- b5636bb4-dcce-4bee-86df-68675fb7a897
- Geometry
- Geometry
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- 1
-
328
-1784
117
20
-
386.5
-1774
- Center of scaling
- 1cb5b388-cddf-4d74-849e-5a2609d80c7c
- Center
- Center
- false
- 0
-
328
-1764
117
20
-
386.5
-1754
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 7827fe30-0ca4-4d8c-8109-35fed0a14791
- Factor
- Factor
- false
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- 1
-
328
-1744
117
20
-
386.5
-1734
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- f093ce94-87cf-40a2-9e26-1e909c7ce917
- Geometry
- Geometry
- false
- 0
-
469
-1784
50
30
-
494
-1769
- Transformation data
- 0a216567-1d23-4ecb-9a5d-5d3dd1c8bf05
- Transform
- Transform
- false
- 0
-
469
-1754
50
30
-
494
-1739
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 13066c57-c507-44ed-9a1b-f7b5009ef564
- Scale
- Scale
-
521
-1973
195
64
-
652
-1941
- Base geometry
- 31c0d7dc-64fc-4803-8f7d-8aca73aba599
- Geometry
- Geometry
- true
- 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2
- 1
-
523
-1971
117
20
-
581.5
-1961
- Center of scaling
- 985f60a8-5be8-4bb2-ae7c-4f9177e293fd
- Center
- Center
- false
- 0
-
523
-1951
117
20
-
581.5
-1941
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- f33cf61e-b79b-4852-9665-d2364dbfab0b
- Factor
- Factor
- false
- 144c7ab7-4a5a-4683-9548-40e231b51e32
- 1
-
523
-1931
117
20
-
581.5
-1921
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ab4af088-af36-410a-84c1-ed38bd369a36
- Geometry
- Geometry
- false
- 0
-
664
-1971
50
30
-
689
-1956
- Transformation data
- 7d246949-f20c-4300-84b1-b79babbee953
- Transform
- Transform
- false
- 0
-
664
-1941
50
30
-
689
-1926
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 3c3caf03-ec61-40fb-bbbc-55e0509921de
- One Over X
- One Over X
-
278
-1854
88
28
-
321
-1840
- Input value
- 62f99155-181e-4eef-aa0b-4fb32549cee3
- Value
- Value
- false
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- 1
-
280
-1852
29
24
-
294.5
-1840
- Output value
- 144c7ab7-4a5a-4683-9548-40e231b51e32
- Result
- Result
- false
- 0
-
333
-1852
31
24
-
348.5
-1840
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 18bb0bab-a683-43af-a280-8b11bc5a275e
- Power
- Power
-
193
-1609
85
44
-
233
-1587
- The item to be raised
- 8d7d79a3-f2e3-4590-b6a2-d315e28041fc
- A
- A
- false
- 0
-
195
-1607
26
20
-
208
-1597
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- a0654839-829a-4b43-93d1-991db9b1c547
- B
- B
- false
- 656133c6-fd17-47fd-8579-dbb9ed1f791d
- 1
-
195
-1587
26
20
-
208
-1577
- A raised to the B power
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- Result
- Result
- false
- 0
-
245
-1607
31
40
-
260.5
-1587
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 656133c6-fd17-47fd-8579-dbb9ed1f791d
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0000000000
-
-83
-1565
250
20
-
-82.16093
-1564.382
- 0ca9be21-459e-4cd0-9d77-05e72a6a1422
- 8df4d222-85a2-467d-a510-b8dde333d730
- Polygon
- Create a circumscribed polygon with optional round edges.
- true
- 3f29085a-a196-4a1c-a7a6-bc1ecf90f2e6
- Polygon
- Polygon
- true
-
-19
-1516
254
101
-
181
-1465
- Polygon base plane
- true
- e5dbf7e1-f194-42f2-9814-83a39933abff
- Plane
- Plane
- false
- 0
-
-17
-1514
186
37
-
76
-1495.5
- 1
- 1
- {0}
-
0
0
0.353553390593274
1
0
0
0
1
0
- Radius of polygon (distance from center to edge)
- 8d5636f9-84cb-42d5-9714-45fff3e395f5
- Radius
- Radius
- false
- cdfd1f71-fb7d-4373-8eb2-bfc3d9ce6649
- 1
-
-17
-1477
186
20
-
76
-1467
- 1
- 1
- {0}
- 0.35355339059327379
- Number of segments
- 5bee3a72-e7d5-4ca3-b906-2563831ee536
- Segments
- Segments
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
-17
-1457
186
20
-
76
-1447
- 1
- 1
- {0}
- 6
- Polygon corner fillet radius
- e9c0f3b5-55a9-435c-a832-e3bf377ab93e
- Fillet Radius
- Fillet Radius
- false
- 0
-
-17
-1437
186
20
-
76
-1427
- 1
- 1
- {0}
- 0
- Polygon
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- Polygon
- Polygon
- false
- 0
-
193
-1514
40
48
-
213
-1489.75
- Length of polygon curve
- 8e3e547e-1833-4408-a514-f97520d59953
- Length
- Length
- false
- 0
-
193
-1466
40
49
-
213
-1441.25
- 753aa9da-f7db-4e66-8cff-3c679ff3286f
- a48ac930-c378-48dc-84da-26b2af9d8302
- Gradient Radial Fill
- Applies a Radial Gradient Fill to a Shape
- true
- 3a0370cf-585f-4e6c-bc66-8a382d0b9e32
- true
- Gradient Radial Fill
- Gradient Radial Fill
-
794
-1934
150
64
-
898
-1902
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 20dfc9c4-85cd-4b70-9df4-0c5b6c345f26
- true
- Shape / Geometry
- Shape / Geometry
- false
- fc8f1eb8-4479-4724-ba40-74767b12e719
- 1
-
796
-1932
90
20
-
841
-1922
- 1
- The Gradient Stop colors
- afcdc8be-c408-4142-8e14-6e96c51a9e0e
- true
- Colors
- Colors
- true
- d8805e36-5b7f-4f4b-b077-b18ef5b8d713
- 1
-
796
-1912
90
20
-
841
-1902
- 1
- 1
- {0}
-
131;255;255;255
- 1
- The Gradient Stop parameters
- c1c538de-e368-49f8-9ac4-ae8c712a87cb
- true
- Parameters
- Parameters
- true
- e0a2d02a-9b61-46e5-8b6b-af837c2fd66b
- 1
-
796
-1892
90
20
-
841
-1882
- 1
- 1
- {0}
- 1
- A Graphic Plus Shape Object
- true
- 43cb7391-ffa5-458d-ae72-bcb11223aa25
- true
- Shape
- Shape
- false
- 0
-
910
-1932
32
60
-
926
-1902
- 203a91c3-287a-43b6-a9c5-ebb96240a650
- Colors
- 1
- The Gradient Stop colors
- d9c5622d-0aec-4e65-872b-c180ee35bf2a
- Colors
- Colors
- true
- 0
-
692
-1870
50
24
-
717
-1858.302
- 1
- 2
- {0}
-
255;255;255;255
-
0;0;0;0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Parameters
- 1
- The Gradient Stop parameters
- e0a2d02a-9b61-46e5-8b6b-af837c2fd66b
- Parameters
- Parameters
- true
- 0
-
701
-1806
50
24
-
726
-1794
- 1
- 2
- {0}
- 0
- 1
- fc076e15-dcb0-4d11-bf04-f5c79fc3d200
- a48ac930-c378-48dc-84da-26b2af9d8302
- Drawing Viewer
- Preview a Drawing in canvas.
Note: Right click on the component to save the image or svg
- true
- bc1970ed-dd7b-4d38-b5f8-bab39784ee32
- true
- Drawing Viewer
- Drawing Viewer
-
1419
-2765
300
344
-
1597
-2743
- 1
- A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes).
- c82f62fe-e186-4950-8e91-0e0e7682c7ff
- true
- Drawings / Shapes / Geometry
- Drawings / Shapes / Geometry
- false
- aab4c91b-c8f3-45c3-994e-63fefbac5c2c
- 1
-
1421
-2763
164
20
-
1503
-2753
- The PPI (Pixels Per Inch) resolution for the image which must be greater than or equal to 72.
- 7c1738eb-ecec-4f5d-8379-22745cf7ce2d
- true
- Resolution
- Resolution
- true
- 0
-
1421
-2743
164
20
-
1503
-2733
- 1
- 1
- {0}
- 96
- f3220ce3-0aeb-41b4-bfb9-435838423791
- a48ac930-c378-48dc-84da-26b2af9d8302
- Construct Drawing
- Constructs a Drawing from a list of Shapes
- true
- 897064e6-a16f-4c11-b7c2-13a1d699896f
- true
- Construct Drawing
- Construct Drawing
-
870
-2179
255
155
-
1064
-2101
- 1
- A list of Graphic Plus Shapes, or Curves, Breps, Meshes
- 0923c058-3fad-4c4a-8f2e-b7b2c65b6ebd
- true
- Shapes / Geometry
- Shapes / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
872
-2177
180
20
-
962
-2167
- An optional frame for the drawing. If blank, the shapes bounding box will be used
- 1cfb711f-b655-4302-a7e6-cfe398f1f17b
- true
- Boundary
- Boundary
- true
- 0
-
872
-2157
180
71
-
962
-2121.5
- The width of the output drawing
- 85ece0af-2be9-4a50-a4b8-186b461507d6
- true
- Width
- Width
- true
- 0
-
872
-2086
180
20
-
962
-2076
- 1
- 1
- {0}
- 1024
- The height of the output drawing
- 8ab66ff6-0bd8-4d88-91d3-df69c1fbbd8a
- true
- Height
- Height
- true
- 0
-
872
-2066
180
20
-
962
-2056
- 1
- 1
- {0}
- 1024
- An optional background color
- dba02cce-f527-40ca-b8cb-228225f95208
- true
- Color
- Color
- true
- 0
-
872
-2046
180
20
-
962
-2036
- 1
- 1
- {0}
-
0;255;255;255
- A Graphic Plus Drawing Object
- aab4c91b-c8f3-45c3-994e-63fefbac5c2c
- true
- Drawing
- Drawing
- false
- 0
-
1076
-2177
47
75
-
1099.5
-2139.25
- The bounding rectangle
- a9a49907-4084-4df3-8359-246f26c5f555
- true
- Boundary
- Boundary
- false
- 0
-
1076
-2102
47
76
-
1099.5
-2063.75
- 030b487b-a566-476f-96a4-a0ae2ad283af
- a48ac930-c378-48dc-84da-26b2af9d8302
- Stroke
- Applies Stroke properties to a Shape
- true
- 3b62aca3-eb60-4806-8b07-757b07c9c96b
- true
- Stroke
- Stroke
-
901
-1806
184
104
-
1039
-1754
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 4030d31f-85c6-49ce-abc4-b737abf1d911
- true
- Shape / Geometry
- Shape / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
903
-1804
124
20
-
965
-1794
- The stroke color
- 19e0212d-1ae7-4bd2-89ff-bc8b9973740a
- true
- Color
- Color
- true
- 0
-
903
-1784
124
20
-
965
-1774
- 1
- 1
- {0}
-
0;184;184;184
- The stroke weight
- 3ded5006-c0f5-44f0-b5f8-9c5d0bc75ca5
- true
- Weight
- Weight
- true
- 7d674bcc-ccf9-4209-bf45-8d4272beda48
- 1
-
903
-1764
124
20
-
965
-1754
- 1
- 1
- {0}
- 7
- 1
- The stroke pattern
- f76a8473-e34e-47a7-b281-e3880e37c6fa
- true
- Pattern
- Pattern
- true
- 0
-
903
-1744
124
20
-
965
-1734
- 1
- 1
- {0}
- 0
- The shape to be used at the end of open path
- bc5da7b5-947a-4121-b7ad-9cd69f1189c3
- true
- End Cap
- End Cap
- true
- 0
-
903
-1724
124
20
-
965
-1714
- 1
- 1
- {0}
- 0
- A Graphic Plus Shape Object
- true
- fc8f1eb8-4479-4724-ba40-74767b12e719
- true
- Shape
- Shape
- false
- 0
-
1051
-1804
32
100
-
1067
-1754
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- e44eaf02-09c5-4ca9-b519-0dbba3eea3b4
- Merge
- Merge
-
645
-2110
90
84
-
690
-2068
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8f3957d8-3ba6-4c97-94d4-ed1577265058
- false
- Data 1
- D1
- true
- 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3
- 1
-
647
-2108
31
20
-
662.5
-2098
- 2
- Data stream 2
- 1f0189ac-ed74-4b9c-babe-24ae101168e9
- false
- Data 2
- D2
- true
- da43bc1d-2327-4d3c-872a-8bcde5db8d8e
- 1
-
647
-2088
31
20
-
662.5
-2078
- 2
- Data stream 3
- ae14e5e6-4c3a-4542-b214-577ca4574944
- false
- Data 3
- D3
- true
- 0
-
647
-2068
31
20
-
662.5
-2058
- 2
- Data stream 4
- f001c240-745c-4ea4-83f0-cdc2a8a22020
- false
- Data 4
- D4
- true
- 0
-
647
-2048
31
20
-
662.5
-2038
- 2
- Result of merge
- d8805e36-5b7f-4f4b-b077-b18ef5b8d713
- Result
- Result
- false
- 0
-
702
-2108
31
80
-
717.5
-2068
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3
- Colour Swatch
- false
- 0
-
255;255;255;255
-
501
-2171
60
20
-
501.9104
-2170.41
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- da43bc1d-2327-4d3c-872a-8bcde5db8d8e
- Colour Swatch
- false
- 0
-
255;0;0;0
-
501
-2088
60
20
-
501.9104
-2088
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Pattern
- 1
- The stroke pattern
- 18d21670-01a6-4888-be2a-fb679edf3f46
- Pattern
- Pattern
- true
- 0
-
820
-1746
50
24
-
845
-1734
- 1
- 4
- {0}
- 1
- 0
- 0
- 1
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- 4dfa6f82-2462-4b64-acaa-c432ed80052c
- true
- Distance
- Distance
-
777
-1618
177
44
-
898
-1596
- First point
- 2fed7015-0dc4-4b1e-84d4-65d070986362
- true
- Point A
- Point A
- false
- 0
-
779
-1616
107
20
-
832.5
-1606
- 1
- 1
- {0}
-
0
0
0
- Second point
- 4bf86d6d-e035-49ae-9f28-63df5d3ecace
- true
- Point B
- Point B
- false
- a6f821da-f498-4973-aa14-e2abfa24b1f8
- 1
-
779
-1596
107
20
-
832.5
-1586
- Distance between A and B
- c74cb0c0-6368-4906-bcbd-e749a7d8fb13
- true
- Distance
- Distance
- false
- 0
-
910
-1616
42
40
-
931
-1596
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 5b362e0b-edfe-4632-99a1-dbf27430406c
- true
- Deconstruct Arc
- Deconstruct Arc
-
640
-1660
102
64
-
674
-1628
- Arc or Circle to deconstruct
- b20ba683-a90e-45ff-bcf5-86e4e80dce23
- true
- Arc
- Arc
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
642
-1658
20
60
-
652
-1628
- Base plane of arc or circle
- a6f821da-f498-4973-aa14-e2abfa24b1f8
- true
- Base Plane
- Base Plane
- false
- 0
-
686
-1658
54
20
-
713
-1648
- Radius of arc or circle
- 4654f581-ba2c-4dcc-84fd-f7da8bea95f4
- true
- Radius
- Radius
- false
- 0
-
686
-1638
54
20
-
713
-1628
- Angle domain (in radians) of arc
- 263e2ac0-9c38-4a0e-9a1d-183127a1dd78
- true
- Angle
- Angle
- false
- 0
-
686
-1618
54
20
-
713
-1608
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 8bb268bc-8f14-4022-bf54-801ab622105f
- Multiplication
- Multiplication
-
995
-1618
70
44
-
1020
-1596
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 65450a6e-1778-4887-92ef-a65ecaef22a5
- A
- A
- true
- c74cb0c0-6368-4906-bcbd-e749a7d8fb13
- 1
-
997
-1616
11
20
-
1002.5
-1606
- Second item for multiplication
- 4e86611a-8619-47ee-b8c4-46d5b5e3d8c4
- B
- B
- true
- 74514ff8-3b28-43d1-b7eb-4790ae9f09ec
- 1
-
997
-1596
11
20
-
1002.5
-1586
- Result of multiplication
- 7d674bcc-ccf9-4209-bf45-8d4272beda48
- Result
- Result
- false
- 0
-
1032
-1616
31
40
-
1047.5
-1596
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 74514ff8-3b28-43d1-b7eb-4790ae9f09ec
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 4
- 9.00000000
-
720
-1524
250
20
- 5881d944-0281-4fc8-b203-ce6a55dbf2a6
- a48ac930-c378-48dc-84da-26b2af9d8302
- Solid Fill
- Applies a Solid Fill color to a Shape
- true
- 34005dd2-41a4-4fda-b7bf-5eba48ac6009
- true
- Solid Fill
- Solid Fill
-
1120
-1791
162
44
-
1236
-1769
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 654b68f0-6f66-4d66-9c80-8d0d25939ce5
- true
- Shape / Geometry
- Shape / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
1122
-1789
102
20
-
1173
-1779
- The solid fill Color
- 20cde91e-968e-4cfc-92f3-af939a769c15
- true
- Color
- Color
- true
- 0
-
1122
-1769
102
20
-
1173
-1759
- 1
- 1
- {0}
-
255;0;244;124
- A Graphic Plus Shape Object
- true
- 6d245542-b1d6-46d1-9114-0a70281c6d1a
- true
- Shape
- Shape
- false
- 0
-
1248
-1789
32
40
-
1264
-1769
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- d9662ff9-2fbf-4ae8-b433-9202141475f0
- Deconstruct Arc
- Deconstruct Arc
-
1793
-1568
102
64
-
1827
-1536
- Arc or Circle to deconstruct
- b4e1df75-be22-4209-984b-0cd081fa8a9f
- Arc
- Arc
- false
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1795
-1566
20
60
-
1805
-1536
- Base plane of arc or circle
- 33fd2724-392f-4888-88fd-21fca634b995
- Base Plane
- Base Plane
- false
- 0
-
1839
-1566
54
20
-
1866
-1556
- Radius of arc or circle
- 64095f1f-4811-4ad5-87c9-045eb81a5761
- Radius
- Radius
- false
- 0
-
1839
-1546
54
20
-
1866
-1536
- Angle domain (in radians) of arc
- 0b2ab5b7-92ce-4159-924f-99571dbf6279
- Angle
- Angle
- false
- 0
-
1839
-1526
54
20
-
1866
-1516
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- d4a24c35-55b6-44ff-8180-c957318d38f6
- Quick Graph
- Quick Graph
- false
- 0
- 707ebd25-7ab6-4436-9c56-7a63ee0bd788
- 1
-
2039
-1718
150
150
-
2039.654
-1717.571
- 0
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- LOG(O)
- true
- 747d14d7-5f5e-4be3-8999-e9ccf3324cc1
- Expression
- Expression
-
1933
-1532
116
28
-
1981
-1518
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 8f10ebc0-218a-4d49-b4cf-e33920e6c383
- Variable O
- O
- true
- 64095f1f-4811-4ad5-87c9-045eb81a5761
- 1
-
1935
-1530
11
24
-
1940.5
-1518
- Result of expression
- 707ebd25-7ab6-4436-9c56-7a63ee0bd788
- Result
- Result
- false
- 0
-
2016
-1530
31
24
-
2031.5
-1518
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 67391784-71ea-4462-8af8-bca850607e0f
- Quick Graph
- Quick Graph
- false
- 0
- 64095f1f-4811-4ad5-87c9-045eb81a5761
- 1
-
1865
-1754
150
150
-
1865.989
-1753.217
- -1
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- EXP(O)
- true
- 253a0641-d5b7-43a6-a7f4-19cb5b78db6e
- Expression
- Expression
-
2020
-1479
116
28
-
2068
-1465
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f7078fd8-1240-4f21-b27c-30f22479c30c
- Variable O
- O
- true
- 707ebd25-7ab6-4436-9c56-7a63ee0bd788
- 1
-
2022
-1477
11
24
-
2027.5
-1465
- Result of expression
- 53f265a0-f6b0-4c0f-ab45-6caf36703cfb
- Result
- Result
- false
- 0
-
2103
-1477
31
24
-
2118.5
-1465
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 9e366565-123d-411f-898a-5174d532ffc1
- Quick Graph
- Quick Graph
- false
- 0
- 53f265a0-f6b0-4c0f-ab45-6caf36703cfb
- 1
-
2189
-1580
150
150
-
2189.648
-1579.582
- 0
- 9445ca40-cc73-4861-a455-146308676855
- Range
- Create a range of numbers.
- true
- 1473aed8-bfaf-4e9e-a626-b6a22bbfc9fc
- Range
- Range
-
2001
-1889
98
44
-
2053
-1867
- Domain of numeric range
- 2ebd0a57-69ac-4ad0-a3d0-64a82f589616
- Domain
- Domain
- false
- 8c9b5ccf-de38-4263-94a8-9085002de7e2
- 1
-
2003
-1887
38
20
-
2022
-1877
- 1
- 1
- {0}
-
0.5
0
- Number of steps
- 95d6218e-b1c9-47e7-8303-7b8260b9167d
- Steps
- Steps
- false
- a629a790-6f5a-4656-95c4-4293b46c7cbf
- 1
-
2003
-1867
38
20
-
2022
-1857
- 1
- 1
- {0}
- 17
- 1
- Range of numbers
- 1c6f357f-2c34-48b5-9c31-6d29175af4bf
- Range
- Range
- false
- 0
-
2065
-1887
32
40
-
2081
-1867
- 807b86e3-be8d-4970-92b5-f8cdcb45b06b
- Circle
- Create a circle defined by base plane and radius.
- true
- eece4c6c-e98f-41ac-a80b-4f191452e75c
- true
- Circle
- Circle
-
2298
-1918
184
61
-
2439
-1887
- Base plane of circle
- 0b1f1369-00b9-4af6-aeef-0e339beae743
- true
- Plane
- Plane
- false
- 0
-
2300
-1916
127
37
-
2371.5
-1897.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Radius of circle
- 7c7070db-9469-45fb-9c2a-6e2b174767b8
- ABS(X)
- true
- Radius
- Radius
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
2300
-1879
127
20
-
2371.5
-1869
- 1
- 1
- {0}
- 0.5
- Resulting circle
- 73b120e5-9aad-439f-aa39-954578812b68
- true
- Circle
- Circle
- false
- 0
-
2451
-1916
29
57
-
2465.5
-1887.5
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- (EXP(EXP(EXP(O))))
- true
- 0cb60706-8b6d-4b80-b89f-c2f0f8f91399
- Expression
- Expression
-
1986
-1766
215
28
-
2084
-1752
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 5bffcddd-b0f5-4c1e-99a6-0245aa569498
- Variable O
- O
- true
- 1c6f357f-2c34-48b5-9c31-6d29175af4bf
- 1
-
1988
-1764
11
24
-
1993.5
-1752
- Result of expression
- b15021d5-865c-476a-9920-3ae0864d99ee
- Result
- Result
- false
- 0
-
2168
-1764
31
24
-
2183.5
-1752
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 61b4c2fa-999e-4cfb-b75d-4afa9e977e1e
- Bounds
- Bounds
-
1943
-1982
110
28
-
2001
-1968
- 1
- Numbers to include in Bounds
- 75cd91ac-6a51-4ac8-a1ec-9bb3cccb4e30
- Numbers
- Numbers
- false
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
1945
-1980
44
24
-
1967
-1968
- Numeric Domain between the lowest and highest numbers in {N}
- d6aff41c-bf73-4f51-a3a6-e3e1042adf7f
- Domain
- Domain
- false
- 0
-
2013
-1980
38
24
-
2032
-1968
- 0d1e2027-f153-460d-84c0-f9af431b08cb
- Maximum
- Return the greater of two items.
- true
- ac9d4c8f-3445-43f5-9c0e-579cea8bb8ae
- Maximum
- Maximum
-
2228
-1754
70
44
-
2253
-1732
- First item for comparison
- a20d1157-f820-47bd-bd84-3b45d8ae0028
- A
- A
- false
- 14f4adbe-1cb9-47b2-bcd0-201c56e2e145
- 1
-
2230
-1752
11
20
-
2235.5
-1742
- Second item for comparison
- 9a15d7e7-271f-4caf-9d5d-3996d2a46d7a
- B
- B
- false
- 019ec982-4c14-423d-8124-eb669b6fdecc
- 1
-
2230
-1732
11
20
-
2235.5
-1722
- The greater of A and B
- c9d07bb5-25d0-481e-bc83-d864d36217e3
- Result
- Result
- false
- 0
-
2265
-1752
31
40
-
2280.5
-1732
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- c602bf6d-1738-4cc0-b622-4883e7907e8e
- Deconstruct Domain
- Deconstruct Domain
-
2107
-2016
108
44
-
2159
-1994
- Base domain
- 361d5091-4891-4fee-8347-bbacc98dd094
- Domain
- Domain
- false
- d6aff41c-bf73-4f51-a3a6-e3e1042adf7f
- 1
-
2109
-2014
38
40
-
2128
-1994
- Start of domain
- 14f4adbe-1cb9-47b2-bcd0-201c56e2e145
- ABS(X)
- Start
- Start
- false
- 0
-
2171
-2014
42
20
-
2184
-2004
- End of domain
- 019ec982-4c14-423d-8124-eb669b6fdecc
- ABS(X)
- End
- End
- false
- 0
-
2171
-1994
42
20
-
2184
-1984
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 0468c1be-6c1f-4573-b42d-cf0f8027c4e6
- Multiplication
- Multiplication
-
2269
-1845
70
44
-
2294
-1823
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- ad0cc104-1dad-4470-b4e3-81ec5cf038ab
- A
- A
- true
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
2271
-1843
11
20
-
2276.5
-1833
- Second item for multiplication
- 8259cd32-cf88-4d21-89d2-8434fb737e39
- B
- B
- true
- e07df8e8-295a-4529-a447-e864247e8ff3
- 1
-
2271
-1823
11
20
-
2276.5
-1813
- Result of multiplication
- a44af545-2078-46ca-b686-c0d960cfb283
- Result
- Result
- false
- 0
-
2306
-1843
31
40
-
2321.5
-1823
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 21068f26-5320-4499-af36-ff2d38af447a
- Division
- Division
-
2323
-1774
85
44
-
2363
-1752
- Item to divide (dividend)
- d6ce0710-4bc8-418d-bd24-37999e4ff2c5
- A
- A
- false
- 0
-
2325
-1772
26
20
-
2338
-1762
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- .5
- Item to divide with (divisor)
- e5f0c439-b8f2-45ae-a0b8-89b2d5feaa4d
- B
- B
- false
- c9d07bb5-25d0-481e-bc83-d864d36217e3
- 1
-
2325
-1752
26
20
-
2338
-1742
- The result of the Division
- e07df8e8-295a-4529-a447-e864247e8ff3
- Result
- Result
- false
- 0
-
2375
-1772
31
40
-
2390.5
-1752
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7f3a5c0f-427e-4293-9a10-5e3437c8c542
- Quick Graph
- Quick Graph
- false
- 0
- 1c6f357f-2c34-48b5-9c31-6d29175af4bf
- 1
-
2363
-1718
150
150
-
2363.224
-1718
- -1
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- cf6dbb3d-3342-4cdb-b9ef-448dce9f06f7
- Remap Numbers
- Remap Numbers
-
2114
-1972
147
64
-
2207
-1940
- Value to remap
- 5c74c48d-0ee8-4255-b3c0-05b192145913
- Value
- Value
- false
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
2116
-1970
79
20
-
2155.5
-1960
- Source domain
- 4027e9d7-e190-4a3a-9a60-5847557011e2
- Source
- Source
- false
- eb997057-5684-422c-b087-f6efe7811971
- 1
-
2116
-1950
79
20
-
2155.5
-1940
- 1
- 1
- {0}
-
0
1
- Target domain
- 46fd67c1-4f40-40f8-95a3-196cdc16700d
- Target
- Target
- false
- 0
-
2116
-1930
79
20
-
2155.5
-1920
- 1
- 1
- {0}
-
0
0.5
- Remapped number
- 9fdbae57-81d4-471d-a8dc-43f40e00bf27
- Mapped
- Mapped
- false
- 0
-
2219
-1970
40
30
-
2239
-1955
- Remapped and clipped number
- 9bd5dbe0-b389-458e-8503-8197211efff6
- Clipped
- Clipped
- false
- 0
-
2219
-1940
40
30
-
2239
-1925
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 0c85e0a9-a4af-46cc-9140-5d559bfb67d6
- Bounds
- Bounds
-
1995
-1954
110
28
-
2053
-1940
- 1
- Numbers to include in Bounds
- aa7fd7b1-93de-40eb-8e5b-df496864d5c2
- Numbers
- Numbers
- false
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
1997
-1952
44
24
-
2019
-1940
- Numeric Domain between the lowest and highest numbers in {N}
- eb997057-5684-422c-b087-f6efe7811971
- Domain
- Domain
- false
- 0
-
2065
-1952
38
24
-
2084
-1940
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- 74e82950-7e5d-4a91-869f-3a3292fb1a58
- Construct Domain
- Construct Domain
-
1775
-1889
143
44
-
1866
-1867
- Start value of numeric domain
- a2bfe79f-a461-4f02-b943-8d6cbc0ade86
- Domain start
- Domain start
- false
- 1f48380e-78c1-4878-9030-ae38073532b5
- 1
-
1777
-1887
77
20
-
1815.5
-1877
- 1
- 1
- {0}
- 0.5
- End value of numeric domain
- 73d17688-07c3-464b-93bf-86858c819223
- Domain end
- Domain end
- false
- 0
-
1777
-1867
77
20
-
1815.5
-1857
- 1
- 1
- {0}
- 0
- Numeric domain between {A} and {B}
- 8c9b5ccf-de38-4263-94a8-9085002de7e2
- Domain
- Domain
- false
- 0
-
1878
-1887
38
40
-
1897
-1867
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a629a790-6f5a-4656-95c4-4293b46c7cbf
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 3
- 16.000000000
-
1606
-1946
250
20
-
1606.266
-1946
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1f48380e-78c1-4878-9030-ae38073532b5
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.6000000000
-
1469
-1865
250
20
-
1469.458
-1865
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 7ebe48e6-e6b9-40be-bc7f-bf92e3c63165
- Bounds
- Bounds
-
1712
-1675
110
28
-
1770
-1661
- 1
- Numbers to include in Bounds
- e7573b17-b513-41d1-99ad-a71466dc462d
- Numbers
- Numbers
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1714
-1673
44
24
-
1736
-1661
- Numeric Domain between the lowest and highest numbers in {N}
- a81a41d6-4a5f-4635-a6b8-b2d1a58386e8
- Domain
- Domain
- false
- 0
-
1782
-1673
38
24
-
1801
-1661
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 9a7aadec-810b-4797-a20d-1799a2ee1ae1
- Deconstruct Domain
- Deconstruct Domain
-
1803
-1810
92
44
-
1855
-1788
- Base domain
- e09e1b17-8400-47ee-a22d-67c8441fa0bb
- Domain
- Domain
- false
- a81a41d6-4a5f-4635-a6b8-b2d1a58386e8
- 1
-
1805
-1808
38
40
-
1824
-1788
- Start of domain
- 422dbaec-8cf2-4118-b04e-712f5f84b1b0
- Start
- Start
- false
- 0
-
1867
-1808
26
20
-
1880
-1798
- End of domain
- 2837c5c8-3c45-4aff-a2bc-2397962e8edc
- End
- End
- false
- 0
-
1867
-1788
26
20
-
1880
-1778
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- cc5c2207-dafd-45fa-99bb-c1a2798738b8
- Distance
- Distance
-
1532
-1612
108
44
-
1584
-1590
- First point
- bd1ab6ad-1b37-4029-972d-caccbfa4e471
- Point A
- Point A
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
1534
-1610
38
20
-
1553
-1600
- 1
- 1
- {0}
-
0
0
0
- Second point
- 29f6e553-cc5e-4974-a8f9-32b7336334ee
- Point B
- Point B
- false
- afacebcc-0961-4742-b2df-3abf869ab5ef
- 1
-
1534
-1590
38
20
-
1553
-1580
- Distance between A and B
- c5c85527-549f-4b6d-b3bb-6729f376c233
- Distance
- Distance
- false
- 0
-
1596
-1610
42
40
-
1617
-1590
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 84f1803d-f26d-4700-9625-3b1c2cc0cbb8
- Quick Graph
- Quick Graph
- false
- 0
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1606
-1825
150
150
-
1606.266
-1825
- -1
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 308e3b77-bc71-4307-8714-814d8553e7cb
- Evaluate Length
- Evaluate Length
-
1872
-1396
149
64
-
1957
-1364
- Curve to evaluate
- 47b79dcd-8f66-4260-bfeb-381930200e54
- Curve
- Curve
- false
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1874
-1394
71
20
-
1909.5
-1384
- Length factor for curve evaluation
- b9db78d6-73db-44dd-a502-c5612355b5e3
- Length
- Length
- false
- 0
-
1874
-1374
71
20
-
1909.5
-1364
- 1
- 1
- {0}
- 0.5
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 4e892d86-690d-4892-a530-ed7db9f90c65
- Normalized
- Normalized
- false
- 0
-
1874
-1354
71
20
-
1909.5
-1344
- 1
- 1
- {0}
- true
- Point at the specified length
- af44461f-37b2-4fe2-a269-d899c9e7147f
- Point
- Point
- false
- 0
-
1969
-1394
50
20
-
1994
-1384
- Tangent vector at the specified length
- ecd45847-bc92-411f-aa2d-9854838399b7
- Tangent
- Tangent
- false
- 0
-
1969
-1374
50
20
-
1994
-1364
- Curve parameter at the specified length
- 80e640bc-f271-4c3b-85c1-a54f1e1d373e
- Parameter
- Parameter
- false
- 0
-
1969
-1354
50
20
-
1994
-1344
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b07a33ca-fece-410a-a6ad-2875592745f2
- Quick Graph
- Quick Graph
- false
- 0
- 9fdbae57-81d4-471d-a8dc-43f40e00bf27
- 1
-
2310
-2076
150
150
-
2310.112
-2075.808
- -1
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 544bd1fa-0641-4bca-968b-578245bc09d1
- Point
- Point
- false
- 0
-
631
-1007
143
24
-
762.1235
-995.188
- 1
- 1
- {0}
-
0
0
0.353553390593274
- 22990b1f-9be6-477c-ad89-f775cd347105
- Flip Curve
- Flip a curve using an optional guide curve.
- true
- 683602b5-884d-4565-92ab-09638f726a72
- Flip Curve
- Flip Curve
-
824
-870
88
44
-
868
-848
- Curve to flip
- 46c35632-c4a0-4b0e-bcc3-e09c135bb7a5
- Curve
- Curve
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
826
-868
30
20
-
841
-858
- Optional guide curve
- 46a2bb1b-09c8-4ae5-8adf-9416a24cef17
- Guide
- Guide
- true
- 0
-
826
-848
30
20
-
841
-838
- Flipped curve
- b4524b06-8e05-4cd1-8531-0d36de55dd62
- Curve
- Curve
- false
- 0
-
880
-868
30
20
-
895
-858
- Flip action
- 70c9ed20-56d6-472b-9557-55dbe086e3d9
- Flag
- Flag
- false
- 0
-
880
-848
30
20
-
895
-838
- bb59bffc-f54c-4682-9778-f6c3fe74fce3
- Arc
- Create an arc defined by base plane, radius and angle domain.
- true
- b47afabf-616a-4673-87df-c5201ad0b10c
- Arc
- Arc
-
983
-907
187
81
-
1122
-866
- Base plane of arc
- 10981c88-7313-411c-8fa1-ec2c25d4bdec
- Plane
- Plane
- false
- 0
-
985
-905
125
37
-
1047.5
-886.5
- 1
- 1
- {0}
-
0
0
0
0
0
1
0
1
0
- Radius of arc
- 506c805d-9bf0-4e36-bd85-e2d702fcd23f
- Radius
- Radius
- false
- 178a536c-e731-4a9e-8e69-148d3c49cc3d
- 1
-
985
-868
125
20
-
1047.5
-858
- 1
- 1
- {0}
- 1
- Angle domain in radians
- bea25ebd-cb7b-480b-90df-78b21a71488d
- Angle
- Angle
- false
- 0
-
985
-848
125
20
-
1047.5
-838
- 1
- 1
- {0}
-
0
0.785398163397448
- Resulting arc
- 1a270909-0d55-4cb8-a28f-6c22882dba60
- Arc
- Arc
- false
- 0
-
1134
-905
34
38
-
1151
-885.75
- Arc length
- 3b4165c2-3ca9-4fbb-949a-615a11390a22
- Length
- Length
- false
- 0
-
1134
-867
34
39
-
1151
-847.25
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- b81203a1-bfb1-49ea-bc45-1e024c16a07d
- Distance
- Distance
-
993
-969
177
44
-
1114
-947
- First point
- 0970bb1f-52db-4ff9-b1ce-84d21e9f90d0
- Point A
- Point A
- false
- 0
-
995
-967
107
20
-
1048.5
-957
- 1
- 1
- {0}
-
0
0
0
- Second point
- c10c7986-4c70-4ac1-bdc8-dde002ff3277
- Point B
- Point B
- false
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- 1
-
995
-947
107
20
-
1048.5
-937
- Distance between A and B
- 2fa76128-f184-445b-8f9d-5426873e1f20
- Distance
- Distance
- false
- 0
-
1126
-967
42
40
-
1147
-947
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 4cf11d43-7186-4a7c-80ac-b5047dbd1ec5
- Rotate
- Rotate
-
1226
-988
240
81
-
1402
-947
- Base geometry
- a280bb8c-a1b9-421c-a567-c9e1c7cfb01a
- Geometry
- Geometry
- true
- 1a270909-0d55-4cb8-a28f-6c22882dba60
- 1
-
1228
-986
162
20
-
1327
-976
- Rotation angle in degrees
- 00fad922-87d1-45bb-a357-79de2481fbf7
- -360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
1228
-966
162
20
-
1327
-956
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 0013e6fb-145e-4481-b32c-b1630363bcb2
- Plane
- Plane
- false
- 0
-
1228
-946
162
37
-
1327
-927.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 173bee08-a574-4b98-ad6f-a74fb75e29ab
- Geometry
- Geometry
- false
- 0
-
1414
-986
50
38
-
1439
-966.75
- Transformation data
- 84299d7b-6eea-4d82-ae16-9ada37bc8233
- Transform
- Transform
- false
- 0
-
1414
-948
50
39
-
1439
-928.25
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
- Create a polar array of geometry.
- true
- 914fb575-3406-4bd7-b383-27e9d3cbd381
- Polar Array
- Polar Array
-
1640
-1070
204
101
-
1780
-1019
- Base geometry
- 87b6fe2a-f8ad-4fed-8b44-6338d67e4e1d
- Geometry
- Geometry
- true
- 173bee08-a574-4b98-ad6f-a74fb75e29ab
- 1
-
1642
-1068
126
20
-
1705
-1058
- Polar array plane
- 07f9a682-2bf0-481c-b11c-a4046ffcdff1
- Plane
- Plane
- false
- 0
-
1642
-1048
126
37
-
1705
-1029.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Number of elements in array.
- a9ae4b62-a012-45a1-b9f2-c14834fb3058
- Count
- Count
- false
- 018e8310-9673-4fda-b611-23741855bd4d
- 1
-
1642
-1011
126
20
-
1705
-1001
- 1
- 1
- {0}
- 10
- Sweep angle in radians (counter-clockwise, starting from plane x-axis)
- c5cbafdd-8e72-4f4b-b051-adf4543878f1
- Angle
- Angle
- false
- 0
- false
-
1642
-991
126
20
-
1705
-981
- 1
- 1
- {0}
- 6.2831853071795862
- 1
- Arrayed geometry
- 06f99071-75d5-444a-a5c6-257606d32036
- Geometry
- Geometry
- false
- 0
-
1792
-1068
50
48
-
1817
-1043.75
- 1
- Transformation data
- a74e89da-6bc8-4796-847f-883b5dc3d628
- Transform
- Transform
- false
- 0
-
1792
-1020
50
49
-
1817
-995.25
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2913ccef-ba4c-4599-849a-e59c6ea4747b
- List Item
- List Item
-
901
-1504
77
64
-
958
-1472
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 1881d584-55ae-4ebf-ac34-ed4f8d94dc6e
- List
- List
- false
- 06f99071-75d5-444a-a5c6-257606d32036
- 1
-
903
-1502
43
20
-
924.5
-1492
- Item index
- 958073b4-4058-4236-87f0-e0c872a77cdc
- Index
- Index
- false
- 0
-
903
-1482
43
20
-
924.5
-1472
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- aa241db4-3398-4c75-a241-3b2a6126f055
- Wrap
- Wrap
- false
- 0
-
903
-1462
43
20
-
924.5
-1452
- 1
- 1
- {0}
- true
- Item at {i'}
- a2b662da-3ac8-4ab9-9ac3-29783a411ee0
- false
- Item
- i
- false
- 0
-
970
-1502
6
60
-
973
-1472
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2494b21e-8efd-4122-9539-8fe533d35f33
- List Item
- List Item
-
920
-1409
77
64
-
977
-1377
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- fe911aee-9240-4e93-a031-cbff82486142
- List
- List
- false
- 06f99071-75d5-444a-a5c6-257606d32036
- 1
-
922
-1407
43
20
-
943.5
-1397
- Item index
- 19639006-206d-4fee-ab62-9fc2062f99e1
- Index
- Index
- false
- 0
-
922
-1387
43
20
-
943.5
-1377
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- fec2aeff-bf78-4006-8095-9d8a60be184e
- Wrap
- Wrap
- false
- 0
-
922
-1367
43
20
-
943.5
-1357
- 1
- 1
- {0}
- true
- Item at {i'}
- de721831-12fd-4f67-87f1-0a90aa984595
- false
- Item
- i
- false
- 0
-
989
-1407
6
60
-
992
-1377
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- e93f5b2d-b4ba-4a42-8528-196d3b6e66d0
- List Item
- List Item
-
835
-826
77
64
-
892
-794
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- f0802006-d800-4dde-a213-ee73d5a3310c
- List
- List
- false
- 2fa76128-f184-445b-8f9d-5426873e1f20
- 1
-
837
-824
43
20
-
858.5
-814
- Item index
- 0418bf9f-a9b0-4a2a-b813-f5b4981fe6b4
- Index
- Index
- false
- 0
-
837
-804
43
20
-
858.5
-794
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 28ccd62f-5bf2-485d-a4bb-aef5e4998a4d
- Wrap
- Wrap
- false
- 0
-
837
-784
43
20
-
858.5
-774
- 1
- 1
- {0}
- true
- Item at {i'}
- 178a536c-e731-4a9e-8e69-148d3c49cc3d
- false
- Item
- i
- false
- 0
-
904
-824
6
60
-
907
-794
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2d532bea-994a-447d-9721-0833770a636f
- Relay
- false
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- 1
-
1120
-1536
40
16
-
1140
-1528
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c5d3662a-855b-4143-86ee-307efe2b4d18
- Relay
- false
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- 1
-
1216
-1409
40
16
-
1236
-1401
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 018e8310-9673-4fda-b611-23741855bd4d
- Relay
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1479
-1027
40
16
-
1499
-1019
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 23f21373-05c6-4320-81c7-cd300072a715
- Number
- Number
- false
- 0
-
1892
-1020
50
24
-
1927.99
-1008.369
- 1
- 1
- {0}
- 360
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- e7598ddc-7867-46c8-afe5-946382f8a6a7
- Division
- Division
-
1872
-1230
70
44
-
1897
-1208
- Item to divide (dividend)
- 53af4f37-e059-4f18-9944-7656f3d8005b
- A
- A
- false
- 45881c64-e2f3-4464-99c8-5529e6c361e0
- 1
-
1874
-1228
11
20
-
1879.5
-1218
- Item to divide with (divisor)
- 5fed16f6-067e-4f06-8f3f-ccc53825d8a5
- B
- B
- false
- 42712f8c-0c4d-44eb-8f11-8ba444be59f1
- 1
-
1874
-1208
11
20
-
1879.5
-1198
- The result of the Division
- 89017df6-cc07-4014-b4ca-46093b4ee03c
- Result
- Result
- false
- 0
-
1909
-1228
31
40
-
1924.5
-1208
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 241297d5-618c-41d0-ba75-3f9b8193d48c
- Division
- Division
-
1995
-1041
70
44
-
2020
-1019
- Item to divide (dividend)
- 27501195-a5f9-4f91-8001-d81354bafac2
- A
- A
- false
- 23f21373-05c6-4320-81c7-cd300072a715
- 1
-
1997
-1039
11
20
-
2002.5
-1029
- Item to divide with (divisor)
- 8e603d55-6bef-4568-ab62-a7477370a085
- B
- B
- false
- 42712f8c-0c4d-44eb-8f11-8ba444be59f1
- 1
-
1997
-1019
11
20
-
2002.5
-1009
- The result of the Division
- 9075c566-f68b-451d-bd4d-d3c452889c63
- Result
- Result
- false
- 0
-
2032
-1039
31
40
-
2047.5
-1019
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 42712f8c-0c4d-44eb-8f11-8ba444be59f1
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 2.00000000000
-
1733
-955
250
20
-
1733.832
-954.949
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 3ce76e72-1394-4a6b-9b96-c7de19fdbabf
- Rotate
- Rotate
-
1691
-928
204
81
-
1831
-887
- Base geometry
- 962fa6d9-4389-422a-9bc1-43c28d024173
- Geometry
- Geometry
- true
- 0
-
1693
-926
126
20
-
1756
-916
- Rotation angle in radians
- 272c9161-9419-4af3-b655-596b5f434c2d
- Angle
- Angle
- false
- 0
- false
-
1693
-906
126
20
-
1756
-896
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 0aa3b363-731f-40f3-906e-eaa5fbd63a95
- Plane
- Plane
- false
- 0
-
1693
-886
126
37
-
1756
-867.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 7ec807c1-40eb-4e78-b7d9-fb464227036f
- Geometry
- Geometry
- false
- 0
-
1843
-926
50
38
-
1868
-906.75
- Transformation data
- a6da92fe-faab-449b-9edb-78bfacebcafa
- Transform
- Transform
- false
- 0
-
1843
-888
50
39
-
1868
-868.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 45881c64-e2f3-4464-99c8-5529e6c361e0
- Relay
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1867
-1291
40
16
-
1887
-1283
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 35ef0b97-0c82-4a52-adf9-820c1b87b00e
- Rotate
- Rotate
-
2173
-1229
240
81
-
2349
-1188
- Base geometry
- cea44bd1-fa93-4a03-b8a6-4f0a6cabc256
- Geometry
- Geometry
- true
- 8bc71174-26e4-4ccf-a70e-69d5fb015c4d
- 1
-
2175
-1227
162
20
-
2274
-1217
- Rotation angle in degrees
- cf0a3db4-dced-4bbe-9037-5f046fd75848
- 360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
2175
-1207
162
20
-
2274
-1197
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 915b7ff2-4407-4a47-a629-5fd838f8ff2f
- Plane
- Plane
- false
- 0
-
2175
-1187
162
37
-
2274
-1168.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- abf795af-c9f6-4670-b254-6dbeb8fe7fa3
- Geometry
- Geometry
- false
- 0
-
2361
-1227
50
38
-
2386
-1207.75
- Transformation data
- 6363b01d-41cb-468e-9cbb-35b5b64013f3
- Transform
- Transform
- false
- 0
-
2361
-1189
50
39
-
2386
-1169.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f8b0679f-d422-4df4-9d8b-dcd720778acf
- Relay
- false
- 905999a1-50d8-405b-91ef-f8a8c1ee24c6
- 1
-
2437
-1318
40
16
-
2457
-1310
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8bc71174-26e4-4ccf-a70e-69d5fb015c4d
- Relay
- false
- a891ada9-7221-4e23-ba30-6e03eb1cc658
- 1
-
2186
-1341
40
16
-
2206
-1333
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 2ae6f261-60f3-4bdc-9a9f-b2ba7db5cd10
- Rotate
- Rotate
-
2493
-1060
204
81
-
2633
-1019
- Base geometry
- f7f22279-4ef6-42cd-b4e6-e139d7a8bc3a
- Geometry
- Geometry
- true
- abf795af-c9f6-4670-b254-6dbeb8fe7fa3
- 1
-
2495
-1058
126
20
-
2558
-1048
- Rotation angle in radians
- 73d59b83-d567-41c8-8181-3f7aa7e0e147
- Angle
- Angle
- false
- 0
- false
-
2495
-1038
126
20
-
2558
-1028
- 1
- 1
- {0}
- -0.7853981634
- Rotation plane
- c9b46e6e-b994-4260-8888-cd83da81a207
- Plane
- Plane
- false
- 0
-
2495
-1018
126
37
-
2558
-999.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 905999a1-50d8-405b-91ef-f8a8c1ee24c6
- Geometry
- Geometry
- false
- 0
-
2645
-1058
50
38
-
2670
-1038.75
- Transformation data
- f0911430-744b-48a4-8f74-c93e8d4be448
- Transform
- Transform
- false
- 0
-
2645
-1020
50
39
-
2670
-1000.25
- 0ca9be21-459e-4cd0-9d77-05e72a6a1422
- 8df4d222-85a2-467d-a510-b8dde333d730
- Polygon
- Create a circumscribed polygon with optional round edges.
- true
- f0b54d93-c203-4d39-9ab5-def4ec0b18cc
- Polygon
- Polygon
- true
-
1328
-1851
141
84
-
1415
-1809
- Polygon base plane
- true
- 8513ad55-163b-47a9-aaaf-15d5f4a9f4f1
- Plane
- Plane
- false
- d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb
- 1
-
1330
-1849
73
20
-
1366.5
-1839
- 1
- 1
- {0}
-
0
0
0.353553390593274
1
0
0
0
1
0
- Radius of polygon (distance from center to edge)
- a10f02cf-b9c3-4c42-927f-159ea8922817
- Radius
- Radius
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1330
-1829
73
20
-
1366.5
-1819
- 1
- 1
- {0}
- 0.35355339059327379
- Number of segments
- 5b502e04-97a5-42f2-9642-4c1af3373141
- Segments
- Segments
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1330
-1809
73
20
-
1366.5
-1799
- 1
- 1
- {0}
- 6
- Polygon corner fillet radius
- ebe40824-f1da-4e63-a2e2-414abc12ca86
- Fillet Radius
- Fillet Radius
- false
- 0
-
1330
-1789
73
20
-
1366.5
-1779
- 1
- 1
- {0}
- 0
- Polygon
- 247135b9-20be-4bf6-aab0-135cfd64b897
- Polygon
- Polygon
- false
- 0
-
1427
-1849
40
40
-
1447
-1829
- Length of polygon curve
- d922d5c2-3926-4cda-8212-764bfba52f59
- Length
- Length
- false
- 0
-
1427
-1809
40
40
-
1447
-1789
- 429cbba9-55ee-4e84-98ea-876c44db879a
- Sub Curve
- Construct a curve from the sub-domain of a base curve.
- true
- b5f0a82e-6944-46f8-ba93-8e5c4d33a43a
- Sub Curve
- Sub Curve
-
1361
-1926
128
44
-
1429
-1904
- Base curve
- 2daa4183-8f9d-4552-bc5c-ed4515d70802
- Base curve
- Base curve
- false
- 6bcbb743-b730-408b-85c2-b7e375d97a00
- 1
-
1363
-1924
54
20
-
1390
-1914
- Sub-domain to extract
- 48fbec1d-ef78-4e13-8eb3-ff0b46dc4fbf
- Domain
- Domain
- false
- 5cac713b-579a-47a8-9677-cce98943631b
- 1
-
1363
-1904
54
20
-
1390
-1894
- Resulting sub curve
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
- Curve
- Curve
- false
- 0
-
1441
-1924
46
40
-
1456
-1904
- ccfd6ba8-ecb1-44df-a47e-08126a653c51
- Curve Domain
- Measure and set the curve domain
- true
- 7c6c067b-326e-45fb-ace5-d386ede0cf98
- Curve Domain
- Curve Domain
-
1142
-1981
146
44
-
1236
-1959
- Curve to measure/modify
- a8460880-28d1-4cec-8342-d959b358481a
- Curve
- Curve
- false
- 0b4a4482-f1b2-42cb-bd44-98a3294810aa
- 1
-
1144
-1979
80
20
-
1184
-1969
- Optional domain, if omitted the curve will not be modified.
- 876e03a4-1c26-43b5-9c9f-c7f10adf3ba4
- Domain
- Domain
- true
- 0
-
1144
-1959
80
20
-
1184
-1949
- Curve with new domain.
- 6bcbb743-b730-408b-85c2-b7e375d97a00
- Curve
- Curve
- false
- 0
-
1248
-1979
38
20
-
1267
-1969
- Domain of original curve.
- e7d3f477-8f2c-4d47-af03-ceed85112c52
- Domain
- Domain
- false
- 0
-
1248
-1959
38
20
-
1267
-1949
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 61a50e74-7d41-4f1e-8f80-1131da213878
- Merge
- Merge
-
1198
-1909
90
64
-
1243
-1877
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 2d7d2971-e7b2-477a-8a80-d9e53102dec6
- false
- Data 1
- D1
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- 1
-
1200
-1907
31
20
-
1215.5
-1897
- 2
- Data stream 2
- 373ce0a9-ebd2-4eaa-94e8-2a87a26866c2
- false
- Data 2
- D2
- true
- 247135b9-20be-4bf6-aab0-135cfd64b897
- 1
-
1200
-1887
31
20
-
1215.5
-1877
- 2
- Data stream 3
- 95f0212d-402c-496c-a567-c2887ab4c2d1
- false
- Data 3
- D3
- true
- 0
-
1200
-1867
31
20
-
1215.5
-1857
- 2
- Result of merge
- 0b4a4482-f1b2-42cb-bd44-98a3294810aa
- Result
- Result
- false
- 0
-
1255
-1907
31
60
-
1270.5
-1877
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 09c9b250-781c-405d-a49b-17c9aa572e0f
- Deconstruct Domain
- Deconstruct Domain
-
1142
-2039
92
44
-
1194
-2017
- Base domain
- f7f99898-634a-43b0-a5aa-f7885d440f28
- Domain
- Domain
- false
- e7d3f477-8f2c-4d47-af03-ceed85112c52
- 1
-
1144
-2037
38
40
-
1163
-2017
- Start of domain
- c3a5f4c3-5eed-40b9-9879-b3f355ee2914
- Start
- Start
- false
- 0
-
1206
-2037
26
20
-
1219
-2027
- End of domain
- 058d02ab-4c3a-4848-8cf9-96dde9f41d5c
- End
- End
- false
- 0
-
1206
-2017
26
20
-
1219
-2007
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- 3f619d74-a5e4-4584-ad02-8a67ccf6e117
- Construct Domain
- Construct Domain
-
1309
-2019
144
44
-
1401
-1997
- Start value of numeric domain
- 7366d688-b1e8-4aaa-8714-7626c8dd1d4f
- X*1/8
- Domain start
- Domain start
- false
- 058d02ab-4c3a-4848-8cf9-96dde9f41d5c
- 1
-
1311
-2017
78
20
-
1358
-2007
- 1
- 1
- {0}
- 0
- End value of numeric domain
- 3736068e-c4da-4a99-a42b-16b65162fd91
- X*2/8
- Domain end
- Domain end
- false
- 058d02ab-4c3a-4848-8cf9-96dde9f41d5c
- 1
-
1311
-1997
78
20
-
1358
-1987
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- 5cac713b-579a-47a8-9677-cce98943631b
- Domain
- Domain
- false
- 0
-
1413
-2017
38
40
-
1432
-1997
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- cc994066-92f7-4058-b653-3de247d4ee88
- List Item
- List Item
-
1309
-2157
77
64
-
1366
-2125
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- f29b10b7-2978-406f-802d-2e7b681878bd
- List
- List
- false
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
1311
-2155
43
20
-
1332.5
-2145
- Item index
- 925447eb-232e-49d1-a8c2-b575beb31012
- Index
- Index
- false
- 0
-
1311
-2135
43
20
-
1332.5
-2125
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- b2f296d0-7766-471b-abd2-7cf75bcd400b
- Wrap
- Wrap
- false
- 0
-
1311
-2115
43
20
-
1332.5
-2105
- 1
- 1
- {0}
- true
- Item at {i'}
- 30798710-3845-4562-83f3-8991b638e622
- false
- Item
- i
- false
- 0
-
1378
-2155
6
60
-
1381
-2125
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- b791a4ed-5cc2-4bec-ac9b-80b0d6b698a2
- List Item
- List Item
-
1343
-2093
77
64
-
1400
-2061
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- a1248fa1-b3c2-45c2-8bb2-24a9cd9bdfd8
- List
- List
- false
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
1345
-2091
43
20
-
1366.5
-2081
- Item index
- 7957921b-c465-4da1-a3a9-a32354de93a4
- Index
- Index
- false
- 0
-
1345
-2071
43
20
-
1366.5
-2061
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 6a7f8782-3f5c-4408-89ce-edbd1e5a0ec9
- Wrap
- Wrap
- false
- 0
-
1345
-2051
43
20
-
1366.5
-2041
- 1
- 1
- {0}
- true
- Item at {i'}
- 5336fff3-be75-4ae1-934b-21d01294e503
- false
- Item
- i
- false
- 0
-
1412
-2091
6
60
-
1415
-2061
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- d5b01813-abd5-4795-a99d-2559036eaf32
- Explode
- Explode
-
1440
-2157
134
44
-
1511
-2135
- Curve to explode
- 686260a8-f50a-4c21-8a0f-5b6fcb21b00e
- Curve
- Curve
- false
- 30798710-3845-4562-83f3-8991b638e622
- 1
-
1442
-2155
57
20
-
1470.5
-2145
- Recursive decomposition until all segments are atomic
- b719e15c-a53e-4d2b-91f8-5636268e1ce3
- Recursive
- Recursive
- false
- 0
-
1442
-2135
57
20
-
1470.5
-2125
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- ebea818e-fc05-48a9-be1f-651351b99a93
- Segments
- Segments
- false
- 0
-
1523
-2155
49
20
-
1547.5
-2145
- 1
- Vertices of the exploded segments
- d1da05cf-4dd7-4d74-ace7-ae5cf9a4a127
- Vertices
- Vertices
- false
- 0
-
1523
-2135
49
20
-
1547.5
-2125
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- 5799c9ff-28a9-4a3b-9bd4-b6bc5a9ac7b3
- Explode
- Explode
-
1453
-2083
134
44
-
1524
-2061
- Curve to explode
- 9f2a4b6e-c4da-4e96-8e5f-9cd263731e9b
- Curve
- Curve
- false
- 5336fff3-be75-4ae1-934b-21d01294e503
- 1
-
1455
-2081
57
20
-
1483.5
-2071
- Recursive decomposition until all segments are atomic
- 6f58db0c-fe1a-4564-a0b2-c39034cb1bed
- Recursive
- Recursive
- false
- 0
-
1455
-2061
57
20
-
1483.5
-2051
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- a8604204-ba17-477f-bb44-6da8cb473689
- Segments
- Segments
- false
- 0
-
1536
-2081
49
20
-
1560.5
-2071
- 1
- Vertices of the exploded segments
- d86a63d7-ed17-443b-a0e7-80def287ea57
- Vertices
- Vertices
- false
- 0
-
1536
-2061
49
20
-
1560.5
-2051
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- ffc77713-fff2-47ff-9c9d-f886c51d8940
- Line
- Line
-
1587
-2132
102
44
-
1653
-2110
- Line start point
- 94144529-9348-47c8-b1da-7f85c44e0354
- Start Point
- Start Point
- false
- d1da05cf-4dd7-4d74-ace7-ae5cf9a4a127
- 1
-
1589
-2130
52
20
-
1615
-2120
- Line end point
- d1bedf31-bbd5-4ae7-8bb6-c051bcf28b63
- End Point
- End Point
- false
- d86a63d7-ed17-443b-a0e7-80def287ea57
- 1
-
1589
-2110
52
20
-
1615
-2100
- Line segment
- e086c657-1a1e-4234-9675-3cf89dc5b5f9
- Line
- Line
- false
- 0
-
1665
-2130
22
40
-
1676
-2110
- 8307c31e-e307-48e9-b7c3-f970591e86d2
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- ggNetworkPolygons
- Polygon from Curve network
- true
- 9b0f7c5b-7377-4c7f-aff8-9ae43e7328d8
- ggNetworkPolygons
- ggNetworkPolygons
-
2020
-2076
150
44
-
2131
-2054
- 1
- Input Curves
- 88d62537-3221-4602-aaf4-3858daf495f0
- 1
- Curves
- Curves
- false
- b2c8b024-bfbd-4212-96bd-3bb43ba03951
- 1
-
2022
-2074
97
20
-
2078.5
-2064
- Number of edges considered to be a void or perimeter location
- fb63db76-55b2-443c-9df9-36b6697d5814
- Perim or Void
- Perim or Void
- true
- 0
-
2022
-2054
97
20
-
2078.5
-2044
- 1
- 1
- {0}
- 4
- 1
- Resultant Polygons
- 1c67803d-90e4-40d0-9223-ba648c7da95f
- Cells
- Cells
- false
- 0
-
2143
-2074
25
40
-
2155.5
-2054
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- b6802eb6-4e97-4344-b7db-26fc0d0211b0
- Merge
- Merge
-
1626
-2083
106
64
-
1671
-2051
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- f976fbce-fc8b-47e3-8d4e-5033a5646fd2
- false
- Data 1
- D1
- true
- e086c657-1a1e-4234-9675-3cf89dc5b5f9
- 1
-
1628
-2081
31
20
-
1643.5
-2071
- 2
- Data stream 2
- f1fc8029-4be2-420d-8785-aa13ab49b35d
- false
- Data 2
- D2
- true
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
1628
-2061
31
20
-
1643.5
-2051
- 2
- Data stream 3
- de1f2953-b082-40f6-a4d5-700b1e9ff5b9
- false
- Data 3
- D3
- true
- 0
-
1628
-2041
31
20
-
1643.5
-2031
- 2
- Result of merge
- 2a732366-e703-4fb6-b7b8-5dfca8ec0b0b
- 1
- Result
- Result
- false
- 0
-
1683
-2081
47
60
-
1698.5
-2051
- 4c0d75e1-4266-45b8-b5b4-826c9ad51ace
- 00000000-0000-0000-0000-000000000000
- Divide Curves on Intersects
- Divide curves on all of their intersects.
- true
- d7915680-0470-47bf-a41f-560890fdd28e
- Divide Curves on Intersects
- Divide Curves on Intersects
-
1775
-2076
190
44
-
1918
-2054
- 1
- curves to be divided
- 7ab8632b-5825-42d7-9004-758dc43472b2
- 1
- curves
- curves
- false
- 7c63f046-fa92-4bb1-a7b3-4ebfc64e6373
- 1
-
1777
-2074
129
20
-
1849.5
-2064
- ZeroTolerance
- e7e97663-e42a-449a-b741-29aa75b6cfba
- Tolerance
- Tolerance
- false
- 0
-
1777
-2054
129
20
-
1849.5
-2044
- 1
- 1
- {0}
- 1.52587890625E-05
- 1
- aligned curves
- b2c8b024-bfbd-4212-96bd-3bb43ba03951
- curves
- curves
- false
- 0
-
1930
-2074
33
40
-
1946.5
-2054
- c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1
- Simple Mesh
- Create a mesh that represents a Brep as simply as possible
- true
- 3cc61a28-4aa7-4a88-a821-8ab7feacc60f
- Simple Mesh
- Simple Mesh
-
2077
-2124
81
28
-
2116
-2110
- Brep to mesh, only breps with triangle or quad faces are supported.
- 4782fc5a-6800-4f62-b2b3-e0d225212e89
- Brep
- Brep
- false
- 1c67803d-90e4-40d0-9223-ba648c7da95f
- 1
-
2079
-2122
25
24
-
2091.5
-2110
- Mesh
- 49b4590f-1985-41a4-b0c1-a10f591a4cf0
- Mesh
- Mesh
- false
- 0
-
2128
-2122
28
24
-
2142
-2110
- 4bc9dbbf-fec8-4348-a3af-e33e7edc8e7b
- Mesh Join
- Join a set of meshes into a single mesh
- true
- bc1346bb-a66e-47d4-9a9a-044f091b7726
- Mesh Join
- Mesh Join
-
2178
-2124
94
28
-
2230
-2110
- 1
- Meshes to join
- 25e32ac2-e373-4c7a-b61c-2a62f953794c
- Meshes
- Meshes
- false
- 49b4590f-1985-41a4-b0c1-a10f591a4cf0
- 1
-
2180
-2122
38
24
-
2199
-2110
- Mesh join result
- c1bd4c6d-1df6-4abf-a7a4-b12d0b2e6ca4
- Mesh
- Mesh
- false
- 0
-
2242
-2122
28
24
-
2256
-2110
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- d9cadc60-06b8-40a5-8670-7d6604b13a55
- Scale
- Scale
-
1770
-2160
195
64
-
1901
-2128
- Base geometry
- 7b6fef10-edd2-4b23-8a88-8527c42b4710
- Geometry
- Geometry
- true
- 9f549e8b-da28-4ef0-9037-6651ef233c91
- 1
-
1772
-2158
117
20
-
1830.5
-2148
- Center of scaling
- f74ec72c-58b4-428d-86f3-b0d598afd82a
- Center
- Center
- false
- 0
-
1772
-2138
117
20
-
1830.5
-2128
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- df490fdf-e2fd-4f79-8b80-a99abd41e47d
- Factor
- Factor
- false
- 363657c8-ee9e-44fe-bf60-e29e6141415c
- 1
-
1772
-2118
117
20
-
1830.5
-2108
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 7c63f046-fa92-4bb1-a7b3-4ebfc64e6373
- Geometry
- Geometry
- false
- 0
-
1913
-2158
50
30
-
1938
-2143
- Transformation data
- b2a247eb-d2f1-4336-a777-58a0f743ff8a
- Transform
- Transform
- false
- 0
-
1913
-2128
50
30
-
1938
-2113
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- ca19c451-d4b3-43b4-867e-e23204597823
- Scale
- Scale
-
2144
-2264
195
64
-
2275
-2232
- Base geometry
- add0eb25-3536-4dd4-b64e-6871f9f75124
- Geometry
- Geometry
- true
- 4616153f-b77e-4396-9db0-407a32c43692
- 1
-
2146
-2262
117
20
-
2204.5
-2252
- Center of scaling
- 18b672ac-af69-4d12-9e41-3f589cced19f
- Center
- Center
- false
- 0
-
2146
-2242
117
20
-
2204.5
-2232
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- b2e59736-07e8-4865-882c-5d8e78e51b72
- Factor
- Factor
- false
- 0db1a859-a32a-4c96-a6d3-3d4a53580b28
- 1
-
2146
-2222
117
20
-
2204.5
-2212
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 043fb4b6-1a03-448e-bcc2-db8f61394b14
- Geometry
- Geometry
- false
- 0
-
2287
-2262
50
30
-
2312
-2247
- Transformation data
- f4336505-b20d-4de6-ac77-0b521e54278c
- Transform
- Transform
- false
- 0
-
2287
-2232
50
30
-
2312
-2217
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- eb729bda-2bb3-40e9-b6ef-94a47a07c4f0
- One Over X
- One Over X
-
1962
-2246
88
28
-
2005
-2232
- Input value
- f4a9b5a3-7239-43c2-9b7f-f45f9d2f7630
- Value
- Value
- false
- 363657c8-ee9e-44fe-bf60-e29e6141415c
- 1
-
1964
-2244
29
24
-
1978.5
-2232
- Output value
- 0db1a859-a32a-4c96-a6d3-3d4a53580b28
- Result
- Result
- false
- 0
-
2017
-2244
31
24
-
2032.5
-2232
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- dc3220b0-fb46-4bc9-88ff-bf1eea1af854
- Power
- Power
-
1965
-2213
85
44
-
2005
-2191
- The item to be raised
- 366f9e3f-b824-427d-9f09-57ed8d62f462
- A
- A
- false
- 0
-
1967
-2211
26
20
-
1980
-2201
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 5ee9200f-0632-47b1-90cf-f70a99308002
- B
- B
- false
- 9fcb2f6e-bb1b-489f-abc9-00bcc59d4904
- 1
-
1967
-2191
26
20
-
1980
-2181
- A raised to the B power
- 363657c8-ee9e-44fe-bf60-e29e6141415c
- Result
- Result
- false
- 0
-
2017
-2211
31
40
-
2032.5
-2191
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9fcb2f6e-bb1b-489f-abc9-00bcc59d4904
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 4.0000000000
-
1692
-2191
250
20
-
1692.389
-2190.101
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 6e5efe6a-81a9-4fc5-b975-5916a8c2416a
- Deconstruct
- Deconstruct
-
1256
-1647
120
64
-
1297
-1615
- Input point
- 32cfad3f-813d-41cd-9317-a1b32ac885e8
- Point
- Point
- false
- af44461f-37b2-4fe2-a269-d899c9e7147f
- 1
-
1258
-1645
27
60
-
1271.5
-1615
- Point {x} component
- 2809ab09-d804-48fc-99c8-34051bdc08ea
- X component
- X component
- false
- 0
-
1309
-1645
65
20
-
1341.5
-1635
- Point {y} component
- 8551c667-9184-4cda-850c-45ca1b3ffc0e
- Y component
- Y component
- false
- 0
-
1309
-1625
65
20
-
1341.5
-1615
- Point {z} component
- 6644c9e8-68a3-45d0-8a20-6166c40a131b
- Z component
- Z component
- false
- 0
-
1309
-1605
65
20
-
1341.5
-1595
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
- Construct a point from {xyz} coordinates.
- true
- 60a51f01-5899-49d4-b314-60276bd08212
- Construct Point
- Construct Point
-
1382
-1668
132
64
-
1473
-1636
- {x} coordinate
- 070e1907-d83a-47f0-8a2b-c32c8f1686ec
- X coordinate
- X coordinate
- false
- 0
-
1384
-1666
77
20
-
1422.5
-1656
- 1
- 1
- {0}
- 0
- {y} coordinate
- e4717a98-86e5-4137-97e4-41a50dc16a97
- Y coordinate
- Y coordinate
- false
- 0
-
1384
-1646
77
20
-
1422.5
-1636
- 1
- 1
- {0}
- 0
- {z} coordinate
- 187c81c4-e8d1-46db-b9d3-f9222945e468
- Z coordinate
- Z coordinate
- false
- 6644c9e8-68a3-45d0-8a20-6166c40a131b
- 1
-
1384
-1626
77
20
-
1422.5
-1616
- 1
- 1
- {0}
- 0
- Point coordinate
- d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb
- Point
- Point
- false
- 0
-
1485
-1666
27
60
-
1498.5
-1636
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 53886360-af1c-4ca8-a5d5-d5b747804cfd
- Scale
- Scale
-
1235
-1740
126
64
-
1297
-1708
- Base geometry
- 401c492e-6221-48a7-be26-da01ac185ea8
- Geometry
- Geometry
- true
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- 1
-
1237
-1738
48
20
-
1261
-1728
- Center of scaling
- 0faa135d-c825-475a-937f-e62abc306b68
- Center
- Center
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
1237
-1718
48
20
-
1261
-1708
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 18f4c068-131d-4309-9eae-d516b0f85a2a
- Factor
- Factor
- false
- 50f8e83a-7adc-47ab-9184-e3a95b9fe87c
- 1
-
1237
-1698
48
20
-
1261
-1688
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 8025ef62-00eb-4034-84bd-92c8573721fc
- Geometry
- Geometry
- false
- 0
-
1309
-1738
50
30
-
1334
-1723
- Transformation data
- 26897bdc-d6c2-4908-b027-65fcd848652c
- Transform
- Transform
- false
- 0
-
1309
-1708
50
30
-
1334
-1693
- 361790d6-9d66-4808-8c5a-8de9c218c227
- Quad Sphere
- Create a spherical brep made from quad nurbs patches.
- true
- 7f3cf3eb-f811-46af-897c-66cd10a62e73
- Quad Sphere
- Quad Sphere
-
599
-2345
175
61
-
724
-2314
- Base plane
- 27b9894f-3c01-4858-a391-ed0398c9437e
- Base
- Base
- false
- 0
-
601
-2343
111
37
-
656.5
-2324.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Sphere radius
- 5a388fa9-9a6d-454e-a7a2-c0133092ccfc
- Radius
- Radius
- false
- 0
-
601
-2306
111
20
-
656.5
-2296
- 1
- 1
- {0}
- 0.5
- Resulting quad sphere
- 07275121-8e13-4cbf-aa2e-5ecc016f0404
- Sphere
- Sphere
- false
- 0
-
736
-2343
36
57
-
754
-2314.5
- f24b6e1d-27ba-4eb0-b914-5c3d27b4eeef
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Tween Two Curves On Surface
- Tween between two curves on a surface, if curves are not on the surface they will be pulled to it.
- true
- 1ae81de7-dbb2-4005-85aa-45720c7ac2b8
- true
- Tween Two Curves On Surface
- Tween Two Curves On Surface
-
870
-2376
141
124
-
963
-2314
- Curve on surface to tween from
- 5fd07bd6-9c2f-41d7-a41d-1fbfa4aa8bf0
- true
- Curve A
- Curve A
- false
- b7812d9f-ab80-4a1b-af93-274919e3d197
- 1
-
872
-2374
79
20
-
911.5
-2364
- Curve on surface to tween to
- 15318132-7217-49e2-b230-3f376cd4659a
- true
- Curve B
- Curve B
- false
- b47b066d-ced9-4a5f-b5f7-cb21f3d787f9
- 1
-
872
-2354
79
20
-
911.5
-2344
- Surface to tween curve on
- f3bc8eaf-ceba-405c-acab-6e6aac3cb7e7
- true
- Surface
- Surface
- false
- 3686f319-3b13-4a40-8f63-73640cca8e2e
- 1
-
872
-2334
79
20
-
911.5
-2324
- Tween factor (0.0 = Curve A, 1.0 = Curve B)
- 5d3aeba4-a23a-4d22-b44e-dc0fc3edf022
- true
- Factor
- Factor
- false
- 6260ae29-2097-4e32-b627-15c8a4d72ec0
- 1
-
872
-2314
79
20
-
911.5
-2304
- 1
- 1
- {0}
- 0.5
- Optional Refit match method.
(No Integer or 0 = Off, Integer greater than 0 = On and curve degree of refit)
If an integer greater than zero, Refit match method is used if possible. When input curves are refit their control points are redistributed, added to, and removed from based on the curves curvature and the input integer degree, while trying to maintain their shapes. Refit results in tighter shaped tweens, with curvature based control point distribution.
- 7e21208b-cbe9-440a-a905-4121f602ca0d
- true
- Refit
- Refit
- false
- 0
-
872
-2294
79
20
-
911.5
-2284
- 1
- 1
- {0}
- 0
- Optional Point Sample match method.
(No Integer or 0 = Off, Integer greater than 0 = On and amount of sample points)
If an integer greater than zero, Point Sample match method is used. When input curves are sampled their control points are recreated by equally dividing the curve by the input integer point count. Point Sample results in looser shaped tweens, with uniform control point distribution.
- ca67bf69-8349-4179-99ca-63aafaf462b2
- true
- Point Sample
- Point Sample
- false
- 0
-
872
-2274
79
20
-
911.5
-2264
- 1
- 1
- {0}
- 0
- Resulting tween curve on surface
- e910c1ca-a032-498a-8405-5ef9fc92dc05
- true
- Tween
- Tween
- false
- 0
-
975
-2374
34
120
-
992
-2314
- 8d372bdc-9800-45e9-8a26-6e33c5253e21
- Deconstruct Brep
- Deconstruct a brep into its constituent parts.
- true
- 1911c828-69c9-41f4-a6d8-55ecdc42ed4e
- Deconstruct Brep
- Deconstruct Brep
-
613
-2451
93
64
-
652
-2419
- Base Brep
- 7d95eba7-f1e6-4e41-9ffe-9be7fcd23f68
- Brep
- Brep
- false
- 07275121-8e13-4cbf-aa2e-5ecc016f0404
- 1
-
615
-2449
25
60
-
627.5
-2419
- 1
- Faces of Brep
- 24a0eb06-eb01-4473-960c-97ac6d0cc461
- Faces
- Faces
- false
- 0
-
664
-2449
40
20
-
684
-2439
- 1
- Edges of Brep
- eb6bfdca-7ebb-4547-8b53-46145bc3650e
- Edges
- Edges
- false
- 0
-
664
-2429
40
20
-
684
-2419
- 1
- Vertices of Brep
- ab19931d-608d-47f9-9d2a-c92c12ed6019
- Vertices
- Vertices
- false
- 0
-
664
-2409
40
20
-
684
-2399
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 7d9531df-1414-46f9-9741-e68b5bb055f3
- List Item
- List Item
-
608
-2547
77
64
-
665
-2515
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- b43ed9d0-27c8-450a-9283-f1c7c4279a78
- List
- List
- false
- 24a0eb06-eb01-4473-960c-97ac6d0cc461
- 1
-
610
-2545
43
20
-
631.5
-2535
- Item index
- df80f14a-9d6a-4f50-a933-825753ad2e1b
- Index
- Index
- false
- 0
-
610
-2525
43
20
-
631.5
-2515
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 797ccd0e-a012-46b3-8e8c-57669e7ccc85
- Wrap
- Wrap
- false
- 0
-
610
-2505
43
20
-
631.5
-2495
- 1
- 1
- {0}
- true
- Item at {i'}
- 3686f319-3b13-4a40-8f63-73640cca8e2e
- false
- Item
- i
- false
- 0
-
677
-2545
6
60
-
680
-2515
- 0148a65d-6f42-414a-9db7-9a9b2eb78437
- Brep Edges
- Extract the edge curves of a brep.
- true
- 67450cf9-31de-4e46-b0e0-063ecf44eb09
- Brep Edges
- Brep Edges
-
587
-2637
119
64
-
626
-2605
- Base Brep
- f48b56b6-4b28-48ef-9bc5-9cca48d250a6
- Brep
- Brep
- false
- 3686f319-3b13-4a40-8f63-73640cca8e2e
- 1
-
589
-2635
25
60
-
601.5
-2605
- 1
- Naked edge curves
- 3f91fe68-9295-4f96-8014-59d90677f0a8
- Naked
- Naked
- false
- 0
-
638
-2635
66
20
-
671
-2625
- 1
- Interior edge curves
- 3f79cdd6-af68-422c-9295-3cfe8900be7b
- Interior
- Interior
- false
- 0
-
638
-2615
66
20
-
671
-2605
- 1
- Non-Manifold edge curves
- 07e92cce-f86b-4381-9c73-9c42eb161a27
- Non-Manifold
- Non-Manifold
- false
- 0
-
638
-2595
66
20
-
671
-2585
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 40052ab1-f242-4744-bc3b-fa2002a93c49
- List Item
- List Item
-
608
-2720
77
64
-
665
-2688
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 2713f79b-c43e-4f40-902c-0a267860f3e7
- List
- List
- false
- 3f91fe68-9295-4f96-8014-59d90677f0a8
- 1
-
610
-2718
43
20
-
631.5
-2708
- Item index
- e306da52-ba52-4fe1-997a-133380b9d3b4
- Index
- Index
- false
- 0
-
610
-2698
43
20
-
631.5
-2688
- 1
- 1
- {0}
- 2
- Wrap index to list bounds
- 6e77f0d0-a0a2-4db8-a920-e037da477b97
- Wrap
- Wrap
- false
- 0
-
610
-2678
43
20
-
631.5
-2668
- 1
- 1
- {0}
- true
- Item at {i'}
- b7812d9f-ab80-4a1b-af93-274919e3d197
- false
- Item
- i
- false
- 0
-
677
-2718
6
60
-
680
-2688
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579
- Number
- Number
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
389
-2427
50
24
-
414.3606
-2415
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- a8b0028f-de15-41d6-ac27-8242e61aefc0
- Scale
- Scale
-
439
-2656
126
64
-
501
-2624
- Base geometry
- 1b4312a0-9b59-435d-82a3-1c60363e2d35
- Geometry
- Geometry
- true
- b7812d9f-ab80-4a1b-af93-274919e3d197
- 1
-
441
-2654
48
20
-
465
-2644
- Center of scaling
- 046d7577-aa81-4237-8654-1a6145d1a6fa
- Center
- Center
- false
- d772890b-7613-40c8-af8e-e8111ee4e366
- 1
-
441
-2634
48
20
-
465
-2624
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 0815d3b2-c4a3-49b2-8091-eeb8213b5ad1
- Factor
- Factor
- false
- eda9b36e-8d1c-4cb9-832a-cac5dcae6446
- 1
-
441
-2614
48
20
-
465
-2604
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 1b6852ff-5ea0-4377-b091-331cfc003e06
- Geometry
- Geometry
- false
- 0
-
513
-2654
50
30
-
538
-2639
- Transformation data
- 8ef1e35f-3da8-4aaf-916d-672d3f2368a4
- Transform
- Transform
- false
- 0
-
513
-2624
50
30
-
538
-2609
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- d772890b-7613-40c8-af8e-e8111ee4e366
- Point
- Point
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
306
-2581
50
24
-
331.5268
-2569.456
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e37e2ebe-b7b9-404a-a9f0-9ea61110d68d
- Multiplication
- Multiplication
-
421
-2495
125
44
-
501
-2473
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 2bf1540c-604b-45ac-abc8-9ea27693a630
- A
- A
- true
- 0
-
423
-2493
66
20
-
456
-2483
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2*SQRT(2)
- Second item for multiplication
- 54a5a07e-f54a-4f03-8ef7-0a6389ff4c09
- B
- B
- true
- 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579
- 1
-
423
-2473
66
20
-
456
-2463
- Result of multiplication
- eda9b36e-8d1c-4cb9-832a-cac5dcae6446
- Result
- Result
- false
- 0
-
513
-2493
31
40
-
528.5
-2473
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 7bde713a-d240-4eb7-8d7f-1f01f85ac42e
- List Item
- List Item
-
891
-2530
77
64
-
948
-2498
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 0e1637ed-9857-4a37-88c0-d1f9108f9443
- List
- List
- false
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
893
-2528
43
20
-
914.5
-2518
- Item index
- 91da0cc1-5b97-4a8d-9af3-80fc31c2b6a3
- Index
- Index
- false
- 0
-
893
-2508
43
20
-
914.5
-2498
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 2d714977-7592-4cae-8b1e-345112fe7516
- Wrap
- Wrap
- false
- 0
-
893
-2488
43
20
-
914.5
-2478
- 1
- 1
- {0}
- true
- Item at {i'}
- b47b066d-ced9-4a5f-b5f7-cb21f3d787f9
- false
- Item
- i
- false
- 0
-
960
-2528
6
60
-
963
-2498
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 9eb71f29-a694-4692-9bfe-7dd14e60adc1
- Multiplication
- Multiplication
-
452
-2284
125
44
-
532
-2262
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 9dd1aa56-4bb3-49c7-b19b-9e54fd64f465
- A
- A
- true
- 0
-
454
-2282
66
20
-
487
-2272
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2*SQRT(2)
- Second item for multiplication
- 01d98073-ee76-47f0-9167-4c5796587c5c
- B
- B
- true
- 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579
- 1
-
454
-2262
66
20
-
487
-2252
- Result of multiplication
- 6260ae29-2097-4e32-b627-15c8a4d72ec0
- Result
- Result
- false
- 0
-
544
-2282
31
40
-
559.5
-2262
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- ad8332bd-7d14-4f8e-b470-0b4b8f421601
- One Over X
- One Over X
-
490
-2402
88
28
-
533
-2388
- Input value
- a97143cc-67af-4d00-9694-2eb88707990f
- Value
- Value
- false
- 6260ae29-2097-4e32-b627-15c8a4d72ec0
- 1
-
492
-2400
29
24
-
506.5
-2388
- Output value
- cff8fe7f-c614-4d54-87ac-97bc6c5d47e1
- Result
- Result
- false
- 0
-
545
-2400
31
24
-
560.5
-2388
- f1f51397-fc4b-44cf-b4b0-0ab80a80a6e1
- 14601aeb-b64f-9304-459d-d5d06df91218
- Mesh WeldVertices
- Merge identical or vertices in threshold range
- true
- 26817207-8db3-4094-9241-8b83400e4495
- Mesh WeldVertices
- Mesh WeldVertices
-
2242
-2171
218
44
-
2366
-2149
- The open or closed mesh
- true
- 6f2e8e64-40a5-46bf-b759-a5ed72138b64
- Mesh
- Mesh
- false
- c1bd4c6d-1df6-4abf-a7a4-b12d0b2e6ca4
- 1
-
2244
-2169
110
20
-
2299
-2159
- Weld threshold value for Vertices
- d9bd9331-8f60-4743-8302-017491e4a5a5
- tolerance
- tolerance
- true
- 0
-
2244
-2149
110
20
-
2299
-2139
- 1
- 1
- {0}
- 2.3283064365386963E-10
- 1
- Print, Reflect and Error Streams
- e855c6e8-63ca-4b2b-92d4-915f895013b7
- RuntimeMessage
- RuntimeMessage
- false
- 0
-
2378
-2169
80
20
-
2418
-2159
- The constructed mesh
- 4616153f-b77e-4396-9db0-407a32c43692
- Mesh
- Mesh
- false
- 0
-
2378
-2149
80
20
-
2418
-2139
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 48cf8656-9d0f-4a59-9fee-89860aaadcfd
- List Item
- List Item
-
1661
-1550
77
64
-
1718
-1518
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 95956234-134d-413d-bce1-bd30ca4b5f7c
- List
- List
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1663
-1548
43
20
-
1684.5
-1538
- Item index
- 80057069-4cbd-4d72-95b2-fdca8c0f55a0
- Index
- Index
- false
- 0
-
1663
-1528
43
20
-
1684.5
-1518
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- d1066a1a-d448-4720-a622-0e5d48edb1c1
- Wrap
- Wrap
- false
- 0
-
1663
-1508
43
20
-
1684.5
-1498
- 1
- 1
- {0}
- true
- Item at {i'}
- ed83e087-f25b-4099-bfb6-ae3e98600fc7
- false
- Item
- i
- false
- 0
-
1730
-1548
6
60
-
1733
-1518
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 93b851d8-db37-4e93-aa4a-a4dd4fd79b7e
- Division
- Division
-
1737
-1612
70
44
-
1762
-1590
- Item to divide (dividend)
- 2aa70353-9e17-4f3c-8145-c92f48a92b35
- A
- A
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1739
-1610
11
20
-
1744.5
-1600
- Item to divide with (divisor)
- 0b44422f-9e57-468e-9081-4151227af567
- B
- B
- false
- ed83e087-f25b-4099-bfb6-ae3e98600fc7
- 1
-
1739
-1590
11
20
-
1744.5
-1580
- The result of the Division
- 50f8e83a-7adc-47ab-9184-e3a95b9fe87c
- Result
- Result
- false
- 0
-
1774
-1610
31
40
-
1789.5
-1590
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e6cb6edd-7d54-432f-a343-4611d5af073a
- Panel
- false
- 1
- 8025ef62-00eb-4034-84bd-92c8573721fc
- 1
- Double click to edit panel content…
-
1401
-1551
160
100
- 0
- 0
- 0
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 3efbb0c3-1854-493f-87f2-2f8358f8c1eb
- List Item
- List Item
-
1563
-1396
77
64
-
1620
-1364
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 32e5ad80-fcd8-413a-ba8f-5a1144b19222
- List
- List
- false
- af44461f-37b2-4fe2-a269-d899c9e7147f
- 1
-
1565
-1394
43
20
-
1586.5
-1384
- Item index
- 00f0b108-79a5-4a55-949a-41406a639786
- Index
- Index
- false
- 0
-
1565
-1374
43
20
-
1586.5
-1364
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- bfdf8e20-54fd-4fe2-a578-3951de13faa0
- Wrap
- Wrap
- false
- 0
-
1565
-1354
43
20
-
1586.5
-1344
- 1
- 1
- {0}
- true
- Item at {i'}
- 48fadd94-119f-4398-82de-9885e8868c65
- false
- Item
- i
- false
- 0
-
1632
-1394
6
60
-
1635
-1364
- f6fe728a-5e0d-4224-a12d-92d80150df7f
- 20563e24-568f-4f4f-b61b-71a1781ef92f
- Naked Vertices
- Mesh Naked Vertices
- true
- 381c36cf-08d3-4698-b573-7a693e688590
- Naked Vertices
- Naked Vertices
-
2031
-2395
96
44
-
2073
-2373
- Mesh
- 6e464022-5344-444d-810a-91b2bde4f5d8
- Mesh
- Mesh
- true
- 043fb4b6-1a03-448e-bcc2-db8f61394b14
- 1
-
2033
-2393
28
40
-
2047
-2373
- 1
- Naked Vertices
- 732a5104-2be4-4893-81fb-15dd28caeab4
- Vertices
- Vertices
- false
- 0
-
2085
-2393
40
20
-
2105
-2383
- 1
- Naked Statua
- c50ebb31-7ec7-41d6-bd56-63bb05705075
- Status
- Status
- false
- 0
-
2085
-2373
40
20
-
2105
-2363
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- f2554cb8-5d0d-4bc8-b05d-46291be29be8
- Point
- Point
- false
- 732a5104-2be4-4893-81fb-15dd28caeab4
- 1
-
2178
-2445
50
24
-
2203
-2433
- 2b9bf01d-5fe5-464c-b0b3-b469eb5f2efb
- Mesh Edges
- Get all the edges of a mesh
- true
- 5d9229fd-3966-48ca-acd5-53b67ba2ff47
- Mesh Edges
- Mesh Edges
-
1963
-2328
153
64
-
2005
-2296
- Mesh for edge extraction
- 726c925f-8352-40c8-b570-f05f51f1a2bc
- Mesh
- Mesh
- false
- 043fb4b6-1a03-448e-bcc2-db8f61394b14
- 1
-
1965
-2326
28
60
-
1979
-2296
- 1
- Edges with valence 1 (a single adjacent face)
- a88bd5f1-ef34-4e19-a1ec-712c3919107a
- Naked Edges
- Naked Edges
- false
- 0
-
2017
-2326
97
20
-
2065.5
-2316
- 1
- Edges with valence 2 (two adjacent faces)
- d71c1ea6-a294-474d-98ed-2c9a9af3ab37
- Interior Edges
- Interior Edges
- false
- 0
-
2017
-2306
97
20
-
2065.5
-2296
- 1
- Edges with valence 3 or higher
- 1ab3cd19-c7b9-4f39-a787-b5b5338ed3c8
- Non-Manifold Edges
- Non-Manifold Edges
- false
- 0
-
2017
-2286
97
20
-
2065.5
-2276
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 8aefdeb2-aec3-42c4-bf4a-5bc9f1594f90
- Geometry
- Geometry
- false
- a88bd5f1-ef34-4e19-a1ec-712c3919107a
- 1
-
2542
-2419
50
24
-
2567
-2407
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 51b86fd5-1241-4581-a158-a51d1f14ece9
- Join Curves
- Join Curves
-
1775
-2445
116
44
-
1842
-2423
- 1
- Curves to join
- 52364798-b8c9-40db-a3df-fd5353db132f
- Curves
- Curves
- false
- 8aefdeb2-aec3-42c4-bf4a-5bc9f1594f90
- 1
-
1777
-2443
53
20
-
1803.5
-2433
- Preserve direction of input curves
- 3c16f926-9dd7-4623-9f32-9c742ec3bd64
- Preserve
- Preserve
- false
- 0
-
1777
-2423
53
20
-
1803.5
-2413
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 219574b5-fb4c-413a-8444-4e43f0e359dd
- Curves
- Curves
- false
- 0
-
1854
-2443
35
40
-
1871.5
-2423
- e84869a9-0606-4214-a3d1-f3be3f7f8edd
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- ggSimplifyPolyline
- Simplify Polyline by merging co-linear segments. If all vertex are within tolerance of a line from first to last point, a line is returned. Else the routine is recursively called on polylines before and after vertex with greatest deviation.
- true
- f28585f1-7dbb-40c1-a87e-57e8c825a6c4
- ggSimplifyPolyline
- ggSimplifyPolyline
-
1774
-2531
169
44
-
1891
-2509
- Polyline
- 69fff1a0-4640-4b04-b04a-dc0fef3de153
- Polyline
- Polyline
- false
- 219574b5-fb4c-413a-8444-4e43f0e359dd
- 1
-
1776
-2529
103
20
-
1827.5
-2519
- Deviation Tolerance
- d4d2a845-2154-43b6-b927-67c24fde06ff
- Tol
- Tol
- false
- 0
-
1776
-2509
103
20
-
1827.5
-2499
- 1
- 1
- {0}
- 2.3283064365386963E-10
- Simplified Polyline
- a84507ad-c23e-499b-b244-4bb35b48a206
- Polyline
- Polyline
- false
- 0
-
1903
-2529
38
40
-
1922
-2509
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- 928be1e5-1799-49cf-a83c-694ac0bc23f1
- Explode
- Explode
-
1993
-2531
134
44
-
2064
-2509
- Curve to explode
- da29fc73-93b0-4013-a142-66df6a5ad356
- Curve
- Curve
- false
- a84507ad-c23e-499b-b244-4bb35b48a206
- 1
-
1995
-2529
57
20
-
2023.5
-2519
- Recursive decomposition until all segments are atomic
- 865163ac-5ec6-4e51-b6e1-e508b8a31264
- Recursive
- Recursive
- false
- 0
-
1995
-2509
57
20
-
2023.5
-2499
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- 348dafb5-1775-4101-8d58-3ecc96e00da9
- Segments
- Segments
- false
- 0
-
2076
-2529
49
20
-
2100.5
-2519
- 1
- Vertices of the exploded segments
- 82b24600-5498-4497-acee-4cedcc918e30
- Vertices
- Vertices
- false
- 0
-
2076
-2509
49
20
-
2100.5
-2499
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- f90ca0da-7718-4a01-964b-545fdae63b39
- List Item
- List Item
-
2016
-2622
77
64
-
2073
-2590
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- e20e1955-933e-41ea-a11c-93ee47bdcde8
- List
- List
- false
- 348dafb5-1775-4101-8d58-3ecc96e00da9
- 1
-
2018
-2620
43
20
-
2039.5
-2610
- Item index
- 42e3933e-886e-4036-9b24-adc7ce869d93
- Index
- Index
- false
- 0
-
2018
-2600
43
20
-
2039.5
-2590
- 1
- 1
- {0}
- 5
- Wrap index to list bounds
- fc666f9a-8fbc-497c-8dcf-d5f73871e46b
- Wrap
- Wrap
- false
- 0
-
2018
-2580
43
20
-
2039.5
-2570
- 1
- 1
- {0}
- false
- Item at {i'}
- fe207e50-5707-4eb7-949f-7b590ad42f6d
- false
- Item
- i
- false
- 0
-
2085
-2620
6
60
-
2088
-2590
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- ef3ade99-b62b-4cfa-9cdb-9128e6095a59
- List Item
- List Item
-
2158
-2595
77
64
-
2215
-2563
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 0af44fc1-5857-4641-ad02-cf8303dda6df
- List
- List
- false
- f2554cb8-5d0d-4bc8-b05d-46291be29be8
- 1
-
2160
-2593
43
20
-
2181.5
-2583
- Item index
- ab7e4f3a-e0f7-4008-a9af-f139795ac378
- Index
- Index
- false
- 0
-
2160
-2573
43
20
-
2181.5
-2563
- 1
- 1
- {0}
- 7
- Wrap index to list bounds
- 136bd65a-c437-4175-bda1-b04e2c8ea054
- Wrap
- Wrap
- false
- 0
-
2160
-2553
43
20
-
2181.5
-2543
- 1
- 1
- {0}
- true
- Item at {i'}
- 3c455553-c298-4b50-a940-7df3f007e7f8
- false
- Item
- i
- false
- 0
-
2227
-2593
6
60
-
2230
-2563
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3968904d-bafb-4834-b589-1c4cc6ff7288
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 10.0
-
1724
-2642
250
20
-
1724.435
-2642
- 62cc9684-6a39-422e-aefa-ed44643557b9
- Extend Curve
- Extend a curve by a specified distance.
- true
- 451b20b2-74d9-429d-904e-db5c0a258fd9
- Extend Curve
- Extend Curve
-
2311
-2660
124
84
-
2391
-2618
- Curve to extend
- 49e3d5a1-cd17-4728-b59a-f29520374e64
- Curve
- Curve
- false
- fe207e50-5707-4eb7-949f-7b590ad42f6d
- 1
-
2313
-2658
66
20
-
2346
-2648
- Type of extension (0=Line, 1=Arc, 2=Smooth)
- c61edc79-0a42-4790-bc11-294af2bb717c
- Type
- Type
- false
- 0
-
2313
-2638
66
20
-
2346
-2628
- 1
- 1
- {0}
- 0
- Extension length at start of curve
- 314b0110-15e2-462f-870c-91eadcd632c8
- Start
- Start
- false
- 0
-
2313
-2618
66
20
-
2346
-2608
- 1
- 1
- {0}
- 1
- Extension length at end of curve
- 40fe58c1-b7d9-4cf0-97d2-f824ff70fffe
- End
- End
- false
- 0
-
2313
-2598
66
20
-
2346
-2588
- 1
- 1
- {0}
- 0
- Extended curve
- f45479af-b4a3-46a0-9784-9cb62da2cb05
- Curve
- Curve
- false
- 0
-
2403
-2658
30
80
-
2418
-2618
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- bfd0886f-04fd-4a40-b401-55e2d969f2af
- Line SDL
- Line SDL
-
2148
-2743
163
64
-
2275
-2711
- Line start point
- 50435221-5541-4f49-9fb1-37ba5048e70c
- Start
- Start
- false
- 3c455553-c298-4b50-a940-7df3f007e7f8
- 1
-
2150
-2741
113
20
-
2206.5
-2731
- Line tangent (direction)
- c9609b21-9b55-4128-be5a-11edfc1b53d1
- Direction
- Direction
- false
- 0
-
2150
-2721
113
20
-
2206.5
-2711
- 1
- 1
- {0}
-
1
0
0
- Line length
- f1111ad8-5327-4090-92e1-ea566dd41ef0
- Length
- Length
- false
- 0
-
2150
-2701
113
20
-
2206.5
-2691
- 1
- 1
- {0}
- 1
- Line segment
- 725663cc-f8b4-42bd-a243-33cf50fbc855
- Line
- Line
- false
- 0
-
2287
-2741
22
60
-
2298
-2711
- fb427269-e8a8-4442-8d6c-f96ba5121b20
- 8df4d222-85a2-467d-a510-b8dde333d730
- Split Curves
- Split a intersecting curves into curve segments.
- true
- ee1e190f-0a4e-49be-846f-37bb2cbe3691
- Split Curves
- Split Curves
-
2355
-2558
130
44
-
2420
-2536
- 1
- Curve to split
- 81e2f793-bc77-440f-ab20-e23fdd99bd3a
- 1
- Curves
- Curves
- false
- 725663cc-f8b4-42bd-a243-33cf50fbc855
- f45479af-b4a3-46a0-9784-9cb62da2cb05
- 2
-
2357
-2556
51
40
-
2390.5
-2536
- 2
- Curve segments.
- 69d49f95-be34-44bc-8de5-eed0e06315aa
- 1
- Curves
- Curves
- false
- 0
-
2432
-2556
51
20
-
2449.5
-2546
- 2
- Split points
- true
- 8c649ec7-891c-41dc-8e0f-7793963cafca
- Points
- Points
- false
- 0
-
2432
-2536
51
20
-
2449.5
-2526
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- a9785cbe-2294-402e-892d-c6f06cdb0295
- List Item
- List Item
-
2515
-2568
72
64
-
2567
-2536
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 0c4aa651-2bea-4437-934e-c8d42a5c0c26
- List
- List
- false
- 69d49f95-be34-44bc-8de5-eed0e06315aa
- 1
-
2517
-2566
38
20
-
2536
-2556
- Item index
- bc6ce727-40de-43b1-8696-84bda35b3cf6
- Index
- Index
- false
- 0
-
2517
-2546
38
20
-
2536
-2536
- 1
- 2
- {0}
- 0
- 3
- Wrap index to list bounds
- e8b7aaf0-318e-4849-a0d1-ae2e5d8a8d3c
- Wrap
- Wrap
- false
- 0
-
2517
-2526
38
20
-
2536
-2516
- 1
- 1
- {0}
- true
- Item at {i'}
- 9b26acff-9f5f-4b6f-9f5c-1a35c412e073
- false
- Item
- i
- false
- 0
-
2579
-2566
6
60
-
2582
-2536
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- f24da6d1-54fa-434e-94fa-67488d7ea3e3
- List Item
- List Item
-
2546
-2704
77
64
-
2603
-2672
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- bbfdc6ce-83c5-450e-abc9-d65732cd1975
- List
- List
- false
- 348dafb5-1775-4101-8d58-3ecc96e00da9
- 1
-
2548
-2702
43
20
-
2569.5
-2692
- Item index
- d5095afb-8935-4e42-85e6-700a306da0c8
- Index
- Index
- false
- 0
-
2548
-2682
43
20
-
2569.5
-2672
- 1
- 1
- {0}
- 11
- Wrap index to list bounds
- da99d6e6-779c-4a81-a97d-c644e53d519c
- Wrap
- Wrap
- false
- 0
-
2548
-2662
43
20
-
2569.5
-2652
- 1
- 1
- {0}
- false
- Item at {i'}
- 819293cc-10b9-4390-a91f-14e145700be1
- false
- Item
- i
- false
- 0
-
2615
-2702
6
60
-
2618
-2672
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- d30dcddf-324d-4969-b53d-99708084aed8
- List Item
- List Item
-
2012
-2704
72
64
-
2064
-2672
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- cd005263-04a3-46e3-b00c-98e6610f07c9
- List
- List
- false
- 348dafb5-1775-4101-8d58-3ecc96e00da9
- 1
-
2014
-2702
38
20
-
2033
-2692
- Item index
- 7b450476-a0f2-451b-9aed-d3a0c81d2c26
- Index
- Index
- false
- 0
-
2014
-2682
38
20
-
2033
-2672
- 1
- 5
- {0}
- 6
- 7
- 8
- 9
- 10
- Wrap index to list bounds
- d0696ac3-90cc-4fcd-bb40-2cc29d80d0ab
- Wrap
- Wrap
- false
- 0
-
2014
-2662
38
20
-
2033
-2652
- 1
- 1
- {0}
- false
- Item at {i'}
- 866800f8-b9f1-4532-85ab-4f8894d8e983
- false
- Item
- i
- false
- 0
-
2076
-2702
6
60
-
2079
-2672
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- cf8cc9e1-a3fd-4c71-8e5a-a853295fccf7
- Join Curves
- Join Curves
-
2546
-2787
116
44
-
2613
-2765
- 1
- Curves to join
- fe8f95d0-7e57-4ae1-87d4-1ebc8b1dcd57
- Curves
- Curves
- false
- 866800f8-b9f1-4532-85ab-4f8894d8e983
- 1
-
2548
-2785
53
20
-
2574.5
-2775
- Preserve direction of input curves
- 9efdb8ca-64c8-4f15-ba45-94848e56f1fa
- Preserve
- Preserve
- false
- 0
-
2548
-2765
53
20
-
2574.5
-2755
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 2d740b8b-c0d4-487c-9f42-10b460ac81d2
- Curves
- Curves
- false
- 0
-
2625
-2785
35
40
-
2642.5
-2765
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- d0466eb5-5ab8-4d17-9c41-5b6ebde7cf66
- Merge
- Merge
-
2632
-2652
106
84
-
2677
-2610
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- d4664913-9ec6-4809-b73c-eccbd2e9e784
- false
- Data 1
- D1
- true
- 2d740b8b-c0d4-487c-9f42-10b460ac81d2
- 1
-
2634
-2650
31
20
-
2649.5
-2640
- 2
- Data stream 2
- ef5da4ff-9e1a-4a17-bf44-5371035c1170
- false
- Data 2
- D2
- true
- 819293cc-10b9-4390-a91f-14e145700be1
- 1
-
2634
-2630
31
20
-
2649.5
-2620
- 2
- Data stream 3
- f0edb138-0541-4182-b3a7-f6a847c217af
- false
- Data 3
- D3
- true
- 9b26acff-9f5f-4b6f-9f5c-1a35c412e073
- 1
-
2634
-2610
31
20
-
2649.5
-2600
- 2
- Data stream 4
- b63c2e77-9193-4251-947f-6a64e19773c1
- false
- Data 4
- D4
- true
- 0
-
2634
-2590
31
20
-
2649.5
-2580
- 2
- Result of merge
- 1e4098a1-b5fe-4760-b39d-6919373a0f22
- 1
- Result
- Result
- false
- 0
-
2689
-2650
47
80
-
2704.5
-2610
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 6c1acac5-6cd9-4e2d-8be2-5ef2a17dc68c
- Join Curves
- Join Curves
-
2632
-2127
116
44
-
2699
-2105
- 1
- Curves to join
- a56f4892-583a-41af-bcd0-c52472620cd7
- Curves
- Curves
- false
- 1e4098a1-b5fe-4760-b39d-6919373a0f22
- 1
-
2634
-2125
53
20
-
2660.5
-2115
- Preserve direction of input curves
- 5c67bf6f-5a72-4f11-903a-6e11e37b819d
- Preserve
- Preserve
- false
- 0
-
2634
-2105
53
20
-
2660.5
-2095
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 0fc069bd-1bef-4a31-b553-1b8f3776981e
- Curves
- Curves
- false
- 0
-
2711
-2125
35
40
-
2728.5
-2105
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 2f811549-a91f-4a14-9a27-757fd62310e7
- Join Curves
- Join Curves
-
2698
-2419
116
44
-
2765
-2397
- 1
- Curves to join
- a0a41541-94cd-490f-8673-00224fe79e6b
- Curves
- Curves
- false
- 8aefdeb2-aec3-42c4-bf4a-5bc9f1594f90
- 1
-
2700
-2417
53
20
-
2726.5
-2407
- Preserve direction of input curves
- 077432d7-20a5-45e2-948a-034d96b41bb4
- Preserve
- Preserve
- false
- 0
-
2700
-2397
53
20
-
2726.5
-2387
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 92fad005-3e32-46e3-8f73-5f1de5c10847
- Curves
- Curves
- false
- 0
-
2777
-2417
35
40
-
2794.5
-2397
- ba2d8f57-0738-42b4-b5a5-fe4d853517eb
- Deconstruct Mesh
- Deconstruct a mesh into its component parts.
- true
- 2c127514-3c56-470b-9a57-9edd20a41335
- Deconstruct Mesh
- Deconstruct Mesh
-
2482
-2302
97
84
-
2524
-2260
- Base mesh
- a850aa9f-4eff-45d2-bd54-3a9a5f2a41c5
- Mesh
- Mesh
- false
- 043fb4b6-1a03-448e-bcc2-db8f61394b14
- 1
-
2484
-2300
28
80
-
2498
-2260
- 1
- Mesh vertices
- e5eaf3c8-7967-4283-887e-a23ff2550f61
- Vertices
- Vertices
- false
- 0
-
2536
-2300
41
20
-
2556.5
-2290
- 1
- Mesh faces
- 1444b830-0a74-46e6-b746-2391e92c6ae0
- Faces
- Faces
- false
- 0
-
2536
-2280
41
20
-
2556.5
-2270
- 1
- Mesh vertex colours
- 668179bb-694d-4789-99d3-b0a9cb0e4277
- Colours
- Colours
- false
- 0
-
2536
-2260
41
20
-
2556.5
-2250
- 1
- Mesh normals
- a031b602-f0b5-47b7-a25e-07a1470a664c
- Normals
- Normals
- false
- 0
-
2536
-2240
41
20
-
2556.5
-2230
- 4098ecba-269a-1ced-9ce4-86836dae2101
- a4634196-add1-8181-6e78-09a045132c7c
- Weaverbird's Face Polylines
- Returns the polygonal representation of a mesh: as though each face would be made of a closed polyline loop.
Provided by Weaverbird 0.9.0.1.
- true
- 16cb7338-28c4-4014-b39d-435f5a3290c6
- Weaverbird's Face Polylines
- Weaverbird's Face Polylines
-
2965
-2330
101
28
-
3007
-2316
- The open or closed mesh from which to extract the faces.
- 2e70fb67-baca-48fa-90b7-6ee3be25c35a
- Mesh
- Mesh
- false
- 0
-
2967
-2328
28
24
-
2981
-2316
- The list of closed polygons constituting the mesh
- 578d66be-6a12-4a09-a661-9833ac41c611
- Polygons
- Polygons
- false
- 0
-
3019
-2328
45
24
-
3041.5
-2316
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- SQRT(.5)/2
- true
- b6e3eb87-86d7-4a2c-ad75-e5f70db6fb7e
- Expression
- Expression
-
-388
-1229
113
28
-
-334
-1215
- 0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Result of expression
- cdfd1f71-fb7d-4373-8eb2-bfc3d9ce6649
- Result
- false
- 0
-
-283
-1227
6
24
-
-280
-1215
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 6ddebdba-7e82-4f64-a202-4569c0b843e6
- Line SDL
- Line SDL
-
-190
-1267
163
64
-
-63
-1235
- Line start point
- 2970142b-c608-4a63-9a07-494f724dff3f
- Start
- Start
- false
- 549b21f7-8dae-493d-8a1e-fcf8df312428
- 1
-
-188
-1265
113
20
-
-131.5
-1255
- Line tangent (direction)
- 03d29d64-24ad-4391-b17a-ac23bba8e083
- Direction
- Direction
- false
- 0
-
-188
-1245
113
20
-
-131.5
-1235
- 1
- 1
- {0}
-
1
0
0
- Line length
- 60aa6cc8-b9b9-4fbd-a316-c84656b632a7
- Length
- Length
- false
- cdfd1f71-fb7d-4373-8eb2-bfc3d9ce6649
- 1
-
-188
-1225
113
20
-
-131.5
-1215
- 1
- 1
- {0}
- 1
- Line segment
- 6eb8c177-9da4-4906-bb56-121103ec5a52
- Line
- Line
- false
- 0
-
-51
-1265
22
60
-
-40
-1235
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
- Construct a point from {xyz} coordinates.
- true
- ad9a3a76-2722-43d0-bc9f-ab57f46df7d2
- Construct Point
- Construct Point
-
18
-1326
132
64
-
109
-1294
- {x} coordinate
- a2b38d11-e72a-4779-83f4-0e6461646ca4
- X coordinate
- X coordinate
- false
- 0
-
20
-1324
77
20
-
58.5
-1314
- 1
- 1
- {0}
- 0
- {y} coordinate
- a79a5b97-0767-408b-972f-a57f60a5acb9
- Y coordinate
- Y coordinate
- false
- cdfd1f71-fb7d-4373-8eb2-bfc3d9ce6649
- 1
-
20
-1304
77
20
-
58.5
-1294
- 1
- 1
- {0}
- 0
- {z} coordinate
- db5f3b88-57c8-4381-9405-0adee93a638b
- Z coordinate
- Z coordinate
- false
- cdfd1f71-fb7d-4373-8eb2-bfc3d9ce6649
- 1
-
20
-1284
77
20
-
58.5
-1274
- 1
- 1
- {0}
- 0
- Point coordinate
- 549b21f7-8dae-493d-8a1e-fcf8df312428
- Point
- Point
- false
- 0
-
121
-1324
27
60
-
134.5
-1294
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- ccbd5a5e-540d-4586-98fd-dfb119aa332b
- Divide Curve
- Divide Curve
-
2175
-2913
139
64
-
2245
-2881
- Curve to divide
- 05141dbc-7570-4f9d-b161-fff4952460c4
- Curve
- Curve
- false
- 6eb8c177-9da4-4906-bb56-121103ec5a52
- 1
-
2177
-2911
56
20
-
2213
-2901
- Number of segments
- bbc938fb-90f5-46eb-9885-449f0638ed74
- X/8
- Count
- Count
- false
- e1f7a925-53cc-44ba-97c2-ac0bc66668ce
- 1
-
2177
-2891
56
20
-
2213
-2881
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 76146275-d125-41ae-9791-b2b4ec02ec62
- Kinks
- Kinks
- false
- 0
-
2177
-2871
56
20
-
2213
-2861
- 1
- 1
- {0}
- false
- 1
- Division points
- 36d5d2e1-1182-4621-9da4-5928518c6e21
- Points
- Points
- false
- 0
-
2257
-2911
55
20
-
2284.5
-2901
- 1
- Tangent vectors at division points
- 704d3a9d-cc07-461d-812e-9704f091b8c9
- Tangents
- Tangents
- false
- 0
-
2257
-2891
55
20
-
2284.5
-2881
- 1
- Parameter values at division points
- f783c7ec-ab4c-4cec-957f-336b1645ac58
- Parameters
- Parameters
- false
- 0
-
2257
-2871
55
20
-
2284.5
-2861
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- c3a54fc7-ad71-45e8-9b77-d43b6ce43f4c
- Scale
- Scale
-
1016
-2594
126
64
-
1078
-2562
- Base geometry
- a3fb4453-76a7-471c-8289-e4dbb0b5b983
- Geometry
- Geometry
- true
- a10c15f3-a866-4ed2-9438-aa02d104b0eb
- 1
-
1018
-2592
48
20
-
1042
-2582
- Center of scaling
- 6d6b089c-85d8-4922-89d0-db3b9bee02a6
- Center
- Center
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
1018
-2572
48
20
-
1042
-2562
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 9cdebe77-0621-4a36-ba45-94fe534beb2c
- Factor
- Factor
- false
- 9f8baec9-5e8f-45d0-a399-7e591ae51d2c
- 1
-
1018
-2552
48
20
-
1042
-2542
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 0b50d645-5a3c-48d7-8e19-db43e51541ef
- Geometry
- Geometry
- false
- 0
-
1090
-2592
50
30
-
1115
-2577
- Transformation data
- 537e800a-c26c-4f3c-ac6c-f1379c547a6a
- Transform
- Transform
- false
- 0
-
1090
-2562
50
30
-
1115
-2547
- 71b5b089-500a-4ea6-81c5-2f960441a0e8
- PolyLine
- Create a polyline connecting a number of points.
- true
- 7193ddfd-6f74-4a78-8773-b3307578065b
- PolyLine
- PolyLine
-
-146
-1390
116
44
-
-82
-1368
- 1
- Polyline vertex points
- 9e61e6f8-9e62-4619-9394-02963e73d1e8
- Vertices
- Vertices
- false
- 3337e002-666d-4bf4-b5da-962604de643b
- 1
-
-144
-1388
50
20
-
-119
-1378
- Close polyline
- 69cceea9-4d82-49a5-b66a-500ba174e109
- Closed
- Closed
- false
- 0
-
-144
-1368
50
20
-
-119
-1358
- 1
- 1
- {0}
- false
- Resulting polyline
- a10c15f3-a866-4ed2-9438-aa02d104b0eb
- Polyline
- Polyline
- false
- 0
-
-70
-1388
38
40
-
-51
-1368
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- cca66e2c-7558-481a-a39d-4bed019258ba
- Bounds
- Bounds
-
125
-1722
110
28
-
183
-1708
- 1
- Numbers to include in Bounds
- 7d318c3e-443c-44f7-b58e-426c6aaf5296
- Numbers
- Numbers
- false
- 4e0fd9e3-6f4c-4119-8c5c-5b02a6426baf
- 1
-
127
-1720
44
24
-
149
-1708
- Numeric Domain between the lowest and highest numbers in {N}
- 2a23e404-5ed3-4e0f-a353-567f63b89d2e
- Domain
- Domain
- false
- 0
-
195
-1720
38
24
-
214
-1708
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4e0fd9e3-6f4c-4119-8c5c-5b02a6426baf
- Relay
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
89
-1658
40
16
-
109
-1650
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 12ede96e-8d0e-4c60-97ab-4ca0ce1e11d4
- Deconstruct Domain
- Deconstruct Domain
-
-19
-1790
92
44
-
33
-1768
- Base domain
- 4d9712a5-89c9-47d8-a2a0-6f08853ad5ca
- Domain
- Domain
- false
- 2a23e404-5ed3-4e0f-a353-567f63b89d2e
- 1
-
-17
-1788
38
40
-
2
-1768
- Start of domain
- 32cad5fb-de45-44a1-ab18-86a88a8118f5
- Start
- Start
- false
- 0
-
45
-1788
26
20
-
58
-1778
- End of domain
- ea53636c-c981-4537-b4cd-d1132c3c2150
- End
- End
- false
- 0
-
45
-1768
26
20
-
58
-1758
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 200b3ee6-5f93-4493-9742-7eafb285309b
- Division
- Division
-
121
-1826
70
44
-
146
-1804
- Item to divide (dividend)
- 97775b14-d8ea-4a4b-a2ca-a8d6a0bdd2ad
- A
- A
- false
- 4e0fd9e3-6f4c-4119-8c5c-5b02a6426baf
- 1
-
123
-1824
11
20
-
128.5
-1814
- Item to divide with (divisor)
- 27f0ae68-073a-4e85-ba91-773def49a439
- B
- B
- false
- ea53636c-c981-4537-b4cd-d1132c3c2150
- 1
-
123
-1804
11
20
-
128.5
-1794
- The result of the Division
- 9f8baec9-5e8f-45d0-a399-7e591ae51d2c
- Result
- Result
- false
- 0
-
158
-1824
31
40
-
173.5
-1804
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e1f7a925-53cc-44ba-97c2-ac0bc66668ce
- Relay
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
-166
-1678
40
16
-
-146
-1670
- 9445ca40-cc73-4861-a455-146308676855
- Range
- Create a range of numbers.
- true
- b8284512-c836-4e12-bd57-f2a44ae94dc6
- Range
- Range
-
-210
-1790
140
44
-
-116
-1768
- Domain of numeric range
- 372e8944-de62-4c21-ac6e-4d6addad586d
- Domain
- Domain
- false
- 0
-
-208
-1788
80
20
-
-168
-1778
- 1
- 1
- {0}
-
0
1
- Number of steps
- 62c8baf5-d50b-45d8-a5f5-57d217c8aa62
- Steps
- Steps
- false
- e1f7a925-53cc-44ba-97c2-ac0bc66668ce
- 1
-
-208
-1768
80
20
-
-168
-1758
- 1
- 1
- {0}
- 10
- 1
- Range of numbers
- ad8d6ab7-8bb0-483f-ab4e-06b35ff195f5
- Range
- Range
- false
- 0
-
-104
-1788
32
40
-
-88
-1768
- 62cc9684-6a39-422e-aefa-ed44643557b9
- Extend Curve
- Extend a curve by a specified distance.
- true
- 72df8290-1806-4ef7-852c-398ed7e89a06
- Extend Curve
- Extend Curve
-
1431
-2297
124
84
-
1511
-2255
- Curve to extend
- 69dacafb-b2b5-4b5a-aa93-8ead5ddca9a7
- Curve
- Curve
- false
- e086c657-1a1e-4234-9675-3cf89dc5b5f9
- 1
-
1433
-2295
66
20
-
1466
-2285
- Type of extension (0=Line, 1=Arc, 2=Smooth)
- 4017de8a-9887-4665-b26e-42f66c89017c
- Type
- Type
- false
- 0
-
1433
-2275
66
20
-
1466
-2265
- 1
- 1
- {0}
- 0
- Extension length at start of curve
- 2b4e4e1d-23bd-43ba-9db7-9c5bfe3623c0
- Start
- Start
- false
- 0
-
1433
-2255
66
20
-
1466
-2245
- 1
- 1
- {0}
- 65536
- Extension length at end of curve
- 8e930bf6-c911-4839-aec0-a86d3111c18c
- End
- End
- false
- 0
-
1433
-2235
66
20
-
1466
-2225
- 1
- 1
- {0}
- 0
- Extended curve
- bc095568-337a-4e14-99f0-9399457b8c91
- Curve
- Curve
- false
- 0
-
1523
-2295
30
80
-
1538
-2255
- 84627490-0fb2-4498-8138-ad134ee4cb36
- Curve | Curve
- Solve intersection events for two curves.
- true
- 994a4c54-46ee-4b27-a8cc-f4a8f7f341c8
- Curve | Curve
- Curve | Curve
-
-318
-1390
134
64
-
-263
-1358
- First curve
- 2dda2a49-05cb-49a0-b255-d49c70445457
- Curve A
- Curve A
- false
- 6eb8c177-9da4-4906-bb56-121103ec5a52
- 1
-
-316
-1388
41
30
-
-295.5
-1373
- Second curve
- 0b01d67e-0fd4-42cb-bb2f-388d4972e6e5
- Curve B
- Curve B
- false
- bc095568-337a-4e14-99f0-9399457b8c91
- 1
-
-316
-1358
41
30
-
-295.5
-1343
- 1
- Intersection events
- 3337e002-666d-4bf4-b5da-962604de643b
- 1
- Points
- Points
- false
- 0
-
-251
-1388
65
20
-
-226.5
-1378
- 1
- Parameters on first curve
- e6925696-0688-4bee-9779-b2c15c04f2b1
- Params A
- Params A
- false
- 0
-
-251
-1368
65
20
-
-226.5
-1358
- 1
- Parameters on second curve
- 0f63fdb5-5233-49c3-aba5-a65301b94682
- Params B
- Params B
- false
- 0
-
-251
-1348
65
20
-
-226.5
-1338
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- eb4e177b-456a-4aef-b366-12c780e1e4a0
- List Item
- List Item
-
-24
-1722
77
64
-
33
-1690
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- a9d2a11b-8816-4db8-af6c-8164343c17cf
- List
- List
- false
- 4e0fd9e3-6f4c-4119-8c5c-5b02a6426baf
- 1
-
-22
-1720
43
20
-
-0.5
-1710
- Item index
- 59ef8d59-eab9-4d40-943d-43bffed71837
- Index
- Index
- false
- 0
-
-22
-1700
43
20
-
-0.5
-1690
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- ca2cf29c-ec58-4d63-9f43-e9c2b08bf8dc
- Wrap
- Wrap
- false
- 0
-
-22
-1680
43
20
-
-0.5
-1670
- 1
- 1
- {0}
- true
- Item at {i'}
- bef97c4d-a147-48e2-82fb-c0b6c14b3b15
- false
- Item
- i
- false
- 0
-
45
-1720
6
60
-
48
-1690
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 5b5c3384-3ead-4e68-8482-dc96587a8905
- Merge
- Merge
-
2020
-1451
106
64
-
2065
-1419
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 97d7d4ee-7f04-43a6-8b62-d9a9b3b48a62
- false
- Data 1
- D1
- true
- 20597847-d425-488d-a95f-40490d006c21
- 1
-
2022
-1449
31
20
-
2037.5
-1439
- 2
- Data stream 2
- bbf70cb8-18e5-4092-aa19-3a6e1ef474ed
- false
- Data 2
- D2
- true
- af44461f-37b2-4fe2-a269-d899c9e7147f
- 1
-
2022
-1429
31
20
-
2037.5
-1419
- 2
- Data stream 3
- 28a31188-80ff-4798-9df7-36fde69e27ff
- false
- Data 3
- D3
- true
- 0
-
2022
-1409
31
20
-
2037.5
-1399
- 2
- Result of merge
- afacebcc-0961-4742-b2df-3abf869ab5ef
- 1
- Result
- Result
- false
- 0
-
2077
-1449
47
60
-
2092.5
-1419
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 7f7613bf-e709-4b85-92f8-fccdd4a8c6fe
- Deconstruct Arc
- Deconstruct Arc
-
1274
-1375
102
64
-
1308
-1343
- Arc or Circle to deconstruct
- aaf0e0d0-4ac5-4671-b890-e9e6b4db1d74
- Arc
- Arc
- false
- 322c6252-a086-4536-8a7c-443661ee7fbb
- 1
-
1276
-1373
20
60
-
1286
-1343
- Base plane of arc or circle
- f3ec8a43-56db-46de-8a12-9cea25e9fd8e
- Base Plane
- Base Plane
- false
- 0
-
1320
-1373
54
20
-
1347
-1363
- Radius of arc or circle
- 07ca4826-f6fa-4b05-b3d1-abf2fc035a6b
- Radius
- Radius
- false
- 0
-
1320
-1353
54
20
-
1347
-1343
- Angle domain (in radians) of arc
- 8d1794af-8631-4367-b16f-5731d1cb64b8
- Angle
- Angle
- false
- 0
-
1320
-1333
54
20
-
1347
-1323
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 4425d383-35bd-4cf7-bb34-bbba79218ff9
- Deconstruct
- Deconstruct
-
1256
-1294
120
64
-
1297
-1262
- Input point
- 33f9426a-d712-4b5b-9bbd-43965dd7c9ac
- Point
- Point
- false
- f3ec8a43-56db-46de-8a12-9cea25e9fd8e
- 1
-
1258
-1292
27
60
-
1271.5
-1262
- Point {x} component
- 6ae34021-9e82-4773-9581-9db2eabd1754
- X component
- X component
- false
- 0
-
1309
-1292
65
20
-
1341.5
-1282
- Point {y} component
- 302cc9fa-3522-4411-a039-83915e0ace78
- Y component
- Y component
- false
- 0
-
1309
-1272
65
20
-
1341.5
-1262
- Point {z} component
- f74df835-0557-438f-9e65-756c80ad639c
- Z component
- Z component
- false
- 0
-
1309
-1252
65
20
-
1341.5
-1242
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- b831e3b3-12dd-4a3c-9daf-7853e012dd77
- Evaluate Length
- Evaluate Length
-
1801
-1460
147
64
-
1884
-1428
- Curve to evaluate
- 7bd58288-31b0-4e79-8887-a3495b0d51dc
- Curve
- Curve
- false
- 322c6252-a086-4536-8a7c-443661ee7fbb
- 1
-
1803
-1458
69
20
-
1837.5
-1448
- Length factor for curve evaluation
- ebc75b1c-47b0-4333-a9e1-74b5c52853d0
- Length
- Length
- false
- 0
-
1803
-1438
69
20
-
1837.5
-1428
- 1
- 1
- {0}
- 0
- If True, the Length factor is normalized (0.0 ~ 1.0)
- f0420490-adf5-48b7-92bb-c11aafc51f11
- Normalized
- Normalized
- false
- 0
-
1803
-1418
69
20
-
1837.5
-1408
- 1
- 1
- {0}
- true
- Point at the specified length
- 20597847-d425-488d-a95f-40490d006c21
- Point
- Point
- false
- 0
-
1896
-1458
50
20
-
1921
-1448
- Tangent vector at the specified length
- a15828cb-b1a2-4944-97bf-a7db83b4b2ab
- Tangent
- Tangent
- false
- 0
-
1896
-1438
50
20
-
1921
-1428
- Curve parameter at the specified length
- ea9f7660-fe5a-479d-99bb-f14f894efbca
- Parameter
- Parameter
- false
- 0
-
1896
-1418
50
20
-
1921
-1408
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b2f0af6b-ef3c-4d66-832a-2b2cb977944f
- Panel
- false
- 0
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
- Double click to edit panel content…
-
1489
-1759
160
100
- 0
- 0
- 0
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2de25f56-06a2-4296-bab3-610e8c62c772
- List Item
- List Item
-
1055
-2428
77
64
-
1112
-2396
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 24eb9e5d-d244-409c-9ba6-6eb147c33417
- List
- List
- false
- 0b50d645-5a3c-48d7-8e19-db43e51541ef
- 1
-
1057
-2426
43
20
-
1078.5
-2416
- Item index
- ed1c94c7-ff82-4abc-a48d-9c5ebfdc73a9
- Index
- Index
- false
- 0
-
1057
-2406
43
20
-
1078.5
-2396
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- f66c9926-90a6-4dcd-81b4-035bc4c31813
- Wrap
- Wrap
- false
- 0
-
1057
-2386
43
20
-
1078.5
-2376
- 1
- 1
- {0}
- true
- Item at {i'}
- 7dc6f77f-de1d-455f-8fac-95e3c590d769
- false
- Item
- i
- false
- 0
-
1124
-2426
6
60
-
1127
-2396
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 67da350f-5062-48a0-8878-37141beae543
- List Item
- List Item
-
1089
-2364
77
64
-
1146
-2332
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 44d24056-72a9-450f-842e-a021770b2cf1
- List
- List
- false
- 0b50d645-5a3c-48d7-8e19-db43e51541ef
- 1
-
1091
-2362
43
20
-
1112.5
-2352
- Item index
- b6fecf9d-21ba-47dd-bce5-1eef2ff5478a
- Index
- Index
- false
- 0
-
1091
-2342
43
20
-
1112.5
-2332
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- a826655f-9887-4ad5-bca4-62cd1c4425c6
- Wrap
- Wrap
- false
- 0
-
1091
-2322
43
20
-
1112.5
-2312
- 1
- 1
- {0}
- true
- Item at {i'}
- 3c392036-bdd7-449a-bbcd-c7114c6a4acf
- false
- Item
- i
- false
- 0
-
1158
-2362
6
60
-
1161
-2332
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- cffeb002-23c5-4c67-806e-17471637c968
- Explode
- Explode
-
1199
-2428
134
44
-
1270
-2406
- Curve to explode
- aa099c80-0e7f-4b2a-a673-b1e4838dfb0c
- Curve
- Curve
- false
- 7dc6f77f-de1d-455f-8fac-95e3c590d769
- 1
-
1201
-2426
57
20
-
1229.5
-2416
- Recursive decomposition until all segments are atomic
- 8315c499-13e1-4169-96a6-8194c9938ab0
- Recursive
- Recursive
- false
- 0
-
1201
-2406
57
20
-
1229.5
-2396
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- 9812b8ff-82ab-4ba6-8174-d493c9f8858d
- Segments
- Segments
- false
- 0
-
1282
-2426
49
20
-
1306.5
-2416
- 1
- Vertices of the exploded segments
- 017a1b57-96d6-4bb8-8f6b-d067dd4089ef
- Vertices
- Vertices
- false
- 0
-
1282
-2406
49
20
-
1306.5
-2396
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- 0e32279a-8b40-4e73-831c-b1d3bf824f7e
- Explode
- Explode
-
1199
-2354
134
44
-
1270
-2332
- Curve to explode
- 52a920d8-a1a6-45aa-8308-28cb5c889713
- Curve
- Curve
- false
- 3c392036-bdd7-449a-bbcd-c7114c6a4acf
- 1
-
1201
-2352
57
20
-
1229.5
-2342
- Recursive decomposition until all segments are atomic
- fa366d48-a051-4ce0-9922-2bb21cea153c
- Recursive
- Recursive
- false
- 0
-
1201
-2332
57
20
-
1229.5
-2322
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- cccb3a8a-ea44-4018-96a7-1c2d770e70fc
- Segments
- Segments
- false
- 0
-
1282
-2352
49
20
-
1306.5
-2342
- 1
- Vertices of the exploded segments
- 590ded34-157a-4284-8db0-b2edb651a253
- Vertices
- Vertices
- false
- 0
-
1282
-2332
49
20
-
1306.5
-2322
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- bf3a434d-958d-436e-a88f-d7e6ee225597
- Line
- Line
-
1590
-2318
102
44
-
1656
-2296
- Line start point
- 67f68377-c9c8-474f-99bf-5cb268b4017b
- Start Point
- Start Point
- false
- 017a1b57-96d6-4bb8-8f6b-d067dd4089ef
- 1
-
1592
-2316
52
20
-
1618
-2306
- Line end point
- 178d5ce7-2417-4ed3-835c-13604b3e907c
- End Point
- End Point
- false
- 590ded34-157a-4284-8db0-b2edb651a253
- 1
-
1592
-2296
52
20
-
1618
-2286
- Line segment
- 2900a17f-2392-4cf0-9eae-056e72f45708
- Line
- Line
- false
- 0
-
1668
-2316
22
40
-
1679
-2296
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- c5d4070f-7095-449b-be28-2392e0d75083
- Merge
- Merge
-
1611
-2264
106
64
-
1656
-2232
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 22cd2f43-1eaa-44a3-a2fa-e6c632fd230c
- false
- Data 1
- D1
- true
- 2900a17f-2392-4cf0-9eae-056e72f45708
- 1
-
1613
-2262
31
20
-
1628.5
-2252
- 2
- Data stream 2
- 6b82d181-27ea-4991-9dd9-2dd31a1445fd
- false
- Data 2
- D2
- true
- 0b50d645-5a3c-48d7-8e19-db43e51541ef
- 1
-
1613
-2242
31
20
-
1628.5
-2232
- 2
- Data stream 3
- 425865b4-7556-4909-a763-c00b01b416cd
- false
- Data 3
- D3
- true
- 0
-
1613
-2222
31
20
-
1628.5
-2212
- 2
- Result of merge
- 84f62d66-c794-4e01-88b0-d7c782365660
- 1
- Result
- Result
- false
- 0
-
1668
-2262
47
60
-
1683.5
-2232
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- d2f6e134-3d92-4f7d-8ddb-94392acb5afc
- Stream Filter
- Stream Filter
-
1803
-2297
77
64
-
1842
-2265
- 3
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- cc383567-c44d-423e-85b6-d4a808de1770
- Gate
- Gate
- false
- 615fc4c4-3e54-4848-b429-40fe3517745c
- 1
-
1805
-2295
25
20
-
1817.5
-2285
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- a2b34e67-a52c-4ba7-a8eb-6c4fca4ded4b
- false
- Stream 0
- 0
- true
- 2a732366-e703-4fb6-b7b8-5dfca8ec0b0b
- 1
-
1805
-2275
25
20
-
1817.5
-2265
- 2
- Input stream at index 1
- 1060006f-c570-47a3-afd5-50f34918aa50
- false
- Stream 1
- 1
- true
- 84f62d66-c794-4e01-88b0-d7c782365660
- 1
-
1805
-2255
25
20
-
1817.5
-2245
- 2
- Filtered stream
- 9f549e8b-da28-4ef0-9037-6651ef233c91
- false
- Stream
- S(1)
- false
- 0
-
1854
-2295
24
60
-
1866
-2265
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 615fc4c4-3e54-4848-b429-40fe3517745c
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 1.0
-
1668
-2351
250
20
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- b6802eb6-4e97-4344-b7db-26fc0d0211b0
- c5d4070f-7095-449b-be28-2392e0d75083
- d2f6e134-3d92-4f7d-8ddb-94392acb5afc
- 615fc4c4-3e54-4848-b429-40fe3517745c
- 4
- 6c3322de-de17-4535-88b4-127617ebb828
- Group
- 28061aae-04fb-4cb5-ac45-16f3b66bc0a4
- Center Box
- Create a box centered on a plane.
- true
- e733bff8-0944-4b49-811e-3662a0c888a2
- Center Box
- Center Box
-
-322
-2982
153
101
-
-204
-2931
- Base plane
- b1b76dc8-3b28-45c0-ac15-b60206a4e740
- Base
- Base
- false
- 0
-
-320
-2980
104
37
-
-268
-2961.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Size of box in {x} direction.
- 990e3a7f-9767-4d0e-9e6a-83d72088b08d
- X
- X
- false
- dff91164-6cdd-4af3-a199-b02e5517732b
- 1
-
-320
-2943
104
20
-
-268
-2933
- 1
- 1
- {0}
- 1
- Size of box in {y} direction.
- ecab77c5-ff6f-4a14-8da4-6e027a833346
- Y
- Y
- false
- dff91164-6cdd-4af3-a199-b02e5517732b
- 1
-
-320
-2923
104
20
-
-268
-2913
- 1
- 1
- {0}
- 1
- Size of box in {z} direction.
- 7dac4e81-ec7e-4994-a6f4-be9a596c70af
- Z
- Z
- false
- dff91164-6cdd-4af3-a199-b02e5517732b
- 1
-
-320
-2903
104
20
-
-268
-2893
- 1
- 1
- {0}
- 1
- Resulting box
- 91a5b0c7-dfee-4bc6-af7c-f09c5843533d
- Box
- Box
- false
- 0
-
-192
-2980
21
97
-
-181.5
-2931.5
- c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1
- Simple Mesh
- Create a mesh that represents a Brep as simply as possible
- true
- fd36f8b6-9550-4977-9d49-9d3c8988c78f
- Simple Mesh
- Simple Mesh
-
-149
-2929
81
28
-
-110
-2915
- Brep to mesh, only breps with triangle or quad faces are supported.
- 6b9fad3e-1670-49a7-86b5-d456cf8f6ec5
- Brep
- Brep
- false
- 32005ddf-d912-457f-bd9b-b1fc09e848f9
- 1
-
-147
-2927
25
24
-
-134.5
-2915
- Mesh
- cf46acef-219b-41ef-b5e1-234dcc483a87
- Mesh
- Mesh
- false
- 0
-
-98
-2927
28
24
-
-84
-2915
- 4098ec7a-819a-4ced-9ccc-86835d7e21c9
- a4634196-add1-8181-6e78-09a045132c7c
- Weaverbird's Sierpinski Carpet
- Computes a new mesh with higher genus, where each face has a new hole in the center. The resulting mesh always consists of quad faces.
Provided by Weaverbird 0.9.0.1.
- true
- 0474891f-c0bc-46b4-8534-cef38e0eec2e
- Weaverbird's Sierpinski Carpet
- Weaverbird's Sierpinski Carpet
-
-365
-2812
196
64
-
-227
-2780
- 1
- The mesh, or list of polylines, which will be processed.
- 36f060ce-4279-4cf4-9180-d5014861c464
- Mesh/Polylines
- Mesh/Polylines
- false
- cf46acef-219b-41ef-b5e1-234dcc483a87
- 1
-
-363
-2810
124
20
-
-301
-2800
- 1
- The scalar value used in the construction of the new internal vertices.
Distance can be set as list, where each value applies to the correspondent element in the input mesh.
- 64be5ca3-845d-4220-b91a-18421ef69615
- Distance
- Distance
- true
- 9b13767c-844c-4609-9d09-1f7df5812845
- 1
-
-363
-2790
124
20
-
-301
-2780
- 1
- 1
- {0}
- 20
- Definition of distance for new vertices
0: Percent. Percentual of the length of the edge (must be < 50).
1: Parallelogram. Parallelogram rule (value < than shortest edge length / 2).
- fd6f9e8f-3be9-41dd-bae6-958f507f6fb5
- InsetType
- InsetType
- true
- 0
-
-363
-2770
124
20
-
-301
-2760
- 1
- 1
- {0}
- 0
- The mesh after the process
- a45bc19e-ace0-4bd8-a7dd-2a03e559eb0c
- OutMesh
- OutMesh
- false
- 0
-
-215
-2810
44
60
-
-193
-2780
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- a121d3e1-fd53-47fa-bf6d-2e1a280cead1
- X/8
- Number
- Number
- false
- 1ad19afc-2fb9-45ba-84cd-313848a58261
- 1
-
-342
-2525
50
24
-
-309
-2513.456
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- f543dd15-057c-4a82-ba96-69a0a35a257e
- Division
- Division
-
-211
-2687
90
44
-
-166
-2665
- Item to divide (dividend)
- f8ef4bf7-68e1-45a4-8677-84f807b7f3ec
- A
- A
- false
- 0
-
-209
-2685
31
20
-
-193.5
-2675
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 100
- Item to divide with (divisor)
- 518e3cea-a84e-4a5e-95c4-94b4a12bf57f
- B
- B
- false
- 45e68db7-4495-4662-ad20-8e18cd02abcd
- 1
-
-209
-2665
31
20
-
-193.5
-2655
- The result of the Division
- 9b13767c-844c-4609-9d09-1f7df5812845
- Result
- Result
- false
- 0
-
-154
-2685
31
40
-
-138.5
-2665
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- dff91164-6cdd-4af3-a199-b02e5517732b
- Number
- Number
- false
- 9420d9cb-24fd-4544-b739-d58d4919425c
- 1
-
-457
-2750
50
24
-
-432
-2738
- 439a55a5-2f9e-4f66-9de2-32f24fec2ef5
- Plane Surface
- Create a plane surface
- true
- 60e95a78-377f-4741-85fd-e37f1798afd8
- Plane Surface
- Plane Surface
-
-479
-2892
89
64
-
-432
-2860
- Surface base plane
- 9c189a3b-6539-43d0-a92e-a3684f103b73
- Plane
- Plane
- false
- 9420d9cb-24fd-4544-b739-d58d4919425c
- 1
-
-477
-2890
33
20
-
-460.5
-2880
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Dimensions in X direction
- e177e9ca-c78a-4b6b-aafe-c9bcbe6d0eb7
- X Size
- X Size
- false
- 67a73f08-3419-478b-a6f0-4188a476bb44
- 1
-
-477
-2870
33
20
-
-460.5
-2860
- 1
- 1
- {0}
-
-10
10
- Dimensions in Y direction
- 93f267ca-48e0-41f9-9156-f35a36ad8f3f
- Y Size
- Y Size
- false
- 67a73f08-3419-478b-a6f0-4188a476bb44
- 1
-
-477
-2850
33
20
-
-460.5
-2840
- 1
- 1
- {0}
-
-10
10
- Resulting plane surface
- 32005ddf-d912-457f-bd9b-b1fc09e848f9
- Plane
- Plane
- false
- 0
-
-420
-2890
28
60
-
-406
-2860
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- e28ced3c-99a9-49c8-ba0a-faa860586c05
- Construct Domain
- Construct Domain
-
-580
-2802
144
44
-
-488
-2780
- Start value of numeric domain
- b5cac949-a76c-41c7-8631-0de705e7a80f
- -X
- Domain start
- Domain start
- false
- dff91164-6cdd-4af3-a199-b02e5517732b
- 1
-
-578
-2800
78
20
-
-531
-2790
- 1
- 1
- {0}
- 0
- End value of numeric domain
- 381fadb4-b6e3-4681-82a1-1c1470925da1
- Domain end
- Domain end
- false
- dff91164-6cdd-4af3-a199-b02e5517732b
- 1
-
-578
-2780
78
20
-
-531
-2770
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- 67a73f08-3419-478b-a6f0-4188a476bb44
- Domain
- Domain
- false
- 0
-
-476
-2800
38
40
-
-457
-2780
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9420d9cb-24fd-4544-b739-d58d4919425c
- Relay
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
-436
-2616
40
16
-
-416
-2608
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1ad19afc-2fb9-45ba-84cd-313848a58261
- Relay
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
-278
-2521
40
16
-
-258
-2513
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f7024732-d3ac-4dd5-ac26-730d31aa0015
- Digit Scroller
- O
- false
- 0
- 12
- O
- 11
- 2.0
-
-511
-2687
250
20
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- d5609186-d5e0-43f5-a679-8d5d8388ecf7
- Multiplication
- Multiplication
-
-342
-2630
85
44
-
-302
-2608
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 0b8c8bfb-456e-4c01-b1a3-066050dd55fb
- A
- A
- true
- f7024732-d3ac-4dd5-ac26-730d31aa0015
- 1
-
-340
-2628
26
20
-
-327
-2618
- Second item for multiplication
- dd6094aa-2310-4e53-990b-74fac7ad3102
- B
- B
- true
- 0
-
-340
-2608
26
20
-
-327
-2598
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of multiplication
- 45e68db7-4495-4662-ad20-8e18cd02abcd
- Result
- Result
- false
- 0
-
-290
-2628
31
40
-
-274.5
-2608
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- ad89bbb1-8dc8-4367-95af-0a0667589b2b
- Fast Loop Start
- Fast Loop Start
-
-87
-2600
112
64
-
-28
-2568
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- 4127f061-4efd-417c-8842-8b7394b0593c
- Iterations
- Iterations
- false
- 479a0914-3d32-4c83-9810-1a4eeefcec05
- 1
-
-85
-2598
45
30
-
-62.5
-2583
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- cfb295b9-c29e-41ec-a1c0-2d542cb2ac75
- Data
- Data
- true
- a45bc19e-ace0-4bd8-a7dd-2a03e559eb0c
- 1
-
-85
-2568
45
30
-
-62.5
-2553
- Connect to Loop End
- de3244ef-818a-4ada-983a-d21d90fbc10b
- >
- >
- false
- 0
-
-16
-2598
39
20
-
3.5
-2588
- Counter
- 8aab8033-ac28-47eb-8ba8-3b88d91be8e4
- Counter
- Counter
- false
- 0
-
-16
-2578
39
20
-
3.5
-2568
- 2
- Data to loop
- e90a76fa-e81e-4638-babe-2577d0307e7e
- Data
- Data
- false
- 0
-
-16
-2558
39
20
-
3.5
-2548
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- true
- 08957539-b4c5-4731-9c2d-8f721ee20df0
- Fast Loop End
- Fast Loop End
- true
- 0
-
135
-2611
88
64
-
184
-2579
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- f85b0a93-bed2-4738-b570-0d874aba502e
- <
- <
- false
- de3244ef-818a-4ada-983a-d21d90fbc10b
- 1
-
137
-2609
35
20
-
154.5
-2599
- Set to true to exit the loop
- 5e38dbfe-aae8-4d71-8328-cab1c7967341
- Exit
- Exit
- true
- 0
-
137
-2589
35
20
-
154.5
-2579
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 660cd9bb-4cbf-422d-9bde-817b3af5eef3
- Data
- Data
- false
- 4aa69b76-c922-4f28-8c62-0f0d99ea8a4d
- 1
-
137
-2569
35
20
-
154.5
-2559
- 2
- Data to loop
- e8776d5c-c859-4672-8baa-4fe4b9acb6e9
- Data
- Data
- false
- 0
-
196
-2609
25
60
-
208.5
-2579
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 6f661299-e4ca-4d1c-9311-00ae47253153
- Scale
- Scale
-
21
-2525
126
64
-
83
-2493
- Base geometry
- 724a540e-b11b-45a0-b55b-1ddafaf2b9ac
- Geometry
- Geometry
- true
- e90a76fa-e81e-4638-babe-2577d0307e7e
- 1
-
23
-2523
48
20
-
47
-2513
- Center of scaling
- 71c4181a-5536-4232-8ff2-dcde26e3f28f
- Center
- Center
- false
- 9420d9cb-24fd-4544-b739-d58d4919425c
- 1
-
23
-2503
48
20
-
47
-2493
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 6a071ef6-65e9-42cb-9ddf-0d1fe868c67f
- Factor
- Factor
- false
- d6e3d452-7f1d-4493-8fdb-0f713958ce01
- 1
-
23
-2483
48
20
-
47
-2473
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 4aa69b76-c922-4f28-8c62-0f0d99ea8a4d
- Geometry
- Geometry
- false
- 0
-
95
-2523
50
30
-
120
-2508
- Transformation data
- f50515cc-5fef-46dc-92a3-22ddfff02c75
- Transform
- Transform
- false
- 0
-
95
-2493
50
30
-
120
-2478
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 1-2/O
- true
- 34594f21-e7ea-45cc-8cdc-c3a1a5546284
- Expression
- Expression
-
-121
-2479
108
28
-
-77
-2465
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7e7a5d82-6e97-42f0-b5a7-57e9cf768b3b
- Variable Variable y
- O
- true
- 45e68db7-4495-4662-ad20-8e18cd02abcd
- 1
-
-119
-2477
11
24
-
-113.5
-2465
- Result of expression
- d6e3d452-7f1d-4493-8fdb-0f713958ce01
- Result
- Result
- false
- 0
-
-46
-2477
31
24
-
-30.5
-2465
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7b65e9af-ff13-48c4-ab66-567c54bb592b
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 8.0
-
-87
-2708
250
20
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- 0ac400c4-82c5-42ad-9b9c-8f6e2fba920e
- Subtraction
- Subtraction
-
4
-2666
85
44
-
44
-2644
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- e4f54cd9-a9dc-45dd-9a52-3b69e2391e86
- A
- A
- true
- 7b65e9af-ff13-48c4-ab66-567c54bb592b
- 1
-
6
-2664
26
20
-
19
-2654
- Second operand for subtraction
- 38e493f7-b9d4-4740-9c13-79806e66adce
- B
- B
- true
- 0
-
6
-2644
26
20
-
19
-2634
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Result of subtraction
- 479a0914-3d32-4c83-9810-1a4eeefcec05
- Result
- Result
- false
- 0
-
56
-2664
31
40
-
71.5
-2644
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 51b16526-7214-4ce6-8186-7bb8ee19d55f
- Multiplication
- Multiplication
-
2128
-3131
85
44
-
2168
-3109
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 4774b5ea-1f9a-44e3-8a73-e74c13b98aa5
- A
- A
- true
- dfad578d-93b2-4cb3-9cd9-b4165959d6e3
- 1
-
2130
-3129
26
20
-
2143
-3119
- Second item for multiplication
- f097a4e9-325a-4b1b-ac79-639e2ff777ee
- B
- B
- true
- 0
-
2130
-3109
26
20
-
2143
-3099
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of multiplication
- 9a896f1f-60d7-4a00-8006-6cafd142e701
- Result
- Result
- false
- 0
-
2180
-3129
31
40
-
2195.5
-3109
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- d43b62c2-9ef8-4fb3-8e83-256365a1bc78
- Fast Loop Start
- Fast Loop Start
-
2358
-3195
112
64
-
2417
-3163
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- 274170f6-73fa-454e-a41c-3bee83e0d01c
- Iterations
- Iterations
- false
- 03758ab8-2ea5-4f0c-b69e-7a84ecee6772
- 1
-
2360
-3193
45
30
-
2382.5
-3178
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- 194e5869-4b50-4c38-8d90-44ba11e56c05
- Data
- Data
- true
- c1dfdf7d-49e2-47a8-a6f2-da77792e7c2a
- 1
-
2360
-3163
45
30
-
2382.5
-3148
- Connect to Loop End
- 6fe0b3e5-b840-4d77-b82a-13b2e8df9f2c
- >
- >
- false
- 0
-
2429
-3193
39
20
-
2448.5
-3183
- Counter
- 9811838d-4995-4be2-9136-0b84e9727941
- Counter
- Counter
- false
- 0
-
2429
-3173
39
20
-
2448.5
-3163
- 2
- Data to loop
- 94d0c8f1-1800-4ec4-962b-a8748d44e345
- Data
- Data
- false
- 0
-
2429
-3153
39
20
-
2448.5
-3143
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- b7c0c296-4c91-49a9-8a65-74ac5574d698
- Fast Loop End
- Fast Loop End
- true
- 0
-
2627
-3195
124
64
-
2676
-3163
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- 7721b94a-7cad-496b-9c84-ff17943dd575
- <
- <
- false
- 6fe0b3e5-b840-4d77-b82a-13b2e8df9f2c
- 1
-
2629
-3193
35
20
-
2646.5
-3183
- Set to true to exit the loop
- 06525793-5753-462f-97fc-ff2071f8dfa6
- Exit
- Exit
- true
- 0
-
2629
-3173
35
20
-
2646.5
-3163
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 236541a3-e28c-4885-a04c-3bdbbad1d01c
- Data
- Data
- false
- 920678f0-f082-4ffd-b62a-0a5f96807a87
- 1
-
2629
-3153
35
20
-
2646.5
-3143
- 2
- Data to loop
- 0f668a02-20eb-4e8f-9eb1-7a55dd1bf73e
- 1
- Data
- Data
- false
- true
- 0
-
2688
-3193
61
60
-
2700.5
-3163
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0e18b9a0-e169-488c-a3df-3139b00ecca7
- Scale
- Scale
-
2485
-3112
126
64
-
2547
-3080
- Base geometry
- 4cebb572-3886-4c55-b8ac-64cc29b300cd
- Geometry
- Geometry
- true
- 94d0c8f1-1800-4ec4-962b-a8748d44e345
- 1
-
2487
-3110
48
20
-
2511
-3100
- Center of scaling
- 234c1db6-700d-43e5-b62d-920a77e419f4
- Center
- Center
- false
- 9420d9cb-24fd-4544-b739-d58d4919425c
- 1
-
2487
-3090
48
20
-
2511
-3080
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 16e8ee72-6537-491d-9467-be5a63b27b34
- Factor
- Factor
- false
- 57b1c07c-28e6-4458-9084-63dd7a124d2f
- 1
-
2487
-3070
48
20
-
2511
-3060
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 920678f0-f082-4ffd-b62a-0a5f96807a87
- Geometry
- Geometry
- false
- 0
-
2559
-3110
50
30
-
2584
-3095
- Transformation data
- 0bf31986-a5b1-4dfb-8e97-f23f8d6e1015
- Transform
- Transform
- false
- 0
-
2559
-3080
50
30
-
2584
-3065
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 1-2/O
- true
- 71933133-ea9b-431a-93fd-5b4d64059b92
- Expression
- Expression
-
2314
-3030
108
28
-
2358
-3016
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- fd84eba9-2437-4444-a957-35f1b74371c0
- Variable O
- O
- true
- 9a896f1f-60d7-4a00-8006-6cafd142e701
- 1
-
2316
-3028
11
24
-
2321.5
-3016
- Result of expression
- 57b1c07c-28e6-4458-9084-63dd7a124d2f
- Result
- Result
- false
- 0
-
2389
-3028
31
24
-
2404.5
-3016
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 14c7b9cd-950e-4eb3-b21d-79a904844817
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 8.0
-
2358
-3303
250
20
-
2358.265
-3302.114
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- 114ffb3a-6c39-4e67-b3e2-9b8aaea4c4eb
- Subtraction
- Subtraction
-
2449
-3261
85
44
-
2489
-3239
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- 3364ac9b-35a6-44ff-a77e-1406d56c3b2d
- A
- A
- true
- 14c7b9cd-950e-4eb3-b21d-79a904844817
- 1
-
2451
-3259
26
20
-
2464
-3249
- Second operand for subtraction
- 794d362e-a694-4e57-9975-8c4a17952367
- B
- B
- true
- 0
-
2451
-3239
26
20
-
2464
-3229
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Result of subtraction
- 03758ab8-2ea5-4f0c-b69e-7a84ecee6772
- Result
- Result
- false
- 0
-
2501
-3259
31
40
-
2516.5
-3239
- 71b5b089-500a-4ea6-81c5-2f960441a0e8
- PolyLine
- Create a polyline connecting a number of points.
- 7b90c650-f545-4c99-a626-c1b530948678
- PolyLine
- PolyLine
-
2350
-2935
116
44
-
2414
-2913
- 1
- Polyline vertex points
- 25051d5d-25eb-43f4-ab61-c971b371c343
- Vertices
- Vertices
- false
- 36d5d2e1-1182-4621-9da4-5928518c6e21
- 1
-
2352
-2933
50
20
-
2377
-2923
- Close polyline
- 96861982-6a6c-4640-af3d-e7376adcf0c2
- Closed
- Closed
- false
- 0
-
2352
-2913
50
20
-
2377
-2903
- 1
- 1
- {0}
- false
- Resulting polyline
- c1dfdf7d-49e2-47a8-a6f2-da77792e7c2a
- Polyline
- Polyline
- false
- 0
-
2426
-2933
38
40
-
2445
-2913
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- 23d97363-424c-47e2-af36-558ddf7d3c82
- Division
- Division
-
2012
-3199
85
44
-
2052
-3177
- Item to divide (dividend)
- 07a68dfc-cd0c-44ed-9212-5892c5d9c131
- A
- A
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
2014
-3197
26
20
-
2027
-3187
- Item to divide with (divisor)
- d42b447e-3871-4ea0-b4d8-2b7e8cb489c2
- B
- B
- false
- 0
-
2014
-3177
26
20
-
2027
-3167
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 8
- The result of the Division
- dfad578d-93b2-4cb3-9cd9-b4165959d6e3
- Result
- Result
- false
- 0
-
2064
-3197
31
40
-
2079.5
-3177
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- ac8773c9-0478-4cc1-b8ee-60bddf24176c
- List Item
- List Item
-
2754
-3399
77
64
-
2811
-3367
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- e6ba80ed-4098-4bce-a98d-7ccdb9d4419e
- List
- List
- false
- af5b691f-0c96-4c31-a0ee-f015227efb97
- 1
-
2756
-3397
43
20
-
2777.5
-3387
- Item index
- dc614a71-cce0-4838-803f-ddd00b0b9ffa
- Index
- Index
- false
- 0
-
2756
-3377
43
20
-
2777.5
-3367
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 15248cc6-afc5-4761-b329-20fe540756cc
- Wrap
- Wrap
- false
- 0
-
2756
-3357
43
20
-
2777.5
-3347
- 1
- 1
- {0}
- true
- Item at {i'}
- eb3ecf87-4751-4b00-80a7-13906dc8fdbc
- false
- Item
- i
- false
- 0
-
2823
-3397
6
60
-
2826
-3367
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- f1d80785-5bac-4685-878d-ce1050f47a55
- List Item
- List Item
-
2754
-3303
77
64
-
2811
-3271
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- a33a8a25-86d1-401a-bbf0-5be8116e68a6
- List
- List
- false
- af5b691f-0c96-4c31-a0ee-f015227efb97
- 1
-
2756
-3301
43
20
-
2777.5
-3291
- Item index
- 89dee9f5-5165-44e9-8111-cfd80f879dfd
- Index
- Index
- false
- 0
-
2756
-3281
43
20
-
2777.5
-3271
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- b0d2a766-01ab-4f28-beca-dc7efc0b47b9
- Wrap
- Wrap
- false
- 0
-
2756
-3261
43
20
-
2777.5
-3251
- 1
- 1
- {0}
- true
- Item at {i'}
- b74dc8ba-e2cf-4a92-b69d-544ed1ddca26
- false
- Item
- i
- false
- 0
-
2823
-3301
6
60
-
2826
-3271
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- d9d26a58-afb2-47b4-a331-ca65879dcd22
- Explode
- Explode
-
2898
-3399
134
44
-
2969
-3377
- Curve to explode
- fb9903f9-86a2-4ff3-8229-22714bcf3cd3
- Curve
- Curve
- false
- eb3ecf87-4751-4b00-80a7-13906dc8fdbc
- 1
-
2900
-3397
57
20
-
2928.5
-3387
- Recursive decomposition until all segments are atomic
- e778232d-045f-4664-b2ad-9fc73a0e82cb
- Recursive
- Recursive
- false
- 0
-
2900
-3377
57
20
-
2928.5
-3367
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- 2c31d06c-6b07-43b4-9a26-5eb03d8abeee
- Segments
- Segments
- false
- 0
-
2981
-3397
49
20
-
3005.5
-3387
- 1
- Vertices of the exploded segments
- 949bbb61-5c8c-4b1a-b431-b30cad40765e
- Vertices
- Vertices
- false
- 0
-
2981
-3377
49
20
-
3005.5
-3367
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- 1b82016d-12d6-430a-8e22-b9df07cc0715
- Explode
- Explode
-
2898
-3325
134
44
-
2969
-3303
- Curve to explode
- 965f1a88-b6b6-49a3-b9e0-34bff7ba6831
- Curve
- Curve
- false
- b74dc8ba-e2cf-4a92-b69d-544ed1ddca26
- 1
-
2900
-3323
57
20
-
2928.5
-3313
- Recursive decomposition until all segments are atomic
- e2f8e6c3-2784-48f0-b868-fa870b90120b
- Recursive
- Recursive
- false
- 0
-
2900
-3303
57
20
-
2928.5
-3293
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- facad1cb-da92-4e7c-9365-c51287551a37
- Segments
- Segments
- false
- 0
-
2981
-3323
49
20
-
3005.5
-3313
- 1
- Vertices of the exploded segments
- f89870ad-5e83-485c-ad3c-45fe0e83b579
- Vertices
- Vertices
- false
- 0
-
2981
-3303
49
20
-
3005.5
-3293
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- 2eb2d98d-2cf4-4700-b715-9dd984af57d6
- Line
- Line
-
3109
-3347
102
44
-
3175
-3325
- Line start point
- d8c2cda6-9519-4f5a-affa-4a9973769103
- Start Point
- Start Point
- false
- 949bbb61-5c8c-4b1a-b431-b30cad40765e
- 1
-
3111
-3345
52
20
-
3137
-3335
- Line end point
- dfabcda6-bf4c-4f1a-9410-f440caa55f7b
- End Point
- End Point
- false
- f89870ad-5e83-485c-ad3c-45fe0e83b579
- 1
-
3111
-3325
52
20
-
3137
-3315
- Line segment
- bc3df1fd-fa92-4406-b830-936636187329
- Line
- Line
- false
- 0
-
3187
-3345
22
40
-
3198
-3325
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- c70c633e-c82e-42e9-a5cf-8f50bbe2f84d
- Merge
- Merge
-
2571
-3399
122
64
-
2632
-3367
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 6940c138-747a-4cde-9728-cbca44a6715f
- false
- Data 1
- D1
- true
- true
- 0f668a02-20eb-4e8f-9eb1-7a55dd1bf73e
- 1
-
2573
-3397
47
20
-
2604.5
-3387
- 2
- Data stream 2
- a8234ce6-cd94-4ca2-8670-f42db6ef3908
- false
- Data 2
- D2
- true
- c1dfdf7d-49e2-47a8-a6f2-da77792e7c2a
- 1
-
2573
-3377
47
20
-
2604.5
-3367
- 2
- Data stream 3
- 852606a2-a42e-4751-86fa-a4b33e5210f1
- false
- Data 3
- D3
- true
- 0
-
2573
-3357
47
20
-
2604.5
-3347
- 2
- Result of merge
- 3cfda178-ad7d-4a29-82a4-01a6e258dffb
- 1
- Result
- Result
- false
- 0
-
2644
-3397
47
60
-
2659.5
-3367
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 4fb75694-d223-4097-aa7d-440bed8d3914
- Reverse List
- Reverse List
-
2629
-3465
66
28
-
2662
-3451
- 1
- Base list
- 1f398001-644f-46e0-8296-4ef3b6dac7b5
- List
- List
- false
- 3cfda178-ad7d-4a29-82a4-01a6e258dffb
- 1
-
2631
-3463
19
24
-
2640.5
-3451
- 1
- Reversed list
- af5b691f-0c96-4c31-a0ee-f015227efb97
- List
- List
- false
- 0
-
2674
-3463
19
24
-
2683.5
-3451
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA3FSURBVHhe7Z3LT1vPFcfzn3TRZdtdu66q7qq2m6pSd7+qXVSqouqnqqqULrqoqqRKfqmiJL8ASSABEl4GAiFAIK9fwiOEd7ANNOZhHuFp3g+bgKEf3zPYvn7FBhzda81ncTV37ty5c893zpkztknOaXKBI41tiUj4ncaGaAltj5bQ9mgJbY+W0PZoCW2PltD2aAltj5bQ9mgJbY+W0PZoCW2PltD2aAltj5bQ9mgJbY+W0PacRMJXyVEtNF+Qk0j4+vXrN2/ecHzb/q6rs6tjcLCts5NTUC00X5DMJMTPurq6tra29vb2An7/xKJ7YvrDaEnp8sTEXiCE2+1++fKlaq35ImQm4bNnz8rKyjY2Nnw+3+7m3n/7v/rn3b/0//An40+frm1tbW9vo3FVVVVbW5u6QZN9MpMQkBCpNjc3PwX2/9b+038U/an1+z/62Na2tbuLF6JxY2Nje3u7aq3JPhlIiIfhXiMjI58+fTo8PAwGg42u8oHx7vn2rp3VVWqAq8PDw319fTqcfjEy80JREZH6+/s7OjqGet0DvYM9zqGu7u63BrRBPxq8e/dOq/hlyExCQBgyz8HBwc7OzufPn3MaA/kOAr9//x5FOVW3abJGxhICvsimYmhoqLu7O14k3HRgYICj0+nkqFXMNieREFARX8TVenp6YkTiEhKS0YQi7dAQzahR1zRZIKmECEOcBJLMhLS2tnJEQiKn1ABqcSPe2dvby70UkJlKSNEVcFU9OBHcrtplSOpuc4OkEpKVkF6Ojo6Oj4+PjY19SMT/DGZnZ2lDgcYEWCQkfrJY0gll+gGckt48Hg9dJeyNDCjFhztMBWlGDyk6kaGG4ZRueTQzQHWUiySQEBnY27148ULKS0tLbAS5mg4kotyIyZCQQBryvlevyG6am5vZhLDr2N3d3dnZUa2j4Cq2jo/JwGAoSzP2M/Tg9/s5Sk006+vr1DNaHsEmlQLU1NRIb7kKLx4rIaasra19+PBheXn5vXv3Pn78yEYe6xtW+gwEVSRECQJseJkkoOXl5WF9TM+E8Pl8qnUUe3t7YQmRTQrU4MFIWFlZKc3oYcVgeXmZW6ihQxpQ3t/fX1hYmJmZYcCLi4tra2tyvHHjRszMyDEwQqyEvDCBa2pqCnNAyHJmAnu7371+rU6OYeIjEtGMHtAA6+OIFOQUj8TPVFNDsNXVVQpDKz2enTGpEfkJpzRGfsRjQZW9JmmRcV9iSkpKNjY21IkZfDFFfM4NeM1YCQmeeCFGNIxwxHyfm5s7ODigHAgctnX5f/ebry/8/a++lRVmPS6FT7DkcItEURZCNAMkREgK5BTV1dXiOnJLU1OTy+V6+ertpXu/+vbfv9gc9+74/VVVVUwdoi6PZtOJ6cV7Ghoa8GNuxOEQntvphwJOxnMJlXV1dRUVFeKUVNKAI4+jQGilWxmPvF3uwVvHSogGBC7EoAaIooQjKUNpx/Nv//Dro2CoXsyEB+AlV65cweilpaUtLS1ifXwISbAduWtBQQHtsbuoSAPKpWW1V7/55b2vf77c7/QHAvn5+cweBsC9YYszGIfDwXpGCEUPoB9AOSIEjxBvDo+QYLC1tUUDRiUUFhayycHFY3rOGXjrWAnF+hMTE4ZNFKQJ+CKGoxhcmDz0h6Z8GEIoWmK78OdqWIp4iO3EZFgwOpDiJYTcwM7e/MHYXPAjNUQ8cV9jCCbokKCKNowhGgYzPz/PkUsIzNNBXTuGUdEDPi0fGDGlJGeOfhDl9FH3WAmsFyshpieBlGuAub1eL6JOT08jycFBRIl4JJZKPyCxlDBYVlbGDMBvOOI3SM4OZGFxQd1mrIWSwao74xALRkMleqiT5Mi9yMYU4S0QUjY5UimdhKGNKhnfaUdDTWgc1gPrmSTkxZChvr6eBcywbci4zHTenLDpdDpTp6ZM87CEGEhiKaG1qKgIR8HVcBQK+Aexl9RR3Xa8qRCLJ4RLJ0PdfywkYvCCzC2mo+RKEl0YEt5MoOYoGG68K4m0lGkZPUEtAtYzSchLEvR4N14SdwFZgXAgatgsS2VCiFp4kkxtwGREMCxFDfWsgvTD4iQdsiKq2wzwdaZ5tMWzB+ORsTEvmVssGQQYYjJjYxgMjKOxZIRgqFIAllhmgOrFMjCwWAlJCEUJZpyARyKq2+3GypRVbSLiNUB40Ua1OCa6f0HdkIj429NHdRGHDJV8FZGIAeGlWsoSbNCYBngkbYgfKM2KQLCVHiwC4zRJCCwV8XMNixN/eCXK8Tolg7vII3BrCqoqc3gcQyKMC7hsyIvX1ylwSgHnkHL4EpCjcsS3klmcbmVUaEOERzY2TkRLjoCEhPri4mLWETBy242xsbHr168zv6UHixArIR7DApZQJF4YB8WruJqwQTw0w31R8cQSMpnYUTx+/JjhASYmIBOxOe7v71PDQoWEFLA7iyuasWJJlKaA3e/evRs9WsoMhqNkN7du3ZJ9DjcSP9l6UqAfHsTaQefGYxW0tODn5gwsIiHjI6fAacghJQrJ20qZ1pziEEgSbZTUoAG+y5E+U5DQNDyOwfDopqYmw4YhnQhrWBbwG2oQqaSkhKVLPoDlVLYWuA4tUff+/fuMFuiNYeBDTERWaOYiL8LkkBmQDnQudrAUDCwi4fDwsHz5wLJHGQgmvKd8CyE3YAtqEBKLSE1qaEZ7mJycnJ2dxTOAAnM8DKdcxb50LndJAVvjKNSTCSOeYUYTknSUlpayy0zYAKWZlIQWggFjRjbEI0mmkv4ZG75I5yPpwb3hEVoHXjMiIfOXKSkwhQkpU1NTZKGEF1aavLw8WVd4DWyBfdNRkcbYi10KXoKVZaEyzGsCl6KZdMgRX5GkH/0cBgQ3sgnkp4DkhD5WJsbAwJCEBhJXuSQtpRmhj0AqDodDS2JF/9FKEAAkDKSGNhZ0QeCtIxLy5tGgH1MPP0BLTNbQ0IAVeHl5f8Jj+LOYFEgIvXPnDiZmjyXzIySaGeIeEoqNeKKkVHSO0Yl1ra2ttGESSPAU6IfYgJ+pczM0Bq6Wl5dLV+GR5xi8bERCjMiMxtXYMyEPpgTZCLtcLiayusnwLexCmMVRPqsi0El0oCNdZIocHRy9mqt/t/qWGnJCPI8B4HzRE0VgGMwnkIklSBCmxuv1cspRCkJoDk5P46n0Gd1V7oH1IhJiPlRBRcDoyINZJXjiHzFSYRdchIWENilUFC8kO5dkD6NzJADyoErHk39987Obf/7xyqBre3eXJY16+ozvjWfRyQkgAKoucheThIQvZAvN/+MFQ1Bt46ANcxwVOaZQEVMiITGN9ZXllnQfr2Khqn/8rKD095XXvlof8/oDgaKiImsuNhbHJKFEUXUlPVAOL0RFyRRUbRz4NAshjxDIaDweT3A/uH20vnkU+h0GgVRmj7pBkzZYLyIhhlbVmYCKWJ/ASMyM10ACaWFhoewcSBTJIdkMsL6yYoX0NJB0Rkt4ArBeRELyiBTxMAXchfzJPn5jQSItlHSGvJQCHsle0xf1IxrZVGgJTwDWi0j49OlTnEZdyRBUJBnBt5AhRglOSXHxOdnXC7gjR1wTKMvWXt2gyQSThKnXs8+CivLxW0JXNvbHqVDtNBlikvA0+gmIh4Tpf/ymOT0mCc8kp2cepP/xm+b0mCQ8E6OLK6f58Zvm9JxEQpqlBm8WXySLkY91Th+iNckwSZiOodn7s5cH5JFCQtghsEVxu90cOdXZZvYwSYitSUpFJArIANEFNCZVke8c2IxzpJwMroYbfPjwgQ2+eqbmTDFJePHiRYfDkZ+ff+nSpZqamps3b16+fLm2tvbatWtXr16tr6+/cOFCdXU1LQ8PD3cS/YFSMsbHx1tbW9UzNWcK5o1I+OTJE/ZnbPAbGxspNDc3S6HJgFUNXYmfhiiZwS4eD04nUGsyBfNGJCRUsmhBTIGjFJCTJIXAiAty3NzcXFhYkJ8jsIuQH60EDKjs7u5eWVkhNXU6ncPDw/pT7CxhklDVJYHl8MGDB48ePWKFm5mZWV5eli8XEfX8+fMEYZ/PR73X652dnS0uLi4oKCCduX37dllZWV1dXXl5OUus6ktzdmQgIbS0tPT29tJS2NjYQDMKSLW0tCSVEAwGR0ZG+vv7t7e3cUe8kCMxGT9WHWnODgyeroQIwDLJht34+csmYdPQKy1wTf0paJbAvOlKSCCtqKggQV1bW5PvGRL+7i8hExMTelORJTBvuhKSjLCYkZ4YooRga0HMTAePx6MlzBIIkYGELIQkll2Z05bkzz81p8ckoXzCmQxa9/X1cVTnmaD1yx4mCZXLJAFPwgu1GFbDJKFauKJ+MR2GytHRUf39kQVBnYiEYeSP8+Rnn8AWAgk7Ozu5QXuh1UCviIR+v399JfSvfyDh/Pz8ssHi4iLlQCDgcDj0v7ttQUwSjr6442n87YJ3mHI8PT09entuQZAmImHPf77Xfe0Hs5NuQ7JY3G63/sG8BUGaiIQDdX+cHBk5NP4eet/4zS7xU765ZRevvdCamCQM/4syLIEzMzOsgpOTkxTm5uZIbSoqKiorK9v1f2BgMdArImFqaN3c3Ky/bbAaSBORMPQrl+S4XC69FloQk4QdKdH+Z01MEsrnmclQd2gshklCVaexFVpC26MltD1aQtujJbQ9WkLboyW0PVpC26MltD1aQtujJbQ9WkLboyW0PVpC26MltD0mCTU2RUmosTHnzv0f0SgjCqYhZ40AAAAASUVORK5CYII=