0 2 2 1 0 7 d3b98059-03da-4b8b-a57a-069658ce8766 Shaded 1 255;161;161;161 255;105;105;105 638252831365521843 XHG....ⵙ꞉ⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙ꞉ⵙ....GHX 0 -1006 609 0.9138315 0 0 4 Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null 1.0.0.0 Michael Pryor d94849ce-6c4d-4303-8ff4-765a58e82529 Palette Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null 3.3.0.0 00000000-0000-0000-0000-000000000000 Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null 0.4.0.0 Mateusz Zwierzycki 4442bb24-c702-460c-a1e4-fcdd321eb886 Anemone 0.4 Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null 0.7.3.0 Amin Bahrami [Studio Helioripple] 08bdcae0-d034-48dd-a145-24a9fcf3d3ff Heteroptera 0.7.3.4 137 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 63e9037d-576c-413f-bfe1-195094d49159 bc131f89-e2c1-43d2-ac21-36cce03c61c4 7571d6a7-f9fb-43c5-b492-ebb1699bbe58 5705c628-a671-4ea2-8861-c39e6c31f184 8ce21e2b-1311-46c7-8305-9be4aeadbc48 acb47850-cd31-4ea1-ad1c-8d027295fe5b a2e7717e-c537-462c-a03e-36d06f4600e8 b5e8ba51-1f5f-453f-b4d3-f2e760598a98 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 76d86607-84be-4bd2-a5fd-b914901fb804 6e897604-8413-4005-967f-aa26aa4bacbb 4caac69f-0c5a-4d20-bfd4-d541b3bc321b 6d8b0409-1300-453d-a4c2-65b0b0989f4b 97d086c9-1f66-4d81-a605-b5c3e54b2cb1 27066b99-163c-49af-b78d-2b373f91b9b5 36490051-2898-452f-96c1-81007a065ffb 81df0eaa-5106-4fa2-bfe7-c2073c37a781 2a8e46a0-9509-4aff-8701-b3c411851f02 18 51946891-2a4d-4858-928b-3fff076fc412 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 76d86607-84be-4bd2-a5fd-b914901fb804 6e897604-8413-4005-967f-aa26aa4bacbb 4caac69f-0c5a-4d20-bfd4-d541b3bc321b 4 63e9037d-576c-413f-bfe1-195094d49159 Group ac3c856d-819d-4565-a2cc-8d1cbdc05c97 d94849ce-6c4d-4303-8ff4-765a58e82529 Palette Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI. true cf580cd3-8c86-4628-8244-702ca09bb9a6 Palette Palette 166 -1122 256 1344 408 -450 True = Custom False = Standard 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb Mode(Custom/Standard) Mode(Custom/Standard) false 0 168 -1120 228 20 282 -1110 1 1 {0} true This input does nothing, it is just a spacer c8adee2d-568a-431a-9a3b-65078c21d9d3 Spacer Spacer true 0 168 -1100 228 20 282 -1090 Component_Normal_Deselected_Fill_Color f6b959c6-305e-4556-851e-dfe3db8616ce Component_Normal_Deselected_Fill_Color Component_Normal_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -1080 228 20 282 -1070 1 1 {0} 255;255;255;255 Component_Normal_Deselected_Edge_Color 58f3f6bb-4870-4132-b2ed-38ba0cd16373 Component_Normal_Deselected_Edge_Color Component_Normal_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -1060 228 20 282 -1050 1 1 {0} 255;201;201;201 Component_Normal_Deselected_Text_Color 44b220b8-34dd-484a-947e-534161ff26b0 Component_Normal_Deselected_Text_Color Component_Normal_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -1040 228 20 282 -1030 1 1 {0} 255;82;82;82 Component_Normal_Selected_Fill_Color 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643 Component_Normal_Selected_Fill_Color Component_Normal_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 168 -1020 228 20 282 -1010 1 1 {0} 255;224;224;224 Component_Normal_Selected_Edge_Color 3e3bf076-2f8d-473e-8fb4-f92db28df2ff Component_Normal_Selected_Edge_Color Component_Normal_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -1000 228 20 282 -990 1 1 {0} 255;186;186;186 Component_Normal_Selected_Text_Color 095dd5d8-570e-49a2-8e67-cea92b6be7a3 Component_Normal_Selected_Text_Color Component_Normal_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -980 228 20 282 -970 1 1 {0} 255;92;92;92 This input does nothing, it is just a spacer d905c0b0-8e82-4b7f-8eba-51505c30c8e7 Spacer Spacer true 0 168 -960 228 20 282 -950 Component_Hidden_Deselected_Fill_Color 321957b9-2793-4637-848c-5ce91391c786 Component_Hidden_Deselected_Fill_Color Component_Hidden_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -940 228 20 282 -930 1 1 {0} 255;255;255;255 Component_Hidden_Deselected_Edge_Color 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2 Component_Hidden_Deselected_Edge_Color Component_Hidden_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -920 228 20 282 -910 1 1 {0} 255;140;140;140 Component_Hidden_Deselected_Text_Color d4ff0608-c217-43bf-90b9-c3174669c5b5 Component_Hidden_Deselected_Text_Color Component_Hidden_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -900 228 20 282 -890 1 1 {0} 255;66;66;66 Component_Hidden_Selected_Fill_Color fe81550d-42f1-474d-82fa-fc63ded3a33c Component_Hidden_Selected_Fill_Color Component_Hidden_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 168 -880 228 20 282 -870 1 1 {0} 255;207;207;207 Component_Hidden_Selected_Edge_Color d242f68d-4dde-4615-b1e4-cfc397eef79a Component_Hidden_Selected_Edge_Color Component_Hidden_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -860 228 20 282 -850 1 1 {0} 255;148;148;148 Component_Hidden_Selected_Text_Color bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1 Component_Hidden_Selected_Text_Color Component_Hidden_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -840 228 20 282 -830 1 1 {0} 255;0;25;0 This input does nothing, it is just a spacer 4673c598-8f3d-4e72-b57e-b181a741ced8 Spacer Spacer true 0 168 -820 228 20 282 -810 Component_Disabled_Deselected_Fill_Color 7bde9353-e2ff-4945-b4c9-14b806259c72 Component_Disabled_Deselected_Fill_Color Component_Disabled_Deselected_Fill_Color false 1da98593-0ce8-41ff-a667-7c2be94a0815 1 168 -800 228 20 282 -790 1 1 {0} 255;173;173;173 Component_Disabled_Deselected_Edge_Color 71159c9b-1e20-4c06-97da-3c2eb5b91d32 Component_Disabled_Deselected_Edge_Color Component_Disabled_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -780 228 20 282 -770 1 1 {0} 255;135;135;135 Component_Disabled_Deselected_Text_Color 4b17e381-1311-43c2-8544-d1d5b9458697 Component_Disabled_Deselected_Text_Color Component_Disabled_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -760 228 20 282 -750 1 1 {0} 255;66;66;66 Component_Disabled_Selected_Fill_Color 12baaaf6-1012-42ee-86b6-cbdc737d8de1 Component_Disabled_Selected_Fill_Color Component_Disabled_Selected_Fill_Color false 41622ff4-285a-4767-ad45-9c5a68eb3205 1 168 -740 228 20 282 -730 1 1 {0} 255;145;145;145 Component_Disabled_Selected_Edge_Color c8896686-befd-4231-b333-7faff2e2c4fb Component_Disabled_Selected_Edge_Color Component_Disabled_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -720 228 20 282 -710 1 1 {0} 255;122;122;122 Component_Disabled_Selected_Text_Color baa2bdde-0550-4e7c-abf0-07aabbc25870 Component_Disabled_Selected_Text_Color Component_Disabled_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -700 228 20 282 -690 1 1 {0} 255;110;110;110 This input does nothing, it is just a spacer 156de1c3-5ce0-4b3c-b550-7dc589cf19f9 Spacer Spacer true 0 168 -680 228 20 282 -670 Component_Warning_Deselected_Fill_Color f011810c-2c52-41fe-a8af-3048783663f4 Component_Warning_Deselected_Fill_Color Component_Warning_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -660 228 20 282 -650 1 1 {0} 255;255;255;255 Component_Warning_Deselected_Edge_Color 9edde004-fda3-4653-99de-fbc2c5927c8d Component_Warning_Deselected_Edge_Color Component_Warning_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -640 228 20 282 -630 1 1 {0} 255;125;125;125 Component_Warning_Deselected_Text_Color a7c322df-e6ad-4443-833b-a5027d642b5a Component_Warning_Deselected_Text_Color Component_Warning_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -620 228 20 282 -610 1 1 {0} 255;0;0;0 Component_Warning_Selected_Fill_Color 4332093e-f0bf-4490-9902-f6cb75830c83 Component_Warning_Selected_Fill_Color Component_Warning_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 168 -600 228 20 282 -590 1 1 {0} 255;230;230;230 Component_Warning_Selected_Edge_Color 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2 Component_Warning_Selected_Edge_Color Component_Warning_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -580 228 20 282 -570 1 1 {0} 255;0;50;0 Component_Warning_Selected_Text_Color 4ad8f30a-a901-41f6-9368-60f73d1feafa Component_Warning_Selected_Text_Color Component_Warning_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -560 228 20 282 -550 1 1 {0} 255;0;0;0 This input does nothing, it is just a spacer 83a35c52-95be-4aa6-b663-9f62ca3af846 Spacer Spacer true 0 168 -540 228 20 282 -530 Component_Error_Deselected_Fill_Color 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c Component_Error_Deselected_Fill_Color Component_Error_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -520 228 20 282 -510 1 1 {0} 255;200;0;0 Component_Error_Deselected_Edge_Color f2d5a1d2-54e4-4d9e-849a-7a321a51c71f Component_Error_Deselected_Edge_Color Component_Error_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -500 228 20 282 -490 1 1 {0} 255;60;0;0 Component_Error_Deselected_Text_Color 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1 Component_Error_Deselected_Text_Color Component_Error_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -480 228 20 282 -470 1 1 {0} 255;0;0;0 Component_Error_Selected_Fill_Color 3c282599-5602-4c4f-a224-4e67e49976af Component_Error_Selected_Fill_Color Component_Error_Selected_Fill_Color false 0 168 -460 228 20 282 -450 1 1 {0} 255;255;255;255 Component_Error_Selected_Edge_Color 1cce579f-e827-4b62-a4eb-2db9743078b4 Component_Error_Selected_Edge_Color Component_Error_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -440 228 20 282 -430 1 1 {0} 255;0;50;0 Component_Error_Selected_Text_Color 45c987ff-932c-44a5-a12c-9b6313e72b8a Component_Error_Selected_Text_Color Component_Error_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -420 228 20 282 -410 1 1 {0} 255;255;255;255 This input does nothing, it is just a spacer 5b2574b8-2175-4877-90c0-7d3edea60d33 Spacer Spacer true 0 168 -400 228 20 282 -390 Component_Label_Deselected_Fill_Color 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1 Component_Label_Deselected_Fill_Color Component_Label_Deselected_Fill_Color false 0 168 -380 228 20 282 -370 1 1 {0} 255;50;50;50 Component_Label_Deselected_Edge_Color 602244c8-bf52-4371-a87b-388a0612939a Component_Label_Deselected_Edge_Color Component_Label_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -360 228 20 282 -350 1 1 {0} 255;0;0;0 Component_Label_Deselected_Text_Color 4f76b9df-5ef3-4336-a982-66c0a18b2f8c Component_Label_Deselected_Text_Color Component_Label_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -340 228 20 282 -330 1 1 {0} 255;255;255;255 Component_Label_Selected_Fill_Color 4755f628-28f0-43e7-9567-c9f4a6347eb7 Component_Label_Selected_Fill_Color Component_Label_Selected_Fill_Color false 0 168 -320 228 20 282 -310 1 1 {0} 255;25;60;25 Component_Label_Selected_Edge_Color 1a80ded9-3255-4d13-b155-c6a4b3fbc080 Component_Label_Selected_Edge_Color Component_Label_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -300 228 20 282 -290 1 1 {0} 255;0;35;0 Component_Label_Selected_Text_Color 7ceb31d3-04c8-461d-811f-f33619dd34a8 Component_Label_Selected_Text_Color Component_Label_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -280 228 20 282 -270 1 1 {0} 255;190;250;180 This input does nothing, it is just a spacer d652999b-5a4b-41c8-a7b9-a9ae76fb5699 Spacer Spacer true 0 168 -260 228 20 282 -250 Galapagos_Deselected_Fill_Color b9fafc3f-9f97-4907-93d7-d61a29223c7f Galapagos_Deselected_Fill_Color Galapagos_Deselected_Fill_Color false 0 168 -240 228 20 282 -230 1 1 {0} 255;252;252;252 Galapagos_Deselected_Edge_Color 74a688e8-b34e-4091-9b76-27007c49de29 Galapagos_Deselected_Edge_Color Galapagos_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -220 228 20 282 -210 1 1 {0} 255;100;0;50 Galapagos_Selected_Fill_Color 1e33c84f-2937-486e-bb9f-9ab17866e471 Galapagos_Selected_Fill_Color Galapagos_Selected_Fill_Color false 0 168 -200 228 20 282 -190 1 1 {0} 255;255;255;255 Galapagos_Selected_Edge_Color 200dc3d8-e55f-429e-aac4-6083a05e41e4 Galapagos_Selected_Edge_Color Galapagos_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -180 228 20 282 -170 1 1 {0} 255;0;50;0 This input does nothing, it is just a spacer f728dada-ea5d-41b0-b98a-8de512f00fc4 Spacer Spacer true 0 168 -160 228 20 282 -150 Wire_Normal_Color 0fcc9cb5-ff01-4adc-80db-8249b1cb1362 Wire_Normal_Color Wire_Normal_Color false ab85a55e-b675-4974-8817-fc5f46ae741a 1 168 -140 228 20 282 -130 1 1 {0} 255;230;230;230 Wire_Empty_Color 78a2afee-b670-426b-a371-999235a7e337 Wire_Empty_Color Wire_Empty_Color false ab85a55e-b675-4974-8817-fc5f46ae741a 1 168 -120 228 20 282 -110 1 1 {0} 180;230;55;2 Wire_Selected_Start_Color d41f6915-a75d-46dc-b44c-982c253a5b9e Wire_Selected_Start_Color Wire_Selected_Start_Color false 2251b2a2-b627-43f5-aa8b-4c758e59a7bf 1 168 -100 228 20 282 -90 1 1 {0} 255;230;230;230 Wire_Selected_End_Color 2410a63c-6af9-409a-b554-f2e05e8d3950 Wire_Selected_End_Color Wire_Selected_End_Color false 2251b2a2-b627-43f5-aa8b-4c758e59a7bf 1 168 -80 228 20 282 -70 1 1 {0} 255;230;230;230 This input does nothing, it is just a spacer be73375b-cea8-4bb4-b84f-47c1c53dba45 Spacer Spacer true 0 168 -60 228 20 282 -50 Panel_Default_Color This does not change the color of Panels already on the canvas, it changes the default color for new Panels 29278a69-6358-418c-aba8-2f26dfb10578 Panel_Default_Color Panel_Default_Color false 0 168 -40 228 20 282 -30 1 1 {0} 255;255;255;255 Group_Default_Color This does not change the color of Groups already on the canvas, it changes the default color for new Groups 99defed7-0c8b-446e-be4d-436c05592d1b Group_Default_Color Group_Default_Color false 0 168 -20 228 20 282 -10 1 1 {0} 255;255;255;255 This input does nothing, it is just a spacer 19fc00c2-190e-4e70-998b-e26dc4f9f8af Spacer Spacer true 0 168 0 228 20 282 10 Canvas_Background_Color 8b28a632-1507-43a4-8735-9a181ad39bcc Canvas_Background_Color Canvas_Background_Color false 0 168 20 228 20 282 30 1 1 {0} 255;255;255;255 Canvas_Gridline_Color 72826570-5a41-4ef5-936d-59e648e96383 Canvas_Gridline_Color Canvas_Gridline_Color false 0 168 40 228 20 282 50 1 1 {0} 255;240;240;240 Canvas_Gridline_Width f2e7af00-bbdc-4f45-a020-e3f2020b5345 Canvas_Gridline_Width Canvas_Gridline_Width false 0 168 60 228 20 282 70 1 1 {0} 2 Canvas_Gridline_Height b32ba782-b9e0-40b1-9b49-c17de5b67dae Canvas_Gridline_Height Canvas_Gridline_Height false 0 168 80 228 20 282 90 1 1 {0} 2 Canvas_Edge_Color 5859d87e-580c-4f1f-af8c-3683e3dc94d8 Canvas_Edge_Color Canvas_Edge_Color false 0 168 100 228 20 282 110 1 1 {0} 255;207;207;207 Canvas_Shadow_Color 6f769f3e-eb42-4a27-af68-d95482a87942 Canvas_Shadow_Color Canvas_Shadow_Color false 0 168 120 228 20 282 130 1 1 {0} 0;237;237;237 Canvas_Shadow_Size 57186c1f-9afb-4410-9800-b9138d1f1a74 Canvas_Shadow_Size Canvas_Shadow_Size false 0 168 140 228 20 282 150 1 1 {0} 2 This input does nothing, it is just a spacer 288db22f-a056-435a-ba44-1260facefde8 Spacer Spacer true 0 168 160 228 20 282 170 True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee Monochromatic(On/Off) Monochromatic(On/Off) false 0 168 180 228 20 282 190 1 1 {0} false Monochromatic_Color 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb Monochromatic_Color Monochromatic_Color false 0 168 200 228 20 282 210 1 1 {0} 255;255;255;255 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers bc131f89-e2c1-43d2-ac21-36cce03c61c4 Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.2200000000 969 -214 250 20 969.7104 -213.9582 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 7571d6a7-f9fb-43c5-b492-ebb1699bbe58 Series Series 1049 -175 104 64 1108 -143 First number in the series 9a4fd554-d7a2-4807-aa3b-c5bc6f8f54ab Start Start false 0 1051 -173 45 20 1073.5 -163 1 1 {0} 0 Step size for each successive number 3989d717-5c52-4fc1-9e3f-d8cf0c4e6334 Step Step false 7ea2aa96-2d9e-44d9-bf1b-90bc86fbf709 1 1051 -153 45 20 1073.5 -143 1 1 {0} 1 Number of values in the series 83ae208f-c932-4aaf-9f7f-74fdb4f54dae Count Count false b5e8ba51-1f5f-453f-b4d3-f2e760598a98 1 1051 -133 45 20 1073.5 -123 1 1 {0} 10 1 Series of numbers 90e3f7ea-df08-465a-8194-bf4035c20fb1 Series Series false 0 1120 -173 31 60 1135.5 -143 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 5705c628-a671-4ea2-8861-c39e6c31f184 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.49222173846 983 40 250 20 983.4814 40.00916 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch b5a6a551-46d2-4806-81c1-4e694142c31a Colour Swatch false 0 255;209;209;209 24 -293 60 20 24 -292.8022 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 5d9fa098-4495-4ddf-aeb5-b9e61060f110 Colour Swatch false 0 255;255;255;255 24 -1073 60 20 24 -1072.802 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch a5070296-591f-454e-b939-4e1ba45b08e2 Colour Swatch false 0 255;115;115;115 24 -333 60 20 24 -332.8022 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 2d4bf402-3325-4e67-89d9-d7cd367c5896 Colour Swatch false 0 255;227;227;227 24 -1013 60 20 24 -1012.802 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch ab85a55e-b675-4974-8817-fc5f46ae741a Colour Swatch false 0 255;222;222;222 24 61 60 20 24 61.94703 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 2251b2a2-b627-43f5-aa8b-4c758e59a7bf Colour Swatch false 0 255;168;168;168 24 121 60 20 24 121.947 de131812-96cf-4cef-b9ee-7c7031802751 00000000-0000-0000-0000-000000000000 InfoGlasses To show the components' advances information.Right click to have advanced options true c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24 0 InfoGlasses InfoGlasses 0 0 255;255;255;255 255;115;115;115 true true true 255;59;59;59 1000 8 true 0 false true false 2 1 8 false false false 211 -1168 176 28 316 -1154 Run 72e93834-66d7-4933-aef0-991e6bdf6f81 Run Run false 0 213 -1166 31 24 288.5 -1154 1 1 {0} true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 4cfe40e1-945b-4b2b-bae6-a03df06bf5e2 true Digit Scroller false 0 12 2 0.0000000000 -268 -2133 250 20 7cd2f235-466e-4d30-bd3c-3b9573ac7dda 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop Start Loop Start true ade383c0-be6f-458b-97d5-4af49052ee1e true Fast Loop Start Fast Loop Start -201 -2254 112 64 -142 -2222 2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 3 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 Loop iterations 41fb8513-dc2f-42b3-aa32-6a815009958d true Iterations Iterations false 59213d82-2e75-4ef1-9c5b-71de0c740510 1 -199 -2252 45 30 -176.5 -2237 1 1 {0} 0 2 Data to loop d3ca8c7c-d3cd-4527-aa78-0213d1b6c928 true Data Data true f301bd5c-5c48-4a82-90f5-73db28ff0f82 1 -199 -2222 45 30 -176.5 -2207 Connect to Loop End a17a44e1-3b28-470e-977d-0a0e51a9e7ea true > > false 0 -130 -2252 39 20 -110.5 -2242 Counter 507cce38-6886-48c0-b85b-e1be14e1c9fa true Counter Counter false 0 -130 -2232 39 20 -110.5 -2222 2 Data to loop 0607c373-640b-4725-923d-5e9001f9f818 true Data Data false 0 -130 -2212 39 20 -110.5 -2202 4e5b891f-3e8d-4b3d-b677-996c63b3ac70 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop End Loop End true cc03cc50-7184-4bfe-a46e-eec6121f2c40 true Fast Loop End Fast Loop End false 0 -189 -2553 88 64 -140 -2521 3 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 cb95db89-6165-43b6-9c41-5702bc5bf137 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Connect to Loop Start 95f39641-330f-4f59-bd2b-c2c1104a4b1c true < < false a17a44e1-3b28-470e-977d-0a0e51a9e7ea 1 -187 -2551 35 20 -169.5 -2541 Set to true to exit the loop 63d39f7f-c714-4b1c-9a2e-01550eaf2487 true Exit Exit true 0 -187 -2531 35 20 -169.5 -2521 1 1 {0} false 2 Data to loop dd5dec80-6a6b-4be3-9801-9befc6cce096 true Data Data false 4e93c941-9318-45b7-8117-f055299cbc84 1 -187 -2511 35 20 -169.5 -2501 2 Data to loop 1fa3ce8d-68d9-4065-b100-ab85e5b25198 true Data Data false 0 -128 -2551 25 60 -115.5 -2521 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true 0888994c-45cd-470a-bdcc-12beaf46ae58 true Stream Filter Stream Filter -183 -2641 77 64 -144 -2609 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream bd4fc4a7-89db-469c-bb7b-6f22fa0adfde true Gate Gate false b6dcc936-7880-4382-8ba4-8d8ca1e7c3f4 1 -181 -2639 25 20 -168.5 -2629 1 1 {0} 0 2 Input stream at index 0 27bab0db-f7a4-4310-ba24-e27e25bf989c true false Stream 0 0 true 0a444d6b-7647-4634-89ad-0809249280bc 1 -181 -2619 25 20 -168.5 -2609 2 Input stream at index 1 e58e9841-f6b6-4cd7-8747-c1597f81d5af true false Stream 1 1 true 1fa3ce8d-68d9-4065-b100-ab85e5b25198 1 -181 -2599 25 20 -168.5 -2589 2 Filtered stream 30e6b027-bd78-49d2-9f17-726d5a5235d5 true false Stream S(1) false 0 -132 -2639 24 60 -120 -2609 30d58600-1aab-42db-80a3-f1ea6c4269a0 Larger Than Larger than (or equal to) true b0b4a659-9cd6-4760-b507-2b77b90b9539 true Larger Than Larger Than -238 -2489 186 44 -132 -2467 Number to test db38579d-3d32-47f1-bddb-97dbcb76256f true First Number First Number false 59213d82-2e75-4ef1-9c5b-71de0c740510 1 -236 -2487 92 20 -190 -2477 Number to test against 38d1ec35-5fb0-40b8-a7f3-bf68991f777c true Second Number Second Number false 0 -236 -2467 92 20 -190 -2457 1 1 {0} -1 True if A > B b6dcc936-7880-4382-8ba4-8d8ca1e7c3f4 true Larger than Larger than false 0 -120 -2487 66 20 -87 -2477 True if A >= B ec97fe59-3b1f-427d-8a23-5f13cfec122b true … or Equal to … or Equal to false 0 -120 -2467 66 20 -87 -2457 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 59213d82-2e75-4ef1-9c5b-71de0c740510 true Relay false 4cfe40e1-945b-4b2b-bae6-a03df06bf5e2 1 -165 -2288 40 16 -145 -2280 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true 8ce21e2b-1311-46c7-8305-9be4aeadbc48 Rotate Rotate 1053 -500 110 64 1116 -468 Vector to rotate 7e771656-f78f-4d30-a2ec-6451880f237a Vector Vector false 21b93f54-19f5-40ef-a176-df902815f398 1 1055 -498 49 20 1087.5 -488 Rotation axis 42e4c4a3-e40f-4dd6-80da-7db696fc492c Axis Axis false f447cd71-4dec-426b-9c17-991c06398d6d 1 1055 -478 49 20 1087.5 -468 Rotation angle (in degrees) d36dc3cf-9b9b-4570-818a-af1d2a32e878 Angle Angle false 50431618-b1c9-44cb-915e-6a1ce1fcbf6a 1 true 1055 -458 49 20 1087.5 -448 Rotated vector c13cd37b-e089-4f8d-883b-54203d5df027 Vector Vector false 0 1128 -498 33 60 1144.5 -468 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 27066b99-163c-49af-b78d-2b373f91b9b5 Interpolate Interpolate 995 -839 225 84 1168 -797 1 Interpolation points 1cfa6ffd-56c1-44b4-8264-031c3bfcadc9 Vertices Vertices false 2a8e46a0-9509-4aff-8701-b3c411851f02 1 997 -837 159 20 1076.5 -827 Curve degree 4e7bb25b-6ce9-4b77-879b-a77033e4f7f1 Degree Degree false 0 997 -817 159 20 1076.5 -807 1 1 {0} 5 Periodic curve bc7913c7-f8c4-4cf1-a3b1-425a45cf7d60 Periodic Periodic false 0 997 -797 159 20 1076.5 -787 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 6252188d-187f-4d0b-b8c7-ba56fa4c5af2 KnotStyle KnotStyle false 0 997 -777 159 20 1076.5 -767 1 1 {0} 2 Resulting nurbs curve 812b2004-5d23-4a36-8867-c4d7e1d7c8c3 Curve Curve false 0 1180 -837 38 26 1199 -823.6667 Curve length cd8cb434-3248-490d-b1bd-9d308f8f6e84 Length Length false 0 1180 -811 38 27 1199 -797 Curve domain cad893e9-0cca-4cc6-9205-224b9074636b Domain Domain false 0 1180 -784 38 27 1199 -770.3334 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd Unit X Unit vector parallel to the world {x} axis. true acb47850-cd31-4ea1-ad1c-8d027295fe5b Unit X Unit X 1051 -354 114 28 1097 -340 Unit multiplication 9c8e3800-eb50-4449-8428-e70fa45c8743 Factor Factor false c45782da-fece-45d1-903c-95142361b873 1 1053 -352 32 24 1069 -340 1 1 {0} 1 World {x} vector 21b93f54-19f5-40ef-a176-df902815f398 Unit vector Unit vector false 0 1109 -352 54 24 1136 -340 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true a2e7717e-c537-462c-a03e-36d06f4600e8 Unit Z Unit Z 1051 -307 114 28 1097 -293 Unit multiplication aa91a118-d75b-43c7-a0d7-4a6fbf6865f8 Factor Factor false c45782da-fece-45d1-903c-95142361b873 1 1053 -305 32 24 1069 -293 1 1 {0} 1 World {z} vector f447cd71-4dec-426b-9c17-991c06398d6d Unit vector Unit vector false 0 1109 -305 54 24 1136 -293 ab14760f-87a6-462e-b481-4a2c26a9a0d7 Derivatives Evaluate the derivatives of a curve at a specified parameter. true c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260 true Derivatives Derivatives 527 -4713 120 144 606 -4641 2 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 7 fbac3e32-f100-4292-8692-77240a42fd1a 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 Curve to evaluate f3ee6bc2-fdad-4aa8-bc05-a096970cebc8 true Curve Curve false 0 529 -4711 65 70 561.5 -4676 Parameter on curve domain to evaluate 04c36552-d571-45f3-874e-eb0200b47d22 true Parameter Parameter false 0 529 -4641 65 70 561.5 -4606 Point on curve at {t} baaac401-d9a7-411b-805d-a15c35db80eb true Point Point false 0 618 -4711 27 20 631.5 -4701 First curve derivative at t (Velocity) d5b87ddb-341e-4bd8-afdb-367567c6bba3 true false First derivative 1 false 0 618 -4691 27 20 631.5 -4681 Second curve derivative at t (Acceleration) 2639343a-12c6-4387-90cc-a3114bd783d6 true false Second derivative 2 false 0 618 -4671 27 20 631.5 -4661 Third curve derivative at t (Jolt) 06921a77-02a5-44a5-ab76-62a2ec504ada true false Third derivative 3 false 0 618 -4651 27 20 631.5 -4641 Fourth curve derivative at t (Jounce) 92510296-d128-4ce9-a581-482c09cbc15e true false Fourth derivative 4 false 0 618 -4631 27 20 631.5 -4621 Fifth curve derivative at t ce3af00f-0726-43e6-b974-248803cfe0e6 true false Fifth derivative 5 false 0 618 -4611 27 20 631.5 -4601 Sixth curve derivative at t e943f2d8-f1f9-4bb1-aef8-c108ef86c002 true false Sixth derivative 6 false 0 618 -4591 27 20 631.5 -4581 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true a28e949a-03f8-43f8-b244-d21a8d6e41e4 true Line SDL Line SDL 409 -5976 179 64 552 -5944 Line start point 79adb25f-f822-4463-a547-0638ba3af362 true Start Start false 0 411 -5974 129 20 483.5 -5964 Line tangent (direction) 03636d62-1370-4942-88f4-857a65464d92 true Direction Direction false 06921a77-02a5-44a5-ab76-62a2ec504ada 1 411 -5954 129 20 483.5 -5944 1 1 {0} 0 0 1 Line length 71e8a980-e875-42d1-82e8-80286c8cbc52 -X true Length Length false 0 411 -5934 129 20 483.5 -5924 1 1 {0} 1 Line segment b317086f-b6bc-47a5-ac87-3e7d34547ac2 true Line Line false 0 564 -5974 22 60 575 -5944 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 391756f9-4358-45d1-936e-c496ba6104e0 true Create Material Create Material 447 -6100 152 104 545 -6048 Colour of the diffuse channel 99cd1941-02ef-4b60-9081-2924d6df2987 true Diffuse Diffuse false 0 449 -6098 84 20 491 -6088 1 1 {0} 255;232;232;232 Colour of the specular highlight b4fa067f-1df1-4344-b55f-bc629475264a true Specular Specular false 0 449 -6078 84 20 491 -6068 1 1 {0} 255;0;255;255 Emissive colour of the material 38f16f51-687d-44ec-9aab-4b4c5db2f705 true Emission Emission false 0 449 -6058 84 20 491 -6048 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent f0216951-6a43-4fe8-8f72-957347479ac7 true Transparency Transparency false 0 449 -6038 84 20 491 -6028 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 1a0cdefa-8194-428a-b2af-d416a232075e true Shine Shine false 0 449 -6018 84 20 491 -6008 1 1 {0} 100 Resulting material 200bbd93-5b58-4c27-8078-0adeb21b162c true Material Material false 0 557 -6098 40 100 577 -6048 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true d7be4360-884f-4c85-be96-44fb8a798a7d true Custom Preview Custom Preview 560 -6163 76 44 622 -6141 Geometry to preview true 7d2280d0-5877-4448-8407-b4d0b2e99066 true Geometry Geometry false b317086f-b6bc-47a5-ac87-3e7d34547ac2 1 562 -6161 48 20 586 -6151 The material override 0ab4a55d-2d50-496f-9431-24974e37bb78 true Material Material false 200bbd93-5b58-4c27-8078-0adeb21b162c 1 562 -6141 48 20 586 -6131 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9 true Evaluate Length Evaluate Length 452 -6247 147 64 535 -6215 Curve to evaluate ece5eb15-d68e-4325-8ac6-14e1983b8848 true Curve Curve false b317086f-b6bc-47a5-ac87-3e7d34547ac2 1 454 -6245 69 20 488.5 -6235 Length factor for curve evaluation b7b17610-8182-4eb0-beff-f9003e5cd200 true Length Length false 0 454 -6225 69 20 488.5 -6215 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) e9204942-5fcb-43c4-9bd7-bad7da1f1095 true Normalized Normalized false 0 454 -6205 69 20 488.5 -6195 1 1 {0} true Point at the specified length 0b07833a-e9b0-4c65-b08a-a86c6f095e42 true Point Point false 0 547 -6245 50 20 572 -6235 Tangent vector at the specified length d4d0d2a3-7672-4c9b-847d-0720f0276387 true Tangent Tangent false 0 547 -6225 50 20 572 -6215 Curve parameter at the specified length 4821c9f2-9535-42fb-89a8-46c9b7c32eca true Parameter Parameter false 0 547 -6205 50 20 572 -6195 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true f8bf8b17-5f64-4003-9ce1-9026aaac4695 true Interpolate Interpolate 364 -6351 225 84 537 -6309 1 Interpolation points 5b1939bb-f0f0-413a-9564-dbeb140f85b7 true Vertices Vertices false 0b07833a-e9b0-4c65-b08a-a86c6f095e42 1 366 -6349 159 20 445.5 -6339 Curve degree 03f9d6bf-b682-46a6-9e8a-34324164c9b0 true Degree Degree false 0 366 -6329 159 20 445.5 -6319 1 1 {0} 3 Periodic curve cf0efaf9-d364-4835-a799-f77814defd1e true Periodic Periodic false 0 366 -6309 159 20 445.5 -6299 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 68ab4f2d-155f-49e9-9089-6cceba7398b5 true KnotStyle KnotStyle false 0 366 -6289 159 20 445.5 -6279 1 1 {0} 2 Resulting nurbs curve cd554e84-a87c-47bc-a79c-19347e2f0445 true Curve Curve false 0 549 -6349 38 26 568 -6335.667 Curve length 84582cb4-6638-42b4-a325-f4e841513b71 true Length Length false 0 549 -6323 38 27 568 -6309 Curve domain 2d16f12e-6fb5-4594-8c47-80e046dd4a10 true Domain Domain false 0 549 -6296 38 27 568 -6282.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 59480eb6-f67d-4aed-af3c-80bcc65b0c97 true Create Material Create Material 447 -6475 152 104 545 -6423 Colour of the diffuse channel d0a233c4-5cbf-47b6-b827-30877f3c0605 true Diffuse Diffuse false 0 449 -6473 84 20 491 -6463 1 1 {0} 255;207;207;207 Colour of the specular highlight f52f3c21-e882-40ff-8233-68e3e5495edb true Specular Specular false 0 449 -6453 84 20 491 -6443 1 1 {0} 255;0;255;255 Emissive colour of the material b9730379-a406-4b51-a3c9-a8491583fea5 true Emission Emission false 0 449 -6433 84 20 491 -6423 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 34d39782-03a8-4ac3-8ce4-9b4b5b91336e true Transparency Transparency false 0 449 -6413 84 20 491 -6403 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine cbcb1a83-292f-4d78-a691-b5e20a9d993d true Shine Shine false 0 449 -6393 84 20 491 -6383 1 1 {0} 100 Resulting material d1ae5845-db5c-4627-82e9-c54c822208ed true Material Material false 0 557 -6473 40 100 577 -6423 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 570796f7-f90e-4361-858c-c1f014778449 true Custom Preview Custom Preview 560 -6538 76 44 622 -6516 Geometry to preview true 501744d7-62ef-4952-a5df-acf7700d473f true Geometry Geometry false cd554e84-a87c-47bc-a79c-19347e2f0445 1 562 -6536 48 20 586 -6526 The material override e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8 true Material Material false d1ae5845-db5c-4627-82e9-c54c822208ed 1 562 -6516 48 20 586 -6506 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7bba5658-4cbd-432f-a660-fc5cb3f3794c true Quick Graph Quick Graph false 0 baaac401-d9a7-411b-805d-a15c35db80eb 1 523 -4876 150 150 523.7125 -4875.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 167436ff-de50-491f-8e47-5da60e700291 true Quick Graph Quick Graph false 0 d5b87ddb-341e-4bd8-afdb-367567c6bba3 1 523 -5045 150 150 523.7125 -5044.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7 true Quick Graph Quick Graph false 0 2639343a-12c6-4387-90cc-a3114bd783d6 1 523 -5212 150 150 523.7125 -5211.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 8afb402c-3b86-45d3-84ea-d3432b3a52a6 true Quick Graph Quick Graph false 0 06921a77-02a5-44a5-ab76-62a2ec504ada 1 523 -5381 150 150 523.7125 -5380.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1 true Quick Graph Quick Graph false 0 92510296-d128-4ce9-a581-482c09cbc15e 1 523 -5551 150 150 523.7125 -5550.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph efd6e82c-6389-40c3-b1fa-a1f3d7f406cb true Quick Graph Quick Graph false 0 ce3af00f-0726-43e6-b974-248803cfe0e6 1 523 -5721 150 150 523.7125 -5720.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph dc664508-b5c0-4996-9899-a06cb3c1f6cf true Quick Graph Quick Graph false 0 e943f2d8-f1f9-4bb1-aef8-c108ef86c002 1 523 -5889 150 150 523.7125 -5888.101 -1 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 36490051-2898-452f-96c1-81007a065ffb Relay false 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d 1 1088 -598 40 16 1108 -590 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b5e8ba51-1f5f-453f-b4d3-f2e760598a98 Relay false 502e62c7-4437-40b9-bd0f-64f09fc22560 1 1088 72 40 16 1108 80 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 Addition Addition 1065 107 85 44 1105 129 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 3efa2d60-d24c-4da5-b586-ead577c32d7b A A true 0 1067 109 26 20 1080 119 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition 493117c9-0781-4f7a-9da2-810c2c0c8e21 B B true 891c2d5f-30f4-4657-a7f6-e91f07dc0e63 1 1067 129 26 20 1080 139 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of addition 502e62c7-4437-40b9-bd0f-64f09fc22560 Result Result false 0 1117 109 31 40 1132.5 129 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 76d86607-84be-4bd2-a5fd-b914901fb804 Digit Scroller NUMBER OF SEGMENTS false 0 12 NUMBER OF SEGMENTS 11 64.0 983 240 250 20 983.4814 240.0092 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 6e897604-8413-4005-967f-aa26aa4bacbb Addition Addition 1030 170 155 44 1070 192 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 06b19fd1-cc87-433b-8994-3b63504bbe2d A A true 0 1032 172 26 20 1045 182 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition b04a041f-efb2-463f-88b8-e8d878371e7c B B true 76d86607-84be-4bd2-a5fd-b914901fb804 1 1032 192 26 20 1045 202 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Result of addition 891c2d5f-30f4-4657-a7f6-e91f07dc0e63 Result NUMBER OF POINTS false 0 1082 172 101 40 1132.5 192 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true 81df0eaa-5106-4fa2-bfe7-c2073c37a781 Insert Items Insert Items 1050 -701 116 84 1133 -659 1 List to modify 07b21d74-57aa-470b-9886-25c6218657ca List List false 36490051-2898-452f-96c1-81007a065ffb 1 1052 -699 69 20 1086.5 -689 1 Items to insert. If no items are supplied, nulls will be inserted. b2066849-f7ec-46b6-bbac-bbdda3212e65 Item Item true 0 1052 -679 69 20 1086.5 -669 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item b77429fa-e425-429a-8f89-628efd4a0362 Indices Indices false 0 1052 -659 69 20 1086.5 -649 1 1 {0} 0 If true, indices will be wrapped 89a48d9c-1bc1-457e-b823-d92ff7d61eda Wrap Wrap false 0 1052 -639 69 20 1086.5 -629 1 1 {0} false 1 List with inserted values 9bfa77bb-a647-437e-ae62-842d46b2a2f1 List List false 0 1145 -699 19 80 1154.5 -659 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2a8e46a0-9509-4aff-8701-b3c411851f02 Relay ⊙☉⊙ false 9bfa77bb-a647-437e-ae62-842d46b2a2f1 1 1086 -736 44 16 1108 -728 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 1da98593-0ce8-41ff-a667-7c2be94a0815 Colour Swatch false 0 255;196;196;196 24 -797 60 20 24 -796.8022 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 41622ff4-285a-4767-ad45-9c5a68eb3205 Colour Swatch false 0 255;176;176;176 24 -737 60 20 24 -736.8022 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 4e93c941-9318-45b7-8117-f055299cbc84 true Relay false 0 -165 -2445 40 16 -145 -2437 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 4cfe40e1-945b-4b2b-bae6-a03df06bf5e2 ade383c0-be6f-458b-97d5-4af49052ee1e cc03cc50-7184-4bfe-a46e-eec6121f2c40 0888994c-45cd-470a-bdcc-12beaf46ae58 b0b4a659-9cd6-4760-b507-2b77b90b9539 59213d82-2e75-4ef1-9c5b-71de0c740510 4e93c941-9318-45b7-8117-f055299cbc84 f301bd5c-5c48-4a82-90f5-73db28ff0f82 0a444d6b-7647-4634-89ad-0809249280bc 9 c8ba1214-46d8-45e6-948b-6f5565d839f9 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0a444d6b-7647-4634-89ad-0809249280bc true Relay false 0 -165 -2569 40 16 -145 -2561 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f301bd5c-5c48-4a82-90f5-73db28ff0f82 true Relay false 0 -165 -2190 40 16 -145 -2182 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 6e897604-8413-4005-967f-aa26aa4bacbb 2 4caac69f-0c5a-4d20-bfd4-d541b3bc321b Group f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqkl1CXY0UZLawiWtDFp8hSmzS0DTRtbAFB4NFpMm0HJjMxmRS5bHlQESxIF3sCWnxQQapFjiqHUt3isiurRUBA0R66uHKs7qoL7ird75v5Ju0cSau0Fh7mvUkz//93/v7n95+pzszavU6S4drBJwjDMA24oly0N5diZueTbg/FMpBlA2TIhp8w2ETsl0ISDtINm4QitkFkWcyQrAckohlfP9pwMaW++NKIw19l68NsbjKfIudBvgHwtZl5YBRHNCJbSU/e5PkuErJD0MSRiJfGup0EDTnDAHXjxo3tYq9MkibtHOkQeRRFtd9oJnMohuLALmxu1kW6OYr0iMPCS2MmOH4eHbjZ2epcWbL8Y124mfTY3ZSLQ5uHS8Q0aYSTFO8uhExLSY6La9tdefa5FeC7rbwOfLeWv9pavov/wd/u2gy/S1bz32taS0p9LZsq0uDvtcvgCGWwS9v6Tb7frc+ubX221NestXyrbzShmTDI2fKdkF65RDK12BctCXG3Spe3oWPelVV84+JAv6te8g2IvhElYC/+N9oRP2OnBWz1rQ2tU1x2RxueK+wRTcrvHaHKj4DwEfsqkRQQRmgLE4mCQHJBo0nEh+DlJRsXl5wyTZ8BNAyagkc0E/iJFKmJrFcwoBDRBICyzQHKiPQnGJG1kwl3Lsm3vAXc5oFrDuBpHmVZp2hBs3AyPnQqUGfJVHpIUUyjz7C7Uon5rJfr3NaQ7Ga9LkXjfh2mkJ4NF+ebIApc4QJN0gvStQIdDhCMLFGTPKXDsm8NLppx++4PJxVnf2nM+xvzX4mVRFoJjwc3Ohz8rPpEluEIiunwFtDXqNnaHTbSnQPsHHfC/gTqj7M5OIHTlIeDvyiOdHq0KZTDQTLiRoIiLIyHIxg7meylHOISM+4cbMnTkBPWuyYcaxjYcjTAEnVplH2uf7bByHFuKtvLCT7EJ1YTQM3Bk2LhfcMRM4ZNbcSw/5gwbLQp1EblszyoQyG35UMzVmhrDHcRbsI5m2JcXh5dHUJXa7TbSY/PRwX5gWioBXbE8wnaS3pwAJYUqzhVJNpOGE9srhuevrZu5pyD8w9/I0EilB9RgQAip/OzC46XVzRtJut120leDcFVd/ZkyL57X7YU1pQsOG9cXBMusCX6BPt1E0LsAwDSFADhSSOG4XIItx/lIYwQIATqjzDUBgBsYAbp8dK86kiQUgUqayRnW/7AlEkbH7A+RDnzvBKgtMJICqREugIqNSyw7mORdRJh8RRQp2qjDIvq00DZMqVYwFnDfpo+DUxFdgXG4SiCxt38Zjyq8KT1e2Zx+ZHZKfXm97e9YC+skMATbUMjCHB4FDgpGvQKYLaAgKU1IscW5M+x3bMp4+CMuq1JWzZFv/v2E9+VSW2Fd7FShzZIBNzEulFGJCYZ2kSWBjsSExP4V00GtxjxXDguFEOyGyhpHusCKQvOCu462GIWrW3/dyN/+Gv2jUmv1Y+/tNtw4QbACkKs8qeO37mYOWbd97+xa+6/6X4jYAX7sVHACkGs+MZh+etmmY1PHv783gfi7/kcsDSI9Ubk44Z3ihKNq6NWjrBnDjUDVihiyT0rYGkR64v9F/sfOjPKuMLxXWSJ9ZQLsMIQa2jM+GW6ubuTimqyF/6IxbQBlk5c/GOvHMTXe9Ort+/8Pvmtl/SApUes/vi4+Mza0vRn3/ysYEp07GXAMoi91rd/QP12TULVpoeXGon8lYAVjlgRWyrT3jvytan64reakSdX7QKsCMQaX/XM2IJjO1LeGDN4V+Uox3TAikSs+SNKiypi2637F03lFpWM+QGwohBr8Jff3v314elpf0z/Cn9i8Ec3A1Y0Yi197+bTh2xxk97Yt2FT8pCZQwDrBsR685UpcfVjipJXzz3hrJ3YvkJnMc+WaHc/uFY1U1uYdnqD5tEBpm3bYwos2MKtKmqoMDC5nWCinQgqH+xP5fHc2PqnVq0wrf1TbWrl93sWSufKIGlivlTl/cSsYD8+JsaIz6PcJHAtYCSk1aqbliuqykKUm+4yRMlFd6Uh6gTwMoMaYXjCsEK5lyk8BbgDRC8TctVDLncAPQP5k835DxEzLk8qag7/Ij0jbF0PQN5SGwjylm0i5Bp/kFeXrPKen3gpueyxAZ6qlXfNksb2JHi85JSpqj+A7xc64B7WSeIOgiNwr4dicnEXTdjJPJYGkQDkGowDpmigHQd5HJHbvcxV7r3UlqpMQwR6NyGtBtlowt0A0u0QUkWuCmJlwvDGSBtMLkiOdIPTMgG50M1DhA18diiRJ7zCeLLFIepBWtGn8Zl/Ppew7N1dhbp/pR8T+WLQWvrIxoKPXDNTKhqqK89UFMeLfDFyTXccWh10QG/e+8+B1siRMU3h6Xyeo9AjnUD3P7GwXn47PBoBJBs+mXycQ2JTlc40GkuqxjLT9o6674vDbw87/1Ok0+M5DzxVNNwF5HiDWs6DA9NIuLMxygYLOh6OZDhRkEEIuVAFllqTG+wYnlF9dqRspLERXJ64t5CFoxdrLOBcJvbh98V4aXq2B+yBye1wEx33vH9ZOPrBjMWdZBPUhWz6J3VYkx3kkF43qSqiph+DN+94PTS14raUWGrf/gUSEYUlCj0VMvIxekVItwcU0vBfVEhiyUCTmig4SNilwGfXvCzguGLUUZPFbXCVOMfiFOMh3RwOnCGYQuIAVWXz8cGY+OK6bWkHjm7lXjy/qDTM6uWIbJr0gS21J36W0QpZBY1WSCmod4+mvBBvCyhEvBE5KImj8QdgFFJm0oFzwOWognVg3W+Kpy+bbKp8eeXfjy+OPi7BRgM9lQIZgdrjZ6tPkZ9pAAdzlyJeNPMqjEKwGDcVIfjhz5rTw+j3kp/f82ZwQf2tT0p2Y8jMo3I4HJ5HlWE41A+GN6Xn5HhIoHw0LVSGgDaiYlFct0Kt/JTjb0kKmDvxugvhcTNIQgCEZWoht/ojwF11peWhSP44D4zSA1enfojPXndhRgtleiE1Fp826RNpcqFR3atA7Srpk1cHrtDeqgFcWRCuFqOKvWWBlBBfI4FLrH74Cx4RgsRYXmNUoZla0/x8zOWYiTvva7+p9rlze6TJMN9dWScTyF2BIz8J9gA4LasDgQN0qS8iipbxOrM7qiC8nnaSUTDWRfL1iJtwoeqmqojivF/tv7usNnHzO0vOjPPSD0u1F/ZWai9P7WmHyKtncUD1fLpPJBCWzbI0Sfj8HqYol/7EEqFgNyBKQa+qKhT5ce/nu5QrFAp+GvmMCrUoZfuENwsUpUQ1VESpqtdbpi///JJl7+u79746tzVV6gVsBEPS0gClD6DQdxhxF+zBl+rtXg/HOnGGBdvgD4cw7gfSdnmFS2Up3Tmdh2fa3SxNZxCADolarOMj81PyhMOfn9JNAUkfzDTEaYebWS/I4nA7DdYDIxDpoDi0dztAC5hAW2GNTI7io2O5HBOaQD6RBOQYk4hhL5gMVsKdSzGpZI5EKcIFcgaVmyd9PCbQJ7OuzlSpMvx7apN5R2hSYzQPovQZcZi4KrXyrZuYZ2EclJ30PUYL0kMitMtOJCs4SlA00BAfKSLTRdopgk5kHR19AfycmyScvnveWfn6IFUVo9rVrKry6m7vq+qLNUHHFhQ2WF4baz719Tjdkb5R1SygqoVbelNVk+Y0mU8t2HJtqKrOn6peQ+U3+SOHXiq/NcwJVH5ryP61/KYqnSEFg2a8Em6ZsGx/gv7yE7FD+7z8ljAnUFGgIff6K7+drT9dP77uqLWIaf++OeOt4VdB+S2BDCik7Oum/DYkbNLeIcMc1j2V5izdBvuYXiu/9XA5gBdiVkAhzurx8tsg2z8W6cfVT6hds7rs3DPb0vu0/Mb7Gb/lN6DCKASLOd61HILlrxH0UgjG1gcKwVjFryFYVToG/WNtZmeladcjzOGLv2v6tM9DcMO6QI6hsOr6C8He25t3jjhbl1J6YuCFkT+MqrkaQnBlICEBY7teQvAZpto29i/fTKw65/39H5bePK/XQnAPv4bBW1pZQEsr7fEQLD/l9+0TsHWBQjBQYRSCDdjVX7CRv3PX+wUbeTbVdwWbliW9WbC5xDaZm08suTYKNuH+VHVA2ypz/wffT9x432cH6g7NM3f5ipoejdIvkVdFtf+lMQgsiUpFIZpc1a7otTb5O38/87W2broM38Mv+T8EHAcuI7oRugvoNhDiEf4Qv1y0Y1NMnMZUP3NQVY3LurlLxA1XEeLyt2B75kVC+euJ3YxggQSSsEMukMifZwL8Y7Ff3AS6footf9R8JU+xe8AAEpb78P4/ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGXSURBVEhL1dTPKwRhHMfxhyS/IsWB3XJwcHLgYBMWJxek5OCuHFyY2bi4OLjsYcuPlOQoJfkDFElyEP4DJEp+JRdS2vH+7s4262lmmrUcfOp1mKeZ5zPzzDyj/kuace2iFnmnDGuwXNQhUHoxqmnFAK5wiLwK9qBffItzdKEAxS4CpRwP0As+EUcNKjHsQpbPNyGc4ggLSGQZs8eesAH9BkQDPBOBLMNM6sg7YWzCs6AUb5oPvGAQQVKPFSxpqpFaJ7f2WfxK5AleNe94hGygICmEPIWuCJ6Rb/0ebakj/8h7cFuFFvimH3fohixltsx3Ljdwgh8VSPrwDP3iXaziBiZk051pmuAkqabDSWVG02KN9rBkHXqBvKdlVCBYksqIWcq0BCWL9rBkHheaY8gOn0MVJl18/xf5FHhFdvoWLqE/oehgUjOSVFPjaca2U2DsZ8YtZXRysl9G4FVgxDOTeuEmZJf6pQTyS9GFfqvAO3wt7ZRM2HaciY0DZ9yM2qfnFybL9SXnlj8vYOIeShKCJRqyh/OIUl/sfgpigb5wpgAAAABJRU5ErkJggg== 6d8b0409-1300-453d-a4c2-65b0b0989f4b ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 3 107520da-eb3b-47a9-9721-33358834b9e6 50431618-b1c9-44cb-915e-6a1ce1fcbf6a ec77cd0b-e393-4575-96cb-81a591e15b27 2e55aebe-34b6-4785-8e6b-d76dac4aff89 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2df4e919-ccf0-4e59-924f-ef207e19da1d 1083 -417 49 44 1112 -395 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 1 b6236720-8d88-4289-93c3-ac4c99f9b97b Shift offset 107520da-eb3b-47a9-9721-33358834b9e6 Shift true 0 1085 -415 15 20 1092.5 -405 1 1 {0} 1 2 A wire relay object ec77cd0b-e393-4575-96cb-81a591e15b27 Relay true 90e3f7ea-df08-465a-8194-bf4035c20fb1 1 1085 -395 15 20 1092.5 -385 2 A wire relay object 50431618-b1c9-44cb-915e-6a1ce1fcbf6a Relay false 0 1124 -415 6 40 1127 -395 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqkl1CXY0UZLawiWtDFp8hSmzS0DTRtbAFB4NFpMm0HJjMxmRS5bHlQESxIF3sCWnxQQapFjiqHUt3isiurRUBA0R66uHKs7qoL7ird75v5Ju0cSau0Fh7mvUkz//93/v7n95+pzszavU6S4drBJwjDMA24oly0N5diZueTbg/FMpBlA2TIhp8w2ETsl0ISDtINm4QitkFkWcyQrAckohlfP9pwMaW++NKIw19l68NsbjKfIudBvgHwtZl5YBRHNCJbSU/e5PkuErJD0MSRiJfGup0EDTnDAHXjxo3tYq9MkibtHOkQeRRFtd9oJnMohuLALmxu1kW6OYr0iMPCS2MmOH4eHbjZ2epcWbL8Y124mfTY3ZSLQ5uHS8Q0aYSTFO8uhExLSY6La9tdefa5FeC7rbwOfLeWv9pavov/wd/u2gy/S1bz32taS0p9LZsq0uDvtcvgCGWwS9v6Tb7frc+ubX221NestXyrbzShmTDI2fKdkF65RDK12BctCXG3Spe3oWPelVV84+JAv6te8g2IvhElYC/+N9oRP2OnBWz1rQ2tU1x2RxueK+wRTcrvHaHKj4DwEfsqkRQQRmgLE4mCQHJBo0nEh+DlJRsXl5wyTZ8BNAyagkc0E/iJFKmJrFcwoBDRBICyzQHKiPQnGJG1kwl3Lsm3vAXc5oFrDuBpHmVZp2hBs3AyPnQqUGfJVHpIUUyjz7C7Uon5rJfr3NaQ7Ga9LkXjfh2mkJ4NF+ebIApc4QJN0gvStQIdDhCMLFGTPKXDsm8NLppx++4PJxVnf2nM+xvzX4mVRFoJjwc3Ohz8rPpEluEIiunwFtDXqNnaHTbSnQPsHHfC/gTqj7M5OIHTlIeDvyiOdHq0KZTDQTLiRoIiLIyHIxg7meylHOISM+4cbMnTkBPWuyYcaxjYcjTAEnVplH2uf7bByHFuKtvLCT7EJ1YTQM3Bk2LhfcMRM4ZNbcSw/5gwbLQp1EblszyoQyG35UMzVmhrDHcRbsI5m2JcXh5dHUJXa7TbSY/PRwX5gWioBXbE8wnaS3pwAJYUqzhVJNpOGE9srhuevrZu5pyD8w9/I0EilB9RgQAip/OzC46XVzRtJut120leDcFVd/ZkyL57X7YU1pQsOG9cXBMusCX6BPt1E0LsAwDSFADhSSOG4XIItx/lIYwQIATqjzDUBgBsYAbp8dK86kiQUgUqayRnW/7AlEkbH7A+RDnzvBKgtMJICqREugIqNSyw7mORdRJh8RRQp2qjDIvq00DZMqVYwFnDfpo+DUxFdgXG4SiCxt38Zjyq8KT1e2Zx+ZHZKfXm97e9YC+skMATbUMjCHB4FDgpGvQKYLaAgKU1IscW5M+x3bMp4+CMuq1JWzZFv/v2E9+VSW2Fd7FShzZIBNzEulFGJCYZ2kSWBjsSExP4V00GtxjxXDguFEOyGyhpHusCKQvOCu462GIWrW3/dyN/+Gv2jUmv1Y+/tNtw4QbACkKs8qeO37mYOWbd97+xa+6/6X4jYAX7sVHACkGs+MZh+etmmY1PHv783gfi7/kcsDSI9Ubk44Z3ihKNq6NWjrBnDjUDVihiyT0rYGkR64v9F/sfOjPKuMLxXWSJ9ZQLsMIQa2jM+GW6ubuTimqyF/6IxbQBlk5c/GOvHMTXe9Ort+/8Pvmtl/SApUes/vi4+Mza0vRn3/ysYEp07GXAMoi91rd/QP12TULVpoeXGon8lYAVjlgRWyrT3jvytan64reakSdX7QKsCMQaX/XM2IJjO1LeGDN4V+Uox3TAikSs+SNKiypi2637F03lFpWM+QGwohBr8Jff3v314elpf0z/Cn9i8Ec3A1Y0Yi197+bTh2xxk97Yt2FT8pCZQwDrBsR685UpcfVjipJXzz3hrJ3YvkJnMc+WaHc/uFY1U1uYdnqD5tEBpm3bYwos2MKtKmqoMDC5nWCinQgqH+xP5fHc2PqnVq0wrf1TbWrl93sWSufKIGlivlTl/cSsYD8+JsaIz6PcJHAtYCSk1aqbliuqykKUm+4yRMlFd6Uh6gTwMoMaYXjCsEK5lyk8BbgDRC8TctVDLncAPQP5k835DxEzLk8qag7/Ij0jbF0PQN5SGwjylm0i5Bp/kFeXrPKen3gpueyxAZ6qlXfNksb2JHi85JSpqj+A7xc64B7WSeIOgiNwr4dicnEXTdjJPJYGkQDkGowDpmigHQd5HJHbvcxV7r3UlqpMQwR6NyGtBtlowt0A0u0QUkWuCmJlwvDGSBtMLkiOdIPTMgG50M1DhA18diiRJ7zCeLLFIepBWtGn8Zl/Ppew7N1dhbp/pR8T+WLQWvrIxoKPXDNTKhqqK89UFMeLfDFyTXccWh10QG/e+8+B1siRMU3h6Xyeo9AjnUD3P7GwXn47PBoBJBs+mXycQ2JTlc40GkuqxjLT9o6674vDbw87/1Ok0+M5DzxVNNwF5HiDWs6DA9NIuLMxygYLOh6OZDhRkEEIuVAFllqTG+wYnlF9dqRspLERXJ64t5CFoxdrLOBcJvbh98V4aXq2B+yBye1wEx33vH9ZOPrBjMWdZBPUhWz6J3VYkx3kkF43qSqiph+DN+94PTS14raUWGrf/gUSEYUlCj0VMvIxekVItwcU0vBfVEhiyUCTmig4SNilwGfXvCzguGLUUZPFbXCVOMfiFOMh3RwOnCGYQuIAVWXz8cGY+OK6bWkHjm7lXjy/qDTM6uWIbJr0gS21J36W0QpZBY1WSCmod4+mvBBvCyhEvBE5KImj8QdgFFJm0oFzwOWognVg3W+Kpy+bbKp8eeXfjy+OPi7BRgM9lQIZgdrjZ6tPkZ9pAAdzlyJeNPMqjEKwGDcVIfjhz5rTw+j3kp/f82ZwQf2tT0p2Y8jMo3I4HJ5HlWE41A+GN6Xn5HhIoHw0LVSGgDaiYlFct0Kt/JTjb0kKmDvxugvhcTNIQgCEZWoht/ojwF11peWhSP44D4zSA1enfojPXndhRgtleiE1Fp826RNpcqFR3atA7Srpk1cHrtDeqgFcWRCuFqOKvWWBlBBfI4FLrH74Cx4RgsRYXmNUoZla0/x8zOWYiTvva7+p9rlze6TJMN9dWScTyF2BIz8J9gA4LasDgQN0qS8iipbxOrM7qiC8nnaSUTDWRfL1iJtwoeqmqojivF/tv7usNnHzO0vOjPPSD0u1F/ZWai9P7WmHyKtncUD1fLpPJBCWzbI0Sfj8HqYol/7EEqFgNyBKQa+qKhT5ce/nu5QrFAp+GvmMCrUoZfuENwsUpUQ1VESpqtdbpi///JJl7+u79746tzVV6gVsBEPS0gClD6DQdxhxF+zBl+rtXg/HOnGGBdvgD4cw7gfSdnmFS2Up3Tmdh2fa3SxNZxCADolarOMj81PyhMOfn9JNAUkfzDTEaYebWS/I4nA7DdYDIxDpoDi0dztAC5hAW2GNTI7io2O5HBOaQD6RBOQYk4hhL5gMVsKdSzGpZI5EKcIFcgaVmyd9PCbQJ7OuzlSpMvx7apN5R2hSYzQPovQZcZi4KrXyrZuYZ2EclJ30PUYL0kMitMtOJCs4SlA00BAfKSLTRdopgk5kHR19AfycmyScvnveWfn6IFUVo9rVrKry6m7vq+qLNUHHFhQ2WF4baz719Tjdkb5R1SygqoVbelNVk+Y0mU8t2HJtqKrOn6peQ+U3+SOHXiq/NcwJVH5ryP61/KYqnSEFg2a8Em6ZsGx/gv7yE7FD+7z8ljAnUFGgIff6K7+drT9dP77uqLWIaf++OeOt4VdB+S2BDCik7Oum/DYkbNLeIcMc1j2V5izdBvuYXiu/9XA5gBdiVkAhzurx8tsg2z8W6cfVT6hds7rs3DPb0vu0/Mb7Gb/lN6DCKASLOd61HILlrxH0UgjG1gcKwVjFryFYVToG/WNtZmeladcjzOGLv2v6tM9DcMO6QI6hsOr6C8He25t3jjhbl1J6YuCFkT+MqrkaQnBlICEBY7teQvAZpto29i/fTKw65/39H5bePK/XQnAPv4bBW1pZQEsr7fEQLD/l9+0TsHWBQjBQYRSCDdjVX7CRv3PX+wUbeTbVdwWbliW9WbC5xDaZm08suTYKNuH+VHVA2ypz/wffT9x432cH6g7NM3f5ipoejdIvkVdFtf+lMQgsiUpFIZpc1a7otTb5O38/87W2broM38Mv+T8EHAcuI7oRugvoNhDiEf4Qv1y0Y1NMnMZUP3NQVY3LurlLxA1XEeLyt2B75kVC+euJ3YxggQSSsEMukMifZwL8Y7Ff3AS6footf9R8JU+xe8AAEpb78P4/ iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwgAADsIBFShKgAAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 97d086c9-1f66-4d81-a605-b5c3e54b2cb1 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 3 174144b0-4ae3-4180-953b-db9eb75aae07 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d a5c6a97b-9ebf-4882-90fd-6067bef90fd6 2df4e919-ccf0-4e59-924f-ef207e19da1d dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2e55aebe-34b6-4785-8e6b-d76dac4aff89 1083 -563 49 44 1112 -541 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 1 b6236720-8d88-4289-93c3-ac4c99f9b97b Shift offset a5c6a97b-9ebf-4882-90fd-6067bef90fd6 Shift true 0 1085 -561 15 20 1092.5 -551 1 1 {0} -1 2 A wire relay object 174144b0-4ae3-4180-953b-db9eb75aae07 Relay true c13cd37b-e089-4f8d-883b-54203d5df027 1 1085 -541 15 20 1092.5 -531 2 A wire relay object 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d Relay false 0 1124 -561 6 40 1127 -541 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21840820-7b03-45cf-914e-8d05118a8772 Digit Scroller false 0 12 1 0.03000000000 651 -3060 250 20 651.8207 -3059.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 154459f8-56b4-47e3-8f74-2be68cd83b0e Digit Scroller false 0 12 1 0.02200000000 651 -3080 250 20 651.8207 -3079.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 Digit Scroller false 0 12 1 0.02200000000 651 -3099 250 20 651.8207 -3098.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers fae63135-516e-4bfe-ab70-dc4f2b45ab66 Digit Scroller false 0 12 1 0.02200000000 651 -3119 250 20 651.8207 -3118.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c6aecd68-308a-4a6a-b29f-68933f542f84 Digit Scroller false 0 12 1 0.02100000000 651 -3139 250 20 651.8207 -3138.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c2a92653-9119-4312-8a0a-bfe4efc11ad1 Digit Scroller false 0 12 2 0.0200000000 651 -3160 250 20 651.8207 -3159.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers cd852686-49f6-43b5-930a-504e7c0e8fa4 Digit Scroller false 0 12 2 0.0200000000 651 -3179 250 20 651.8207 -3178.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers dd3e81a3-f392-4fff-9fba-35855c2e8144 Digit Scroller false 0 12 3 0.019000000 651 -3199 250 20 651.8207 -3198.688 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 2 Curve Curve false 329990e8-083a-43f7-baaa-90fed18836f2 1 851 -3021 50 24 884.2197 -3009.688 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXFNJ13dQmqCCigpiCRZEpNrrSoDQm4KKbSXCBaIhiUloVuwNFTt21LUXsGPHrmvD3l107a4rrmVdXeWbuSXkVpKHAHne73F/unBP7uTe/zlzysyZc8x9ZbHJSYhUVQL+GPF4PBPwt7Zckpwglg5NQRRKsUwKSRHgMiTDP2bwI8R9AYgoDlHAj5jgZAuCFOgLL9cAl4Yn5rXIOHAn6MCKiTdH3/7trlmEAkkRI6mQbgHoppGJYJQ4K/xyKKJMjEqXI5BcHf/iWjgtTKZIEkkgpSW4umbNmhLirkhEgsSqkDiCJhaLS2x8kXixVKwCbxGhkMkRhUqMKIlh4V9jX5EK/R5z8Mvux0kz5027b27piyhjFWK5Cn95+Ig84zBREkL89rZ6dIC/m9uTvUtfr5oB/n2yJBf8+3jJzsdL9qA/oL/uWQ//nTcH/Tfr8bxF6k8WZofBnxdMhiMshrc8WfGL+ufHCxc8XrhI/bHHSzarR8M+hg3yeslueH3pBNJXE/fij4RTN5Mfb2Xp985chn44k+vnZVvUA+L/4lc470J/xt8I/UaNB9isfjb8OYnHLv0MSsXeEf9S9N1xVNERcHyIe+lIYgjjaGNfRDAC5ws+Gol9OLwoZ93c/AOia/QBEgangpKYJvBPLeKqjywZm0DViSkAhG04EEZcfqrhl02jRIoEBP1kU/Droj9KSpo0A5I1UCZLImbQxS3fepn0A+JM+qoa8Arta2r0iZWHiNJlySrNz1r4K2TJctqHa/oHCELEwxQiBT4FjPCZZUL6KLxihn0uHX1m/HZrgVKJJA2TpPslSySaU0EQkRwfjyjixcpEF34/TGP0bO/mAf9z4fskS1TJCqSnFElWKUQSF35E8jCJODYYSY+SjUCkPaVgNCti6H6l+gaObIaPYipIViXKFMTlWqHi2EQRIuFHKNJlimqBcYSWWfNyZeOhnv1Cck3nin+8tBhFmrEWpY9pxvI9dUqVRfgwyD41TI7gH0vsGgkseN0Uuw4xqobjZ+zft1T3ef7S5/Sg3M1+m36xunBi3KfFpKcyQXlVw0cmVYnEUkyPOuGjmHrLFLhqJRhj6iOTyJIVhIaD/2fSVU0F/AQ4Ll8Wz/dXiJTKRJkc6D6+DHuraoG+qPSAvwv6vB4z4GNC2Ez3N25fXyUvBiQjnFQSc+/mbw9bBi/svXNo9sVfLQCpGk5SjP7h8tLD0jf319w/7POC6wNSdZz0xKGbqMBtVsjWtVs93yJWToBkjJN2nhWkfLW3DTj2vGhuF2uHR4BkgpM+3HySv7bey5Cc5y+GTI7e+gqQTHHS6sPtbW5+r+l/xKha/rim2V8ByQwnyXNDVm216ibMaDBHENhqXCogmeOkiZ8P82ofNQ7PO9zF6Op+/18AqQZOmn7ydN9jv9cK2Tb5ybwur760BSQLnCTd5/r6zKsdwi1FW2O6Oh34B5AscVL1QyNumnT94ZXzdn7RLvcBNwGpJk6aOa7Vv29vDfNbVCvi7ccI+4GAVAsnpX1q4NBWnh28btwss+VfZvQHpNo46d8nLbtdetsxaH/XSNeRa2I+ApIVTvp+ULBy4KJ1vstqlFxdd3eyOSBZ46RmzVZemN3hccC8VedO7fL/ugCQ6uCkpcFvQgq2dgmZv69t41UDe7sAUl2c9HZdzcZ5j6zDd8X0jnto3/wUINXDSQ41jrf1CH4vyI/6t2CeSYMugGSDkxoNlq+s2/ld4CLjA5YjawcuAaT6OOnR648bZ09uELDj+Iin1tuWbwakBjjpZWvhmW9ZvXwOLRe4x479/BiQGuKk8bOzzc+9++433eV67q/rJyQCki1Oiq8f+Y/R1DF+04z2K6QOwdMByQ4nhWfnT0yrHiZYOzSh7hvzyd8AqRFOOpvcvsNf4zJCDz9af/emefoEQLLHSZc7LUidf6IwKK/uxkP8MxOcAakxTsqecmP/15VJgu3vHWrHSZdBiWpCTIdT4ql1G2YLs/4StjsR0vMNIDXFST2uNbuxYNUxwfox2yYmjRi9BZCaEe/1aNOAjVM6hk+If/GAx1s4DJD4OGmVOGnhnnVuwvUmy+4c/tFvn3mg71CSBnGAmjlQqlSJpLGIf7JYrcwmKa6Y3D1WLeDYvtDZRQUiYwa1YR4mjh2heZlnIVCpFOJhySpMw+Oqm1BRRnpTUZ0rUUW1j8pf8m/gbZ9NvV51Fuy/ptJQUfI9TXJNzZKEubddOs6Y+Hqwhoramnt5x8S3vwXvGmYd87ZWL2sNFTWhb9incxvS/DbLZgRM904/oaGinv5xYPV7/0DvGW3bzOUF8J9qqKjducd/BOwdEDK76aziC0sKrDRUVN+oxmeb9i8RLD3ZIadG1PePGioqqodd0tSWb8JnhRl9nFQr+KuGihrrr5INX+/pf6ja9cm/1Tz2QUNFLW8b1tTv289hO5XLl290nrBTQ0V9zU7z3RLI89/VYFbPF5P6/qWhohZMF3YotB/tt7bbOuHzU7tbaKio4vF16lyZGhqwPKDZnijXNp81VJRFaKfPV1c2D8gNutPr55Y3LmmoqMKIv/JcX4QKN7dY27SWp9JNQ0XNbLsu3T4ixD8rfZn9rmt9DmqoqP1LT5nZmylCNvS/1dTs5qkBGiqqzZ57595/ehOcuea9e2T/hgs1VFS1nrvmjzowLnzx3917tpteckNDRZ34I+KvRlbOwUtdVq602Oi3XUNFfcrt52eR6xV8oIV7nYQ+vbZrqKj7Q/nigzf7BKxwuN7n1tBDqzVU1Mzhgi+ZF1cH7kz/UC/naWiahori/Z7QOWJvsXdWy/fvhmT2uK2honiRA14U3FgXtOu63QGTWffqaqioPp16ZteLbCvYM3hGkNPct5M1VNQ0u1T7ZbsvBs8aLWp46o/hfA0V1S95qE/7U+nBu8165tl8VLTQUFEhl23PrMyv47eqYHx8/d3tSjRU1EfPBcKu74sDdvvkHLwxpGWShooy+XNGsmDAzIDpvQWDLskCvDRU1LYP4Rs6f2npu9di51/HJyxQaKioFp9//cPL4bj/CtNt/CnRxvUAyQEndXU+HOLu09lv59nAToIRu+YCUnOcNMLPs6/p7tXeE2pNyRz38Dx0AVoQDx81efDWFcZ+S4d93tDw0KhegNQSJx1xeLc4ZpqtYOrZhXd67jhyDJBa4aQMp6wtLZrO8z7U5mDUkoGPbQHJESeNC9k78GzSJr/9SZ2Xz+nfrCEgtcZJrvf5S+O+9BTO6ryyYbf+SvhdTsQT9r9We3lKm6BlG60dX53qNROQ2uCkRXVKwjrFjQld+ab5h/vK0N6A5IyT1rnmLbjjNsNrNj9qasSpufcAqS1Oarqu568XkhL99qzbcXclr6MPILngpM1GvVueC4n0mXpt2VCzHpbnAckVJ52Zb2360/vfQjf8srIo7NKRI4DkRky9qWvP1Kz1LmhDbzfr6KDm9oDkjpO+2XX85ed20V5H1vz9e8h5FxnNbniw2Y0pG19ECxzPB0x4dTbTwmpsbT3YjWpsduPohsyfNn3PDdpb0CPq3CFlXdJ3mYYlJw1DFGTDYYYPxWQS3PFPKvkifqxMIsHiJ2gg4iUykUosTeDLZWKpii9FB1Yyvj7VWjA9Eu39ievh6PNgqwtoNGUaCUxZLEKYoo2Pl9qNvdsl7MCVcYmhbQunWGJkWvxEgVMd/nmDD8ahl+Bc4eU5C3kx8tM8XoA3j1cgMIkQp8jQceCs5Xm5CC9lyU7XjoDBilKFSFW+IpWIO3Az9VYAQBJ5Ggyjf8g4QqRKJF69+miPscaBKiSJxytd4DHFEIafIcI/Hi/LCxeH6mzicATZsEX6/ULIbJfTuz0UdYeQsK/hk6xIEcFYkCwR0L6askhEd2GKSJIsUiF8VSLCjyUGgCIhQn9F+CIV+FEpR2LF8WIkji8XKcB3qhCFm2mAOC4OkarxYpQWqgPB8sQ0gSklacnqQichTz4WsPorYHWGN4XVhS6AOvq0Jfr0Q8VSeTIaTprhIDNBU8cHfX2VjI/gGDG+4Jh3r5z/WLg2MHOQZbu+az9OIGsDdAzay+GXy5oMVDeqnJOhGCAUMRafDMXUyZABp8oYEkJGZSDUKoKQBT7QIpi0xMmSgOCVidr8tBa5PYN7BG+/eetgw+wmCrJYqMeli0UpqSz0fvSfJ3lZc5nftOoZbj36TdujB/SABHGglzHqdE0MPVmyChcwUw746kegulYNHZhoo1VjGeGyH7TgwWLPCK+9Vo8b+d0cEEkWMnQcupBhl2kwMeHA0x6HLFdcinoAHHKoOJi7C3l5Y8g4GJWBQ0P1VOenAOUnU3AhEffE3DTEZ1bImsCfuvzyvvCN7vqkQhCxHsOFCJAbEiLVtEckVqyIlXDKxoX+t0sCNhwP3SKS/HnK5omXgSBSOIoLEY9Rp3FbBwNDRlvn9mKYw7+KL8ELB9y4475piw3pvWr6ilPEcQgfVaR0c2fGAmwb/DbCtoEJAhTVyGSRhC9BpAmqRL4SSYAbK0qtjBs1BGZ/RBr6JKqWsGa0AYKWBmB9wmTigDfDs07RycRZqU1cHPo0jC/Za2XytLvPawZMnnZ0y5zAUz8M18DlAHyKU09D9cwgdllARUekMho4Nn+5Lua1Qm+IkAtGiArT6sQ42qnCVlo8v9Rt1LSNFIjg6zBAhF4uCyJqmKIHiPJSuCACIlTFDjG8iQ85osEpQmOycaphpFwiVqm5BPXlCLF0BEsE82t741WjmwUemv31RYORMweQ2RUM76OzC7usb00J+SFP5uJHoapK+GE2TCaTICK1AuTRXBtCsZgKYmMRpVJzeEZdAxUe3BPCQkxmzqx8IDLddPuRYG17k2fCuKCj5NgSdWjorCGu65s3PFdcnQxmsmL5bqg6oXk6OsLSPEokTQCMxV0fVHLjtEBqb2Nk06rgWYJJobenLzoY9JiElDk+KB2rUkpFoIVqFla0gGaheUE6otWiNOKA0QWiNVzUYICycUmMSgdMk1YRkKGTnxUyMPlxN8mEx+ImrR69+OafL0f4bNre5vvlK+1uMphnsn9UgwPf1qwLREBoEIU4FvObtPOOqNbdLFQkl4ulCQRS8HX06Ew8aW9cr8bDQ6FzVi8c7hQe0KmcllIOdK+HH2DOTIalo4HdXIXTYoQEc0zZmDPMaWqLZcZHvfZGt7TdcuFuA9LrWvkisTKAmyI5VsUXKGLpbqwJC5u690HAKyAp2KrNMJES4cslIiniwleI4sTJgHvSOPA3QaKOx+F6jpQvUsRqt2pD3aXhfG4aw6gf0MG9jZgAEL/I5N7mtAXUDJ3c28bgu/kgnPTBYijo5pY+GON7P9qX8dr+/UC/A8PbZQnDTz0gvXd1pndFL5YlmtQQTQ9OnBcEKgc4DXJaHOCMAqXTUoS9t1qGUFHBcMNiT0ag1l0x2nTfI83vYLNe9Vsrlzch61N0tAg4Gl2fatD0rU9jXHBcopn0qTXQp8UZOi5N9MHmk1aY+O49fOLorIe+Mxfeajcu1fJvsvOCjUR3XvDrFYFFTgYXFlQZKWtRgi/QVChO4C9UNiKpsg0ODyMo5vln6hl/zPXZ8W6l6nXx5yKywkeHpCt87HJFQMLjhCRmPKHRiaiQptHd549Nb9Lth9+8vh1n8ZYPWEIW/HAwf8JTgHcSTVfm1VlwrecjSwLwg4kHJx+8OU07JU3dL2d7FPocLKVpu/gJNE5hFoAuD0BXRIUuBwAbk6WTarYMhJ/CnDjGl1v+os6P0zv6hm9peLbd7UgRZcWzH7yPLjfY5bK0MXUTt5za2Bro2wKIzUsBwx7TF2cUG520cc1w9GMc6LyJG2FXc2D98L1eKffaXy9aRlE1iDJZQl9xIK7rfV654gB8YQIg2g0FAJ9X5mzzauQxcVtx2Baf/UfDJS+eDnpHeiPL3sngXWAWizyR2ZnVMn5o6StWAiuXDne0EBXUW+muRCABfd4E+A2MiFMzUFifjwY7iUjDvkakTKEK10zxYZBYagaJlhKrHo0adzgBliwGDGvgA/9SXFsLJ6Fv9OLTtYhk70BpHJJGDAf/j7OyBhsr3/QLCzF2/8dn0bqLfmvCAweSoDIOAayjK0djFoY5+CgQuDsp4kvAx/nDEFUqgkj5qlQZHu1ppyqpSUL0R6KxDb2qg+daOAf3XD1oniuYH/w5OqlHa/jlfPAeChX2noxv1cZuxROj12uEswdP3Pqj1m5bskxGoncz7w2RiGXpS+rmkx681wIIVgSTGfYCbr58jk7bkLVRsBAQ8rBD9XTvTx32uD713ny1n6hPXtdM8iaJENzLDJQGqSyYqC6xHmDic8JUOFtHs4IJFbZEyohSYlJ6QJ+He322H3OpNmXktBbaThP9mxQ3XEbygEnhUyeUtTsKDa6HLNj00PnlopDvXRv6T9zQ1Ox1i9HkxURzFIxI3xDto25vsi7CgQQxZTz4NY4/LF1zwrrwVfjCHozFsc0lt7FaKStq2iLzc9OX9giKlhh7AQFz2gMwfsAUbhcBpeW0uwKUVlSDS9ujeg0VTkmwHON+28KP7Niheonu2GGXK1lRxQCAbCFAcqYZWABm4LndOm0n2aIAEXLhFCdWYOtrbRiBGp/YULQp5C/hrKUB9fa0ibAkqyxf4ma6yiollQUYdTNdD4Cl7eYCDEhUlWwuYYvr8DPteWx/intRN5wIZ5UxgEF5ic1r5uzya6KzBen5woNmAf9Md9hrXTdQqkIUgBnCNLkCuKoaY1VzjSY78CHosHQHHr9eFlupybJ6YOudXVxsnb6rqvcMS5Poinvp2ShGH5zw4q+WL8MyH37pbLe43+IqM4o5brg+ymNa9otwR6cXbhQteSxGsV+zaiMW7rT2PrBG8q77WPMA8squOhsQkzTtEysOGKlvJeUNxiIKOAA/XoQl9khk0gS+WKUkLCL+RThdyY8VSYGTz1cmy+USmG04TAaIYiJDKlkKb4UGVYqeURWPAh9BL7rxfRKhXkUXxAeFDSlNU4TLvipZAly6UkcP4DMwgkiSxSFaBhDU8wKcsNEXxCkf0HZlAUy8rMOA4cY+DBY6AljorEMVkdJof/hDcrK7VcjEVzu3ph+6uVKPmzTUyVRO1eQBEMo4zLakVwS3cA7TTDRXHkFzkjzy4+GKL4oZDhj4KCNktU0j5vTfv0c4z9jv12MzJ8aUT5+XU1FAVIoOcaEC5MaAFLYuiR4dAuP5UYpkxAWdxWRuiZWaesHJw82DP47v6ebB7F+ZbUVyNi93DJy8/YjNGqcOX8jLp2HqgejLpxq0imCdFyfrig8aRD6IkU5WtgmW6gpMAuRaaTI5h/80/+GE6ln2R4O2Lbx8tI/oDXnrtHJTXuHWAKplApiYkuOOahmd9pUcyVkfOgHj0fVGR5vW1j6r7tQ4dWd1IXnZ3wwfmAaNmlAR4KDKhhUcoGx02mhqjVmpUguuCzpxaUsWVu94MGRT3omH/m0y5ugjsVwPCHlxIgTmNO631eSx+G1CgXPbkp43BJseNd18bdW79uS1PjS2kMskwKLTfTZzFpw7EusZUpgHS9wfhxs8VaJClpyQWLpSrst6K/UMJevT0lcmNYjaHvJxEfIKjuFpsZuoblKGh5AnP0pzk8wJ9ajdxoFN6WOVkWkU8/6qXdSWNL85xsknA/fdnkVevekH66OAL6Sv3qgpZblQVMVYThcKnozJO8aWqx0Ad2+O6eRC1cSmbxySoECY/ctLObUdzVMXCGedXbXw2Y8PzmRnyRe9ke4s4df1PTvh+1tzvn/B0ap2ltSSqYOjBB9ZLIsjUrYYGbFt/k63I93yhfuG/55xMObVM7KsEgPQZVVNqQhmgMnKwQx+1TCDlg6ryYrqZbDCLVgqUwHzJYqFJyydPHqCkBVEFkkufM+esYkyRZwLv11P5UiFCv2F2Vud3tRi+phVA32nXvB8nJhVcoZs1+AXRKrSGXIpNEgVwazCI1zMyjhiCDMHDqXbwSxsoxwyS5qsGKbkmEFZf9tM7vFTcdCkJ/bSV5Oa3itPqFxOdnh54orcFrCjkMoOeTthX+Ex3bxUXJNzeFtdcjt5HB16OXRun/OhDT329KnSsBcCUHQUB+AOAwBQtejkiRKmDE15YgQgdadlcqcwR+H6pXUGfLH8rZhiytAbGUwZdr0iADDnAmDLsiOEo1mLx+Jo/mcnztkQ1MuJc2rZDb2eOKceZy+nO8VvC9TeCZYT5wMPugh9bU8QPKjNxgOdc7rNOVig15xuapkTPS4NUlWpHhhhfZyLEZsKCEZYsTGCn9Bi3/TZM7wXnNwWsvSfA6PJr9sHkYjSmRlBCSvYPIN6An6qWIHwFXAkvDIPI+7UDCCGB6HhbsQvE3NqHll5c+Zhjva803DLHgReVAUE4zTreQTm1myY14hckrIhebhv7tsvSGf+ZnLsaIXHrKHgH4VYJNF+h6JRabQbLkek/iH8JHwM7UJaaqkezsei7wBQPqDDcqB1Pr4DUEjLgwAulnwfLbTlckWbYLWj4OyHSypx4vj4ZCXCj00USaWIhPHF77p2fHLyQbbX4U0/Xx7l6HeevN7ki41AX28iCPo2chEAEh6EJIPJ64wAEpi3v0q8ThOgXGXqqlx///13iS5RM5/MGLjWlSwRKfiJ4oRECfjLrBYuDP1+ZfqJCaEb//2+yH7aj5PkAC4SH4QewKkpFcGdmP1c3LE2BO6UlPBKdAmmmwmTxEqlGPiCsSQ2ESqEkTmyX7aturVtTfCemhPeNJ38/DCZOdiIDPkbpZSKYE7BPi7mAG1S9cyB/NElvO4sSIJfifIEPA6IsxWINDYd2wDqyZfJRSPhfpEn+lvpJ5hnVO9l9xVNnOxD5s4Y/12+s3si+Uh/lMb49CP9JGpFMI/PybzCvVUdbZdu6hWRNvWMy+Bgz1IOKhPF0nQpcJ0A+wC7pDJ4qs0T/CSRpaJE+KsHJCWJ0rALzEtbobdX3H7xt/fs7Q5/L1WUJFDSzBKZ0jbwyxXBuYy9XJzzqHLOwZvieDquk9QtXSfhVISrQoS9/RxMffP37Ht/feQvJmRFyOozlVL0vnLlhvsQ0E89R3OrPFBFiPupdXgsfqqd8ejIE4c+hh8zz33m2Gm0C+mtavskK1WyJD5eOJ3spkJM2U4DtRZIgKQr8cwDOAa6mZ2AyJIQlSKdL8cGVFoFSmMlyXFIoLQPIsVPD7A7r9RiklzPSuMDhV4bFsqWyxQqP7FEhahrRms9G+Ae9gGAfTZTrrwH3Cs7wLpbwxhD+RPYqGQEPFp59ObVxueefeXoPzVXsrVuvfbzyWJJjEoXSzWlkpNd4InkIoicF5MeKQZ6JOuATvmo9aM0XBj06JmCrQhMk67LuhQ1eB94YL33kHYtKNHPfzSFKVhRdYQesPLixKo4v1J1LtG6wQwPueCHoLPzMOdhiTmCe3zERW8P7xIT1LZRrao5ERgQH4X/r6np9pDv4BEVJuuyqTEDDbepNW4rL9yO4Qq3CwdXdLi9bmMjZdGsugFLZ695ZvH6yFIDCLeLh3I5LxFDDSBmyMvLq4Rw++UK4bEHMc38Fj17nI+o2r42iHA772fOcPtnA+BOpYTbt/5eay16+tZnovnqlePHPowwiHBbPoQzYhtsAMzhVWW4/XLmC6t1/Oc+O7+ee50yvN1Mgwq3PQZzMS9rUFUHbQYUbmcHdj1zu3lH7519rcI9Cn4eUcXhdvFATos1sKo5V6HhdualVn90vFXDZ937djXNrWrnGUS4jfoQrOE2UIS4n1qP938g3KZ2YajicDsjnivc5iOVE24PiLN07zGkZ+CkJvcHtLLbuVvv4baeq4nCEDImniuELEAqKtzeX9h1kuTqU//NkvayEOc/f9Z7uE3VEXrACsgRB1YZcf9fhds2bGrMQMNtanOYSgu3p5/lCrdfnq7ocNti+sYbWQP6+ywMX/Cj+RijNQYQbqed5XJenM4aQMzw6NGjSgi322U7re/Su3X43IR21c93/OOgQYTbd85wcWf6GQPgTqWE27ezQ+x35q4OXPjmfvqTKAdLgwi3u3AyB2iTqmcOryrDbYvAXc1v9LcQLMxo/ijv9o8ggwq3s09zMS+gaphnmOH2/S7rrH8ccvSZ4DF7V0urJlurONz+coqLc5tOVTXnKjTctmrbwqFry+jgWTMPzeuRrtxsEOE26kOwhttAEeJ+an3e/4Fwm9q+sKrD7fNc4XbhucoJt73b+iwZ3ic9aM7ymOvHfrN7q/dwm5oKrocQUn6eK4Tkn6+ocPvF/If1VKqooN23p3+z2vfTQ72H21QdoQesgBxxhdvn/r8KtxuwqTHBjxTlH6pxgbsTmv2IUMTMosS16jZLDKVF4dewlaVs4qsQATXWB7yEjE8ZRcsj0tTGqqYhstgRSJz6Js4nZYjAyR/Q5ZCEFAjSRG+mCjOwaYOEpq64Ggg4YCemoH4vfSK0qiqIxtHSq1qB88Pdbt7IPLFPzkCnsHRe+w6c4BhUDyJYmLE4CSBqwzQ1E12EvIgkndRYk0hRklwCvRCAmlKsSieiM3/WWrX5P737/WXHmr4L6ip+2L1e+Csnema+2LAMaxw4Qe/H1GCOvoQLIiB0BuAxojKuQ0m42pGxIglaP5+9jHArm6nxzS/MDd4cNCOg/6lW1tyCjQ7I4Mijl8sSbGp7Zj0ItnwEF9cKhxsC18Q8tVVoyGOxCsn/HG6/KycqeOn36MEzuq+aTnYYfcUJYhU/MlYBD8vp0F23RVhyEnqeTonfiqpBpRgtm891vpHKKU6hoDyeVqe+2CasOTEKvEjYcFP0C9RH12BFElPgHMeL00q/wgR2LVAXhbZEhS85XuMjeC12ArJ44ht5GOe0lLmilkCqEoHMjfKhy9zA1y2F0woSiUjGlo3ZPq0vuned9FtIjt+a96quduRWFbX6IEkiOR87K6rUvm9ua+w+nKtYH0ERX4qkwkuoEGCHhrWydtRu6RxPSGM3maxthAj8x5wtANfLTGYfln7N2axTYbnaKLdhiKKAj8PcLPGAIsl/4EX/zeOK1s3IPvlIjxX9qY3jy9vqFVZIg/DUZFJ15rDLyBadbHgt7Hm4DpJbNO8oPecv99/1Ofh+nMDdnHzGGbuffsYZv14WPhGHrr+2vngp5JeU1RG9/zlaTw/4FG/mwgeIT1WYAnO0Sk8KBkQPHvWPbpXmakWJFAmIiotpn4f03nGgj03wgf7CIXPmfiAX0zTF7qczDb+ub7cKciWCkys8A+WKTstyVqjCkyNxuPJlZExw7+KgC5/uhSyUBPfd4byYfPrHNBS9n84Y/HpF1G1F1Qlcj6N1ji5yF/Jst+hWmMNejQGshRorEZeFx9exRpZh50+HzP7+KUHY7dp7cgTggw1AjwAIQkUgkrOZCxGnzYRdt+Ox2PW8+cEfB3XvFjj143eV+cl75DLp+Ddq34Wnh7q4O9mA81MTxbGJfEQaK0uSi5RK2CmELwEzCPr5uPnXLuDn/Z7QOWJvsXdWy/fvhmT2uM30vHSZxK7rUNLdehNe0p3WpqcIKuaN5a2E1hh3NaCxF2OrtLBAL/YkjC8ueb3PwqFvVPhqVWpeuHPKEbLwsTk2akIlG39Y7ZoHMfTwZuhmU+CMYqiTxupBxAVY2RdSGWKJLBVRYj0C4F44/LnUp+SPDmNu+U2151VadQa2N0EBs2UCDG5GAMDwydyIbTIbTKENqjTpqdDGf9jBh3UBGATj2Ru4Cm1EbyAwtzd4zKn16vWEeS3jryv3hfkLlnxePb5havrvesA8fycX5mk7Ccwbs2Eett/v8nneKZ+MgXbdxa+D6pBD+1C43yiXiGPRKpN048WGtH0o8MGAS6ACd0r4SaRRtLJN0+xS7Zftvhg8a7So4ak/hvO5Hou+g0ama9szCWjSO3kAzkymnTJrAKdT3ula6qqshLdK2HALtIEciZfwm8zQy4FxhAwMiDs3x+hYDd+DfzYMrdW2XiFBN2KhW2Kt12gyYo5dZx8Yex70ceFHuILlJn5iBdDzYuAmoytEZH4x8sfNbDIybt8iv2Xz6z9rkzKE3GDeSECfHQLa7DCizI4m744/WOI4P3DFiMQRO0ZuXlvedkWAnecgOz0EDNEH7IKXlndaAySjMkBqGglbtcbphFLScqcx8397Fb5x9h8z3x2TkotTGXnTUfIuE6VfXU42uFB9TuixGZ8c3pjXXa4HlJw4UbqTexqXQbUscfkWtliSAnRGtQCIqhGrtG0gLB+JSgxsG0jr8XTOFUUK16dN2PTp4pefVrr2zQw58Gv4cf+SnObkIu6lrVa0X8VtUNrIQspH1ANY0Nu21PEL7xMqiHJqPtqjW5+xzV3C22ila/slD/Vpfyo9eLdZzzybj4oWnKu9Gl9Lr0NfStO24XhrIS9gEoC8kw9LfHBnIoPONcbhYtC5Rgw6N/t7xsE186ID923cHOb1rO19felUzjSJUiz4KSKFWDSMpUmv7ML7g7MdY71W/DqmqJHKWcyNfj98KH44XXmEl6k89NxolA+412USrjxojnZaa5R7VOXBpWNtSpVHqaAzouZvlurn1KC7V6b1iXnJq1b15ESNTZHosjOh7QaBJw5JgRcDJNbtUEhwHdKUTYcsyy8aMO3pl8CD+XsP7hzxOITSaUAkRST0pqNs6sNJwJfDOzRSnPhSmQrB2taokDS8rStzqBxy2fbMyvw6fqsKxsfX392uhOFRaLDymFBF93X6QEsAL2o226DIKJWzbDJq3leJKKLA4xNf28pXlgxnRqwEdjeFLWXixCr83YHlhiuMTzI2UPio3mOirl06Cnm2mYCPXX14GdN8LEJFigSxNASJJwmFJXa5D0wY17xeA7seJZNrXqXsFv3lKPS1zjxthYIYoZDJYb117KnMiKfCstThJSL5xBImegRK42BldrW014AX4bKnxiXUB5bgOS2Y8odp6GKRxAd2GVKzxjRSpUBESerfjfsrRPJSBYKJajM2UTWYkO2j5wJh1/fFAbt9cg7eGNIySU8hG1X+9RCyFWdyhWx5mYR64Bs85lRzoifMqW3r9YB54QQuzLMmEJg7sGHu+Uuf04NyN/tt+sXqwolxn8g910z8FbJkORlzSwJzb5lmL2UjtlnNEHAI+AlwXGgN/RUipTJRJgc6AmeIslqgLwEY1YEDJCKcpMovIFXDSdQZA0jVecx+gnmg71AS/NABY65y9iF8Q+cvLX33Wuz86/iEBQoGnOj2gsJIHsFIjCfN2XjyX+hqt/j86x9eDsf9V5hu40+JNq5Xya6201IuVzs/+/+4q33UeIFryZ09viuCrDu3Eq3uX5GudkjU5MFbVxj7LR32eUPDQ6N66cHVtl3K5WoD7lWMq339ybK9E4/E+O91kh3/cCfygyG52igkrK42gATXIS3YdIgBudpdnQ+HuPt09tt5NrCTYMSuuXp3tWmGlsrZqnG15cDVLl4D66JXmKs9CrjaL9f8d7jaLdlE1WDcvhF+nn1Nd6/2nlBrSua4h+fr68nto8q/Hty+xHVcbp/TOkI9tDJ4zKnmxHB3AfOWcGEuX0Jg7siG+ddhg862t9gYuv5I9e+8xO8LmFq4aJ9G0TQUESlhzj+6uY115wQ2D+8JrF2ixBGHd4tjptkKpp5deKfnjiPHdGkqo+3acxshLyIaIJfPlCiRBZHrr1MCpLW6s24SBgDjm52cukgYnbovfGb7Z/4jcuMoUbMhHWMohuWvIEDFTA4Q7EMKANKt0XaZzYQ6Gtm9n+0j9933ySsx78bsqm0mBLsrowCYM2U1xLihAOBzqzXb3DLQ3d4Mp6wtLZrO8z7U5mDUkoGPbStptzdjO9dub+G2/+324vzZMaLlpvkpE4SbBvkeer0/uY8ednsX1SkJ6xQ3JnTlm+Yf7itDe+thH1O+nWsfk7+9ond7Z9n/Ft71p13CrRsm1k8arLTVw24vNW1UDygBseZAKWNbBe72Unf4q3y3F5UY1t1egBSuT53Y9KnB+IfjQvYOPJu0yW9/Uuflc/o3a6iNf8gQPFa8e7jpJJd7mHiSgLyNwUM+ov+12stT2gQt22jt+OpUr5n6gTwxKT2gz8O9PtuPuVSbMnJaC300wJrL2QBrLgG5s8FDTjUa+oGc6ubpAfK0rVyQd9lKQN6WDfL68Qdyl50+L1yx7cmoC43H5JBTlIVpcoksjqGztgkLwo74HUTcg50PUyaJ0FOBSiQhCdG6lfaCPq/HDPiYEDbT/Y3b11fJixkfjZ49jRO0Xe+ESc+FUDszuWfF8NTylf8wHkKwB2F8t99t/BqG77nqt2/agM9fOwuX6zEe0nN1CphZX3zlNEuv23yYFX5Fpy7ZHfsgQDTQoltxCDxbIFOKIZ0Pnk8s4QNJUcsJXwQmqwjWSollRPGK6ftqVmuD/ZbNmHK6XqcEsoTUUH8PvTVwKUnvR7zboBLDARfvikH0cTaixbCEVGt5HMIVn2hxpexSJYpU/CTRCISfLEfXQYaJYBFC1h7Cm6oPbbVqqzJ4qfXGhFmztllTytzhwzKUuSMo+uZenisu7L5M3Ovijgo77cCSjsA5EA3viXoGCBVIRrCWuxyOnTy7T/CyF4ropjsyyTue5sSYdLDUlIoAK4ITLCDquP1x4bHYn37Nqo1YuNPa+8AaybvuY83JBwmt1NukbKtxbFVBDxiV7rDilgiIJvgRgAFPosSLYlUg2BJJZNIEEHsp8dUZN/yLcLqSHyuCp1b4ymQ5iDgAh4bJABHcjw2ZLIW3wj0XqUwBbBxa0gm96Mb3SRRJE7DVwEFhQ/hyIsCHlkElS4An4zWPw6hSZfwkuIivnW0sibl387eHLYMX9t45NPvirxacsNFrplA+oIOtzL6GVy2lHZ6OAeKQfVUnW1mn1FbiD8T4ssPbCa38bq0I2B5in3p7x6k6ejSWVA2kB2M5HSIUzTQl4DnVLtd0MpbNSfKI7/dBzHDA2CLgnqp/P48Yey10583wg9E9ekZVbXtygMrLq1yoALkx0BKHZZ2V7hAYz49SwDqUcBaTuSVWauoFtGzlOFiusg1zdvT8zFHT8vuGHNjU5d91nwuvk5MEwtQD0VM0NGgVwboATtZ9KTRQd4ZrOalJBNp6HZgEoiivOB6qd441+uTzVz1NV30InPBAemBYwXTKxhg6Hl0JYZf1zRS+G65lApiYkueOahmdjlU7RkFjBRBJQTC7qAMwdiXVC92cfxVuXjiOt3DWG0oEiQ9MD9MIQkWAgyobVnCAsiGBU60McFpjVqrUguuCTtDc3bknrZICZ1d7lJnW3noROURRL/vTQ5RSUkUgFMCJEJjTuN/mymPx284vF4V879rQf+KGpmavW4w+SvZGQ4CPxo/0DdF+4cBbfQod5jcQnjCIEOPBr8DvSucDbBUqvhzOKKBscXmFvhfuuo3VynFSjP7h8tLD0jf319w/7POC6zM/N92LJig66M3Camew8+iMdWYiqp3RaVkBfQANDJhL6+3q0bVbPd+ALQv+7Cs6MvUypagWvJuhqBZ6uSxPiar/9HDY/BwESM4khAVtQaRFBogItNgMsS0KECEXTnFiBRBfQGc2tre3rHiaWWuCX0Y90cD84id7yNPSl7iZPi1LSWUB5unx0Tn82fKgVSuMthv9uBCvB8DSOAEDElUlThRmM+Bn2vPY/tAL0HDVk7NEecmhVRWTD6och733n1Ff2mDUpJMWddFCK4AZ9ARaU4F3pFN0m/I5wBTWJuXNOJZ22t5vcu0Ryy1aqCbogbVOnKzlVRFrmfzjLN2q1tQM0dDnjMy0qWHm0nqZo+8iu2k7+rY+TO6gZRzCVNEbu1oRxVlQnZQngLyg1gR1R6cYbhjdeCyG0ftGw4cpnXd7bR/0s+2sfkfIiZ42cOtABZc+YRsNBBZ2RXQo1eLuI0sCkGMbGOgwcaXDoMFhaYWWOCAkWlnEJw7dRAVus0K2rt3q+Raxcir7gWnsYPyUlqBbwwXTh8AbecmUkMRzEfKKHpS3cosgRAMUuNwAEzOhtyGT8p2IqiMAPdSwoj9hOk0JV6NlqUgcsxG5kTzD5paHKHT/ku6tDyzzdCbrGLSAG0NdG/x6WTpmoZ+zc3DkTwGLXoR7XhjctX05dQzsOOMFYTZmyurp4ozCXN4l4VYa7FevbsXKpEokNhkVD5jlwLy6mfrQifc9qK33qiORgYMzlvQgYWlZOi49/CUR9a0SClxw2AYzwZbmhsKGqwR3NpVwoXaLD56dZKFT/3oX7HZ9vJBa5VAuEcUi/LBkiYRBF7A5zK7EfVJ4H5RZsTRFJBHHYUKeKob5hyBMUWivCXaeFaR8tbcNOPa8aG4Xa4dHHM/JVI1Rg6xDB4Ws+2ybb7AIc9G98s79BtCooTWbVLDGEFSSEDHmxJrLJ69suxbktyjzxC8DPr4IJLvP6EB09xm7XNZ0nvj5MK/2UePwvMNdjK7u9/+lvHu/ALkMiNxkJpchA7gMHvdZCzVqiZy9GjkFSdSgaDFn1515PC2dF+K3+6xZmxu9Zn0l91jBBYR5S4dM1fcshmgBSeJAK+tepa5iEQ9qHpUuRzRxaKFxAM8tGLi0iMQNfkbp5h8wFDq5CYiCUvYX/imv4m6AGkjIWDAECKrTMVYzcplqmMozScrJV2t3fBYUM6WZ8TzQWaDTQpgtVnsN+gqorSJEP465GllosOP1bVlBO5InrLkV/4VSvgl9K4aNCfRyRUCBijgrFEDEcUPlwWMxVG2+N7Tdwa8u3Otd/A1pmkAu1GeJyoiuafFN2NLioZ+q3V7Xh5tP8tfWexmS8/zFkMnRW1+xPhXdNdAgausnwUo0jwCOa5ncUS+YOvaovCaphjfcFocAMBdiay49bbJ0nGDFqKDw1l2XTaPGQ0q6UGFXy7JBVB+rnDYIdnw5B6HKFjD4Ri+dUah0ihVtqLNPLOWHMGLUcsLYQVbWceGLH/xY+NsU/1tVur/Fc8WBYMyYh90cARD43PNkm3uqD/cGOBz+OWjixL7G30a92kFekUIFGSpReqcOOJoVlCg8dVsah6RpvgSjo94HAS+GwF1xYhk7Fk9BVsiSdJqdqw+3t7n5vab/EaNq+eOaZn9leW76SpqapK2GgyUNfgcopzEtqaKZG08YEumJZiYMifTwr66J9PID3dyEUw75TZI0rvNMZHmZoBOH3WfcX3QBEe3zWSHoX+3woPed9X0uWT8q5taI62OiRfsCJgk3jIlY0OpXQ1UxHoDnRZDnRUxWDR6eyPqdKduebWHRAsob0CpgijDi0heZHj953JKgdXc9utofWBlE8W3gfQy+DXq5LGT+Hu7796zlXQTr0z8v/J23KlwPyHhxIgNmgwE0peCppx7KoLK20+3gSVWMQTDwQBezhslYC+zuO3fDs3P8Av/8+e+P7VId7k+WYzgWXY7Rq/o2AZAdOU+42BFRNeyg7pPzdDm7XxOdLiIVf7S4NXM93g4vbT23PhkiXJ3/0f6Yx4YxZqHJKljLQP11ZI4wWgIjsf4DPjdcb8Aj+7SVXLjOC2YHbpHb8Vgs8s6hIc8HT94ZNKPO0PZTGhyklFKPRIAB1WG9xl69walE79S5irY8N2TVVqtuwowGcwSBrcalMj0OQ58E9Lq2lQ5AnBzzGMB2jcnEwnLHMUU6taVuhB0Bw94TenPovjn6SMxHHZ498jZu4Bq861DdOoOt3PPKs39ZXqcONhWAWHRhzHyBmzKPq1rBalY30yWrrGWkCpHzleJRWL8yRBSbyFcmo44FXKXlKKdfY6bn0OZd1wbvtHe51u/j3O/k6Q2HpStc9GpFsCeviIs9QFQNlD1lbX82LQ2DsDIeWsycu+0bFLYfUS9w8aDbd2/+yTvOsSNaPdrVszwrFRTHhhqKldOxgYy15mRswW9VzVh4E2ofy7nsVieSagoYeUt1HXXR/HqfePAAOKoXvzBtkka7oxMPN63teSym1WAOelGX5fVz0It6SFIfNe/vcta8v0tA3sHgIZ9+8nTfY7/XCtk2+cm8Lq++tNUP5FRHVA+Qf3nKBXn+UwLyjmyQ61zLr7ZaY1V8LT/qtr9GLT/qPqBGLT/qWqxGLT/qQhAgGeMkqusKSCY85n0xQDLFSVRBoRUHhNqWUcSk+1xfn3m1Q7ilaGtMV6cD/+ihOGAnNiY3Dz7l+nCnhd9G47hht15Zk5lcD0sd9ZHIlHDzEU0H1r7VXnM/MSznlQjrX2EDoAkKMGtBp7Iy1Q+NuGnS9YdXztv5RbvcB9ws8xFp4DB9SIc93uibYCbdYYopYGQcfUOnQyP2WO422hRchtYvlcEzpuynzJynXznzWCwNz1taq2aNRvXGlydzu2KTIuE+ZcBNfBOH1h0qBhZVuMG4q8uGVX31ARtNrJgbh8V1sypu1zpwwZL+P3eNN3lguBV6IEpAZjhQKrqu276DSwQxr9DJhmJGTDmYOECcZGRPvE1KNS+24x8I3zc0q398v8YNyyNjeqg3gQoRY3o3dN++3NBtU9RZvagOIcLgwXuEATND0k3MzReGRzf4pvwWuNZGdfvStUBy8aeqyYGHIG26wQVS9A3dTgm08hVjb65OfCoVGaxZHauC2nKSf+vrcvvQg1aL6ncdu7glOSedGJeek66mVAQ65pzo5F8nvJ/OPBbD+KZfWIix+z8+i9Zd9FsTHjiQntZJt4RsXecdyKcD1AcnU2V4zp52hnDmuFb/vr01zG9RrYi3HyPsGR6JOdNU21JPMOn/NoDtIlM6E1w+49/WrZaAVkn/m80k1xolzfbetGVFywuPhk8k74+jq2MsZp1ELDPpmaLiylsiCIBVAMGKYJIxtOf2bZ1sXW0ULATMNHaollUP3rCna1+/xfM/1fkQdVxK1kRCcC8zUBqkSnYJIEx8TpgKb+lYjq7MhGzqyYUqS8iGmgaVEZiQTSudBFNeADS4HurCpocMvwt22qcGDm3l2cHrxs0yW/5lRn+OJ9RfF2yPf09zdMH2+Kb3LtjvPj22bP7TZa9dXzbVtfKt01iPXbC/HxSsHLhone+yGiVX192dbK6HLs98CA9rP+HCb/rugt1E1omvMBEFTah3t2+3Yfe26bUL9q0WrT+HCDoIdjTpcOrAK8UDPeCT8Y0LHyA+BtlvWc9dsB1dZ4wumbXBd+5BI2OHelNaVXkX7KKvXFzJ+mpIXCk+RnBF/12wow4df+ht9liQad4VSeri9LjKu2Cj6oS15/OmbxXcBbtTT58zm3pPEM5dP3WecrsdpZRWlXTB9vjGhUj+V8Kud+Wx2PX/ti7Y/z5p2e3S245B+7tGuo5cE/Oxgrpg5/xzmqMLtsc/ld8F++Jgr6uy0H7CQ+23bI47fv5vPXfB1rPxh4cxsyCGrF2wAYZV3AWbas+rvAs2ChhrF2wAGD6Zu7FNZoPZnaJKk57q31P3MvSwPeX0hWt76uXfBObd2TA30BrdzZqtvDC7w+OAeavOndrl/3UB12PpsUZ3B6MzHDW6H/DO/K9GN8afwvRTXe4dLPSf0rNdbVOJxws91Oi+tfzcnCKHluEr/q32IDfGqtxrJoCdLpCdrNWnjY3OVHCN7gWSNdfWXdoQtiNlm5tzh3hfPdTontaxkD/9wBOf+aG3kCjB+pd6QAmINQdKe3hnKq5GN7WGQpXX6EYlhrVGN0AK16c9/sv06dLgNyEFW7uEzN/XtvGqgb1dKkmfWpdw9TyI+fG/ngc4fx6XtPt85cFMv41LPDN2Pj64WQ/69O26mo3zHlmH74rpHffQvvkpPWgKXglXNf+8HxXd86DfyLmBKd7JvjM7Nq22tpvraD3oU+oigR5QAmLNgZL1jwrseUC1oVWuT1GJYdWnAClcn/Zk06cGExNQp5PBVoM3/84VEpz7l4D8JzbIdc5Yq0VAXgkZa9RtEo2MNeraikbGGjWg08hYo0YaGhlrVKOpkbFGlQZaWhqc04xy5FDjeFuP4PeC/Kh/C+aZNOiih7S0XnrjZGX2EaZW9tfgJLWwsQYnqWlsGpykbuxr30e40WD5yrqd3wUuMj5gObJ24BI98MSLjSf/hX2EH73+uHH25AYBO46PeGq9bfnmSu4jbPvyNEcf4U0v/o/3EZa23bD4a+5Ev7y2r9etb9myW0X2EY6vH/mP0dQxftOM9iukDsHT9dBH2PzlaY4+woB7FdNHuKXzBsHS27cDdySrLvx1YvBQQ+ojjEICDyUy9hEGkOA6RMCmQwyoj/DL1sIz37J6+RxaLnCPHfv5McOjlK+PcHEv6lEjCmerpo9wsaOQV1gM+Ni1wvoI/+Uo9D1X/N/RR9ibTVQNxn8fPzvb/Ny7737TXa7n/rp+QqKe1vSp8q8HB77gPZcDn/GeUA8+Bo851ZwY7j5KznMuzGOeE5j7smFu0K421YHTcLWp8qvhalNnjIarTWWs9q52eHb+xLTqYYK1QxPqvjGf/E0PrraQjSc1IpekbEge7pv79gvSmb/5L3J/FHyvPxT8A1wmifZtZRoRWQJSfrgckfqH8JPwMbTLATib3L7DX+MyQg8/Wn/3pnn6BM7HordtoXxAh9Kf54zPYG1bCmmrsfBAQHVaLXKuzKgmmJAS7YtgDdpk2OcpUSQF5orxxZXioZEDO8d5Z470/TlJ1fIJOQfAFxuBngNAEPTe4xgmH0NIMphypSLgeUvjKqm4bBILoFVP/+Li4hJdzvXzyYyBlZ2SJSIFmloggY4II2+yT+7ITl3VPfRYdv1vHf/aupvShQsfhKELF0GpCO7IObkTYAjcAdqoRJeEwmbCJDFWYCGWxCZChTAyZ09f+f7iQbPCJ5z08LU/uXUMmTnYiAzhdimlIpjD52QO0CZVzxzIH03mEAtzbMzpLEiCX4nyBDyOEtyKSGPTsa49PfkyuWgkbPLjif5W+gnmGfX+wi8Ddqf9672+85+ti3Z3JBfSrRmlMT69ECqJWhHMK6zOxbxNVcM8LToxGZfBwZ6lHFQmiqXpUuDOAvYBdkllUsg68JNElooS4a8ekJQkSsMuMPJRvKhZt97rfw+bdfLBalk/v0JKOZpEppMQ+OWK4FwGJ+eiq5xz8Ca4PqZTdlxdbAFGLE3gVoRu92OPrhC7BU5PHN3y1fm2n8iKkNVnKqXofY/LDfchYOxwjuZWeaCKEPdT/Xgsfqqd8ejIE4c+hh8zz33m2Gk0ZXPeB1uSiVAgKWIklV76kS2ZtbUAlq1XaizroB3IEhBZEqJSpPPl2IBKq0AsgTNQ2geR4pEIu/N6udOC1PknCoPy6m48xD8zwZnrWemJBGR67X7gH7lMofITS1TYFzO5+6yzwVnIe2oCsM9mSjDwAJzJNKG5tJxLsv4ENuhZafQZtfLoXbbUWbk/o3H45JtXZ45/PYNcasCcGJUulmpKWREvtTtGeSNemPUDkfNi0iOwvM4eE5367tSP0nBh+LIURKEQszQ9bmgZ/HNNh9vC9TVNzk06uaNe+acwBSuqjtADVpmcWMWZVKrOJVYkzfCQC34IOjsPcx6WmCO4x0dc9PbwLjFBbRvVqpoTgQHxUfj/mppuD/kOdbjtz6bG/tfF9T/q4po95cb+ryuTBNvfO9SOky77ygmbvrq4woYrvmZnWLq4RrgKeadMdWpNpmUX14M+2cMnPjwRdLB6eJvVvCZP9VhgQs86Ei6Y9IAIMTa9LAJawcaMpiMrootrkzq79h26v9xn0vCGO2ceSAqu0irXEJU/TLlQAXJjMLGDbmf99NfFdUJir3rrZtcJ2OqxUvAqaNsQg+jiClm3gpN1qqphXaV3cTV5PmnzuaM2vkuLLzS+cvxtD8qeZWXWaYELr6iWYSyykeOOaplK6+I69edz/z5onOG/3ftg1xWzZ5Bzkyq/iysEB1U2rOAAZVN5XVyP3PQ4cXTLGe9NJitCt366edcAKthAhFZwIgTmNO63BfBY/DahwLltSc8bgk2Pmm6+tuoduZeLJXpuVy6TAItO99nMWXDuWLpFIi69Hy9/AxBXyJITEvmwCjK6VKNL+ZYFp8RT6zbMFmb9JWx3IqTnG9anpRc60SBqiS96iMoc4PsE4LuJ6iZlgPDey5w1xNTyLKVN6WPBXCAMC8ZXN3N23vh4XGTgImXgpPVn3F+SQ6d+MD2AqTFfKaUsF4qqGMvpQsEE4CKIXg8m6QyAFYTMdXKhamLTNw5JUCDM/mWtqZYLlkV/DJp8+VZNy4M3mlEORaI3MhyKxK5XRAJ0Fuf7J5pXtbOklkwdHCX4yGJZnDiWo5xV1Jhhlq7/7gueYDth4eNOXU3IskoMQJdVNaUimOHFyQzbqmEGvTi/DjsWbsFSmQqYL1EsXDt18ugJQlYQWSS58D17xibKFHEu/HY9lSMVKvQXZm/1aucXtfMyH3vPOS+/miEImES2a/ALIlXpEvq00SBVBLOKzbiYdc7MEGYOHEonb7V+6UK3NFkxTMkxg9qe75TP7+fhM+/U4gMjJ9/+uzyhcjnZ4eWJK3J4uruQyg55O+HWLea6eam4JufwtkKj64aYNp8TvnPwb3t/ld/YVaVhLwQgjQDgDgMAULXo5IkSpoy9rkz6v8b+MZ/dQjZf6f7NvkGvzCo93w8BqMkFQL+bZoSjGcj778rH6XGt2Y0Fq44J1o/ZNjFpxOgtlZaP89SCKx/HxqKi83FSn9epf2XYDq89n/+atyI1K9gA8nEeWHDtbu6xMICkglu3blVCPs74X94Kat3ZHrr6SWhc+5IR3QwiHyeTkztxhsCdSsnHuXPKqPU5C2XIwnElrfq3fnrIIPJxenAyx8YQmMOrynycnWadjeb/HiPYbW8r+N2+VwuDysf5owYX807VqGpn14DycWRZu/p9iO8enj87Iv7nO4PsqzgfZwUn51RVzrkKzcdZkhS6zOeVZ+Bc8bhr3h7nXxpEPg7qQ7Dm4wBFiPupQbz/A/k44x9tGrBxSsfwCfEvHvB4C4dVcT7OH5Zc+TgLLSsnHye+SegCVcNBXpPfZ9/2njcsS+/5ONTYXA85Jk8tuXJMDltWVD5OyPjskBSrZK8DS0NDWzWvWV3v+ThUHaEHrBZyYiWx/P8qHyeYTY2NPCZuKw7b4rP/aLjkxdNB78g7Jb2T4SlIf4VInkg/K6rD9kVLX7FSDs+BqXdz0l3xhnUiWCYzAX4Do+StEict3LPOTbjeZNmdwz/67WN9PvpOjiaRJn81IoEKC9c8VMUglf/hSWf1aNRz6k5CXvHn0zxeAx/4l3KS08JJ6Pvy8+lakYgEMAyJI7XnRtmKsTKEjZU6ny5zUst2xZ8us8pM7za5Yx3vo6es9ncJqzZL43RZ5ocPjTPu3vWfnPh8UJMWZuEap8vmer4XeW/xD9vq9q21tbHDEo3TZReiDwbfc1nsvbcwfrbTJfdZGiU55lqHtlnin+W3tuXdocvaHSnRKMlxeUjMA2HLz+Fb/hk3o67vPXeNJlLdwq6dXex4KiCrf2/FkibTcgHJjBjwsehM1D25MFfSoNvByM2egGSOk5Y2eWwfP62H95Z02cOVOU7w1FwNnNTuyrofG+ODhRttZg1aU+PeVECywEnHlNcfJVvcCJ2xqnCc59l6uwDJEifN75r8bMHo3wLnieZ3qeeo9AOkmjipbt3mrToY8YNyp7y4Hhj/8wxAqoWTplpEjegVHOe/5dGpRkrfrlcBqTZOGjqUv/FZZHu/eXNyxr1OuTIfkKxwUteLwYenBUeETW8rbzhk9PGRgGSNk9psj4+/2/5SUG4106DV0T9CAakOTnI7XXSkpedJr8xRUcOur1h+CZDq4qTCJs7T94144Dfppy+NrmVajAGkejgp4GBA2tLihIDcx8lNsqvdOwBINjhJ3qxdrbCrewTZx4qvDR7QIAGQ6uOkZ5HHSu5fryE41FTs+U/Q0Z8BqQFOir10q0abtcuER5q9bTPlz66TAKkh8fDXn8YHTv0eMvOnzjzfIaf7AZItIWzRNjOPLjUT7N95+fmZ3vHPAMkOJ3XoG2454ohX2O7xP9aunLBMBEiNcFKt2HU2F8cN8z86cceF+cZtpgCSPU563b74n5g3RWFrJjzafzZiThdAaoyTvGUdvqx6k+g7IavFnnf/7BoGSE0ILt9D/rk6t8B7ldm4N+MKzs0EpKY4yfNa7QZp7w6GrzvjOrZRzRd/AlIznLStXcM3J2+aeGc17yBt+OkCfC8+Tnrpc8rm5enF3tu6DX9erf4RBe2wpQOP5bDl0rodm7y0feEzzcum0buBl37Ww2HLUDYVVT/+QO6y0+eFK7Y9GXWh8Zgc8mKiME0ukcUxZBCwdUp2xO9Q53yi3RWUSSKJBCghvHGFlikDVAXF+Gj0dU6coG2tCxAL8urA6oFM3m8xrFRirVNGpXVpRiX2IIzv1s6k5j4X+5chsz5cjLXoPfKHHhMq9ezkwrrUX6zZ9vTyYV8za52yATr2AQ6TAl27i0NgZW6ZUoymUIDnE0v4QFLUcsIHHhRfBEOuWEYUn8U2vvzTgCU+kxxqtbnTdTy5KE8N9ffQt0BLSXrfcWmDSgwHXBnWBrFfTU/X07EBris+0eJK2aVKFKlA/DIC4QMHRN15jX2v9MfTprL8W+uDF376+7FDr9NplNVyfFiG1XKCom/u5bniwu7LxL0u7qiw03ZMdQTOgUjsIRatESqQjGD1qb9336dl17wzmxSMWjP6S2L504j0ANYmTrCAqOP2J4z3v9MH+jx9QPXQK+X0AbSVIXXZTh/EAHG4WKciTh/8NjltQ9rN6QH7TBybNmtlO06PxpKqgfRgLH3rsiVrwy4vjetWyumDNXPFzqvXicP2TvWMflK/3eqqTcMAqHysw4UKkBsD3SmpvNMHU+7luux/mh40d93C2qsvRa40iNMHkHW/cLJuTNWwrtJPH7xocEa6ZKujz8zAEyaL1p24WoWnD/huuJZhTB/Pc0e1TKWdPjg7adnW0H/NfRfc+9jS40W0YxWfPoDgoMqGFRygbCrv9MHwfhva9E//6r0qzfRRze5/kGuAVM3pA4jQL5wIgTmN+23hPBa/7fxyUcj3rg39J25oava6xeijZG8UbVMZ6Rui/cKBN7lLLO4JgwgxHvwK/K50zVaqQNni8gp9L9x1G6uV40Rdv2R+broXTVB00JuFbc9g3ZwYuzRGtNVtWUGrdrKyKdMc7XvKvNfn/97sF/7G1pRNdng3wyY7erksT4mq//TQqukcBEjOJIQFsLZbW532zmxRgAi5cIoTK4D4Ajqzsb0wcOsEizFuwqxBp4Y9aHWcXBa8hi9xM31alpLKAuzPfnNOHxiQ5TfhejPJrdbB5T3QDgFL4wQMSFSVOFGYzYCfac9j+0M/0mnOwUtLlJccWtV71s4/sjqmCQ85JBzfvCf+77roYRzADHrxZFOBd6RTdJvyOcAU1iqs5s5+bjcjdE7750Ou9c47pAfWOnGylldFrGXyj7N06/lYdstif49at02eu3hPtzIJ+NKuf0aVtSyGrQ1RnQRbFstpp+vd0SmGG8YIHoth9L7R8GFK591e2wf9bDur3xFykV8bWDxTBZc+YTYuAveHER0aHbr7yJIA5FgJT3SYuNJh0OCwtL9hHBASrSwidduu7AemsYPxUzqUNNjUEID+0puhVDjPRciTNyzvWT1BiAYocLkBFuWF3oZMyncievYB9LBDfPAnTKcp4Wq0LBVhOYFz3c/Jvn30Ir85zXJnSvaGWpF1DNr+mKErJH69zPyL2v0adjTv4bOzm8v3XxQd2umhLkIOhNnYm6GAdRdnFObyLgm30mC/enUrViZVIrHJqHjArjHMq5vVtySl9fn5pH/uTZ++80SXYslZBaXj0sNfElHfKqHABYdtMBNsaW4obLhK6M2mEi7UbvHBs5MsdOpf74Ldro8XUnuEyyWiWIQfliyRMOgCNofZlbhPCu+DMiuWpogk4jhMyFPFqkS+DIQpCu01AXWXnuM5mXqZa5B1SMQ814Bt8y0CotugvHO/ATRqaMdTFezQCZUkRIwRgF0nfklJeHk9bP7bUf7nnpgWkN1ndCC6+4xdLms6U7MSyptOBYugQuQmM7kMGbAIagNW91lL5OzVyClIogZFixG+RX5rkosuXQ48bOMWknr87WtyqjYuIMxbOmSqvmcxREvOiVZAg0p1sIgHNY9KlyOaOLTQyNlxCwYuLSJxg59RuvkHDIVObgKioGQJwz/lVdwNUAMJGQuGAEF1OsZq5uRhimEqzyQpbx0Fd3wWFAsY+MrzQGeBTgthtljnYugroLaKEP04Rigm+razeGDh55N/eI8iYclYY8rGBHwrho0J9HJFQCHnhAKIOG6o+vBYDFWb7w1td/CrC/d6F39DmibcJhthVEbYNuLYXNYmoYhImazANsKwiA6Ci/mp2u11UTPEWJ+K7hpoELX1k4AnJLEFOK5lcke9gDvQwba8JqmGN9wWhwAwNxv/dnH43A2eQUeqP7/a43J0LWo8pKQLFXa1LBtE9bHKaYNg4ngchCpbwOAbvXRGodIpVrShzj6xlB/CiFFanNng8YVz/Hf4TDrWKN31eZXub/FccSDMmZxEeCgUAIHPvUi2uaf6cG+Aw+GfgyZO7Gv8bdSrHeQVKVSQoRKlH1yAo1lBicK7HGkmqfJYgG7VBwEvhsBdcWIZOxZv6aiQJek0O6lJmizPTV9JU5O01XCwPHUjgHIa05IqTEZIa8TQ6BlCBNNQGXpKwb+6NiaVH+jmJpxyyG+SpHGdZyLLywSdyI+dcX/RBUS0z2eFoH+1w4Ped9Z3Tyr9qJi/A6/E2b3s4HXkstnmP/ekXDFUFeMBeF4MeV7EZNVgM9pzjZi6QbMtLFpAeQNaBUwRRlwa1Bl6bQmy0nuBS2H+werhdyi+DbyPwbdBL5eFTLV6QZbI2Hk+O4MEN/PdO8zWAzI5nMiA2WAAZ9h46qmHMqis7XQ72KUIYxAMPNDFrGHomzMX4fS/N/b2KHP/xXPaLmk+ysGULMdwLLoco1f1XqUPrr9zssOpathBL1OjQ9+2muh0Ean4o8WtxzIy4Ga1put6F8tCt+YNN/k3862XWWiyCvaxU38dmSOMlsBIrP+Azw3XGwVeDCu5cJ0XzA7cIkfxWCzyzqEhzwdP3hk0o87Q9lMaHEwg+xiRCDCgOqzX2Ks3OJXondDJwZcetTO01CMPTI9Dd3mw69p2uQNxcp4dgO0ak4nNASbWw06n6haNsJba2HtCbw7dN0cfifEd83o9fCg67RC+N6Zh9wbi/TPKs39ZXqcO+K+bIBZd2A6sZdhVtYJlK5laVlZZy0gVIucrxaMQdD0MEcUm8pXJqGMBV2mxL2BWuKc6drTLbuC/of2g8MdTZlL2auCwdIWLXq0I9kRzssfDYNlT1vZn09IwCD+SV/bMqTN4l2+LtWsCMt9e2XH6iUl3jh3R6tGunuVZqaA4NtRQrJyODWSsOSdji2yrmrHwJtQ+lnPZrU4k1RQw8pbqOuqi+fU+8WLccL34hWmTNNodnXi4ae3LYzGtBtPqkLosr5/28BXQ6fBifbw6AmOnw231Ccj7GTzk1EOY+oGc6ojqAfIx9lyQD7YnIO/PBrnOx39rqzVWxR//ZTitS6xxMJzWJZY3GE7rEsd/GU7rqo//0k/rEsd/GU7rEsd/qYJCO0AJtS2jiFEP8+rhAGU0G5ObB59yfbjTwm+jcdywW6+syUyuh6WO+khkSrj5iKYD00MGU5Yp1dxPDFs5J8Lex9gAaIICzFrAD7VoFzlQDzCX+Yg0cJg+pMMe77Z6YCbdYYopYGTsUk+nTEh7LHcbrS0ig6wBeIBf2E+Z/eY9/prDwhle0xaLYs6euLihPJnbFZsUCfcpf6mHb+IUU7VODPCMEusx7uqyYVVffcBGEytGlO7WyJ3y24Pmwikho58lvd/Jo3iI5TlkM6Fv2KdzG9L8NstmBEz3Tj+hB5RcOFEqrqvbvoNLBDGv0MmGYkZMOZg4QJxkZE+8nfrvwe4i5Dfhcoeks9arVHfLI2N6KMKLChFjejd038bU021T1Fm9qA4hitWogArNDEk3MR/TFbw+fWXFtoApouPXrMYWzzOAHHgIUhQnSC71dDsl0MpXjL25OvGpVGTQNHV2BWX54+yRmylXApcu8f/9On8duX+DOTEuPSddTakIdIw50XlQl/B+BvBYDOObfmEhxu7/+Cxad9FvTXjgQHpaJ90SGrOA60A+HaA+OJkq06kJAbVch7aZplrClgEU00sbANtFpnQmuHyWZVMBSf/p7frXM03f7X0o03jPdee5J8j74+jqGItZJxHL0uJUFVdOLZ4DwCqCYEUwyZgX8L/zbXSydbVRsBAw09ih+m534cbChnlei5/XC13eS+JL1kRCcC8zUBqkSnYJIExZnDAl2uhm7MpOyKaeXKiyhGyoaVAZgQnZfJrv6I5Cg+uhgWx6yKf1Rfeuk34LyfFb817V1a4JNasxSSTnYwtuDKv5bK55a+w+IncYrXIi4kuRVHgJUYhjcQOplVqilgrieEKmvEsNsrb6HfhItq0BrpfZTidlO+qkqGqjSc1YqiB4HMa3HNU29+y1M9sDc9a3vrBkY2cPsouEDkB3kbDLZc05atWkcs45eKzVGsJTk2nOmcPmMo46nU2qhT0PV9n4scun7rx6YZHgUIbwzOXo6gMoa3zo/QxrfNj1svC5sen8OGTJDL8jTV51mv5UKtEDPgWOXPgA8amKJVpzdNE7BQOiB4/6R7e+crWiRIoERMXFtI4r7Zb16r0udH/DOmtThYcoh4yw++lMw6/rW1lCrsg5uRJgUFwpPkZwRSfzZYUqPDkSx7VN5Xy55/29/6wImG0bscp+ctAKMmNC0fvpjMGvV8SxIlSdwLVEWrxaBKzYDUfdAjJ7NQZoYCERl4XHuZPNBoa/H+070baGXP68egr5jLYPNgD9jDZBqAhEsh25EBnsSNj1QTwWu543P/jjoO7dAqd+/K4yP3nvA5nH2Ddqn6faQx1hkA04PzVRHJsI3EpYqUqkVML6mOozVjrt31Or/jE9L10mseu6nDpuhZ86piWvFkHF3Kq8yauNcVcDGnsxVvIYbk96syfphK/0s5zyZ4lvzgD3i0e2zCQbfjM2x0ZNqGTjjx5Mhhh6MCVzFjijGOqksXqE4RKFNXkhlf2Bp8uU2PoAbCyBqJMl0D3f0WHMWTdUe16lPWZgXIsCZssEGKzsDQDDJ/NgtslsMLtTVGnSZnfKiF+mkFL3MvSwPWXTimt76mNLAvMhbJiH7fe7fJ53yidjoF138eugOuQa5KGwkLxcIo5FiwzRFSkb0vahwB8A5kkF7pTwk0ijaKUnqXVOuR6LXhqdTNd24QbmqjsDODOZFm7gHsWDNgypxYQ9YUgtht+ka2oxla6v1GGuwK0JlqCFpX7LFBR+MfLnafaQ65GfCgKnrAocNuL5eGcSf4wE9NkhoM0OI8rs6FIzusdJj26Bm7sNn5/w3FFV3jUTwE4XyE4PpmTML4Bq7MyUNcwGUtNIJFYGNLQuKA1wmnn06+dk3y0BXz/kbF16jYySNx0l7zJRelX88uBH55VeCwdubmT+/dRAPaAExJoDpT1tzlCzRTnPTmHdJ6BjpAVA1BoKZBuGDUW3Yfj1iljwRiXmC9NC0zlXFClcn/78X6ZPqcWhK0mfTnfi0qceTv/Tpzh/6pqfODCzyYywtZ9791h5K+GlHvQptei3HjRFhhOXpoh2qmh9uiZkwyS7G28Eq59lL84/NmCFHvQpdZFADyh5cKJk7lSB+pRqQ6tcn6ISw6pPAVK4Ph3Kpk8NJiagTif9ZKx1NLJ7P9tH7rvvk1di3o3ZffQQEkxuzRUSxLUmII9hg1znjLVaBOSVkLHG0FGBUPUMHRWIjDWGjgpExhpDRwUiY42howKRsUaVBlpaGpzTjHJEbbigh7Q0kd44aVmJnPzPWo8w9OEgOEnd2KfxxJiNJ9ROF3rgyTA2nix++Wmla9/MkAO/hh/3L8khl6u3KE3UJzOGa2OpQWmVayksI44PYEFP+q/jF94nVBDl1Hy0R7c+Y5u7hLfRynmkdvswDZHFjkDi1DexvQK9SG0pTduDAK2FvJpNgELr5MOymHmjMYMTaYzDxeBEon4JxYnM/p5xcM286MB9GzeHeT1re1/f53UZDU8pFvwUkUIMD8wxov9qz1+1hmebBeb/dCbV2m7/HW70++FD8cPp3lB4md4QtQ1LOc0RH3DPuAnuDdELJ7VGuafLWUSbUm+oVNCZq/j0muPnVa1j6K693c626tHdjRM1Ns+IaU2vnE5RkScOCTyUSC8T0A6FBNchsWw6ZFl+0YBpT78EHszfe3DniMfk8nImESIpIqH3BWNTH04CvhzeodHckC+VqRCspr0KSVPhB5AYcaa2+2F4FG3cIsvIWIVMIukDXVt4UfPUFEVGqZxlk1HzvkpEEQUen/jaVr6yZDgzYiWwARmsNx8nVuHvDkIRuB36JGMDhY9EhzjaRqsjCHgcAB+7+vAypvlYhIoUCWJpCBJPEgpL7HIf2Cpa83oN7HqUTK55ldJ57C9HYbMohzNWKIgRCliuTiXGnsqMeComo6wQpQZK42C3B7W014AX4R6txiU0qJfg3eww5Q8bUItFEh/YgkDNGtNIlQIRJal/R89OlyoQTFTj2ETVYPx3avMpPa3pU+VfDw58kQOXA1/gQKgHxOAxp5oTw91HiWjMhbmHWiXHs2Fu0K42Q7s2wtVmaNdGuNoM7doIV5vKWO1dbWo3Nz242glsPKkRuSRlQ/Jw39y3X5DO/M1/kfuj4Hv9RC9U7dvKNCKyBKT8cDki9Q9Rd2vVLgeA2rWO87HobVsoH9Ch9Oc5V7xtSyFtNdZNyPviotOp/iaYkBLti/AGqvzYRJEUmCvGF49se3r6iadtQ5el1G+9d/9kcuhj5ouNQM8BIAgV0QG8wJWrA3i2a5XkSpnEAmjV0//ly5clupzr55MZQ7SmRVMLJNARYY4y3u4eNi+3kf+SLvOGHi3etZPShQsfhKELF0GpCO7IObkTYAjcAdqoRJeEwmZCtKswPFtEYhNnq3b5taifmv3rIlhmukzk3vT7RTJzhHifYjpz1JSKYA6fkzlAm1Q9cyB/NJlDLMyxMaezIAl+JcoTjebNWNeennyZXDQSNvnxRH8r/QTzjDrwYc6ryco3PvnDR9p+XniRfMygZpTG+PRCqCRqRTCv0IWLeZuqhnladGIyLoODPUs5CDt1p0uBOwvYB9gllUkh68BPElkqSoS/ekBSkigNu8DIx+N92zs+urDUZ4fdjsMJgbPIm/gmkYlMJyHwyxXBuQxOzkVXOefgTTAa1Ck7ri62ACOWJnArwl777F40OjvK5/DGApuWHbeTW5v8Rw3vy7vH5Yb7EDB2OEdzqzxQRYj7qYk8Fj/Vznh05IlDH8OPmec+c+w02oW8Oe+DLclEKJAUMZJKL/3IlszaWgDL1is1lnXQDmQJiCwJUSnS+XJsQKVVIJbAGSjtg0jxSITdeaX2VeZ6VnoiAZleux/4Ry5TqPzEEhX2xUzuPutscBbynrrB0qNMCQYegDOZbqyJroxxrT+BDXpWGn1GrTz6+E+Lerjf/SdwnTDD4oz59M9ksSRGpYulmlJWxEvtjlHeiBdm/UDkvJj0CCyvs8dNp7Mt9aM0XBi+LAVRKMQsTY/HvN/vPd9uZOjklcn3YxY3e1H+KUzBiqoj9IBVJidWcW6VqnOJFUkzPOSCH4LOzsOchyXmCO7xERe9PbxLTFDbRrWq5kRgQHwU/r+mpttDvkMdbovZ1Nj/urj+R11cqe3oK6WLK2y44uvB1sU1wlXIO+VeEV1c99VRNu62ZVrwzIRWzW9MqeutxwITetaRcMGkhwdb08sioBVsPCqli2uNBZm+qzc9CtrCm3jjXkqCW5VWuYao/OHOhQqQG4OJHXQ766e/Lq5//tvkiF3T30NnXe/pusjy/FmD6OIKWbeCk3WqqmFdpXdxbfhAXFd5ZI//nGE/mja53us2Zc+yMuu0wIVXVMswFtnIcUe1TKV1cfW3r73s/vHe/tsk4w7cqP0PWTtXfhdXCA6qbFjBAcqm8rq4GtV+WGIjCwzObJ6bdrHpoL0GUMEGIrSCEyEwp3G/bTiPxW8TCpzblvS8Idj0qOnma6vetSeXDkHP7cplEmDR6T6bOQvOHUu3SMSl9+PlbwDiCllyQiIfVkFGl2p0Kd8y/x7yz9W5Bd6rzMa9GVdwbibr09ILnWgQtcQXbv699AT4PgH4bqK6SRkgvPfyLO9ZSpvSx4K5QBgWjK9e8+ql4OG+R/zyhqwRXVqxqCE5dOoH0wOYGvOVUspyoaiKsZwuFEwALoLo9WCSzgAgu/meOrlQNbHpG4ckKBBm//LOtytLPn2VhObO3bF7+oruUsqhSPRGhkOR2PWKSIDO+n/sfQdYE9n3dtxFxIYNEEQxdkQpdkVRCIQaiqCIZdUYIkQDwRAEBBURrNixo2JvqNhQseDau+6uunbRVRd1VWy77Nq+eyczITNzZ0g2geT3/9bncVfmMJPJe84999x733MO6/eP7mToYEllmVoESvCVJbJIiYilnFXKnuVT7X+vG7g04/2NMYUlYrKtEg+g26pKUhnKcGdVhrVhlEEvzq/FiYVTQKxMAaYvoQjundq7uIElK1hZxHTkdnITRcvkkR25nd3ix8kV2A/oaHXFrm3XVjs/D97c5dShNlEdtpPnNfgBYYpkKX3YqIkqQ1mlLmzKOudiDCMHPkqraNWyfKM7NkE+Kp5lBN3hLDc1f1Yt6Niroo4FZfazdFkq66gO9064I4fZ3deo6ojrzN++rZN2USruyVmirXOCw1Kr3ut8Nm2qnnI7NizFoMteCEASAcAtBADQtWgViRJTGXNdmZ13ezf++Y6zT/aXHwJXpCraUaayqs3vhwDUYQMg/IYLEWiO5fxv8XE6/WxulfSmMHj9GceJTer8/rrK+DhPurDxcSy6VDYf569no4Z/KukXdKDe+GqCY3P7GwEf514XttPNfV2MgFRw9erVKuDjzP913/Kh3iK/TSGDu1lcuhRsFHycLFbtRBqDdqqEj9P6r8WDYnOquS/KdT7rXXf0bqPg4/RhVY6FMSiHY0g+TgPZ/v5RNc19t573jTa51PcHo+Lj/NGZTXmnOhs62DUiPs7DxaEd7IqOeM/bsafv4gnXexiYj5PDqjmFwTVXqXycmT0iDyf1eSzYUts5atq0mVuNgo+DxRCMfBzgCPE4Vcr5P8DHyevc+OXJG9V581t2jW388WK4gfk4f3Rl4+Nkd60aPk6j7WY3Ih4EBqx0+6PxloetF+idj0Ndm+uBY/KkKxvH5EjXyuLjuCzP/DVi3jKvNXtWrBq6x/qd3vk4VB+hB6yyWbGSdv3/io8Tw+TGxhVJOkiCtnkeOBYs/f3J0Dfkk5L+CTAL0kcujIum54pqcXzR2ksSHwfzwFSnOcmOeMM6ISyTGQU/AWl5JZ6nLEpOL+HluY559p3lUTnj+9FPctSFNPurGQZcWLB6UhXCKv9lprPqadQ8dXtgd62BVVp5wr+UTM5a9vzm0a3P1A0TS2HeXiSpPTemVqUqY5lUqXV2mb3Ktis/u8xqvt1PbT4+FaTfaRvSsSz9nVp2WfN5QSPaO9f139qoa71XW9p8Vcsuu/nty1v3znv4m+XVRCvD5h9Tyy6LDxdeaVDjVMDh/sGjVpckTlArybH3pq9sSGHXwNVjbkd59gwSqpXkeLhpjk9Zx1fBUx/6cJPXPPpDrYnUeI7swJ/mQwT7Zn9nXf3C2r1AVAMXuS4+3+bplmnuO56abrVMyg4AIjNclB3c93b0L8+9Fx+6dlAUfGIOENXERdcbLeWvGebFzzk0vG7/cT+9AKJauCjwyKJ3Yx4EB236U35/w8WQFkBUGxf51vomF7oI+XPWyzv0GvtuLRDVwUW1Gv6Q/Sl/ZMC+E17pp2JubwaiurgoY+LdSWP7Z/O27rE6lZLx+DoQmRNvKJpjGtHggNd6aYM6b/5JqwtE9XCRw4zBw6Ja7QnYkHR6ru+azilAVB8XzRysuB8QvzB49lO7UPNzThDDBrjo7krXcaO3DQnY2HiY4/SVtZYBUUNcdOLcmMNtDw722xSfxO0lvQ213AgXDUrs1uqzoKlvmqWPyVyf+q2AyIK4q+BR2Nov4d5r7w8YuuVnBUTeEhfddxpZ4+Zyjtei9b1nfWqzOAOIrHDRvHlLH3T6yyZgp7nLTGnJ2EQgaoyLDpTNnPX4XB+ftYUDAtOHbp8ORNa46KcOM5vLm5zwLHz8QhB08dx8ILLBRSluaY1Pi3vyjgS3P78h/n4/IGqCi6a9CLHvPua916xc5947Gr++B0S2uOiylyz0ztdC7yX1bTflHvJuA0RNcdGu8HU5P8/6wz1nUosBJUsuQ2NrRliUqXTe43vx7hlW/T/3/OqQBER2uGhdySq3bhmt/HY0/IuXMikjDoia46Jna29HJ/H/DjrgIHJbsC49FYi4uKhur62pHe/d4BcmW0UdG/78DS3ZsgWHIdly26yVr+61SApK/2H5vIePsh/qIdlSxuSiLEcf2rXi9Hl+Tt7jCRebpuaSNxP5SXFSWSSCQcDUKbktfoeK84l1V4iPEUqlwAnhjSs0pAxQHRTy1ej7nLhA01oXMKumB6x2hYp+S2Ev9h7a9X0pZ1QqXwT53Uzdnhc6re7ouf7Kjs4t7A7rk1Cp5yAX1qU+14PpTO8gCOtye2jFBugWCgImObZ3FymGlbll8RKMQgHeTyLlAktR2QkXRFBcIVxyiZAo2g/KH/Lg5EPewSXRzVLafv+BfASq+hz6EWi5SO8nLu0xi2GBK6SHUZxX0+l6WjbAdcQHWmS5uhTRQgVYv4wVc0EAouq8xnxWmmp1uSTzfZ/A/GmtGz0b6mVB2S3HH4vYLSck+tZeviNu7F4o7fV0xoyddmKqJXAtCGIPsWktpgKJBGvr17IhOyMuCGbvucQ/f7BVvu40Ij2AlcQKFjB1fP6J4zDMP/9lH/yr7ANqhF4l2Qdwrmzaiyn7YCQwh5yelZF94Jhs+YSnWOB38Ea7hvYfvP30OFlSPZAeJkuLXkxkbdjl5Y+eVZJ9YL3Q2/VI0wz3Q+kRr/2yv4QYloYBUDnVkw0VYDdGelJSddkHUx45fNrV4QCvQN6s7cJmg/oZRfYBVJ2CVXUCw6iuyrMPIgPyXGql/eI3Xf4sv/2LyCkGzD7gOuFeBkkfz3fGvEyVZR/8MniC/4p/7Pxzz+z//VTXVkcNnH0AwcGcDSM4OT2rMPvAKaJWl8irc3y2zhmy55NjKbmduWGyDyBCClaEwJjG47ZxHIa47fxKoeBLr8Y+6ZvsarxolXKMHI1ibSrDvASabxzwyF1i8UgYrBBHgx9B3JWs3koVOFvcXmHshYduEzUKnKj7l+j3pkfRhEQLv5kbindzQnZp5IZWQjvZzesyT3+eXxKUkdbz9tzCK28oh+zwbsQhO3a5okiJ6v/00KppGQQoDmWExzvwOXGhWp2dWWMAEXZhHymRw6RnWSx6sh0wvF/pgS5d/ec1/avVX8lNV5CHpRdxM31YlosqAmz3lbIJqYtaec948GLGh6JmNnoAzJcVMGBRBgmilHMG/J0uHKY/9JROMxZd1sZ0yeJVBddSx7x1uBu8/PW1C5Nzf3veEEvGAcqgF0829eCF2Ue01y0Apqh2/d2imatOHAlM/yPPauK3Abv1oNqy/myqvdbfeOLj+dr1fKy4ZfHz+d/57LB8731o++DeL5/LzQ3WshhrbQiHGGxZHEfLrnfGhhg+Mco5DBMj73rj++N77HXfMXS49ezwo+QivxaweKYCbn1CNq4Yng+LtWh06OwpiwGQK0t4Yo+JLH8Mtjgs728YCYxEoxmRemxX8QvT1IH8LS1KGiT1BaCX8BClwjkw/aevrrl6HgI1UOB2AyzKC6MNWSzXnujZB9BTJvHBfyl9WjzcjZYlihkycB5Nylw/tvtBfmFanTEXfsq6RfYxWPtjRFdI/HpFPqZ1vY8dRnzuwdtwe47dkQPrrfVQFyEOwmzCQxSw7umAwazrlnAbNfWrdrdEsth4sSgBMw/YNQa9u7mtf3aD47/V85lpkjt34HMOub9C7fLn0pe/JKG+XcLxjjhsw1CwJTlhsOEuIZ7JJVw0b/W+U3dZ4LR3bwKcfpnMp/YIj5MKRWJuUIJUivAFTAGzI3FfLLwP2qwkdrxQKolUGnmiRBHNlYFlilxzT0A9pWd5T1QvczWxFkTMZW5Mh28hEF03Xce+FZzUsI6nCtihEzpJiBhDm9fLId3u1fTIbB40qsfqoFfk8Bl7ED18Vl6uaDhTWQm60qkAcvMhchmokCENhAzRbozhs4bI2aqQk5NMDZoWEr70Xx1rzQj9OWjbfZtBiY27LCJTtXEDQR/pkKX6HsUQLXdWtKzdqjTAIl7UbEBynFgdh1ZqnB2nABDSiqVO8HfinXx8R8AgN0osp7CE4R9dHbcVNkFCxYJHgEV1slLV6CwKysSkyyDRtY6CMz4KSj0QeuW4YKNAq40wa2XnYhgrYHMVYfqRSCjM6i6J/xr0XHBYvDfkrsXzR5SDCfitEAcT2OXKgMKdFQpg4vhEpeAwTFTtvzS23sn9nr+fV/pJbBdFrrBSG7MRpoM4ppC1WaBYGJ8gVx6EKVd0EFxlnKrZWReVIcb4VvTQQE2oaZwEIqE+/QCO61DhqDsIB0z66Tol1eTBY3EIAPL7OpQ8yeth3t/3yIeXpw4/P5VFXQ/F041KebWiOYgaY+k4B0HieFcI1TIPRGxU4oBBpdVa0YI6+iSxXAG68aJkaQfRqh+9ppoVmP6UWdfHoOdbHEccCDNUkAiTQgEQ+NhLYBp7ivd3Brc4Mtw/PX2gyacJz3eSd6QwQ4ZOlJ64AJ9WD1oU3uVInaTKYQC6TagYfDExPBUntrFFeEtHuSxGq9FJJWkyvDd9J00l0tTDgWn6nAdAOQm1pQrJCL4eiJ5SECJIQ0X0lIJ/tW1MGnfI1Ymfedh7qrRpg6fC2lcIOcGPnXl38UWxsMAzx2PQd0eGvu2h755U+nExWw4GyUZ1rcHb9k/bE8cdlzwzVhfjAnR+HOq8GDWrwWa0yzxQ3UuZNhZrQXsDXgUMESQuP91ZI8qbneWzptaalP3r7VpRYht4HyK2wS5XhMzzsrPb63eP5qX3H7dpw+ueuXpAJo4VGTAajCCHjaMaepiCKjpOt4FdipQKggsPbDNrFPbN0Vkw1W6Yvou+FLSo5YHuT0uWk3d5sY5HdDvGruq9Sh/cf2dVR5m7UZyTc7Tp21YHGy5CBTdF0m4iOgJukbKzTeR3fvMG9x/lsOhhWo3ABAXsY6f6OLJGkDNBNYn+F3xOuN847o7YyYX7vGB04DPyeA7DjLx7hODZsIzd/jMbjOiSaVVIbi9pGiYGE6gW+zW2qgPOeOxOGOTgW4+aTbTUlAfU69BDHuV1TbvcwUL17gC2n1FTbC6YYjnuWlW3aKJsqa38njCaw87NsVdC06K71X4y9stpz53jRuaMmPrqmS7nl7oGdSB+TYJY9GRKWAsxzIjWoGRqRayy1mEKcRw3XjJBjO2HiYWiaG58AhZYwF1a5QcgFfTHnBabLfNPBO8dJw7OvHqDnC5gAh9Ld7jY1cpQjz2rejhGq56Kjj/typdBeEpexSOndrudrqIOxwWzix4c3V/W9QTLiej3EY6ddNmpoAQ21KWYjoENVOytfmyKze9naMXCm7D5UcdttwZh1KkAfUBKCR218fx6H3gjnXC/WIY6JI1wxgYePrUmchimVqNpdUjdltdPe/hK6HSY04et02FqHwLyJKOHnJqEqR/IqYGoHiAX8Ngg78gjIE9mglzr9F9zlceq/PRfRLYusceByNYltjcQ2bpE+i8iW5dI/0Vk6xLpv4hsXSL9l2ootARK6G2RJkZN5tVDAuUEJiW3DDjleH93Le/NJpGjbj6vT1ZyIyV11FMqi4eHjxgdmL5kMGUYUi29JbCVczTsfax8AEZQgKwFPKlFs5UDNYG5wlekgYP6JS3OeFNdwUi6hVpTwJXx515aMSFtldxtrLaIDKoG4AF+YM4ys5GHb5s9LN59T8mpSVZDnfvowtyuXFIkPKdUuOKHOKVUrzMSREY9XZGnukxYWaoSbNSxQgeQVz+FmIRHeC4qaDhvdfUVTfWYZDNlYNDHc5uSvLfKZvrO4CWf0ANKn3uxoXS8l3bnDh1DiHGFDTYMM2LIQeIAkcnIQrz93HX81/RjfgVeXdKncyWnDJgdAIvwYkaEpHfD8E3gqt2hqINqUx1CJFKrgAqnGZJvQoIzb5JrmxUvN3gslFi05No2GmEEHHgIUmtWkD730i5LoI2XRPnNVcSncpPBaOrMDiqxybPwlbXvCWaIIn6a++PyK2ROOvFcOiddJakMdK4zJphAdPJ6EdFPCodhYnwZHiQwcf7bc/H6S95rg/2G0Gmd9JnQhAHcFuTsAFXiZKJMqyYE1HIdmjJNNYQtDTimg70BbJdQdCa4fTaydyWQ/q/0ygw+5jQoaOmNpw17m7ShNILAdscYpnWSsCIvTnVxOnrxXABWPgQrBGVj7iD+ntFbq7nOHANLDEYaM1TuNRfHDPE9K9gguDq+0GndQLIn4oN70UCpiao4JIAwjWSFqWdv7Sa7ignZ1MwFgxGyoafBbAQSsrm02NEZgwb3Q6lMfsiz3SXnXlMfCnK9175V9LJpRmU1xgjjuMoNN8RuPlNo3k55H8EdxqqcCLmx4kR4SSyXiPAJUiO3RC0VxPKGKN6lmlhT/w5ipJJAgOsVpuyk6ECtHJU5RmpWUgXB66CLTrpZZpt8cfWc3iBqn2/foeRvWR17AD1EUl6uaMxRqybpOOZgWmsxhKcOasyZgcnxYKBWuUl1le/DVjbeIfxb3u/P7Tyyr40d2GbgulWUPT7sfsQen/J6Rfg0atLYzO3JZcHGws9D603v66IHfOaz4gPMxxBbtGbYpvd4JRB9ONQ/2vWVqztAKI8SK9iUJnU/vcP11jf3gybvv2wxbU+p9a+8n640/Lq+nSXUijurVqyNSiulRYRWtJq+6mEOL04cyXZMpVhsWTTBYpbf0c+P1t7MHWVLVkwgdj9dMfj1ykgrwtwJ3EukrVeLwSy2IVC7BZmtCgNsYSGVVISHefToK+OWXPLI4whPv+LPSybnaHsqH0DP0SYElYFINCsiHQOJeX0ih2Fez18Y8GFob1e/aR++KMxO3nlP1rHyEzXnqfZRrTDIEzg3MVoiigZhJaxUJYyPh/UxVTlWWp3fU6v+od6XbpPK69pkHQvwrGMaebUYOmaBruTVpnioASd7ibLkMTye5DGTdCb5TEzz9/Pz2Wzz6M7Qu9bktIAaTIGNSlDFkz+WmAwxdEGROY87YBhq5bH6BOEWpWzyQir7A7PL4pX7A7CxhFhFlsDOfFOC0Kwb6nxu0B4zcF2LAWaNAgxW9gaA4YN5EtNgNprTKao1aXI6VY1boZFSzzL0cDz1JIDteOpUAIH5ZCbMgw54XznPOeWZNsSmt+SFfwNyDfJAWEg+TioRYUWG6I6UCWnbQBAPgOlJAe6UcmNIT9HIT1LrnLK9Fr00Olmu6cYN5KrDBOws1MYNPKPIC0FQi4n5BEEthp+kLbWYKtcXdZht4dZMSdBSUr9lcoq+kPo5errl5ZPvQ703yReusbZOISc4V/Ogjw4P2uioRhkd3Qus+s/37xU4q2nLab7Hu6fqumcC1Pk5BLpwFBmzDEivh6BYw0wg2YWJRTLgobVByWXHhtzarla8vGOZAb2vbutLRolHR4lXIUovB8o3bRjtyNt5LSDycvbPcXpAKY8VpYyQM1S2KGvulLL7BAyMNACIWkOBPIcpH0Wfw/DrlbHhjVlMGWqj6ZwjhhTuT9P+x/wptTh0VfnTYFZ/GvSfP8X10+lAzeeFnS97bFsxeN3MW01b6MGfUot+68OfBrH606DK9qfLGj3J2L5noe8BuY3pmC3V2uvBn1I3CfThT1lRygiqRH9KnUMN70+DWP1pEOFPpzD5U6NZE1CHk34Ya92q2byd4xnnVfDRPTr/+pxQPSwJBgSxLQm6qiBPZ4Jca8ZaXQLyKmCsIToqEK4e0VGBYKwhOioQjDVERwWCsYboqEAw1qjWQKOlwTGNtCNqwwU90NKm6k2TtatQk/+u9QiiDwehSerBPk0nJkw6oXa60INOMph0sqTk4yrHgVmCQxeCf/T5ltuSXOG1nKhPVgzbwZJVeZXrWFhGHH9ALTrpv4F3cGigxwD7likurqETW3YMbq9R8Ejt9mEqkInGiiNVNzF9BXqR2nKZpokA7fice57AoXX3ZNjM3OCJCCJNcLgQQSQWl1CCyGVf0grXLojwK9i8Ncj9aYe7+s7XRU485VhwxwvlEpgwh0S/Ra3f2vXJyHLPcnzQITRtp5Ad/XD8UdxgejQUXGE0RG3DouN0xAXau+6JR0P0wkntMO1pk4toUR4NlRs6uopP4vDdk1I38eatiKhW7fn3HqyoMUVGqD09HYOi4k44JDApkV4moDMGCe5DMpl8yIqDxYOnPynzKzy4v3D32Efk3ZfqIcJYsZTeF4zJfdh7cOPgHWrNDbmxMoVYWdNeIU5S4AlIaFofpd0P4lU0CYtqh4nkMqk0FIa28KJ61hTFRqmaZbJRs4HxYvkA8PrEx7bxkiXAkSGSwgZksN58pESBf3ewFIHHoY/TNlH0SHSIox20tuVzuL5Aj708OWnTPWsFCuVRkliBeDTJKGorL4fCVtHq12sqrw+QxalfpXQee9eW37yp75l6GIghcliuTiFRvlUN4q1Qk7JcmOgXGwm7PaisvSa8CM9o1S5hi3op3s1O6fxhA2qJUOoJWxCoVGMappCLhTGqn7Hc6XIHojTVaUymajTxO7X5lJ729Kn2r4cAPt+XLYCf70u4h+lGjzl1OjHecxSuJxvmHJVLnsGEuVGH2oh2bUSojWjXRoTaiHZtRKhNVazmoTa1m5seQu2ZTDqpGbZ0/KaEMV67XpWJe3C3kpfs9fCzfqIXquZtZZoQLIFYbnCcONZHoOrWqhkHgNq1jvW16G1bKL+gRenPZQPwti3XaLuxTnzOuTCtsvqbKY2UaF+EN1DliqKFsWC6Qn7x96vMP/Q4vy84q+uwT9vSh6wjcwC8lE+gcwAIQWV0AJ8/gK0DePQAg3ClqosAtKrhX1xc/E2bvH4uWTFEa1qMWiCFgQhSNyuzA384NW+ZR47Py4TCp0mfKF248IcgunARksrQjjurdqyNQTvAG33ThlDYnI91FYa5RSQ1sbZqP/RPo7Q3o3cG7qvz4mb/vu3JjHUzPt6nmK4claQylFMaxqYc4E0MrxyoH3XlEBtzTMrp4REDPxLTiVrzZmXXHjeuLE44Djb56YT9VP4b6BF1oy//+L4D33msyJzzbVeU7z5yIdQBas+nF0IlSStDebmsyksyjPI06MRkUoEG3co1CDt1J8eCcBaoD6grVhYLVQf+JZUlYkL4owsUxQiTlBeQevx8LOZqy+vTAjfvCemUe2V0OqUcTTQqEwK/XBmaC2HVnL3BNQdvgvtjWrHjGio3YCSxUeyOcNcPLZf/ePlPv70jm/2+/32+ie4N73U943LCYwi4djhHC6tcMEeIx6mzOAxxqo1JStiJwx+Ci8x2PW3bPaUj+XDeU7klEyIXj5eIE+mlH5nIrO08YNn6eLVtHawDWZRYFiNWyJO5ccoHxtfzUxI4/WJDxbH4SoQ5eKX2VWZ7VzqRgCw3Dwf/iZPJFd4SqUL5wahwn3E0OPA5+wbC0qMogoEL0MywgYxEV+S61ofABsuVxt5Ro4i+0+ILobI6wfzCjIOuc6/H3iGbJfFUulmqJBXWDaR0x9B1xQtPqSFy7ig/AsvrZAzUKrfFcoBaCMOVjRfL5RKGpsdDVhbU7b+pUfB0s47DLTeu26T7EKZgRfUResBqGCtWXQdWqc8ldiRr4Esu+Esw2Lmfe/+bmRiP+IiLPBfet+rY3EadVc2IhQHxq/D/ddTDHvIdquX2bCY39l8X13/VxZXajr5KurjChisWg5i6uIY48jnZ4ZXRxfXMgvYPeaYx3gf+GFu2dsC813osMKFnHwk3TOoMYmp6WQy8wpPwKuniGj7T4bzVxoa+M/tH1mo4u089g1a5hqgcCWdDBdiN0awdtMv1018X14a152zp7+fPz4vZZjN2QzR5A95QXVyh6qSsqvMyjOqqvItrlwFN+VFDQwLTa67+0PDoKE8D1mmBG6+Yl0EW2ch1xrxMlXVxXbBCYJv6ZIVv4RDTv5c0uE4uhFf1XVwhOJizYQQnO7wKu7haTGv5d/2BK4PmhPz0sYu8hFxByzAVbCBCUlaEwJjG47YsDkPcxvdw6PDN7brHlgd2W39e/YZSOgTL242TScGMTo/ZzBhw7lZ+RCIpvx8vfwMQl8sSoqK5sAoytlWjTfkWV1PpvMf34t0zrPp/7vnVIYnxbemFTtSEGuILD/8ORgB8HwN8t1DDpDSwvK8foWsupUX5a0EukBIL5Ff/e/2aRvUkvf0WP48+fP3aQDKJ3ywc0gNQjfnKJRWFUFTHqGMIBQnA+RC9Pijr9AW2OyNCqxCqjnL4Roqj5GJ0fHk+3fXE21tPPdfNsDx2Z30ppSWIF3YjIilSeb0yCNAjWb9/zwhDB0sqy9QiUIKvLJFFSkQs5az6bvGbOjMozD/bQhGYtj17NtlWiQfQbVUlqQxl1GdVRskgowh/ONqcWDgFxMoUYPoSiuDeqb2LG1iygpVFTEduJzdRtEwe2ZHb2S1+nFyB/YCOVsOm3rh15nwr/oLBvz8vvX1eRp7X4AeEKZKl9GGjJqoMZR0fxKasZYZRFmXkwEdpFa1alm90xybIR8WzjKD0+7UtnUcFe2Yczl0U8q57G12Wyjqqw70T7shhdvc1qjriOvO3T4jQLkrFPTlLtHXCamakWc3HHgeyMgt6+5ZlGnTZCwHwJQC4hQAAuhatIlFiKmOuK+NV9KT+tMPBXrP33h6yp1n/JgbN74cA3BvEAkD4xkFEoDmH87/Fx1lXssqtW0Yrvx0N/+KlTMqIqzI+zr4hbHycJ4Mrm4/D3Z6Ysr/oFm/90x//eHNr4kkj4OPkDWE73cwYYgSkgrNnz1YBH+fOiGoHuw8c7rXjrmJvnajXSUbBxxnGqp2uxqCdKuHjFAVzRrYNrus7u3lafovlPwwxCj5OHVblAG9ieOVwDMnH6f/T/KfHz3oGpOV2mX0of6eZUfFxjgxmU162YZRnnHwc5zq2z+rlnRFM/e1pi1lHerkamI8jZdWcl8E1V6l8nI6bIm96/rraZ/G2uavm/7A3xyj4OFgMwcjHAY4Qj1Pncv4P8HGerb0dncT/O+iAg8htwbr0VAPzcY4MZePjRA6tGj5O2tWcSdlnc32ykrIHSw903qp3Pg51ba4Hjsm+oWwck6yhlcXHmXsqYOXjhGHeBRui2n39/vgWvfNxqD5CD1hFsmLVZ+j/V3yceUxubFyRpIMkaJvngWPB0t+fDH1DPinpnwCzIH3kwrhoeq6oFscXrb0k8XEwD0x1mpPsiDesE8IymVHwE5CWV7fX1tSO927wC5Otoo4Nf878fvSTHHUhzf5qhgEXFqyeVIWwyn+Z6ax6GjVP3Z7PcYG1+Kw84V9KJmcte37zjgFn6oaJpUBh4khSe25MrUpVzmdSpdbZZfYq26787LJF4/5J/L5ZeNDKrNV9p0w+208tu+xct4VHHtbw8djR3fJNj95bX6tll9UbPdPc7MIlj5muzvOfd2mdppZd5u367cc//tkRuKrhgbn3p/SLVyvJUdz44siYfQ4e235sbV+2PHuPWkmONrLeb7+bOtkjd8FBiajotxdqTaRa73pm8sufF3zmTD/2+dp11/VAVAMXWa74JXjKjRH+0w8HfN127O/OQGSGiw7XGV960O08f1+/3+wFicldgagmLno52cJ5UbPu7jOm/zXF4+P2DUBUCxd9mlr22bd7tueiQ47PDv3lKwKi2rio4Wm70ikFmwWzTW749Bt4eycQ1cFFF1YsqvGpS6TvXHGNo69yu34PRHVx0d/+9/wHTd7mv7vG7q0Xzu67CETmuGh+bsmt0/IbvutmRBb/UXfHQyCqh4tqSjasTj/2OXjNvr1P9/5yH75GfVz0uon3prnH0/1zh98z/W15R/hZDXBRu9/N8uod2+a/qEuGeOn8B9FA1BAXnQ4z/7W06wX3rQ2kJUOuLY8Boka4aETWxlkcN0fekaI3cx6E2v8KRBa4SO5z6cGOoEze7oB6S0L/blQfiCxx0flLJ3IUF9r4zX9c1OHlmtxRQGSFi6rH9C4qnZ/vs8XarnD8sd6jgagxLhpmP3Pl8CUrg9cuvRPb+PSHc0BkjYs+Ll3fv+zdx+DVeb6OoUOblgCRDS7yKR50IuDGFr9pD3uc/dhrX28gaoKLNpc6T9k9c4PPlFVfl7u0F8G7bHHRvIO1zTrnXQ2a+nRMz+HDzpkDUVNc9FZy6M3L3hf46bO6dN74ZaYPEDXDRb/ZmtvduVHKm9ahxd5+LxseByI74nt1mur68VS6xz7nDEuHiKglQNQcF/VwuT/INtE6aEFK75d37t9ZCkRcXMR7GpMmX3kpOHPydofDd5tfpiVbtuAwJFvmlHZ+aDmn2GOBqHnnksXvOyLchrbJlguYXJTl6EO7Vpw+z8/JezzhYtNUcn/KGvykOKksEsEgYOqU3Ba/Q8X5xLorxMcIpVLghPDGFRpSBqgOCvlq9H1OXKBprQuwFnQRwmpXqOi3tCOfc2ukdn1fyhmVyhdB8/HnL661sbBX0M6rV2NWrHtRoEdCpZ6DXFiX2l7IdKZ3EIR1HKFWbIBuoSBgkmN7d5FiWJlbFi/BKBTg/SRSLrAUlZ1wQQTFFcIllwiJ4naPXhtX2cqDCrvWKFx2O/Uu+QhU9Tn0I9Bykd5PXNpjFsMCV/5IozivptP1tGyA64gPtMhydSmihQqwfhkr5oIARNV5jfms9Eym4PyP9us8dj3j5b7leS2l7Jbjj0XslhMSfWsv3xE3di+U9no6Y8ZOOzHVErgWBLGH2LQWU4FEgvXdgvod71Y3DVwezDl487Kwuu40Ij2AhZk6I1jA1PH5ZyGHYf75L/vgX2UfUCP0Ksk+gHNl6iim7IORwBw+Cysj++Dy01LruzVbBq7+p0+PZnUumutxsqR6ID1MlopRTGRt2OVFMKpKsg9uNb2SXNJV6rPSQTroxKuYE4alYQBUWrOiAuzGSE9Kqi77YMnGBX9++DjEO/u3FcdlnxLJ+yqGyj6AqrsuZFNdnmFUV+XZB0NWWMVLfaoLZrYaUmt23u89DZh9wHXCvQySPp7vjHmZKss+aGMnaJAVL3A/Ov7utzrhZlIDZx9AcFqzgvNZWIXZB1aJzp0m3rvns6Dr/ku1F5gcNYLsA4gQNqYZEQJjGo/bFnEY4rbzK4WCL70a+6RvsqvxolXKMXI0irWpDPMSaL5xwCN3icUjYbBCHA1+BHFXsnorVeBscXuFsRceuk3UKHCi7l+i35seRRMSLfwmJxXv5oTs0piWUgntZB/zJktvjNselFn93Mrhhe+sKYfs8G7EITt2uaJIier/9NCqqSwFABSHMsLjHficaylanZ1ZYwARdmEfKZED8wVy9GS77Sy/YMrEiZ6ZPwb8tP7unYnkYelF3EwfluWiigA7ejXs3qfqngGretntGeHiYKEHwLawAgYsyiBBlHLOgL/ThcP0h57Sacaiy9qYLlm8arylYsSMZ068XWttb33+6dmbhlgyDlAGvXiyqQcvzD6ivW4BMEW1Yb5bOT/0KQzYe9PbIXZaoLseVBvBqloXA6kWFR/P167nY8Uti9/XCMvOqe3lk+Hu3HJ5nQPBBmtZDFsbYj4JtiyOo2XXO2NDDJ8YszkMEyPveuP743vsdd8xdLj17PCj5CK/FrB4pgJufUI2rhieD4u1aHTo7CmLAZArS3hij4ksfwy2OCzvbxgJjESjGZF6bFfxC9PUgfwtLUoa3IoCoJfwEKXCOR35nNwoXXP1PARqoMDtBliUF0YbsliuPdGzD6CnTOKD/1L6tHi4Gy1LFDNk4Fw4uTGVez7Lf+VP4jUdAkY8JfsYrP0xoiskfr0iH1Pj81cT8T9DvOZ5vO3z+BFfV/4FJK5fgzCb8BAFrHs6YDDruiXcRk39qt0tkSw2XixKwMwDdo1B724GNHp+0tJzg/+a+pF8pxnDGpFZBeXPpS9/SUJ9u4TjHXHYhqFgS3LCYMNdwmIml3DRvNX7Tt1lgdPevQlw+mUyn9ojPE4qFIm5QQlSKcIXMAXMjsR9sfA+aLOS2PFCqSRSaeSJEkU0VwaWKXLNPQH1lJ7lPVG9zNXEWhAxy0YzHb6FQHRH6zr2reCkhnU8VcAOndBJQsTQpKrgVe5/rB/ssaTat+Of7CTPyOEz9iB6+Ky8XNFwprISdKVTwUqOELkMVMiQBis5jmYMnzVEzlaFnJxkatC00K1Np/72+OmNqT4L74V99PhW+A+Zqo0bCPpIhyzV9yiGaOWyopU0ukoDLOJFzQYkx4nVcWilxtlxCgAhrVjqBH8n3snHdwQMcqPEcgpLGP7R1XFbYRMkVCx4BFhUJytVjdQydWLSZZDoWkfBGR8FpR4IvXJcsFGg1UaYtbJzMYwVsLmKMP1IJBTtc01iNsoy/ZYXHAybnLRmF+VgAn4rxMEEdrkyoMhlhQKYOD5RLeEwTFTtvzS23sn9nr+fV/pJbBf1K3kSxmyE6SCOKWRtFigWxifIlQdhyhUdBFcZp2p21kVliDG+FT00UBNqGieBSCgnGuC4DhWOuoNwIDJa1ympJg8ei0MAkN/30dpGrS8N+NN95kvPECuTRS2p66F4ulEpr1Y0B1FjLB3nIEgcz4ZQLfNAxEYlDhhUWq0VLaijTxLLFaCr9E556DgheQNv9ulml1qUpO4x6PkWxxEHwgwVJMKkUAAEPvaWMo09xfs7g1scGe6fnj7Q5NOE5zvJO1KYIUMnSk9cgE+rBy0K73KkTlLlMADdJlQMvpgYnooT29givKWjXBaj1eikkjQZ3pu+k6YSaerhYJ3csQDlJNSWKiQjbBmD6CkFIYI0VERPKfhX28akcYdcnfiZh72nSps2eCqsfYWQE/zYmXcXXxQLCzxzPAZ9d2To2x767kmlHxdzpJrJtx98twVlz/H8x1ZmJjNWF+MCe3xAnRejZjXYjLZsDKp7KdPGYi1ob8CrgCGCxGV0SYzn3bxxviub3Nkrs77dlBLbwPsQsQ12uSJkXmxOah7BP+O1Ju7CrNKJ17/oAZlrY9iQAaPBCHLYOKqhhymoouN0G9ilSKkguPDANrNGYd8cvWtQGvV2YWQRP63nq7aP4+85ku0YPotux9hVvVfpg/vvrOqIMIw66GVqtOjbVgcbLkIFN0XSbiJSAYJPE0ILJtUKTrf7VZEV/cSmRmCCAvaxU30cWSPImaCaRP8LPifcbxx3R+zkwn1eMDrwGXkZh2FG3j1C8GxYxm7/mQ1GdMm0KowixxhhYjCBarFfY6s64IzH7oRBDr71qNlES015QL0OPeRRXte0yx1YJxdLAGw/o6bYXDDFjpRoVd2iibKltvJ7wmgOOzfHXgn5HTODWswoEn703+5wT1S78T/7dDm/1DWoA/HrLYhFT6aEtXyJoR0sU8nUilhlrcMU4jhuvGSCGNsPEwtF0dz4BCywgLu0yg9AKmjjLztu8/PyA5cPskv2u7GqkDy84WPpDhe7WhnqmcGqnpFGq56Kjj/typdBeEpexSPH4/7858WcYN/VPQ6v7XYzejrLiej3EY6ddNmpoAQ21KWYjoENVGxPVsXWN7hi4U3Y/KjjtluDMOpUgNQtNXTUxvPrfeCNdML9YhnqkDTCGRt4+NS6nMMwtRpNq0Pqtrx+2sNXQqfDz2K2Tof3xATkK4wecmoSpn4gpwaieoA8bywb5FljCchXMkGudfqvucpjVX76LyJbl9jjQGTrEtsbiGxdIv0Xka1LpP8isnWJ9F9Eti6R/ks1FFoCJfS2SBOjJvPqIYEyh0nJLQNOOd7fXct7s0nkqJvP65OV3EhJHfWUyuLh4SNGB6YvGUwZhlRLbwls5RwNex8rH4ARFCBrAU9q0WzlQE1grvAVaeCgfkmLM957IjCSbqHWFHBlPEykFRPSVsndxmqLyKBqAB7gB+Yss8n7ml0Ycco8KN13V/O9R7Zn68LcrlxSJDynvC7CD3FKqV5nJIiMlomQp7pMWFmqEmzUsUJnFK3bXdAhYLP3rHMT3vq51pysxySbKQODPp7blOS9VTbTdwYv+YQeUBrGihJXpN25Q8cQYlxhgw3DjBhykDhAZDIyE2/D519YfbndPJ8dD8b52T5/9EYXG9NDEV7MiJD0bhi+5Ym0OxR1UG2qQ4hEahVQ4TRD8k1IcFb1EPz6rvfxoGU30ubw1/Qk9/A2DAcegpTBCtIwkXZZAm28JMpvriI+lZsMRlNndlDHl0seHXSJ8Tv45xGLrCtXJpE56cRz6Zx0laQy0OnKik4dERH9rOIwTIwvw4MEJs5/ey5ef8l7bbDfEOoZQyyirIAJA7gtyNkBqsTJRJlWTQio5To0ZZpqCFsacEzWME6/hKIzwe2z45GVQPqf3d1/06WxkYK1V0Ou9/Liriafj2O7YwzTOklYkRenujgdvXguAKs+BCsEZWPuIP4uidRqrjPHwBKDkcYMVcSKFn3mBId7pReP3D+/VQ9yDnVNPrgXDZSaqIpDAggTsBoWmJZFajfZVUzIpmYuGIyQDT0NZiOQkM2lxY7OGDS4H1rN5Ic8211y7jX1oSDXe+1bRS+bZlRWY4wwjqvccEPs5jOF5u2U9xHcYazKiZAbK06El8RyiQifIDVyS9RSQSxviOJdqok19e8gRvJNBLheYcpOOjdeK0dljpGalVRB8DrostVlEy9FLf+Tt978onTxBreG5BAJewA9RFJermjMUasm6TjmYFqrO4SnDmrMmYHJ0TpRq9ykusr3YSsb7/Tow7TN7R95bV65z2RsXsOrlD0+7H7EHp/yekX47B3x1q+050++aYLk4dMXif/SAz6l49nwAeZjiC1aM2zTe7wSiD4c6h/t+srVHSCUR4kVbErzqSmJD5xw06PoYZxzt8sLrpGVpryfrjT8ur6dJdRKLqtWkoxKK6VFhFa0mr7qYQ4vThzJdkwV3qLou9Zja3qsGXnz3sKlpuRsAtNA7H66YvDrlZFWhLkTuJdIW68Wg1nMJFG7BZmtCgNsYSGVVITHszMjZYf+aCCYYf6yZtsePcmFkmp4Kh9Az9EmBJWByLnxbIhkjSfm9TUchnk9f2HAh6G9Xf2mffiiMDt55z1Zx8pP1Jyn2ke1wiBP4NzEaIkoGoSVsFKVMD4e1sdU5VhpdX5PrfqHel+6TSqva5N1PB7POqaRV4uhY07QlbzaFA814GQvUZY8hseTPGaSju3M260PbFwrmPEtrqygznpy5YQaTIGNSlDFkz+WmJxwBi7gEGTO4w4Yhlp5rD5BuEUpm7yQyv7A7LJ45f4AbCwhVpElsDPflCA064Y6nxu0xwxc12KAWaMAg5W9AWD4YM5lGsxGczpFtSZNTqeqcSs0UupZhh6Op7wS2I6nWqswX8uEedAB7yvnOac804bY9Ja88G9ArkEeCAvJx0klIqzIEN2RMiFtGwjiATA9KcCdUm4M6Ska+UlqnVO216KXRifLNd24gVz1CQDOLNTGDTyjqDMBQS0m5hMEtRh+krbUYqpcX9RhtoVbMyVBS0n9lskp+kLqZ5Ow1uZaq5957998reYUJ2l3kn6qedBHhwdtdFSjjI7Tfn89rTPXhHds7yyz3e3PZOm6ZwLUOQyq0wVFxiwD0q4TUKxhJpDswsQiGfDQ2qDUaaN7+rTJS/12jMlfnCPMHEVGiUdHiVchSn+a927lWXbTa/nn1VdrTLRN0gNKdVhRepJ8hsoWZc2dUnafgIGRBgBRayiQ5zDlo+hzGH69Mja8MYspQ200nXPEkML96br/MX9KLQ5dRf70YBKbPx2Z9J8/xfUz67jfmtIrA/3y19h6W3680UYf/pRS9FsPniI/ic1TzEiqbH+aIVn/qk+nyT6Lf7OxtPTt1EsP/pS6SaAHlEayotQzqRL9KXUONbg/xSyG0Z8CpHB/up7JnxrNmoA6nPTDWOtWzebtHM84r4KP7tH51+eE6mFJsC+RbUmQnUhAvoEJcq0Za3UJyKuAsYboqEC4ekRHBYKxhuioQDDWEB0VCMYaoqMCwVijWgONlgbHNNKOqA0X9EBL26g3TdauQk3+u9YjiD4chCapB/s0nZgw6YTa6UIPOtnEpJMlJR9XOQ7MEhy6EPyjz7dccmJ3rXKiPlkxbAdLVuVVrmNhGXH8AbXopP8G3sGhgR4D7FumuLiGTmzZMbi9RsEjtduHqUAmGiuOVN3E9BXoRWrLZZomArTjc/rEAIfW3ZNhM9MkBhFEmuBwIYJILC6hBJHLvqQVrl0Q4VeweWuQ+9MOd/Wdr4uceMqx4I4XyiUwYQ6JftRTfla++FPQoWk1vyz5p8UcdvTD8Udxg+nRUHCF0RC1DYuO0xEXaK9rDB4N0QsntcO0p00uokV5NFRu6EjUlse9M3NrvCsozWV67SXfZApW1JgiI9Seno5BUXEnHBKYlEgvE9AZgwT3IZuZfMiKg8WDpz8p8ys8uL9w99hH5PJy1UOEsWIpvS8Yk/uw9+DGwTvUmhtyY2UKsbKmvUKcpMATkJA4U9v9IF5Fk7CodphILpNKQ2FoCy+qZ01RbJSqWSYbNRsYL5YPAK9PfGwbL1kCHBkiKWxABuvNR0oU+HcHSxF4HPo4bRNFj0SHONpBa1s+J24c0GMvT07adM9agUJ5lCRWIB5NMoraysuhsFW0+vWayusDZHHqVymdx9615TeXjjtTDwMxRA7L1SkkyreqQbwValKWCxP9YiNhtweVtdeEF+EZrdolbFEvxbvZKZ0/bEAtEUo9YQsClWpMwxRysTBG9TOWO13uQJSmuoXJVI0mfqc2n9LTnj7V/vUQwNeXswXwpeMI97DV6DGnTifGe46SJmXDfKSUwHwbE+ZGHWoj2rURoTaiXRsRaiPatRGhNlWxmofa1G5uegi1tzPppGbY0vGbEsZ47XpVJu7B3fqO3B8FP+sneqFq3lamCcESiOUGx4ljfQSqbq2acQCoXetYX4vetoXyC1qU/iybiLdtuUbbjXXic+wnapXV30xppET7IryBKlcULYwF0xXyiy9re8NsyOZM3z3dw8bOfdJ8FZkD4KV8Ap0DQAgqowN46US2DuDnJhqEK1VdBKBVDf/bt29/0yavn0tWDNGaFqMWSGEggtRNcGLory2k74Izflw1c4JsWm1KFy78IYguXISkMrSTy6qdJGPQDvBG37QhFDbnY12FYW4RSU2srdoXf3cw4qdJVwKOfe52NTrszliycvh4n2K6clSSylBOCKty7I1BOVA/6sohNuaYlNPDIwZ+JKYTtebNyq49blxZnHAcbPLTCfup/DfQIyqmWmlOWGRhYNHzhROiFx2aSi6EOkDt+fRCqCRpZSiPw6q8W6mGLq7A1InJpAINupVrEHbqTo4F4SxQH1BXrCwWqg78SypLxITwRxcoihEmKS8g9fjL/ce+nz/5BhdI7/x5dX3KGko5mmhUJgR+uTI0l5/KprkZBtccvAnuj2nFjmuo3ICRxEaxO0IPUW7tAR0UPjO+uXawsAn31L3hva5nXE54DAHXDudoYZUL5gjxODWPwxCn2pikhJ04/CG4yGzX07bdU8itfs09lVsyIXLxeIk4kV76kYnM2s4Dlq2PV9vWwTqQRYllMWKFPJkbp3xgfD0/JYHTLzZUHIuvRJiDV2pfZbZ3pRMJyHLzcPCfOJlc4S2RKpQfjAr3GUeDA59jMRmWHkURDFyAZo5MYiS6Ite1PgQ2WK409o4aRfTcBqHj/ko6xN/1D8c7VDBiOdksiafSzVIlqWjFS+2OoeuKF7J+IHLuKD8Cy+s8maRVbovlALUQhisbL5bLJQxNj4u+Pmzt86KN9/LSzcOu+Q5cqfsQpmBF9RF6wArYEQtW2ZOq1OcSO5I18CUX/CUY7NzPvf/NTIxHfMRFngvvW3VsbqPOqmbEwoD4Vfj/OuphD/kO1XJ7B5Mb+6+L67/q4kptR18lXVxhwxXXNKYuriGOfM6HyZXRxXWc/bdDny0HBM7q8Ovp56O3knmjuhWY0LOPhBsm3dOYml4WA6/QMq1Kurg+/tJ+dEFHi8C9dadOCay3qZ1Bq1xDVMxZUQF2YzRrB+1y/fTXxXXob2tsOH2j/QuG7NnTsnrHDkbRxRWq7tJkNtVtMIzqqryLa+yy+CY15tRxXzD07qHVXQ8vM2CdFrjxinkZZJGNXGfMy1RZF1fnM2vaFf8cwVuYPXnjwvEFpgbu4grBMWcFBzibquvi+rqWxbAFklvuxxLdjm2e+MsOI6hgAxHCxjQjQmBM43HbTg5D3Mb3cOjwze26x5YHdlt/Xv2mC7l0CJa3GyeTghmdHrOZMeDcrfyIRFJ+P17+BiAulyVERXNhFWRsq0ab8i2/2Zrb3blRypvWocXefi8bHmd8W3qhEzWhhvjCw786U87AnqoczhZqmJQGlvcH03TNpbQofy3IBVJigfzqP3YpM+1w9jfPhWOuBHaqsT2XvHQKh/QAVGO+cklFIRTVMeoYQkECsBlErw/KOn2B7X7QLoSqoxy+keIouRgdX1o63il+xs/lTa+96cfC32evoyRFYjcikiKV1yuDAF2cxvb9L6UZOlhSWaYWgRJ8ZYksUiJiKWe1dNtTQWFaWWCOOOBx83fhLci2SjyAbqsqSWUo4yCrMjYYRhn04vxanFg4BcTKFGD6Eorg3qm9ixtYsoKVRUxHbic3UbRMHtmR29ktfpxcgf2AjlZr7ii47T9+lnvGiA7TTSb49SfPa/ADwhTJUvqwURNVhrLmsyor1ShGDnyUVtGqZflGd2yCfFQ8ywhK+Nq8w/Bpa4MOV6v54sdfexXrslTWUR3unXBHDrO7r1HVEdeZP/CVllEq7slZoq2jEpMJG9tu8jtqebt5i5y0cIMueyEA19NwAG4hAICuRatIlJjKmOvKtIxdPjnKqrr7bJeGpyIFDk8Mmt8PAVjNBsC29DQi0NzF+d/i41TvNNX146l0j33OGZYOEVFLqoyPUyudjY+zbkpl83FuvzwzasedUN/cV832W+VPaGgEfBzTdLbTzXdTjIBUUFRUVAV8nLEtj65YnCISFL7gcDq8zD1jFHycB1PYtHPBGLRTJXyc9KYzGt0OPue111uyZq/gkJlR8HEKWJWzzhiUwzEkH4fz5K/oX8uGB65+ea+apN6weUbFx5nLqrwJhlGecfJxwl16pmceVvgUFNVN+tLb6YWB+TijWTUXanDNVSofxzKma59xZwrd10SM73tV3EdoFHwcLIZg5OMAR4jHqfmc/wN8nB4u9wfZJloHLUjp/fLO/TtLDczHmZvOxscZlV41fJyrVjsfeG3c7TejqDBr5iD5Jb3zcahrcz1wTGals3FMxqdXFh9nyJGbjTtumuW3uuntX3sUfzyvdz4O1UfoAatRrFgFpf9/xcfZzeTGxhVJOkiCtnkeOBYs/f3JUHI7itr9E2AWpI9cGBdNzxXV4viitZckPg7mgalOc5Id8YZ1QlgmMwp+AtLyeE9j0uQrLwVnTt7ucPhu88uM70c/yVEX0uyvZhhwYcHqSVUIq/yXmc6qp1Hz1O35nDQFsEorT/iXkslZy57fPFVxpm6YWAoUJo4ktefG1KpU5R4mVWqdXWavsu3Kzy4bJmrQ5/fRp/kLit9fXN95vVAtu4z76ZeQBx8a+qyx6bTN79PcA2rZZXVrT0m8+VXhsWbYmO7mGU0UatllO09a3vuac8t30bp8u0knIkLVSnLYjDjcc1yfHJ/prqmHJdKWRWolOTwi4krur+X7z3nstH9Sj9NRak2k/uwYtzktIdUr265H9TELx/OBqAYuGmT+8lVe5xf+ywdFHLy9MOUmEJnhIrNdny/tqyYJKLRJa7b5WMQnIKqJi0wHD/zLc+0x/r5nZ2eMGbArFohq4aL294NWP52ZGLwx9+vnoa87nAWi2rioWft/3r97O8o7Y5X7iLrmb14BUR1c9ODxu43xf4n4S8NqD9/9oHMMENXFRYKnvw/buiEjKO/ixiXfXYq+C0TmuGh6sLnLXZ8zHoWLTWJXfqj+CxDVw0UTTE8vSe963DtnwWXu/qF7HYCoPi7q8fxM8pgwUdCmPSX/tO/l7A9EDXBRtXr8vPtNdvhM8Wl86/rjrWeAqCEuauM7+HF971nBK2Lb+QcVNrgNRI1w0d3uyUVdwhM9p40Mnd2x1aoLQGSBi54eWpF5el5dvymvWpx8u7r6fiCyxEW7r+6f1mRGV/7yJS/T+5iWwK9shYv6n99WkqFo4b8/acPL06kCRyBqjIt+6z6+t/uvgfw9ttMtarbfPxmIrHHRy6sDfEd9359XuKbdV/dLMmhsNrioTuq758v6Tw6cddxhzKWCaRuBqAkuyl/ScFz81c0BGSNM1r5Pt4IiW1zUPPqea9+6nYPWdlqSeeLGafhZTXGRT8ahtnvv+AbOtbXcW7P6OhMgaoaLrHdFvd5+Yn3Atvyy800sey8DIjtc5PnbzKSNGXmeG60d3Q406LcbiJrjok0KqwYfl871n69Y3rLRd1vga3Bx0dY9L+595UcI1s2Zbd93nespWrJlCw5DsmWkhXVdl6sPAxeO/GHr5XDnaITb0DbZci+Ti7IcfWjXitPn+Tl5jydcbJpKPpyuwU+Kk8oiEQwCpk7JbfE7VJxPrLtCfIxQKgVOCG9coSFlgOqgkK9G3+fEBZrWugBrwdgMWO0KFf2WduRzeBna9X0pZ1QqXwT53YbzBKGNI7/z2PCQ16idW5uXeiRU6jnIhXWpx2QwnekdBGFdeIZWbIBuoSBgkmN7d5FiWJlbFi/BKBTg/SRSLrAUlZ1wQQTFFcIllwiJoui3j+75p82Clp35ocT93ucQ8hGo6nPoR6DlIr2fuLTHLIYFLqcMozivptP1tGyA64gPtMhydSmihQqwfhkr5oIARNV5jfmsNKz9+hOfLc8E7Lx2I2LR4xN9Kbvl+GMRu+WERN/ay3fEjd0Lpb2ezpix005MtQSuBUHsITatxVQg0RXI6qcuNN30l0fBlRWciPBn83WnEekBLB4rWMDU8flnH+e/7AN9Zh9QI/QqyT6Ac6VFJlP2wUhgDte1mys1zD4ofaAYs/LbO9/Dtlsa1ogfGq3HyZLqgfQwWdbPZCJrwy4vn7WbLP9t9oHf43cL+q/61WvfnJQ2JydELjUsDQOgUpLBhsp1w8yJGpyUVF32wbSMJ9v6W+8JTBv4od+emHcnjCL7AKruOKvq8ow1nNFz9kG74L/fT8yx8S7sstL22ps1Pxgw+4DrhHsZJH083xnzMlWWfbD+S0zLD5t3es5pZp7T9EEqeT+w6rMPIDiYs2EE53pGFWYfdG7y95zzPTb4HJ5ibWEaNParEWQfQISOsyKUp4rb9nMY4rbzK4WCL70a+6RvsqvxolXKMXI0irWpDPMSaL5xwCN3icUjYbBCHA1+BHFXsnorVeBscXuFsRceuk3UKHCi7l+i35seRRMSLfzmzQV4Nydkl8YlCyqhnexzkf23nd2W+E71/6PbvFr/XKAcssO7EYfs2OWKIiWq/9NDq6afIUBxKCM83oHPObZAq7Mzawwgwi7sIyVyYL5Ajp5si3m3b+778Ktgi0A41TQj+jV5WHoRN9OHZbmoIsAOnLy5rMsvswMzqx1yeX28iVQPgG1jBQxYlEGCKOWcAX+nC4fpDz2l04xFl7UxXbJ41XOrzk4SZJwM3jv1+qKZdWRFDbFkHKAMevFkUw9emH1Ee90CYIpqB2Xcb9R09O/8HK8T/aY+KynTg2rTWVUbayDVouLj+dr1fKy4ZfGLyW2Xtet6x2/mD4rQXXNi0gzWshi2NsR8EmxZHEfLrnfGhhg+MRZwGCZG3vXG98f32Ou+Y+hw69nhR8lFfi1g8UwF3PqEbFwxPB8Wa9Ho0NlTFgMgV5bwxB4TWf4YbHFY3t8wEhiJRjMi9diu4hemqQP5W1qUNDgxHYBewkOUCud05HM2Tdc1V89DoAYK3G6ARXlhtCGL5doTPfsAesokPvgvpU+Lh7vRskQxQwaObbzz8d2djvCyaxV9GWkSLiH7GKz9MaIrJH69Ih8zW3D7w+fxnT3W/fb2/tLtfYfqoS7CMQizCQ9RwLqnAwazrlvCbdTUr9rdEsli48WiBMw8YNcY9O5m7snv676+NtN76+HDc65ljOhGZhWUP5e+/CUJ9e0SjnfEYRuGgi3JCYMNdwkHmFzCRfNW7zt1lwVOe/cmwOmXyXxqj/A4qVAk5gYlSKUIX8AUMDsS98XC+6DNSmLHC6WSSKWRJ0oU0VwZWKbINfcE1FN6lvdE9TJXE2tBxAydznT4FgLQbavz2LeCkxrW8VQBO3RCJwkRQ3ONeec2LPvaVbD4ftnZYpe+HuTwGXsQPXxWXq5oOFNZCbrSqQByQRC5DFTIkAZCBtfpjOGzhsjZqpCTk0wNmhYSvsFTbV2aPNoTPHtU1trUaW0TyVRt3EDQRzpkqb5HMUSrLStaDadXaYBFvKjZgOQ4sToOrdQ4O04BIKQVS53g78Q7+fiOgEFulFhOYQnDP7o6bitsgoSKBY8Ai+pkpaqRWqZOTLoMEl3rKDjjo6DUA6FXjgs2CrTaCLNWdi6GsQI2VxGmH4metJ4WvEvbcdN7fu2NdqeKn86mHEzAb4U4mMAuVwYUbVmhaKiaqA5yGCaq9l8aW+/kfs/fzyv9JLaLIjc5qo3ZCNNBHFPI2ixQLIxPkCsPwpQrOgiuMk7V7KyLyhBjfCt6aKAm1DROApFQ6xkAx3WocNQdlkaYoeuUVJMHj8UhAMjv28X33cKDl0qD11rZfO4/JPk2dT0UTzcq5dWK5iBqjKXjHASJ41wI1TIPRGxU4oBBpdVa0YI6+iSxXAESo/gHG/OnBxz12eZx4KivYlCBQc+3OI44EGaoIBEmhQIg8LF3iGnsKd7fGdziyHD/9PSBJp8mPN9J3pHCDBk6UXriAnxaPWhReJcjdZIqhwHoNqFi8MXE8FSc2MYW4S0d5bIYrUYnlaTJ8N70nTSVSFMPB6bpMTMBykmoLVVIRnCYiegpBSGCNFRETyn4V9vGpHGHXJ34mYe9p0qbNngqrH2FkBP82Jl3F18UCws8czwGfXdk6Nse+u5JpR8X8/OS/eu2pQ0J3Pv4Xe95W9dtNlYX4wJ0PhrqvBg1q8FmtKEzUd1LmTYWa0F7A14FDBF0YpQdr15oX5fAgs18u/t/jk2gxDbwPkRsg12uCJl/xjXhFb1M4ecuOrX/w+XNXD0g05cVGTAajCCHjaMaepiCKjpOt4FdipQKggsPbDNrFPbNkfqyXykbXv87U/6SKVy7q8IZbmQ7hs+i2zF2Ve9V+oA6rFjV8Z1h1EEvU6NF37Y62HARKrgpknYTkQroW2vtUukPg9xnce73MLt6cUKNwAQF7GOn+jiyRpAzQTWJ/hd8TrjfOO6O2MmF+7xgdOAzciGHYUbePULwbFjGbv+ZDUZ0ybQqJMedpmFiMIFqsV9jqzrgjMfuhEEOvvWo2URLTXlAvQ495FFe17TLHVgnn4GBzM+oKTYXTLHT6MEv23BuomyprfyeMJrDzs2xV0J+x9YCwRuLGQs8Zuwtjjfd0/+2LueXugZ1IH49AbHoyZSwtnOGoR0sU8nUilhlrcMU4jhuvGSCGNsPEwtF0dz4BCywgLu0yg9AKmjPCuHda3O5PlnOV5d0PFr2M3l4w8fSHS52tTLUs4JVPdOMVj0VHX/alS+D8JS8ikfOX6mZu25KJrkf6b/45dr4GuNYTkS/j3DspMtOBSWwoS7FdAxsoGLlrIodbnDFwpuw+VHHbbcGYdSpAKlbauiojefX+8Ab6YT7xTLUIWmEMzbw8Kn1MIdhajWaVofUbXn9tIevhE6H16exdTo8NY2A/IjRQ05NwtQP5NRAVA+Q581kgzxHFUAeZYJc6/Rfc5XHqvz0X0S2LrHHgcjWJbY3ENm6RPovIluXSP9FZOsS6b+IbF0i/ZdqKLQESuhtkSZGTebVQwLlMSYltww45Xh/dy3vzSaRo24+r09WciMlddRTKouHh48YHZi+ZDBlGFItvSWwlXM07H2sfABGUICsBTypRbOVAzWBucJXpIGD+iUtznhPQbLyLdSaAq6MMzK1YkLaKrnbWG0RGVQNwAP8wJxlNqhB6aRQHi9w+91DscG5f97ShblduaRIeE55PBM/xCmlep2RIDJal4k81WXCylKVYKOOFRKlUybSKQ+dFgZv+7K9/ujOj5vqMclmysCgj+c2JXlvlc30ncFLPqEHlDJYURqdqd25Q8cQYlxhgw3DjBhykDhAZDIyE29nxxx1WOzvKUi/lyBOjc1wMmB2ACzCe5wxOwCGb3mZ2h2KOqg21SFEIrUKqHCaIfkmJDj1Ms679k375rkp90HjlY39yU1KDcOBhyAtYwUpI1O7LIE2XhLlN1cRn8pNBqOpMzuojlFr3UJu9fPZ0GDQqnwHvgmZk048l85JV0kqA504VnSGZRLRTxGHYWJ8GR4kMHH+23Px+kvea4P9htBpnfSZ0IQB3Bbk7ABV4mSiTKsmBNRyHZoyTTWELQ04plEwTr+EojPB7bPu0yqB9H9feKp/NW+p996kPxQjCmY0Ip+PY7tjDNM6SVghIZHi4nT04rkArOEQrBCUjbmD+Nt/mlZznTkGlhiMNGaokgK+800tWcMvare5ff32KSPInogP7kUDpSaq4pAAwtSdFaaW07Sb7ComZFMzFwxGyIaeBrMRSMjm0mJHZwwa3A8dZ/JDnu0uOfea+lCQ6732raKXTTMqqzFGGMdVbrghdvOZQvN2yvsI7jBW5UTIjRUnwktiuUSET5AauSVqqSCWN0TxLtXEmvp3ECNNmAdwvcKUneQ6TytHZY6RmpVUQfA66F2s571mbLaJ91mywKnTw91fz5FDJOwB9BBJebmiMUetmqTjmINpreMhPHVQY84MTI6j5mmVm1RX+T5sZePH5oybsmX2Bv/sq7Fmx2Z3GEfZ48PuR+zxKa9XhM/0b06/b9zy1WvR7SdLgu6Eb9IDPkGs+ADzMcQWrRm26T1eCUQfDvWPdn3l6g4QyqPECjal3W36epTDo5zA7M3OBzxftdpCVpryfrrS8Ov6dpZQK21ZtdLQqLRSWkRoRavpqx7m8OLEkWzHVAumFP/aOmqEYPvipT9smduEzOMwDcTupysGv14ZaUWYO4F7ibT1ajGYxSLmabcgs1VhgC0spJKK8CgZ/aSH96siXuYZ3i3nhJ/dyTnansoH0HO0CUFlIOLKikjTecS8/iOHYV7PXxjwYWhvV79pH74ozE7eeU/WsfITNeep9lGtMMgTODcxWiKKBmElrFQljI+H9TFVOVZand9Tq/6h3pduk8rr2mQdz8Wzjmnk1WLgAgrn6kpebYqHGnCylyhLHsPjSR4zSWfeozY2CV/req+Y/GTRxnyLo2TjYwpsVIIqnvyxxGSIoQuKzHncAcNQK4/VJwi3KGWTF1LZH5hdFq/cH4CNJcQqsgR25psShGbdUOdzg/aYgetaDDBrFGCwsjcADB/MJ5gGs9GcTlGtSZPTqWrcCo2Uepahh+OppLlsx1PRKsxPMmEedMD7ynnOKc+0ITa9JS/8G5BrkAfCQvJxUokIKzJEd6RMSNsGgngATE8KcKeUG0N6ikZ+klrnlO216KXRyXJNN24gVx0m/mahNm7gGcW9+QhqMTGfIKjF8JO0pRZT5fqiDrMt3JopCVpK6rdMTtEXUj8DFnptWVJtZUDGgVPnUkbbks2mmgd9dHjQRkc1yuhYPfepzZELDsGFQ6/bDTYZqWsP8FygThOoThcUGbMMSEvno1jDTCDZhYlFMuChtUHpcbsxH4/Z7vCau3JRwYtrL+qSUeLRUeJViFJZ3fz7peIQ7/VnZ56O2Vw6Vg8oAbNmQenc/DNUtihr7pSy+wQMjDQAiFpDgTyHKR9Fn8Pw65Wx4Y1ZTBlqo+mcI4YU7k9P/Y/5U2px6Cryp53ns/lT0//8KaGf1I2Ddvq93xOw+N6IlM8OqU/04E+pRb/14CmcWD1Fk0r3pzHjWuW0OtaXt+RmXOwtN8edevCn1E0CPaBkyorSu3mV6E+pc6jB/SlmMYz+1FTlT08z+VOjWRNQh5N+GGvdqtm8neMZ51Xw0T06//qcUD0sCfLnsS0JclV7KmeYINeasVaXgLwKGGuIjgqEq0d0VCAYa4iOCgRjDdFRgWCsIToqEIw1qjXQaGlwTKO3iykNF/RASzurN03WrkJN/rvWI4g+HIQmqQf7NJ2YMOmE2ulCDzo5x6STJSUfVzkOzBIcuhD8o8+33JbkCq/lRH2yYtgOlqzKq1zHwjLi+ANq0Un/DbyDQwM9Bti3THFxDZ3YsmNwe42CR2q3D1OBTDRWHKm6iekr0IvUlss0TQRox+coZgFX1d2TYTMzYhYiiDTB4UIEkVhcQgkil31JK1y7IMKvYPPWIPenHe7qO18XOfGUY8EdL5RLYMIcEv3+cd0uLF1Y6F6w2rN2t9/PF7KjH44/ihtMj4aCK4yGqG1YdJyOuEB7cbPwaIheOKkdpj1tchEtyqOhckNHonZjrE3L9wkcrz0T2967ufvPd6yoMUVGqD09HYOi4k44JDApkV4moDMGCe5DzjP5kBUHiwdPf1LmV3hwf+HusY/I5eWqhwhjxVJ6XzAm92HvwY2Dd6g1N+TGyhRiZU17hThJgScgoa2T0u4H8SqahEW1w0RymVQaCkNbeFE9a4pio1TNMtmo2cB4sXwAeH3iY9t4yRLgyBBJYQMyWG8+UqLAvztYisDj0Mdpmyh6JDrE0Q5a2/I5s7KAHnt5ctKme9YKFMqjJLEC8WiSUdRWXg6FraLVr9dUXh8gi1O/Suk89q4tv96MrDP1MBBD5LBcnUKifKsaxFuhJmW5MNEvNhJ2e1BZe014EZ7Rql3CFvVSvJud0vnDBtQSodQTtiBQqcY0TCEXC2NUP2O50+UORGmqF5hM1Wjid2rzKT3t6VPtXw8B/IMstgD+ShbhHi4aPebU6cR4z1GsZrFhbqpyyZeYMDfqUBvRro0ItRHt2ohQG9GujQi1qYrVPNSmdnPTQ6h9mUknNcOWjt+UMMZr16sycQ/u1nfk/ij4WT/RC1XztjJNCJZALDc4ThzrI1B1a9WMA0DtWsf6WvS2LZRf0KL0588L8bYt12i7sU58zpiFWmX1N1MaKdG+CG+gyhVFC2PBdIVuadfGuuvUs2+C8zrXGHCv2/diMgfAS/kEOgeAEFRGB/ArC9k6gBcuNAhXqroIQKsa/j/99NM3bfL6uWTFEK1pMWqBFAYi6M4WQ1YWRGY0CsyxiHjX1HrFdEoXLvwhiC5chKQytLOJVTsLjUE7wBt904ZQ2JyPdRWGuUUkNbG2aq/z4anb9w9P8jN/nv3w0HKT/mTl8PE+xXTlqCSVoZxJrMoZYwzKgfpRVw6xMceknB4eMfAjMZ2oNW9Wdu1x48rihONgk59O2E/lv4EeUekXWnT98gMn6Nhpp3UNcjaSm2PUGaD2fHohVJK0MpQXzqo8nmGUp0EnJpMKNOhWrkHYqTs5FoSzQH1AXbGyWKg68C+pLBETwh9doChGmKS8gNSj7JfLa0uv1fM81lj8MaS1dTtKOZpoVCYEfrkyNOfEqrkmBtccvAnuj2nFjmuo3ICRxEaxO8Inv86++H7eo8D9/llTJo0fc133hve6nnE54TEEXDuco4VVLpgjxOPUKxyGONXGJCXsxOEPwUVmu5627Z7SkXw476nckgmRi8dLxIn00o9MZNZ2HrBsfbzatg7WgSxKLIsRK+TJ3DjlA+Pr+SkJnH6xoeJYfCXCHLxS+yqzvSudSECWm4eD/8TJ5ApviVSh/GBUuM84Ghz4nJGLYOlRFMHABWim6yJGoityXetDYIPlSmPvqFFE38FS4NnB/xN/y2yRdbdcbkOyWRJPpZulSlLRipfaHUPXFS9AbhhEzh3lR2B5Hd9FWuW2WA5QC2G4svFiuVzC0PT4wP51xaLbC72OnO1ZamYnM9F9CFOwovoIPWDVlRUr7qIq9bnEjmQNfMkFfwkGO/dz738zE+MRH3GR58L7Vh2b26izqhmxMCB+Ff6/jnrYQ75Dtdy+yuTG/uvi+q+6uFLb0VdJF1fYcKV+NlMX1xBHPuca3XfqoYvry0fHz7/7p2dAweh+WRfern6sxwITevaRcMOkTjZT08ti4BXK6D6yMrq48v1fB//zxzz3o6/ybh9r2JrcPLCqq1xDVJ4sYkPlWtV6Q9a1g3a5fvrr4ppTlnVhzsVqQVlTUv8+3GToBKPo4gpVd4RVdVsMo7oq7+KacrZhp7qfrgrSmw2Pqz091dyAdVrgxivmZZBFNnKdMS9TZV1cp8yv98uuA1P8NpmUONS67HHPwF1cITiYs2EE59qiKuziyhnT//XfM7d6relb4Ds/pTG53YBhKthAhI6wIgTGNB63XeMwxG18D4cO39yue2x5YLf159VvupBLh2B5u3EyKZjR6TGbGQPO3cqPSCTl9+PlbwDicllCVDQXVkHGtmq0Kd9ivSvq9fYT6wO25Zedb2LZexnj29ILnagJNcQXHv49hsPzMcB3CzVMSgPL+7nZuuZSWpS/FuQCKbFAfvXeR0c7rkp/6HlsXeKtzrIfyZ1mzMIhPQDVmK9cUlEIRXWMOoZQkAD8AKLXB2WdvsB2L2RrFULVUQ7fSHGUXIyOL0N+7zTj8R/f83M+lQ7p4/T6NCUpErsRkRSpvF4ZBOgC1u+/LtvQwZLKMrUIlOArS2SREhFLOasjjpe3H3OZETzVd/275OQfbMi2SjyAbqsqSWUoYy6rMiYYRhn04vxanFg4BcTKFGD6Eorg3qm9ixtYsoKVRUxHbic3UbRMHtmR29ktfpxcgf2AjlbvZ/WNejJqP3/H4NkJ/jvqHCbPa/ADwhTJUvqwURNVhrJGsyor1ChGDnyUVtGqZflGd2yCfFQ8ywh6XvD29x9SF/pP6bd+14vZe47qslTWUR3unXBHDrO7r1HVEdeZP/BktnZRKu7JWaKtUm6Azwn7vOBZFybyNz8KyzToshcCsI0A4BYCAOhatIpEiamMua5M3q7P66622M1f0TT69bW2rxtRprKqze+HACjYANgWkU0Emj9x/rf4OJ6/zUzamJHnudHa0e1Ag367q4yPU7yYjY+TtLiy+Tibvwa+8DWvHrDQ36nz2/rvRUbAx7m3mO1089xiIyAVHDx4sAr4OI/D/5YPWX4raFXSwN9z/g6sZxR8nH2s2sk1Bu1UCR+nS6lnVsjrIwEbF5+4FfPn3mSj4ONksSonyRiUwzEkH2dD2JXtO4NS/RY0W7fMPWbdI6Pi40SyKi/EMMozTj7Oq4OHZdWHt3dPf3ziVV73b7kG5uP0YdWcvcE1V6l8HG6WLP3pWAFvVYMWRcP9bZYZBR8HiyEY+TjAEeJx6s+c/wN8nE0KqwYfl871n69Y3rLRd1s2GpiPE7mEjY/Tc0nV8HH6P6j1Y3a/+/wt4870C3cTDNI7H4e6NtcDx2TkEjaOiWBJZfFxPnrYTbYadCFwzuI32aLPOdv0zseh+gg9YNWTFavWS/6/4uP8wuTGxhVJOkiCtnkeOBYs/f3J0Dfkk5L+CTAL0kcujIum54pqcXzR2ksSHwfzwFSnOcmOeMM6ISyTGQU/AWl5W/e8uPeVHyFYN2e2fd91rqcY349+kqMupNlfzTDgwoLVk6oQVvkvM51VT6PmqdvzOQ1hLT4rT/iXkslZy55fr/7cM3XDxFKgMHEkqT03plalKq8zqVLr7DJ7lW1XfnbZZn5XWwun656L4yaKDlTzylHLLru5rGB36s9y/r79vKTHkTMeq2WX3ag/RzrL5pXXkbdied+cU25q2WWBnX4Ly3XI5i8/kLFjyOODzdRKcsxIXj158FRuYNY5pxFdPvT5pFaSo9nz00skZ2z5RYdr3p3yIu+aWhOp7osXcwSt9vptPRox59o7Hx4Q1cBFc44NmcC94BO0I2Vp1ITDdz4AkRnxwNHre7baus4nv2mLd+m1vn8IRDUJkWxlYVO7qe4LVtxo6HG0uRSIahEvbzP8WszT2MDNLgO2KqbfrQ9EtXHRzrA/vD/+mBw0Y+OIT33/GTobiOrgokHDZXPLChI91gkFPTfK9sGyFnVx0dpVre9NXh/uNXVJh3aBTRpGA5E5LroXOD/xgNtRQebImw/qd5vXF4jq4aLGe89dTwu57Tt7aN6Dzse3NAKi+rhIVmfF0ZNuPT02tI9q9XF3UysgaoCL3sa61V+VMMR7/d7X/g3r394ORA1xEWeZfeCtAabeG0+emh08aNoPQNQIF22vlp0SV+ND8G7btr67Cp62BiILXOS6psHpeQ5ZQXPujb7yz8TA34DIkniNR/24ia/svPbNqCG663Y4H4iscNG30fZv2ozZ4jFtWqr/q+FSXyBqjIuOCjlL113s5jsrtPmzoF5pZUBkjYvGTk4du+tQQsD0/Kwfip/ecAUiG1zU7emrXWn+RYGzhkzrvPZEyXMgaoKLZo9TBA2b2kCQOSQhb2H6smAgssVFP5q+uFojzUKwp+sns1oHx90Coqa4yGKkf8suvbZ5H/lSLG8h8coGoma4aFLRpINL5kv9F508ZXOh+AJE3o7Ql6TphlYbfvU78v3Zbx7FAdAAmuOiy74hJ6Uf/gqa0XKcjWzAjKVAxMVFv019njTpRU2PVecuHWs5+443LdmyBYch2TLnysrajulT/Lff+TTs6re67xBuQ9tkyxtMLspy9KFdK06f5+fkPZ5wsWkqeVlWg58UJ5VFIhgETJ2S2+J3qDifWHeF+BihVAqcEN64QkPKANVBIV+Nvs+JCzStdQHWgu+WwmpXqOi3tCOfc2apdn1fyhmVyhdBx/8Oi4Z/ETYMzFzGHcE98GtfPRIq9RzkwrrUr5cynekdBGHdnaVasQG6hYKASY7t3UWKYWVuWbwEo1CA95NIucBSVHbCBREUVwiXXCIkisKc5yf4Wz96LpM+kFW/03Q5+QhU9Tn0I9Bykd5PXNpjFsMC156lRnFeTafradkA1xEfaJHl6lJECxVg/TJWzAUBiKrzGkvzrEMWoYM+3fU62nVghx5P7vEpu+X4YxG75YRE39rLd8SN3QulvZ7OmLHTTky1BK4FQewhNq3FVCCRYOWG23Hyuq8OynpY76FrixceutOI9ADWGVawgKnj889Nzn/ZB/rMPqBG6FWSfQDnymXLmLIPRgJziFhWGdkH7/8cmfT++o2gBTd+8TncqmGJHidLqgfSw2SZvez/tXcdYE1kXTsoIqKCXbFgVFRUmrrWVZcEElooAnZXjRAhGgiGgN217Np37Yodu2ABK0Usq+Lade1rW3sv2N21/fdOCZmZO0PGJCTfPr/P467MZSaT99x7zrnnnnNetmRtyPIyLrVEqg80vhUCp98Plcy8WnbQ3PCpjSybhgFQUXGiAuaNlZ6UlFz1wZeVyXMG/+Dou8vx+s5bS2a6WkX1ARSdH6fovC0juhKvPjjXrW4v+6SUgPxZXs03Hv/tZwtWHwg9CS2DTB/P8sK0TIlVH/y20Nd2Wa/J4r3CPqo2C5ZTGyaUfPUBBEfFCU7P1BKsPujkkhI6/cI26TTbXmWfdx/e1wqqDyBCfpwIgTVN+G2XBCx+29ElctnnDjX9J6xzKfu40Siq1O0xmspIP5nhgQMxlSWW8ITBDnEQ+BH4XSP0qVSBsiXmK/S9CNdtjEGOEz1+iX5vphdNjvDQm73XEmxOSJbG2mvNQCdbpaz7cWVClnj1kRXz88qEV6YdssO7EYfs2OXiPCW6/jMBVVN3CFAiahLuh91M1vI6O6uFAUTOC7cYpQZMXzCONraBBXu6PFqTJVrW+uG+Y35LD1CXpR95M3NZFg0VB9j235vUjI/6Pmy2fdaxim33GduiHgLmyQkYmFEWcaJwmwF/p7WA7Q+zpNOeQ5blMVlyaFXR/athfbsf8k8NdJ/jMvr2mypYMQ4QBrN5sp1IHOnWs5lxDjBNtDs+fVnx/L5Iunhvl3EXRrqeNIFo7ThF+2qN9fjHs/hxPhZPWaxteGdw74bO/ivsI9Y19MnbZzHKYkhtiOkkSFmcyKiu98KWGGEYLwtYDKP4fM3rKe22+2zu06/W9O57qE1+q8HmmVoY+oTZuAp4PqzgQXTo5auOB5DjLTyxx8QUPQbbHBbxG8aASWKQRaQf2xX/wgxxIH+LR0sD6RIA+kMxolW4wF0iaL7E2Fo9kUwPFBhugE15obehThC6kZx9AD28iA/+C9dpSTAarR6mYKnACQy6JGkRP1y0wHm49nXrF1RWZDuM/hjBCklcL07HvBux52T8p0m+8zp7D2z6adFrE/RFEEOYbcWIBtbtm2MwGxsSbqwnfl10K1qdkKSITsamB2SNQUc3B3Xq0K5+tX/Dlq1YMqb84b1U5rjyRc9lbn8pg6ZWCfvdCdj6omAb7onBRqiEv9hUwnHHRq9btlWHTHr1Itjz3E/UMHfFCEWiSh6tEIYmq1QIXcDmMHuQ9yXA++CcVSakyFXKGHySD1Nq44RqsE3RGK4J6Kf0HO+J4jLXG+aRiHlxMdvhWzhAN2OxsWu/BjRqGOOpFjJ0QiUJEUOXlJSvdezum1Ky3A9/DZqkSGlFdZ+xBzHdZ/xyccuZnpVgbDoV7AsLkfsZ5TKMAy7D3sWs7rOByNXRIaehTDU4tZDwLajin1ZjVpnghRm5UZ17Z/xITdUmJgj6SIc6aupVDNHK4ERrweISdbDIF7WPGpGo0MehkV7OjmcwcGkVKk/4O0me/gH9oZMbq9DQsoThH2MVdw3MQELBgkeATfUIXNRIKdMNkzGLxNg+Cl7EKigUIeQq8MZWAa9AWC2cuRj6CpitIqd+DBKKF3snzU8IeR6Q/fLmo7qV/qxPO5iA3wpxMIFdNgcUGZxQgClOGKorAhZD1exzzVpbhKUlO8WFHxUusZeoRhibI2wHcWwua70QhTwpWYMfhOE7Oggu7qcadtZFzxBjfSuma6A3aKifBBvqQIO/CuWO+gB3YIbR7mg5MTwWhwAgv29e946nH3aLCto6r3KNsZPtG9L3Q0nMSYVfLc4G0X0sI20QTBxfA6FKFSF8o4fNMah47RWr0VefMkEoQ2LU7LdHQ/sKa4XOHrelzk8vjq+36PmWwIMAwh7lJMKi0Bk6J/Eq29rTvr7Sq0F+v6AJE7rZfhz5iEqSWA6byFCJMgsX4NOc4IwiWI70k1QFLEA3jlCAL6aAp+JkGDuaoHTUqON5rU56kibLezMjabohQzUcMNPPlwKUh6NCqjAZYctSBKcUhAimoSI4peBfvsSkibkdPSW/7JZOVNWtfE9e/hQ5TubHTr06/7hCvst3qahHqfw+L9uZmpPKNCrmp0sjy4/cN8FvW+2LczquaFjfWlWMN5D5YyjzmyirBsloLy5FsZeyBRYd4HwDWgUsESQui+qlLjs9ZKpPzoUxu7sMGHCB5tvA+xC+DXa5OGRqL7gg6nd7dPBmv1GXqt67vtAEyBzgRAasBiuoYRPolh4moOKO050hSxEuILjxwIJZA7FvjpTX6bdO6x8Wegdsnpn50mt5L9o8hs9izmPsqsm79AFxLOYUxyTLiIPZpoYHb1sFbLnItcJRyqZj0L5Kh/izzb2u+S+s0+x7hy1xJ8qGJGshj53u46gSQVoCG6XpN3yehN7Y74OI5MI4L1gdhEW+JmCxyFv7y+73/Xlr0NTK/Vv/UiMvlupjRCqAAeURr6mjO+BMwu6ETg4RejTM0NJLHlCvw3R58OuGstyBfXIQhO0sysSmARPrsJRXd4vaOKU2/j2hN4edm2OvhLZLr2q7BK0a65u7/VmnsA3nzxpzfmmsUwf8VynEoj1bwVoriytYtpapxWWVuUZqFYnCJOVIBRYPU8ij44RJyZhjAaO0+AcgBVTz4I7tHTa/Dsjsca9qWrmw3tTlDR/LVLjYVXOIx4VTPA5WK57ijj9dirZBREle8StnUd0fHzdpGxKwYsPs16LYRnU5TkRL9/RoaUykgubY0LdiRjo2ULDvlnAJ9vYSSwsW3oTZRyPDbpUj6aYAKVu668hH85t84Q3wJPTiB9QhaU8vbOERpvW6gMW0Wg3VIT0sbxp6eDMwHfZczMV0GKCL7d2wfshpRZimgZzuiJoAcu9lXJALl5GQ/80GOe/yX0edxjJ/+S+iWpeMcSCqdcnwBqJalyz/RVTrkuW/iGpdXfkvs1qXLP+lTxRGASXUtuiUBloxrwkKKG+yCblh8CGP61sdpOttYwZefFSJKuSqeOqor0qdBA8fsXRg5pbBjmVJNZQqIZVzHOQ+xh+AJSjArAWiqMWwnQO9gLnYV2SAg/olHme8AYvASrqM2lPAnbH9Il6ZkHXw3G2st4gaigbgAX5grzL7d5DdwRVqV7+c/IHtDyQUUn1Wnpnb5k2KhOeUfouIQ5xCutYZADyjJouQp7psWFXXFdjoY4VEqc+bkftO22hEeXeWNgnL3l3KhEU247uFvj2ybrg0XT01YIp4xAEToGTPidLjVH7nDu7h5LrCFhuGGbnkYOIAWcnInngb+7npD3uXNpVMON1mSflgVydj5pgJmvBikwiZ3g3dN+9F/A5Fm+uC6hCiaL0OqNDMUHQTuvVXqFe7j2e3BeU02bjCRpYy0wpy4CFIdTlBsl/Er0qgsZ8S/+a6xKeiKYOlqbMrqJSqXYf0Ojs3ZGOr7OmfJB421Jx08rnMnHTdiDnQecNaIQDRuamrELglYDGMT7qHymy9/vGdv/qEdGVYYG/6GUMCoq2ALQu4DajVAbrCyWFqXiQE9HYdhmaaGgjbOKCY7sNJdQKVzgTDZ3n8TJ1hSf97p/c5d/Gv+9Ltnt2Sas1zr0A9H8eiYyxmnTJYnBanqzgjtXgaAOs2BCscNcd8gP99ip+tc8TAUoCVxg7V34N3DChb7XDg8oL+d7a8OzyLqokk4F40UHpDJewSQJjyOGFat4ifsSs+IZteuWCxhGyoabA5AhOyhQzf0QuDhtBDt9n0kG/TE14dJv4tS5OufKnt4EzNb64YoYiXJwrxgBsims/mmjfF7yNzh7EuJ3JhgmIYvKTQKKMJA2mQWqK3CuJ4Q1Tepd6wofod+EhfVgFcT7FVJ+1dxUtROWJJzXiqIHgd5LccedqrhvTyap9fh9osy9ucOZTqImEPYLpI+OXi1hy9a5KRaw6Wtf4L4amAWnP2wDjeX8WrNqki/j5cbeMlY8LlZ+aulO2NTlFIG04pTYvxYfcjYnz49eLw6RAy9PbnpW9DcjtfO5564MlLE+BzlhMfMH0sEaK1x4LeKTgQnQT0P/x45SpGyTWxCi2X0P4dMTcsM0caMjviQ8WlqQ+pjQns8PuZQiOum1pZQqlkcEplgVVJpXAfKRVe5ssJU3iJihiuYyph6oiebeODxBNX2fWs+J0gnyqYEOx+pmCI6+YoK8LUCYwlMvarN4EVu7aK34asjg4DbGOhUhaHxz9v21bsKXIMnvLlrYeL13cNqDXavvgDmDXa5IA5ENnLiUjaKtKu3xGw2PWsOcFv+nzfMXDSm89a+4NXqHnIxCcanqfaSbfDoBpw4bA4ZXQccCthpyp5UhLsj6mrseJ1fk/v+od6X+acxK/zqTpeRVQdM5JXbwIV0IVp13lmltUlXA1o7JV4y2N4PClmT9JJufdPGc/nFfwzIkUfri1aQ43GlmVzbHQDJWz8scJkiKE3Kplzf3MMQ14aq1MoMaNwkhdK2x9YXZaExwcgsYRClyyBnfmOCkVn3dDtuUU5ZuC+FgOsFgow2Nm7i24x32VbzFZzOkWfTYacTtkIiy//oZ1lmOB46tNKruOppytJzO+xYR6aLT11VHDId1xv5++Vj4OozQIcQ2Aj+USVMhprMsRUpGxI1wkB/gAwT1pwp0oYT3mKQXqS3ueU67WYrdGp44YGbmCu+hoA5wxU4AaeUQxYg0gtJu0JIrUYfhLf1GL6uKlSh7k2bvXwBC089VutockLKZ8hbWseLvPnfdmsbled7+9cOp4iHxsRc3WIGKvDhrY6mjqsfCGoPzRk+fUfovedLjxobMwEiHMKFKc3KhnzAxjVrkFlDbOB5BKpiFYDDc0HpajV7tXahr0LnTnvYlrrpD/9qCiJmSiJi0Vp6kv3lxeWTQ+e4OGxoc+mkcb2KoMoDeBESbbmMD1blLN2CmefgI6RAQDReyhQbRj+KKYNI66bI+CNzZgPqEDTEQ8MKUKf3v8f06f05tAlpE93rebSp9NW/78+JeTTTXpo8C8u7aXZ0pRKp/v30phAn9KbfptAU2xbzaUplq82tz7tWH6Zx6xLY4IXx/XZ8P1y2wQT6FN6kMAEKE3jRClltRn1Kd2GWlyfYjOGVZ8CpAh9+oBNn1rNnoC+nEyTsdbGxvnlr76Jfrve+sRlnf81wgRbgu9Wc20JXHWQP2SDnHfGWkUS8hLIWEMwKpCqHsGoQGasIRgVyIw1BKMCmbGGYFQgM9bos4GRlgbXNHIe0QkXTJCW9shkkixfgpL8NuoRBA8HKUn6wT5DJrZsMqEzXZhAJo/ZZLLg4dtlHt1myHKPhf3u/zWNWtjtUJSoTxUM18FSjaIu1wmwjTjxAAdm0n9laVhEiCjKreEo744RYxq6hzUzbDNOY/uwk6mjhyhidDexfQVmk9qiMUMLAZpKBB9gCm5bX5Zg5rVlCCfSloAL4URifgnNiUz9PC5v5eyegbvWp4f63Gtx1dT1ukjDU4SFMEWuUcKCOST6d8bX8un7Mihg46rkaw0OFM7mRr878ShhGNMbCivWG6LTsBhpjoRAem+WEd4Qs3FSU0x6fGoRqxV5Q0UTHd2V43yV6od6z/OZeHVMyJB3e3txosbmGaFiekY6RTdbEpDAokRmm4BWGCSEDnnCpkMW59zsNfnuh8C8nJ15W4fcoraXKxMuT1ComLxgbOrDTSRMhHfokRsKE9RaBd7TXqsYriUKkJA40+l+EK9iiFtUPjJao1apIqBrCy/qV03R5ihdsmxz1L5bkkITBV6f/NjGfupkuDKiVZCADPabj1Fqie8OtiLwOPT2uHU0OZIMcYyD1iYSgX0akGMHX8G4yb4OIXJNrDJBphhEmRTl8csRkCpa/3o5/HqUOlH/Ko157FUTiZNd2mEnDMRwDWxXp1Xib1WWfCuUUdbIhwUmxEC2B91sLwcvwjNavUvYpl5FsNnhyh8SUCvlKl9IQaATjV2kVqOQx+t+xmqnixQIPlWfsk1Vq/Hf6eRTJorp0+e/CRz4gWlcDnxEGqkenlk95nRzYr3nKIs5y3ym6VTyczbMrdrVRtC1ka42gq6NdLURdG2kq00XrOGuNp3NzQSu9gs2mZSLXJiyLnmwX+azD4p2wnQqhZoTcdZPcqEaTitTm8wSSBCGJSoS/GU6tlbDcgDorHWcr8WkbaH9Ao/Wn93XEbQtZxjRWE+J4DmzFzlXZlQ9fJKS9EUEgaowOk6eAMwV8ovvbDprz5nRoQFzI45o1T1mCKk5AH74E5g5AOSAORjAI9ZxMYB3WWeRXKky0QBa3fI/evToVz51/UKqYEhqWiy1QAUdEaRsHj31dXBa8zQo72jX1OwxrdxoLFzEQxAsXOSIOaTTnFM6NaxBOkAbfeWTUFhfgrEKw9oiipg4qdo/3dse6HXIUbrVqfAHRWoeNXvZXkLwFDOFoxsxh3BKcQrnuWX60FOFA+WjLxwyMMcmnHaiePiRmEz0yJtx1p7OQnWifCgk+WmJ/VT0G+gVter4hdERK7qGLCp1bkHc+ynUbgsVovSez2yEShk1h/CurOUS3mELkQgUz8RkW4wEOxdJEDJ1j0gA7iwQHxBXgjoBig78S6Uehg3CH73hULx8OH4B3Y7m0fQZdr3+lkz80utBI+Am0trRxKEqIYjL5pDcNk7JLbe45OBNMD7GKzuuCh6AUSbEcivC/QX+rnXq2ATuSxu6pL7saQfjCe+NPePyJHwIuHc4wnCrvDFFSPiphQIWP9XZdlTkgd1vwvbZZ95r0naUO/Vw3hcPyYRrFClKxTBm60e2ZNamIti2PkkvrIMxkMUq1PEKrWaEMBF/YJJTIJ7AGZgQoUggdiLsziudV5nrXZmJBNRxx+7gP4lqjVaqVGnxD0a5+6yroblEcBdin4pKMPAGkslZx5roitzX+pPYYLXS2Dsa5NHbetW4O239QdGEGunZqzfdp5YA2JNPZU5L3UhxO146O4axO16A3E2InA9Kj8D2OifW8aptqR6l58II1SkKjUbJQnr8uFL36U531EHrrzjenp2+bbLxS5iGFV1HmACrHE6s1pSsH0pGJMsSWy74S9DZuZ52/au9gvD4yItib/HXMphto1tVe3JjQP4q/H8FfbeHeoduu/2STY39P4vrN7G40unoS4TFFRKuzFvPxuIa7iERRK03B4trYpfAFseang7eld1CnbUvcJsJG0yYWEfCgMms9WyklzeBVhi9vkRYXPd8qLvXQdQ4OMOpbfNFubuoLGUl3eUaohLHiQqYN1azd+BX62c6Ftfkv0c++1HlLlvx58Q+LRv1oPbasRSLKxSdD6fo3C0juhJncW295HnVHg5TpXP3yWMHTelYy4J9WmDgFdMyyCYbaV6YlikxFtfp68teqWHjJFtxcdbNcjmdq1uYxRWCE8cJTtT6EmRxHa9ec2teqXr+43Iz1/xQKekPK+hgAxHy4UQIrGnCb3slYPHbJKLmLb52Pi/acMMl/ezyF62prUOwut1EtQpYdKbPZs+Cc5uiIxJl0f1E+xuAuEadHBsnhF2QsVANn/YtY/eNzVkwSxU09+Ah52M3j1VlfVtmoxO9QQPxhYd/gzYAfG8DfDfQ3aRxYHtfZYOxtZTVil4L5gLhWCC/+pmXg76LDdoQtvOPo67Djvy5iLp16g7TA1DEfEUjxblQdMVopAsFE4AHQvQ6oWZnAJi7oRt4uVAV8OUbo4jVKND+ZVLtNh3tBv3tk3f879wh68pSQyl2ftiNiKJI/Lo5EqA7cn7/Jhss7SzpZiYPRwm+slIdo4zmaGdlf6DfMPeED6Grq/359Ngo1+vUuUo+gDlXdSPmEEYVTmF8sQ73R8DnxMIzOEGtBeZLHg1jp27encGWFews4t2FLTtHx6k1Me7CVp2Thmq02A9ob7XUk7xKdinrAzK1pa9o7u3xpdo1+AGR2hEq5rLRGzKHsB6v5xLWRYtvM8gMGV7eavWiQHdCsmZgEscKml5+w5ec16WCs9tUcl8mPtjQmK2ykeLwaUkocljdfYYujsRWkm7+G/h5qYQm5/C2Tno+eVAlJzhsRnTvxAPV6pez6LYXAuBJAnAZAQBULbw8UdKUsfeVOblvd+sGV44G5Uy0+9jw7d5FNFNWsvX9EIAP6zkAyLimczRfC/638nGuKeuuabTmUmB+6T++im4GTy+xfJyYdK58nE9Mz9LE+Tg3bE+eqj2zg3T9hhfrvHekDLKCfJwB6Vynm7J0K0gqyMrKKoF8HKd3rn+9cOoYsv6fKdLoQYPvW0U+TntO6bhag3RKJB8nadQLrzWHVoYtXdemT6f39s2tIh+nEqdwPllmp2FF+Th5V5fnDPB87jO5avlKhQ+zJlhVPs7DDVzCO2/xbaIV5eM8tQ37OK58Fb9fltb4dHxtuTcWzsfZzym5TRaXnFnzcZ4F9YkrGH4saHq13Nupbzq3top8HMyHYM3HAYqQ8FPfCP4D+TgnA8IPqt68D53ScKizOmrKQgvn4zxM58rHyU8vmXycJosOR7r/1F+y4GKLu4e2ld5l8nwc+t7cBDkmd9O5ckzOpJsrH6dr+SbPej3vGLTXeUqH7HKiNybPx6HrCBNglc+J1YaS9UMtnY/zlk2NDd2nbKEMzfDN3humenC3zwvqSUnXZFgF6a+RJ8Yxa0V5HF+4+imTEmEdmO40Z4QHQVgnh20yY+EnoAubJz4aPvZxOdGyIyf2Npx+Rcr6fsyTHP1BxvwrFwlUWJh+URViVn5jpbPuafQ6dTeJYBbsxVfDF/6lVXI6uEmcflt5uGKkQgUEpoih0HNjYsVF+Y5NlLyry9x0c9v81WW7zrk1+HxhrHSl54ITb1/MH6JXXbaiyyH3mrNKi3fLG266Uze4ll512diUCcJ2dh0Dp4pbbcmTRan0qssePyif23zeR//tT2KCRr1pUqjXkqPviiaVhM7pwdM+l74devKpUq8lh/+XPxYpRxaGzbhcJSOk2p3BeiRSf7VboJn9uKxseu+ITUt9kxeDobLEUMadqStDs7aJMnsM926SFLYHDNkTQ53jN0wc++qx/6rRZwsaV7JNBUPliKH5KWkFUQ0cxfs0S90/9Q1bB4YciCFpzfXpXmkfpamTpv+56cb8MDBUnhiqp6313ctLGtGU66Wr7whuC9taVCCG2tc8Z1P1rEa2rWqXxOr3Z1UDQxWJoa6/Sgv7JR6S5PRY+O/6r12ngCFH8nu5nF0UEHgjNP1YKddqj2u0BkNOxNDwG25rJWNrinJuzft4f/bOQ2CoEjF0dsmYrxWzp0inVJRHVe3lPQkMVSaGKl3uNEoxq1TYvp2DkrUVDt0BQ1WIoRcv7js+XGPvO7tNYY2Xy+t/BkNViaHQoLi0nzYmha68EP9w5rn8U2CoGjHk00QSdr/lQlHmjz+2tR0U9RcYqk4MPal8b2brKjMDN7w/F3L+Xc2vYKgGMVTlzPjHMx79Hjanx/WflfnBpcFQTWJo3vqOBbkdmstWVt9cql9FmxVgqBYx5PnzjNUDD34NmPYiR9z+89m1YMiZGOr1w7NW2oatpfNnXPv8657qUMq1iaGJEY6tqmyrFpDRZ6HbOQftP2CoDjEUMFdz5Mj9Ff6TntlPvlb32FEwVJcYinJ1clS/DhJlX8rNryGoBTGsRwwtdDzcpf2k7/xz3s7crYqtHQuGXIihwLSOTxfu/S5sduHeiJR+W2aDofrE0G07p7HV4gJFi7Wl+jTNjx8JhoTE0Mmz/ed3LXM3ZKNot//2hekxjGLLBgKWYktXxcUHGz1Pho77cc+5XvueTTNBseV7NhVVfVBu5uKCo5Klm26PPF53dBo1mCgZnqhSxyAyCNiYkpsQd+hyPjF2haR4uUoFlBBBXGFgygBdQSFfjRnnJAYM7XUB9oL/ZsBuVyjvt9BdIjiVwY/3pSijEn8R5HdbNuJ5P43NYJ8F8XNHNxlVq5Ixp0TmdXJhX+p3GWxnejnArbudwSsboE0EcJg0WOwuRgE7c6uTlFgKBXg/pUoIZopungiBByWUwy1XNLrGZ23i/hOy5+JlY3+XN+o05Ar1CFT3Ocwj0KIhk5+4NMNmDAdceRlWcV7NTNfjSYDrQSy0mCJxaePkWrB/GaIQAgdEx7zGflZ6zO6v5KGyFoHbnrjWqN3NS0iLlhOPRUTLyRFTSy/Lg5jsfijptffCJjvjxJQncA3IxB4yaK2gA4kE693NHTWr/pTtt6fnwnW2G3uvMj6NyARgneIEC0x1wv58ELDYn/+vPvim6gO6h14i1QfQVqZtZKs+GAA77W40R/WBzZTxF0fvWCnasUyW18Nt7VYTGku6BjKBsVy6kS1ZG7K8TNlYItUH+xdWbfzjqxqSid3Xd+72ZcZwy6ZhAFS0nKiAeWOlJyUlV31wZpdk6Pm4acH51z4teTLzryyrqD6AopNxiq69ZURX4tUH63sMepM7foQkc+y9uVMWzqJRoJVo9YHQk9AyyPTxLC9My5RY9cH3AuXAXRM6yMYX7hjXutFx6ql6yVcfQHC0nOAM2FiC1QdznV4IB4ljg3dUdhp1OrSarRVUH0CEZJwIgTVN+G3/CFj8tqNL5LLPHWr6T1jnUvZxo1F7qd4oRlMZ6SczPHAgprLEEp4w2CEOAj8Cv2uEPpUqULbEfIW+F+G6jTGsDoEWv0S/N9OLJkd46M2BOQSbE5KlsWGOGehkjz7sWr9qiys+02zKnG0ir9mOdsgO70YcsmOXi/OU6PrPBFRN/SBAiahJuL+FRBCUw+vsrBYGEDkv3GKUGjB9wTja2Hr7djlR7XVyUP6c+k/Cu0T8Rl2WfuTNzGVZNFQcYOEjLysmDCgQZzjWWeQsfjXXBIC15QQMzCiLOFG4zYC/01rA9odZ0mnPIcvymCw5tOr5sLMuZ766+s3WrEp+X9/lQRWsGAcIg9k82U4kjnTr2cw4B5gmWtHQSq2H9q4nmfV+xQztwHuhJhCtI6do/822Hv94Fj/Ox+Ipi1//eGTYpOGFkk2tms8sE+7RymKUxZDaENNJkLI4kVFd74UtMcIw/itgMYzi8zWvp7Tb7rO5T79a07vvoTb5rQabZ2ph6BNm4yrg+bCCB9Ghl686HkCOt/DEHhNT9Bhsc1jEbxgDJolBFpF+bFf8CzPEgfwtHi0NQrcA0B+KEa3CBe4SQastxtbqiWR6oMBwA2zKC70NdYLQjeTsA+jhRXzwX7hOS4LRaPUwBUsFTu9/G8/9xzldNLvUp4Iep65co+oYjP4YwQpJXC9Wx1z85d6zDTt9NuZcqzDeZXiGCfoiBEGYbcWIBtbtm2MwGxsSbqwnfl10K1qdkKSITsamB2SNYSGabHIxslS79iEbDiv+vv334DbUrIKi5zK3v5RBU6uE/e4EbH1RsA33xGAjVMJHNpVw3LHR65Zt1SGTXr0I9jz3k4TOEZ6okkcrhKHJKhVCF7A5zB7kfQnwPjhnlQkpcpUyBp/kw5TaOKEabFM0hmsC+ik9x3uiuMz1hnkkYt7YzHb4Fg7Q3bbZ2LVfAxo1jPFUCxk6oZKEiCEBaP+Xf49yXeaIMipX2hnq6NKI6j5jD2K6z/jl4pYzPSvB2HQq2AwQIvczymUYB5sBbmZ1nw1Ero4OOQ1lqsGphT63zng55NYyYeikUsMHe74J/4maqk1MEPSRDnXU1KsYorWNE63lm0vUwSJf1D5qRKJCH4dGejk7nsHApVWoPOHvJHn6B/SHTm6sQkPLEoZ/jFXcNTADCQULHgE21SNwUSOlTDdMxiwSY/soeBGroFCEkKvAG1sFvAJhtXDmYugrYLaKnPoxSChO13J0/OmqRjRn8mW/bkfKfKEdTMBvhTiYwC6bA4ptnFCAKU4Yqk8CFkPV7HPNWluEpSU7xYUfFS6xl6hGGJsjbAdxbC5rvRCFPClZgx+E4Ts6CC7upxp21kXPEGN9K6ZroDdoqJ8EPKEsaPBXodxRH+AOzDPaHS0nhsfiEADk952Us/WnKldy/LLm1usy/Mzo6fT9UBJzUuFXi7NBdB/LSBsEE8c3QahSRQjf6GFzDCpee8Vq9NWnTBDKkBidKHOwMCV3QmjO+W1bVob3r2LR8y2BBwGEPcpJhEWh83RO4me2tad9faVXg/x+QRMmdLP9OPLRFmpECpvIUIkyCxfg05zgjCJYjvSTVAUsQDeOUIAvpoCn4mQYO5qgdNSo43mtTnqSJst7MyNpuiFDNRww0+8yAcrDUSFVmIywKxPBKQUhgmmoCE4p+JcvMWlibkdPyS+7pRNVdSvfk5c/RY6T+bFTr84/rpDv8l0q6lEqv8/LdqbmpDKNimkXIg6f3dUnZJbw95jHygFPrFXFeAOZv4Iyv4myapCM9kYmir2ULbDoAOcb0CpgiSBx8f3z+fbBTQMDNuZuq7x/iP8kmm8D70P4Ntjl4pCxiWg5/9cd9wK3pp+/2Sx7TD8TIHOMExmwGqyghk2gW3qYgIo7TneGLEW4gODGAwtmDcS+OVJecfKBy77GeQbtUE9qnx8whVryhTEeMecxdtXkXfqAOFZxiuM3y4iD2aaGB29bBWy5yLXCUcqmY9AE1d/vXNpzg9RvZeUByyd7OSnKhiRrIY+d7uOoEkFaAhul6Td8noTe2O+DiOTCOC9YHYRF/iJgschb+8vu9/15a9DUyv1b/1IjL5bqY0QqgAHlEa+pozvgTMLuhE4OEXo0zNDSSx5Qr8N0efDrhrLcQWoVCNtZlIlNAya2Siav7ha1cUpt/HtCbw47N8deCU3/9+Fw9aYtD0rnnJ32oP6dCH9jzi+NdeqA/xoKsWjPVrDW0eIKlq1lanFZZa6RWkWiMEk5UoHFwxTy6DhhUjLmWMAoLf4BSAEtP9a/tEPwA7/Nv+V/bCoPovJA2cLHMhUudtUc4mnCKZ4qViue4o4/XYq2QURJXvErJ+ux9/hbqaNDlq4YFvagd59cjhPR0j09WhoTqaA5NvStmJGODRTsly1cgn28xdKChTdh9tHIsFvlSLopQOe/0lxHPprf5AtvgCehFz+gDkl7emELjzCtXwUsptVqqA7pYXnT0MObgelwwGYupsNwXWwPPte6IacXYZoGcrojagLI22dxQe6WRUJuwwY57/JfR53GMn/5L6Jal4xxIKp1yfAGolqXLP9FVOuS5b+Ial2y/BdRrUuW/9InCqOAEmpb5BSjF/OaoICyFJuQGwYf8ri+1UG63jZm4MVHlahCroqnjvqq1Enw8BFLB2ZuGexYllRDqRJSOcdB7mP8AViCAsxaIIpaDNs50AuYi31FBjioX+Jxxhu+Cayky6g9BdwZV9rEKxOyDp67jfUWUUPRADzAD+xVZv8eTQrquaFWwLqb3qPuBRX8aEzmtnmTIuE5pWwTcYhTSNc6A4Bn5LkJearLhlV1XYGNPlZIlOJ3Bzx+tmmzb05V/6rtu6Y3MGGRzfhuoW+PrBsuTVdPDZgiHnHABChV4kTp1UZ+5w7u4eS6whYbhhm55GDiAFnJyJ54G3Xu0CK/l4MDUvsNmtTz6bVRxswxEzThxSYRMr0bum/tN/E7FG2uC6pDiKL1OqBCM0PRTegc+OBIvxu/lJONb+Y389T36dRjUsvkwEOQXDlBqrSJX5VAYz8l/s11iU9FUwZLU2dXUPe6/tt8yL3mIZlVA/78tHz5OGpOOvlcZk66bsQc6HxirRCA6DzUVQiUZjOMT7qHymy9/vGdv/qEdGVYYG9mWifTEtqygNuAWh2gK5wcpuZFQkBv12FopqmBsI0Diuk5nFQnUOlMMHx2gJ+pMyzpf8GhQu2kthP9ly/u7Sw7d/EG9Xwci46xmHXKYHFanK7ijNTiaQCsxxCscNQc8wH+90V+ts4RA0sBVho7VN0KFlXOX95Tuke7KUB41I1q5MpJwL1ooPSGStglgDAd4IRpyyZ+xq74hGx65YLFErKhpsHmCEzIFjJ8Ry8MGkIP2bLpId+mJ7w6TPxbliZd+VLbwZnKwlwxQhEvTxTiATdENJ/NNW+K30fmDmNdTuTCBMUweEmhUUYTBtIgtURvFcTxhqi8S71hQ/U78JHsdgFcT7FVJx3eyUtROWJJzXiqIHgd5Ld0qb+i71yP94GTIg+oLw24upTqImEPYLpI+OXi1hy9a5KRaw6WtZaC8FRArTl7YByf7+RVm1QRfx+utvEzSk/tvurR2ODtEY9bSm+NtKHF+LD7ETE+/Hpx+CT+MPLP5d9l+02vGrRkZ4Nb8SbA58pOLnzA9LFEiNYeC3qn4EB0EtD/8OOVqxgl18QqtFxC63hgeNOrB+1C0s8ma5Z1++kZVWj4/UyhEddNrSyhVLZxSmW5VUmlcB8pFV7mywlTeImKGK5jqrbTNt6TlJ4jzi6ft/7m/sFyqmBCsPuZgiGum6OsCFMnMJbI2K/eBFbs7k5+G7I6OgywjYVKWRweR3f//e8Cv8fSPf8UDK3S7IsXtUbbF38As0abHDAHIod3ciGyYSdp18uw2fWsOcFv+nzfMXDSm89a+4NXXlNljH+i4XmqnXQ7DKoBFw6LU0bHAbcSdqqSJyXB/pi6Gite5/f0rn+o92XOSfw6n6rjnUTVMSN59SZQAVKmXeeZWVaXcDWgsVfiLY/h8aSYPUlHcu3OtcExT31mPa99qUzN3DvUycfm2OgGStj4Y4XJEENvVDLn/uYYhrw0VqdQYkbhJC+Utj+wuiwJjw9AYgmFLlkCO/MdFYrOuqHbc4tyzMB9LQZYLRRgsLO3VLeY7az+dIo+mww5nbIRFjtJ6WcZJjiest3JdTz1ZgeJeVk2zEOzpaeOCg75juvt/L3ycVBlag/yENhIPlGljMaaDDEVKRvSdUKAPwDMkxbcqRLGU55ikJ6k9znlei1ma3TquKGBG5irng3gnIEK3MAzirhsRGoxaU8QqcXwk/imFtPHTZU6zLVxq4cnaOGp32oNTV5I+UT/65NWp1q7kJWyrncOh2dNpcjHRsRcHSLG6rChrY5eP5dqveU3++DsasndA3+c9szYmAkQ5ywoTm8RwhP+ADnAs1FZw2wguUQqotVAQ/NBKX/u8m0NXn31mTXRdfRp3zRqPauNmImSuFiUGt56uruiwz++e1x23R/8wO9vE6AUx4lSVPZherYoZ+0Uzj4BHSMDAKL3UKDaMPxRTBtGXDdHwBubMR9QgaYjHhhShD61/x/Tp/Tm0CWkT/fu4tKnc3b9vz4l5LM2xXV2azehbNrxTo3VyqeDTaBP6U2/TaAp8nZxaYp1u8ytTx8tlih/GzNFNqfVxGHOBRlTTaBP6UECE6A0hxOlsbvMqE/pNtTi+hSbMaz6FCBF6NNyVr8noC8n02SstbFxfvmrb6Lfrrc+cVnnf40wwZag0y6uLYG7DnIHk2WsVSQhL4GMNQSjAqnqEYwKZMYaglGBzFhDMCqQGWsIRgUyY40+GxhpaXBNI+cRnXDBBGlp5U0myfIlKMlvox5B8HCQkqQf7DNkYssmEzrThQlkUoFNJgsevl3m0W2GLPdY2O/+X9Oo1NAORYn6VMFwHSzVKOpynQDbiBMPcGAm/VeWhkWEiKLcGo7y7hgxpqF7WDODnEc624edTB09RBGju4ntKzCb1BaNGVoI0FQiEGwFCq2tL0sw824Wwom0JeBCOJGYX0JzIlM/j8tbObtn4K716aE+91pcNXW9LtLwFGEhTJFrlLBgDol+4IE1kRX6PPGf6H64qervj+250e9OPEoYxvSGwor1hug0LEaaIyGQ3qcswhtiNk5qikmPTy1itSJvqGiiI1E71Xlht/eKe5LMT6MGPjyiOceJGptnhIrpGekU3WxJQAKLEpltAlphkBA6pCKbDlmcc7PX5LsfAvNyduZtHXKL2l6uTLg8QaFi8oKxqQ83kTAR3qFHbihMUGsVeE97rWK4lihAQuJMp/tBvIohblH5yGiNWqWKgK4tvKhfNUWbo3TJss1R+25JCk0UeH3yYxv7qZPhyohWQQIy2G8+RqklvjvYisDj0Nvj1tHkSDLEMQ5am0gEDtuBHDv4CsZN9nUIkWtilQkyxSDKpCiPX46AVNH618vh16PUifpXacxjr5pInOy3H3bCQAzXwHZ1WiX+VmXJt0IZZY18WGBCDGR70M32cvAiPKPVu4Rt6lUEmx2u/CEBtVKu8oUUBDrR2EVqNQp5vO5nrHa6SIHgU9XR6v13OvmUiWL69PlvAgd+8HYuB773dlI9OFk95nRzYr3nKKs4y3zm6FRypf9JVxtB10a62gi6NtLVRtC1ka42XbCGu9p0NjcTuNqV2WRSLnJhyrrkwX6Zzz4o2gnTX1H5UYizfpIL1XBamdpklkCCMCxRkeAv07G1GpYDQGet43wtJm0L7Rd4tP7sl0vQtpxhRGM9JYJ3zF7kXJlR9fBJStIXEQSqwug4eQIwV8gvHvTlUdVbZ7qLli+b4dnAY0UyNQfAD38CMweAHDAHA3jvXC4GcGmuRXKlykQDaHXL/+jRo1/51PULqYIhqWmx1AIVdETQ/dU2Oh9I/VBFvOmPjMNdhvrT2MAjiYcgWLjIEXNIpxWndFysQTpAG33lk1BYX4KxCsPaIoqYOKnaxyZ6Zu18c1G6yXt0ZsGX3BiqcCQETzFTOLoRcwjHgVM47yzTh54qHCgffeGQgTk24bQTxcOPxGSiR96Ms/Z0FqoT5UMhyU9L7Kei30CvqOq/Lfrj0++7pHvX5B871+pTf2oj1Ci95zMboVJGzSG82zlcwjtlIRKB4pmYbIuRYOciCUKm7hEJwJ0F4gPiSlAnQNGBf6nUw7BB+KM3HIqXD8cvIOXYYXLBRfun/qKZZy65v0m6sJ/WjiYOVQlBXDaH5PI4JbfO4pKDN8H4GK/suCp4AEaZEMutCEe27jSt8HKP0DUzRz+ofy+2rPGE98aecXkSPgTcOxxhuFXemCIk/NQqbH6qs+2oyAO734Tts8+816TtKGoDM0dfPCQTrlGkKBXDmK0f2ZJZm4pg2/okvbAOxkAWq1DHK7SaEcJE/IFJToF4AmdgQoQigdiJsDuvdF5lrndlJhJQxx27g/8kqjVaqVKlxT8Y5e6zrobmEsFTiH0qKsHAG0hmfy5roityX+tPYoPVSmPvaJBH3+a7f1aID8aEzp+5cOPq52epaSz25FOZ01I3UtyOl86OYeyOFyD3ECLng9IjsL3O+VxetS3Vo/RcGKE6RaHRKFlIjwtqNJa5vpkkXRNfqszvpTetNX4J07Ci6wgTYLWfE6tNJeuHkhHJssSWC/4SdHaup13/aq8gPD7yothb/LUMZtvoVtWe3BiQvwr/X0Hf7aHeodtuV2VTY//P4vpNLK50OvoSYXGFhCtL89hYXMM9JIK+eeZgcd124MiIyVHtfMaf9L/504SC+SZsMGFiHQkDJql5bKSXN4FW+DmvRFhcr7p7RI0fHuiTW2/w8i/TRlOpeUq6yzVEJZETFTBvrGbvwK/Wz3QsrvWS9yzv6786ZKomtVnwhHPDrILFFYougFN031lGdCXO4nrP6W7D8aN6i2ccsFu2altEFwv2aYGBV0zLIJtspHlhWqbEWFy/PE3qOzryH//5t92dD5y5tM/CLK4QnEROcPrmlSCLa2lpg9Rn/aRhK+f8kFZ5dkKuFXSwgQgFcCIE1jTht1Vj89skouYtvnY+L9pwwyX97PIX1NBveaxuN1GtAhad6bPZs+DcpuiIRFl0P9H+BiCuUSfHxglhF2QsVMOnfctCx8Nd2k/6zj/n7czdqtjasaxvy2x0ojdoIL7w8C9hN8D3NsB3A91NGge297V3G1tLWa3otWAuEI4F8qtP3VbrpNPJ5+JJJ+wzbR6Xe07dOnWH6QEoYr6ikeJcKLpiNNKFggnAgyF6nVCzMwDM3e67eblQFfDlG6OI1SjQ/uWX9QU2wW6i4NUdk9KWvPc+TiuKxG5EFEXi182RAC3m/P6euy3tLOlmJg9HCb6yUh2jjOZoZ3U5Unhg7WGbkD1Bkw+55Xj1pc5V8gHMuaobMYcwanMKw84ywmA25+dxYuEZnKDWAvMlj4axUzfvzmDLCnYW8e7Clp2j49SaGHdhq85JQzVa7Ae0typfuLD/y/YOoak/hd2pf+RyJNWuwQ+I1I5QMZeN3pA5hPUqj0tYNyy+zSAzZHh5q9WLAt0JyZqBSRwrKLtgik+ZF6f9M5+uqnvw1jtHY7bKRorDpyWhyGF19xm6OBJbSbqF7ebnpRKanMPbmq+o+eKY90rxvtz88K7tO1+16LYXAtCWBOAyAgCoWnh5oqQpY+8rI7twLvPsqNTQnRll7h65d7a7Rev7IQACLgAy7uoczer/Y/k4gWkdny7c+13Y7MK9ESn9tswusXwcVT5XPo5tvrnzceadvlhwvIpH4A5v/yFhgUPqW0E+Tlw+1+lmVL4VJBVkZWWVQD7OioWVlkR2jQjYfWFpyLpbnQ9aRT6OD6d03K1BOiWSjxM2akSrzOHXA7f3fT9t/6vvd1pFPk4tTuHYWoNwBJbMx7lyILf+IkFewNTD+28nh6V3t6p8nMLdXMK7ZvFtohXl4/i9m/l+79LuPtkDe0oPX5s238L5OEc4JbfD4pIzaz5O5ORnt5U9FvksaFx7d79Kvb9YRT4O5kOw5uMARUj4qTX+C/k4t+2cxlaLCxQt1pbq0zQ/fqSF83EK87nycQ4xXVqz5OO06FPYveP4TNnSvnlVRzuXGmHyfBz63twEOSZP87lyTC7nmysfZ+rKM9dy/povmnV2zY973s8+YPJ8HLqOMAFWhzixyipZV8fS+Tg12dTY0H3KFsrQDN/svWGqB3f7vKCelHRNhlWQ/hp5YhyzVpTH8YWrnzIpEdaB6U5zRngQhHVy2CYzFn4CcuadPNt/ftcyd0M2inb7b1+YHsP6fsyTHP1BxvwrFwlUWJh+URViVn5jpbPuafQ6dTeJYN4OMCtr+MK/tEpOBzeJ05wdhytGKlRAYIoYCj03JlZclLXYRNl6R6i4Y4teAXszx4VMK8y8RNPyQHwatQrvTc+DjbStZDiYX9H4ESgRjiQehZ9CYflQQxLUWoydjhfd0GqPrLmXPaf6/CqMmhR+aOYVrjdG2CXKOI8u+QNCCwSCQ2JETtMAdzAqKzBDTlPUhXUud1apfHdnfEkYKIiINWFOk4lJc/bDPTxECJLmMGj7sppjCBnLZ9jAlzqHiA11KJxfHvBswhOJYt3Roz7UbPpcvONJ9o2H86u3o4Y7WSYKed3UbqTQgwBKiDIykJEgLaSAEfDmCVTtHgoY/sEQoq47NEJfaq7Zc7jlzcDZkn2zJHZTLlPDdcTDmOE6csAcGAlCuDCiT6ZS34ARdr5FpLIAnIqdRRN+mJ+59Kpf+qLnYyuEbPhEXYvwYUyEiMvmwGd/MBc+wuACQvE7syn+Zp9r1toiLC3ZKS78qHCJpSr+8jLYgpotn5ZtH1IvRCFPStbg+az4AQyu3WFDa8OUu8vqzseOx8dJd6ze8tcyQRtf1rdiWm69QUNzMKBa7wpwPCBGtIDZDxy+ceEMtc4zB6OcGNI0QQCQ33d6g6h9U+YeD12btCdwVVILPzoXShIzKQq/Wpx+pys9YxMuoH6HUKWKEM1F4ppjULHqd2RyShELMWzUhzWkliEx2jN+YtrH0X5BU3MfblvgGreND/dwSR/njXMncIJpUwycZnlgOBFLs7YNvpQYS9O25RuR4x9nAla3bXvFJrPRwdIy5UBybOXDZXX7t+wuy7Sbqfzy0IG6KyeO/vCkE8PXrdBfgXtqePoL3pSFt1+WbtPV9Ygs0nfS2cX9y3Yqf5T9zZhRUP1RHh6HMBAgnY9avJgcAnj5ZEKdTxaLhgNNfdDuxsiDozwka3e+qetWKKhqvS7aTQCYIJBw0ZiN1JtjgPGK5Tn70eaLjt4QTYZc7uTaI7LrooyRAX1PzPs9lnbsXLIZVD4eBBqVUAsV2lCABrFQ67DZ0G/ruMYV1Ta841oZkYe4RUuDVqbDpFWHK1R8EbSuq2elnkEN65ixqxqMWw/oVoDTsSJb8wqiCoxuzUvvqkZvzWuurmtc6sPgrmvnH0wI/TRSEvLbbM/TrmWfbWLpsvZNnXnpptIEVKg+UJrInrNHwGhaVAGPzrwGYyTwslv049uAoEkTM/5M6Cpuz4LRN/XlpashE2AE5jQHRgMiC/j05TW8E936W4ucx/zVPjT39Ni4kBZnfrFoT16BJzFXkD15P3hiKBEKtS6bQq1x+1e/Kh1P+65sc2df5pFhfghrig4pVsbPGxBwChzwIUrbH+J4gtEOCJ3Zj38gDDlGq1UwzgbnLxBPrCIBI17BTB46sfp2a9uq5a7vDvltxbzBbmEBbUsg1U53UkfPC3KVCLylBTA8Ay0eIYp63yQKG3GJi+Fbunofcz9Y43jp30L2TX3b4Il9lSXf0NXbWNQHANTbZ9FRd/kvoz65zRnhlNzbvnNCLiqiRGsfWgj1u4LDNNTr/5dRf1T4MO9N82U+83qn17b/fKi3pVBvRkdd+F9G/Uk3zbo1gzzEW84Ex5ycdzbRQqjvCKej3uC/jPo7x+8b+X646Lfo0/LTZcfUGW4h1KuNpKPe8L+M+oeKWdcLFeHS1X9MLYhfXzjEQqjfnEVHvdF/GfWpL91fXlg2PXiCh8eGPptGSiyEeswaOuqu/2XU6WRYFkJdlU1HvfE3bp3gS5Q48lWKYvwEITx6l/TRuc2afq16+uxZ+f6O7Ki7GvHuiF0SdtnkqDcHGkaj89f/Dw== iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwgAADsIBFShKgAAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII= fb4a3cd7-41d4-44c5-9aaf-914e96b16bad DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH true 10 5d2c2b15-5cda-4ff4-b8a3-405e7b306012 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f 70102562-363e-430a-afa5-f663fb2d93c6 867df14b-b84e-4903-880e-679477d08b40 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb a04899d6-6a10-48b7-b519-0ca4e8b4be37 bc983a9a-51bc-45e0-b2f3-5dd524ebe645 ca63a059-0a01-4560-a8ca-8869c5f2d87e d057826f-a473-488a-8c43-ba941c74c870 dac19e22-ff36-4a6a-bfd0-61013cc4fee0 233b0ef6-f843-44d6-99fc-9ecf077d1b78 a67255eb-66a4-422d-aed0-4b64cd94d270 16c32cca-03cb-4d8e-bf89-f521eb08129b bbece122-0a0d-43f9-bd1e-b6e66ae744df a43519fb-325e-4058-bda1-f7e34cc92c6f ddb00df8-65f0-4650-a3c7-89c56da7f06b 20d03587-b988-43e2-924d-d6655441a5e8 f12cf189-9dd5-4b8b-822d-2da85bac7a45 bae8f0e9-2af4-409d-945a-a91a08fdc45a 130433e2-dd09-4dbb-8e9f-946a284f4836 901 -3201 371 204 1258 -3099 10 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Second item for multiplication 867df14b-b84e-4903-880e-679477d08b40 B SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true dd3e81a3-f392-4fff-9fba-35855c2e8144 1 903 -3199 343 20 1074.5 -3189 Second item for multiplication ca63a059-0a01-4560-a8ca-8869c5f2d87e B SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true cd852686-49f6-43b5-930a-504e7c0e8fa4 1 903 -3179 343 20 1074.5 -3169 Second item for multiplication a04899d6-6a10-48b7-b519-0ca4e8b4be37 B FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c2a92653-9119-4312-8a0a-bfe4efc11ad1 1 903 -3159 343 20 1074.5 -3149 Second item for multiplication 5d2c2b15-5cda-4ff4-b8a3-405e7b306012 B FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c6aecd68-308a-4a6a-b29f-68933f542f84 1 903 -3139 343 20 1074.5 -3129 Second item for multiplication 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f B THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true fae63135-516e-4bfe-ab70-dc4f2b45ab66 1 903 -3119 343 20 1074.5 -3109 Second item for multiplication d057826f-a473-488a-8c43-ba941c74c870 B SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 1 903 -3099 343 20 1074.5 -3089 Second item for multiplication bc983a9a-51bc-45e0-b2f3-5dd524ebe645 B FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 154459f8-56b4-47e3-8f74-2be68cd83b0e 1 903 -3079 343 20 1074.5 -3069 Second item for multiplication 70102562-363e-430a-afa5-f663fb2d93c6 B CUWATURE SHAPED STACK GRAPH MAGNITUDE true 21840820-7b03-45cf-914e-8d05118a8772 1 903 -3059 343 20 1074.5 -3049 Contains a collection of generic curves 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb Curve SEGMENT NUMBER true 58b84e16-46ab-4bef-af27-b755fa42c6db 1 903 -3039 343 20 1074.5 -3029 Contains a collection of generic curves true dac19e22-ff36-4a6a-bfd0-61013cc4fee0 Curve CURWE true c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 1 903 -3019 343 20 1074.5 -3009 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 21840820-7b03-45cf-914e-8d05118a8772 154459f8-56b4-47e3-8f74-2be68cd83b0e 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 fae63135-516e-4bfe-ab70-dc4f2b45ab66 c6aecd68-308a-4a6a-b29f-68933f542f84 c2a92653-9119-4312-8a0a-bfe4efc11ad1 cd852686-49f6-43b5-930a-504e7c0e8fa4 dd3e81a3-f392-4fff-9fba-35855c2e8144 c4fdf2ab-39ec-4f9b-947c-a8f85d40334d fb4a3cd7-41d4-44c5-9aaf-914e96b16bad 10 a65c84f5-46fc-4b72-8e74-2acff1ca258b Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 44b95cea-3f46-4b6b-b282-cdac19364d61 2 Curve Curve false 329990e8-083a-43f7-baaa-90fed18836f2 1 73 -3000 50 24 106.0588 -2988.617 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 71bb1397-567c-4d75-8665-b4e3269ab3e7 Digit Scroller false 0 12 3 0.190000000 -126 -3028 250 20 -125.0458 -3027.536 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21aeed4b-3362-447a-b26d-c1b13691a4d9 Digit Scroller false 0 12 3 0.400000000 -126 -3068 250 20 -125.0458 -3067.099 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8d5c2ca0-245f-4e3f-af2c-234a7c61b647 Digit Scroller false 0 12 4 0.02000000 -126 -3107 250 20 -125.0458 -3106.868 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b7d3231e-4e24-4334-aeb6-4329747a1277 Digit Scroller false 0 12 4 0.00000000 -126 -3147 250 20 -125.0458 -3146.757 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 4a308d7b-b922-454e-862c-36cb6bf9879c Digit Scroller false 0 12 5 0.0000000 -126 -3188 250 20 -125.0458 -3187.056 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3a2cac49-3804-45c3-a1f1-9ae387f633dc Digit Scroller false 0 12 5 0.0000000 -126 -3228 250 20 -125.0458 -3227.61 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8f4c10af-71d4-4573-9fd9-fd55b1c360a8 Digit Scroller false 0 12 6 0.000000 -126 -3267 250 20 -125.0458 -3266.636 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers acd1b930-6ee9-4f99-a19b-6cb48f642842 Digit Scroller false 0 12 6 0.000000 -126 -3307 250 20 -125.0458 -3306.745 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers dcd58bba-6ec5-4665-9f5e-9748abeb09fe Digit Scroller false 0 12 7 0.00000 -126 -3347 250 20 -125.0458 -3346.806 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e Digit Scroller false 0 12 1 0.00000000000 -126 -3048 250 20 -125.0458 -3047.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905 Digit Scroller false 0 12 1 1.00000000000 -126 -3088 250 20 -125.0458 -3087.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers aacf07bb-5a48-481d-b1bd-7337be133f9e Digit Scroller false 0 12 1 2.00000000000 -126 -3128 250 20 -125.0458 -3127.28 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b2df309f-5daa-4345-833e-d910c82a19a1 Digit Scroller false 0 12 1 3.00000000000 -126 -3168 250 20 -125.0458 -3167.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 12d062ca-3afb-41be-a33a-cf0b30d40747 Digit Scroller false 0 12 1 4.00000000000 -126 -3208 250 20 -125.0458 -3207.058 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e3ee9ed7-1080-4a98-9406-a1760d620df4 Digit Scroller false 0 12 1 5.00000000000 -126 -3248 250 20 -125.0458 -3247.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3aed1e90-8f45-4b3e-8f50-bd809fd87c29 Digit Scroller false 0 12 1 6.00000000000 -126 -3287 250 20 -125.0458 -3286.686 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers a8eb7470-ff2a-44f8-8106-541d81b0944c Digit Scroller false 0 12 1 7.00000000000 -126 -3328 250 20 -125.0458 -3327.029 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3f1d8e98-725f-4789-856a-9ff9dd88ba16 Digit Scroller false 0 12 1 8.00000000000 -126 -3367 250 20 -125.0458 -3366.878 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAACXSURBVEhL3ZOBCoAgDET3xfYJ/Vmf1urGFpmakRtBD0aK290hRr+D9RsCxK3cOYuHmYAwYeM7A56IOfVL25tUGyC+Jlq05kbJmY40qRvsySCg2yEKg1P6bronlAaO6UFm4J0e5AbO6cFhECEOrgZuV2OIQVR6IKlhoHt35HcfuJpuMMbT1PUbMHs7bw0eFUKoOAgVr0C0ARVuksXfojGoAAAAAElFTkSuQmCC fb371ae8-5b99-4464-8511-d9d8f0b30abf DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH true 20 06ef9e04-bc97-4227-8e5c-0baf1b521abd 1d74ab03-d5a6-4c43-878d-a11593a776e9 24f7bdca-045b-421d-96c9-07956873e094 2eba86c1-c323-4d98-a856-bf3a7dec3965 2edbebac-85ae-4867-9c11-da446ffbc094 56b13bf3-2c10-429e-8166-e8d6dd530880 59b0f9d5-da24-461d-9293-4372ce2a132e 6da74475-a224-46e0-b568-d112ce0c308e 7cbc819b-232a-4183-913f-629dcf38d672 8a33c936-934c-44ed-b2dd-3ea79f64eeb4 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f 8ee68260-160e-4c3c-8412-07c3b2899075 a480cd9d-26c8-4bdf-8aae-345290e945da b3622dfb-344f-48e2-bbc5-3c7e97b001a7 cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb d4d2a496-55de-4893-aaae-2f5c47e61e5d ee03b20d-1501-42ae-a84c-4acca9a161d6 f8a7e30f-9336-45c6-897c-5deca2663077 fa4c9def-0c2a-4b57-beb3-0eb5808c5d64 fd26031c-119d-4d02-99eb-e98e506dbc09 e9837f44-fe89-4576-a1ba-d864d9176564 80bcd5c0-5458-4110-bc35-aad5d5e50148 9492d9b1-8423-4285-a424-c395dc7f8b36 88ea5216-22ee-43b9-bf4a-bf732fa4678f 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 98a7b290-1680-4c8f-91d6-4080e52ada8f d134b7cd-fb62-4a2b-a901-fec5a2d783e9 45329fda-4528-406d-a823-54e35ac6ff74 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 34281050-3848-44ac-894c-a3119ffa069f 7979dd58-784d-428c-ab41-1f9a01cb3b5b 357ceb68-e651-4e13-b8c4-6a838be2149a 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 f9b9305d-1e20-4067-946a-b44d88604308 17704c02-f561-4245-bc67-2eaf7cd1e000 054cb35f-8548-43e7-8129-2bbf3a113dd2 e294df03-baaa-4b12-b92f-e97f42ff34ec 9d9970f3-5ab6-40b5-b0f2-d257ffef222d b4c2ea06-2f42-44c4-9b4a-584b407a7f6a ad15254d-f361-46c9-90d6-b5db1b60e3d2 123 -3380 366 404 475 -3178 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component 8a33c936-934c-44ed-b2dd-3ea79f64eeb4 Y component EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 3f1d8e98-725f-4789-856a-9ff9dd88ba16 1 125 -3378 338 20 294 -3368 1 1 {0} 8 Second item for multiplication b3622dfb-344f-48e2-bbc5-3c7e97b001a7 B EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true dcd58bba-6ec5-4665-9f5e-9748abeb09fe 1 125 -3358 338 20 294 -3348 Vector {y} component 7cbc819b-232a-4183-913f-629dcf38d672 Y component SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true a8eb7470-ff2a-44f8-8106-541d81b0944c 1 125 -3338 338 20 294 -3328 1 1 {0} 7 Second item for multiplication 6da74475-a224-46e0-b568-d112ce0c308e B SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true acd1b930-6ee9-4f99-a19b-6cb48f642842 1 125 -3318 338 20 294 -3308 Vector {y} component 8ee68260-160e-4c3c-8412-07c3b2899075 Y component SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 3aed1e90-8f45-4b3e-8f50-bd809fd87c29 1 125 -3298 338 20 294 -3288 1 1 {0} 6 Second item for multiplication fa4c9def-0c2a-4b57-beb3-0eb5808c5d64 B SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 8f4c10af-71d4-4573-9fd9-fd55b1c360a8 1 125 -3278 338 20 294 -3268 Vector {y} component a480cd9d-26c8-4bdf-8aae-345290e945da Y component FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true e3ee9ed7-1080-4a98-9406-a1760d620df4 1 125 -3258 338 20 294 -3248 1 1 {0} 5 Second item for multiplication 06ef9e04-bc97-4227-8e5c-0baf1b521abd B FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 3a2cac49-3804-45c3-a1f1-9ae387f633dc 1 125 -3238 338 20 294 -3228 Vector {y} component 2eba86c1-c323-4d98-a856-bf3a7dec3965 Y component FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 12d062ca-3afb-41be-a33a-cf0b30d40747 1 125 -3218 338 20 294 -3208 1 1 {0} 4 Second item for multiplication f8a7e30f-9336-45c6-897c-5deca2663077 B FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 4a308d7b-b922-454e-862c-36cb6bf9879c 1 125 -3198 338 20 294 -3188 Vector {y} component cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb Y component THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true b2df309f-5daa-4345-833e-d910c82a19a1 1 125 -3178 338 20 294 -3168 1 1 {0} 3 Second item for multiplication fd26031c-119d-4d02-99eb-e98e506dbc09 B THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true b7d3231e-4e24-4334-aeb6-4329747a1277 1 125 -3158 338 20 294 -3148 Vector {y} component 1d74ab03-d5a6-4c43-878d-a11593a776e9 Y component SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true aacf07bb-5a48-481d-b1bd-7337be133f9e 1 125 -3138 338 20 294 -3128 1 1 {0} 2 Second item for multiplication ee03b20d-1501-42ae-a84c-4acca9a161d6 B SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 8d5c2ca0-245f-4e3f-af2c-234a7c61b647 1 125 -3118 338 20 294 -3108 Vector {y} component 59b0f9d5-da24-461d-9293-4372ce2a132e Y component FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905 1 125 -3098 338 20 294 -3088 1 1 {0} 1 Second item for multiplication 24f7bdca-045b-421d-96c9-07956873e094 B FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 21aeed4b-3362-447a-b26d-c1b13691a4d9 1 125 -3078 338 20 294 -3068 Vector {y} component 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f Y component CUWATURE LINEAR STACK GRAPH HEIGHT true ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e 1 125 -3058 338 20 294 -3048 1 1 {0} 0 Second item for multiplication 56b13bf3-2c10-429e-8166-e8d6dd530880 B CUWATURE LINEAR STACK GRAPH MAGNITUDE true 71bb1397-567c-4d75-8665-b4e3269ab3e7 1 125 -3038 338 20 294 -3028 Number of segments d4d2a496-55de-4893-aaae-2f5c47e61e5d Count SEGMENT NUMBER true f682b0f6-c58d-441c-aad3-7e78ad618eaa 1 125 -3018 338 20 294 -3008 1 1 {0} 10 Contains a collection of generic curves true 2edbebac-85ae-4867-9c11-da446ffbc094 Curve CURWE true 44b95cea-3f46-4b6b-b282-cdac19364d61 1 125 -2998 338 20 294 -2988 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 329990e8-083a-43f7-baaa-90fed18836f2 2 Curve Curve false a861383b-5809-40cb-898a-a10bb8a4318a 1 708 -2777 50 24 741.9498 -2765.643 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 2ffb9bf8-04bb-43ad-870c-27cb8a977834 Rotate Rotate 1006 -949 204 81 1146 -908 Base geometry 4679268b-6817-4395-a3c3-a1e4dea43f86 Geometry Geometry true 812b2004-5d23-4a36-8867-c4d7e1d7c8c3 1 1008 -947 126 20 1071 -937 Rotation angle in radians 1d3eca4d-22e4-4954-a38d-015b21550e37 Angle Angle false 0 false 1008 -927 126 20 1071 -917 1 1 {0} 3.1415926535897931 Rotation plane 06872847-c633-4277-b62f-e4e890f8f0bc Plane Plane false 0 1008 -907 126 37 1071 -888.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 94d8eb89-7381-426b-b8b1-357c8092b963 Geometry Geometry false 0 1158 -947 50 38 1183 -927.75 Transformation data 6c3ebb08-bb3b-4305-a5e4-82e1c0d63cd1 Transform Transform false 0 1158 -909 50 39 1183 -889.25 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true b281d2be-84b4-47dc-8ace-27a3ac332b9e Join Curves Join Curves 1050 -1095 116 44 1117 -1073 1 Curves to join 8e108abf-70eb-4972-8f90-5391e067fb23 Curves Curves false e4b1f6e7-170d-45df-9791-bbb815ee8035 1 1052 -1093 53 20 1078.5 -1083 Preserve direction of input curves 8c7f6020-76cb-440e-b2fa-92f2505ab7e6 Preserve Preserve false 0 1052 -1073 53 20 1078.5 -1063 1 1 {0} false 1 Joined curves and individual curves that could not be joined. acedbd1c-3467-434c-8006-a0abb17d5c5b Curves Curves false 0 1129 -1093 35 40 1146.5 -1073 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true b25143b9-9232-4aca-8ca0-a057cea222b4 Merge Merge 1063 -1032 90 64 1108 -1000 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 1e73bf28-e6fb-40d3-a61a-8b33553b4022 false Data 1 D1 true 812b2004-5d23-4a36-8867-c4d7e1d7c8c3 1 1065 -1030 31 20 1080.5 -1020 2 Data stream 2 41f58047-fef6-4899-9f0c-d87d578dbc4f false Data 2 D2 true 94d8eb89-7381-426b-b8b1-357c8092b963 1 1065 -1010 31 20 1080.5 -1000 2 Data stream 3 402d0dad-1d72-4358-93ec-b1c6cfbbe701 false Data 3 D3 true 0 1065 -990 31 20 1080.5 -980 2 Result of merge e4b1f6e7-170d-45df-9791-bbb815ee8035 Result Result false 0 1120 -1030 31 60 1135.5 -1000 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c45782da-fece-45d1-903c-95142361b873 Relay false bc131f89-e2c1-43d2-ac21-36cce03c61c4 1 1083 -260 40 16 1103 -252 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 2d18d6bc-e7ef-4a73-bed3-cfebab1c1ddc Mirror Mirror 946 -1175 303 61 1185 -1144 Base geometry 88f0edf2-99a3-4ef8-bfe0-6cd3ec89b1be Geometry Geometry true acedbd1c-3467-434c-8006-a0abb17d5c5b 1 948 -1173 225 20 1060.5 -1163 Mirror plane 753e174d-0406-4858-a6e8-fa982c76e7f4 Plane Plane false 0 948 -1153 225 37 1060.5 -1134.5 1 1 {0} 0 0 0 -0.707106781186547 0.707106781186548 0 0 0 1 Mirrored geometry 78ba096d-8b9e-43c1-8459-c604b152321e Geometry Geometry false 0 1197 -1173 50 28 1222 -1158.75 Transformation data a0ba188a-afc8-43ab-9484-91ee1de9f2ea Transform Transform false 0 1197 -1145 50 29 1222 -1130.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a861383b-5809-40cb-898a-a10bb8a4318a Relay false 6614bf72-c35c-4dbe-9a1e-0071079f3acd 1 1670 -2530 40 16 1690 -2522 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true d6f43505-dc55-43d0-92a7-03de2322da4c Evaluate Length Evaluate Length 1050 -1300 147 64 1133 -1268 Curve to evaluate 0a6112de-78c2-4f46-810a-b18710d0d2dc Curve Curve false 6cb3866d-b92c-4e3d-875d-fdfd90f1a436 1 1052 -1298 69 20 1086.5 -1288 Length factor for curve evaluation 25255db5-eb68-43e1-bb20-dcf4f44e241d Length Length false 0 1052 -1278 69 20 1086.5 -1268 1 1 {0} 0 If True, the Length factor is normalized (0.0 ~ 1.0) 9107e32a-3b53-49cc-ab5c-b00ae9bcc6c7 Normalized Normalized false 0 1052 -1258 69 20 1086.5 -1248 1 1 {0} true Point at the specified length ae6fdc5d-bca9-41e8-bef5-e3d8b7c3241e Point Point false 0 1145 -1298 50 20 1170 -1288 Tangent vector at the specified length a5b3eade-9a11-479d-9c66-8397d38223e7 Tangent Tangent false 0 1145 -1278 50 20 1170 -1268 Curve parameter at the specified length b2e3239e-8d4d-41ab-aaf1-d9adc2e89cce Parameter Parameter false 0 1145 -1258 50 20 1170 -1248 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true feeaaf03-4336-444f-97f4-d5ecc21fbdad Evaluate Length Evaluate Length 1050 -1384 147 64 1133 -1352 Curve to evaluate f48131a1-2218-4109-a71f-73f6f9195a3f Curve Curve false 6cb3866d-b92c-4e3d-875d-fdfd90f1a436 1 1052 -1382 69 20 1086.5 -1372 Length factor for curve evaluation 7dc1b860-570d-4ac0-bfaf-9549ae8ba352 Length Length false 0 1052 -1362 69 20 1086.5 -1352 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 260b2f23-f619-4dc5-a62a-a4564ddda64b Normalized Normalized false 0 1052 -1342 69 20 1086.5 -1332 1 1 {0} true Point at the specified length 6069dcc6-b7a0-446e-8a9d-19a456dff452 Point Point false 0 1145 -1382 50 20 1170 -1372 Tangent vector at the specified length 929b6376-698e-4a9a-99a0-7b3c34b91023 Tangent Tangent false 0 1145 -1362 50 20 1170 -1352 Curve parameter at the specified length 0b12e24f-baae-475c-bcce-5d4c4194e305 Parameter Parameter false 0 1145 -1342 50 20 1170 -1332 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 84ebefed-d9d7-47bd-9c99-59b226d0f80c Line SDL Line SDL 1086 -1593 94 64 1144 -1561 Line start point af8f617f-d75d-4dfc-b481-7c5302cd0744 Start Start false ae6fdc5d-bca9-41e8-bef5-e3d8b7c3241e 1 1088 -1591 44 20 1110 -1581 Line tangent (direction) c45d5799-262a-4625-9ee5-b3cdf578a619 Direction Direction false 2cebf9e3-6769-4ed3-8c1d-acdf1ca8e1fc 1 1088 -1571 44 20 1110 -1561 1 1 {0} 0 0 1 Line length 2b6e9af2-3acd-46e1-8b0c-1b5cad45bf03 Length Length false 508a4dbb-b51d-4212-b0e0-7208602818df 1 1088 -1551 44 20 1110 -1541 1 1 {0} 65536 Line segment 2ff5b42f-0681-4b38-8c93-526725d1453e Line Line false 0 1156 -1591 22 60 1167 -1561 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. f18fa269-0fd1-4226-bf0d-871108dd279b Rotate Rotate 1032 -1467 179 64 1164 -1435 Vector to rotate 9924d0c0-39eb-42ba-8b88-c9512294f8b3 Vector Vector false a5b3eade-9a11-479d-9c66-8397d38223e7 1 1034 -1465 118 20 1101 -1455 Rotation axis 4ecf4973-0b48-4773-afd9-2af31977d06a Axis Axis false 0 1034 -1445 118 20 1101 -1435 1 1 {0} 0 0 1 Rotation angle (in degrees) 2d1c98b5-24ec-41d3-86cd-99c275ebc20b Angle Angle false 0 true 1034 -1425 118 20 1101 -1415 1 1 {0} 90 Rotated vector 2cebf9e3-6769-4ed3-8c1d-acdf1ca8e1fc Vector Vector false 0 1176 -1465 33 60 1192.5 -1435 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true bdab7de1-d1d7-4a47-82ec-387583bbbac2 Line SDL Line SDL 1382 -1800 94 64 1440 -1768 Line start point 9d8ae3b2-4506-46f4-ac41-73fca9c6476d Start Start false 6069dcc6-b7a0-446e-8a9d-19a456dff452 1 1384 -1798 44 20 1406 -1788 Line tangent (direction) 4742f4ad-937b-4508-b299-2d138ae6087b Direction Direction false 977e6fb1-cef6-4f75-afcd-03741b828b5f 1 1384 -1778 44 20 1406 -1768 1 1 {0} 0 0 1 Line length b9249a67-89ba-4918-91e0-57bc5fd4aba5 Length Length false 508a4dbb-b51d-4212-b0e0-7208602818df 1 1384 -1758 44 20 1406 -1748 1 1 {0} 65536 Line segment 28a3fd84-981e-486e-aebb-363118994e97 Line Line false 0 1452 -1798 22 60 1463 -1768 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. ab71c3fb-d343-4a5b-a213-307d7f86b820 Rotate Rotate 1325 -1717 179 64 1457 -1685 Vector to rotate 10126bc6-c381-4098-b956-b4c6cdf9eb77 Vector Vector false 929b6376-698e-4a9a-99a0-7b3c34b91023 1 1327 -1715 118 20 1394 -1705 Rotation axis 04e96c77-ae73-4f84-816d-fec122d85895 Axis Axis false 0 1327 -1695 118 20 1394 -1685 1 1 {0} 0 0 -1 Rotation angle (in degrees) 82e80974-fb2f-42d0-b52a-20639d009b99 Angle Angle false 0 true 1327 -1675 118 20 1394 -1665 1 1 {0} 180 Rotated vector 977e6fb1-cef6-4f75-afcd-03741b828b5f Vector Vector false 0 1469 -1715 33 60 1485.5 -1685 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 508a4dbb-b51d-4212-b0e0-7208602818df X*256*256 Number Number false bc131f89-e2c1-43d2-ac21-36cce03c61c4 1 1100 -1510 50 24 1133 -1498 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a Trim curve by curve Trim a curve by another curve fY1lJ87mTjdKsPNx63Ms1IGkZYwrNczI/k7MRoOf2aJD7E/lZvPpUg3VSJa2b+pSlJzJ5rPjMYjVC4WtcN37IvowXTNJL6i6KR9x1Z3AOvAENiAb3iKAp74rIyAW9pHm9SPwJaKk2ffRJCE2kZo9LO1V5NqyedxlOpZ7/nI7pmyz3SYVBd6nDj3CUrRjHHiQb+aO29vfihluoAupM+Nd8Ryr9F99Ofj4w3J8lxcSKCm4o1bd19K8Mu2/ldv6uclP9XuZGAVs+luxMIvZERlyv7fAddHFhMNpeikiYoS8rmVcoEW/bIB0ZtJD/93ZSeu3lWAtLSpNs/VxlfIgUgbeYQynk0/PqGjJVb4+Kddv5KjDrDHIITOrkT0Djk6+zX8eLFKfrrqys6NfDkHbMEAwHsWTlLaeTH434C/hZGdogWDGgyDYQEMAmZU8nTBF7W6gmLekLKLD+QNN51GDzpVhPgy4KR6popoI3lLX6bJx24abSvIbsIeUyaSxK7OcFfHEiX+ta5S9tOd4LKa0w1nEczOsbFdUHYfUozDVMgib7CqLsiYV+bOPbDkgIn7pVjkJva98J/Ye5zntxLy8UiC6UmircrpVR5FLOyV88aGlLihunsqQuxutPZ8/EzEorp0/xqbqtlqmGvfeSYzk7qhHMxSFMztDxHSlly0CfEePh0on5OseEVINhLdPjIhx70ofNdvgBnaAEeNM8DSW4tQg3HtfY613yOuBpJA/ulbHCv5HY8VniezEC9LjwJk8s+II2n3e4S7lg7YmWQ5B+6I9t8GhmSV9vIJEaPI8QXLiDqxZ+/tbF7vnFMY0tYytGPXaYnOLXS3B/djS1MTx4oVm2gWZ7Y6QkuX40Ci5jbBEvcFBgHFxYHNufXXg+MQVNHfB7CLcW1QcOL6bMz5TOXIc3DWknMc9gL48A+JYtQacwijiK6tbNZPSJc195IOPBhYPBekTZ+eX3MgJKpqBARpnGcRe86yeYhDrXz8GvgNsGGUDW00vdoOTftNKPsw4dRU9qtc8vxe+QLWeLwgVhrpFcqDyPru9cEXBCjZBWPdYvjzU35eix31d9R201axf2/Qi7ZFYrZbvcxd0LrJuGw8xXrPhnbnPzL4KRPFRCdqDWB47b+6n+yT4NvAD83+FUGQssegU+KH30qBE1MTBqOCp6rfhoCqBqr07GGJee170oHZHq2G8plUM7TMK7tBtbHcHu7XvSlwclrVlFNC6AhrOV342GPeViBd1EKvAFWWkuytH4dbnVM6ExLK8aIl6ZCpbw16ig29Q05S//BFMvsxklp9b4MUIjNwU2ZCZ52f3P2wV4u842qjcc48wwN/Ji/dAi7RH2U58ndQoxTz2zDwuRECSg2HNt4prqOTT/AJpRsLUrNg2BCXNOOjc5Mi8Be6SJEzObx6sRSKIw2u32yjaUNaIauYQUAYG8D6c62LlkInHo0v5pYxRrxXdq5VMYN0nBQ9tgjywzQTYy4M9WNQpyJCcdbu1rEZ4WriY15IAZyR/KSBgUQB4Vr/JeF5s11iugvGWfYLhRS43c5tZODdCwEhoOGSYn1KkRWQDE40SPfiAPAUEy3ANr8xh9xjCSYq8IuyhDy9xQzgh9RfDKjdaE/ohJxAvRFOWxJ2cGD84DgmgkKmKQUZ1HIjQ3WP3kQ2C9fD1+4hRRMyFS9H5lzn01+YzWB1WvO1B5bgZFJC7BurZ0hpOjZ8i0R28WBAl2nmswCUsIoEQLKosiZsAucSqY4d2/ruXtVRC7fDXIywAL/qUBWVyHffeG2ffXWO7EFYT/SfnmbJ7YHs8gBgj/2BIUZGM+eil/CqUC5Cf4iA9TH17+foRjZ4DiCY5GwpuajJ5OmR6iY6OEJPwjmGFvWbU3XOYco5yEGVh0awdqi9P+MknJC12S28eiTho4iF1T5yIyFbZY1u+egGplYCvFWRsdQYuu8kRNPZ2ktKAc2hQjHvzBkkZnPUlNavRkCC2jwhkn1KdmFNVsgfsaZ6G1HTLRdtKNBilKwcoLH65aHeRc/l84dHBt85Z8oRO6zV0Q9nInZMTRc1lKecnzPRXsOZm+TRJd8BlbNUmMlGq9pgAABD34n3ws1ro+0T4he15n3R/32IkPvB/jsQ0T6R3PZSTpIq+O9KnKSfGpImQKJ56dPGxY1G4i++bapUvNkTA42UB86A1jUAjSjWwk99dG1U/4kqQslKBG24EB4PptI03qDpnqUDUoW7bN1JgEO7wnb2I2wEbL7vGNLEtV9hXzaf8GgM0Z1msngetPLnI1HUh9WxjmarVyQ8jT5s177b750GuGSpEJwhr60ilZa9z4s6IH5EMMQ6rt3A5dU9/BE/1vKHybzWeCnyakMuyI8D5RjHpIUjSvxVo2lUeNcvSLKZGJld15ipRUmO51LB5QH9Nia+deuNbnb5kb/7NOpJq/OCDXd7lYCsQg5B95RJRPaAgRy+1WE2s+Nv0wlHA1cRvta6sBP2uv2LDh4vmwRIpBYP6umCfSGJD3OzFRZ0EubAhr6+sXb+1NwKo7/UD+DOznQsZLXa3EHH7zbWOAkyZojS5yeJS8JKqm7jCb6zQsoqUNOkgG3uEE7789CzEZxwkdLHIHDTtNP+WdzIOp31bNR017fDb/YpJSh3/Z1KWpVDH2yVWlpEytg4+X9KueuHYICGag0kpko/d5nmON8OeYGaA1rkEnZK9X6EWpYw5jyZanQFgYyRAk0B8mMLsYZBCskASJS1ewFInPtrfYU4zEpjqvEwJzqmU0ocbxVakwyGzaivYq4NjcaXewUNj8LyAOaEYfmE9htMDirh4DMqlCUZVr2BNuK1utHQt8E1tueU1jS15FnH5WCdeiVGHsIc4kjLwfnfkVMa5tekZHJpCGnMNcFKVxDs1sSdxuqb0EWymr2X+wgUb4XAM5u++6papCSVuQ6x5n3KIgkAibkhltOObX74erSyXOUjkbWyXHLqdT8X9wBb7LDxrFaklQPPE1ELCQCbxNjSvFDIZ6Vx/IHV9ii9TXCVXadrbLchi2DHjvOidlp+Y5tYx+cwOmFCv4DJLlRgO2GaOyZHtrFR8429XO/rArhFwzNqdmciwCNFFewYAInLTeLlKa+wZBcFHN5QT5wvVDs7wfNXIyz3dPkfdfZz5tjDwWYkPMGtVO+mmnHK/2Ed5kBTzqE3nCL2unv+2L8Cu2gIuaxpAqLnPNuz+EceKAotcldgkZW/g8TCNbAqbuGq8Dmhjz19a92W9LYe8HnO33VKvW3/QlZ0OQTJfDoa5/JNOapjZn42bSU2NTVm5yj4qs1jKnrDLsAcpcYdUCR2fsY76dzgkRTPaBfrr/DTq14B9xJ7qJhAhp3MIBlAQUCNkdYjk2Bq0CRPVRC4wYoCulU4HRCX5qqvfMc1aR1cbklt43g4qeRKStibPbAzOAOx5RxBEUVSXOoRmRNc6AVQ6Wui0EbavfWvpPLclZwo0rLscUL2KJhS1ZU+DyoDo7a26jQA3ERQKbGmgcPdo37X5juVEqBD02Vo1r7VnIRZ5zkA8POi7QSAWjCkOCinyoDrTvLIb4z8P5bupOGwz/tSxXS7oAe0MJIzs51cqjNpemSAygPt/6XmKEH7IZOcAAgE2WJnVnvkahYykYQXuO8ZkcULXY0TGCy6JGE60+5BgOCuE1t0AX0SPelFhn6nSnb9GUL+/LPRU71mo6xI+QDXMpAhHTUPHCOnnlG8CGv0H2qYMTTgRPm+8h3arDNNeGuSg5/6Los//7zZjewS2YW1Q9tgknAfpjpjo3rxALejn7eUbKRLzH7hKy/ko7hz1pKfaZKx1hLB9Lf7AudpGxz3dddBgEsNAhOEvFRfmUrG/Z3c73nvv4eIplDXlusFn9mijKKHPiPhzbk7oM16Lm0exYImiyIhHpUQuKrkpVrD1C7chTiikkip1SvEDKdF1A/KzIn433CG7xY2VgGsxaWt0o4C9Ww3g2up2Vgvu+msLBuq2jJC0iAWuXtUau7W0lLBJq0L9PRJuYbvO+CqX/Ltw2kqypXmFm38fp+muXLf1eSwKcT046yLwqOQJYxqx/fG4N1xKNNlP1tnxfHjK1/jcrcU0iztoxtQfjJlXqSFZtotubhFR7pA/JLUaYLEFTAFs90nnYvXhio3TW844KjkmVeyh8kDE4lKIAMt7E4Ixpm2bO6U7ijM34ELSlcNYx2GlRMOFaDyaJopeXARt1q8ze0x/hLW+jOCU3BBZxcdSnmyAVPixf12YmsMqGw1DwWMNRyxkGbeQInDd6vFDNT7V2tO2GXNujilPOgMT8wErNBT1CVhDtrp8gJ/sXnQK0UU96+ameGuJX7M0bJfZgBUujL94VUUM5zlepBDBXpiObc5ylPYGSJkRfQzwrGytT6Mg/MYtko6GpDWsfE5fJBnsa8HsHxXNSJAbVZE+LmyRuMTJyqSd70JLHjqRYIOnYn/NT1mcL+/PYJXemFfIrG4QJWS/hNnciuoI/H7IrjwhBpw59qPSZ+h08NhPIrwmIGDjf5NN98CJriEB/2dm0BAd8m487JCQ0k72fiNr10NToMeioY4ZLql+6OYYMwt79GfK8ItOeZizFQ/TOsKzQn+LyeY+4y+MzOw4BZOFBU7ZJYWQxs7u5Yamv1tzm5qGejJF062eFaPVRJS+MvFwy9MHE50W3KqCLCg8tuyL55qCc1nnDlZU2YgE4mApr6Wvo+sk9xvFUOnJG5h/Up8bIdeSDW+08nr2/ljR5+gvpl1CX3KNVbxECA4Zf+uv+JMD8H8RoRi8skrQHryg6qMAHs3K6z76UxuJPdRRwEahtfQZqlE7fokYzg4bUoPAi2DOobXPtZzBEDvIYSE5NpoyI6pFRGO9omSTLj1wfcLvqgaT2k1NyyVNOUhLyG0LffYzv+77pcq0tWkIMKJ0lOE8ckPjiUE0Mvf308yvXQDEGGeHzLTdLjGeio198542Yk+DbSDRULHGZ2tc1+36gWaPQHbC8dEnAN8yoDPjdHyIbPZnTV7sn2DXjmw3DKajIkmmPbQIj+choCp3wyWRcrCtf+IgXlQKh0B5VHn8RDx+qaScEYLqcJMGZKZWpJ5lUdocBNEdu0/u+mvwwVBNP3htH+JSAYZmwQqJIIZrkGcPh4tC0PyUBW9jh8/KSJl2kiGtW6Z0PYEvCH/C9DvtXefxt3UHSHKD7V9r1eNcO1+aSuoFy51Wqtfgqfs8V3Jaxt/mYbptPRKG8RFjA9gD9TOJjXFemBCAMyHoDZgVizwYaFA/i3RS+HbvNLY2oUYmaiHxknmC3PvIr2QcSBA75nQDB071Kq+dfSxTHbQCV+vvjnFIadwWzYtL8UwuWHTu+A== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwgAADsIBFShKgAAAApBJREFUSEvNlM2LTnEUx4+3MRjvw4y3vMQ0ZBSh5J2FDUlKSQghQrJFiZ2FDQsWmllYaCKRhf/AygYrkQUZM2NFWMw8PT6fZ+6deJ77eF6ycOpT9577u+ec3znf3y/+VxudMApG6PiX9hM+wkM4BhOhAUZCmrjupP58Ei7BPXgFH+AGfE7YB+OhriT+tBzWwLZlERfWRbzEmU8Nv0laoe4kLc0RbUcius9E5M4RfMKfCfpgAUwGd1ybtUU0n454buCzEYMHIx7Piejk0zfIwV1YAlOg9gQMoMvgVN+/MeIArrWwCXbBHeiBdpgGDr6spYoYluLxiA7bYuVbh4bZAYyiEHAl7IG3cAJMoLpKzKxu14Vd4E8OrOFUxG2rPxpxn3cDLwY6FC0wH9bDA3gKM2EclFgqxWug1t/Ba7jaGDHgQOdFXOfdBAZ3mPZ7FqyAK6B0VVITlJg7GJYiuAMHl0uEolK+gAlmADljErgLfWggfoA70J9pLlZqiKbQ2y3wNYlvgn6wPVY+BpyRhfls1Sg5poLJM83j75CsYja004ubDCLvoeL9FhRL0SSiKOy9wcvKNF1gIoO0cul0O+BVEW94fw9LwSqzpKivbHDNrY4FEzXtjdiOPAeUKGVfxOdlx2GO6eDamsxtpsEb90dsJnCf1R+KeILPoT+DR2ALEdfQOanGdoInsXdRxGVOS6eVGxzdvmB6HN7YAcr0dyna94pmFZ8SoRQusORKyNl/9Laa70p3A5yH75BK8a/9Ts1FPUn8PPsePMyJpeTd+JWkslW+BiyWYtUJvF96QZ1bpUpZCErVYPZbhVQlxWKzRd459tV7ReaCStFf3OeKUsyyNIn3i/hcc5BKZhKDStXyy7aIX163ouzX7riaAAAAAElFTkSuQmCC e1e74227-c1a8-4d93-9c22-9d0125a12025 g6YMIuZ667fDhD+40SRpsw== Trim curve by curve Trim curve by curve true charles.villedavray@gmail.com Charles THIERRY DE VILLE D'AVRAY 0661174516 4 191051aa-0fc0-4735-ad35-d0fa499bb3c4 253a5dd0-da32-4cf3-aacb-2434eb173b0e e1a16ef4-e54f-4754-b16c-63bfd64436a9 ea6e7738-410c-4dcc-8edc-968fe8e31084 1027c2ce-012c-40f6-ba26-b78bedd9b2ba 69339a1f-ab7b-4636-86bb-0544a4ee796d 6b812227-ea45-4a58-93c0-24934db84990 909cf251-d510-4cbd-bcc0-81b3a005169d 1376 -2039 108 64 1440 -2007 3 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 cb95db89-6165-43b6-9c41-5702bc5bf137 1 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Contains a collection of generic curves true 253a5dd0-da32-4cf3-aacb-2434eb173b0e Curve Curve true 3a0447c1-6820-4d27-8529-a8aaf185ffa9 1 1378 -2037 50 20 1403 -2027 Contains a collection of generic curves true 191051aa-0fc0-4735-ad35-d0fa499bb3c4 Curve Curve true e539fb20-d885-4e8e-a2c8-6974d419007c 1 1378 -2017 50 20 1403 -2007 Contains a collection of boolean values ea6e7738-410c-4dcc-8edc-968fe8e31084 Boolean Boolean true 0 1378 -1997 50 20 1403 -1987 1 1 {0} true Contains a collection of generic curves e1a16ef4-e54f-4754-b16c-63bfd64436a9 Curve Curve false 0 1452 -2037 30 60 1467 -2007 22990b1f-9be6-477c-ad89-f775cd347105 Flip Curve Flip a curve using an optional guide curve. 7bfa30d5-1ee9-40ac-9260-840bf0c99e8c Flip Curve Flip Curve 1382 -1861 88 44 1426 -1839 Curve to flip 8af12324-2d56-494a-ad69-e2f60fc1857b Curve Curve false 28a3fd84-981e-486e-aebb-363118994e97 1 1384 -1859 30 20 1399 -1849 Optional guide curve 7c5e8bca-d137-4d0c-b3a5-ac66c4adc34e Guide Guide true 0 1384 -1839 30 20 1399 -1829 Flipped curve 3a0447c1-6820-4d27-8529-a8aaf185ffa9 Curve Curve false 0 1438 -1859 30 20 1453 -1849 Flip action 0471d0bf-f14d-4e8a-aa33-bd7408328c40 Flag Flag false 0 1438 -1839 30 20 1453 -1829 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a Trim curve by curve Trim a curve by another curve fY1lJ87mTjdKsPNx63Ms1IGkZYwrNczI/k7MRoOf2aJD7E/lZvPpUg3VSJa2b+pSlJzJ5rPjMYjVC4WtcN37IvowXTNJL6i6KR9x1Z3AOvAENiAb3iKAp74rIyAW9pHm9SPwJaKk2ffRJCE2kZo9LO1V5NqyedxlOpZ7/nI7pmyz3SYVBd6nDj3CUrRjHHiQb+aO29vfihluoAupM+Nd8Ryr9F99Ofj4w3J8lxcSKCm4o1bd19K8Mu2/ldv6uclP9XuZGAVs+luxMIvZERlyv7fAddHFhMNpeikiYoS8rmVcoEW/bIB0ZtJD/93ZSeu3lWAtLSpNs/VxlfIgUgbeYQynk0/PqGjJVb4+Kddv5KjDrDHIITOrkT0Djk6+zX8eLFKfrrqys6NfDkHbMEAwHsWTlLaeTH434C/hZGdogWDGgyDYQEMAmZU8nTBF7W6gmLekLKLD+QNN51GDzpVhPgy4KR6popoI3lLX6bJx24abSvIbsIeUyaSxK7OcFfHEiX+ta5S9tOd4LKa0w1nEczOsbFdUHYfUozDVMgib7CqLsiYV+bOPbDkgIn7pVjkJva98J/Ye5zntxLy8UiC6UmircrpVR5FLOyV88aGlLihunsqQuxutPZ8/EzEorp0/xqbqtlqmGvfeSYzk7qhHMxSFMztDxHSlly0CfEePh0on5OseEVINhLdPjIhx70ofNdvgBnaAEeNM8DSW4tQg3HtfY613yOuBpJA/ulbHCv5HY8VniezEC9LjwJk8s+II2n3e4S7lg7YmWQ5B+6I9t8GhmSV9vIJEaPI8QXLiDqxZ+/tbF7vnFMY0tYytGPXaYnOLXS3B/djS1MTx4oVm2gWZ7Y6QkuX40Ci5jbBEvcFBgHFxYHNufXXg+MQVNHfB7CLcW1QcOL6bMz5TOXIc3DWknMc9gL48A+JYtQacwijiK6tbNZPSJc195IOPBhYPBekTZ+eX3MgJKpqBARpnGcRe86yeYhDrXz8GvgNsGGUDW00vdoOTftNKPsw4dRU9qtc8vxe+QLWeLwgVhrpFcqDyPru9cEXBCjZBWPdYvjzU35eix31d9R201axf2/Qi7ZFYrZbvcxd0LrJuGw8xXrPhnbnPzL4KRPFRCdqDWB47b+6n+yT4NvAD83+FUGQssegU+KH30qBE1MTBqOCp6rfhoCqBqr07GGJee170oHZHq2G8plUM7TMK7tBtbHcHu7XvSlwclrVlFNC6AhrOV342GPeViBd1EKvAFWWkuytH4dbnVM6ExLK8aIl6ZCpbw16ig29Q05S//BFMvsxklp9b4MUIjNwU2ZCZ52f3P2wV4u842qjcc48wwN/Ji/dAi7RH2U58ndQoxTz2zDwuRECSg2HNt4prqOTT/AJpRsLUrNg2BCXNOOjc5Mi8Be6SJEzObx6sRSKIw2u32yjaUNaIauYQUAYG8D6c62LlkInHo0v5pYxRrxXdq5VMYN0nBQ9tgjywzQTYy4M9WNQpyJCcdbu1rEZ4WriY15IAZyR/KSBgUQB4Vr/JeF5s11iugvGWfYLhRS43c5tZODdCwEhoOGSYn1KkRWQDE40SPfiAPAUEy3ANr8xh9xjCSYq8IuyhDy9xQzgh9RfDKjdaE/ohJxAvRFOWxJ2cGD84DgmgkKmKQUZ1HIjQ3WP3kQ2C9fD1+4hRRMyFS9H5lzn01+YzWB1WvO1B5bgZFJC7BurZ0hpOjZ8i0R28WBAl2nmswCUsIoEQLKosiZsAucSqY4d2/ruXtVRC7fDXIywAL/qUBWVyHffeG2ffXWO7EFYT/SfnmbJ7YHs8gBgj/2BIUZGM+eil/CqUC5Cf4iA9TH17+foRjZ4DiCY5GwpuajJ5OmR6iY6OEJPwjmGFvWbU3XOYco5yEGVh0awdqi9P+MknJC12S28eiTho4iF1T5yIyFbZY1u+egGplYCvFWRsdQYuu8kRNPZ2ktKAc2hQjHvzBkkZnPUlNavRkCC2jwhkn1KdmFNVsgfsaZ6G1HTLRdtKNBilKwcoLH65aHeRc/l84dHBt85Z8oRO6zV0Q9nInZMTRc1lKecnzPRXsOZm+TRJd8BlbNUmMlGq9pgAABD34n3ws1ro+0T4he15n3R/32IkPvB/jsQ0T6R3PZSTpIq+O9KnKSfGpImQKJ56dPGxY1G4i++bapUvNkTA42UB86A1jUAjSjWwk99dG1U/4kqQslKBG24EB4PptI03qDpnqUDUoW7bN1JgEO7wnb2I2wEbL7vGNLEtV9hXzaf8GgM0Z1msngetPLnI1HUh9WxjmarVyQ8jT5s177b750GuGSpEJwhr60ilZa9z4s6IH5EMMQ6rt3A5dU9/BE/1vKHybzWeCnyakMuyI8D5RjHpIUjSvxVo2lUeNcvSLKZGJld15ipRUmO51LB5QH9Nia+deuNbnb5kb/7NOpJq/OCDXd7lYCsQg5B95RJRPaAgRy+1WE2s+Nv0wlHA1cRvta6sBP2uv2LDh4vmwRIpBYP6umCfSGJD3OzFRZ0EubAhr6+sXb+1NwKo7/UD+DOznQsZLXa3EHH7zbWOAkyZojS5yeJS8JKqm7jCb6zQsoqUNOkgG3uEE7789CzEZxwkdLHIHDTtNP+WdzIOp31bNR017fDb/YpJSh3/Z1KWpVDH2yVWlpEytg4+X9KueuHYICGag0kpko/d5nmON8OeYGaA1rkEnZK9X6EWpYw5jyZanQFgYyRAk0B8mMLsYZBCskASJS1ewFInPtrfYU4zEpjqvEwJzqmU0ocbxVakwyGzaivYq4NjcaXewUNj8LyAOaEYfmE9htMDirh4DMqlCUZVr2BNuK1utHQt8E1tueU1jS15FnH5WCdeiVGHsIc4kjLwfnfkVMa5tekZHJpCGnMNcFKVxDs1sSdxuqb0EWymr2X+wgUb4XAM5u++6papCSVuQ6x5n3KIgkAibkhltOObX74erSyXOUjkbWyXHLqdT8X9wBb7LDxrFaklQPPE1ELCQCbxNjSvFDIZ6Vx/IHV9ii9TXCVXadrbLchi2DHjvOidlp+Y5tYx+cwOmFCv4DJLlRgO2GaOyZHtrFR8429XO/rArhFwzNqdmciwCNFFewYAInLTeLlKa+wZBcFHN5QT5wvVDs7wfNXIyz3dPkfdfZz5tjDwWYkPMGtVO+mmnHK/2Ed5kBTzqE3nCL2unv+2L8Cu2gIuaxpAqLnPNuz+EceKAotcldgkZW/g8TCNbAqbuGq8Dmhjz19a92W9LYe8HnO33VKvW3/QlZ0OQTJfDoa5/JNOapjZn42bSU2NTVm5yj4qs1jKnrDLsAcpcYdUCR2fsY76dzgkRTPaBfrr/DTq14B9xJ7qJhAhp3MIBlAQUCNkdYjk2Bq0CRPVRC4wYoCulU4HRCX5qqvfMc1aR1cbklt43g4qeRKStibPbAzOAOx5RxBEUVSXOoRmRNc6AVQ6Wui0EbavfWvpPLclZwo0rLscUL2KJhS1ZU+DyoDo7a26jQA3ERQKbGmgcPdo37X5juVEqBD02Vo1r7VnIRZ5zkA8POi7QSAWjCkOCinyoDrTvLIb4z8P5bupOGwz/tSxXS7oAe0MJIzs51cqjNpemSAygPt/6XmKEH7IZOcAAgE2WJnVnvkahYykYQXuO8ZkcULXY0TGCy6JGE60+5BgOCuE1t0AX0SPelFhn6nSnb9GUL+/LPRU71mo6xI+QDXMpAhHTUPHCOnnlG8CGv0H2qYMTTgRPm+8h3arDNNeGuSg5/6Los//7zZjewS2YW1Q9tgknAfpjpjo3rxALejn7eUbKRLzH7hKy/ko7hz1pKfaZKx1hLB9Lf7AudpGxz3dddBgEsNAhOEvFRfmUrG/Z3c73nvv4eIplDXlusFn9mijKKHPiPhzbk7oM16Lm0exYImiyIhHpUQuKrkpVrD1C7chTiikkip1SvEDKdF1A/KzIn433CG7xY2VgGsxaWt0o4C9Ww3g2up2Vgvu+msLBuq2jJC0iAWuXtUau7W0lLBJq0L9PRJuYbvO+CqX/Ltw2kqypXmFm38fp+muXLf1eSwKcT046yLwqOQJYxqx/fG4N1xKNNlP1tnxfHjK1/jcrcU0iztoxtQfjJlXqSFZtotubhFR7pA/JLUaYLEFTAFs90nnYvXhio3TW844KjkmVeyh8kDE4lKIAMt7E4Ixpm2bO6U7ijM34ELSlcNYx2GlRMOFaDyaJopeXARt1q8ze0x/hLW+jOCU3BBZxcdSnmyAVPixf12YmsMqGw1DwWMNRyxkGbeQInDd6vFDNT7V2tO2GXNujilPOgMT8wErNBT1CVhDtrp8gJ/sXnQK0UU96+ameGuJX7M0bJfZgBUujL94VUUM5zlepBDBXpiObc5ylPYGSJkRfQzwrGytT6Mg/MYtko6GpDWsfE5fJBnsa8HsHxXNSJAbVZE+LmyRuMTJyqSd70JLHjqRYIOnYn/NT1mcL+/PYJXemFfIrG4QJWS/hNnciuoI/H7IrjwhBpw59qPSZ+h08NhPIrwmIGDjf5NN98CJriEB/2dm0BAd8m487JCQ0k72fiNr10NToMeioY4ZLql+6OYYMwt79GfK8ItOeZizFQ/TOsKzQn+LyeY+4y+MzOw4BZOFBU7ZJYWQxs7u5Yamv1tzm5qGejJF062eFaPVRJS+MvFwy9MHE50W3KqCLCg8tuyL55qCc1nnDlZU2YgE4mApr6Wvo+sk9xvFUOnJG5h/Up8bIdeSDW+08nr2/ljR5+gvpl1CX3KNVbxECA4Zf+uv+JMD8H8RoRi8skrQHryg6qMAHs3K6z76UxuJPdRRwEahtfQZqlE7fokYzg4bUoPAi2DOobXPtZzBEDvIYSE5NpoyI6pFRGO9omSTLj1wfcLvqgaT2k1NyyVNOUhLyG0LffYzv+77pcq0tWkIMKJ0lOE8ckPjiUE0Mvf308yvXQDEGGeHzLTdLjGeio198542Yk+DbSDRULHGZ2tc1+36gWaPQHbC8dEnAN8yoDPjdHyIbPZnTV7sn2DXjmw3DKajIkmmPbQIj+choCp3wyWRcrCtf+IgXlQKh0B5VHn8RDx+qaScEYLqcJMGZKZWpJ5lUdocBNEdu0/u+mvwwVBNP3htH+JSAYZmwQqJIIZrkGcPh4tC0PyUBW9jh8/KSJl2kiGtW6Z0PYEvCH/C9DvtXefxt3UHSHKD7V9r1eNcO1+aSuoFy51Wqtfgqfs8V3Jaxt/mYbptPRKG8RFjA9gD9TOJjXFemBCAMyHoDZgVizwYaFA/i3RS+HbvNLY2oUYmaiHxknmC3PvIr2QcSBA75nQDB071Kq+dfSxTHbQCV+vvjnFIadwWzYtL8UwuWHTu+A== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAApBJREFUSEvNlM2LTnEUx4+3MRjvw4y3vMQ0ZBSh5J2FDUlKSQghQrJFiZ2FDQsWmllYaCKRhf/AygYrkQUZM2NFWMw8PT6fZ+6deJ77eF6ycOpT9577u+ec3znf3y/+VxudMApG6PiX9hM+wkM4BhOhAUZCmrjupP58Ei7BPXgFH+AGfE7YB+OhriT+tBzWwLZlERfWRbzEmU8Nv0laoe4kLc0RbUcius9E5M4RfMKfCfpgAUwGd1ybtUU0n454buCzEYMHIx7Piejk0zfIwV1YAlOg9gQMoMvgVN+/MeIArrWwCXbBHeiBdpgGDr6spYoYluLxiA7bYuVbh4bZAYyiEHAl7IG3cAJMoLpKzKxu14Vd4E8OrOFUxG2rPxpxn3cDLwY6FC0wH9bDA3gKM2EclFgqxWug1t/Ba7jaGDHgQOdFXOfdBAZ3mPZ7FqyAK6B0VVITlJg7GJYiuAMHl0uEolK+gAlmADljErgLfWggfoA70J9pLlZqiKbQ2y3wNYlvgn6wPVY+BpyRhfls1Sg5poLJM83j75CsYja004ubDCLvoeL9FhRL0SSiKOy9wcvKNF1gIoO0cul0O+BVEW94fw9LwSqzpKivbHDNrY4FEzXtjdiOPAeUKGVfxOdlx2GO6eDamsxtpsEb90dsJnCf1R+KeILPoT+DR2ALEdfQOanGdoInsXdRxGVOS6eVGxzdvmB6HN7YAcr0dyna94pmFZ8SoRQusORKyNl/9Laa70p3A5yH75BK8a/9Ts1FPUn8PPsePMyJpeTd+JWkslW+BiyWYtUJvF96QZ1bpUpZCErVYPZbhVQlxWKzRd459tV7ReaCStFf3OeKUsyyNIn3i/hcc5BKZhKDStXyy7aIX163ouzX7riaAAAAAElFTkSuQmCC a7045d2a-41de-4bcb-aa4a-1d6169dc3f94 g6YMIuZ667fDhD+40SRpsw== Trim curve by curve Trim curve by curve true charles.villedavray@gmail.com Charles THIERRY DE VILLE D'AVRAY 0661174516 4 1fe8303b-9782-4d88-a3b2-4f1c51f6b3b6 751f9d51-82ce-4c9f-881c-627ec2dfa87e b2d85da4-c621-4f05-a636-53d765076b9b ded2f48e-13a2-4d51-997e-c10aea71537c 6b812227-ea45-4a58-93c0-24934db84990 909cf251-d510-4cbd-bcc0-81b3a005169d 69339a1f-ab7b-4636-86bb-0544a4ee796d 1027c2ce-012c-40f6-ba26-b78bedd9b2ba 1376 -2122 108 64 1440 -2090 3 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 cb95db89-6165-43b6-9c41-5702bc5bf137 1 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Contains a collection of generic curves true b2d85da4-c621-4f05-a636-53d765076b9b Curve Curve true e539fb20-d885-4e8e-a2c8-6974d419007c 1 1378 -2120 50 20 1403 -2110 Contains a collection of generic curves true ded2f48e-13a2-4d51-997e-c10aea71537c Curve Curve true 3a0447c1-6820-4d27-8529-a8aaf185ffa9 1 1378 -2100 50 20 1403 -2090 Contains a collection of boolean values 751f9d51-82ce-4c9f-881c-627ec2dfa87e Boolean Boolean true 0 1378 -2080 50 20 1403 -2070 1 1 {0} true Contains a collection of generic curves 1fe8303b-9782-4d88-a3b2-4f1c51f6b3b6 Curve Curve false 0 1452 -2120 30 60 1467 -2090 22990b1f-9be6-477c-ad89-f775cd347105 Flip Curve Flip a curve using an optional guide curve. 45d8e919-0f97-476a-8c76-5c9cbb489018 Flip Curve Flip Curve 1376 -1926 88 44 1420 -1904 Curve to flip 392b2414-e4fd-4332-ad45-65f29eb868b2 Curve Curve false 2ff5b42f-0681-4b38-8c93-526725d1453e 1 1378 -1924 30 20 1393 -1914 Optional guide curve 262fd5e7-3944-4735-b94f-ecdfc86f6364 Guide Guide true 0 1378 -1904 30 20 1393 -1894 Flipped curve e539fb20-d885-4e8e-a2c8-6974d419007c Curve Curve false 0 1432 -1924 30 20 1447 -1914 Flip action 1bb46645-9954-44f7-9213-742210f46240 Flag Flag false 0 1432 -1904 30 20 1447 -1894 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags 3792bea4-18b6-488f-8ff5-3d3bd8ca3104 Format Format 1609 -2142 130 64 1701 -2110 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format bfc463d8-0502-4123-ab04-10a915573d03 Format Format false 0 1611 -2140 78 20 1650 -2130 1 1 {0} false {0:R} Formatting culture a8af911e-66ae-430b-8cfb-f21a4ed91309 Culture Culture false 0 1611 -2120 78 20 1650 -2110 1 1 {0} 127 Data to insert at {0} placeholders a97e0fc1-7f5e-4506-97e4-7b6284d001af false Data 0 0 true 2e5eca51-4a9c-4770-bbad-9f350d3308e9 1 1611 -2100 78 20 1650 -2090 Formatted text ed4cb1a5-05b8-47f4-8f45-a0370b5cb0bd Text Text false 0 1713 -2140 24 60 1725 -2110 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags ee7cdac0-3022-4eae-91e0-767735ba87f8 Format Format 1646 -2021 130 64 1738 -1989 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 2e349f3a-25c6-4ea6-89f5-db440f032592 Format Format false 0 1648 -2019 78 20 1687 -2009 1 1 {0} false {0:R} Formatting culture 1576cad1-f3ba-4cab-bc6f-9812e3b9a7bb Culture Culture false 0 1648 -1999 78 20 1687 -1989 1 1 {0} 127 Data to insert at {0} placeholders 37335f58-6cbd-4eca-a081-7d93aaf3235b false Data 0 0 true 7d041b60-f136-448b-a338-647bd92ebabc 1 1648 -1979 78 20 1687 -1969 Formatted text 9111ce00-5a16-4504-801b-8c21b2ff021b Text Text false 0 1750 -2019 24 60 1762 -1989 c75b62fa-0a33-4da7-a5bd-03fd0068fd93 Length Measure the length of a curve. 278bc959-c633-4128-866d-863c241f2036 Length Length 1540 -2003 92 28 1584 -1989 Curve to measure 87477536-1a5d-410e-a355-7b53ee3b5a8f Curve Curve false e1a16ef4-e54f-4754-b16c-63bfd64436a9 1 1542 -2001 30 24 1557 -1989 Curve length 7d041b60-f136-448b-a338-647bd92ebabc Length Length false 0 1596 -2001 34 24 1613 -1989 c75b62fa-0a33-4da7-a5bd-03fd0068fd93 Length Measure the length of a curve. a0791d39-3d16-4cc2-8269-a348837784f4 Length Length 1517 -2104 92 28 1561 -2090 Curve to measure a7287887-6d71-4290-a341-5d639864c2aa Curve Curve false 1fe8303b-9782-4d88-a3b2-4f1c51f6b3b6 1 1519 -2102 30 24 1534 -2090 Curve length 2e5eca51-4a9c-4770-bbad-9f350d3308e9 Length Length false 0 1573 -2102 34 24 1590 -2090 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division bfa191d2-3e5a-4108-b13d-e63dcf3a8305 Division Division 1863 -2062 70 44 1888 -2040 Item to divide (dividend) f6b22680-a338-46ae-a193-5c2d03a68e6c A A false 2e5eca51-4a9c-4770-bbad-9f350d3308e9 1 1865 -2060 11 20 1870.5 -2050 Item to divide with (divisor) 6a53c00b-9e3b-43bb-ad16-a5a2a9cdc886 B B false 7d041b60-f136-448b-a338-647bd92ebabc 1 1865 -2040 11 20 1870.5 -2030 The result of the Division 6cefdcf9-42b2-4379-9fb8-18be6b61364a Result Result false 0 1900 -2060 31 40 1915.5 -2040 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 8bd771f4-a6d5-46df-a093-2b443f1f6510 Panel false 0 9111ce00-5a16-4504-801b-8c21b2ff021b 1 Double click to edit panel content… 1300 -188 98 20 0 0 0 1300.942 -187.9152 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3f2195ce-18bb-4274-8ec5-1b1132c4c1cf Panel false 0 ed4cb1a5-05b8-47f4-8f45-a0370b5cb0bd 1 Double click to edit panel content… 1300 -214 98 20 0 0 0 1300.942 -213.9582 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3a0d453a-00d5-44be-ae37-59414ba203f6 Panel false 0 9a788daf-b700-40d8-a7e0-cb8042217992 1 Double click to edit panel content… 1274 -90 98 20 0 0 0 1274.542 -89.94488 255;255;255;255 false false true false false true 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags 6a211021-f75b-45f5-b7d3-84c65812bcc5 Format Format 1933 -2092 130 64 2025 -2060 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 5f73b6cb-3d0f-439a-9c3d-3f934279b827 Format Format false 0 1935 -2090 78 20 1974 -2080 1 1 {0} false {0:R} Formatting culture 53567521-248e-4146-985d-7f014593a4ca Culture Culture false 0 1935 -2070 78 20 1974 -2060 1 1 {0} 127 Data to insert at {0} placeholders eb23928d-531a-4abc-af76-051525189f6e false Data 0 0 true 6cefdcf9-42b2-4379-9fb8-18be6b61364a 1 1935 -2050 78 20 1974 -2040 Formatted text 9a788daf-b700-40d8-a7e0-cb8042217992 Text Text false 0 2037 -2090 24 60 2049 -2060 b464fccb-50e7-41bd-9789-8438db9bea9f Angle Compute the angle between two vectors. 701a54b5-60f9-419b-bb56-07270692d298 Angle Angle 1554 -2275 197 81 1690 -2234 First vector 7dfa22b4-97b2-4fbb-9bfa-c855a6c3840f Vector A Vector A false 0 1556 -2273 122 20 1617 -2263 1 1 {0} -1 0 0 Second vector 5a467dea-74a8-4542-8145-0e3bc3e84840 Vector B Vector B false e1a16ef4-e54f-4754-b16c-63bfd64436a9 1 1556 -2253 122 20 1617 -2243 Optional plane for 2D angle 3b19dc0a-e4cf-43dd-a5e3-673b8c52aa25 Plane Plane true 0 1556 -2233 122 37 1617 -2214.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Angle (in radians) between vectors db137792-9aa1-4ed7-946f-fca5a0f42046 DEG(X) Angle Angle false 0 1702 -2273 47 38 1717.5 -2253.75 Reflex angle (in radians) between vectors b2a8413f-6f33-4806-83ad-98bec397660a Reflex Reflex false 0 1702 -2235 47 39 1717.5 -2215.25 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true d6a3a11e-6867-4574-a641-0479a25edf07 Rotate Rotate 1536 -2398 240 81 1712 -2357 Base geometry 8885db1c-6432-41b9-907f-00d3b768e7de Geometry Geometry true 65c42cab-2b0d-4b8a-84c7-bb15da8db7cd 1 1538 -2396 162 20 1637 -2386 Rotation angle in degrees 62f7ed80-b677-4790-a46a-aba2a3c433d5 -X Angle Angle false db137792-9aa1-4ed7-946f-fca5a0f42046 1 true 1538 -2376 162 20 1637 -2366 1 1 {0} 1.5707963267948966 Rotation plane 93a9e0a7-3af4-4ec3-bf43-302e1769d02d Plane Plane false 0 1538 -2356 162 37 1637 -2337.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 8c760ff2-75d5-4c18-9420-798e6caad9e3 Geometry Geometry false 0 1724 -2396 50 38 1749 -2376.75 Transformation data b63cec66-3df1-49a9-8957-9e41747fb475 Transform Transform false 0 1724 -2358 50 39 1749 -2338.25 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 6cb3866d-b92c-4e3d-875d-fdfd90f1a436 Curve Curve false 78ba096d-8b9e-43c1-8459-c604b152321e 1 1092 -1217 50 24 1117 -1205 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 65c42cab-2b0d-4b8a-84c7-bb15da8db7cd Relay Relay false 6cb3866d-b92c-4e3d-875d-fdfd90f1a436 1 1464 -2365 44 16 1486 -2357 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values edd9c7a4-8615-499d-a043-ffd807b04ba3 Panel false 0 0 0.51542256311 1274 -65 112 20 0 0 0 1274.542 -64.22607 255;255;255;255 false false true false false true 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true a322b6a5-a583-4fcb-a6bf-bc7445ae5baa Scale NU Scale NU 1897 -2519 220 121 2053 -2458 Base geometry 914ffe46-1371-40dd-9f00-fc974be4810b Geometry Geometry true 8c760ff2-75d5-4c18-9420-798e6caad9e3 1 1899 -2517 142 20 1978 -2507 Base plane 02584d63-d968-47b9-9f9a-5335aea9636d Plane Plane false 0 1899 -2497 142 37 1978 -2478.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 54e9cfde-296e-40b2-be1e-f4578130ff2d 1/X Scale X Scale X false a25b3464-dee1-4de6-9e64-281ca12a9a9c 1 1899 -2460 142 20 1978 -2450 1 1 {0} 1 Scaling factor in {y} direction 68c9481e-042b-4c9a-a2c6-798c72797a59 1/X Scale Y Scale Y false 208660dd-ee45-42d8-811b-eccdfb1a24b4 1 1899 -2440 142 20 1978 -2430 1 1 {0} 1 Scaling factor in {z} direction 9e25ba83-2fe8-40d1-aaa1-bbff04afb781 1/X Scale Z Scale Z false 0 1899 -2420 142 20 1978 -2410 1 1 {0} 1 Scaled geometry 689bcfff-e2a4-4fac-ab5c-a6719a199d95 Geometry Geometry false 0 2065 -2517 50 58 2090 -2487.75 Transformation data c1f98e8b-aae0-409a-9940-cc8385bb3839 Transform Transform false 0 2065 -2459 50 59 2090 -2429.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 208660dd-ee45-42d8-811b-eccdfb1a24b4 Relay false 2e5eca51-4a9c-4770-bbad-9f350d3308e9 1 1823 -2302 40 16 1843 -2294 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a25b3464-dee1-4de6-9e64-281ca12a9a9c Relay false 7d041b60-f136-448b-a338-647bd92ebabc 1 1823 -2353 40 16 1843 -2345 e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move Translate (move) an object along a vector. 35c9d9a9-4aeb-42f3-a02e-8f7961437770 Move Move 1918 -2592 199 44 2053 -2570 Base geometry d5a6d45b-3e42-449c-a90a-e1f0016951e2 Geometry Geometry true 689bcfff-e2a4-4fac-ab5c-a6719a199d95 1 1920 -2590 121 20 1980.5 -2580 Translation vector bf17ae62-e6bf-4db4-b261-44ea0917b1cd Motion Motion false 0 1920 -2570 121 20 1980.5 -2560 1 1 {0} 0.5 0.5 0 Translated geometry 6614bf72-c35c-4dbe-9a1e-0071079f3acd Geometry Geometry false 0 2065 -2590 50 20 2090 -2580 Transformation data 8cd00f05-6227-4e0c-87ec-9ed661e37dc7 Transform Transform false 0 2065 -2570 50 20 2090 -2560 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression O/4^(OO-4) f1deee2a-afa6-4f2d-8b08-f72bb2a1a015 Expression Expression 1329 12 157 44 1402 34 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable f928ed43-d347-4844-a591-5dceb1e585ae Variable x O true edd9c7a4-8615-499d-a043-ffd807b04ba3 1 1331 14 19 20 1340.5 24 Expression variable 0abafe6c-cd84-4c72-8432-d40ca0cc172d Variable y OO true 7db51a7e-d0ae-40f1-9f81-e70f2ecefa8f 1 1331 34 19 20 1340.5 44 Result of expression 7ea2aa96-2d9e-44d9-bf1b-90bc86fbf709 Result Result false 0 1453 14 31 40 1468.5 34 7ab8d289-26a2-4dd4-b4ad-df5b477999d8 Log N Return the N-base logarithm of a number. e7b015dd-9f52-47f6-8002-08f897a09deb Log N Log N 1300 107 113 44 1368 129 Value 2400f0db-df14-44ad-8e44-4db1eb91aa4b Number Number false 76d86607-84be-4bd2-a5fd-b914901fb804 1 1302 109 54 20 1329 119 Logarithm base 34b0f2e3-4f87-455a-8499-21bab2e5d51c Base Base false 0 1302 129 54 20 1329 139 1 1 {0} 2 Result 7db51a7e-d0ae-40f1-9f81-e70f2ecefa8f Result Result false 0 1380 109 31 40 1395.5 129 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 58b84e16-46ab-4bef-af27-b755fa42c6db X*2+1 Number Number false 87a4cb63-b93f-4b2e-981a-a3a9a624f47e 1 851 -3041 50 24 884.2197 -3029.688 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers f682b0f6-c58d-441c-aad3-7e78ad618eaa X*2+1 Number Number false 87a4cb63-b93f-4b2e-981a-a3a9a624f47e 1 73 -3020 50 24 106.0588 -3008.15 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 87a4cb63-b93f-4b2e-981a-a3a9a624f47e Number Number false 76d86607-84be-4bd2-a5fd-b914901fb804 1 708 -2738 50 24 733.9498 -2726.25 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 09130dc2-bf14-48a3-b968-ca16910a4892 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.51542256311 983 -45 250 20 983.4814 -44.2692 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f85cb8da-bd1b-49bb-8035-385bbb922ec2 Panel false 0 0 16 0.492221738454693386 32 0.507180224586 1329 -151 194 28 0 0 0 1329.272 -150.4278 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c85b34d5-5d2b-4638-a09d-3d68379bd5df Panel false 0 0 0.492221738454693386 1049 20 112 20 0 0 0 1049.36 20.82763 255;255;255;255 false false true false false true 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 1cb5c677-96e4-4651-92bf-258c49bb0aa0 Quick Graph Quick Graph false 0 0 1846 -188 150 150 1846.104 -187.9152 -1 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves de7bfaa9-7426-47b5-bafb-f920b48e7881 Curve Curve false 0 1670 -121 50 24 1695.919 -109.6601 afb96615-c59a-45c9-9cac-e27acb1c7ca0 Explode Explode a curve into smaller segments. true 193d9344-e2c1-40cf-be1e-f19d65de3d75 Explode Explode 1626 -173 150 44 1697 -151 Curve to explode b43bad71-bf4b-47d3-ad5c-f20570dbce69 Curve Curve false de7bfaa9-7426-47b5-bafb-f920b48e7881 1 1628 -171 57 20 1656.5 -161 Recursive decomposition until all segments are atomic ba7c12ef-5ac1-4fc3-b021-4f685dda02c9 Recursive Recursive false 0 1628 -151 57 20 1656.5 -141 1 1 {0} true 1 Exploded segments that make up the base curve fa095067-f940-4c48-9507-d281d09619fe 1 Segments Segments false 0 1709 -171 65 20 1733.5 -161 1 Vertices of the exploded segments c42c6682-dafe-4baf-9d14-3f477530acf4 1 Vertices Vertices false 0 1709 -151 65 20 1733.5 -141 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true f5bba7b0-a06a-4e36-bafe-cf203711a583 Divide Curve Divide Curve 1536 -278 123 64 1590 -246 Curve to divide 24ef5b12-2814-49fd-ac71-e3a648f38992 Curve Curve false fc030d6a-11e5-479c-95ef-3d1afe6806f3 1 1538 -276 40 20 1558 -266 Number of segments 98655532-cd6e-4ae3-b06f-3ea9c81c4566 Count Count false 58b84e16-46ab-4bef-af27-b755fa42c6db 1 1538 -256 40 20 1558 -246 1 1 {0} 10 Split segments at kinks 9e5fc9ad-9c76-4ae0-a4c8-0308a4795a05 Kinks Kinks false 0 1538 -236 40 20 1558 -226 1 1 {0} false 1 Division points cbbc2198-ec3b-41b3-9c70-b8bf0596b5b0 Points Points false 0 1602 -276 55 20 1629.5 -266 1 Tangent vectors at division points c1a0a82b-3ac7-4548-b697-dfb7bf711f63 Tangents Tangents false 0 1602 -256 55 20 1629.5 -246 1 Parameter values at division points 71371ece-18a6-4a15-a531-e2072484b5fc Parameters Parameters false 0 1602 -236 55 20 1629.5 -226 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 7f1ff041-dd6a-4f2e-9058-c73e06303a55 Deconstruct Deconstruct 1523 -382 136 64 1564 -350 Input point 546b7ad3-e8d4-4bbd-ad50-132350de7ad5 Point Point false cbbc2198-ec3b-41b3-9c70-b8bf0596b5b0 1 1525 -380 27 60 1538.5 -350 Point {x} component 7b046e1f-a132-4964-84dd-3c63d46254fa X component X component false 0 1576 -380 81 20 1608.5 -370 Point {y} component 3132fa1c-9bb8-4ace-8cbf-97b0ed747357 -X Y component Y component false 0 1576 -360 81 20 1608.5 -350 Point {z} component 96f383ff-1b51-44f6-acfc-f7eedf5764e5 Z component Z component false 0 1576 -340 81 20 1608.5 -330 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. 715b130c-75ed-46c9-ab46-59e9bdeb2cf5 true GraphMapper+ GraphMapper+ true 1776 -408 200 155 1923 -330 External curve as a graph 3020cf2d-a12e-4684-85e3-e5b49c1ef130 true Curve Curve false fc030d6a-11e5-479c-95ef-3d1afe6806f3 1 1778 -406 133 20 1844.5 -396 Optional Rectangle boundary. If omitted the curve's would be landed 3406e671-0f59-41f3-b849-e7c6e19fcd90 true Boundary Boundary true 0 1778 -386 133 71 1844.5 -350.5 1 List of input numbers c861ee9e-a58a-435d-93a9-3dfdba6602eb true Numbers Numbers false 90e3f7ea-df08-465a-8194-bf4035c20fb1 1 1778 -315 133 20 1844.5 -305 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 26290d71-675d-490b-b8e5-8948c958bacf true Input Input true 0 1778 -295 133 20 1844.5 -285 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode b777a5d1-3c95-4d0b-b9aa-be09cbca9a8b true Output Output true 0 1778 -275 133 20 1844.5 -265 1 Output Numbers 8ee77af9-7c48-45c3-9067-ae798d5f0a9e true Number Number false 0 1935 -406 39 151 1954.5 -330.5 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object fc030d6a-11e5-479c-95ef-3d1afe6806f3 Relay false c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 1 1446 -294 40 16 1466 -286 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph c419e9b7-3ffd-49ab-9884-77ff672384f6 Quick Graph Quick Graph false 0 8ee77af9-7c48-45c3-9067-ae798d5f0a9e 1 2125 -350 150 150 2125.977 -350 -1 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACH0SURBVHhe7d35k17VfSZw/yWpimep5IdZKjGJAbEIecZ2wDNJ7FmqSE1NjR07k2KqHMd24ZRdY+MawDZWMSpkbJORAGvpbiG0IkBmsZAAGbFIWBvCbEYYtCA2ISCAM5++z9V9b99737fft5FJS+iprlPnnHvuWb7Pdzu3G/Gh0zgV8I+ncdKiR+Hhw4ePHTv2xhtvvPXWW3nWhkevvvpq2ejCk08+efvtt/9sdNx999333nvvgwVUHn74YT3ls6m46667Hnjgge3bt6uUXR9gkHmPwgqvv/76b37zm7IxFW+//fbLL79cNrowYwpDzP333//zn//8oYceUu/HkH78PfLII6cpBDLvUbhx48arr776qaeewhMWC0aaePfdd397FGJu8+bNWNy9e/eWLVv6WeE999yDQmZatj/YIPMehRtu2XDZZZft27dv//79RNnPEF966aWy1oUZUwhxnrwoCgd40W3btm3dupW/HUDzBwdk3qNw0Y3X/82X/mbPnj1YXLlyZcFIB1ghWywbLcyMQkzgA4UYQuGjjz46gBsm6ClPi8jTvpTMexQee/3Yzl27XikwIKPxlKctGy3MjEJMCIFYueOOO1SoUflgKjDHzbK/O++8M5XTFJJ5j8IKb775Zlnrgox0AMEzplAgvO+++3CDmB07dnQ6ScNYah6JiAOy1tkIe77//s0PPDDSz6YtW7xYztAFMu9RiBjAn6tFv0AIR48edfEoGy3MOBbKMDcVSDrKFhsWhi3kGRbalChEZJ7OfmzavPnWpUtXLVy4eoifm//vgpvmX33zNdf8dO1aL5ZTdIHMexSKcO+88w4nOYA/QHC/fBVmQCEyZE/4YIIMUbaSC2KDQk2dVfxL0/iTxRDveeCB6z72set+53f+3+/9np9FtbLe/Pt/8S9//M/++cTcM2+7+MIV5//h2KWXyhHKKbpA5j0KB7jHOpjpa6+9VjZamBmFiMGcQIgVQY4ttp2kTolM2Sgo9NaA6+Nsw6atWxdddNH4H//xinnz/Nw0b95EUVbNFR/72Pi559/8yY9v+/pf3/ulz93yX/98yb/5V+Nf+9oIFB44cODQoUOM7B+mgmkW7JTQI6MpGy3MgMLKnlT4yfhGFOIsAyCE1U0TwVUSm55ZDhQuRuEZZ6yYO9fPTXPnThRl1Vw+55y1F33ywW/9r/Wf/tTyj549ft7cG3//98f/7u9GoBA3ghwjS1CswG3WbxEYHXC7n5kVhrC4U02siIjcaWWIYbeR43hFZ9mY9YgVLv/IR8bnzh0///yJ888fK0r1yZ/zzls+9/wH//clqy/6xNKz5mB3/IILbhiVwn5Aat0QRcoBt/sZUJjcUiCMO8UW5P6uYkA/g9PU2eB11iIUjp1xBnr8sLx6OXbWnHv/9rO3/8Wnl505Z8UFRf+8eSNbYT+gsHGXR2G/lGdUCkk/NzyBMPcKPVVnOFMmRrYpPIku+G0KmWMoHDvn3PV/dtF9X/7c8jMn7S9PZ0LhPxx55h/f7SCGd218+OZIGwGywqgUkj6DQw/acq9If+VU1RuJTAVPUV4PkLMZPUdaeM6eI507d+mZZ9/75c+t/rMLcVk9nYkjffGnH3np8Yk33zh65MhL8ho5C6okn88//zwh1g3RI4GzbEzFDKwQVXwpf8gK62Tot64ed8Q42PJBDSfRBb9fOjNpgn/+KSa47Kw5N11wQfVUmjqyFe67bd74Df9n165dL7308r59+55++ulnCqgsWrSoIKgEXnnXsjEVo1IYDtDTuM6rYBSvKqyTUaa/gUoDyvYsRmmFZ5wxmc7EfxYlE7z/K3+JxWVzztWsno7PmzeyFY79ZOHBQy++2wpyscWyUYBfdfcoG1MxEoWVJ5TLYKKemGAuDrYzkamg3+snxQW/MxaOM8FPf2rL3352+VlzNHVWT8XCkSl8p8+vH9o+U3Q8evRo2ZiKkSgMT/IRBDSuB3rwFxeaSFk+mAozeP2kuOB3OtKxs8+576t/ufZPL5w49zzNSf95/OlMHGk/NC4V4LLY788vRqUwbtAVsBEIccZ5TvurXcMGm+nsQTOd4ULPmrPhP//He7/02SUfPXuSzmQxtXTm+t8ehW+//Xa/DzQjUZi7OenH1Bo0oGf37t3DWFg9lZ21aFjhxHnnjZ93/rav//XqP/n4+LnnxSjfqxWKcGIeJ9lG4xYoO+33gWZ4CjEU40sgbKckBuzcubMeIDuB4CQ+g4f9k6NKZ1C1fM65Y3PO3fq1v7r94k9LZ/RMWmFRvqd0hnvMnb2Bgpop0NnvA83wFBJ9LuYMCIUNAjSxsnfv3vpntk5knvYvp2YbJim88MKl//rfLjtzztr/8Cfbvv4/b/tv/0kWE/5YXjudmUksHPDxswEjG59sgpEoZD0CHhfavvZpSjVRO60jRfBJccHfdP/WxRd+8vY//XebL/mL+7/039df+O+X/uEfrTj77IniR2W8KKvmxDnn3PC7vzv21a9uGfgdmMx7FIp5R44cyW8qCjoGAYWdf34xPIVVIOy8FfCruQ420pxO5HJZNmYrNt13/9LP/Y+J//KpJRd9/Id/9NEfffTM6+bM+fs5c5RVpdH8wR/8wcorr9y8bVs5RRfIvEdhhQG/0a3Q788vhqQwfjL0tJMRneySbzRsGG4ybPZc8O3fltq46+6fbdx4xx133Hnn3XcP83PXpk30+u7WbJk/a5F5j0LWsGTJkmeffZZ5SWEKRvqi359fDEmhTWAI8i1Us3xwHOFVv6fGVDvuhGEonw0XfBugSY8//vihQ4deeOGFAwcOHDx48PDhw5qgMfJPF8yZNNCKZN6j8Oabb/7GN77x2GOPPf/88+jsTGQqsNROYx2ewqSRWGxEO1IQHWOgYCcDrvaBp9KidkB9nxH+Fi9e/Itf/EK6h7lnnnlGRobRX/7yl0qiPyEQ7x599FHmbFEy71G4dGzZl7/ylT179lh1+fLlBSN9IXB2/vnF8LGQnTlziKwzhAaWl0QUhvn4YphJOq35fYDVravkBnbt2rVgwQI6x5k99dRThEmx7E2p84knniCfCgaUtf71TtAM0uuwwheef2HT5nvoDg/A6gtG+qLfn19YYFoKK4mr20o6A4+4zbCbppGxyAwYgPje1I3/6XtDdHwwbM9CNoyh7du32yeevMgKSZkokFH9tgAK+U92Bvmr61/96leo3b17N0tVV+rPsIxvw1TdFFaQpzDVfr+LCPr9+YUFpqXQsdkWF4qexmVAXY9HVWdujakPgPEkGNtNnVyIo41IoWEQFfKWkhxtL5rUQJZQcQp7I00b5kJ1ZrxglKkawIrSzAYYb7deybu4V+dvzJCgnm10glpYt4NCzLEtpTwFQ8yxM+cM+t3ubX0YCvFEQHZMChFHBepcT1AdxnZpetnug8gCVNjQ/v37yw214FC5DjlC9eHQHRfq3xGl3CtXrmynyvYTzbNPZaU05YhiwzGjQmF6IHreVYlyGsZYLad/9erVjNiK+icmJpijuml37txpcN5tgCqQSRY1uEehJBNtynzCDoudl7+g888vhqEQ4vQa3NgTRjvtcpiMxrHjclHII5UbakGylqRAfmG3opcKsyB3SQD3k2HCxLe+9a3sJCSxFSpi57Ztn/avs72rUEj6pq0ja+UXsWDYLbfcsnbtWonJxo0bb731Vk0eWKl+2223oap8swVTdVMI+LP1Kk/BHxbrulkHR9p+NAyFaLMDIiCOugjsSU/DfekkuGkzGiDiTEjB6Xu5oT6gfNE/jqetiBArNBvwbJSD2TEXm7eTAZtxLqqAAGwFhJ6ScABPQM9MhTzb5hLpH7mp61fXT6vyehv0I8pqOVvtUYgPoJ70NHW+5dixY3o6D9n55xfTUmhhJoUSciGRShYkhTwcNKSjvzKvsqsPjIxZ2wB5NfbGLglXhV46Wjrb8JSMmAslsK4d2pLVE5/sQVmu1wVLsCFuwwzhIPademIhs7NPVJGtR+vWrTPe0spVq1bxn+pEsWPHjrzehtN1U+jMIFSwxcRFcCT6CG0WO//8YhgK7TXSiVzq/e3QCOTizGWjP7xoTiOvvvpqRAqH5EXff/3rX+MsX8w5f3jxxRddkD2128rpqSi9dcMNN8yfP99OfvCDH3AALMPMg5mrQDu/853vsCpm5BU8qRMIYMVyFQd26BE49YoVK0RBgxHP9N3o8GqYPdtVGx51U+iqjhWqga0kNYAkdS/gteCoBz3tP7+YlkIHI+U4PdyUvQVPPFXZmIq84sxluw8MI0HKS5dN5RSJ647ApKxoEgfJPh0tv1kTKVQyMt8rCPHHP/4x7nHZ1qfBsMnx8XHbQIadOKPSZlSAruiXsAB6lDpZrbXoyoYNG+g0OXgkFsSOQ2ReqaAH8R0Uum14jYI4RrRSjynw9MMf/pDaFmfvQX+b12kpjCgdVVkJSMUZ6n61Dp12XDfZfjAtkszTuNfaJ8tD0rT3XShiyDt4ZYjlvEPDDu2BGEmvlPdx6BEg+UlPA50IlrnwEx6hjXBs3j4d2eq4dxw0exdtkApSqr3ZcI/CfuBLZVBtR0q7LVY2jmMwhU6ICYGQnuKsIky/jTp8J0kheJiMBmgGWQzISOWcortcTMh/7rnniO+FF17gP1mqt6oT8bfXXnttOekocATRDkPYqkMPw2BwZXvnTnVkeOX6669n8VjB0NjYmDq/6rIhX73qqqvYj4PHY3G86mRl2NKlSzlnW+1RiJIKDJH/VHI1bW8ZiJTtDzSDKbR8QiCrqjJPpShVN8oGMqDy/gNggGEqAyiMw7Rz5DFKKYYKoFDpUYYZ8L3vfa9TpaYF60EPIuvQg0JmV7YffRSL5OAWwULY1po1azCESEsvWbLkkksuufTSS7/whS+gkPpGCMxUxfzCJ4LNYKs9CuNAgtwlkOeQ8tLiUE0Y0P5AM60Vogp5yrLruNzZ5QB5xf1OK1BTsVdHFXWKc5TgSChccX2fhJ7OHBvyFDheAi3nHRFEjCFs1aEHTx6V7QJ4FQvDpXQmak3/ZDQLFiwQkhcuXIgqL8ZqlQFSLcRv2XOPwjqoqmOr0EpRIZ0NkAJvUzaOYzCFyS1ZYd2k0MMzpN4P4d7Ist0HhsVeLUQnLKQJTN/5xR7ejLOynKf6DVDphKfxXSPBBtDQaYWgvwGddE76ij/b1jQDAeLGDCXPRUJUh2EJKwaTeY9CnrMC88Ji6iIHd1oQ1IRh1LZsFBhAofWIjDRtmrsIhUq70Vkx2glPndDrJim7+oDcMWS8iGgwMig4eFcn4MYAgvDIAMMSYNooZxwC5gGv4E+Iomqgp9IDzfgeS9ehJ5SAimbqaCtHdMFTMjS/mcm8R2HcC0rYn0rqSqGRtTWoClAYY60wgEInxBbBIYOWpdM+bN0J0+wH79o0RLKTAjuODKiAD/NTEbQ5LeWwlrfyIqh4K0TSdAOsns4MGBLF4uVl3xJWtK705JprrrEHPevXr4955ZsZXTEASco69ASdzU7YueWsaxtk3qMwSZrgJ2zgTDhUyt+YoH20wx7EUstGgcEUWh6F9pfllYxDs5JvP2QkVhKfqHaFPAWTIAPNvCVFRpJH/bjJ+FgGIm0sTHcOriMvKq0VdWQTliNWCppFyZde6gnU0zS48AhTYAPm8YoB6plEf+fgwLBuCpHnduIuiDOljECGJmHTXLx4sfBecDQFuR2XjQIDKCRu27J25TaVeoZxj0BkDknoGMpXBaBDCCD9HNsA82ORIIZJRsKHmb1rHq+bR2djPxmmdIRoEkrQpnQWPfozRoXN2Q8pTwq7+ECf/SjTU4dhLBWYKbkZ7HXzKM1cDmohYswmybxHYT/EKMvGVEh2qiw86Eeh9UjHtnLmLB9WUp8Whtk3leesysUKSE90KonDmFyQU09zWvAxhIhyG4voY5FgBqxk56HNWgYYaRVPM6bcYvGB7fLLLycB8+Swbu4rV66UVaqkpw5k8LeMh824J6xbt04ngduVPVgowxrQb6GsSwI9CnlOJlWBglN2FcpeyKoDnjby1X4UOio1BJsmlPTQTVDJmGmRkVjn8N3HgZ8woU5zOhspm1DdIZUoj60oh4fbm4saRUED6EGbVUitk7Y6yN2V3FObcdgckAZ4N+6hAftELcIIzbQ0g/3ZOV6N9245bir0d1NIHGgriJgE/kA6U7a7IBA2bvcDKLRdy5NFmLADwiWUDBgeXiyMp0ROojStwzseubs/6LGWHK3c2XQwsh7XicI81KVOG2QPA4BF8nVSHKDEfgrL2aaipwGdZh4fH5+YmMjmV61aNTY2hsjO8YHJK09mqz0KWSHtqyhp09OGdLSR5gyIhQRqWxBxOGdF5wlEJhcvly1bRhzSMQFeXN+3b1+/cBAYafO4N1LlwIED3//+98NfOfUQINn58+fHZ3rXBtgTL8pDYsWRG0DGmjVriD2f1liwYC/tEBrjRcpxU6G/m0JkPPvss7YeW3SLGHxmaI/ppNBidsYKQUWToOl4cody0ImDOZ2THEnBDnl70QU670V15AZFL6kvOf7kJz8pZxwaTrdo0SISIGV1xxRiNcVadedtwDA0K/GNZsM2bNjAb+PS5vFUjpuK9HdQKObt3Lkzd4niRJOfeqc9NuLrzraTQru3S4rJ7DStzdsMn8jMAGbmpdlfv0Cw/8kn71i37u3CzTautoEgQlLldKMAc150XmBkEN+jks4K9IxAVDAnpSrc7bbcI0msPb6OWILlbLVHodzSsZ977rnq2Bwp5U29H1BYjzf9KGR/2aI6qNiiSjnihCIqwpHSaMYkxvNU6KzHhbEFCx7btSvnNMa2Odv9+/cb5h7FG8kSFyxYMGMlo6BuKcmP+oHT5mP5TJbKZwiHpJSvgGyJLZbjpsK0RFdtzP57FCb5FBIqSmjigHQ0aNDcSSFQN/ujPqGNrnAUeXRC4EiFbkxOzsmY/6abbqLdDuVEMlgBQt0O33jrrTtXr759fDwbBiqLRfkt5oxU54oAhZl8BhiGQjyhkLumbfhbunQpbvJdYgBMS4zdFAqBCDt48GCVlwoJWEy9HwwWP8pGHwrZBApBhZTjQCLu94I6bRyL81d3AOqiybDKbdVw7I03fn7PPbS1bPfBjB0p2BgpO6NtDEZMTZnKMK8YUwVCsNUehYwJhRwjXyoKqgBlzCfT4lwdaFhqm0IiDmcQodPQypWPCm9lEnUKQVJoiwhU0GZmj5g4vVa3Ny4RciKJ36GDB8u9FpuvHxaYrCa9dPAZpDMVss/fHsplGhRW4EnQiTmeh/9xsBwyn9MawV9P3VI7KRTMyVfJ6RMrCsPB8LBpryhlblEInFFbU5mWVhpjQMaoG3PNNdeIhfbmqr53714bc1v3FhbLvRYZHAr15zqfz4rqiYVXXHGFCYv1Zy+cYgqFrA2EtyryYy6/wYiNUk90VqqqRxJUOV5oU0imJI5C5CXv4qBcySPxCiEJ0AxVT2jzCh8iwqFNaRK0MbVqTLlYDbZh0XJbxyHg1e/vA0ACuZyV081W2GqPQpmYE+YvSuRmKqmDikcsMtCkp3RWXeys+IY2hQggSlE6k4AUsQ0rpqT+nBhbQTmqKtpQiMjBtDXAFplpBZMk0yvb/ZHl7LycaBaDzHsUkj5WcJPc+lfFf3HDvahoemQAmlW4GmM8pdHyKEQW9E2iQSFBi08yLnedmFE+CaqIZERMoNJoUhPVyNfkmcfk1113nezLGKIcnrY6jC++wc0EPEE5y+wGWfUoJEeEIUlJgqSpDG0qKetNddFx/fr1g9MZxnTjjTeKWByyOMohA8+sKZWlBPHSjRBrHsEMzWgYlbkPFMiqRyEjYFtsDnnKffv2pcIE4zbVIRWlzroLDdoUUmfKwRl6y/xREe/Gryr164xOQBSFdc7+OPRewNBlBu8dZN6jsAE5C+NQafM0AKTfcKTAbYpqIYlmxDkLsYhEmIQw//GAUuooanKtMqCYYDnRqQXnEuwdP7o7YxAjmfelUKop7VRBYbgcBqHQFhO6WJJchsZpCmy4kUkKb3jiWvGUj0mp60dhNc/ixYs54fLQ7wts+ISgnK4PiMJhOSQxSJgHykpQVdnZqUx/NSbRmqx6FLrh1YFCyaFApVKPdoNB9Bs3bpQ6VskkViQmOs0mfaV6kA9aUtAktMlynUp/5pExXXnllTP+PjIzkE4QSfVDIcmOAbRTUpZL6gCgkFiwiEJH5pM4JHIjDYalR5CCBB2dHhmQ6AMZrySi8eIzYY9C+UUd7777rlwjqN/8OoFpw5BtVWaXpLxKJtkla6MHEP2oV6IiVdNawK96i1zKc/+WQaxULXsA20jmle8b4HSaqXuaR8qqYgBFtG1CJ4EBtmitKDff48WsdfToUTJX6skqKiSTTgPUZX+gohlBERHh9yhsw1BXe1wqy66psIwFRM3Jr8LFfyIkttmiA6QMGJOMpt4zLRz1fePP9n70ox9RuByKmNDAK/AQKoSok8iqPzHhTqR4HlXpmDr/4fo0NjaGmImJiRUrVnB35QJTUVFIy0kYWySMmJR6QlV4Sqc9qE8a01tvqWh6y374NvsZRKGhNEtZp9DUJtUT2sTLLJynrN7Nr9xsATvmNIipolAnP15mVH1Q3M1mjqwyJOzthhtu4ABzBGdxKNxQTcfP0ZxUOECeOq3FGX9jDObUIwfzcP5UAZFcXL9AXlEo1pgcGSQcntoUVo+GovD6669PhlOBCtg0U0OYfQta9qontOkvx9WAwnpGCnwpE6zLVB2pUjI3Bw4WODGZjp78tkwzdZU8SsWxvTItDMPH8CxGyfBRnqEPlixZYoyQUbZbICICJCVHMG2/DVQUslqURJL4SBmSQpgJq0fqaIN0estCTUf6zW9+0/kFUjQAX2GilStXyvW5FMx52bwDzgANCm2XYwGVsqvwkEKxmGx8nDD3qymAZyFLV0Fenb/K3YNKZZVpQQOG/7zC4zEabo3NsSrHJDVqCsRkP7SHKG6++eaFCxdm2+zArgwwXhkVl3JbVLlhw4Zkm+UCU1FRKGTms4YJmV1KPewPkl5Uj9QtCun0li3xN+o9CmkNbuMZHEbyY9Dq1auJGPnqxkyLBoXmZIL1w7CPa6+9ls+hLsajis7yOezAwbyuhy8CTSX6kSfTMya7Hwa33nprfGO56kCYfP78+SoUCFuUmMbwk0r7cechbupFajQjakS+hkXVjIlGUs1vf/vbDmvpG2+8sd/qFYXWJVjqgiS6kjJ2BioSluqROnYgnVEyMctmehS2QReiI0oTpXMw6hTiD1W4qZtgKKQ+xJHx/KRhROYRKbAGQB5d9jTTjgrvigtDUmhR422jfHkqCCGWNy3ovZ1zttYVzsvZW6gopNzeMr8y2pky1qYS4VdmR3sgnd7CcdMK2zAu73sT5+kcjDqF9spXoKcdFZh4Zs4SdqNOuWgZc08PTczxZoCRHGkgMhFrA1wFQfONKmzOtpmpei5OKuW4ApRA0IlGlpN2gVjyYqzQMWNkTq1MD6hUnTE7koFY7QhWaHTqXkBk6gNQUYg2MaaRyAR6aKujEg03NZnPFN9olDrTBHWdxswAnXozGCQ7mctOBa9YWYxYuHbtWt7CGW0PAeWgFqZdOvTTAyJFEreMsJSxs9gc4VeP1NERRjS9Rd2tReY9Cj1I6eXAuIpCjlQz9QGoKCQRSTPVVsm+6+iU1wnEqPx1gjNEYc61aNGiT3ziE5/5zGfi/4mFglLEztMNgAnXrVsnWFJQYT5MIIxVpdQTa1Nhi9Wj2CWk01sYIWqb6VEo9crnLvsLeeF/8gStv5Hph7ojpWvv2/X8hEM8k5Lk/3TE8i644AKpyhe/+MXPf/7zegjnqquumoGioFCy6n7Cjqk4MkiVbRFvSj2hKjxVj9QtCun0FgfbvBdiy5so5DPzms4KXqYOZaM/QqGzyUcaiczJBcp3yy23RM0lF5dddtnFF1/84Q9/OOGHcCYmJkYNtxV4USCfuLpIPqUe5IEKmVeP1C0K6Yz58hM206Owgpc9RmS4THaks99ntjpCIeY4eq6GT3POIXFCvN+JBUORwshIVS6//PLFixe7DuYD9AzCbUA4+BNfRRl8kDA+6pkL4YNK/GoeqU+61yKd0fQWOpqOtA2cG5o/dvKySvmgP0KhO5wtOra9lgnGceiH9Kso+dvJa0RxkZhtjhdJk5/7iqDIaAg9sRbKEaMDhVWKRGKErMRKVRZ3ihN0qajgNeS78eAydl0+aAGFrtX4cNOSf9NfJAndSS+V0gH9tNgZNJX0Ou+y2jVr1hBWedZTFBWF78fVvgGveR+Yo3mjHQ3ECjmZ7373u48//jiqGJzQXdlcbgtPP/00HVTxtLo4r1q1auHChWyxPOspin8aKwz4UlqgkhjLF+MSr5k0CIX8IXsa8FG43m9bdgmSQBlEedBTFxWF70csbABVjK9sFCB9i7FoXJpUM45UCMGHe4/4ETzy8COTP/DwI9sf2e6naEw2H36o/Ac6xE6+xYs8anncUxEVhcINa0MVueEmpR4MgQo7qR6pkz+kM9z3zUj7wZvYKhtTYT0z0pcnnngiHKxevZqHzKrWe+W1V149+urLr76scuSVI0dePvLSKy9pvvra5CelDDMJmIFHPYUjYkUhlY0/dGqWkFIPcYFKGM0j9VCbTm8xx+l/5dsG4x2Qy4Agh0Ix78orrzxw/E+EX3/z9e2Pbd/79N4dj+/Ysn3L1l9s3bZ7288e/NlDex567JnHXjk6xbL37dt3xRVXcDLliU859KOQhbQpTGc/CptWiJs6vAyFVHuPqiymbBeohkEcKRtauXJllWqCMRbO+HfeLf+ZqfqLFSRBXDwnPAuviScEKMSfwMHZEBeVlfTJ0mn/Y8X/HYEEQEVTZxJ49V8WUNH0lsRw2bJlJNajUPZB6PmTED5QeejQIVOYTjN/+amc/Ouq4u+r3HlBz4svvkhTCvmX6Qzp86UsibvP7dAke/fs3bF9hybof+jBh/yoZEyAORZs/KnKH6DQkUmboFygIaEnZXqCqrP+KE0VdqJC5j0K3duoBgVRQbXAhqcIVNMFIFcCMEwiokIpcCaMuQUaVlFY7TWfXeS+SXCQZPe5NujkBzIg0AzrpzB/gQMSJvMQ+IEYq7KBzkdVkzlOoRBPhQVP/j+iPIvN4YllWAw33slTUIkH0C+RkUkyzQaFDWAUKJEJHy6AMKqUfqeazEpP5s+qI4HKUuL3jikUcqEB8iDfBpG3Z88eFRYZIMmj1ONIDx8+7PVgAIUVQhhXwChZM9oYaBh1sHLQaQwHMu9ROCQ42LLWhWEoDLBYmN/kv1pFS3hvjOb33eE4w05jMMh8ZArlslLestHC8BRCeJJh56t/fj/FLnHJLsPxaS4Hg8xHptC9RPArGy2MZIUCoSQIf6hKj8qm4h+u4ldxKWqKnenPW6fRAJmPTKH8s/GZrY4hKUQJbvDH2tr06AEEi46T3+Bqic9po2yAzEem0H2832c2GDKdwQefiY+Nxf+fGBoZWpquGeAVPja3RkmQ19Nf4YPMK5mPTCGgsPPDCkxLIXHznPm+sLeAXCa3z34QLNmi0t00FxuvVNCJ1w8si2Q+EwpPY1ahpPA0TmJ86EP/H3z+wNSu9wmPAAAAAElFTkSuQmCC