0 2 2 1 0 7 cf805780-37ee-4b69-bbbc-2b3f4afd1ffe Shaded 2 191;191;191;191 127;201;201;201 638056340642056444 XHG.ⵙИNⵙⓄⵙᴥⵙᗝⵙᗱᗴⵙ옷ⵙᗩⵙ✤ⵙᑐᑕⵙⓄⵙ8ⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙ✤ⵙᗩⵙᑐᑕⵙИNⵙᑎⵙᴥⵙ✤ⵙ◯ⵙᙁⵙᗩⵙИNⵙⓄⵙꖴⵙ✤ⵙИNⵙᗱᗴⵙᙏⵙꖴⵙᗝⵙ◯ⵙ∷ⵙ◯ⵙ◯ⵙ∷ⵙ◯ⵙᗝⵙꖴⵙᙏⵙᗱᗴⵙИNⵙ✤ⵙꖴⵙⓄⵙИNⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᴥⵙᑎⵙИNⵙᑐᑕⵙᗩⵙ✤ⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙ8ⵙⓄⵙᑐᑕⵙ✤ⵙᗩⵙ옷ⵙᗱᗴⵙᗝⵙᴥⵙⓄⵙИNⵙ.GHX 0 -491 -99 1.14869821 0 0 2 NGonGh, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null 1.0.0.0 Petras Vestartas 20563e24-568f-4f4f-b61b-71a1781ef92f NGon 2.3.0 Pancake, Version=2.4.1.0, Culture=en-US, PublicKeyToken=null 2.4.1.0 Keyu Gan c6c19589-ab63-4b60-8d7c-2c1b6d60fac7 Pancake 2.4.1.0 45 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true fb7bca39-8555-41d4-82af-75f9888bd609 1 Geometry Geometry false 0 145 531 53 24 181.5 543 1 16 {0} 7VhrTBRXFL4z+xAKjUstWAQVaJMWBLKP7iISmEkpWjUhQGqRYKyAa8DCLl0WW9KmmNpG22DQGiM2LRZE11BS05g20kJ2ebaGYhVNQCSl5dGHpHWTQtFKoXN37oXLsCMLicn+mC+5e+7jzJ3znXPumdkBFABghgOUEP4095OZkV9gMiebi4rMpuiwV4yWkgKzKTEuVqOL1Wp0z2/kOmq1JjosubTQWmoxJpqMpVZLTmF0WFppbmFB3nZj2cvm14ymRL1eq92oMcbH5cXp9XqdWgHvssq1eewWo7nIaLWUxb5gMRbLufkVB/j7PJZjycsvOGDU7S3yNRcbTaZSS26JfG+ONQcq+fj40NBE1bMAaDl5YsrP31fGdVbCn3VBAND/ltPgiSCezoMZGjyJqCW3mp1RZ302f9pn62m/GmV4brph0xS33h/Ir2vBQcD2yvmBSsn9QHPhbs1g4W7BARd3p/vdDLBPA9UhKsK5bU3Zarjb+2hdRaMOjdp8OJkFU/y8XThDXjv6d+CMNquJhXM1E7DfwH54ITphrOKyo32cXzvuyKzuG7qXONpiPTZTTh/E13odGf3EHBmh8cZxnty1Bhc59swJqsqryVAEGaHxn/CRcrSh8dSF+995NZmnx+fICI0f4NccO1WpWamVsqQrtrfHvZoMTURGaHwXHylHHTpDrcGXvvBqMgaCjNB4YUGIGJj6gCTjW9sYA0tcnAIZSJa47iUwPIkZyh4BQ7LEMVGVxSGhLY7gvp3hd8K72Dh0sJQoJzPR/GFejz2W3fSqu/B5DTmy5ImRGEPzI2j8JlqX23SnvZocWQLFSKzdwEc0FOVqCZrf2vp9gleTI0uiGAk1Lx0alKbDiHzVR5ff8GpyZIkUIzHZy88XovHjaH371hVOryZHlkwxEmKFZv0R5evuSmgQel1WUQTj/9wwHrzZm7rljxsB9lGecUlv3yRk3IHWA3AureMlOxLJy6sJ5fuqP/uV6UISWzAd5V/cHNbPUBtc0v5TNJR3mArdsRRb2RBTyUt7gpaXYvOpkbesx2u72fbJH6+n0y2Ob3jJZo9P5N892+bI/8clF10/M1VRQ3roGc1gEvRQJPaQEi2IuRiHSkGEDF4rVh5pQocMt1jFoZEumRIwzcQOMU49GaEP/xOInQusKyf0FQ9JNRrpknyzD4VFQqfVCJ0mBH44YgdQi+i508HPIOwUsX3IZ5XwLJKlXgYWOlioJwPzHQqBKyp2HuVGh9STg/lOhsCFCzuUcqND6inAfMdDGIg1gPYQ6pB6EanMezBY4chYt8EiA4U3JeXDILxWDD1rddXN90ZnsBQGkgw0GSBPbMDXLtUGYbJQgiTCARZLGBLUMm0QJhuZaORJ9cQP+Nql2iBMVjJRydPviQ30Mv0gTHaDyCHwJBaGZdqgPJ1xHx4WDVpXYcL40OCb48DgUwxxrunbMfLigKWconTnu8N8z/PXBnizSyh1KPhIr0UD8pE+InikxzSG7IKP9P1IV68E7gqZ0Aons9ij1e6av87mTsDxDTZjZVbnqSu5Kah1cOPNsHFmM0SzE00wBz3HUcSvW4HYl+78GZMcOjZkWLPAdyr3zpzF4Rd/2/ZU5tdz13X/ADHC8PdG39pm4y5HEtw6Gu8b+PuXeXhRJlcoaJkCUNzqS9y4/5ehNjDws09nOke5inMB1zpgn5uD4w4o0bgTrsM+11x9tNaJdFPghgO39xSCTd2rGK7ZUVt2X81tuCu+LBns2KHnqLNJn9fvhy5g+HEaJ08mQdlQX5/Iz8Mxm0S6rvX8kcbzObaU+r8+/vOd8eGgPdzc7ttfpc1+6qsT+dQn9sHpmsg3G+GXAxiYOiIwlBtj9r0lm8aZu0gKgEelB+2ymSNqueyof3DqIvneGTKoOAdpzBa2o3fpHngKV69n1aSin2c3kyBBggQJEiRIkCBBggQJEiRIkCBBggQJErwc/wM= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9ENIowMDD9qmdiKBWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DytlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNss/gRoTiK8XTB75/Ff1vFLnmwBOt/gJpmYMOMPHqX8n/FZ9NOvACTfznN7C4wzs0cbMvYHMcPkHFH91QkcKWHIZ0YKF7UtzzgPXSU8fh4ly71MMSio84/NsJpg+YQ8WVIOocoIEMV28JMddhxvmcLYM4sGBy6DQmANmHy5MwcVgKQheHpTh0cVgKhYlXzHV0HHaBhe5JWAqCictCUxAsxcHEGaApDld2vuf81wxbQTYJWgoKMCKFYCUTZgiKn0hwf4wUgqs1+vaBQtARZgB6CA5EHiVHjwAD7kIQVyjjihVcsYirMIWZDxNnRjMfJi6HZj56FsFVKMPMh4mzo5kPE1dAMx89a9K63AuL9/mBnDpVDO/bgVLnSShfAJaQcEUUrC6HJUIQYGTAXWAzIamBAZAYLgcyQdUitxmYGXBnW1h7Bdk9a276ZIE8JcmI5il8KRWWLfGpw60GIgdzPG5zII0h1AYRIkfCPIIeAOjqmBlQPYwuxwA1A1UNqrrK01fbwIEEK1ZwBxKiKGFEovEHKqZeYgH2AEQEPnKKYqWRG3C1gtFTG8gNhItC8tyAGckQc9DFsUc0ddxw5Xv0Q1Ai0YTyBWARA4t8WITAUi0IFJ/f2QPSZAjlCyKnGkIg8EPTY/yuxVK9Ay1bBnURI6hanQrlIFerT65c93N/eVlw/1NItaq7UzoGVK3GQtWaSoL8h2kbjr4kbr4YuITa46DwBUIH8Ucem3ky6ejtBxxuQAxiuwLF3IDOtkfC+5EwihhkWAXoxalQK0TB/mTAHp66zjKvH5lJYYQdps9QQbvLcy+J8G0IfWfPgMATewaw3aJQUVh8s0Bphpu9lpyiLzYmwyTZGBlY2ZkY2TiYmdg5WZg5uNlYuXjY2bh5Odh5+Dg5eAW4ufgFebgFhHh5BIX5eIVEBfhFxAQFRMWFBMUkhIXEdYCGdJy9YwC2tQ9qa8Ut7if9NmaPUy5dtOa3uLPNYHfTzan5KXeO1Ek03HS4xXuCfXPjpzyH0oQyhfol0QoR7xcrc+zt71P4YmfVdOH3Cw4noIDBXh5e/msHv5jdqdvAt2x64unmUqAQJ0io6YryzddNKeu5J+3V8/i2SwHIuTD7SdeT+HCV/7uUfl4XPbl/ncJehsDF0zQk/0skgJy4etnbFrAT6+BO/H0mKcv+tGPQX+Pul3UK2/6HWLjzHtu24l3j5qmHah7ksCk0bNz+37D1tW36GZ709VN38oXXVx5XDZX4zf9601KDb42c3zi+Rks8fMOv+v5h1WM/6cSt3/lXS8XYJs/UmBP746fGpHu+EV+VfpsfqVEN+7/u3L/+heIMzSfLEo3Mgn+fALpA69tbWbCTHOFOiu1j5GIw4GCqvfkp0662Z0pSY8wUzwN6suZXF6ycdTeZ5XymXXzeZufejFVqs7WV53lc++cY71at13RazP/rt7sbkNPHoWUdO5clLndd9W7W27ovj8UmAAPhzNTS12Abk+A2lk44yNtgwMPM3V35X7xnwvL5MxkERDU3Law8UiQSe3fLt/js99an9Peyl3Q/Ez5eed3s2dPu8H0Vu/w//1yxX/pCDeNZ8Qs1iTZ1/xbaSPUL+17+znfK+/HTKcWM8295C7QX7AkH2bYEKS0yYnFaWjXzP4gKYgs86qsDuWt5vtIiIOWd8tEaucklfZ91Kcgb8Lqr9z3TJVD5KS7vYICskJs4y0bBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSAAAA= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EzBVhYGD6Vc/EMFEE4p3f/5kYoEwG50P5H7QWc7jNvbH80pFzWmYa/9ZY/QHKR0IVGDE0MDjYMkM4AiAngZwLMm0vA6ZpkoLr4wK5rwju/8cg0Myo9MFLqlIcZForVF6ACcpggmJU8MEeQwgivh9dBJteTDFMcw3P9P38X8/UAOMPAc+gmwPjf7D/6LTu0RD1DKanPmhLzh5insFtnsFSywZkz1i3XWMFZaS9LFAHImckWUbiffgU5kNojmRggWJyfciGXSEWsxA0yL4nWv0F0jIHD3z/KvrfKHLNAcsbEYqvFE87vICKV/9K/q/4bBJc/B1U/Oc3sLgDTPwTVNzsC9gcuHjFjVRzbMlhSAYWLk8eDJGbc1N734EnNx7OXPpvhcOfu0tNDd4cd5gbLBdeI7/rwJS9a00klix12P/4k2fZtiMOVUFyQvLC2w44Lao83+W5yKH5pX3cnoaDDo+95UwHcWDB5NBpTACyD5cny6HilY3fM/mSOuDipVBx0Taw+IEWqHghVDxzMdicA61Q8aurO3mHTWDh8mQfNAW93QdOQQcOQVPQamiKK7oFTnEH/kJTHK7sfNhdmAFbQTYJWgoKMCKFYCUTZgiKn0hwf4wUgqs1+vaBQtARZgB6CA5EHiVHjwAD7kIQVyjjihVcsYirMN0ENZ/hxevdh1dOOAArNyZDzede/fzDqVs9Bw5AzceVRXAVyrug5j99AjYfXi7NhJq/aCnYfAeY+biyJq3LPfkVOc+QU6eK4X07UOo8CeULwBISroiC1eWwRAgCoNSMy+FMSGpgACSGy4FMULXIbQaQXbgiHNZeQXZPieqU7SBPSTKieQpfSoVlS3zqcKuByMEcj9scSGMItUGEyJEwj6AHALo6ZgZUD6PLMUDNQFWDqq7y9NU2cCDBihXcgYQoShiRaPyBiqmXWIA9ABGBj5yiWGnkBlytYPTUBnID4aKQPDdgRjLEHHRx7BFNHTdc+R79EJRINKF8AVjEwCIfFiGwVAsCxed39oA0GUL5gsiphhAI/ND0GL9rsVTvQMsOQV3ECKpWN0I5yNXqkyvX/dxfXhbc/xRSrerulI4BVauVULWmkiD/YdqGoy+Jmy8GLjH3OHw57f48LnC7w90HHMdmnkw6+oiVx+3HjA1HgWzXIP5IN6Cz7ZHwfiSMIgYZVgF6cSrUClGwPxmwh6eus8zrR2ZSGGGH6TNU0O7y3EsifBtC39kzIPDEngFstyhUFBbfLFCa4WavJafoi43JMEk2RgZWdiZGNg5mJnZOFmYObjZWLh52Nm5eDnYePk4OXgFuLn5BHm4BIV4eQWE+XiFRAX4RMUEBUXEhQTEJYSFxHaAhLoF5RmBbl0Jtrbi1+3PD4xs9kz3dmX8q3711ul7ua8TT8i+3JcO3c9xtd99fHik792rqk2Uffxy5+PRmlvtbmyd3687dKDA54/7iRXKY3HbrhL39fQpf5lk3Xdj9msPp/SZljr2T+w58MTKxiWC/fDuhokzWR9/5yLpSg7081tPWNr9M9Zixh+9knLhKdeyEN6WOm66zAjkt91TCVf7vUvp5XfTk/nUe/0pZX7IymEvMMFt0ZWMzyOWnVGSPgV3eDXe59+uuG+vlc/bNWT09uV5qwt2UIM700z58TZsrpYUe5PzUnlewLbzYZs5fCyXRc361ckzp3OlSB2/KPBUq+JZf2lJ1vLesoOy2orPF7L9mh/Q+VhRaROdNk54TW3KL5ZxYzDre9PjJqU2bTZvz9Zs3Tvxb/TPJcI7sw1yu9O8uSl/eiTxn3sz47nHDoxkvthacADpH69tbWbD7HOHui+1j5GIw4GCqvfkp0662Z0pSY8wUzwN6suZXF6ycdTeZ5XymXXzeZufejFVqs7WV53lc++cY71at13RazP/rt7sbkNPQoWUdO5clLndd9W7W27ovj8UmAENEPU32BNjGKLiNyQkH+CQOPmGtDrnInvFHPOMP/7f//5oPVO6w6OE35g/9xyj1n1Xqf7NtWbX8jcW73jPy/YJwy/c7GL9n5Su+8JI/w0RJJuDsb4cDshzFDNN3ebPJWgplgmxZgpROGbE4Ka2a+R9EBbGFIfXVgdy1PF9pEZCS6i+wRW6OSd9nXQryBrxe633PdAlUtorLOxggK+QmzrJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBgFhAAA 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9E5IgwMDD9qmdiSBCBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyGlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNso9bu79AWubggcYvov+NItc4WN6IUHyleNphlflb0bWduw9sktjjpXx7C1zcXhLMP6ABkYeLL/4K1n/gjBbYPLi44WY/JWzJYUgGFi5Pqt96OHPpvxUHGkLk5tzU3ufw5+5SU4M3xx1W7VtrIrFk6YHkYLnwGvldDvsff/Is23bEQW9x5fkuz0UHPIPkhOSFtzk0v7SP29Nw0OHJjoargziwYHLoNCYA2YfLk2Y/+R0LX6w64KoefHP14Y1w8fkQ/oHWH2B5hxao+GKI/gO1i8DmObRCxVVyYk8Nm8DC5cmTkJRz4OpecEpyOARNQR8gKe2A9k1wynP4C01xuLKzQbKbO7aCbBK0FBRgRArBSibMEBQ/keD+GCkEV2v07QOFoCPMAPQQHIg8So4eAQbchSCuUMYVK7hiEVdhuqw9Zc0a9x0HHu9ctac+eRO83Fh0/bbTGtatB1S2GcXuuL7e4QDUfFxZBFehHLsLbO4BQ4g9cPN/Qsw9YAuxB24+rqxJ63LvmzFzJ3LqVDG8bwdKnSehfAFYQsIVUbC6HJYIQQCUmnE5nAlJDQyAxHA5kAmqFrnNALILV4TD2ivI7vnh4MsC8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q60bCLURYygarUBykGuVp9cue7n/vKy4P6nkGpVd6d0DKha9YCqNZUE+Q/TNhx9Sdx8UXBJuMfhy2n353GB2x3uPuA4Fuoj5PqIlccNSB8F8t2C+CPdgM62R8L7kTCKGGRYBejFqVArRMH+ZMAenrrOMq8fmUlhhB2mz1BBu8tzL4nwbQh9Z8+AwBN7BrDdolBRWHyzQGmGm72WnKIvNibDJNkYGVjZmRjZOJiZ2DlZmDm42Vi5eNjZuHk52Hn4ODl4Bbi5+AV5uAWEeHkEhfl4hUQF+EXEBAVExYUExSSEhcR1gIas48nZBrYV1misuCV73nC1Y6HMsY8vn/B4VTKLvdQTU2Nr/vXf+MU01553CTviGq6cXKXRLVS+c7HVtM9ML4xsFuW885j4LiGxeHOlzeH8P3/22f5evFsq185HM2jr3GfMrP/v3tl+LGyS+p/yzc9Wz96U/9xUrbflpGjSN0OuAD23szc5o8/vV3jSm5p/Pf4Mv+3NqKrG/dvUd2f7BZ66nnI2p2NncurnZtWKTU+t6q8x3zx/xrxi09sCeZubP/y5bSLNDm7TmZ0QPc13g+5ptRvTUoVzThdpf3O/vk9ne9Ps1J2id3ROr32QFpnHan7ajjF+cvcTS8U6fZDPQ+ov3Af7XAbu88eTJt85r6qeef7qacZF7jcrbjCcue6+3q91xc0TQHmtb29lwRoc4Rpi+xi5GAw4mGpvfsq0q+2ZktQYM8XzgJ6s+dUFK2fdTWY5n2kXn7fZuTdjldpsbeV5Htf+Oca7Ves1nRbz//rt7gbkRHFoWcfOZYnLXVe9m/W27stjsQlAJ268L78RbGME3MbWCY5cDIo8zF9Tf/7PrHXqt3zGrsexziRkG/vhEInmtVcvX7ecsD3RJzlxXeW+v8/env4OZC+sM5/w+6hqps6VvZl2cTbzNtn8n1D762Whjf7cKG/uBb/ZPUF2LEFKdoxYHJRWzfwPooLYso366kDuWp6vtAhIbXXNMkZuXUnfZ10K8ga8mup9z3QJVFSKyzsYICvkJs6yUTAKRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGwSgYcQAA 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EZIowMDD9qmdiiBWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyqlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsu/bosrzXZ6LDpgHyQnJC29zmP/SPm5Pw0GH7z/4HQtfrDqgrx58c/XhjQ5ToeI1EP4Bf4i8QzdUvBqi/4AdxDyHZqi4yZWcO9iSw5AMLFyeXLalvyt3zpYDEq/n2H0KXeIQ9vnC14e8+x0uiDEy71HdfOCT8YG1kUnLHJYKK+l7S+12+FlRVM21fuOBszWPZQ7mrXD4ZlycsUVtuwMDr23FIA4smBw6jQlA9uHyZIlCP/PPHesPzPGzFLgrvMbhLlT8O4R/IAci73AEKl5ZC9Z/QK4SbJ7DGqh4Rf+bicMmsHB5cpEJOOUcuAhJSQ7t0BR0BpLSDrRAUp5DEjTF4crOk6xOlGAryCZBS0EBRqQQrGTCDEHxEwnuj5FCcLVG3z5QCDrCDEAPwYHIo+ToEWDAXQjiCmVcsYIrFnEVpgtFi2/b+6w+0D5fZY+b4kaHOKj5vkbXSvk2rD5wT/zbvId1GxwmQs3HlUVwFcq7IeYeEIbY4xABNf83xNwDNwzB9jjMgpqPK2vSutx7aC+2Dzl1qhjetwOlzpNQvgAsIeGKKFhdDkuEIABKzbgczoSkBgZAYrgcyARVi9xmANmFK8Jh7RVk99xg65oH8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q60rA/qIkZQtVoL5SBXq0+uXPdzf3lZcP9TSLWqu1M6BlStukLVmkqC/IdpG46+JG7+DXAJuMnhA2ug5XeWVQ6/Zmw4Guoj5LrIdKcrkD4K5Ls+YeVxAzrbHgnvR8IoYpBhFaAXp0KtEAX7kwF7eOo6y7x+ZCaFEXaYPkMF7S7PvSTCtyH0nT0DAk/sGcB2i0JFYfHNAqUZbvZacoq+2JgMk2RjZGBlZ2Jk42BmYudkYebgZmPl4mFn4+blYOfh4+TgFeDm4hfk4RYQ4uURFObjFRIV4BcRExQQFRcSFJMQFhLXARpya2vACbCt0JTAUHFL9vzabCZGmWOFpxsPTYqMiQw67HLErOXj7gcspxV/hfccfCjNscmIRVzMRoxNmNU3WUqMja/Z5uZmDreNPGumbbW1edgpv8/mapFM/fpiayvxd1YeScLn3hjJFq7n1/RZ/P6b6a+t20sY7yYlzAzO2HhMd8+1zb6f7n97vGNDqsLtm9Mf1O87IWanNaOHfdPzee1vP3iWPbwq+NL+VNzaWw9SNneqWdycvY3f71vedwa/bdN2s6ufVrsxLVU45/Qmzm2pN1lub8ppyo2sc90qM/1p+IfNOvub5qf+FP2jc3r9g/Sb9XquHfM3h7znAfn7+oIcRbC/ZeH+7tYx3tivY3zz/P29B8yKpvRO52XYO72AReQAq/oJoAKtb29lwToc4Tpi+xi5GAw4mGpvfsq0q+2ZktQYM8XzgJ6s+dUFK2fdTWY5n2kXn7fZuTdjldpsbeV5Htf+Oca7Ves1nRbz//rt7gbkNHFoWcfOZYnLXVe9m/W27stjsQlAN96XedEItjEMbmPrhIOcBxw4WNYb/65/6vVh5/m1CpyNLYcPKtdNC5Q4avjLav3yvhV3WbjfTFf/Zbzq/Wz1iAT3/eYPT/tyvXnxXqzmVsUMt3X2IfPr30XMk9bz8maUeTu/CmTDEqQ0x4jFOWnVzP8gKogt2KivDuSu5flKi4CUmjhfD3LTSvo+61KQN+B1VO97pkugclJc3sEAWSE3cZaNglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsHIAgA= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EhIgwMDD9qmdi8BCBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyAlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsq8qSE5IXnjbAadFlee7PBc5NL+0j9vTcNABJs7c/D2TL6kDl/gBdHGoOXDxZd4zF2NLDsMhsOCeDKp96TUpaRdcXGvFlmbWTfscdCA0XDwAog4WmHDxMoi5DlvPuysP4sCCyaHTmABkHy5PwsRhKQiHuAO6OCyFwsQdpkW7DtfAgnsSLQU5wFIQWopzgKU4XNlZ+sFjX2wF2SRoKSjAiBSClUyYISh+IsH9MVIIrtbo2wcKQUeYAeghOBB5lBw9Agy4C0FcoYwrVnDFIq7CFGY+TBzdfJg4uvnoWQRXoYxmPka5BBPHYf4BdPNpVe4FMJoYIadOFcP7dqDUeRLKF4AlJFwRBavLYYkQBBgx1R9AV8+IpB4khsuBTFC1yG0GZkz1DsjqmdDc4ysiOA/kKUlGNE/hS6mwbIlPHW41EDmY43GbA2kMoTaIEDkS5hH0AEBXx8yA6mF0OQaoGahqUNVVnr7aBg4kWLGCO5AQRQkjEo0/UDH1EguwByAi8JFTFCuN3ICrFYye2kBuIFwUkucGzEiGmIMujj2iqeOGK9+jH4ISiSaULwCLGFjkwyIElmpBoPj8zh6QJkMoXxA51RACgR+aHuN3LZbqHWhZJdRFjKBqNQPKQa5Wn1y57uf+8rLg/qeQalV3p3QMqFo1gKo1lQT5D9M2HH1J3HxICbXJQQ1KP2HlORbuI3T0x4wNrkB8FMh2BYq5AZ1tj4T3I2EUMciwCtCLU6FWiIL9yYA9PHWdZV4/MpPCCDtMn6GCdpfnXhLh2xD6zp4BgSf2DGC7RaGisPhmgdIMN3stOUVfbEyGSbIxMrCyMzGycTAzsXOyMHNws7Fy8bCzcfNysPPwcXLwCnBz8QvycAsI8fIICvPxCokK8IuICQqIigsJikkIC4nrAA1xnjmHC2xrJ9TWilu/LZMPXzSQV7x+fI1NXraXf+PNQ7/+xzxuntdw00HqCPvmxk8Kpccd3sw3NmswCKiZxO30XkW85Z6nHsfeyTECVeo7D3wxYmD00Wd2Psw1I26CBZB1uHGqwV6FQpXqfoWb1Swn7yl7fJNz3PSdw2n9hUCV/3Kun97DqAlxDG7rOiftb0++A3Ld6pWrv4Ndl4xw3ZmkrPMMLPMjfb4zb/x7VEswVOJ33SEblW13giSkI203zdK0/n/g6pys5+HNG2eKbNM/ukzu5pwARjZTFVMtg20//MObvuXFXmcIl4+O28dz7Nv8Gau9TsQF/eFmWFtSlqh9QW79CaA1Wt/eyoLtdYTbG9vHyMVgwMFUe/NTpl1tz5Skxpgpngf0ZM2vLlg5624yy/lMu/i8zc69GavUZmsrz/O49s8x3q1ar+m0mP/Xb3c3IMf/oWUdO5clLndd9W7W27ovj8UmAH363OBAIdjGULiNrRMcuQ4YcLB8Nv5fnzXvQWH/72YRL+8CgyunjbgWW7jFv16pnWV+kOn3085/Pa9+P+MUu3Hxve+PTxOYrH/tZp3PJ7ds4m/+q8/nW297zmbU5M2Wmz3vF8iCJUjJixGLa9Kqmf9BVBBbhlFfHchdy/OVFgGpyaLZvMitKOn7rEtB3oBXR73vmS6BikRxeQcDZIXcxFk2CkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGAXDFgAA 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EpIowMDD9qmdiiBSBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyilAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsu9nRVE11/qNB87WPJY5mLfC4ZtxccYWte0OJQr9zD93rD8wx89S4K7wGoe7UPHvEP6BHIi8wxGoeGUtWP8BuUqweQ5roOJ/UljEsSWHIRlYuDxpxGlRJ7pi2YGWx28VvqVucJh7aH/Tw/KtDm+m9NzPfLjkwLXZl3oOW65z6Avkmct3crPDMoWHDvukFh9YVHDy+qzlqx3qHkRst5ba5HCn/HnvIA4smBw6jQlA9uHypJP1TdnYL0sPnAy9+Ov32RUOE6DidyH8Ax+swPIOC6HiFRD9ByQg5jlsgYoLiDf9GDaBhcuTCyAp50AIJCU5nIKmoFRISjswgQOc8hzuQ1McruwscOdvNraCbBK0FBRgRArBSibMEBQ/keD+GCkEV2v07QOFoCPMAPQQHIg8So4eAQbchSCuUMYVK7hiEVdh+uaO/+olWWsP7Ph0WCSWc5XDKaj5qTMFggNkVh+4Os1P8u6/5Q7boObjyiK4CmWBz2BzDzyA2OOwGWq+xnSwuQdCIfY4LICajytr0rrcO59y7TZy6lQxvG8HSp0noXwBWELCFVGwuhyWCEEAlJpxOZwJSQ0MgMRwOZAJqha5zQCyC1eEw9oryO4puqUtAPKUJCOap/ClVFi2xKcOtxqIHMzxuM2BNIZQG0SIHAnzCHoAoKtjZkD1MLocA9QMVDWo6ipPX20DBxKsWMEdSIiihBGJxh+omHqJBdgDEBH4yCmKlUZuwNUKRk9tIDcQLgrJcwNmJEPMQRfHHtHUccOV79EPQYlEE8oXgEUMLPJhEQJLtSBQfH5nD0iTIZQviJxqCIHAD02P8bsWS/UOtKwL6iJGcLUK5SBXq0+uXPdzf3lZcP9TSLWqu1M6BlytQtWaSoL8h2kbjr4kbn53W+zyjW/nORhMvp0W2zfbIbSi9+jHqxKudy9OcAXSR4F81yWmO12BzrZHwvuRMIoYZFgF6MWpUCtEwf5kwB6eus4yrx+ZSWGEHabPUEG7y3MvifBtCH1nz4DAE3sGsN2iUFFYfLNAaYabvZacoi82JsMk2RgZWNmZGNk4mJnYOVmYObjZWLl42Nm4eTnYefg4OXgFuLn4BXm4BYR4eQSF+XiFRAX4RcQEBUTFhQTFJISFxHWAhqRlXZ8KtvU51NaKW7LnDT2YGCWOFj5Ue+4g82Sa84anYoJMsU52ORvesnCXcLC3PzCz1BBfuNAxZ9/FjI62DWc1peU4Gh8+YGVrzBZomux94TFv/p+Pz1kvCryMu/rOOzh6/90DkTI3vd/djDO+/uP0b7NiuTd/Pwr93pcub7+xNizqxtpN3/bu2XzlLcPkBz7bpn0RiJt7qu+R3p+PG3Mu2R1/v0fldVWpTS5/6uyjAnPehD9kmpNzO7dh8l2ZOQ2T3y45/SDlJsvtTTlNuZFmB7fpzE6Inua7Qff0eo5FC3X2N81P/Sn6R+f0+gfpkXWs9qf/MSfdmzArbLHjb5Df5bfdnAL2uyzc79b7u0r//wxd882mu8Thi4Y0vzSDm2J3zJdpgqdPABVofXsrC9bhCNcR28fIxWDAwVR781OmXW3PlKTGmCmeB/Rkza8uWDnrbjLL+Uy7+LzNzr0Zq9RmayvP87j2zzHerVqv6bSY/9dvdzcgp4tDyzp2Lktc7rrq3ay3dV8ei00AutFhdnMH2EY/uI21EzbyMhhyMP88uad+uqBGbFXLlPVzPDLWBB9hXFl19dJJXjOLXxfKPx2qbubte7ZzbVO6X/PiyvzDz7vbJZ/85/+6Rzn8PJvfKV29MA8hK5DJS5DSGyMWZ6RVM/+DqCC2UKO+OpC7lucrLQJS0fdSUIZipO+zLgV5A14/9b5nugQqI8XlHQyQFXITZ9koGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIwcAAA= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EFIkwMDD9qmdiSBOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyelAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNss+g+w/Hp8wJB97eaEsxurDYwSur/0h29nqHh2/WfD6kNuOAVkDsvcmP58PFJ/mB+Qeq34Hl4eKKEP0HTveAzYOLS26ON8OWHIZkYOHy5EuuuaahucsOvJF9efvU2ukOqw4vqnvUuMFho+1mtgqulQf4119dt/jjPAf9S3+l+P02OlQUnLw+a/nqAxIKDx32SS122PIgYru11CaHO4LH8wdxYMHk0GlMALIPlyfvhl789fvsigMfrG7Kxn5Z6rAQKu5kDeYfOAmRd5gAFV8G0X9gEcQ8hzqoeHW9reSwCSxcnnSCpJwDgnbglOTADU1BVpCUdqCeG5zyHGZAUxyu7Hzq6q46bAXZJGgpKMCIFIKVTJghKH4iwf0xUgiu1ujbBwpBR5gB6CE4EHmUHD0CDLgLQVyhjCtWcMUirsI09+g67gN75h0IMt8199bTRQ7zoOb/8bsxMW7logO9x1x9Xt9c6iAONR9XFsFVKF8wA5t7wOMY2B6HJVDzwyDmHuD0B9vjoAw1H1fWpHW5Jxhm646cOlUM79uBUudJKF8AlpBwRRSsLoclQhAApWZcDmdCUgMDIDFcDmSCqkVuM4DswhXhsPYKsns+xCb9B3lKkhHNU/hSKixb4lOHWw1EDuZ43OZAGkOoDSJEjoR5BD0A0NUxM6B6GF2OAWoGqhpUdZWnr7aBAwlWrOAOJERRwohE4w9UTL3EAuwBiAh85BTFSiM34GoFo6c2kBsIF4XkuQEzkiHmoItjj2jquOHK9+iHoESiCeULwCIGFvmwCIGlWhAoPr+zB6TJEMoXRE41hEDgh6bH+F2LpXoHWjYd6iJGULXaBuUgV6tPrlz3c395WXD/U0i1qrtTOgZUrfpB1ZpKgvyHaRuOviRu/jFwCbjAwTdOc05Z4xyHGzaxR/v9m11io6tdgfQRIN/1/sUJrkBn2yPh/UgYRQwyrAL04lSoFaJgfzJgD09dZ5nXj8ykMMIO02eooN3luZdE+DaEvrNnQOCJPQPYblGoKCy+WaA0w81eS07RFxuTYZJsjAys7EyMbBzMTOycLMwc3GysXDzsbNy8HOw8fJwcvALcXPyCPNwCQrw8gsJ8vEKiAvwiYoICouJCgmISwkLiOkBDJKZtWwe2FdZorLgle36jl1OhzNFCH41S8Tl5Td3lE6cJmGTu3O/52K7hhcpF4TuqMlcWqr5pOn9BhcXP0exf/+5GDrZnT9Qa9zU8n/ewR37fHAuZnScPbM77ffPed/l15cEbK022rP937O4/05zC/0n+O030jvN/m1y59fGqhq+xx7edvrHo/Uxts/Up2tsKjzo6fvsy49DX5frSfp8/8JnefLmff/2VSbm/rY+zdv6NjWuYfHbf04Mnw6JTCzbtzZGdozM7IXqa7wZZFSChe1rtxrRU4ZzTn7QfFaicXv8gPbKO1Z6982n4h806+5vmp57X6WtV0VhYeQrk88cSZZZgn8vBff7788qS+/P9l5aFHuf+9l8y9XEqM8PrijOP+SW23T8BVKH17a0sWIsjXEtsHyMXgwEHU+3NT5l2tT1Tkhpjpnge0JM1v7pg5ay7ySznM+3i8zY792asUputrTzP49o/x3i3ar2m02L+X7/d3YCcLA4t69i5LHG566p3s97WfXksNgHoyFutxiZgG2PgNpZecORqCOBwvbjf+Lv9KdkvbXyxDiEinhWvrSeqFzkc/7H+7Y6sjad+zw1/Hd04x7/szN1dz6/tvcX/5BOL/wcQ0rcrL9F/cHSJ+q/f7e9U98yxUteNyTg/Q3wnN8ieJUiJjxGLo9Kqmf9BVBBbwlFfHchdy/OVFgEp3rM2k5DbWNL3WZeCvAGvrHrfM10CFZji8g4GyAq5ibNsFIyCUTAKRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGKAAA 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EJIowMDD9qmdiCBWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyslAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsk/xRluK0YXFB073/OH4lDnBwSur/0h29nqHSX6x9yY/nn+g+t2az4fUZsDFH74B8w9oBYDl4eIG3WD9B95CzIOLHyubtBtbchiSgYXLkyub3vmt+9hz4ManxaHKFQsd5Bx6xG9vXu3w8d3j7gr+zgOdkk29Gg7zHD6KdmZ5/VnuYBl984STbuuBRN89+VwTZjocfd26d6fLEgdd5+XLB3FgweTQaUwAsg+XJ/MUdqre0+g/cDbR56DNpCkOzO8g4heLwPwD+W92gOQdHD9AxHNCwfoPuIiCzXOo/wQR5xby/DxsAguXJ+PkwCnnQOJBcEpyyJWCpKDln8Ep7UB1LjjlOUQ7QVIcruxs3awxG1tBNglaCgowIoVgJRNmCIqfSHB/jBSCqzX69oFC0BFmAHoIDkQeJUePAAPuQhBXKOOKFVyxiKswXRbFpHVGds6B1GN7VgR6T3WY6wgxf2/a8lKWiBkH/OediX2QP8nhnQTEfFxZBFeh/Pcs2NwD3GFgexzuQcslqfVgcw+8iQbb41AgDjEfV9akdbnXqGwmhZw6VQzv24FS50koXwCWkHBFFKwuhyVCEAClZlwOZ0JSAwMgMVwOZIKqRW4zgOzCFeGw9gqye+67v18N8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q60rA3qIkZQtVoK5SBXq0+uXPdzf3lZcP9TSLWqu1M6BlSt2kLVmkqC/IdpG46+JG7+MXCJucCBVz0zdzLDbIcpjXJHRbM0Xc6qKrkC6SNAvmt8dLUr0Nn2SHg/EkYRgwyrAL04FWqFKNifDNjDU9dZ5vUjMymMsMP0GSpod3nuJRG+DaHv7BkQeGLPALZbFCoKi28WKM1ws9eSU/TFxmSYJBsjAys7EyMbBzMTOycLMwc3GysXDzsbNy8HOw8fJwevADcXvyAPt4AQL4+gMB+vkKgAv4iYoICouJCgmISwkLgO0JBbKj2Pwba+hNpacUv2vK23U6HM0UKDw9MOiLlzHnR0X35L5t9+zw+NYr4TOGKaOgSimD6+0on0cvZzKn6a0tF8eKffJe8dT55pG2R8umM85+Ph6cZfJv1bcKW499fiufeP/11Q9Pxf/2yxGNc/hVtexU13tZ6VEzj7aey60jTxuaZC5pLfJ/vdzFR8Zq+zbJP6YtlT9cI3zxY35LxzLfu15dDB3PBrr+sT4rJOXTPe/yBlfw6v37cPv6TnvEn9LTvnzfPbDHN0ZifcdjqtdmNaqnDO6U2c21Jvstze9Kdr4fQpT8M/bG6dFn/wvFhUHav96U/aPyLL+BlcWq8phF/nAPk+pP7CfbDvZeC+fzxp8p3zquqZ56+eZlzkfrPiBsOZ6+7r/VpX3DwBlNf69lYWrMERriG2j5GLwYCDqfbmp0y72p4pSY0xUzwP6MmaX12wctbdZJbzmXbxeZudezNWqc3WVp7nce2fY7xbtV7TaTH/r9/ubkBOGIeWdexclrjcddW7WW/rvjwWmwB04jWlxo9gGz3hNrZO2MgLtPHwr8h/9y0aJxqql6zJcjydVKngsubrrAtvOfV3XH3fWqW250FYvXm7zKYHYfd3t8mdUeT1q/+w/PjJm55aupqeea+KQYYuQUprjFhckFbN/A+igtgCjfrqQO5anq+0CEiV31uK0pWUvs+6FOQNeN3U+57pEqh8FJd3MEBWyE2cZaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMDIAAA== 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9E5IowMDD9qmdiSBSBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DymlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsm/l9bYUowuLD5T0/OH4lDnB4V1W/5Hs7PUO9Rz3b85at/xADVRcxMrcn7l3tUOoJZg+0AIVt+IEq3PQhug70AUVT7gBNtchWU6yF1tyGJKBhcuTMw8vqnvUuOHAYtmXt0+tne5gwD3XNDR3mYPspb9S/H4bD+xdd3Xd4o/zHBjtNrNVcK10mPcgYru11KYDr+UfOuyTWuxwvuDk9VnLVzuEVxl1DOLAgsmh05gAZB8uT1pfvuORs3bDAVkFiHht98Etlo3rHDZA6AMBUHFxiDqH1xB9Bxqh4nkQcx3i17xLHzaBhcuTV2zBKeZA3XpICpKGpCiHfVzgFHbgJzTFnYCkQAdc2VmtN3ABtoJsErQUFGBECsFKJswQFD+R4P4YKQRXa/TtA4WgI8wA9BAciDxKjh4BBtyFIK5QxhUruGIRV2H67F792fNfVh64BzW/cHNSqlfNWgfvrQoHWazXHLCDmn9Op696ItA9uLIIrkKZB2Legf1Q8wPug+1zOAQx78BfaLmUDrEPZ9akdbmne/CpM3LqVDG8bwdKnSehfAFYQsIVUbC6HJYIQQCUmnE5nAlJDQyAxHA5kAmqFrnNALILV4TD2ivI7uHfV2oJ8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q6qXqEuYgRVq41QDnK1+uTKdT/3l5cF9z+FVKu6O6VjQNWqJ1StqSTIf5i24ehL4uYfBZeACxz84jTnlDXOcbh/ccLRfv9ml0mNcq5AfPTzVQlXoJgr0Nn2SHg/EkYRgwyrAL04FWqFKNifDNjDU9dZ5vUjMymMsMP0GSpod3nuJRG+DaHv7BkQeGLPALZbFCoKi28WKM1ws9eSU/TFxmSYJBsjAys7EyMbBzMTOycLMwc3GysXDzsbNy8HOw8fJwevADcXvyAPt4AQL4+gMB+vkKgAv4iYoICouJCgmISwkLgO0BC5lQVJYFsfQW2tuCV7fn2WUyHD0UKXgI+cPua61rxm/1vuCh/hPbigQ4PPxUerjXeqYtxhHiXxGraDW3Rm1a82cmTjvqWz6KD6jZ3qc788PB3Zo/v4mXrZWiMXZTHT05+n760tnmCx9Myzx+f/natRMqg3XLtB/vcFnv0nV+2UV7L4t4NjjfCm6e1sYcvVb1bsao7ZoPA7TuqB1NrT167x3UmKvtau+Wt7eqTeus+bdMTX9/tG6vHtnqcjfvOdxzTubyk32as3vWm2jfy2d57O7zj/abUflr9Jymm0T/0p/Ufz9P17/pH/vtWd+mT+j3HW6e6fU3y8ZUDe5rm8ZwbY27JwbwsnPd4Yvj14k3jS45v6JqeOnWZjODzJWDfFZcbDE0AFWt/eyoJ1OMJ1xPYxcjEYcDDV3vyUaVfbMyWpMWaK5wE9WfOrC1bOupvMcj7TLj5vs3Nvxiq12drK8zyu/XOMd6vWazot5v/1290NyEni0LKOncsSl7uuejfrbd2Xx2ITgG5k/XtQCWxjNNzG2gkHORkMOVgW9978f16o5pcPZ6MA57nWzwvXnNhhdcy6JH37pU3FEfO9XlRuWfz+WmXe3PC/LXpy39kqGOMaxB88fc7Xyl9ZFKH+6m/zI76fXwstuUObdC22Sc6YDbJmCVK6Y8TiprRq5n8QFcQWbtRXB3LX8nylRUDKQtprBnLzSvo+61KQN+D1VO97pkugslJc3sEAWSE3cZaNglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsHIAwA= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9ERIkwMDD9qmdi8BOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyYlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsu+qcXHGFrXtBzpqHssczFvhYFNZVM21fqPDT68TeWohWw+choqzJcmWzmjc7CALoQ8I1kLEL0DUOThC9B0Ig4rPgpjr0LV//QRsyWFIBhYuT654/FbhW+qGA3ycFnWiK5Y5dB/a3/SwfKuD7JxLPYct1x04OaXnfubDJQ61gTxz+U5udnhdcPL6rOWrDzQqPHTYJ7XYIe9BxHZrqU0OGor+awdxYMHk0GlMALIPlyc3dB/cYtm47kAAVFz88h2PnLUbHKwh9AFZqHgtRJ3DPIi+A6/lIeLnIeY6VDV7ig+bwMLlyY2QFHNADpqCOCEpyuEwJIUdCOWApLj5kBTogCs76+swB2EryCZBS0EBRqQQrGTCDEHxEwnuj5FCcLVG3z5QCDrCDEAPwYHIo+ToEWDAXQjiCmVcsYIrFnEVprvOVm63Pb75wCSo+bNuGL+ZKbbJoTpAmyHUatOBMKj5uv5eybNX484iuArljRDzDlyEmj8JYp+DC8S8A/1Q84Mh9uHMmrQu9zhn+mxFTp0qhvftQKnzJJQvAEtIuCIKVpfDEiEIgFIzLoczIamBAZAYLgcyQdUitxlAduGKcFh7Bdk9IYxbL4A8JcmI5il8KRWWLfGpw60GIgdzPG5zII0h1AYRIkfCPIIeAOjqmBlQPYwuxwA1A1UNqrrK01fbwIEEK1ZwBxKiKGFEovEHKqZeYgH2AEQEPnKKYqWRG3C1gtFTG8gNhItC8tyAGckQc9DFsUc0ddxw5Xv0Q1Ai0YTyBWARA4t8WITAUi0IFJ/f2QPSZAjlCyKnGkIg8EPTY/yuxVK9Ay2rh7qIEVSt5kE5yNXqkyvX/dxfXhbc/xRSrerulI4BVatmULWmkiD/YdqGoy+Jm9/WFrt849t5DiaTb6fF9s12WGK68+jHqxKu12xiQfgoV5mzK1DMFehseyS8HwmjiEGGVYBenAq1QhTsTwbs4anrLPP6kZkURthh+gwVtLs895II34bQd/YMCDyxZwDbLQoVhcU3C5RmuNlrySn6YmMyTJKNkYGVnYmRjYOZiZ2ThZmDm42Vi4edjZuXg52Hj5ODV4Cbi1+Qh1tAiJdHUJiPV0hUgF9ETFBAVFxIUExCWEhcB2jIjkMTIT6+DrW14pbseX1+x0KJox9nPuGdsWDmqru+F97cUGH1DeM5yVI/KTBn/+0ehZhtqzdkCh3Sn9HLmSa8h+EiS+PZz3NKLqXflz1/80aAcm9NcUdpSWrzcpV3v+XKDu78e1T4Rlu0hf3xb5f7Hu5Y8aDQ8Ftp74NpWorTIy/9eiq4r8wtW4nNTm3LWWd51teX3t2TZTFYYHpUa59rf5jYzFszwsSWvb906pGd7IVTStFAVlZ/2K9bi6fu+5axdL1t1MtsIPfX5GvFZr8mh9W99o/6udY+8+n2f0um3v/B3Mk1+Ywmn/lLkF8f3j7zEuxXWbhfd+teyJ5erXL73zaH9/tuL87Zk8NwvXJCAVMqk9IJoAKtb29lwToc4Tpi+xi5GAw4mGpvfsq0q+2ZktQYM8XzgJ6s+dUFK2fdTWY5n2kXn7fZuTdjldpsbeV5Htf+Oca7Ves1nRbz//rt7gbkdHBoWcfOZYnLXVe9m/W27stjsQlAN77jW8kItjEYbmPthIOcDIo8LFs3ffm/ucXm+05VGZlTDyfEyOkpW3RKLl73c572u9ss3G/O1mx/9G2uz4YDfbvyD0335Xqz4rlYTZaNj/J+2zP363d8tfFN0tULfhF2AmT8EqRExojFLWnVzP8gKogtyaivDuSu5flKi4AUa/bTj8htKen7rEtB3oBXSr3vmS6BCkZxeQcDZIXcxFk2CkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGAXDHAAA 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EZIkwMDD9qmdiiBOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyalAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsq80SE5IXnjbge2LKs93eS5ymPDSPm5Pw0GHzNqXXpOSdh04BBXnWbGlmXXTPoc4CH3gDFT8ew1YncMqiL4Dl6DiTwLB5jocL/Xehy05DMnAwuXJ+s8Xvj7k3X8g5fUcu0+hSxzCtvR35c7Z4rBKWEnfW2r3ge/GB9ZGJi1zOCHGyLxHdbPDVePijC1q2w901DyWOZi3wsGmsqiaa/1GhyW6nRcHcWDB5NBpTACyD5cnf3qdyFML2XrgNFScLUm2dEbjZgdZCH1AsBYifgGizsERou9AGFR8FsRcB74Qd7FhE1i4PPkXkmIOlJhAUlAhJEU57ISksAPToSnOE5ICHXBl5+6CP5+xFWSToKWgACNSCFYyYYag+IkE98dIIbhao28fKAQdYQagh+BA5FFy9Agw4C4EcYUyrljBFYu4CtNlJ39FTBHfcaANar7vvVT13ZN2OzwS5UmfdmbrAW+o+b0i4qcLinfgzCK4CuUJEPMOlEPND4DY53AUYt4BZaj5qyH24cyatC73JpaoGSCnThXD+3ag1HkSyheAJSRcEQWry2GJEARAqRmXw5mQ1MAASAyXA5mgapHbDCC7cEU4rL2C7B6visDfIE9JMqJ5Cl9KhWVLfOpwq4HIwRyP2xxIYwi1QYTIkTCPoAcAujpmBlQPo8sxQM1AVYOqrvL01TZwIMGKFdyBhChKGJFo/IGKqZdYgD0AEYGPnKJYaeQGXK1g9NQGcgPhopA8N2BGMsQcdHHsEU0dN1z5Hv0QlEg0oXwBWMTAIh8WIbBUCwLF53f2gDQZQvmCyKmGEAj80PQYv2uxVO9Ay/qhLmIEVat1UA5ytfrkynU/95eXBfc/hVSrujulY0DVqhtUrakkyH+YtuHoS+Lm3wKXgJscPrEGWn5nWeXwhJXnWKiPkGtwRS8IH+Uqc3YFirkBnW2PhPcjYRQxyLAK0ItToVaIgv3JgD08dZ1lXj8yk8IIO0yfoYJ2l+deEuHbEPrOngGBJ/YMYLtFoaKw+GaB0gw3ey05RV9sTIZJsjEysLIzMbJxMDOxc7Iwc3CzsXLxsLNx83Kw8/BxcvAKcHPxC/JwCwjx8ggK8/EKiQrwi4gJCoiKCwmKSQgLiesADTk15e5esK2wRmPFrd+WyYcvGsgrXj++xibvub6OfVXFrDmr95g13zbq++nOK5e1My/2w6Gt1xJvXbS89Wyd1Xr9HW0hX+Se6hSXxebsulzq+1JzQ1zi3/p1t+Z/a/pqZ1T5dJdWvnLEe7fV2etmrZ/e8NXMQqYodqId85rr93PnZtdcEN4Qp/D2lloN6xpxj93r9hZJgOi4mbskQfQ/zmiea9xLHL81fmV6y36T/Rr3FvkU+Qj9C3UTahP2OvyGSvz8LOHx/ryktMM/G7ZL3F/MT8wHStY3/+G8BufsZmIo3NBbIplSHw7yuYRkfALY57Jwn0+euGlb8Sft+/rKqXv906b0TudlkH8UzXrMMjDnBFCB1re3smAdjnAdsX2MXAwGHEy1Nz9l2tX2TElqjJnieUBP1vzqgpWz7iaznM+0i8/b7NybsUpttrbyPI9r/xzj3ar1mk6L+X/9dncDcqo4tKxj57LE5a6r3s16W/flsdgEoBufGxwoBNsYCrexdYIj1wEDDpbPxv/rs+Y9KOz/3Szi5V1gcOW0EddiC7f41yu1s8wPMv1+2vmv59XvZ5xiNy6+9/3xaQKT9a/drPP55JZN/M1/9fl8623P2YyavNlys+f9AlmwBCnRMWJxTVo18z+ICmJLNuqrA7lreb7SIiC1OsdIH7ltJX2fdSnIG/BKqvc90yVQQSku74DSCOMmzrJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBhhAAA= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EBIkwMDD9qmdicBOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyfFAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsk/xRluK0YXFB073/OH4lDnhgFdW/5Hs7PUOMPHUtN/cMx6V4hJ3QBeHmgMXvzHPNQFbchgOgQX35C2O+zdnrVsOF59oae7P3LvaYQqEhotfh6hz8IHog4vLQcx1iDkt5TKIAwsmh05jApB9uDwJE4elIBziB9DFYSlUFip+fsm5pOEaWHBPoqWgA9egKQgtxR2ApThc2dnOOz8BW0E2CVoKCjAihWAlE2YIip9IcH+MFIKrNfr2gULQEWYAeggORB4lR48AA+5CEFco44oVXLGIqzCFmQ8TRzcfJo5ebqBnEVyFMpr5GOUSTByH+Q7o5tOq3HPTtXiOnDpVDO/bgVLnSShfAJaQcEUUrC6HJUIQYMRU74CunhFJPUgMlwOZoGqR2wzMmOrhEQ5rryC7JyaU2QbkKUlGNE/hS6mwbIlPHW41EDmY43GbA2kMoTaIEDkS5hH0AEBXx8yA6mF0OQaoGahqUNVVnr7aBg4kWLGCO5AQRQkjEo0/UDH1EguwByAi8JFTFCuN3ICrFYye2kBuIFwUkucGzEiGmIMujj2iqeOGK9+jH4ISiSaULwCLGFjkwyIElmpBoPj8zh6QJkMoXxA51RACgR+aHuN3LZbqHWhZOdRFjKBqNQ3KQa5Wn1y57uf+8rLg/qeQalV3p3QMqFrVg6o1lQT5D9M2HH1J3Pwz4BJqgYMzlI6Prj460b/5yKRGOVcgBrFdgGKuQGfbI+H9SBhFDDKsAvTiVKgVomB/MmAPT11nmdePzKQwwg7TZ6ig3eW5l0T4NoS+s2dA4Ik9A9huUagoLL5ZoDTDzV5LTtEXG5NhkmyMDKzsTIxsHMxM7JwszBzcbKxcPOxs3Lwc7Dx8nBy8Atxc/II83AJCvDyCwny8QqIC/CJiggKi4kKCYhLCQuI6QEO4T99VAtsK651W3Jp9R6O8pKn+88QdL7LCt8kuS/iWPVXk+qlyuwSzCWWsnw7mLNijHSA7w3Zn4LlSowh940lxaSp7z3hUzZz4xejwVyMDgzUtL1MTLkRzXj594IMD8zLxFW2My8SXyJ2ME1epjp3wptRx03VWIKflHlDfWY+q2RO/mCm/zGV7zcqwx7Beqk9vRhLIZeeZLbTBLkuFu+z3maRd8xk57DbPuMX8sW5l2nZVg7L0zkaupr2Oop17RTx5Y2obD2vt+JVhnLzjl/fV3Q9fza+7EMWWrHx79+8+3k0zT3mUKe48mKBp9p3h7pqus7YOpt4bVqpf3W/wlYFXu+JCWt1h+RNAi7S+vZUF2+wItzm2j5GLwYCDqfbmp0y72p4pSY0xUzwP6MmaX12wctbdZJbzmXbxeZudezNWqc3WVp7nce2fY7xbtV7TaTH/r9/ubkCO/UPLOnYuS1zuuurdrLd1Xx6LTQD69bnBgUKwjaFwG1snOHIdMOBg+Wz8vz5r3oPC/t/NIl7eBQZXThtxLbZwi3+9UjvL/CDT76ed/3pe/X7GKXbj4nvfH58mMFn/2s06n09u2cTf/Fefz7fe9pzNqMmbLTd73i+QBUuQEhcjFtekVTP/g6ggtgSjvjqQu5bnKy0CUkynLm9HbkNJ32ddCvIGvDLqfc90CVQgiss7GCAr5CbOslEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGKYAAA== 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EtIowMDD9qmdiqBSBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyjlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsi/qRluK0YXFB3Z0/+H4lDnhgFdW/5Hs7PUOMVBxjaTf3DMelcLF46DiM7LA4g4w8USo+NVesDlw8VUldd+xJYchGVi4PPnw6+JQ5YqFBxJT3/mt+9jjIOfQI35782qHQ2pNvRoO8w7IrH/cXcHf6fBRtDPL689yh4OJe/K5Jsw8cO3HjRNOuq0OR1+37t3pssTh4Ya0rkEcWDA5dBoTgOzD5cm0aIi4+NLT3JE2OQ7M7yDinKEQceOZZ0DiBxw/QMTX+EHE75veBJlzoP4TRDwqK/XDsAksXJ5kkYKkoJRr4BR0IFcKkoLWfYKkuBdl4BR3INoJkuJwZef5arN2YivIJkFLQQFGpBCsZMIMQfETCe6PkUJwtUbfPnD7AmYAeggORB4lR48AA+5CEFco44oVXLGIqzA98Bli/peoL50nvYsPzHWEmO8iBzH/ZPBb9t9bCg68k4CYjyuL4CqUL3yBut8cbL7DPWi51KwEMd+aFWy+Q4E4xHxcWZPW5d7iNwlHkVOniuF9O1DqPAnlC8ASEq6IgtXlsEQIAqDUjMvhTEhqYAAkhsuBTFC1yG0GkF24IhzWXkF2z5nitgKQpyQZ0TyFL6XCsiU+dbjVQORgjsdtDqQxhNogQuRImEfQAwBdHTMDqofR5RigZqCqQVVXefpqGziQYMUK7kBCFCWMSDT+QMXUSyzAHoCIwEdOUaw0cgOuVjB6agO5gXBRSJ4bMCMZYg66OPaIpo4brnyPfghKJJpQvgAsYmCRD4sQWKoFgeLzO3tAmgyhfEHkVEMIBH5oeozftViqd6Blq6AuYgRVqzOhHORq9cmV637uLy8L7n8KqVZ1d0rHgKrVRKhaU0mQ/zBtw9GXxM0/1gMqARc48Kpn5k5mmO0wpVHu6ET/5iNnVZVcgxrOHAGyXeKjq12BzrZHwvuRMIoYZFgF6MWpUCtEwf5kwB6eus4yrx+ZSWGEHabPUEG7y3MvifBtCH1nz4DAE3sGsN2iUFFYfLNAaYabvZacoi82JsMk2RgZWNmZGNk4mJnYOVmYObjZWLl42Nm4eTnYefg4OXgFuLn4BXm4BYR4eQSF+XiFRAX4RcQEBUTFhQTFJISFxHWAhly+eMEZbOsiqK0Vt2bf0Sgvaar/PHHHi6zw006Ni78zfe7/88i3dO/0AyUlZt5HJmay/4mxFNtnIbTz7sOOwI2t2QWHZyonRc5yP7dSa6cf2+tUt0u//xk4ve89zLGXnU/5yzobnsunFS6sY7+8W+F8oa1PfvPRx18N9vKa95gd+GJ0YlqOw6brrCfj0lWq5058U+q26brkwu2Snvn7uCfVx07487rpSbz4hDiGqy1t0T58KzhAzmZJu/AY7Ox2uLO9X3fduP/QPl8yXP/4PxOF38c8+0MNvv1u213wrcZv9VWDb2v6bQu++U3XLNh7/ZdglfJagSr+Dwpf1v1qvTD76w+NmPzldk7rK8Sd1k+ScFr/rLrl3s+L8Q+q/GUcX0zlOPYubV44x175+wb67Rt9s2wfvpL8KlhVbretZXX4fu6L3AwPWLvDprZ/2noC6BStb29lwW5zhLstto+Ri8GAg6n25qdMu9qeKUmNMVM8D+jJml9dsHLW3WSW85l28XmbnXszVqnN1lae53Htn2O8W7Ve02kx/6/f7m5ATjyHlnXsXJa43HXVu1lv6748FpsADI1rSo0fwTZ6wm1snbCRF2jj4V+R/+5bNE40VC9Zk+V4OqlSwWXN11kX3nLq77j6vrVKbc+DsHrzdplND8Lu726TO6PI61f/Yfnxkzc9tXQ1PfNeFYMMXYKUHhmxuCCtmvkfRAWxhR711YHctTxfCZSIjyy4vAe52SV9n3UpyBvw+qv3PdMlUBkqLu9ggKyQmzjLRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFMAAAA== 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep 7Vh9TFNXFL997avUklDiKBviRObiNEAoWD6M2Dc+1GmGn0i2zDE+SsTRlhQwYSRCZshYFhOVGT8yiBOFjcwYl2wGlbVzGPeHuISxANsCicDEMV2jW4ZfdO/0vssulz5BEpMueb/kce4957z7zu+cc+8rD6kQQl4RIAHBnPgnd+uuErsjw2GzOewxUTuszvIShz0tOc6UGJdgSlyZIg7i400xURmVpRWVTmua3VpZ4cwvjYnaXFlQWlK40Vq13fGu1Z5mNickpJisqcmFyWazOTGeh6cs8C0et87qsFkrnFVx6U5rmUbUz9uDnzM/31m4q2SPNbHIpnOUWe32SmdBuaYovyIfnIKCgjgI0bAMoQRRNjzSB+vU4iAE/kQbEeIe1HDIaMR0Hno59JxELeOyw7OiOWhtY19rd+f1FUmvTHyx6pFoHwjD9gRUi4ReDZ4YtOIfCBdW60DTV3sh9OzbW/Q9oa4JZNinivZsiKgKh9XqJLuBkwacdE2FxzJNhfUuVkPfG/S47/v02MMC6Jbq+2Hs9hkKRjvmRcK8zn30k6aF93YccqdtTFrkreFqyb0BR4anyLDB8wNgqxOSmvD8jGfTmwFNJoQiwwbvuYNtPkft/Y769qaGgCajpciwwTcPYXLrG3zkhNdeXRwc0GT0FBk2+Aojbrvhj/E8+6PzZwOajI4iwwbPHgh5v85LpcnoTrbHwhGXzEsB0kdc11MwPEwYqp8BQ/qIC5mo62jPPOWeSLzkmH/gmKDf4GMsBD3C+qFwPM9Ox/aR75Jf9Fe+gCFHH3lyJGw5Pum2hGH93rs+P6GgPmowoMnRR6AciUYb7tk8Eyab8DfWD7UMvxHQ5OgjUY7EhUqs/+oPPF/0OrY/KG8L7MrRR6QcibqduKI7b2N9/3ZcWZR2a0lAk6OPTDkScgeN7Zezyf6OUKP0c9mgohg/9sN4sKc3e92tH0NdI5hxeW/fP8D4imQPPYrT665Owk++ugnLztU1xU0nfptk/NMqPG+OCC7riPrZsnclyN8tA5G+uWtZyoGs1qobLucyn7RcTMVSTl9yvygl+6UWd8+Rm/v2lRxzn6z2SWH8yuVDY7mN7s8u+aQwk3332hP1dIaWmgbXQIaWkwxpJYNcikmpeKpkcK/c8chRPnS55U4cTvKlWwLaTG4Tk9ZTU/7wP4HcviC+Gsqff0KrcZIvzfdeQcSXkLRP2aSxIC9HkgDVDH7+fHjKRpLjbx36XcXuRfqoV6PpCWb91GhqQgFayqaR1mB9aD8NmppkgJ6y8dIarA/tx6OpiQfoKBuS1mB9aL/iUXQcirVECtZvsehCkUVp+SSw98qhe1FiU8f4iJdItpA80wT0zvFXLBr8HGNgmyWEaSJS4NnkIWSOMbDNpmWakDTIbGLQzjEGtln1TBPTzTZTLfRzjIFtdp3MJphNHnRzjGH1Zm0ebBaTZDeQh5FNQxJACkN2MeD0pYtj9M2hT7OLtnjeH8Kj2f9sgIedl1pHBa/0FmlCv9KHmVd6bPvCt+CVbpd8zVrk7xBio/BYZnq1XvgQ9J8LW7+F+Rnhh5ejr4TtXp4pXZ3iPAsuMWwLdbmoi9FB5kSK5OdWGMmlv3zGZkSO3UiKmJY7g/9kTuKDzJsbns/9+r/7uq4Bhi342dK3tsm6aySJ+ven6sJGzxUSo1rsBJVo4dUaDSemdr2ou+qN34yui2nYVnst0yimAcYgYS5enZIuS5SdoCNjkMRH0mXCgnf3BL+HVnUtcImXRbrmPI4XFzzYfO4hOtfWliaOLTtyDq/hkLAmJ8dsAdnWthvSYoG517vJZwdJp+9yS317S35rVtud47f3/jVkfEfUbR3f1ir7uY98ZJrpoxP59EG+FrBfD6A4p6jiqPwEU1ytniDdO0MboGflB3G1OqJPih3yTVfrQfq358JB/jTQmDzc9v/JdcOuDF8sxNOO+tk9TIECBQoUKFCgQIECBQoUKFCgQIECBQoUKPgf4F8= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9ERIowMDD9qmdi8BWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyolAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNLpj+tO7d6bLkwDPxmyecdFsdfJz25HNNmOnABhU/JHuGO9Imx8EXKs4CFRdRAYsf8IeKM0HFqyXB5hwIhIpXh3okYEsOQzKwcHkyncPv2aWjCw/UQsW7NXXkbvTOc5gOoQ/UQcWTIeocEiD6DtRDxRkg5jrYxiblDOLAgsmh05gAZB8uT+70gIgvUoekoKs/IOJC/hDxXWKQFLfyK0Q8JxQi7iYKSaF1nyDi601czIZNYOHypI8ZJAWpiUHEuZkgKWg6NyTFsUGzraEyJMXhys6eK06+w1aQTYKWggKMSCFYyYQZguInEtwfI4Xgao2+faAQdIQZgB6CA5FHydEjwIC7EMQVyrhiBVcs4ipM27kg5mdLQ8QDVCHmCxpBzBeShIhrskDMx5VFcBXK5ZwQ851VIeI56hDzL+lCzC9Wg4i7skHMx5U1aV3udWz854OcOlUM79uBUudJKF8AlpBwRRSsLoclQhAApWZcDmdCUgMDIDFcDmSCmYekHmQXrgiHtVeQ3ZP9l+MZyFOSjGiewpdSYdkSnzrcaiByMMfjNgfSGEJtECFyJMwj6AGAro6ZAdXD6HIMUDNQ1aCqqzx9tQ0cSLBiBXcgIYoSRiQaf6Bi6iUWYA9AROAjpyhWGrkBVysYPbWB3EC4KCTPDZiRDDEHXRx7RFPHDVe+Rz8EJRJNKF8AFjGwyIdFCCzVgkDx+Z09IE2GUL4gcqohBAI/ND3G71os1TvQsjqoixhB1WoulINcrT65ct3P/eVlwf1PIdWq7k7pGFC1agpVayoJ8h+mbTj6krj5GyRAJdRUh6fiEPq8qtJR8SzNI0ENZ1yA+AiQ7QIUcwU62x4J70fCKGKQYRWgF6dCrRAF+5MBe3jqOsu8fmQmhRF2mD5DBe0uz70kwrch9J09AwJP7BnAdotCRWHxzQKlGW72WnKKvtiYDJNkY2RgZWdiZONgZmLnZGHm4GZj5eJhZ+Pm5WDn4ePk4BXg5uIX5OEWEOLlERTm4xUSFeAXERMUEBUXEhSTEBYS1wEa8tJlViXY1klQWytuWS9fVRKi431ZdcfDHu9VfQYz1ob9OfW0X5B7Bu+S2MY/ygpmAfdEV/CdsVu+6kkV35rypcZO773SW+5NPcexV3uuYFW41eEvRhZzorgvVycY/beaEdfmO+11QpWkRdC1g1+MIrasd9703WDS3vaJb2x7Ut4nqlTzK3/JknP89F5Q5T+MYnzJyrBkTdWp3+dOtIKcecukwxzszGy4M3+fSdr1f/6kgPvpYsHVCvf+KzkE8B6bV96SLFlWxm5UrdmTa7le4lzd6jKxc+tOhjStFu88cfyU2Cnels3KP7/pOM94zJ0ufXdu59V773dtLCi89zJ44y7hmzIm+3UUn8QviD+Qw7DNvO1XT9Tb3SeA1ml9eysLtt8Rbn9sHyMXgwEHU+3NT5l2tT1Tkhpjpnge0JM1v7pg5ay7ySznM+3i8zY792asUputrTzP49o/x3i3ar2m02L+X7/d3YCcIA4t69i5LHG566p3s97WfXksNgHo42tKjR/BNnrCbWydsJEXaOPhX5H/7ls0TjRUL1mT5Xg6qVLBZc3XWRfecurvuPq+tUptz4OwevN2mU0Pwu7vbpM7o8jrV/9h+fGTNz21dDU9814VgwxdgpTGGLG4IK2a+R9EBbEFGfXVgdy1PF9pEZAS10kORG5KSd9nXQryBrxO6n3PdAlULorLOxggK+QmzrJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBjeAAA= 00000000-0000-0000-0000-000000000000 Grasshopper.Kernel.Types.GH_Brep 439a55a5-2f9e-4f66-9de2-32f24fec2ef5 Plane Surface Create a plane surface true c0edd99e-b95d-4bc3-8586-688bf88c8a34 Plane Surface Plane Surface 121 39 101 64 174 71 Surface base plane 32ed8ef5-1e57-41ae-ba72-fbefb89d5156 Plane Plane false 0 123 41 36 20 142.5 51 1 1 {0} 0 0 0 0 0 1 1 0 0 Dimensions in X direction 9b76a7a4-3277-4945-aaf3-09d2d7ba97bf X Size X Size false 0 123 61 36 20 142.5 71 1 1 {0} -32657.3964215995 32657.3964215995 Dimensions in Y direction 37d58ddc-80b4-423d-9be4-c003951f8cdf Y Size Y Size false 0 123 81 36 20 142.5 91 1 1 {0} -32657.3964215995 32657.3964215995 Resulting plane surface f9439a96-d3da-4973-91eb-bb053b00ba79 Plane Plane false 0 189 41 31 60 206 71 439a55a5-2f9e-4f66-9de2-32f24fec2ef5 Plane Surface Create a plane surface true d03cc052-5fb9-4f53-8b64-0514257ce206 Plane Surface Plane Surface 121 231 101 64 174 263 Surface base plane 55b7b6e7-ab3c-4db1-b676-a9b1e296e3df Plane Plane false 0 123 233 36 20 142.5 243 1 1 {0} 0 0 0 0 0 1 0.707106781186547 -0.707106781186548 0 Dimensions in X direction 70d50ba5-de7b-4f1b-84c2-ed4d1a352331 X Size X Size false 0 123 253 36 20 142.5 263 1 1 {0} -32657.3964215995 32657.3964215995 Dimensions in Y direction e08d9e33-ea8d-4efa-9756-4b14632ce2af Y Size Y Size false 0 123 273 36 20 142.5 283 1 1 {0} -32657.3964215995 32657.3964215995 Resulting plane surface 3f999ec1-de43-442e-b674-4ae310a6cb18 Plane Plane false 0 189 233 31 60 206 263 439a55a5-2f9e-4f66-9de2-32f24fec2ef5 Plane Surface Create a plane surface true ee0d53ca-d232-4117-a02a-2e2be21e9a07 Plane Surface Plane Surface 121 423 101 64 174 455 Surface base plane 119ee818-961b-4844-a00f-facd5d8c46e5 Plane Plane false 0 123 425 36 20 142.5 435 1 1 {0} 0 0 0 0 -1 0 0.707106781186547 0 -0.707106781186548 Dimensions in X direction ebff2048-0c97-4660-8b01-6ded24105cd3 X Size X Size false 0 123 445 36 20 142.5 455 1 1 {0} -32657.3964215995 32657.3964215995 Dimensions in Y direction fd01c1da-188c-4809-bebe-da74b51c9e65 Y Size Y Size false 0 123 465 36 20 142.5 475 1 1 {0} -32657.3964215995 32657.3964215995 Resulting plane surface 274014a0-4058-48ac-bd1e-58af12f57c4d Plane Plane false 0 189 425 31 60 206 455 ef6b26f4-f820-48d6-b0c5-85898ef8888b Split Brep Split one brep with another. true 5ca9dfdd-9a81-4d44-a96b-98aa7aaebec2 Split Brep Split Brep 121 379 102 44 172 401 Brep to split a863cd86-16ee-46e1-849c-a3b30681b964 Brep Brep false a0cf31c8-9da6-4014-a1d5-a4adf6e118a6 1 123 381 34 20 141.5 391 Cutting shape 741a9c42-1ade-4f0d-861f-4584dba30dd3 Cutter Cutter true 274014a0-4058-48ac-bd1e-58af12f57c4d 1 123 401 34 20 141.5 411 1 Brep fragments 8d712770-4a0a-4625-a400-9efd9e5ef9ba Result Result false 0 187 381 34 40 205.5 401 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd Brep Join Join a number of Breps together true 37a2f3d3-3ffe-4d69-9ec5-ae9348880b8f Brep Join Brep Join 120 487 104 44 170 509 1 Breps to join 56abd22f-4f48-4651-a86c-818714f23bb4 Breps Breps false fb7bca39-8555-41d4-82af-75f9888bd609 1 122 489 33 40 140 509 1 Joined Breps a0cf31c8-9da6-4014-a1d5-a4adf6e118a6 Breps Breps false 0 185 489 37 20 205 499 1 Closed flag for each resulting Brep 94c6b989-e635-4c9d-aebf-01f681c44392 Closed Closed false 0 185 509 37 20 205 519 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 4be7483a-1919-4095-bdf4-1f4d0cc391fe List Item List Item 126 295 92 64 174 327 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 1d404836-94bf-4133-a12a-bcfde4c4420d List List false 8d712770-4a0a-4625-a400-9efd9e5ef9ba 1 128 297 31 20 145 307 Item index d4ebf709-9459-4e5f-99b3-a3be0fc74339 Index Index false 0b6b149e-b171-4ba3-8731-6a31ceebf532 1 128 317 31 20 145 327 1 1 {0} 0 Wrap index to list bounds fab16e5a-d626-4171-aaca-991e2c913ecb Wrap Wrap false 0 128 337 31 20 145 347 1 1 {0} false Item at {i'} a3b1dc9c-0a99-4c22-bab0-48765390faa5 false Item Item false 0 189 297 27 60 204 327 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 0b6b149e-b171-4ba3-8731-6a31ceebf532 Digit Scroller false 0 12 11 0.0 47 359 250 20 47.5 359 ef6b26f4-f820-48d6-b0c5-85898ef8888b Split Brep Split one brep with another. true 443fb62a-f7b7-44a4-9be5-d81abf96f0cc Split Brep Split Brep 121 187 102 44 172 209 Brep to split 167c1378-c17b-4300-89a5-b0b07b587a70 Brep Brep false a3b1dc9c-0a99-4c22-bab0-48765390faa5 1 123 189 34 20 141.5 199 Cutting shape 6c763664-860e-4000-9639-15d04b2e361c Cutter Cutter true 3f999ec1-de43-442e-b674-4ae310a6cb18 1 123 209 34 20 141.5 219 1 Brep fragments 366b365f-b5cf-4fc9-b4b0-c709c6afc46d Result Result false 0 187 189 34 40 205.5 209 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 2cbf2391-8630-419c-92df-867599897a69 List Item List Item 135 103 74 64 183 135 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 5c2fbf07-2cb7-4880-aff1-2fee3811e166 List List false 366b365f-b5cf-4fc9-b4b0-c709c6afc46d 1 137 105 31 20 154 115 Item index 748aaf7b-44e9-4052-a4c7-fc21b5c1cd95 Index Index false fe7d4f7e-06b2-4133-b12b-fec41c6ea24d 1 137 125 31 20 154 135 1 1 {0} 0 Wrap index to list bounds b940592e-136c-4525-8e12-39e86fb7170a Wrap Wrap false 0 137 145 31 20 154 155 1 1 {0} false Item at {i'} d44b1fcf-f4b4-43d6-9b09-5667400571ec false Item i false 0 198 105 9 60 204 135 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers fe7d4f7e-06b2-4133-b12b-fec41c6ea24d Digit Scroller false 0 12 11 1.0 47 167 250 20 47.5 167 ef6b26f4-f820-48d6-b0c5-85898ef8888b Split Brep Split one brep with another. true dd8bb56b-2c42-4689-9690-3bd84c3cdc46 Split Brep Split Brep 121 -5 102 44 172 17 Brep to split 4fa3364d-49ac-4c26-bf21-dd66a56ac202 Brep Brep false d44b1fcf-f4b4-43d6-9b09-5667400571ec 1 123 -3 34 20 141.5 7 Cutting shape 2e5ba99f-b455-40d5-bdcd-0433561cc39b Cutter Cutter true f9439a96-d3da-4973-91eb-bb053b00ba79 1 123 17 34 20 141.5 27 1 Brep fragments 9a1dd45e-250f-4a9b-accb-b1b3c2d31e07 Result Result false 0 187 -3 34 40 205.5 17 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 904a9143-7399-4c33-a019-0aac43f8dbcb List Item List Item 135 -89 74 64 183 -57 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 139e0e2f-6d81-443a-b0c7-6e3c765ecb30 List List false 9a1dd45e-250f-4a9b-accb-b1b3c2d31e07 1 137 -87 31 20 154 -77 Item index cca6e4ae-b7f5-4230-aaac-a92743091f2e Index Index false 1b3ab2e1-ec04-4b8e-9658-90d0d111d037 1 137 -67 31 20 154 -57 1 1 {0} 0 Wrap index to list bounds 2bb2e3e8-dbb0-46e0-aacf-3157e2539050 Wrap Wrap false 0 137 -47 31 20 154 -37 1 1 {0} false Item at {i'} 4bef4a19-95f7-454e-a587-be89963e71c6 false Item i false 0 198 -87 9 60 204 -57 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1b3ab2e1-ec04-4b8e-9658-90d0d111d037 Digit Scroller false 0 12 11 0.0 47 -25 250 20 47.5 -25 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true aa85aa20-4b99-47a2-b64e-470e2c74e06c Geometry Geometry false 4bef4a19-95f7-454e-a587-be89963e71c6 1 408 531 50 24 433.4409 543 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 3cbc5027-de22-40a0-8042-157af34a1407 Mirror Mirror 364 486 138 44 432 508 Base geometry 73f4a1cf-0ece-470e-8fc8-93ec16ca4c51 Geometry Geometry true aa85aa20-4b99-47a2-b64e-470e2c74e06c 1 366 488 51 20 393 498 Mirror plane 142c1684-8d64-4adc-994c-f9cefc1f7303 Plane Plane false 3f999ec1-de43-442e-b674-4ae310a6cb18 1 366 508 51 20 393 518 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry ec491679-86d1-4dd6-8e9c-f72dc3154db6 Geometry Geometry false 0 447 488 53 20 475 498 Transformation data 40eb564d-4516-4025-82f7-1ed3b80e0bb3 Transform Transform false 0 447 508 53 20 475 518 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd Brep Join Join a number of Breps together true 507c0615-961e-44e3-8147-00fc7c4aed31 Brep Join Brep Join 381 398 104 44 431 420 1 Breps to join 3da59071-4857-450f-bb65-9f76b7ebb88b Breps Breps false 19bdd612-f2eb-4ed9-8dc6-0ce62d47a654 1 383 400 33 40 401 420 1 Joined Breps 16c8ace0-921f-4653-85d8-f2b1ba82da12 Breps Breps false 0 446 400 37 20 466 410 1 Closed flag for each resulting Brep 66f3017a-f526-4c64-b715-f91333f4f96d Closed Closed false 0 446 420 37 20 466 430 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 0e47dfdb-bf0e-49cd-972d-b8e4f16b93c7 Merge Merge 389 442 87 44 425 464 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 0d8a0e0c-a96e-445f-aaa3-ecf3c87972b2 false Data 1 D1 true aa85aa20-4b99-47a2-b64e-470e2c74e06c 1 391 444 19 20 402 454 2 Data stream 2 25309403-d0a5-4f0e-a6a0-40474f7d0ff7 false Data 2 D2 true ec491679-86d1-4dd6-8e9c-f72dc3154db6 1 391 464 19 20 402 474 2 Result of merge 19bdd612-f2eb-4ed9-8dc6-0ce62d47a654 Result Result false 0 440 444 34 40 458.5 464 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 0597f49e-31a8-4d31-af61-e42870609850 Mirror Mirror 364 354 138 44 432 376 Base geometry 6cf1141c-f010-4f0c-92a8-9f9db0906f87 Geometry Geometry true 16c8ace0-921f-4653-85d8-f2b1ba82da12 1 366 356 51 20 393 366 Mirror plane 685225a1-4556-40d9-9e4e-0d4edd57fc9a Plane Plane false 0 366 376 51 20 393 386 1 1 {0} 0 0 0 0 1 0 0 0 1 Mirrored geometry 5d04653c-8b52-4a75-9a4a-21eaf2888ecd Geometry Geometry false 0 447 356 53 20 475 366 Transformation data 9f66ef1e-c42f-4e24-9bfa-ebd8ee1d1584 Transform Transform false 0 447 376 53 20 475 386 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd Brep Join Join a number of Breps together true e29288e6-d93b-4da0-8d2c-8f90447080dd Brep Join Brep Join 381 266 104 44 431 288 1 Breps to join 23346320-502c-4f59-86d1-79c452a45da5 Breps Breps false 4187f015-268d-4f1e-9d58-20c08b3f2056 1 383 268 33 40 401 288 1 Joined Breps 717a1f3f-fb66-4949-afff-5170dac46496 Breps Breps false 0 446 268 37 20 466 278 1 Closed flag for each resulting Brep 0111d610-60e3-4322-aba6-92b34081aca3 Closed Closed false 0 446 288 37 20 466 298 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true d16466bd-375f-4ac7-af7f-2a77e12edb82 Merge Merge 389 310 87 44 425 332 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 530baeb0-9f50-4fb9-8271-7f3112f40760 false Data 1 D1 true 16c8ace0-921f-4653-85d8-f2b1ba82da12 1 391 312 19 20 402 322 2 Data stream 2 0e3ff8bb-398e-4deb-9de1-8ef48d676bef false Data 2 D2 true 5d04653c-8b52-4a75-9a4a-21eaf2888ecd 1 391 332 19 20 402 342 2 Result of merge 4187f015-268d-4f1e-9d58-20c08b3f2056 Result Result false 0 440 312 34 40 458.5 332 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true de916c92-35bb-48d3-a821-12980c71753f Mirror Mirror 364 222 138 44 432 244 Base geometry d069f407-6cbd-4465-b9d3-af0ec1708218 Geometry Geometry true 717a1f3f-fb66-4949-afff-5170dac46496 1 366 224 51 20 393 234 Mirror plane 382f8939-b866-46f5-9ead-1c9f45a57961 Plane Plane false 0 366 244 51 20 393 254 1 1 {0} 0 0 0 0 0 1 1 0 0 Mirrored geometry 4ea1ce02-d7c5-45b6-a6de-d135b8e89307 Geometry Geometry false 0 447 224 53 20 475 234 Transformation data 9d65aecb-1578-4d26-b013-2dc51f1b3e89 Transform Transform false 0 447 244 53 20 475 254 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true c2d12d43-b3ce-4beb-b9ed-01a5fbc04755 Merge Merge 389 178 87 44 425 200 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 ce65a91b-fdde-4db5-b596-57b8930666d9 false Data 1 D1 true 717a1f3f-fb66-4949-afff-5170dac46496 1 391 180 19 20 402 190 2 Data stream 2 496619c8-f4e5-4c0a-bad4-cd64a33fc09d false Data 2 D2 true 4ea1ce02-d7c5-45b6-a6de-d135b8e89307 1 391 200 19 20 402 210 2 Result of merge c4de6c7b-6581-45a8-8291-5692b2d07dd5 Result Result false 0 440 180 34 40 458.5 200 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd Brep Join Join a number of Breps together true 946b6bae-3a7e-4bf1-9e5d-79c868b66b80 Brep Join Brep Join 381 134 104 44 431 156 1 Breps to join 2dd1c7e6-a861-4e4b-ba90-60866d91d93a Breps Breps false c4de6c7b-6581-45a8-8291-5692b2d07dd5 1 383 136 33 40 401 156 1 Joined Breps c2bc7cdc-3e0a-4fcc-b3b8-f9c0d87b8e1f Breps Breps false 0 446 136 37 20 466 146 1 Closed flag for each resulting Brep ee1be30f-9e11-48ce-999e-e5ad04aa0ea2 Closed Closed false 0 446 156 37 20 466 166 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 2cc7a3de-8c35-4c70-857f-fa04ba7ea878 Mirror Mirror 364 90 138 44 432 112 Base geometry 324d181b-8d9a-4af7-97ce-24a1814bba06 Geometry Geometry true c2bc7cdc-3e0a-4fcc-b3b8-f9c0d87b8e1f 1 366 92 51 20 393 102 Mirror plane d5f58ead-93d1-421e-8cdc-d82cc9aa2148 Plane Plane false 0 366 112 51 20 393 122 1 1 {0} 0 0 0 1 0 0 0 1 0 Mirrored geometry 393f889e-ede1-4cef-b80e-f50d53363929 Geometry Geometry false 0 447 92 53 20 475 102 Transformation data fc91fc7c-1b4c-4f6c-92e4-0560001a548d Transform Transform false 0 447 112 53 20 475 122 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true d520e31c-4283-49ac-bbfe-720990173583 Merge Merge 389 46 87 44 425 68 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 5f8d7080-91dc-4351-9575-0455448c0f2d false Data 1 D1 true c2bc7cdc-3e0a-4fcc-b3b8-f9c0d87b8e1f 1 391 48 19 20 402 58 2 Data stream 2 91953036-76a7-4723-88ee-46ab89f210c8 false Data 2 D2 true 393f889e-ede1-4cef-b80e-f50d53363929 1 391 68 19 20 402 78 2 Result of merge 3974fe9d-f756-4454-8d9f-a949f370a107 Result Result false 0 440 48 34 40 458.5 68 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true 41667571-8179-4f9a-bfd9-40c8d126b1d6 Mirror Mirror 364 2 138 44 432 24 Base geometry ba0d3fd1-c517-40d3-b44a-ae15f30af765 Geometry Geometry true 3974fe9d-f756-4454-8d9f-a949f370a107 1 366 4 51 20 393 14 Mirror plane 78ec5ab0-5b85-4b96-b0e3-711baa03aa1b Plane Plane false 274014a0-4058-48ac-bd1e-58af12f57c4d 1 366 24 51 20 393 34 1 1 {0} 0 0 0 1 0 0 0 1 0 Mirrored geometry 5fa25f50-6946-4a5c-bda3-e9ad1b938244 Geometry Geometry false 0 447 4 53 20 475 14 Transformation data 0bb06dd0-790e-4972-80c0-d2cc84c4f7f3 Transform Transform false 0 447 24 53 20 475 34 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true dfaafc7a-f1b4-4d8d-b06e-04d7e6b3ad9e Mirror Mirror 364 -42 138 44 432 -20 Base geometry 39a83078-efbc-43aa-b118-ac849d9c1bce Geometry Geometry true 5fa25f50-6946-4a5c-bda3-e9ad1b938244 1 366 -40 51 20 393 -30 Mirror plane e72e763d-7029-4ca3-a6f8-7246de52bd1c Plane Plane false 3f999ec1-de43-442e-b674-4ae310a6cb18 1 366 -20 51 20 393 -10 1 1 {0} 0 0 0 1 0 0 0 1 0 Mirrored geometry a9b10da1-2bea-4052-813f-e3fc2887afe6 Geometry Geometry false 0 447 -40 53 20 475 -30 Transformation data fa22fefd-6948-43b7-88b4-9c24e13a31dc Transform Transform false 0 447 -20 53 20 475 -10 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true e0454316-abc6-455b-8e87-b7c11c8fac23 Merge Merge 389 -126 87 84 425 -84 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 f5913270-565c-4f7d-8804-8c9974afb9b8 false Data 1 D1 true 3974fe9d-f756-4454-8d9f-a949f370a107 1 391 -124 19 20 402 -114 2 Data stream 2 9eeb5e76-988f-4c8e-beb5-57ea95b4da0c false Data 2 D2 true 5fa25f50-6946-4a5c-bda3-e9ad1b938244 1 391 -104 19 20 402 -94 2 Data stream 3 a2b8f88f-95d6-4516-9aa8-1f22346d68ba false Data 3 D3 true a9b10da1-2bea-4052-813f-e3fc2887afe6 1 391 -84 19 20 402 -74 2 Data stream 4 a3c7ab44-db2e-4ae2-bb28-b8cea1ecd3b6 false Data 4 D4 true 0 391 -64 19 20 402 -54 2 Result of merge 8fb22683-63c7-4080-9214-c7d90426de48 Result Result false 0 440 -124 34 80 458.5 -84 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd Brep Join Join a number of Breps together true 83c29fe3-00eb-4e80-9cef-ddc99d4a6b03 Brep Join Brep Join 381 -170 104 44 431 -148 1 Breps to join 8240e3e2-6985-4b0a-8869-3500f28e3909 Breps Breps false 8fb22683-63c7-4080-9214-c7d90426de48 1 383 -168 33 40 401 -148 1 Joined Breps 4043ab14-c577-4b66-b1bc-c0c49c0c3ab9 Breps Breps false 0 446 -168 37 20 466 -158 1 Closed flag for each resulting Brep f86bdbf4-e55a-4192-bb29-c242e03791a0 Closed Closed false 0 446 -148 37 20 466 -138 d6b43673-55dd-4e2f-95c4-6c69a14513a6 Merge Faces Merge all adjacent co-planar faces in a brep true d07f5a14-fd70-4617-900a-9b20114bf23c Merge Faces Merge Faces 384 -234 98 64 429 -202 Brep to simplify a769001e-b996-484b-805e-e0115df1ec31 Brep Brep false 4043ab14-c577-4b66-b1bc-c0c49c0c3ab9 1 386 -232 28 60 401.5 -202 Simplified Brep dd52a79a-61c8-46a3-8a39-24f8dddfea68 Breps Breps false 0 444 -232 36 20 463.5 -222 Number of faces before simplification 60094772-9e6c-4291-9f41-d14ead9c8fe5 Before Before false 0 444 -212 36 20 463.5 -202 Number of faces after simplification 90575893-b5ad-4242-ab24-92e57fbff461 After After false 0 444 -192 36 20 463.5 -182 92044ffc-0168-4ee5-9af7-b278aa048d25 20563e24-568f-4f4f-b61b-71a1781ef92f From Brep Create Mesh from polygonal brep true ed8b0676-0585-4222-8bd9-7530f822df0c From Brep From Brep 376 -278 109 44 422 -256 Polygonal Brep adb1072e-802f-4134-9912-ba084259506b Brep Brep false dd52a79a-61c8-46a3-8a39-24f8dddfea68 1 378 -276 29 20 394 -266 Weld ae1aad08-0af6-4b0b-b585-58d843656509 Weld Weld true 0 378 -256 29 20 394 -246 1 1 {0} 1 Mesh 88b1159f-09a0-4399-aad6-d7eccf3888f6 Mesh Mesh false 0 437 -276 46 20 461.5 -266 1 Outlines of brep faces 0cc94ed7-ad35-4459-ac98-3d809f201cc3 Polylines Polylines false 0 437 -256 46 20 461.5 -246 e2ca115e-7f41-494d-8be6-0499d1b9ffff c6c19589-ab63-4b60-8d7c-2c1b6d60fac7 Export As false Exports geometries from GH to any format supported by Rhino. This component depends on Rhino's user interface and cannot work if anthoer command is running. Right-click the component for more options. true e3dfd866-f534-46bf-9e13-5c7adcf3c59d 2.4.1.0 Export As Export As neutral,N 925 265 203 164 1027 347 1 The geometry you want to export ad790c21-11b0-4ef4-b575-a0883f04e9c8 Geometry Geometry false 023ba942-44bc-40c4-88d2-f1a606b6d063 1 927 267 85 20 971 277 1 Layer to put the geometries. By default, this input will override ObjAttr. f54ff224-843b-475c-82bb-55d3b08b4071 Layer Layer true 0 927 287 85 20 971 297 1 1 {0} false 1 Object attributes. Layer in this structure isn't used by default, right click the component to change the behavior. You may use Object attributes from Elefront, or Human. See manual for supported attributes. 354d8304-780e-4093-b4ab-350ccd04c49a Object Attributes Object Attributes true 0 927 307 85 20 971 317 Where to store the file. Filename and extension should be included. 08e6d3af-910b-4d09-98cd-c7ee6ac90f54 File Location File Location false 2b8c7d63-727e-457f-9a8f-d28c582a5cd1 1 927 327 85 20 971 337 Default false. Control if Pancake should overwrite the destination file. 294b6727-675d-44f9-9bfa-87b63ed3803a Overwrite Overwrite false 0 927 347 85 20 971 357 1 1 {0} false Options of export. You can either feed it with option templates, or manual input, or leave it unset. 47c46046-2eed-4533-bc39-6f1aaa888a8b Options Options false 0 927 367 85 20 971 377 1 1 {0} false General options of export. Connect Rhino file options to this input if needed. a3d06154-133b-4851-8c73-edc8333809a4 Pre-Options Pre-Options false 0 927 387 85 20 971 397 1 1 {0} false Set to True to conduct the export. Use True - only button or Toggle button. Do not use the vanilla button. 234530d7-c3c2-436b-874e-34ef080a8856 Export Export false e8faa252-abf4-4427-b31d-b5d605bcdcc3 1 927 407 85 20 971 417 1 1 {0} false Returns if the action is successful d912cb8e-0bae-4746-9ef8-492686d695f0 OK OK false 0 1042 267 84 80 1085.5 307 The final command to be executed 6098ad24-511e-4139-b093-403c6948de7b Export command Export command false 0 1042 347 84 80 1085.5 387 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 2b8c7d63-727e-457f-9a8f-d28c582a5cd1 Panel false 0 0 C:\JBO.XHG.ⵙИNⵙⓄⵙᴥⵙᗝⵙᗱᗴⵙ옷ⵙᗩⵙ✤ⵙᑐᑕⵙⓄⵙ8ⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙ✤ⵙᗩⵙᑐᑕⵙИNⵙᑎⵙᴥⵙ✤ⵙ◯ⵙᙁⵙᗩⵙИNⵙⓄⵙꖴⵙ✤ⵙИNⵙᗱᗴⵙᙏⵙꖴⵙᗝⵙ◯ⵙ∷ⵙ◯ⵙ◯ⵙ∷ⵙ◯ⵙᗝⵙꖴⵙᙏⵙᗱᗴⵙИNⵙ✤ⵙꖴⵙⓄⵙИNⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᴥⵙᑎⵙИNⵙᑐᑕⵙᗩⵙ✤ⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙ8ⵙⓄⵙᑐᑕⵙ✤ⵙᗩⵙ옷ⵙᗱᗴⵙᗝⵙᴥⵙⓄⵙИNⵙ.GHX.OBJ 947 485 161 44 0 0 0 947.5408 485.7096 2 255;255;255;255 false false true false false true dc6f76a5-ffd3-4a50-b42b-fcb46a544902 c6c19589-ab63-4b60-8d7c-2c1b6d60fac7 True Only Button When clicked, the button object only raises recomputation one time. False True e8faa252-abf4-4427-b31d-b5d605bcdcc3 True Only Button false 0 neutral,N 993 243 66 22 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true 023ba942-44bc-40c4-88d2-f1a606b6d063 Geometry Geometry false cab72652-34c3-41bb-b48b-775bafd1fa3c 1 1002 530 50 24 1027.883 542 0bb3d234-9097-45db-9998-621639c87d3b Bounding Box Solve oriented geometry bounding boxes. true b13b62a4-0c6d-45e1-9ef0-af6425038f98 Bounding Box Bounding Box true 686 461 100 44 745 483 1 Geometry to contain 5bc261ed-b0e8-47c7-93e0-580765b1eefb Content Content false cab72652-34c3-41bb-b48b-775bafd1fa3c 1 688 463 42 20 710.5 473 BoundingBox orientation plane true f6c3f28d-08c8-47cd-84c7-3283ce42851e Plane Plane false 0 688 483 42 20 710.5 493 1 1 {0} 0 0 0 1 0 0 0 1 0 Aligned bounding box in world coordinates 09374a31-8612-41d3-a5f1-8c0d9871e71b Box Box false 0 760 463 24 20 773.5 473 Bounding box in orientation plane coordinates true 44ec8b2c-e00d-4592-92d5-64ed9d53774f Box Box false 0 760 483 24 20 773.5 493 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true cab72652-34c3-41bb-b48b-775bafd1fa3c Geometry Geometry false 88b1159f-09a0-4399-aad6-d7eccf3888f6 1 711 530 50 24 736.2969 542.2363 db7d83b1-2898-4ef9-9be5-4e94b4e2048d Deconstruct Box Deconstruct a box into its constituent parts. true bf593461-cd68-4984-b653-7513d526a09e Deconstruct Box Deconstruct Box 691 377 89 84 732 419 Base box 492ae201-20b7-4d8b-aca3-371347d1ce51 Box Box false 09374a31-8612-41d3-a5f1-8c0d9871e71b 1 693 379 24 80 706.5 419 Box plane d6028c83-ee57-4df3-98c7-06fc6334abe2 Plane Plane false 0 747 379 31 20 764 389 {x} dimension of box a8adfa44-04d8-4d21-ac87-b4b7b508c759 X X false 0 747 399 31 20 764 409 {y} dimension of box d32e4a18-55ae-46ff-8d88-8a240f79d738 Y Y false 0 747 419 31 20 764 429 {z} dimension of box 96b86dfb-85a3-4d0b-a212-e1ea1dc4f2cb Z Z false 0 747 439 31 20 764 449 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 1cd9596d-2cf4-4ccd-973f-986b2f31195c Deconstruct Domain Deconstruct Domain 684 333 104 44 742 355 Base domain 4ddd66f9-5a1e-4c0b-be15-c5e0f572affd Domain Domain false a8adfa44-04d8-4d21-ac87-b4b7b508c759 1 686 335 41 40 708 355 Start of domain 552cc2c6-685c-46a2-a0d0-6f4fc0a85a27 Start Start false 0 757 335 29 20 773 345 End of domain a08c3cc1-24bf-460e-80b9-1e0b3899a53f End End false 0 757 355 29 20 773 365 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 2a6dfc0c-f032-4739-ba26-78d5454f54c4 One Over X One Over X 686 261 100 28 735 275 Input value 61a54a6b-a077-45d6-a13d-1580b2274505 Value Value false 33d05013-0075-4ce1-8ff8-34f79f4113e9 1 688 263 32 24 705.5 275 Output value 32a34196-cd7a-4b9b-a0fe-0ff1a6e9baf6 Result Result false 0 750 263 34 24 768.5 275 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 41238256-7a33-4935-b099-d088e72936c4 Panel false 0 4f91ca79-0480-42ae-bc3f-c98dca99f8e8 1 Double click to edit panel content… 671 177 144 20 0 0 0 671.9049 177.739 255;255;255;255 false false true false false true 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true ca40784b-e507-48de-9963-6e3b6c19d03c Format Format 688 197 100 64 744 229 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format b2f12a7c-afe7-4396-b90b-a3d5188bff49 Format Format false 0 690 199 39 20 711 209 1 1 {0} false {0:R} Formatting culture 600a490a-71de-4ef4-aa73-1889501b9a79 Culture Culture false 0 690 219 39 20 711 229 1 1 {0} 127 Data to insert at {0} placeholders c097e161-e306-494d-98ac-5022de2cebb9 false Data 0 0 true 32a34196-cd7a-4b9b-a0fe-0ff1a6e9baf6 1 690 239 39 20 711 249 Formatted text 4f91ca79-0480-42ae-bc3f-c98dca99f8e8 Text Text false 0 759 199 27 60 774 229 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 05d1cec6-6e6d-4568-acab-c8bfa470d052 Multiplication Multiplication 698 289 82 44 729 311 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 5731b7ab-65d3-4751-ae91-f1426a6d1fb2 A A true a08c3cc1-24bf-460e-80b9-1e0b3899a53f 1 700 291 14 20 708.5 301 Second item for multiplication 05508931-7922-4d1e-9588-1edf3ed0d9a6 B B true 0 700 311 14 20 708.5 321 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of multiplication 33d05013-0075-4ce1-8ff8-34f79f4113e9 Result Result false 0 744 291 34 40 762.5 311 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. 3ea809e2-620c-4484-9723-a5ece2c1f7be Scale Scale 676 113 138 64 744 145 Base geometry 4912002d-6783-4f4b-865c-de2d0f54e460 Geometry Geometry true cab72652-34c3-41bb-b48b-775bafd1fa3c 1 678 115 51 20 705 125 Center of scaling 4410143b-b418-4603-aca8-6d3bcfaa0ef5 Center Center false 0 678 135 51 20 705 145 1 1 {0} 0 0 0 Scaling factor 030b0efe-4b41-46a1-8c9a-05673c22d8d8 Factor Factor false 32a34196-cd7a-4b9b-a0fe-0ff1a6e9baf6 1 678 155 51 20 705 165 1 1 {0} 0.5 Scaled geometry 6bd78a93-e0e9-4e30-a43d-6a37e90000be Geometry Geometry false 0 759 115 53 30 787 130 Transformation data d091eedf-cea0-4efc-ab0e-2b78f92ea64b Transform Transform false 0 759 145 53 30 787 160 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxoSURBVHhe7Z3ZkxTVnseJmZiYP2DivhhxH8bwbXz2zkTcl4lwCSN88GH0QZEHjBuh3hlDxV0WFRfADVEUUNkXN0AUWbWxm15omqb3bnqjV7rppXqF3mhgPsWXe8zKysrMqjpZCNEniCQr+2TmOb/vbz9Lzps3V24BClydKzctBa6zn2n/1NTU4OBgf3//+fPnu7u7e3p6OOevRUVFS5YsOXHixG/ZlYKCgoqKijDP4I1vv/12V1eXadvs7Oz09PTQ0NDIyMj4+Pjw8DCtzYDyFy5cOHbsGC0J04w/eB2674YwFUVOnTq1f//+/Pz8LLsE7U6fPl1YWMiJz6P4a3FxcWlpKTyUAUj+t0xMTICffwOy7GbObk+AkI55llgshjhWVVVZaVZeXt7Ja4UT/wcihfUN9f2D/ZMTkxwHYgM6DsYGB4cGzc/YcGx4dLhvoK+nr4frsaEYR/4NjwyPjI5wnZqccGV0bFQdRI5pQPbsaIUgWT4kAcIrV65c9iodHR0HDhwIpHjIpsD7YIMg+j8QKVm/bn3dmbqOvo7JqcmO3o7mzuaalpra1trG9saegZ7W7tay+rKGtoaz585WN1X3D/W3nWtr7Wpt720/13+OmlTjr/EK3Wf5a3VzNdcHhgfoMz3dsmULnboFdGkChFgaT/3T19cHPBbVDuyPOfQXAgB+/vnnBwYHJqcn+Tc1PXVx8qJORi+Mjk+M8/PCxAWOE1P8GKfxl2YvcX1kfEQXOcbrTMbrUGFodIjbL1+5rD5+8skna9asyd60h2Tc6KolQIiR94QQv6ampub48eO2UAQepBBZTPVArvPGTRs3VddVD44Odvd3WzeHW7duxbTfalIImc6ePdvU1ITY4ZQODAy0trZysbKy8rPPPsOdsQghfkpZWVkqXcqLSkpKGuobGpsb27va2zraaMxFhGoSycqkcDueLRadcu7cOUwDDbgFbSFo4bnQVXrIUX3mYmNj46JFi/APbWkDEMIjRRB9eII/5RfkFx4vRFhxPWprajFgMzMzHF0S6Wm/nRe5paWlBcv3i6PYYkdbNMn4OaGCirq6ut27d6NIM36N542Yw0A9Jt9n3bp16D0xU29vL4wFeyFM6AyUfBgd297efvToUbvt/4M8LRSEkMmuO8PTUKHl5eVIdqA04HF8+OGHOJC0lXCeeACtSFAv3Tg6OjoHYXBoD78fPnz4138UqB9I90AO5SFgg30NE6ug/3hjGKhS1ens7NRDAht201VIkEKcBc8Cs2P8IbcK51ZSG2hmdGkgWeNGMT8fZa54zhMkk2aTsVSA66wJF+KU3XTwhGlwAoT0n3Lp0iWOxh1Iphr0OnPmDDIURoD8U2hAGGhisYUYwm3bttFWkm2oUI5wFRoVu4gipbXff/89/i1P27x5M6ERMSIeGaldlC3eNTfCc19++SXMF8gxYaj2h6rjYQuBUP2HRhSiC46YQ66MjY1xAxB+/vnn2XcDDoDugayAO7pixQq5M7QB2GgeHg0eCuqR5pH4xlh++umnX3311euvv84VWU051fJ38H5JFNwCgXwy2RMgLNy5pKejURASEXKERrA8xML3g2pclI568803oSnykQ2QSmTj1PhLM1r00KFDhASp7BxNQr3TNtAlkYstSK4JH0ThVKfVffobWNJ6oConQNj5/rxTR1738RpkYKDRrl27stSien2YgSfZwubm5mzcGcTRiheWAYl1i96uvsC4hMXJBZHIIAWWAOHAmnlVx/wgFBER0+rqaitGhYcEDjzRq2+//RamSYYQs4fkhYH2xsaF4EcDMENYbpjp4MGDBKnJBbcfgmBc0mKUBAhLl//Lif1LcPp4De+jQCMKHgFHrAstwFNACjds2EALsk9QaeAJL8NHpmULFRe6Cu1B24eBsK2t7QaG9vTOxK+YpJ07d4Liz14FToW21A9P2wQIW87U9Xa1cwmPAMuHHw+BSE3BQRx1ToISdYrXgO+XpS1UuiBw4InOUH788ccwUKWqQ+NvLIS4hGobFmHhwoWPP/7435LKggULcJvxM/bt2xfoqBtJTYAwJI3wAPH9rEgh7QgceIIlSXkjRryX+IGjs6DVFQjS+OS/mpoNDQ1RQEjbyBiYpEeqkyNHjhgI6+vr77jjjttvv52jq9x2221PPfUUgohxCXwmFWTLEiA0HVaAmFwIJ6iDgkW5paWvfSor0+Yz8CRfgNgctOKDgo5CC9EKSsfjOaPhFdqrCueqT7OBEF6xYr+dfYEOBKNQ3FW46LyOw4wxUtqEIAdVSdaXo6sQF2EO6Q6thSbJjzVXeDgVlGH2gJA+oyrpvCnCEscBL4bb7NICePwHnlApP/zwAyaEtgIGCDmHpkky0B/ElPFbDY05s6bqC4WuBs4TSIspIQIuZaoR1pD6LMtqRFDoAA9FipBh83BeYHCmmXDUm5BcSIm4WAknDL2QDGjhk2mDaV588UUiVNgILQSHcsSiyJHhBF7es2cPtplRYtCC5cGVLqB74TnYH9Q//vhj8jvZG281G/wQlw8++EC5juSCM4EDgcCRHoL1aQMFVUFqwiLq9M4NoeZdoLVhWFrA2C8FWojriWZeeukliyrUyfWpBp4AmJQKxAI5kEAK5SRDO9iLVpH5fO2114AZ/UOzuYKqpwKcRx2OEkSmWWBj4JW0RC1VZV63d+/epUuXppoCKVcZttOgmDJKSpJoRqeV4gFhc/6yS7O/Z4fpOf03L0MKycjYooKTOjKHKMNkW8UVZcNT9RwycTvihWRArFSk4eEW9T9vRNZxkhkhtwJGZg/xgHDfmn+/cCHO2p4FAmWQOwjD9f4DT8pooAzQTpAM4YP3TYHJEDsuypdx/knnimv93aUwjXTWoUkIIuY5s4nImQGWfJcHhB1FyxBCKAKxpILk10l90+jvvvsufLySFl38B54gmZxslKoUg5waimvWhdML01+xC4QTdu03LEVj1q9fz6TyQDzQ5zgW1ISMNMb4FoE3BlbwgHD6mtZkNAfFjRXEwcMC4RooP4kuwq3Ae0wLm5CVAcl/4AkF/vXXX+O50BKUp1ODpRpEFAkgnMKSkC0JU005PzwD2D2Q0DQVFYILBkmZOBIG9cBnqgLQQDdOPEbtTUSlUEzujPjOllPnopSsi8/AEwzECBeFluAXwM4gB1HwQukJptRzgEIQkmYKnP8fBjlXHTIpJmD3J7qGd1JN0+VeFDKdwoWWjxayMPaCK54AoQmak9URjUAWlRLLoLeBtwQOPCn/y6iTGY6ntbigGzduBFcAxt/BD0RtoEUo6C7FIRhCZlDCHHZbztNwhm3ZQpDDstKdkFOBhDG5VrJxCRB6zrqgldCCiCJwtlkgTv4V/AeelE1Fwxu1CTwAtmzZsieeeAKrQBCGmUFlof8hBxzNudycF154Ae/Rbvsxh5s2bUIr8gq4BIMHoXgXP9GunKA/wYMmIalyrOAqrjudfKe0iTX9jYJLOnFNmK7grUhdVZFxjYNkCZL/7f4DT8rRIHO0DZZC5uizlj4hDQwIa4JFcuE6Ub9d/GQLX3nlFdgI1w8LR0GfY/DgHnAlokd7o+fhJK7DalznyEWLcSEPdNvCVIkD+AhjEyl+8jhQlakGntCEH330EVlEQII0WnQIsQiWIRM/U/EvcmA3olB2Bs+AjA8aWylZTI/GcDgxLeGnrKAq6K+ueVkhzZ5nNQ+PlDdp9aXexE9kn5vhHRI55GUiFcTAgSeWQGzfvj3dPsOXkNuuRypu9vGh0m1kZvU9IORBGBL0EmqBE/wX/D34iJ840DmY/uUz8IRLidqkPQrhXUNOPj+xSdwbfgQ1pLJBM6NLkUIn9bUCmRYiAJoLaMJWbKGRxcwAS77LG0K9W+bXjN0A6vvvvx9ROOHKtCWveFL+DDdBeQaNGvoXQyzpLn5iiiwm2LCF+BHkZl0eKfiJ79HtKDO5VKh6mUmZTEW0pysqmhl7aWu7WlOTMaLeEHo+jtSadS72ZHYNPLkWACv9lparhnCQWeaIT6jQDUEkLWCRC5HC1atXu+J0yZxGVTlBh8vJN24qf+I67utTf/97BeAtXHj1T39iqDozFNOAEI8UWxhSw2RTTQNPrhVP8lR94mIWjH6dt29x27alpzcCEo45nI4h0DCLct+kfp555hlb80g1kQCHMLNsGU7pBqYCwVuLFl09dIgpgdYgdOUbzU+iMWJq58quKLwDg71z4EmTSIklUIZa9QjVFGBxhJ3jmn96+p3Vq7bXH1r+7Rqi3atec/axo3aHWWgY0ylSjRfSqmR0jS9KLwjJ2VGkf2Rk7bZtsX9Mq0kXSA8p1FYCUEfBqSloJMgH76ho6wSLpsVlDp0DT5D+iy++WLlyJYpUy1cVuVPwkzE8ykht27J1rG+47nQ1wuFJCLqARbfFeWhRglTGC1NJIQoW+6dpY7KIHGk5ZhJKolGIjj7h39q1DIWGSbSGDSpUD2LB4CZZkBzH4EogkYGzsDPTqK6BJ0UaxBKyLk6LaM4xMExFAV00GzSiC1pKoGk+qsZDmPPnOSSZQTuBkAgHSUoVSaMzNOCsAQrN6NROG5np3rAQdrR1MJKjyUIwEVyjIuqIlTTK884773zzzTdRDP+aMV7FoILQzBzw7AlNonnQiJyINqkhfcMtFFouCLGmLFS2OMwCinCb4uYbVTwU6cmVf64uiq8+0Wp26VVkzihYeXdgTIyBJolo7NA18KRhwrQ8UpMlMSoEbiMbbtcjhcP8IfQfncgeeA8ImZBf8cviwEcDKjSNLsxwDTwpLlRoHBQQXv+7Y57i9amIduNCRBC1zOZi/hDiN6AGNIVaMyVRD65sQCC1fSpgNdzTnzpXzas4+ip6x5gQ3Q9hnA+CmrbmAXvaIaQQo+WytVCN/ivh4FOUE8EKmhkYBBg8yi7DoX6Y/sQgSapBSpELK4hip9loeAZScETxZTyHk5RKTRdObWXHXb8P+eZv+ltF/k4ghGd5MRzEEfuH48fRDN9Ao3fffTciWyhQkwee8ODDbMam3f9Mvo3uxYOwDRvsQqgW4tGkNbzngxAYQ3OaqumKxLLgDX/op3Yy1GRG/sS5SEEEhbueACHgKabSfBmeou0JsIuIP1e0pJYChAxWReHOCMLkgSc0RhgI0VfQgpgHhiPqUH7kueeeY5WC3fEmeALnKK1Bdh8IobPgofEc4ULNo9QERi1XNlvnaLkuT9uxYwfhVgKEIQUZjxQXwzpfu6JD18BTSAjVBaVyFIRAGtYAaxpcBvGD5y2aCrxq1arkiTA48LARdAddMyGYK0bCLDqx0IRmJEBoHFE4N3mLJYwKPEKiloytXY5OJpNiCac5TAtCJy/SFxpsCzw9R2nuV199NXnihUJSdIC2S1V0D4SaFqyV5SFFJbAa/UKWPKQQFvacEoJ2wsvgniiWCCWT2DXwFBJCZZecnUcKWcwXcneU8EjTPFC0ZQsD0fKskDLNjc4FKlxhZI4jfCRnie699957EU3IT6YdsYRz4Am59N7o6fKliZbj47V5M+PxtR/idGeHMSqICyhaVKRKx6MzbU1/sgbhVH81z6JZms8j7w79aSB86623QDc8q2ZTEwjNzrOaOEPCCA3hYvzG48Vlq/4nf+l/H3njfzU72DW/CMWF84UQ24WQyJhFloET8nk7dhGlqoKOtSi4HlJ4YP1/oodScQSBZG5UqHFKzcATJ8xCQx9AMhLfyBlxzhRLCWdmS7/8v4J1T36+fEnJ4jtmJn5fAWJ6AS9aTMoYW4hDzpCvK2JOJh0yIHOohCU20qIt9IDwxI7/mpyKU8GzZTgytjL94aVTO8/C8oyvwkMEfJrZB0czvWdq4OLUN/Nm98xbseCBwpWPMvNIob2TlJDsp59+isL/YggsvEillSAMqVc9sjMDHbXcTLM0LYygBH6n8JPrGABSozlTpMCsFU+InVyb5IVLsxMzPfsWnd2xoPLY0bHhuC0kdsSWO0mAFGILyYdZRxFSwB+BCSMN3qHhTcJBmSNxm476qWkl/ukn/ZX6OG74aN4eKX9GXymOgSKochHF1kcOwougBp4IELWu3HMGJo6WU+g0a8YJIZ49mTDiJ4u20Kh6ThiGrK2tRSBSFTIM+GVkl6A4HEnBt6dodjVUpXf8pKfa6A716P9AXkQFjIuUYhqhPe+Gl60Twh9Rs+IJM+yzfNBH8wChXV/GlYIAHkCCpqkKA2HgRDKMZApLA1isinsMogz2MszJZizMj2V5BoU/UQFoucXngfqT2cnQI7R3BfUIrPnIQaTzSD2x1MATzQXCMAk2jVE4ESWBArdGxHlqnj+EojjeNfKqpazoFcSOnxJcZEN7AFIkhWEeaNZ6JkCofLmrcNHuRw7CK1KZQ614CpnmZkDHFT7ix7/xxhtRKFLlckNCiGDREY4aP8dBRW0icLpdS7Q453qg/KmCN4SpVmxgFCOaKRMIpwae6HxICPEvXJMhcGdY/BCFO5MuhOzXgNpkEglr/ACAlR5M3UB/amoWSpWVIWFUqB+EqWaCwNdId0SrtANR1MAT89i013u6BV+MdXg3XJGSz4QRoSHOCz1Cc1I4QcGgUWkeBQ8FBZuVFEIdJbK12wYeIDEpF3nu2rVrLX7kIBA2ZwUNPFHwjeVMhymmJjESvYhoNUF4RSo3UtPvNB0JOovaWvekaUooUtUMLN6KFLT0kQOTVhfj8z72Y7X4kYN0IcQLUFLDMycp463Y2RhyZ03+BKdHMeUuJITghBZBc6IqGblkrJgj685RrdoolTkAWGsyPtj+kLo0JYSeagp7y4LgiCY7BcLJe/FHSDUQ0mqXXxiLn9rJBW4zUxamLl73RYmRUVP6FgJSSAW0CFlW62PUQAhzoCQhkU9BtugmDaAQXZAtAksgZJEplh5EmVcAnJhJ1CmVnY+SOLqu8DM9CKEabc19RCF0kX4m3WobPZQEGl5fskGvanAOIZuZmj51ePvhzU+ePLhuaCCel1eahpaTiqMC+Tmy0tYVCTTBvgRG4ooT5IhqxajOUW/cq0Uz6E9+Uo3KJktgAgxsmTN1oJ3UhEio0N71kQOzB1+gAGVfgVZCdxSp9mBLVbrOlB1cffuJrX/d/OR/lBWXuaqBKGoq+8akegKio+xd3q95zh0M0YpcMRd1Er/CtWul/FR5QX6Blj+a/LP5q+oouSE/iFfoXU7vLAHCVNk51BEq23zkgHPDAtHRxTxZo07+e0vUVlQd+eifurb+84a7/62x7IQLQqQQbyi6uAg+00zJ2rrauvq6psYmPruI/eOnJIyj3BYVrlMHgYvPVm6N72cSV8X1daWnSk+Wn9Rd7W3tcdGsrTl1+lTDmYbOrk5u1DcXXeowAULn9Es5CCouimi6d+DO9rbQxYAxS4U3qhm8HTWiEB6fWW7OaGzo5J4XDy3/y7H1Kyan4oljNI9mDWn9NPOAI91enRweFO8f7o+NxobHh/k8Hx/da+luqWqq4sgn+fjoXn1bPeeNHY18CO7K1St8km/s4hgVKpsqucKNeafyDpUc4guL/Olo6VFu4RuN5Q3lTZ1N9BGVi/nEdrrGizwUKb4AQxOE8xge2R6OmgGnsRWIaOUjByExRuKZS6/F9Xo7sIEfLrgm1xomGx277s4AIfzNX3F5tBweW0jsHN0wCxDGFwVcHAO8sQtj0zPTfPQSMPjoZd9QHxf5qmIvo7+DvXw8c5Avmo4OUTk2EuOzmVwBP77FWHGmAkTBj8r1Z+s54Xa+nNkX65u5NIMuJYOaHKAnQFi0a3FP+xn6r1kXGmnS/n0U85EDhgKsfOQgJITaXkIRasYFr122JIoizQZxwzQPzA4WH2zqaIKMCF/B6QKgCnMjHgncjEXgRc5eJEAY8iMHRNZIdM4cVM0fZJgeeSJnTeFEG5s5CxpCiw61DbxqqqBRIwrtRUqEG/mAS8Ig0dLV8vPxn4GQyohpUWUR30UNc6PqEB0RYjpd6wQIc/+Rg/AygabC+uJYKwWF70DWVH4EvIm9hI7kG5WmIiiEVanJEXeOOpEyHF4G6yuI1rFw6DC0H4KFJUNVtvW0QWLUIBfRn119XQCGziyuKu4838k5H6xF6yKR6FsUJt+yRamej52nPuqUGweGBtC0UzPXYWbzY2YLpITwxPJ/PbF/Ke4LOhNGpmglraIrfsL+mqJIohYKRpR49MRVfikugwIpYAMwYmGNtKEVaAzTnMgj85O2xR3CaxExKEbdTp6PZHCcnp0GmN2/7v715K/4UNsPbJ+/eL4sGZ+T3nVoF1+O5npNc83eY3sPFB4AQuCpbKwE8tqW2tLa0sHhQZA7UHQgvzw//v3hsSEgBD8sK6zAveQBXBYhQQpbmxp6u+K7Jbs+coBp1EbK1j9yEF4KBaGSTwADlggZPwWqTswwm8llaNFo1BDGI8K8PALzmdkZfBm+/N3d141soSfrWuvADwxwZJBCvvbNT+SspLqkpbMFcUQKEc2JyfjHozmPi93wAHzAp8GHx4Z5CHcBM98UBxdFR34QhtTIZEmQ5eiGwj1xlUUkNiWhhc5EqXJU4VyFcylP9Axd1UCj9elrns1TUDF1aQp4+B470QWw8c32wsrC2Fhs9vLsrsO7dufthsK9sd7i6mIULHiAaFFVEaIJeAgfP3FwiED4x0OAFr3K16hHLoyYD4FrGkpKd4YXmB12zYp7s8rLnKBRczYh2NlWoaiN7jnHU6WAEMhxgsPCiXZq1zcAuJKzz05C1pNlJ/v6+852nG1pa2lobiAYK6suKzhZ0EMcMTiw5YctO37aMRgbbO1oPVp8tLKhMr52e3ysvK58aDg+ubTrXFdJRUlFXUVnd2dbZ1tzW3PNmRrU4b5f9nV0dWhHZOI6M2XGUCZBkRI8aQWTljWhGbQUFMPjLNGlOQL1qgae6EZca10rsBpBKnOUn332WXqoSWAQB3tpcX+EwIZJl15PPRJiHPstPi6YX1BYEJ+kxHlpcWlleSUwaIJnSXEJgdnTTz+9Z/ceLJwEprWltaqySkvAeUL+b/Gd3ooKi47lXd8U2TO1mQDhQw89pM0RKbgw5NQxJGJ5VwnTpSjq0BgkjEEZTb6j0GA2lMG94vM5TCjSRbJx4IpSVTrxhhdlUGmSciPQlmQFrWVp2SOPPGI+O4XOoGvpfk8jAcLly5c/8MADWjNHXop913Js8MKgjoVjIgVEEVoPP/wwywdZKUnj77vvPi39gqNffvllYFZQccMLzWD6Fk3S/iTMArn77rtBFOf53nvvZRxRfUG7MOU13aH1BAjvuece/HLlqwiHmfgb3dyvMGh51sHsMbTGn9RtVMWdd945f/78u+66C4roIuYAuZTtzPhF1m+EzySFNA9S33///QjMgw8+aBYp8ka6lu64bAKEjz76qHkcJ9YHSK0QRcBgC832ZnAuHyJj63farIsYcltbzFhpMw+h2TQJW0jzMIcM+T722GN8Qo2AkmyAmk2nMvAzEiBE4eACaNLxH40EyaSUh6UpQzRbszR10Rbdo3iOWgiRNadbk6CyaXYChHCKGbF0jWhE0Zksn5nsZDmvZPnwiG6Pos0JEEbU7rnHRkqBOQgjJW8uHj4HYS6oHOk75iCMlLy5ePgchLmgcqTvmIMwUvLm4uFzEOaCypG+Yw7CSMmbi4fPQZgLKkf6jjkIIyVvLh4+B2EuqBzpO+YgjJS8uXj4HIS5oHKk70iAUOOlc+Wmo8D1vbnn/rupKfD/rpK/+r/2etMAAAAASUVORK5CYII=