-
0
2
2
-
1
0
7
- cf805780-37ee-4b69-bbbc-2b3f4afd1ffe
- Shaded
- 2
-
191;191;191;191
-
127;201;201;201
- 638056340642056444
- XHG.ⵙИNⵙⓄⵙᴥⵙᗝⵙᗱᗴⵙ옷ⵙᗩⵙ✤ⵙᑐᑕⵙⓄⵙ8ⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙ✤ⵙᗩⵙᑐᑕⵙИNⵙᑎⵙᴥⵙ✤ⵙ◯ⵙᙁⵙᗩⵙИNⵙⓄⵙꖴⵙ✤ⵙИNⵙᗱᗴⵙᙏⵙꖴⵙᗝⵙ◯ⵙ∷ⵙ◯ⵙ◯ⵙ∷ⵙ◯ⵙᗝⵙꖴⵙᙏⵙᗱᗴⵙИNⵙ✤ⵙꖴⵙⓄⵙИNⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᴥⵙᑎⵙИNⵙᑐᑕⵙᗩⵙ✤ⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙ8ⵙⓄⵙᑐᑕⵙ✤ⵙᗩⵙ옷ⵙᗱᗴⵙᗝⵙᴥⵙⓄⵙИNⵙ.GHX
- 0
-
-491
-99
- 1.14869821
- 0
- 0
- 2
- NGonGh, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
- 1.0.0.0
- Petras Vestartas
- 20563e24-568f-4f4f-b61b-71a1781ef92f
- NGon
- 2.3.0
- Pancake, Version=2.4.1.0, Culture=en-US, PublicKeyToken=null
- 2.4.1.0
- Keyu Gan
- c6c19589-ab63-4b60-8d7c-2c1b6d60fac7
- Pancake
- 2.4.1.0
- 45
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- fb7bca39-8555-41d4-82af-75f9888bd609
- 1
- Geometry
- Geometry
- false
- 0
-
145
531
53
24
-
181.5
543
- 1
- 16
- {0}
-
7VhrTBRXFL4z+xAKjUstWAQVaJMWBLKP7iISmEkpWjUhQGqRYKyAa8DCLl0WW9KmmNpG22DQGiM2LRZE11BS05g20kJ2ebaGYhVNQCSl5dGHpHWTQtFKoXN37oXLsCMLicn+mC+5e+7jzJ3znXPumdkBFABghgOUEP4095OZkV9gMiebi4rMpuiwV4yWkgKzKTEuVqOL1Wp0z2/kOmq1JjosubTQWmoxJpqMpVZLTmF0WFppbmFB3nZj2cvm14ymRL1eq92oMcbH5cXp9XqdWgHvssq1eewWo7nIaLWUxb5gMRbLufkVB/j7PJZjycsvOGDU7S3yNRcbTaZSS26JfG+ONQcq+fj40NBE1bMAaDl5YsrP31fGdVbCn3VBAND/ltPgiSCezoMZGjyJqCW3mp1RZ302f9pn62m/GmV4brph0xS33h/Ir2vBQcD2yvmBSsn9QHPhbs1g4W7BARd3p/vdDLBPA9UhKsK5bU3Zarjb+2hdRaMOjdp8OJkFU/y8XThDXjv6d+CMNquJhXM1E7DfwH54ITphrOKyo32cXzvuyKzuG7qXONpiPTZTTh/E13odGf3EHBmh8cZxnty1Bhc59swJqsqryVAEGaHxn/CRcrSh8dSF+995NZmnx+fICI0f4NccO1WpWamVsqQrtrfHvZoMTURGaHwXHylHHTpDrcGXvvBqMgaCjNB4YUGIGJj6gCTjW9sYA0tcnAIZSJa47iUwPIkZyh4BQ7LEMVGVxSGhLY7gvp3hd8K72Dh0sJQoJzPR/GFejz2W3fSqu/B5DTmy5ImRGEPzI2j8JlqX23SnvZocWQLFSKzdwEc0FOVqCZrf2vp9gleTI0uiGAk1Lx0alKbDiHzVR5ff8GpyZIkUIzHZy88XovHjaH371hVOryZHlkwxEmKFZv0R5evuSmgQel1WUQTj/9wwHrzZm7rljxsB9lGecUlv3yRk3IHWA3AureMlOxLJy6sJ5fuqP/uV6UISWzAd5V/cHNbPUBtc0v5TNJR3mArdsRRb2RBTyUt7gpaXYvOpkbesx2u72fbJH6+n0y2Ob3jJZo9P5N892+bI/8clF10/M1VRQ3roGc1gEvRQJPaQEi2IuRiHSkGEDF4rVh5pQocMt1jFoZEumRIwzcQOMU49GaEP/xOInQusKyf0FQ9JNRrpknyzD4VFQqfVCJ0mBH44YgdQi+i508HPIOwUsX3IZ5XwLJKlXgYWOlioJwPzHQqBKyp2HuVGh9STg/lOhsCFCzuUcqND6inAfMdDGIg1gPYQ6pB6EanMezBY4chYt8EiA4U3JeXDILxWDD1rddXN90ZnsBQGkgw0GSBPbMDXLtUGYbJQgiTCARZLGBLUMm0QJhuZaORJ9cQP+Nql2iBMVjJRydPviQ30Mv0gTHaDyCHwJBaGZdqgPJ1xHx4WDVpXYcL40OCb48DgUwxxrunbMfLigKWconTnu8N8z/PXBnizSyh1KPhIr0UD8pE+InikxzSG7IKP9P1IV68E7gqZ0Aons9ij1e6av87mTsDxDTZjZVbnqSu5Kah1cOPNsHFmM0SzE00wBz3HUcSvW4HYl+78GZMcOjZkWLPAdyr3zpzF4Rd/2/ZU5tdz13X/ADHC8PdG39pm4y5HEtw6Gu8b+PuXeXhRJlcoaJkCUNzqS9y4/5ehNjDws09nOke5inMB1zpgn5uD4w4o0bgTrsM+11x9tNaJdFPghgO39xSCTd2rGK7ZUVt2X81tuCu+LBns2KHnqLNJn9fvhy5g+HEaJ08mQdlQX5/Iz8Mxm0S6rvX8kcbzObaU+r8+/vOd8eGgPdzc7ttfpc1+6qsT+dQn9sHpmsg3G+GXAxiYOiIwlBtj9r0lm8aZu0gKgEelB+2ymSNqueyof3DqIvneGTKoOAdpzBa2o3fpHngKV69n1aSin2c3kyBBggQJEiRIkCBBggQJEiRIkCBBggQJErwc/wM=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9ENIowMDD9qmdiKBWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DytlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNss/gRoTiK8XTB75/Ff1vFLnmwBOt/gJpmYMOMPHqX8n/FZ9NOvACTfznN7C4wzs0cbMvYHMcPkHFH91QkcKWHIZ0YKF7UtzzgPXSU8fh4ly71MMSio84/NsJpg+YQ8WVIOocoIEMV28JMddhxvmcLYM4sGBy6DQmANmHy5MwcVgKQheHpTh0cVgKhYlXzHV0HHaBhe5JWAqCictCUxAsxcHEGaApDld2vuf81wxbQTYJWgoKMCKFYCUTZgiKn0hwf4wUgqs1+vaBQtARZgB6CA5EHiVHjwAD7kIQVyjjihVcsYirMIWZDxNnRjMfJi6HZj56FsFVKMPMh4mzo5kPE1dAMx89a9K63AuL9/mBnDpVDO/bgVLnSShfAJaQcEUUrC6HJUIQYGTAXWAzIamBAZAYLgcyQdUitxmYGXBnW1h7Bdk9a276ZIE8JcmI5il8KRWWLfGpw60GIgdzPG5zII0h1AYRIkfCPIIeAOjqmBlQPYwuxwA1A1UNqrrK01fbwIEEK1ZwBxKiKGFEovEHKqZeYgH2AEQEPnKKYqWRG3C1gtFTG8gNhItC8tyAGckQc9DFsUc0ddxw5Xv0Q1Ai0YTyBWARA4t8WITAUi0IFJ/f2QPSZAjlCyKnGkIg8EPTY/yuxVK9Ay1bBnURI6hanQrlIFerT65c93N/eVlw/1NItaq7UzoGVK3GQtWaSoL8h2kbjr4kbr4YuITa46DwBUIH8Ucem3ky6ejtBxxuQAxiuwLF3IDOtkfC+5EwihhkWAXoxalQK0TB/mTAHp66zjKvH5lJYYQdps9QQbvLcy+J8G0IfWfPgMATewaw3aJQUVh8s0Bphpu9lpyiLzYmwyTZGBlY2ZkY2TiYmdg5WZg5uNlYuXjY2bh5Odh5+Dg5eAW4ufgFebgFhHh5BIX5eIVEBfhFxAQFRMWFBMUkhIXEdYCGdJy9YwC2tQ9qa8Ut7if9NmaPUy5dtOa3uLPNYHfTzan5KXeO1Ek03HS4xXuCfXPjpzyH0oQyhfol0QoR7xcrc+zt71P4YmfVdOH3Cw4noIDBXh5e/msHv5jdqdvAt2x64unmUqAQJ0io6YryzddNKeu5J+3V8/i2SwHIuTD7SdeT+HCV/7uUfl4XPbl/ncJehsDF0zQk/0skgJy4etnbFrAT6+BO/H0mKcv+tGPQX+Pul3UK2/6HWLjzHtu24l3j5qmHah7ksCk0bNz+37D1tW36GZ709VN38oXXVx5XDZX4zf9601KDb42c3zi+Rks8fMOv+v5h1WM/6cSt3/lXS8XYJs/UmBP746fGpHu+EV+VfpsfqVEN+7/u3L/+heIMzSfLEo3Mgn+fALpA69tbWbCTHOFOiu1j5GIw4GCqvfkp0662Z0pSY8wUzwN6suZXF6ycdTeZ5XymXXzeZufejFVqs7WV53lc++cY71at13RazP/rt7sbkNPHoWUdO5clLndd9W7W27ovj8UmAAPhzNTS12Abk+A2lk44yNtgwMPM3V35X7xnwvL5MxkERDU3Law8UiQSe3fLt/js99an9Peyl3Q/Ez5eed3s2dPu8H0Vu/w//1yxX/pCDeNZ8Qs1iTZ1/xbaSPUL+17+znfK+/HTKcWM8295C7QX7AkH2bYEKS0yYnFaWjXzP4gKYgs86qsDuWt5vtIiIOWd8tEaucklfZ91Kcgb8Lqr9z3TJVD5KS7vYICskJs4y0bBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSAAAA=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EzBVhYGD6Vc/EMFEE4p3f/5kYoEwG50P5H7QWc7jNvbH80pFzWmYa/9ZY/QHKR0IVGDE0MDjYMkM4AiAngZwLMm0vA6ZpkoLr4wK5rwju/8cg0Myo9MFLqlIcZForVF6ACcpggmJU8MEeQwgivh9dBJteTDFMcw3P9P38X8/UAOMPAc+gmwPjf7D/6LTu0RD1DKanPmhLzh5insFtnsFSywZkz1i3XWMFZaS9LFAHImckWUbiffgU5kNojmRggWJyfciGXSEWsxA0yL4nWv0F0jIHD3z/KvrfKHLNAcsbEYqvFE87vICKV/9K/q/4bBJc/B1U/Oc3sLgDTPwTVNzsC9gcuHjFjVRzbMlhSAYWLk8eDJGbc1N734EnNx7OXPpvhcOfu0tNDd4cd5gbLBdeI7/rwJS9a00klix12P/4k2fZtiMOVUFyQvLC2w44Lao83+W5yKH5pX3cnoaDDo+95UwHcWDB5NBpTACyD5cny6HilY3fM/mSOuDipVBx0Taw+IEWqHghVDxzMdicA61Q8aurO3mHTWDh8mQfNAW93QdOQQcOQVPQamiKK7oFTnEH/kJTHK7sfNhdmAFbQTYJWgoKMCKFYCUTZgiKn0hwf4wUgqs1+vaBQtARZgB6CA5EHiVHjwAD7kIQVyjjihVcsYirMN0ENZ/hxevdh1dOOAArNyZDzede/fzDqVs9Bw5AzceVRXAVyrug5j99AjYfXi7NhJq/aCnYfAeY+biyJq3LPfkVOc+QU6eK4X07UOo8CeULwBISroiC1eWwRAgCoNSMy+FMSGpgACSGy4FMULXIbQaQXbgiHNZeQXZPieqU7SBPSTKieQpfSoVlS3zqcKuByMEcj9scSGMItUGEyJEwj6AHALo6ZgZUD6PLMUDNQFWDqq7y9NU2cCDBihXcgYQoShiRaPyBiqmXWIA9ABGBj5yiWGnkBlytYPTUBnID4aKQPDdgRjLEHHRx7BFNHTdc+R79EJRINKF8AVjEwCIfFiGwVAsCxed39oA0GUL5gsiphhAI/ND0GL9rsVTvQMsOQV3ECKpWN0I5yNXqkyvX/dxfXhbc/xRSrerulI4BVauVULWmkiD/YdqGoy+Jmy8GLjH3OHw57f48LnC7w90HHMdmnkw6+oiVx+3HjA1HgWzXIP5IN6Cz7ZHwfiSMIgYZVgF6cSrUClGwPxmwh6eus8zrR2ZSGGGH6TNU0O7y3EsifBtC39kzIPDEngFstyhUFBbfLFCa4WavJafoi43JMEk2RgZWdiZGNg5mJnZOFmYObjZWLh52Nm5eDnYePk4OXgFuLn5BHm4BIV4eQWE+XiFRAX4RMUEBUXEhQTEJYSFxHaAhLoF5RmBbl0Jtrbi1+3PD4xs9kz3dmX8q3711ul7ua8TT8i+3JcO3c9xtd99fHik792rqk2Uffxy5+PRmlvtbmyd3687dKDA54/7iRXKY3HbrhL39fQpf5lk3Xdj9msPp/SZljr2T+w58MTKxiWC/fDuhokzWR9/5yLpSg7081tPWNr9M9Zixh+9knLhKdeyEN6WOm66zAjkt91TCVf7vUvp5XfTk/nUe/0pZX7IymEvMMFt0ZWMzyOWnVGSPgV3eDXe59+uuG+vlc/bNWT09uV5qwt2UIM700z58TZsrpYUe5PzUnlewLbzYZs5fCyXRc361ckzp3OlSB2/KPBUq+JZf2lJ1vLesoOy2orPF7L9mh/Q+VhRaROdNk54TW3KL5ZxYzDre9PjJqU2bTZvz9Zs3Tvxb/TPJcI7sw1yu9O8uSl/eiTxn3sz47nHDoxkvthacADpH69tbWbD7HOHui+1j5GIw4GCqvfkp0662Z0pSY8wUzwN6suZXF6ycdTeZ5XymXXzeZufejFVqs7WV53lc++cY71at13RazP/rt7sbkNPQoWUdO5clLndd9W7W27ovj8UmAENEPU32BNjGKLiNyQkH+CQOPmGtDrnInvFHPOMP/7f//5oPVO6w6OE35g/9xyj1n1Xqf7NtWbX8jcW73jPy/YJwy/c7GL9n5Su+8JI/w0RJJuDsb4cDshzFDNN3ebPJWgplgmxZgpROGbE4Ka2a+R9EBbGFIfXVgdy1PF9pEZCS6i+wRW6OSd9nXQryBrxe633PdAlUtorLOxggK+QmzrJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBgFhAAA
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9E5IgwMDD9qmdiSBCBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyGlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNso9bu79AWubggcYvov+NItc4WN6IUHyleNphlflb0bWduw9sktjjpXx7C1zcXhLMP6ABkYeLL/4K1n/gjBbYPLi44WY/JWzJYUgGFi5Pqt96OHPpvxUHGkLk5tzU3ufw5+5SU4M3xx1W7VtrIrFk6YHkYLnwGvldDvsff/Is23bEQW9x5fkuz0UHPIPkhOSFtzk0v7SP29Nw0OHJjoargziwYHLoNCYA2YfLk2Y/+R0LX6w64KoefHP14Y1w8fkQ/oHWH2B5hxao+GKI/gO1i8DmObRCxVVyYk8Nm8DC5cmTkJRz4OpecEpyOARNQR8gKe2A9k1wynP4C01xuLKzQbKbO7aCbBK0FBRgRArBSibMEBQ/keD+GCkEV2v07QOFoCPMAPQQHIg8So4eAQbchSCuUMYVK7hiEVdhuqw9Zc0a9x0HHu9ctac+eRO83Fh0/bbTGtatB1S2GcXuuL7e4QDUfFxZBFehHLsLbO4BQ4g9cPN/Qsw9YAuxB24+rqxJ63LvmzFzJ3LqVDG8bwdKnSehfAFYQsIVUbC6HJYIQQCUmnE5nAlJDQyAxHA5kAmqFrnNALILV4TD2ivI7vnh4MsC8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q60bCLURYygarUBykGuVp9cue7n/vKy4P6nkGpVd6d0DKha9YCqNZUE+Q/TNhx9Sdx8UXBJuMfhy2n353GB2x3uPuA4Fuoj5PqIlccNSB8F8t2C+CPdgM62R8L7kTCKGGRYBejFqVArRMH+ZMAenrrOMq8fmUlhhB2mz1BBu8tzL4nwbQh9Z8+AwBN7BrDdolBRWHyzQGmGm72WnKIvNibDJNkYGVjZmRjZOJiZ2DlZmDm42Vi5eNjZuHk52Hn4ODl4Bbi5+AV5uAWEeHkEhfl4hUQF+EXEBAVExYUExSSEhcR1gIas48nZBrYV1misuCV73nC1Y6HMsY8vn/B4VTKLvdQTU2Nr/vXf+MU01553CTviGq6cXKXRLVS+c7HVtM9ML4xsFuW885j4LiGxeHOlzeH8P3/22f5evFsq185HM2jr3GfMrP/v3tl+LGyS+p/yzc9Wz96U/9xUrbflpGjSN0OuAD23szc5o8/vV3jSm5p/Pf4Mv+3NqKrG/dvUd2f7BZ66nnI2p2NncurnZtWKTU+t6q8x3zx/xrxi09sCeZubP/y5bSLNDm7TmZ0QPc13g+5ptRvTUoVzThdpf3O/vk9ne9Ps1J2id3ROr32QFpnHan7ajjF+cvcTS8U6fZDPQ+ov3Af7XAbu88eTJt85r6qeef7qacZF7jcrbjCcue6+3q91xc0TQHmtb29lwRoc4Rpi+xi5GAw4mGpvfsq0q+2ZktQYM8XzgJ6s+dUFK2fdTWY5n2kXn7fZuTdjldpsbeV5Htf+Oca7Ves1nRbz//rt7gbkRHFoWcfOZYnLXVe9m/W27stjsQlAJ268L78RbGME3MbWCY5cDIo8zF9Tf/7PrHXqt3zGrsexziRkG/vhEInmtVcvX7ecsD3RJzlxXeW+v8/env4OZC+sM5/w+6hqps6VvZl2cTbzNtn8n1D762Whjf7cKG/uBb/ZPUF2LEFKdoxYHJRWzfwPooLYso366kDuWp6vtAhIbXXNMkZuXUnfZ10K8ga8mup9z3QJVFSKyzsYICvkJs6yUTAKRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGwSgYcQAA
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EZIowMDD9qmdiiBWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyqlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsu/bosrzXZ6LDpgHyQnJC29zmP/SPm5Pw0GH7z/4HQtfrDqgrx58c/XhjQ5ToeI1EP4Bf4i8QzdUvBqi/4AdxDyHZqi4yZWcO9iSw5AMLFyeXLalvyt3zpYDEq/n2H0KXeIQ9vnC14e8+x0uiDEy71HdfOCT8YG1kUnLHJYKK+l7S+12+FlRVM21fuOBszWPZQ7mrXD4ZlycsUVtuwMDr23FIA4smBw6jQlA9uHyZIlCP/PPHesPzPGzFLgrvMbhLlT8O4R/IAci73AEKl5ZC9Z/QK4SbJ7DGqh4Rf+bicMmsHB5cpEJOOUcuAhJSQ7t0BR0BpLSDrRAUp5DEjTF4crOk6xOlGAryCZBS0EBRqQQrGTCDEHxEwnuj5FCcLVG3z5QCDrCDEAPwYHIo+ToEWDAXQjiCmVcsYIrFnEVpgtFi2/b+6w+0D5fZY+b4kaHOKj5vkbXSvk2rD5wT/zbvId1GxwmQs3HlUVwFcq7IeYeEIbY4xABNf83xNwDNwzB9jjMgpqPK2vSutx7aC+2Dzl1qhjetwOlzpNQvgAsIeGKKFhdDkuEIABKzbgczoSkBgZAYrgcyARVi9xmANmFK8Jh7RVk99xg65oH8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q60rA/qIkZQtVoL5SBXq0+uXPdzf3lZcP9TSLWqu1M6BlStukLVmkqC/IdpG46+JG7+DXAJuMnhA2ug5XeWVQ6/Zmw4Guoj5LrIdKcrkD4K5Ls+YeVxAzrbHgnvR8IoYpBhFaAXp0KtEAX7kwF7eOo6y7x+ZCaFEXaYPkMF7S7PvSTCtyH0nT0DAk/sGcB2i0JFYfHNAqUZbvZacoq+2JgMk2RjZGBlZ2Jk42BmYudkYebgZmPl4mFn4+blYOfh4+TgFeDm4hfk4RYQ4uURFObjFRIV4BcRExQQFRcSFJMQFhLXARpya2vACbCt0JTAUHFL9vzabCZGmWOFpxsPTYqMiQw67HLErOXj7gcspxV/hfccfCjNscmIRVzMRoxNmNU3WUqMja/Z5uZmDreNPGumbbW1edgpv8/mapFM/fpiayvxd1YeScLn3hjJFq7n1/RZ/P6b6a+t20sY7yYlzAzO2HhMd8+1zb6f7n97vGNDqsLtm9Mf1O87IWanNaOHfdPzee1vP3iWPbwq+NL+VNzaWw9SNneqWdycvY3f71vedwa/bdN2s6ufVrsxLVU45/Qmzm2pN1lub8ppyo2sc90qM/1p+IfNOvub5qf+FP2jc3r9g/Sb9XquHfM3h7znAfn7+oIcRbC/ZeH+7tYx3tivY3zz/P29B8yKpvRO52XYO72AReQAq/oJoAKtb29lwToc4Tpi+xi5GAw4mGpvfsq0q+2ZktQYM8XzgJ6s+dUFK2fdTWY5n2kXn7fZuTdjldpsbeV5Htf+Oca7Ves1nRbz//rt7gbkNHFoWcfOZYnLXVe9m/W27stjsQlAN96XedEItjEMbmPrhIOcBxw4WNYb/65/6vVh5/m1CpyNLYcPKtdNC5Q4avjLav3yvhV3WbjfTFf/Zbzq/Wz1iAT3/eYPT/tyvXnxXqzmVsUMt3X2IfPr30XMk9bz8maUeTu/CmTDEqQ0x4jFOWnVzP8gKogt2KivDuSu5flKi4CUmjhfD3LTSvo+61KQN+B1VO97pkugclJc3sEAWSE3cZaNglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsHIAgA=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EhIgwMDD9qmdi8BCBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyAlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsq8qSE5IXnjbAadFlee7PBc5NL+0j9vTcNABJs7c/D2TL6kDl/gBdHGoOXDxZd4zF2NLDsMhsOCeDKp96TUpaRdcXGvFlmbWTfscdCA0XDwAog4WmHDxMoi5DlvPuysP4sCCyaHTmABkHy5PwsRhKQiHuAO6OCyFwsQdpkW7DtfAgnsSLQU5wFIQWopzgKU4XNlZ+sFjX2wF2SRoKSjAiBSClUyYISh+IsH9MVIIrtbo2wcKQUeYAeghOBB5lBw9Agy4C0FcoYwrVnDFIq7CFGY+TBzdfJg4uvnoWQRXoYxmPka5BBPHYf4BdPNpVe4FMJoYIadOFcP7dqDUeRLKF4AlJFwRBavLYYkQBBgx1R9AV8+IpB4khsuBTFC1yG0GZkz1DsjqmdDc4ysiOA/kKUlGNE/hS6mwbIlPHW41EDmY43GbA2kMoTaIEDkS5hH0AEBXx8yA6mF0OQaoGahqUNVVnr7aBg4kWLGCO5AQRQkjEo0/UDH1EguwByAi8JFTFCuN3ICrFYye2kBuIFwUkucGzEiGmIMujj2iqeOGK9+jH4ISiSaULwCLGFjkwyIElmpBoPj8zh6QJkMoXxA51RACgR+aHuN3LZbqHWhZJdRFjKBqNQPKQa5Wn1y57uf+8rLg/qeQalV3p3QMqFo1gKo1lQT5D9M2HH1J3HxICbXJQQ1KP2HlORbuI3T0x4wNrkB8FMh2BYq5AZ1tj4T3I2EUMciwCtCLU6FWiIL9yYA9PHWdZV4/MpPCCDtMn6GCdpfnXhLh2xD6zp4BgSf2DGC7RaGisPhmgdIMN3stOUVfbEyGSbIxMrCyMzGycTAzsXOyMHNws7Fy8bCzcfNysPPwcXLwCnBz8QvycAsI8fIICvPxCokK8IuICQqIigsJikkIC4nrAA1xnjmHC2xrJ9TWilu/LZMPXzSQV7x+fI1NXraXf+PNQ7/+xzxuntdw00HqCPvmxk8Kpccd3sw3NmswCKiZxO30XkW85Z6nHsfeyTECVeo7D3wxYmD00Wd2Psw1I26CBZB1uHGqwV6FQpXqfoWb1Swn7yl7fJNz3PSdw2n9hUCV/3Kun97DqAlxDG7rOiftb0++A3Ld6pWrv4Ndl4xw3ZmkrPMMLPMjfb4zb/x7VEswVOJ33SEblW13giSkI203zdK0/n/g6pys5+HNG2eKbNM/ukzu5pwARjZTFVMtg20//MObvuXFXmcIl4+O28dz7Nv8Gau9TsQF/eFmWFtSlqh9QW79CaA1Wt/eyoLtdYTbG9vHyMVgwMFUe/NTpl1tz5Skxpgpngf0ZM2vLlg5624yy/lMu/i8zc69GavUZmsrz/O49s8x3q1ar+m0mP/Xb3c3IMf/oWUdO5clLndd9W7W27ovj8UmAH363OBAIdjGULiNrRMcuQ4YcLB8Nv5fnzXvQWH/72YRL+8CgyunjbgWW7jFv16pnWV+kOn3085/Pa9+P+MUu3Hxve+PTxOYrH/tZp3PJ7ds4m/+q8/nW297zmbU5M2Wmz3vF8iCJUjJixGLa9Kqmf9BVBBbhlFfHchdy/OVFgGpyaLZvMitKOn7rEtB3oBXR73vmS6BikRxeQcDZIXcxFk2CkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGAXDFgAA
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EpIowMDD9qmdiiBSBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyilAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsu9nRVE11/qNB87WPJY5mLfC4ZtxccYWte0OJQr9zD93rD8wx89S4K7wGoe7UPHvEP6BHIi8wxGoeGUtWP8BuUqweQ5roOJ/UljEsSWHIRlYuDxpxGlRJ7pi2YGWx28VvqVucJh7aH/Tw/KtDm+m9NzPfLjkwLXZl3oOW65z6Avkmct3crPDMoWHDvukFh9YVHDy+qzlqx3qHkRst5ba5HCn/HnvIA4smBw6jQlA9uHypJP1TdnYL0sPnAy9+Ov32RUOE6DidyH8Ax+swPIOC6HiFRD9ByQg5jlsgYoLiDf9GDaBhcuTCyAp50AIJCU5nIKmoFRISjswgQOc8hzuQ1McruwscOdvNraCbBK0FBRgRArBSibMEBQ/keD+GCkEV2v07QOFoCPMAPQQHIg8So4eAQbchSCuUMYVK7hiEVdh+uaO/+olWWsP7Ph0WCSWc5XDKaj5qTMFggNkVh+4Os1P8u6/5Q7boObjyiK4CmWBz2BzDzyA2OOwGWq+xnSwuQdCIfY4LICajytr0rrcO59y7TZy6lQxvG8HSp0noXwBWELCFVGwuhyWCEEAlJpxOZwJSQ0MgMRwOZAJqha5zQCyC1eEw9oryO4puqUtAPKUJCOap/ClVFi2xKcOtxqIHMzxuM2BNIZQG0SIHAnzCHoAoKtjZkD1MLocA9QMVDWo6ipPX20DBxKsWMEdSIiihBGJxh+omHqJBdgDEBH4yCmKlUZuwNUKRk9tIDcQLgrJcwNmJEPMQRfHHtHUccOV79EPQYlEE8oXgEUMLPJhEQJLtSBQfH5nD0iTIZQviJxqCIHAD02P8bsWS/UOtKwL6iJGcLUK5SBXq0+uXPdzf3lZcP9TSLWqu1M6BlytQtWaSoL8h2kbjr4kbn53W+zyjW/nORhMvp0W2zfbIbSi9+jHqxKudy9OcAXSR4F81yWmO12BzrZHwvuRMIoYZFgF6MWpUCtEwf5kwB6eus4yrx+ZSWGEHabPUEG7y3MvifBtCH1nz4DAE3sGsN2iUFFYfLNAaYabvZacoi82JsMk2RgZWNmZGNk4mJnYOVmYObjZWLl42Nm4eTnYefg4OXgFuLn4BXm4BYR4eQSF+XiFRAX4RcQEBUTFhQTFJISFxHWAhqRlXZ8KtvU51NaKW7LnDT2YGCWOFj5Ue+4g82Sa84anYoJMsU52ORvesnCXcLC3PzCz1BBfuNAxZ9/FjI62DWc1peU4Gh8+YGVrzBZomux94TFv/p+Pz1kvCryMu/rOOzh6/90DkTI3vd/djDO+/uP0b7NiuTd/Pwr93pcub7+xNizqxtpN3/bu2XzlLcPkBz7bpn0RiJt7qu+R3p+PG3Mu2R1/v0fldVWpTS5/6uyjAnPehD9kmpNzO7dh8l2ZOQ2T3y45/SDlJsvtTTlNuZFmB7fpzE6Inua7Qff0eo5FC3X2N81P/Sn6R+f0+gfpkXWs9qf/MSfdmzArbLHjb5Df5bfdnAL2uyzc79b7u0r//wxd882mu8Thi4Y0vzSDm2J3zJdpgqdPABVofXsrC9bhCNcR28fIxWDAwVR781OmXW3PlKTGmCmeB/Rkza8uWDnrbjLL+Uy7+LzNzr0Zq9RmayvP87j2zzHerVqv6bSY/9dvdzcgp4tDyzp2Lktc7rrq3ay3dV8ei00AutFhdnMH2EY/uI21EzbyMhhyMP88uad+uqBGbFXLlPVzPDLWBB9hXFl19dJJXjOLXxfKPx2qbubte7ZzbVO6X/PiyvzDz7vbJZ/85/+6Rzn8PJvfKV29MA8hK5DJS5DSGyMWZ6RVM/+DqCC2UKO+OpC7lucrLQJS0fdSUIZipO+zLgV5A14/9b5nugQqI8XlHQyQFXITZ9koGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIwcAAA=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EFIkwMDD9qmdiSBOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyelAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNss+g+w/Hp8wJB97eaEsxurDYwSur/0h29nqHh2/WfD6kNuOAVkDsvcmP58PFJ/mB+Qeq34Hl4eKKEP0HTveAzYOLS26ON8OWHIZkYOHy5EuuuaahucsOvJF9efvU2ukOqw4vqnvUuMFho+1mtgqulQf4119dt/jjPAf9S3+l+P02OlQUnLw+a/nqAxIKDx32SS122PIgYru11CaHO4LH8wdxYMHk0GlMALIPlyfvhl789fvsigMfrG7Kxn5Z6rAQKu5kDeYfOAmRd5gAFV8G0X9gEcQ8hzqoeHW9reSwCSxcnnSCpJwDgnbglOTADU1BVpCUdqCeG5zyHGZAUxyu7Hzq6q46bAXZJGgpKMCIFIKVTJghKH4iwf0xUgiu1ujbBwpBR5gB6CE4EHmUHD0CDLgLQVyhjCtWcMUirsI09+g67gN75h0IMt8199bTRQ7zoOb/8bsxMW7logO9x1x9Xt9c6iAONR9XFsFVKF8wA5t7wOMY2B6HJVDzwyDmHuD0B9vjoAw1H1fWpHW5Jxhm646cOlUM79uBUudJKF8AlpBwRRSsLoclQhAApWZcDmdCUgMDIDFcDmSCqkVuM4DswhXhsPYKsns+xCb9B3lKkhHNU/hSKixb4lOHWw1EDuZ43OZAGkOoDSJEjoR5BD0A0NUxM6B6GF2OAWoGqhpUdZWnr7aBAwlWrOAOJERRwohE4w9UTL3EAuwBiAh85BTFSiM34GoFo6c2kBsIF4XkuQEzkiHmoItjj2jquOHK9+iHoESiCeULwCIGFvmwCIGlWhAoPr+zB6TJEMoXRE41hEDgh6bH+F2LpXoHWjYd6iJGULXaBuUgV6tPrlz3c395WXD/U0i1qrtTOgZUrfpB1ZpKgvyHaRuOviRu/jFwCbjAwTdOc05Z4xyHGzaxR/v9m11io6tdgfQRIN/1/sUJrkBn2yPh/UgYRQwyrAL04lSoFaJgfzJgD09dZ5nXj8ykMMIO02eooN3luZdE+DaEvrNnQOCJPQPYblGoKCy+WaA0w81eS07RFxuTYZJsjAys7EyMbBzMTOycLMwc3GysXDzsbNy8HOw8fJwcvALcXPyCPNwCQrw8gsJ8vEKiAvwiYoICouJCgmISwkLiOkBDJKZtWwe2FdZorLgle36jl1OhzNFCH41S8Tl5Td3lE6cJmGTu3O/52K7hhcpF4TuqMlcWqr5pOn9BhcXP0exf/+5GDrZnT9Qa9zU8n/ewR37fHAuZnScPbM77ffPed/l15cEbK022rP937O4/05zC/0n+O030jvN/m1y59fGqhq+xx7edvrHo/Uxts/Up2tsKjzo6fvsy49DX5frSfp8/8JnefLmff/2VSbm/rY+zdv6NjWuYfHbf04Mnw6JTCzbtzZGdozM7IXqa7wZZFSChe1rtxrRU4ZzTn7QfFaicXv8gPbKO1Z6982n4h806+5vmp57X6WtV0VhYeQrk88cSZZZgn8vBff7788qS+/P9l5aFHuf+9l8y9XEqM8PrijOP+SW23T8BVKH17a0sWIsjXEtsHyMXgwEHU+3NT5l2tT1Tkhpjpnge0JM1v7pg5ay7ySznM+3i8zY792asUputrTzP49o/x3i3ar2m02L+X7/d3YCcLA4t69i5LHG566p3s97WfXksNgHoyFutxiZgG2PgNpZecORqCOBwvbjf+Lv9KdkvbXyxDiEinhWvrSeqFzkc/7H+7Y6sjad+zw1/Hd04x7/szN1dz6/tvcX/5BOL/wcQ0rcrL9F/cHSJ+q/f7e9U98yxUteNyTg/Q3wnN8ieJUiJjxGLo9Kqmf9BVBBbwlFfHchdy/OVFgEp3rM2k5DbWNL3WZeCvAGvrHrfM10CFZji8g4GyAq5ibNsFIyCUTAKRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGKAAA
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EJIowMDD9qmdiCBWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyslAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsk/xRluK0YXFB073/OH4lDnBwSur/0h29nqHSX6x9yY/nn+g+t2az4fUZsDFH74B8w9oBYDl4eIG3WD9B95CzIOLHyubtBtbchiSgYXLkyub3vmt+9hz4ManxaHKFQsd5Bx6xG9vXu3w8d3j7gr+zgOdkk29Gg7zHD6KdmZ5/VnuYBl984STbuuBRN89+VwTZjocfd26d6fLEgdd5+XLB3FgweTQaUwAsg+XJ/MUdqre0+g/cDbR56DNpCkOzO8g4heLwPwD+W92gOQdHD9AxHNCwfoPuIiCzXOo/wQR5xby/DxsAguXJ+PkwCnnQOJBcEpyyJWCpKDln8Ep7UB1LjjlOUQ7QVIcruxs3awxG1tBNglaCgowIoVgJRNmCIqfSHB/jBSCqzX69oFC0BFmAHoIDkQeJUePAAPuQhBXKOOKFVyxiKswXRbFpHVGds6B1GN7VgR6T3WY6wgxf2/a8lKWiBkH/OediX2QP8nhnQTEfFxZBFeh/Pcs2NwD3GFgexzuQcslqfVgcw+8iQbb41AgDjEfV9akdbnXqGwmhZw6VQzv24FS50koXwCWkHBFFKwuhyVCEAClZlwOZ0JSAwMgMVwOZIKqRW4zgOzCFeGw9gqye+67v18N8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q60rA3qIkZQtVoK5SBXq0+uXPdzf3lZcP9TSLWqu1M6BlSt2kLVmkqC/IdpG46+JG7+MXCJucCBVz0zdzLDbIcpjXJHRbM0Xc6qKrkC6SNAvmt8dLUr0Nn2SHg/EkYRgwyrAL04FWqFKNifDNjDU9dZ5vUjMymMsMP0GSpod3nuJRG+DaHv7BkQeGLPALZbFCoKi28WKM1ws9eSU/TFxmSYJBsjAys7EyMbBzMTOycLMwc3GysXDzsbNy8HOw8fJwevADcXvyAPt4AQL4+gMB+vkKgAv4iYoICouJCgmISwkLgO0JBbKj2Pwba+hNpacUv2vK23U6HM0UKDw9MOiLlzHnR0X35L5t9+zw+NYr4TOGKaOgSimD6+0on0cvZzKn6a0tF8eKffJe8dT55pG2R8umM85+Ph6cZfJv1bcKW499fiufeP/11Q9Pxf/2yxGNc/hVtexU13tZ6VEzj7aey60jTxuaZC5pLfJ/vdzFR8Zq+zbJP6YtlT9cI3zxY35LxzLfu15dDB3PBrr+sT4rJOXTPe/yBlfw6v37cPv6TnvEn9LTvnzfPbDHN0ZifcdjqtdmNaqnDO6U2c21Jvstze9Kdr4fQpT8M/bG6dFn/wvFhUHav96U/aPyLL+BlcWq8phF/nAPk+pP7CfbDvZeC+fzxp8p3zquqZ56+eZlzkfrPiBsOZ6+7r/VpX3DwBlNf69lYWrMERriG2j5GLwYCDqfbmp0y72p4pSY0xUzwP6MmaX12wctbdZJbzmXbxeZudezNWqc3WVp7nce2fY7xbtV7TaTH/r9/ubkBOGIeWdexclrjcddW7WW/rvjwWmwB04jWlxo9gGz3hNrZO2MgLtPHwr8h/9y0aJxqql6zJcjydVKngsubrrAtvOfV3XH3fWqW250FYvXm7zKYHYfd3t8mdUeT1q/+w/PjJm55aupqeea+KQYYuQUprjFhckFbN/A+igtgCjfrqQO5anq+0CEiV31uK0pWUvs+6FOQNeN3U+57pEqh8FJd3MEBWyE2cZaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMDIAAA==
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9E5IowMDD9qmdiSBSBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DymlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsm/l9bYUowuLD5T0/OH4lDnB4V1W/5Hs7PUO9Rz3b85at/xADVRcxMrcn7l3tUOoJZg+0AIVt+IEq3PQhug70AUVT7gBNtchWU6yF1tyGJKBhcuTMw8vqnvUuOHAYtmXt0+tne5gwD3XNDR3mYPspb9S/H4bD+xdd3Xd4o/zHBjtNrNVcK10mPcgYru11KYDr+UfOuyTWuxwvuDk9VnLVzuEVxl1DOLAgsmh05gAZB8uT1pfvuORs3bDAVkFiHht98Etlo3rHDZA6AMBUHFxiDqH1xB9Bxqh4nkQcx3i17xLHzaBhcuTV2zBKeZA3XpICpKGpCiHfVzgFHbgJzTFnYCkQAdc2VmtN3ABtoJsErQUFGBECsFKJswQFD+R4P4YKQRXa/TtA4WgI8wA9BAciDxKjh4BBtyFIK5QxhUruGIRV2H67F792fNfVh64BzW/cHNSqlfNWgfvrQoHWazXHLCDmn9Op696ItA9uLIIrkKZB2Legf1Q8wPug+1zOAQx78BfaLmUDrEPZ9akdbmne/CpM3LqVDG8bwdKnSehfAFYQsIVUbC6HJYIQQCUmnE5nAlJDQyAxHA5kAmqFrnNALILV4TD2ivI7uHfV2oJ8pQkI5qn8KVUWLbEpw63GogczPG4zYE0hlAbRIgcCfMIegCgq2NmQPUwuhwD1AxUNajqKk9fbQMHEqxYwR1IiKKEEYnGH6iYeokF2AMQEfjIKYqVRm7A1QpGT20gNxAuCslzA2YkQ8xBF8ce0dRxw5Xv0Q9BiUQTyheARQws8mERAku1IFB8fmcPSJMhlC+InGoIgcAPTY/xuxZL9Q6qXqEuYgRVq41QDnK1+uTKdT/3l5cF9z+FVKu6O6VjQNWqJ1StqSTIf5i24ehL4uYfBZeACxz84jTnlDXOcbh/ccLRfv9ml0mNcq5AfPTzVQlXoJgr0Nn2SHg/EkYRgwyrAL04FWqFKNifDNjDU9dZ5vUjMymMsMP0GSpod3nuJRG+DaHv7BkQeGLPALZbFCoKi28WKM1ws9eSU/TFxmSYJBsjAys7EyMbBzMTOycLMwc3GysXDzsbNy8HOw8fJwevADcXvyAPt4AQL4+gMB+vkKgAv4iYoICouJCgmISwkLgO0BC5lQVJYFsfQW2tuCV7fn2WUyHD0UKXgI+cPua61rxm/1vuCh/hPbigQ4PPxUerjXeqYtxhHiXxGraDW3Rm1a82cmTjvqWz6KD6jZ3qc788PB3Zo/v4mXrZWiMXZTHT05+n760tnmCx9Myzx+f/natRMqg3XLtB/vcFnv0nV+2UV7L4t4NjjfCm6e1sYcvVb1bsao7ZoPA7TuqB1NrT167x3UmKvtau+Wt7eqTeus+bdMTX9/tG6vHtnqcjfvOdxzTubyk32as3vWm2jfy2d57O7zj/abUflr9Jymm0T/0p/Ufz9P17/pH/vtWd+mT+j3HW6e6fU3y8ZUDe5rm8ZwbY27JwbwsnPd4Yvj14k3jS45v6JqeOnWZjODzJWDfFZcbDE0AFWt/eyoJ1OMJ1xPYxcjEYcDDV3vyUaVfbMyWpMWaK5wE9WfOrC1bOupvMcj7TLj5vs3Nvxiq12drK8zyu/XOMd6vWazot5v/1290NyEni0LKOncsSl7uuejfrbd2Xx2ITgG5k/XtQCWxjNNzG2gkHORkMOVgW9978f16o5pcPZ6MA57nWzwvXnNhhdcy6JH37pU3FEfO9XlRuWfz+WmXe3PC/LXpy39kqGOMaxB88fc7Xyl9ZFKH+6m/zI76fXwstuUObdC22Sc6YDbJmCVK6Y8TiprRq5n8QFcQWbtRXB3LX8nylRUDKQtprBnLzSvo+61KQN+D1VO97pkugslJc3sEAWSE3cZaNglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsHIAwA=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9ERIkwMDD9qmdi8BOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyYlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsu+qcXHGFrXtBzpqHssczFvhYFNZVM21fqPDT68TeWohWw+choqzJcmWzmjc7CALoQ8I1kLEL0DUOThC9B0Ig4rPgpjr0LV//QRsyWFIBhYuT654/FbhW+qGA3ycFnWiK5Y5dB/a3/SwfKuD7JxLPYct1x04OaXnfubDJQ61gTxz+U5udnhdcPL6rOWrDzQqPHTYJ7XYIe9BxHZrqU0OGor+awdxYMHk0GlMALIPlyc3dB/cYtm47kAAVFz88h2PnLUbHKwh9AFZqHgtRJ3DPIi+A6/lIeLnIeY6VDV7ig+bwMLlyY2QFHNADpqCOCEpyuEwJIUdCOWApLj5kBTogCs76+swB2EryCZBS0EBRqQQrGTCDEHxEwnuj5FCcLVG3z5QCDrCDEAPwYHIo+ToEWDAXQjiCmVcsYIrFnEVprvOVm63Pb75wCSo+bNuGL+ZKbbJoTpAmyHUatOBMKj5uv5eybNX484iuArljRDzDlyEmj8JYp+DC8S8A/1Q84Mh9uHMmrQu9zhn+mxFTp0qhvftQKnzJJQvAEtIuCIKVpfDEiEIgFIzLoczIamBAZAYLgcyQdUitxlAduGKcFh7Bdk9IYxbL4A8JcmI5il8KRWWLfGpw60GIgdzPG5zII0h1AYRIkfCPIIeAOjqmBlQPYwuxwA1A1UNqrrK01fbwIEEK1ZwBxKiKGFEovEHKqZeYgH2AEQEPnKKYqWRG3C1gtFTG8gNhItC8tyAGckQc9DFsUc0ddxw5Xv0Q1Ai0YTyBWARA4t8WITAUi0IFJ/f2QPSZAjlCyKnGkIg8EPTY/yuxVK9Ay2rh7qIEVSt5kE5yNXqkyvX/dxfXhbc/xRSrerulI4BVatmULWmkiD/YdqGoy+Jm9/WFrt849t5DiaTb6fF9s12WGK68+jHqxKu12xiQfgoV5mzK1DMFehseyS8HwmjiEGGVYBenAq1QhTsTwbs4anrLPP6kZkURthh+gwVtLs895II34bQd/YMCDyxZwDbLQoVhcU3C5RmuNlrySn6YmMyTJKNkYGVnYmRjYOZiZ2ThZmDm42Vi4edjZuXg52Hj5ODV4Cbi1+Qh1tAiJdHUJiPV0hUgF9ETFBAVFxIUExCWEhcB2jIjkMTIT6+DrW14pbseX1+x0KJox9nPuGdsWDmqru+F97cUGH1DeM5yVI/KTBn/+0ehZhtqzdkCh3Sn9HLmSa8h+EiS+PZz3NKLqXflz1/80aAcm9NcUdpSWrzcpV3v+XKDu78e1T4Rlu0hf3xb5f7Hu5Y8aDQ8Ftp74NpWorTIy/9eiq4r8wtW4nNTm3LWWd51teX3t2TZTFYYHpUa59rf5jYzFszwsSWvb906pGd7IVTStFAVlZ/2K9bi6fu+5axdL1t1MtsIPfX5GvFZr8mh9W99o/6udY+8+n2f0um3v/B3Mk1+Ywmn/lLkF8f3j7zEuxXWbhfd+teyJ5erXL73zaH9/tuL87Zk8NwvXJCAVMqk9IJoAKtb29lwToc4Tpi+xi5GAw4mGpvfsq0q+2ZktQYM8XzgJ6s+dUFK2fdTWY5n2kXn7fZuTdjldpsbeV5Htf+Oca7Ves1nRbz//rt7gbkdHBoWcfOZYnLXVe9m/W27stjsQlAN77jW8kItjEYbmPthIOcDIo8LFs3ffm/ucXm+05VGZlTDyfEyOkpW3RKLl73c572u9ss3G/O1mx/9G2uz4YDfbvyD0335Xqz4rlYTZaNj/J+2zP363d8tfFN0tULfhF2AmT8EqRExojFLWnVzP8gKogtyaivDuSu5flKi4AUa/bTj8htKen7rEtB3oBXSr3vmS6BCkZxeQcDZIXcxFk2CkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGAXDHAAA
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EZIkwMDD9qmdiiBOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyalAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsq80SE5IXnjbge2LKs93eS5ymPDSPm5Pw0GHzNqXXpOSdh04BBXnWbGlmXXTPoc4CH3gDFT8ew1YncMqiL4Dl6DiTwLB5jocL/Xehy05DMnAwuXJ+s8Xvj7k3X8g5fUcu0+hSxzCtvR35c7Z4rBKWEnfW2r3ge/GB9ZGJi1zOCHGyLxHdbPDVePijC1q2w901DyWOZi3wsGmsqiaa/1GhyW6nRcHcWDB5NBpTACyD5cnf3qdyFML2XrgNFScLUm2dEbjZgdZCH1AsBYifgGizsERou9AGFR8FsRcB74Qd7FhE1i4PPkXkmIOlJhAUlAhJEU57ISksAPToSnOE5ICHXBl5+6CP5+xFWSToKWgACNSCFYyYYag+IkE98dIIbhao28fKAQdYQagh+BA5FFy9Agw4C4EcYUyrljBFYu4CtNlJ39FTBHfcaANar7vvVT13ZN2OzwS5UmfdmbrAW+o+b0i4qcLinfgzCK4CuUJEPMOlEPND4DY53AUYt4BZaj5qyH24cyatC73JpaoGSCnThXD+3ag1HkSyheAJSRcEQWry2GJEARAqRmXw5mQ1MAASAyXA5mgapHbDCC7cEU4rL2C7B6visDfIE9JMqJ5Cl9KhWVLfOpwq4HIwRyP2xxIYwi1QYTIkTCPoAcAujpmBlQPo8sxQM1AVYOqrvL01TZwIMGKFdyBhChKGJFo/IGKqZdYgD0AEYGPnKJYaeQGXK1g9NQGcgPhopA8N2BGMsQcdHHsEU0dN1z5Hv0QlEg0oXwBWMTAIh8WIbBUCwLF53f2gDQZQvmCyKmGEAj80PQYv2uxVO9Ay/qhLmIEVat1UA5ytfrkynU/95eXBfc/hVSrujulY0DVqhtUrakkyH+YtuHoS+Lm3wKXgJscPrEGWn5nWeXwhJXnWKiPkGtwRS8IH+Uqc3YFirkBnW2PhPcjYRQxyLAK0ItToVaIgv3JgD08dZ1lXj8yk8IIO0yfoYJ2l+deEuHbEPrOngGBJ/YMYLtFoaKw+GaB0gw3ey05RV9sTIZJsjEysLIzMbJxMDOxc7Iwc3CzsXLxsLNx83Kw8/BxcvAKcHPxC/JwCwjx8ggK8/EKiQrwi4gJCoiKCwmKSQgLiesADTk15e5esK2wRmPFrd+WyYcvGsgrXj++xibvub6OfVXFrDmr95g13zbq++nOK5e1My/2w6Gt1xJvXbS89Wyd1Xr9HW0hX+Se6hSXxebsulzq+1JzQ1zi3/p1t+Z/a/pqZ1T5dJdWvnLEe7fV2etmrZ/e8NXMQqYodqId85rr93PnZtdcEN4Qp/D2lloN6xpxj93r9hZJgOi4mbskQfQ/zmiea9xLHL81fmV6y36T/Rr3FvkU+Qj9C3UTahP2OvyGSvz8LOHx/ryktMM/G7ZL3F/MT8wHStY3/+G8BufsZmIo3NBbIplSHw7yuYRkfALY57Jwn0+euGlb8Sft+/rKqXv906b0TudlkH8UzXrMMjDnBFCB1re3smAdjnAdsX2MXAwGHEy1Nz9l2tX2TElqjJnieUBP1vzqgpWz7iaznM+0i8/b7NybsUpttrbyPI9r/xzj3ar1mk6L+X/9dncDcqo4tKxj57LE5a6r3s16W/flsdgEoBufGxwoBNsYCrexdYIj1wEDDpbPxv/rs+Y9KOz/3Szi5V1gcOW0EddiC7f41yu1s8wPMv1+2vmv59XvZ5xiNy6+9/3xaQKT9a/drPP55JZN/M1/9fl8623P2YyavNlys+f9AlmwBCnRMWJxTVo18z+ICmJLNuqrA7lreb7SIiC1OsdIH7ltJX2fdSnIG/BKqvc90yVQQSku74DSCOMmzrJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBhhAAA=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EBIkwMDD9qmdicBOBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyfFAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsk/xRluK0YXFB073/OH4lDnhgFdW/5Hs7PUOMPHUtN/cMx6V4hJ3QBeHmgMXvzHPNQFbchgOgQX35C2O+zdnrVsOF59oae7P3LvaYQqEhotfh6hz8IHog4vLQcx1iDkt5TKIAwsmh05jApB9uDwJE4elIBziB9DFYSlUFip+fsm5pOEaWHBPoqWgA9egKQgtxR2ApThc2dnOOz8BW0E2CVoKCjAihWAlE2YIip9IcH+MFIKrNfr2gULQEWYAeggORB4lR48AA+5CEFco44oVXLGIqzCFmQ8TRzcfJo5ebqBnEVyFMpr5GOUSTByH+Q7o5tOq3HPTtXiOnDpVDO/bgVLnSShfAJaQcEUUrC6HJUIQYMRU74CunhFJPUgMlwOZoGqR2wzMmOrhEQ5rryC7JyaU2QbkKUlGNE/hS6mwbIlPHW41EDmY43GbA2kMoTaIEDkS5hH0AEBXx8yA6mF0OQaoGahqUNVVnr7aBg4kWLGCO5AQRQkjEo0/UDH1EguwByAi8JFTFCuN3ICrFYye2kBuIFwUkucGzEiGmIMujj2iqeOGK9+jH4ISiSaULwCLGFjkwyIElmpBoPj8zh6QJkMoXxA51RACgR+aHuN3LZbqHWhZOdRFjKBqNQ3KQa5Wn1y57uf+8rLg/qeQalV3p3QMqFrVg6o1lQT5D9M2HH1J3Pwz4BJqgYMzlI6Prj460b/5yKRGOVcgBrFdgGKuQGfbI+H9SBhFDDKsAvTiVKgVomB/MmAPT11nmdePzKQwwg7TZ6ig3eW5l0T4NoS+s2dA4Ik9A9huUagoLL5ZoDTDzV5LTtEXG5NhkmyMDKzsTIxsHMxM7JwszBzcbKxcPOxs3Lwc7Dx8nBy8Atxc/II83AJCvDyCwny8QqIC/CJiggKi4kKCYhLCQuI6QEO4T99VAtsK651W3Jp9R6O8pKn+88QdL7LCt8kuS/iWPVXk+qlyuwSzCWWsnw7mLNijHSA7w3Zn4LlSowh940lxaSp7z3hUzZz4xejwVyMDgzUtL1MTLkRzXj594IMD8zLxFW2My8SXyJ2ME1epjp3wptRx03VWIKflHlDfWY+q2RO/mCm/zGV7zcqwx7Beqk9vRhLIZeeZLbTBLkuFu+z3maRd8xk57DbPuMX8sW5l2nZVg7L0zkaupr2Oop17RTx5Y2obD2vt+JVhnLzjl/fV3Q9fza+7EMWWrHx79+8+3k0zT3mUKe48mKBp9p3h7pqus7YOpt4bVqpf3W/wlYFXu+JCWt1h+RNAi7S+vZUF2+wItzm2j5GLwYCDqfbmp0y72p4pSY0xUzwP6MmaX12wctbdZJbzmXbxeZudezNWqc3WVp7nce2fY7xbtV7TaTH/r9/ubkCO/UPLOnYuS1zuuurdrLd1Xx6LTQD69bnBgUKwjaFwG1snOHIdMOBg+Wz8vz5r3oPC/t/NIl7eBQZXThtxLbZwi3+9UjvL/CDT76ed/3pe/X7GKXbj4nvfH58mMFn/2s06n09u2cTf/Fefz7fe9pzNqMmbLTd73i+QBUuQEhcjFtekVTP/g6ggtgSjvjqQu5bnKy0CUkynLm9HbkNJ32ddCvIGvDLqfc90CVQgiss7GCAr5CbOslEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFIyCUTAKRsEoGKYAAA==
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9EtIowMDD9qmdiqBSBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyjlAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNsi/qRluK0YXFB3Z0/+H4lDnhgFdW/5Hs7PUOMVBxjaTf3DMelcLF46DiM7LA4g4w8USo+NVesDlw8VUldd+xJYchGVi4PPnw6+JQ5YqFBxJT3/mt+9jjIOfQI35782qHQ2pNvRoO8w7IrH/cXcHf6fBRtDPL689yh4OJe/K5Jsw8cO3HjRNOuq0OR1+37t3pssTh4Ya0rkEcWDA5dBoTgOzD5cm0aIi4+NLT3JE2OQ7M7yDinKEQceOZZ0DiBxw/QMTX+EHE75veBJlzoP4TRDwqK/XDsAksXJ5kkYKkoJRr4BR0IFcKkoLWfYKkuBdl4BR3INoJkuJwZef5arN2YivIJkFLQQFGpBCsZMIMQfETCe6PkUJwtUbfPnD7AmYAeggORB4lR48AA+5CEFco44oVXLGIqzA98Bli/peoL50nvYsPzHWEmO8iBzH/ZPBb9t9bCg68k4CYjyuL4CqUL3yBut8cbL7DPWi51KwEMd+aFWy+Q4E4xHxcWZPW5d7iNwlHkVOniuF9O1DqPAnlC8ASEq6IgtXlsEQIAqDUjMvhTEhqYAAkhsuBTFC1yG0GkF24IhzWXkF2z5nitgKQpyQZ0TyFL6XCsiU+dbjVQORgjsdtDqQxhNogQuRImEfQAwBdHTMDqofR5RigZqCqQVVXefpqGziQYMUK7kBCFCWMSDT+QMXUSyzAHoCIwEdOUaw0cgOuVjB6agO5gXBRSJ4bMCMZYg66OPaIpo4brnyPfghKJJpQvgAsYmCRD4sQWKoFgeLzO3tAmgyhfEHkVEMIBH5oeozftViqd6Blq6AuYgRVqzOhHORq9cmV637uLy8L7n8KqVZ1d0rHgKrVRKhaU0mQ/zBtw9GXxM0/1gMqARc48Kpn5k5mmO0wpVHu6ET/5iNnVZVcgxrOHAGyXeKjq12BzrZHwvuRMIoYZFgF6MWpUCtEwf5kwB6eus4yrx+ZSWGEHabPUEG7y3MvifBtCH1nz4DAE3sGsN2iUFFYfLNAaYabvZacoi82JsMk2RgZWNmZGNk4mJnYOVmYObjZWLl42Nm4eTnYefg4OXgFuLn4BXm4BYR4eQSF+XiFRAX4RcQEBUTFhQTFJISFxHWAhly+eMEZbOsiqK0Vt2bf0Sgvaar/PHHHi6zw006Ni78zfe7/88i3dO/0AyUlZt5HJmay/4mxFNtnIbTz7sOOwI2t2QWHZyonRc5yP7dSa6cf2+tUt0u//xk4ve89zLGXnU/5yzobnsunFS6sY7+8W+F8oa1PfvPRx18N9vKa95gd+GJ0YlqOw6brrCfj0lWq5058U+q26brkwu2Snvn7uCfVx07487rpSbz4hDiGqy1t0T58KzhAzmZJu/AY7Ox2uLO9X3fduP/QPl8yXP/4PxOF38c8+0MNvv1u213wrcZv9VWDb2v6bQu++U3XLNh7/ZdglfJagSr+Dwpf1v1qvTD76w+NmPzldk7rK8Sd1k+ScFr/rLrl3s+L8Q+q/GUcX0zlOPYubV44x175+wb67Rt9s2wfvpL8KlhVbretZXX4fu6L3AwPWLvDprZ/2noC6BStb29lwW5zhLstto+Ri8GAg6n25qdMu9qeKUmNMVM8D+jJml9dsHLW3WSW85l28XmbnXszVqnN1lae53Htn2O8W7Ve02kx/6/f7m5ATjyHlnXsXJa43HXVu1lv6748FpsADI1rSo0fwTZ6wm1snbCRF2jj4V+R/+5bNE40VC9Zk+V4OqlSwWXN11kX3nLq77j6vrVKbc+DsHrzdplND8Lu726TO6PI61f/Yfnxkzc9tXQ1PfNeFYMMXYKUHhmxuCCtmvkfRAWxhR711YHctTxfCZSIjyy4vAe52SV9n3UpyBvw+qv3PdMlUBkqLu9ggKyQmzjLRsEoGAWjYBSMglEwCkbBKBgFo2AUjIJRMApGwSgYBaNgFMAAAA==
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
7Vh9TFNXFL997avUklDiKBviRObiNEAoWD6M2Dc+1GmGn0i2zDE+SsTRlhQwYSRCZshYFhOVGT8yiBOFjcwYl2wGlbVzGPeHuISxANsCicDEMV2jW4ZfdO/0vssulz5BEpMueb/kce4957z7zu+cc+8rD6kQQl4RIAHBnPgnd+uuErsjw2GzOewxUTuszvIShz0tOc6UGJdgSlyZIg7i400xURmVpRWVTmua3VpZ4cwvjYnaXFlQWlK40Vq13fGu1Z5mNickpJisqcmFyWazOTGeh6cs8C0et87qsFkrnFVx6U5rmUbUz9uDnzM/31m4q2SPNbHIpnOUWe32SmdBuaYovyIfnIKCgjgI0bAMoQRRNjzSB+vU4iAE/kQbEeIe1HDIaMR0Hno59JxELeOyw7OiOWhtY19rd+f1FUmvTHyx6pFoHwjD9gRUi4ReDZ4YtOIfCBdW60DTV3sh9OzbW/Q9oa4JZNinivZsiKgKh9XqJLuBkwacdE2FxzJNhfUuVkPfG/S47/v02MMC6Jbq+2Hs9hkKRjvmRcK8zn30k6aF93YccqdtTFrkreFqyb0BR4anyLDB8wNgqxOSmvD8jGfTmwFNJoQiwwbvuYNtPkft/Y769qaGgCajpciwwTcPYXLrG3zkhNdeXRwc0GT0FBk2+Aojbrvhj/E8+6PzZwOajI4iwwbPHgh5v85LpcnoTrbHwhGXzEsB0kdc11MwPEwYqp8BQ/qIC5mo62jPPOWeSLzkmH/gmKDf4GMsBD3C+qFwPM9Ox/aR75Jf9Fe+gCFHH3lyJGw5Pum2hGH93rs+P6GgPmowoMnRR6AciUYb7tk8Eyab8DfWD7UMvxHQ5OgjUY7EhUqs/+oPPF/0OrY/KG8L7MrRR6QcibqduKI7b2N9/3ZcWZR2a0lAk6OPTDkScgeN7Zezyf6OUKP0c9mgohg/9sN4sKc3e92tH0NdI5hxeW/fP8D4imQPPYrT665Owk++ugnLztU1xU0nfptk/NMqPG+OCC7riPrZsnclyN8tA5G+uWtZyoGs1qobLucyn7RcTMVSTl9yvygl+6UWd8+Rm/v2lRxzn6z2SWH8yuVDY7mN7s8u+aQwk3332hP1dIaWmgbXQIaWkwxpJYNcikmpeKpkcK/c8chRPnS55U4cTvKlWwLaTG4Tk9ZTU/7wP4HcviC+Gsqff0KrcZIvzfdeQcSXkLRP2aSxIC9HkgDVDH7+fHjKRpLjbx36XcXuRfqoV6PpCWb91GhqQgFayqaR1mB9aD8NmppkgJ6y8dIarA/tx6OpiQfoKBuS1mB9aL/iUXQcirVECtZvsehCkUVp+SSw98qhe1FiU8f4iJdItpA80wT0zvFXLBr8HGNgmyWEaSJS4NnkIWSOMbDNpmWakDTIbGLQzjEGtln1TBPTzTZTLfRzjIFtdp3MJphNHnRzjGH1Zm0ebBaTZDeQh5FNQxJACkN2MeD0pYtj9M2hT7OLtnjeH8Kj2f9sgIedl1pHBa/0FmlCv9KHmVd6bPvCt+CVbpd8zVrk7xBio/BYZnq1XvgQ9J8LW7+F+Rnhh5ejr4TtXp4pXZ3iPAsuMWwLdbmoi9FB5kSK5OdWGMmlv3zGZkSO3UiKmJY7g/9kTuKDzJsbns/9+r/7uq4Bhi342dK3tsm6aySJ+ven6sJGzxUSo1rsBJVo4dUaDSemdr2ou+qN34yui2nYVnst0yimAcYgYS5enZIuS5SdoCNjkMRH0mXCgnf3BL+HVnUtcImXRbrmPI4XFzzYfO4hOtfWliaOLTtyDq/hkLAmJ8dsAdnWthvSYoG517vJZwdJp+9yS317S35rVtud47f3/jVkfEfUbR3f1ir7uY98ZJrpoxP59EG+FrBfD6A4p6jiqPwEU1ytniDdO0MboGflB3G1OqJPih3yTVfrQfq358JB/jTQmDzc9v/JdcOuDF8sxNOO+tk9TIECBQoUKFCgQIECBQoUKFCgQIECBQoUKPgf4F8=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
-
Y2BkYGD4DwQgGgR4mIBEeFBGZl6+c35ubn6ejkJYalFxZn6erbmeobGekaGxiQWQYWBgqKPgXJpTUlqUapuXWlpSlJijoxBQmpSTmeydWhmSn52aZ2tqamRkYZhqaZ5sbmpqamzACrJFGGy4nntqfm5qSVGlnlNRagELUJy9DGIPV2JRckZmWapxSi5nfkFqXl5pUVIxS0piSSJIEQcHBxPIiQLqDAxGQHryH24eTmYggx9ERIowMDD9qmdi8BWBeOf3fyYGKJPB+VD+B63FHG5zbyy/dOSclpnGvzVWf4DyolAFRgwNDA62zBCOAMhJIOeCTNvLgGmapOD6uEDuK4L7/zEINDMqffCSqhQHmdYKlRdggjKYoBgVfLDHEIKI70cXwaYXUwzTXMMzfT//1zM1wPhDwDPo5sD4H+w/Oq17NEQ9g+mpD9qSs4eYZ3CbZ7DUsgHZM9Zt11hBGWkvC9SByBlJlpF4Hz6F+RCaIxlYoJhcH7JhV4jFLAQNLpj+tO7d6bLkwDPxmyecdFsdfJz25HNNmOnABhU/JHuGO9Imx8EXKs4CFRdRAYsf8IeKM0HFqyXB5hwIhIpXh3okYEsOQzKwcHkyncPv2aWjCw/UQsW7NXXkbvTOc5gOoQ/UQcWTIeocEiD6DtRDxRkg5jrYxiblDOLAgsmh05gAZB8uT+70gIgvUoekoKs/IOJC/hDxXWKQFLfyK0Q8JxQi7iYKSaF1nyDi601czIZNYOHypI8ZJAWpiUHEuZkgKWg6NyTFsUGzraEyJMXhys6eK06+w1aQTYKWggKMSCFYyYQZguInEtwfI4Xgao2+faAQdIQZgB6CA5FHydEjwIC7EMQVyrhiBVcs4ipM27kg5mdLQ8QDVCHmCxpBzBeShIhrskDMx5VFcBXK5ZwQ851VIeI56hDzL+lCzC9Wg4i7skHMx5U1aV3udWz854OcOlUM79uBUudJKF8AlpBwRRSsLoclQhAApWZcDmdCUgMDIDFcDmSCmYekHmQXrgiHtVeQ3ZP9l+MZyFOSjGiewpdSYdkSnzrcaiByMMfjNgfSGEJtECFyJMwj6AGAro6ZAdXD6HIMUDNQ1aCqqzx9tQ0cSLBiBXcgIYoSRiQaf6Bi6iUWYA9AROAjpyhWGrkBVysYPbWB3EC4KCTPDZiRDDEHXRx7RFPHDVe+Rz8EJRJNKF8AFjGwyIdFCCzVgkDx+Z09IE2GUL4gcqohBAI/ND3G71os1TvQsjqoixhB1WoulINcrT65ct3P/eVlwf1PIdWq7k7pGFC1agpVayoJ8h+mbTj6krj5GyRAJdRUh6fiEPq8qtJR8SzNI0ENZ1yA+AiQ7QIUcwU62x4J70fCKGKQYRWgF6dCrRAF+5MBe3jqOsu8fmQmhRF2mD5DBe0uz70kwrch9J09AwJP7BnAdotCRWHxzQKlGW72WnKKvtiYDJNkY2RgZWdiZONgZmLnZGHm4GZj5eJhZ+Pm5WDn4ePk4BXg5uIX5OEWEOLlERTm4xUSFeAXERMUEBUXEhSTEBYS1wEa8tJlViXY1klQWytuWS9fVRKi431ZdcfDHu9VfQYz1ob9OfW0X5B7Bu+S2MY/ygpmAfdEV/CdsVu+6kkV35rypcZO773SW+5NPcexV3uuYFW41eEvRhZzorgvVycY/beaEdfmO+11QpWkRdC1g1+MIrasd9703WDS3vaJb2x7Ut4nqlTzK3/JknP89F5Q5T+MYnzJyrBkTdWp3+dOtIKcecukwxzszGy4M3+fSdr1f/6kgPvpYsHVCvf+KzkE8B6bV96SLFlWxm5UrdmTa7le4lzd6jKxc+tOhjStFu88cfyU2Cnels3KP7/pOM94zJ0ufXdu59V773dtLCi89zJ44y7hmzIm+3UUn8QviD+Qw7DNvO1XT9Tb3SeA1ml9eysLtt8Rbn9sHyMXgwEHU+3NT5l2tT1Tkhpjpnge0JM1v7pg5ay7ySznM+3i8zY792asUputrTzP49o/x3i3ar2m02L+X7/d3YCcIA4t69i5LHG566p3s97WfXksNgHo42tKjR/BNnrCbWydsJEXaOPhX5H/7ls0TjRUL1mT5Xg6qVLBZc3XWRfecurvuPq+tUptz4OwevN2mU0Pwu7vbpM7o8jrV/9h+fGTNz21dDU9814VgwxdgpTGGLG4IK2a+R9EBbEFGfXVgdy1PF9pEZAS10kORG5KSd9nXQryBrxO6n3PdAlULorLOxggK+QmzrJRMApGwSgYBaNgFIyCUTAKRsEoGAWjYBSMglEwCkbBKBjeAAA=
- 00000000-0000-0000-0000-000000000000
- Grasshopper.Kernel.Types.GH_Brep
- 439a55a5-2f9e-4f66-9de2-32f24fec2ef5
- Plane Surface
- Create a plane surface
- true
- c0edd99e-b95d-4bc3-8586-688bf88c8a34
- Plane Surface
- Plane Surface
-
121
39
101
64
-
174
71
- Surface base plane
- 32ed8ef5-1e57-41ae-ba72-fbefb89d5156
- Plane
- Plane
- false
- 0
-
123
41
36
20
-
142.5
51
- 1
- 1
- {0}
-
0
0
0
0
0
1
1
0
0
- Dimensions in X direction
- 9b76a7a4-3277-4945-aaf3-09d2d7ba97bf
- X Size
- X Size
- false
- 0
-
123
61
36
20
-
142.5
71
- 1
- 1
- {0}
-
-32657.3964215995
32657.3964215995
- Dimensions in Y direction
- 37d58ddc-80b4-423d-9be4-c003951f8cdf
- Y Size
- Y Size
- false
- 0
-
123
81
36
20
-
142.5
91
- 1
- 1
- {0}
-
-32657.3964215995
32657.3964215995
- Resulting plane surface
- f9439a96-d3da-4973-91eb-bb053b00ba79
- Plane
- Plane
- false
- 0
-
189
41
31
60
-
206
71
- 439a55a5-2f9e-4f66-9de2-32f24fec2ef5
- Plane Surface
- Create a plane surface
- true
- d03cc052-5fb9-4f53-8b64-0514257ce206
- Plane Surface
- Plane Surface
-
121
231
101
64
-
174
263
- Surface base plane
- 55b7b6e7-ab3c-4db1-b676-a9b1e296e3df
- Plane
- Plane
- false
- 0
-
123
233
36
20
-
142.5
243
- 1
- 1
- {0}
-
0
0
0
0
0
1
0.707106781186547
-0.707106781186548
0
- Dimensions in X direction
- 70d50ba5-de7b-4f1b-84c2-ed4d1a352331
- X Size
- X Size
- false
- 0
-
123
253
36
20
-
142.5
263
- 1
- 1
- {0}
-
-32657.3964215995
32657.3964215995
- Dimensions in Y direction
- e08d9e33-ea8d-4efa-9756-4b14632ce2af
- Y Size
- Y Size
- false
- 0
-
123
273
36
20
-
142.5
283
- 1
- 1
- {0}
-
-32657.3964215995
32657.3964215995
- Resulting plane surface
- 3f999ec1-de43-442e-b674-4ae310a6cb18
- Plane
- Plane
- false
- 0
-
189
233
31
60
-
206
263
- 439a55a5-2f9e-4f66-9de2-32f24fec2ef5
- Plane Surface
- Create a plane surface
- true
- ee0d53ca-d232-4117-a02a-2e2be21e9a07
- Plane Surface
- Plane Surface
-
121
423
101
64
-
174
455
- Surface base plane
- 119ee818-961b-4844-a00f-facd5d8c46e5
- Plane
- Plane
- false
- 0
-
123
425
36
20
-
142.5
435
- 1
- 1
- {0}
-
0
0
0
0
-1
0
0.707106781186547
0
-0.707106781186548
- Dimensions in X direction
- ebff2048-0c97-4660-8b01-6ded24105cd3
- X Size
- X Size
- false
- 0
-
123
445
36
20
-
142.5
455
- 1
- 1
- {0}
-
-32657.3964215995
32657.3964215995
- Dimensions in Y direction
- fd01c1da-188c-4809-bebe-da74b51c9e65
- Y Size
- Y Size
- false
- 0
-
123
465
36
20
-
142.5
475
- 1
- 1
- {0}
-
-32657.3964215995
32657.3964215995
- Resulting plane surface
- 274014a0-4058-48ac-bd1e-58af12f57c4d
- Plane
- Plane
- false
- 0
-
189
425
31
60
-
206
455
- ef6b26f4-f820-48d6-b0c5-85898ef8888b
- Split Brep
- Split one brep with another.
- true
- 5ca9dfdd-9a81-4d44-a96b-98aa7aaebec2
- Split Brep
- Split Brep
-
121
379
102
44
-
172
401
- Brep to split
- a863cd86-16ee-46e1-849c-a3b30681b964
- Brep
- Brep
- false
- a0cf31c8-9da6-4014-a1d5-a4adf6e118a6
- 1
-
123
381
34
20
-
141.5
391
- Cutting shape
- 741a9c42-1ade-4f0d-861f-4584dba30dd3
- Cutter
- Cutter
- true
- 274014a0-4058-48ac-bd1e-58af12f57c4d
- 1
-
123
401
34
20
-
141.5
411
- 1
- Brep fragments
- 8d712770-4a0a-4625-a400-9efd9e5ef9ba
- Result
- Result
- false
- 0
-
187
381
34
40
-
205.5
401
- 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd
- Brep Join
- Join a number of Breps together
- true
- 37a2f3d3-3ffe-4d69-9ec5-ae9348880b8f
- Brep Join
- Brep Join
-
120
487
104
44
-
170
509
- 1
- Breps to join
- 56abd22f-4f48-4651-a86c-818714f23bb4
- Breps
- Breps
- false
- fb7bca39-8555-41d4-82af-75f9888bd609
- 1
-
122
489
33
40
-
140
509
- 1
- Joined Breps
- a0cf31c8-9da6-4014-a1d5-a4adf6e118a6
- Breps
- Breps
- false
- 0
-
185
489
37
20
-
205
499
- 1
- Closed flag for each resulting Brep
- 94c6b989-e635-4c9d-aebf-01f681c44392
- Closed
- Closed
- false
- 0
-
185
509
37
20
-
205
519
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 4be7483a-1919-4095-bdf4-1f4d0cc391fe
- List Item
- List Item
-
126
295
92
64
-
174
327
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 1d404836-94bf-4133-a12a-bcfde4c4420d
- List
- List
- false
- 8d712770-4a0a-4625-a400-9efd9e5ef9ba
- 1
-
128
297
31
20
-
145
307
- Item index
- d4ebf709-9459-4e5f-99b3-a3be0fc74339
- Index
- Index
- false
- 0b6b149e-b171-4ba3-8731-6a31ceebf532
- 1
-
128
317
31
20
-
145
327
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- fab16e5a-d626-4171-aaca-991e2c913ecb
- Wrap
- Wrap
- false
- 0
-
128
337
31
20
-
145
347
- 1
- 1
- {0}
- false
- Item at {i'}
- a3b1dc9c-0a99-4c22-bab0-48765390faa5
- false
- Item
- Item
- false
- 0
-
189
297
27
60
-
204
327
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 0b6b149e-b171-4ba3-8731-6a31ceebf532
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 0.0
-
47
359
250
20
-
47.5
359
- ef6b26f4-f820-48d6-b0c5-85898ef8888b
- Split Brep
- Split one brep with another.
- true
- 443fb62a-f7b7-44a4-9be5-d81abf96f0cc
- Split Brep
- Split Brep
-
121
187
102
44
-
172
209
- Brep to split
- 167c1378-c17b-4300-89a5-b0b07b587a70
- Brep
- Brep
- false
- a3b1dc9c-0a99-4c22-bab0-48765390faa5
- 1
-
123
189
34
20
-
141.5
199
- Cutting shape
- 6c763664-860e-4000-9639-15d04b2e361c
- Cutter
- Cutter
- true
- 3f999ec1-de43-442e-b674-4ae310a6cb18
- 1
-
123
209
34
20
-
141.5
219
- 1
- Brep fragments
- 366b365f-b5cf-4fc9-b4b0-c709c6afc46d
- Result
- Result
- false
- 0
-
187
189
34
40
-
205.5
209
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2cbf2391-8630-419c-92df-867599897a69
- List Item
- List Item
-
135
103
74
64
-
183
135
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 5c2fbf07-2cb7-4880-aff1-2fee3811e166
- List
- List
- false
- 366b365f-b5cf-4fc9-b4b0-c709c6afc46d
- 1
-
137
105
31
20
-
154
115
- Item index
- 748aaf7b-44e9-4052-a4c7-fc21b5c1cd95
- Index
- Index
- false
- fe7d4f7e-06b2-4133-b12b-fec41c6ea24d
- 1
-
137
125
31
20
-
154
135
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- b940592e-136c-4525-8e12-39e86fb7170a
- Wrap
- Wrap
- false
- 0
-
137
145
31
20
-
154
155
- 1
- 1
- {0}
- false
- Item at {i'}
- d44b1fcf-f4b4-43d6-9b09-5667400571ec
- false
- Item
- i
- false
- 0
-
198
105
9
60
-
204
135
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- fe7d4f7e-06b2-4133-b12b-fec41c6ea24d
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 1.0
-
47
167
250
20
-
47.5
167
- ef6b26f4-f820-48d6-b0c5-85898ef8888b
- Split Brep
- Split one brep with another.
- true
- dd8bb56b-2c42-4689-9690-3bd84c3cdc46
- Split Brep
- Split Brep
-
121
-5
102
44
-
172
17
- Brep to split
- 4fa3364d-49ac-4c26-bf21-dd66a56ac202
- Brep
- Brep
- false
- d44b1fcf-f4b4-43d6-9b09-5667400571ec
- 1
-
123
-3
34
20
-
141.5
7
- Cutting shape
- 2e5ba99f-b455-40d5-bdcd-0433561cc39b
- Cutter
- Cutter
- true
- f9439a96-d3da-4973-91eb-bb053b00ba79
- 1
-
123
17
34
20
-
141.5
27
- 1
- Brep fragments
- 9a1dd45e-250f-4a9b-accb-b1b3c2d31e07
- Result
- Result
- false
- 0
-
187
-3
34
40
-
205.5
17
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 904a9143-7399-4c33-a019-0aac43f8dbcb
- List Item
- List Item
-
135
-89
74
64
-
183
-57
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 139e0e2f-6d81-443a-b0c7-6e3c765ecb30
- List
- List
- false
- 9a1dd45e-250f-4a9b-accb-b1b3c2d31e07
- 1
-
137
-87
31
20
-
154
-77
- Item index
- cca6e4ae-b7f5-4230-aaac-a92743091f2e
- Index
- Index
- false
- 1b3ab2e1-ec04-4b8e-9658-90d0d111d037
- 1
-
137
-67
31
20
-
154
-57
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 2bb2e3e8-dbb0-46e0-aacf-3157e2539050
- Wrap
- Wrap
- false
- 0
-
137
-47
31
20
-
154
-37
- 1
- 1
- {0}
- false
- Item at {i'}
- 4bef4a19-95f7-454e-a587-be89963e71c6
- false
- Item
- i
- false
- 0
-
198
-87
9
60
-
204
-57
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1b3ab2e1-ec04-4b8e-9658-90d0d111d037
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 0.0
-
47
-25
250
20
-
47.5
-25
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- aa85aa20-4b99-47a2-b64e-470e2c74e06c
- Geometry
- Geometry
- false
- 4bef4a19-95f7-454e-a587-be89963e71c6
- 1
-
408
531
50
24
-
433.4409
543
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 3cbc5027-de22-40a0-8042-157af34a1407
- Mirror
- Mirror
-
364
486
138
44
-
432
508
- Base geometry
- 73f4a1cf-0ece-470e-8fc8-93ec16ca4c51
- Geometry
- Geometry
- true
- aa85aa20-4b99-47a2-b64e-470e2c74e06c
- 1
-
366
488
51
20
-
393
498
- Mirror plane
- 142c1684-8d64-4adc-994c-f9cefc1f7303
- Plane
- Plane
- false
- 3f999ec1-de43-442e-b674-4ae310a6cb18
- 1
-
366
508
51
20
-
393
518
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- ec491679-86d1-4dd6-8e9c-f72dc3154db6
- Geometry
- Geometry
- false
- 0
-
447
488
53
20
-
475
498
- Transformation data
- 40eb564d-4516-4025-82f7-1ed3b80e0bb3
- Transform
- Transform
- false
- 0
-
447
508
53
20
-
475
518
- 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd
- Brep Join
- Join a number of Breps together
- true
- 507c0615-961e-44e3-8147-00fc7c4aed31
- Brep Join
- Brep Join
-
381
398
104
44
-
431
420
- 1
- Breps to join
- 3da59071-4857-450f-bb65-9f76b7ebb88b
- Breps
- Breps
- false
- 19bdd612-f2eb-4ed9-8dc6-0ce62d47a654
- 1
-
383
400
33
40
-
401
420
- 1
- Joined Breps
- 16c8ace0-921f-4653-85d8-f2b1ba82da12
- Breps
- Breps
- false
- 0
-
446
400
37
20
-
466
410
- 1
- Closed flag for each resulting Brep
- 66f3017a-f526-4c64-b715-f91333f4f96d
- Closed
- Closed
- false
- 0
-
446
420
37
20
-
466
430
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 0e47dfdb-bf0e-49cd-972d-b8e4f16b93c7
- Merge
- Merge
-
389
442
87
44
-
425
464
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 0d8a0e0c-a96e-445f-aaa3-ecf3c87972b2
- false
- Data 1
- D1
- true
- aa85aa20-4b99-47a2-b64e-470e2c74e06c
- 1
-
391
444
19
20
-
402
454
- 2
- Data stream 2
- 25309403-d0a5-4f0e-a6a0-40474f7d0ff7
- false
- Data 2
- D2
- true
- ec491679-86d1-4dd6-8e9c-f72dc3154db6
- 1
-
391
464
19
20
-
402
474
- 2
- Result of merge
- 19bdd612-f2eb-4ed9-8dc6-0ce62d47a654
- Result
- Result
- false
- 0
-
440
444
34
40
-
458.5
464
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 0597f49e-31a8-4d31-af61-e42870609850
- Mirror
- Mirror
-
364
354
138
44
-
432
376
- Base geometry
- 6cf1141c-f010-4f0c-92a8-9f9db0906f87
- Geometry
- Geometry
- true
- 16c8ace0-921f-4653-85d8-f2b1ba82da12
- 1
-
366
356
51
20
-
393
366
- Mirror plane
- 685225a1-4556-40d9-9e4e-0d4edd57fc9a
- Plane
- Plane
- false
- 0
-
366
376
51
20
-
393
386
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 5d04653c-8b52-4a75-9a4a-21eaf2888ecd
- Geometry
- Geometry
- false
- 0
-
447
356
53
20
-
475
366
- Transformation data
- 9f66ef1e-c42f-4e24-9bfa-ebd8ee1d1584
- Transform
- Transform
- false
- 0
-
447
376
53
20
-
475
386
- 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd
- Brep Join
- Join a number of Breps together
- true
- e29288e6-d93b-4da0-8d2c-8f90447080dd
- Brep Join
- Brep Join
-
381
266
104
44
-
431
288
- 1
- Breps to join
- 23346320-502c-4f59-86d1-79c452a45da5
- Breps
- Breps
- false
- 4187f015-268d-4f1e-9d58-20c08b3f2056
- 1
-
383
268
33
40
-
401
288
- 1
- Joined Breps
- 717a1f3f-fb66-4949-afff-5170dac46496
- Breps
- Breps
- false
- 0
-
446
268
37
20
-
466
278
- 1
- Closed flag for each resulting Brep
- 0111d610-60e3-4322-aba6-92b34081aca3
- Closed
- Closed
- false
- 0
-
446
288
37
20
-
466
298
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- d16466bd-375f-4ac7-af7f-2a77e12edb82
- Merge
- Merge
-
389
310
87
44
-
425
332
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 530baeb0-9f50-4fb9-8271-7f3112f40760
- false
- Data 1
- D1
- true
- 16c8ace0-921f-4653-85d8-f2b1ba82da12
- 1
-
391
312
19
20
-
402
322
- 2
- Data stream 2
- 0e3ff8bb-398e-4deb-9de1-8ef48d676bef
- false
- Data 2
- D2
- true
- 5d04653c-8b52-4a75-9a4a-21eaf2888ecd
- 1
-
391
332
19
20
-
402
342
- 2
- Result of merge
- 4187f015-268d-4f1e-9d58-20c08b3f2056
- Result
- Result
- false
- 0
-
440
312
34
40
-
458.5
332
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- de916c92-35bb-48d3-a821-12980c71753f
- Mirror
- Mirror
-
364
222
138
44
-
432
244
- Base geometry
- d069f407-6cbd-4465-b9d3-af0ec1708218
- Geometry
- Geometry
- true
- 717a1f3f-fb66-4949-afff-5170dac46496
- 1
-
366
224
51
20
-
393
234
- Mirror plane
- 382f8939-b866-46f5-9ead-1c9f45a57961
- Plane
- Plane
- false
- 0
-
366
244
51
20
-
393
254
- 1
- 1
- {0}
-
0
0
0
0
0
1
1
0
0
- Mirrored geometry
- 4ea1ce02-d7c5-45b6-a6de-d135b8e89307
- Geometry
- Geometry
- false
- 0
-
447
224
53
20
-
475
234
- Transformation data
- 9d65aecb-1578-4d26-b013-2dc51f1b3e89
- Transform
- Transform
- false
- 0
-
447
244
53
20
-
475
254
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- c2d12d43-b3ce-4beb-b9ed-01a5fbc04755
- Merge
- Merge
-
389
178
87
44
-
425
200
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- ce65a91b-fdde-4db5-b596-57b8930666d9
- false
- Data 1
- D1
- true
- 717a1f3f-fb66-4949-afff-5170dac46496
- 1
-
391
180
19
20
-
402
190
- 2
- Data stream 2
- 496619c8-f4e5-4c0a-bad4-cd64a33fc09d
- false
- Data 2
- D2
- true
- 4ea1ce02-d7c5-45b6-a6de-d135b8e89307
- 1
-
391
200
19
20
-
402
210
- 2
- Result of merge
- c4de6c7b-6581-45a8-8291-5692b2d07dd5
- Result
- Result
- false
- 0
-
440
180
34
40
-
458.5
200
- 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd
- Brep Join
- Join a number of Breps together
- true
- 946b6bae-3a7e-4bf1-9e5d-79c868b66b80
- Brep Join
- Brep Join
-
381
134
104
44
-
431
156
- 1
- Breps to join
- 2dd1c7e6-a861-4e4b-ba90-60866d91d93a
- Breps
- Breps
- false
- c4de6c7b-6581-45a8-8291-5692b2d07dd5
- 1
-
383
136
33
40
-
401
156
- 1
- Joined Breps
- c2bc7cdc-3e0a-4fcc-b3b8-f9c0d87b8e1f
- Breps
- Breps
- false
- 0
-
446
136
37
20
-
466
146
- 1
- Closed flag for each resulting Brep
- ee1be30f-9e11-48ce-999e-e5ad04aa0ea2
- Closed
- Closed
- false
- 0
-
446
156
37
20
-
466
166
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 2cc7a3de-8c35-4c70-857f-fa04ba7ea878
- Mirror
- Mirror
-
364
90
138
44
-
432
112
- Base geometry
- 324d181b-8d9a-4af7-97ce-24a1814bba06
- Geometry
- Geometry
- true
- c2bc7cdc-3e0a-4fcc-b3b8-f9c0d87b8e1f
- 1
-
366
92
51
20
-
393
102
- Mirror plane
- d5f58ead-93d1-421e-8cdc-d82cc9aa2148
- Plane
- Plane
- false
- 0
-
366
112
51
20
-
393
122
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Mirrored geometry
- 393f889e-ede1-4cef-b80e-f50d53363929
- Geometry
- Geometry
- false
- 0
-
447
92
53
20
-
475
102
- Transformation data
- fc91fc7c-1b4c-4f6c-92e4-0560001a548d
- Transform
- Transform
- false
- 0
-
447
112
53
20
-
475
122
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- d520e31c-4283-49ac-bbfe-720990173583
- Merge
- Merge
-
389
46
87
44
-
425
68
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 5f8d7080-91dc-4351-9575-0455448c0f2d
- false
- Data 1
- D1
- true
- c2bc7cdc-3e0a-4fcc-b3b8-f9c0d87b8e1f
- 1
-
391
48
19
20
-
402
58
- 2
- Data stream 2
- 91953036-76a7-4723-88ee-46ab89f210c8
- false
- Data 2
- D2
- true
- 393f889e-ede1-4cef-b80e-f50d53363929
- 1
-
391
68
19
20
-
402
78
- 2
- Result of merge
- 3974fe9d-f756-4454-8d9f-a949f370a107
- Result
- Result
- false
- 0
-
440
48
34
40
-
458.5
68
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 41667571-8179-4f9a-bfd9-40c8d126b1d6
- Mirror
- Mirror
-
364
2
138
44
-
432
24
- Base geometry
- ba0d3fd1-c517-40d3-b44a-ae15f30af765
- Geometry
- Geometry
- true
- 3974fe9d-f756-4454-8d9f-a949f370a107
- 1
-
366
4
51
20
-
393
14
- Mirror plane
- 78ec5ab0-5b85-4b96-b0e3-711baa03aa1b
- Plane
- Plane
- false
- 274014a0-4058-48ac-bd1e-58af12f57c4d
- 1
-
366
24
51
20
-
393
34
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Mirrored geometry
- 5fa25f50-6946-4a5c-bda3-e9ad1b938244
- Geometry
- Geometry
- false
- 0
-
447
4
53
20
-
475
14
- Transformation data
- 0bb06dd0-790e-4972-80c0-d2cc84c4f7f3
- Transform
- Transform
- false
- 0
-
447
24
53
20
-
475
34
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- dfaafc7a-f1b4-4d8d-b06e-04d7e6b3ad9e
- Mirror
- Mirror
-
364
-42
138
44
-
432
-20
- Base geometry
- 39a83078-efbc-43aa-b118-ac849d9c1bce
- Geometry
- Geometry
- true
- 5fa25f50-6946-4a5c-bda3-e9ad1b938244
- 1
-
366
-40
51
20
-
393
-30
- Mirror plane
- e72e763d-7029-4ca3-a6f8-7246de52bd1c
- Plane
- Plane
- false
- 3f999ec1-de43-442e-b674-4ae310a6cb18
- 1
-
366
-20
51
20
-
393
-10
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Mirrored geometry
- a9b10da1-2bea-4052-813f-e3fc2887afe6
- Geometry
- Geometry
- false
- 0
-
447
-40
53
20
-
475
-30
- Transformation data
- fa22fefd-6948-43b7-88b4-9c24e13a31dc
- Transform
- Transform
- false
- 0
-
447
-20
53
20
-
475
-10
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- e0454316-abc6-455b-8e87-b7c11c8fac23
- Merge
- Merge
-
389
-126
87
84
-
425
-84
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- f5913270-565c-4f7d-8804-8c9974afb9b8
- false
- Data 1
- D1
- true
- 3974fe9d-f756-4454-8d9f-a949f370a107
- 1
-
391
-124
19
20
-
402
-114
- 2
- Data stream 2
- 9eeb5e76-988f-4c8e-beb5-57ea95b4da0c
- false
- Data 2
- D2
- true
- 5fa25f50-6946-4a5c-bda3-e9ad1b938244
- 1
-
391
-104
19
20
-
402
-94
- 2
- Data stream 3
- a2b8f88f-95d6-4516-9aa8-1f22346d68ba
- false
- Data 3
- D3
- true
- a9b10da1-2bea-4052-813f-e3fc2887afe6
- 1
-
391
-84
19
20
-
402
-74
- 2
- Data stream 4
- a3c7ab44-db2e-4ae2-bb28-b8cea1ecd3b6
- false
- Data 4
- D4
- true
- 0
-
391
-64
19
20
-
402
-54
- 2
- Result of merge
- 8fb22683-63c7-4080-9214-c7d90426de48
- Result
- Result
- false
- 0
-
440
-124
34
80
-
458.5
-84
- 1addcc85-b04e-46e6-bd4a-6f6c93bf7efd
- Brep Join
- Join a number of Breps together
- true
- 83c29fe3-00eb-4e80-9cef-ddc99d4a6b03
- Brep Join
- Brep Join
-
381
-170
104
44
-
431
-148
- 1
- Breps to join
- 8240e3e2-6985-4b0a-8869-3500f28e3909
- Breps
- Breps
- false
- 8fb22683-63c7-4080-9214-c7d90426de48
- 1
-
383
-168
33
40
-
401
-148
- 1
- Joined Breps
- 4043ab14-c577-4b66-b1bc-c0c49c0c3ab9
- Breps
- Breps
- false
- 0
-
446
-168
37
20
-
466
-158
- 1
- Closed flag for each resulting Brep
- f86bdbf4-e55a-4192-bb29-c242e03791a0
- Closed
- Closed
- false
- 0
-
446
-148
37
20
-
466
-138
- d6b43673-55dd-4e2f-95c4-6c69a14513a6
- Merge Faces
- Merge all adjacent co-planar faces in a brep
- true
- d07f5a14-fd70-4617-900a-9b20114bf23c
- Merge Faces
- Merge Faces
-
384
-234
98
64
-
429
-202
- Brep to simplify
- a769001e-b996-484b-805e-e0115df1ec31
- Brep
- Brep
- false
- 4043ab14-c577-4b66-b1bc-c0c49c0c3ab9
- 1
-
386
-232
28
60
-
401.5
-202
- Simplified Brep
- dd52a79a-61c8-46a3-8a39-24f8dddfea68
- Breps
- Breps
- false
- 0
-
444
-232
36
20
-
463.5
-222
- Number of faces before simplification
- 60094772-9e6c-4291-9f41-d14ead9c8fe5
- Before
- Before
- false
- 0
-
444
-212
36
20
-
463.5
-202
- Number of faces after simplification
- 90575893-b5ad-4242-ab24-92e57fbff461
- After
- After
- false
- 0
-
444
-192
36
20
-
463.5
-182
- 92044ffc-0168-4ee5-9af7-b278aa048d25
- 20563e24-568f-4f4f-b61b-71a1781ef92f
- From Brep
- Create Mesh from polygonal brep
- true
- ed8b0676-0585-4222-8bd9-7530f822df0c
- From Brep
- From Brep
-
376
-278
109
44
-
422
-256
- Polygonal Brep
- adb1072e-802f-4134-9912-ba084259506b
- Brep
- Brep
- false
- dd52a79a-61c8-46a3-8a39-24f8dddfea68
- 1
-
378
-276
29
20
-
394
-266
- Weld
- ae1aad08-0af6-4b0b-b585-58d843656509
- Weld
- Weld
- true
- 0
-
378
-256
29
20
-
394
-246
- 1
- 1
- {0}
- 1
- Mesh
- 88b1159f-09a0-4399-aad6-d7eccf3888f6
- Mesh
- Mesh
- false
- 0
-
437
-276
46
20
-
461.5
-266
- 1
- Outlines of brep faces
- 0cc94ed7-ad35-4459-ac98-3d809f201cc3
- Polylines
- Polylines
- false
- 0
-
437
-256
46
20
-
461.5
-246
- e2ca115e-7f41-494d-8be6-0499d1b9ffff
- c6c19589-ab63-4b60-8d7c-2c1b6d60fac7
- Export As
- false
- Exports geometries from GH to any format supported by Rhino.
This component depends on Rhino's user interface and cannot work if anthoer command is running.
Right-click the component for more options.
- true
- e3dfd866-f534-46bf-9e13-5c7adcf3c59d
- 2.4.1.0
- Export As
- Export As
- neutral,N
-
925
265
203
164
-
1027
347
- 1
- The geometry you want to export
- ad790c21-11b0-4ef4-b575-a0883f04e9c8
- Geometry
- Geometry
- false
- 023ba942-44bc-40c4-88d2-f1a606b6d063
- 1
-
927
267
85
20
-
971
277
- 1
- Layer to put the geometries. By default, this input will override ObjAttr.
- f54ff224-843b-475c-82bb-55d3b08b4071
- Layer
- Layer
- true
- 0
-
927
287
85
20
-
971
297
- 1
- 1
- {0}
- false
- 1
- Object attributes. Layer in this structure isn't used by default, right click the component to change the behavior.
You may use Object attributes from Elefront, or Human.
See manual for supported attributes.
- 354d8304-780e-4093-b4ab-350ccd04c49a
- Object Attributes
- Object Attributes
- true
- 0
-
927
307
85
20
-
971
317
- Where to store the file. Filename and extension should be included.
- 08e6d3af-910b-4d09-98cd-c7ee6ac90f54
- File Location
- File Location
- false
- 2b8c7d63-727e-457f-9a8f-d28c582a5cd1
- 1
-
927
327
85
20
-
971
337
- Default false. Control if Pancake should overwrite the destination file.
- 294b6727-675d-44f9-9bfa-87b63ed3803a
- Overwrite
- Overwrite
- false
- 0
-
927
347
85
20
-
971
357
- 1
- 1
- {0}
- false
- Options of export. You can either feed it with option templates, or manual input, or leave it unset.
- 47c46046-2eed-4533-bc39-6f1aaa888a8b
- Options
- Options
- false
- 0
-
927
367
85
20
-
971
377
- 1
- 1
- {0}
- false
- General options of export. Connect Rhino file options to this input if needed.
- a3d06154-133b-4851-8c73-edc8333809a4
- Pre-Options
- Pre-Options
- false
- 0
-
927
387
85
20
-
971
397
- 1
- 1
- {0}
- false
- Set to True to conduct the export. Use True - only button or Toggle button. Do not use the vanilla button.
- 234530d7-c3c2-436b-874e-34ef080a8856
- Export
- Export
- false
- e8faa252-abf4-4427-b31d-b5d605bcdcc3
- 1
-
927
407
85
20
-
971
417
- 1
- 1
- {0}
- false
- Returns if the action is successful
- d912cb8e-0bae-4746-9ef8-492686d695f0
- OK
- OK
- false
- 0
-
1042
267
84
80
-
1085.5
307
- The final command to be executed
- 6098ad24-511e-4139-b093-403c6948de7b
- Export command
- Export command
- false
- 0
-
1042
347
84
80
-
1085.5
387
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 2b8c7d63-727e-457f-9a8f-d28c582a5cd1
- Panel
- false
- 0
- 0
- C:\JBO.XHG.ⵙИNⵙⓄⵙᴥⵙᗝⵙᗱᗴⵙ옷ⵙᗩⵙ✤ⵙᑐᑕⵙⓄⵙ8ⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙ✤ⵙᗩⵙᑐᑕⵙИNⵙᑎⵙᴥⵙ✤ⵙ◯ⵙᙁⵙᗩⵙИNⵙⓄⵙꖴⵙ✤ⵙИNⵙᗱᗴⵙᙏⵙꖴⵙᗝⵙ◯ⵙ∷ⵙ◯ⵙ◯ⵙ∷ⵙ◯ⵙᗝⵙꖴⵙᙏⵙᗱᗴⵙИNⵙ✤ⵙꖴⵙⓄⵙИNⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᴥⵙᑎⵙИNⵙᑐᑕⵙᗩⵙ✤ⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙ8ⵙⓄⵙᑐᑕⵙ✤ⵙᗩⵙ옷ⵙᗱᗴⵙᗝⵙᴥⵙⓄⵙИNⵙ.GHX.OBJ
-
947
485
161
44
- 0
- 0
- 0
-
947.5408
485.7096
- 2
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- dc6f76a5-ffd3-4a50-b42b-fcb46a544902
- c6c19589-ab63-4b60-8d7c-2c1b6d60fac7
- True Only Button
- When clicked, the button object only raises recomputation one time.
- False
- True
- e8faa252-abf4-4427-b31d-b5d605bcdcc3
- True Only Button
- false
- 0
- neutral,N
-
993
243
66
22
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 023ba942-44bc-40c4-88d2-f1a606b6d063
- Geometry
- Geometry
- false
- cab72652-34c3-41bb-b48b-775bafd1fa3c
- 1
-
1002
530
50
24
-
1027.883
542
- 0bb3d234-9097-45db-9998-621639c87d3b
- Bounding Box
- Solve oriented geometry bounding boxes.
- true
- b13b62a4-0c6d-45e1-9ef0-af6425038f98
- Bounding Box
- Bounding Box
- true
-
686
461
100
44
-
745
483
- 1
- Geometry to contain
- 5bc261ed-b0e8-47c7-93e0-580765b1eefb
- Content
- Content
- false
- cab72652-34c3-41bb-b48b-775bafd1fa3c
- 1
-
688
463
42
20
-
710.5
473
- BoundingBox orientation plane
- true
- f6c3f28d-08c8-47cd-84c7-3283ce42851e
- Plane
- Plane
- false
- 0
-
688
483
42
20
-
710.5
493
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Aligned bounding box in world coordinates
- 09374a31-8612-41d3-a5f1-8c0d9871e71b
- Box
- Box
- false
- 0
-
760
463
24
20
-
773.5
473
- Bounding box in orientation plane coordinates
- true
- 44ec8b2c-e00d-4592-92d5-64ed9d53774f
- Box
- Box
- false
- 0
-
760
483
24
20
-
773.5
493
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- cab72652-34c3-41bb-b48b-775bafd1fa3c
- Geometry
- Geometry
- false
- 88b1159f-09a0-4399-aad6-d7eccf3888f6
- 1
-
711
530
50
24
-
736.2969
542.2363
- db7d83b1-2898-4ef9-9be5-4e94b4e2048d
- Deconstruct Box
- Deconstruct a box into its constituent parts.
- true
- bf593461-cd68-4984-b653-7513d526a09e
- Deconstruct Box
- Deconstruct Box
-
691
377
89
84
-
732
419
- Base box
- 492ae201-20b7-4d8b-aca3-371347d1ce51
- Box
- Box
- false
- 09374a31-8612-41d3-a5f1-8c0d9871e71b
- 1
-
693
379
24
80
-
706.5
419
- Box plane
- d6028c83-ee57-4df3-98c7-06fc6334abe2
- Plane
- Plane
- false
- 0
-
747
379
31
20
-
764
389
- {x} dimension of box
- a8adfa44-04d8-4d21-ac87-b4b7b508c759
- X
- X
- false
- 0
-
747
399
31
20
-
764
409
- {y} dimension of box
- d32e4a18-55ae-46ff-8d88-8a240f79d738
- Y
- Y
- false
- 0
-
747
419
31
20
-
764
429
- {z} dimension of box
- 96b86dfb-85a3-4d0b-a212-e1ea1dc4f2cb
- Z
- Z
- false
- 0
-
747
439
31
20
-
764
449
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 1cd9596d-2cf4-4ccd-973f-986b2f31195c
- Deconstruct Domain
- Deconstruct Domain
-
684
333
104
44
-
742
355
- Base domain
- 4ddd66f9-5a1e-4c0b-be15-c5e0f572affd
- Domain
- Domain
- false
- a8adfa44-04d8-4d21-ac87-b4b7b508c759
- 1
-
686
335
41
40
-
708
355
- Start of domain
- 552cc2c6-685c-46a2-a0d0-6f4fc0a85a27
- Start
- Start
- false
- 0
-
757
335
29
20
-
773
345
- End of domain
- a08c3cc1-24bf-460e-80b9-1e0b3899a53f
- End
- End
- false
- 0
-
757
355
29
20
-
773
365
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 2a6dfc0c-f032-4739-ba26-78d5454f54c4
- One Over X
- One Over X
-
686
261
100
28
-
735
275
- Input value
- 61a54a6b-a077-45d6-a13d-1580b2274505
- Value
- Value
- false
- 33d05013-0075-4ce1-8ff8-34f79f4113e9
- 1
-
688
263
32
24
-
705.5
275
- Output value
- 32a34196-cd7a-4b9b-a0fe-0ff1a6e9baf6
- Result
- Result
- false
- 0
-
750
263
34
24
-
768.5
275
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 41238256-7a33-4935-b099-d088e72936c4
- Panel
- false
- 0
- 4f91ca79-0480-42ae-bc3f-c98dca99f8e8
- 1
- Double click to edit panel content…
-
671
177
144
20
- 0
- 0
- 0
-
671.9049
177.739
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- ca40784b-e507-48de-9963-6e3b6c19d03c
- Format
- Format
-
688
197
100
64
-
744
229
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- b2f12a7c-afe7-4396-b90b-a3d5188bff49
- Format
- Format
- false
- 0
-
690
199
39
20
-
711
209
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 600a490a-71de-4ef4-aa73-1889501b9a79
- Culture
- Culture
- false
- 0
-
690
219
39
20
-
711
229
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- c097e161-e306-494d-98ac-5022de2cebb9
- false
- Data 0
- 0
- true
- 32a34196-cd7a-4b9b-a0fe-0ff1a6e9baf6
- 1
-
690
239
39
20
-
711
249
- Formatted text
- 4f91ca79-0480-42ae-bc3f-c98dca99f8e8
- Text
- Text
- false
- 0
-
759
199
27
60
-
774
229
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 05d1cec6-6e6d-4568-acab-c8bfa470d052
- Multiplication
- Multiplication
-
698
289
82
44
-
729
311
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 5731b7ab-65d3-4751-ae91-f1426a6d1fb2
- A
- A
- true
- a08c3cc1-24bf-460e-80b9-1e0b3899a53f
- 1
-
700
291
14
20
-
708.5
301
- Second item for multiplication
- 05508931-7922-4d1e-9588-1edf3ed0d9a6
- B
- B
- true
- 0
-
700
311
14
20
-
708.5
321
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of multiplication
- 33d05013-0075-4ce1-8ff8-34f79f4113e9
- Result
- Result
- false
- 0
-
744
291
34
40
-
762.5
311
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- 3ea809e2-620c-4484-9723-a5ece2c1f7be
- Scale
- Scale
-
676
113
138
64
-
744
145
- Base geometry
- 4912002d-6783-4f4b-865c-de2d0f54e460
- Geometry
- Geometry
- true
- cab72652-34c3-41bb-b48b-775bafd1fa3c
- 1
-
678
115
51
20
-
705
125
- Center of scaling
- 4410143b-b418-4603-aca8-6d3bcfaa0ef5
- Center
- Center
- false
- 0
-
678
135
51
20
-
705
145
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 030b0efe-4b41-46a1-8c9a-05673c22d8d8
- Factor
- Factor
- false
- 32a34196-cd7a-4b9b-a0fe-0ff1a6e9baf6
- 1
-
678
155
51
20
-
705
165
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 6bd78a93-e0e9-4e30-a43d-6a37e90000be
- Geometry
- Geometry
- false
- 0
-
759
115
53
30
-
787
130
- Transformation data
- d091eedf-cea0-4efc-ab0e-2b78f92ea64b
- Transform
- Transform
- false
- 0
-
759
145
53
30
-
787
160
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxoSURBVHhe7Z3ZkxTVnseJmZiYP2DivhhxH8bwbXz2zkTcl4lwCSN88GH0QZEHjBuh3hlDxV0WFRfADVEUUNkXN0AUWbWxm15omqb3bnqjV7rppXqF3mhgPsWXe8zKysrMqjpZCNEniCQr+2TmOb/vbz9Lzps3V24BClydKzctBa6zn2n/1NTU4OBgf3//+fPnu7u7e3p6OOevRUVFS5YsOXHixG/ZlYKCgoqKijDP4I1vv/12V1eXadvs7Oz09PTQ0NDIyMj4+Pjw8DCtzYDyFy5cOHbsGC0J04w/eB2674YwFUVOnTq1f//+/Pz8LLsE7U6fPl1YWMiJz6P4a3FxcWlpKTyUAUj+t0xMTICffwOy7GbObk+AkI55llgshjhWVVVZaVZeXt7Ja4UT/wcihfUN9f2D/ZMTkxwHYgM6DsYGB4cGzc/YcGx4dLhvoK+nr4frsaEYR/4NjwyPjI5wnZqccGV0bFQdRI5pQPbsaIUgWT4kAcIrV65c9iodHR0HDhwIpHjIpsD7YIMg+j8QKVm/bn3dmbqOvo7JqcmO3o7mzuaalpra1trG9saegZ7W7tay+rKGtoaz585WN1X3D/W3nWtr7Wpt720/13+OmlTjr/EK3Wf5a3VzNdcHhgfoMz3dsmULnboFdGkChFgaT/3T19cHPBbVDuyPOfQXAgB+/vnnBwYHJqcn+Tc1PXVx8qJORi+Mjk+M8/PCxAWOE1P8GKfxl2YvcX1kfEQXOcbrTMbrUGFodIjbL1+5rD5+8skna9asyd60h2Tc6KolQIiR94QQv6ampub48eO2UAQepBBZTPVArvPGTRs3VddVD44Odvd3WzeHW7duxbTfalIImc6ePdvU1ITY4ZQODAy0trZysbKy8rPPPsOdsQghfkpZWVkqXcqLSkpKGuobGpsb27va2zraaMxFhGoSycqkcDueLRadcu7cOUwDDbgFbSFo4bnQVXrIUX3mYmNj46JFi/APbWkDEMIjRRB9eII/5RfkFx4vRFhxPWprajFgMzMzHF0S6Wm/nRe5paWlBcv3i6PYYkdbNMn4OaGCirq6ut27d6NIM36N542Yw0A9Jt9n3bp16D0xU29vL4wFeyFM6AyUfBgd297efvToUbvt/4M8LRSEkMmuO8PTUKHl5eVIdqA04HF8+OGHOJC0lXCeeACtSFAv3Tg6OjoHYXBoD78fPnz4138UqB9I90AO5SFgg30NE6ug/3hjGKhS1ens7NRDAht201VIkEKcBc8Cs2P8IbcK51ZSG2hmdGkgWeNGMT8fZa54zhMkk2aTsVSA66wJF+KU3XTwhGlwAoT0n3Lp0iWOxh1Iphr0OnPmDDIURoD8U2hAGGhisYUYwm3bttFWkm2oUI5wFRoVu4gipbXff/89/i1P27x5M6ERMSIeGaldlC3eNTfCc19++SXMF8gxYaj2h6rjYQuBUP2HRhSiC46YQ66MjY1xAxB+/vnn2XcDDoDugayAO7pixQq5M7QB2GgeHg0eCuqR5pH4xlh++umnX3311euvv84VWU051fJ38H5JFNwCgXwy2RMgLNy5pKejURASEXKERrA8xML3g2pclI568803oSnykQ2QSmTj1PhLM1r00KFDhASp7BxNQr3TNtAlkYstSK4JH0ThVKfVffobWNJ6oConQNj5/rxTR1738RpkYKDRrl27stSien2YgSfZwubm5mzcGcTRiheWAYl1i96uvsC4hMXJBZHIIAWWAOHAmnlVx/wgFBER0+rqaitGhYcEDjzRq2+//RamSYYQs4fkhYH2xsaF4EcDMENYbpjp4MGDBKnJBbcfgmBc0mKUBAhLl//Lif1LcPp4De+jQCMKHgFHrAstwFNACjds2EALsk9QaeAJL8NHpmULFRe6Cu1B24eBsK2t7QaG9vTOxK+YpJ07d4Liz14FToW21A9P2wQIW87U9Xa1cwmPAMuHHw+BSE3BQRx1ToISdYrXgO+XpS1UuiBw4InOUH788ccwUKWqQ+NvLIS4hGobFmHhwoWPP/7435LKggULcJvxM/bt2xfoqBtJTYAwJI3wAPH9rEgh7QgceIIlSXkjRryX+IGjs6DVFQjS+OS/mpoNDQ1RQEjbyBiYpEeqkyNHjhgI6+vr77jjjttvv52jq9x2221PPfUUgohxCXwmFWTLEiA0HVaAmFwIJ6iDgkW5paWvfSor0+Yz8CRfgNgctOKDgo5CC9EKSsfjOaPhFdqrCueqT7OBEF6xYr+dfYEOBKNQ3FW46LyOw4wxUtqEIAdVSdaXo6sQF2EO6Q6thSbJjzVXeDgVlGH2gJA+oyrpvCnCEscBL4bb7NICePwHnlApP/zwAyaEtgIGCDmHpkky0B/ElPFbDY05s6bqC4WuBs4TSIspIQIuZaoR1pD6LMtqRFDoAA9FipBh83BeYHCmmXDUm5BcSIm4WAknDL2QDGjhk2mDaV588UUiVNgILQSHcsSiyJHhBF7es2cPtplRYtCC5cGVLqB74TnYH9Q//vhj8jvZG281G/wQlw8++EC5juSCM4EDgcCRHoL1aQMFVUFqwiLq9M4NoeZdoLVhWFrA2C8FWojriWZeeukliyrUyfWpBp4AmJQKxAI5kEAK5SRDO9iLVpH5fO2114AZ/UOzuYKqpwKcRx2OEkSmWWBj4JW0RC1VZV63d+/epUuXppoCKVcZttOgmDJKSpJoRqeV4gFhc/6yS7O/Z4fpOf03L0MKycjYooKTOjKHKMNkW8UVZcNT9RwycTvihWRArFSk4eEW9T9vRNZxkhkhtwJGZg/xgHDfmn+/cCHO2p4FAmWQOwjD9f4DT8pooAzQTpAM4YP3TYHJEDsuypdx/knnimv93aUwjXTWoUkIIuY5s4nImQGWfJcHhB1FyxBCKAKxpILk10l90+jvvvsufLySFl38B54gmZxslKoUg5waimvWhdML01+xC4QTdu03LEVj1q9fz6TyQDzQ5zgW1ISMNMb4FoE3BlbwgHD6mtZkNAfFjRXEwcMC4RooP4kuwq3Ae0wLm5CVAcl/4AkF/vXXX+O50BKUp1ODpRpEFAkgnMKSkC0JU005PzwD2D2Q0DQVFYILBkmZOBIG9cBnqgLQQDdOPEbtTUSlUEzujPjOllPnopSsi8/AEwzECBeFluAXwM4gB1HwQukJptRzgEIQkmYKnP8fBjlXHTIpJmD3J7qGd1JN0+VeFDKdwoWWjxayMPaCK54AoQmak9URjUAWlRLLoLeBtwQOPCn/y6iTGY6ntbigGzduBFcAxt/BD0RtoEUo6C7FIRhCZlDCHHZbztNwhm3ZQpDDstKdkFOBhDG5VrJxCRB6zrqgldCCiCJwtlkgTv4V/AeelE1Fwxu1CTwAtmzZsieeeAKrQBCGmUFlof8hBxzNudycF154Ae/Rbvsxh5s2bUIr8gq4BIMHoXgXP9GunKA/wYMmIalyrOAqrjudfKe0iTX9jYJLOnFNmK7grUhdVZFxjYNkCZL/7f4DT8rRIHO0DZZC5uizlj4hDQwIa4JFcuE6Ub9d/GQLX3nlFdgI1w8LR0GfY/DgHnAlokd7o+fhJK7DalznyEWLcSEPdNvCVIkD+AhjEyl+8jhQlakGntCEH330EVlEQII0WnQIsQiWIRM/U/EvcmA3olB2Bs+AjA8aWylZTI/GcDgxLeGnrKAq6K+ueVkhzZ5nNQ+PlDdp9aXexE9kn5vhHRI55GUiFcTAgSeWQGzfvj3dPsOXkNuuRypu9vGh0m1kZvU9IORBGBL0EmqBE/wX/D34iJ840DmY/uUz8IRLidqkPQrhXUNOPj+xSdwbfgQ1pLJBM6NLkUIn9bUCmRYiAJoLaMJWbKGRxcwAS77LG0K9W+bXjN0A6vvvvx9ROOHKtCWveFL+DDdBeQaNGvoXQyzpLn5iiiwm2LCF+BHkZl0eKfiJ79HtKDO5VKh6mUmZTEW0pysqmhl7aWu7WlOTMaLeEHo+jtSadS72ZHYNPLkWACv9lparhnCQWeaIT6jQDUEkLWCRC5HC1atXu+J0yZxGVTlBh8vJN24qf+I67utTf/97BeAtXHj1T39iqDozFNOAEI8UWxhSw2RTTQNPrhVP8lR94mIWjH6dt29x27alpzcCEo45nI4h0DCLct+kfp555hlb80g1kQCHMLNsGU7pBqYCwVuLFl09dIgpgdYgdOUbzU+iMWJq58quKLwDg71z4EmTSIklUIZa9QjVFGBxhJ3jmn96+p3Vq7bXH1r+7Rqi3atec/axo3aHWWgY0ylSjRfSqmR0jS9KLwjJ2VGkf2Rk7bZtsX9Mq0kXSA8p1FYCUEfBqSloJMgH76ho6wSLpsVlDp0DT5D+iy++WLlyJYpUy1cVuVPwkzE8ykht27J1rG+47nQ1wuFJCLqARbfFeWhRglTGC1NJIQoW+6dpY7KIHGk5ZhJKolGIjj7h39q1DIWGSbSGDSpUD2LB4CZZkBzH4EogkYGzsDPTqK6BJ0UaxBKyLk6LaM4xMExFAV00GzSiC1pKoGk+qsZDmPPnOSSZQTuBkAgHSUoVSaMzNOCsAQrN6NROG5np3rAQdrR1MJKjyUIwEVyjIuqIlTTK884773zzzTdRDP+aMV7FoILQzBzw7AlNonnQiJyINqkhfcMtFFouCLGmLFS2OMwCinCb4uYbVTwU6cmVf64uiq8+0Wp26VVkzihYeXdgTIyBJolo7NA18KRhwrQ8UpMlMSoEbiMbbtcjhcP8IfQfncgeeA8ImZBf8cviwEcDKjSNLsxwDTwpLlRoHBQQXv+7Y57i9amIduNCRBC1zOZi/hDiN6AGNIVaMyVRD65sQCC1fSpgNdzTnzpXzas4+ip6x5gQ3Q9hnA+CmrbmAXvaIaQQo+WytVCN/ivh4FOUE8EKmhkYBBg8yi7DoX6Y/sQgSapBSpELK4hip9loeAZScETxZTyHk5RKTRdObWXHXb8P+eZv+ltF/k4ghGd5MRzEEfuH48fRDN9Ao3fffTciWyhQkwee8ODDbMam3f9Mvo3uxYOwDRvsQqgW4tGkNbzngxAYQ3OaqumKxLLgDX/op3Yy1GRG/sS5SEEEhbueACHgKabSfBmeou0JsIuIP1e0pJYChAxWReHOCMLkgSc0RhgI0VfQgpgHhiPqUH7kueeeY5WC3fEmeALnKK1Bdh8IobPgofEc4ULNo9QERi1XNlvnaLkuT9uxYwfhVgKEIQUZjxQXwzpfu6JD18BTSAjVBaVyFIRAGtYAaxpcBvGD5y2aCrxq1arkiTA48LARdAddMyGYK0bCLDqx0IRmJEBoHFE4N3mLJYwKPEKiloytXY5OJpNiCac5TAtCJy/SFxpsCzw9R2nuV199NXnihUJSdIC2S1V0D4SaFqyV5SFFJbAa/UKWPKQQFvacEoJ2wsvgniiWCCWT2DXwFBJCZZecnUcKWcwXcneU8EjTPFC0ZQsD0fKskDLNjc4FKlxhZI4jfCRnie699957EU3IT6YdsYRz4Am59N7o6fKliZbj47V5M+PxtR/idGeHMSqICyhaVKRKx6MzbU1/sgbhVH81z6JZms8j7w79aSB86623QDc8q2ZTEwjNzrOaOEPCCA3hYvzG48Vlq/4nf+l/H3njfzU72DW/CMWF84UQ24WQyJhFloET8nk7dhGlqoKOtSi4HlJ4YP1/oodScQSBZG5UqHFKzcATJ8xCQx9AMhLfyBlxzhRLCWdmS7/8v4J1T36+fEnJ4jtmJn5fAWJ6AS9aTMoYW4hDzpCvK2JOJh0yIHOohCU20qIt9IDwxI7/mpyKU8GzZTgytjL94aVTO8/C8oyvwkMEfJrZB0czvWdq4OLUN/Nm98xbseCBwpWPMvNIob2TlJDsp59+isL/YggsvEillSAMqVc9sjMDHbXcTLM0LYygBH6n8JPrGABSozlTpMCsFU+InVyb5IVLsxMzPfsWnd2xoPLY0bHhuC0kdsSWO0mAFGILyYdZRxFSwB+BCSMN3qHhTcJBmSNxm476qWkl/ukn/ZX6OG74aN4eKX9GXymOgSKochHF1kcOwougBp4IELWu3HMGJo6WU+g0a8YJIZ49mTDiJ4u20Kh6ThiGrK2tRSBSFTIM+GVkl6A4HEnBt6dodjVUpXf8pKfa6A716P9AXkQFjIuUYhqhPe+Gl60Twh9Rs+IJM+yzfNBH8wChXV/GlYIAHkCCpqkKA2HgRDKMZApLA1isinsMogz2MszJZizMj2V5BoU/UQFoucXngfqT2cnQI7R3BfUIrPnIQaTzSD2x1MATzQXCMAk2jVE4ESWBArdGxHlqnj+EojjeNfKqpazoFcSOnxJcZEN7AFIkhWEeaNZ6JkCofLmrcNHuRw7CK1KZQ614CpnmZkDHFT7ix7/xxhtRKFLlckNCiGDREY4aP8dBRW0icLpdS7Q453qg/KmCN4SpVmxgFCOaKRMIpwae6HxICPEvXJMhcGdY/BCFO5MuhOzXgNpkEglr/ACAlR5M3UB/amoWSpWVIWFUqB+EqWaCwNdId0SrtANR1MAT89i013u6BV+MdXg3XJGSz4QRoSHOCz1Cc1I4QcGgUWkeBQ8FBZuVFEIdJbK12wYeIDEpF3nu2rVrLX7kIBA2ZwUNPFHwjeVMhymmJjESvYhoNUF4RSo3UtPvNB0JOovaWvekaUooUtUMLN6KFLT0kQOTVhfj8z72Y7X4kYN0IcQLUFLDMycp463Y2RhyZ03+BKdHMeUuJITghBZBc6IqGblkrJgj685RrdoolTkAWGsyPtj+kLo0JYSeagp7y4LgiCY7BcLJe/FHSDUQ0mqXXxiLn9rJBW4zUxamLl73RYmRUVP6FgJSSAW0CFlW62PUQAhzoCQhkU9BtugmDaAQXZAtAksgZJEplh5EmVcAnJhJ1CmVnY+SOLqu8DM9CKEabc19RCF0kX4m3WobPZQEGl5fskGvanAOIZuZmj51ePvhzU+ePLhuaCCel1eahpaTiqMC+Tmy0tYVCTTBvgRG4ooT5IhqxajOUW/cq0Uz6E9+Uo3KJktgAgxsmTN1oJ3UhEio0N71kQOzB1+gAGVfgVZCdxSp9mBLVbrOlB1cffuJrX/d/OR/lBWXuaqBKGoq+8akegKio+xd3q95zh0M0YpcMRd1Er/CtWul/FR5QX6Blj+a/LP5q+oouSE/iFfoXU7vLAHCVNk51BEq23zkgHPDAtHRxTxZo07+e0vUVlQd+eifurb+84a7/62x7IQLQqQQbyi6uAg+00zJ2rrauvq6psYmPruI/eOnJIyj3BYVrlMHgYvPVm6N72cSV8X1daWnSk+Wn9Rd7W3tcdGsrTl1+lTDmYbOrk5u1DcXXeowAULn9Es5CCouimi6d+DO9rbQxYAxS4U3qhm8HTWiEB6fWW7OaGzo5J4XDy3/y7H1Kyan4oljNI9mDWn9NPOAI91enRweFO8f7o+NxobHh/k8Hx/da+luqWqq4sgn+fjoXn1bPeeNHY18CO7K1St8km/s4hgVKpsqucKNeafyDpUc4guL/Olo6VFu4RuN5Q3lTZ1N9BGVi/nEdrrGizwUKb4AQxOE8xge2R6OmgGnsRWIaOUjByExRuKZS6/F9Xo7sIEfLrgm1xomGx277s4AIfzNX3F5tBweW0jsHN0wCxDGFwVcHAO8sQtj0zPTfPQSMPjoZd9QHxf5qmIvo7+DvXw8c5Avmo4OUTk2EuOzmVwBP77FWHGmAkTBj8r1Z+s54Xa+nNkX65u5NIMuJYOaHKAnQFi0a3FP+xn6r1kXGmnS/n0U85EDhgKsfOQgJITaXkIRasYFr122JIoizQZxwzQPzA4WH2zqaIKMCF/B6QKgCnMjHgncjEXgRc5eJEAY8iMHRNZIdM4cVM0fZJgeeSJnTeFEG5s5CxpCiw61DbxqqqBRIwrtRUqEG/mAS8Ig0dLV8vPxn4GQyohpUWUR30UNc6PqEB0RYjpd6wQIc/+Rg/AygabC+uJYKwWF70DWVH4EvIm9hI7kG5WmIiiEVanJEXeOOpEyHF4G6yuI1rFw6DC0H4KFJUNVtvW0QWLUIBfRn119XQCGziyuKu4838k5H6xF6yKR6FsUJt+yRamej52nPuqUGweGBtC0UzPXYWbzY2YLpITwxPJ/PbF/Ke4LOhNGpmglraIrfsL+mqJIohYKRpR49MRVfikugwIpYAMwYmGNtKEVaAzTnMgj85O2xR3CaxExKEbdTp6PZHCcnp0GmN2/7v715K/4UNsPbJ+/eL4sGZ+T3nVoF1+O5npNc83eY3sPFB4AQuCpbKwE8tqW2tLa0sHhQZA7UHQgvzw//v3hsSEgBD8sK6zAveQBXBYhQQpbmxp6u+K7Jbs+coBp1EbK1j9yEF4KBaGSTwADlggZPwWqTswwm8llaNFo1BDGI8K8PALzmdkZfBm+/N3d141soSfrWuvADwxwZJBCvvbNT+SspLqkpbMFcUQKEc2JyfjHozmPi93wAHzAp8GHx4Z5CHcBM98UBxdFR34QhtTIZEmQ5eiGwj1xlUUkNiWhhc5EqXJU4VyFcylP9Axd1UCj9elrns1TUDF1aQp4+B470QWw8c32wsrC2Fhs9vLsrsO7dufthsK9sd7i6mIULHiAaFFVEaIJeAgfP3FwiED4x0OAFr3K16hHLoyYD4FrGkpKd4YXmB12zYp7s8rLnKBRczYh2NlWoaiN7jnHU6WAEMhxgsPCiXZq1zcAuJKzz05C1pNlJ/v6+852nG1pa2lobiAYK6suKzhZ0EMcMTiw5YctO37aMRgbbO1oPVp8tLKhMr52e3ysvK58aDg+ubTrXFdJRUlFXUVnd2dbZ1tzW3PNmRrU4b5f9nV0dWhHZOI6M2XGUCZBkRI8aQWTljWhGbQUFMPjLNGlOQL1qgae6EZca10rsBpBKnOUn332WXqoSWAQB3tpcX+EwIZJl15PPRJiHPstPi6YX1BYEJ+kxHlpcWlleSUwaIJnSXEJgdnTTz+9Z/ceLJwEprWltaqySkvAeUL+b/Gd3ooKi47lXd8U2TO1mQDhQw89pM0RKbgw5NQxJGJ5VwnTpSjq0BgkjEEZTb6j0GA2lMG94vM5TCjSRbJx4IpSVTrxhhdlUGmSciPQlmQFrWVp2SOPPGI+O4XOoGvpfk8jAcLly5c/8MADWjNHXop913Js8MKgjoVjIgVEEVoPP/wwywdZKUnj77vvPi39gqNffvllYFZQccMLzWD6Fk3S/iTMArn77rtBFOf53nvvZRxRfUG7MOU13aH1BAjvuece/HLlqwiHmfgb3dyvMGh51sHsMbTGn9RtVMWdd945f/78u+66C4roIuYAuZTtzPhF1m+EzySFNA9S33///QjMgw8+aBYp8ka6lu64bAKEjz76qHkcJ9YHSK0QRcBgC832ZnAuHyJj63farIsYcltbzFhpMw+h2TQJW0jzMIcM+T722GN8Qo2AkmyAmk2nMvAzEiBE4eACaNLxH40EyaSUh6UpQzRbszR10Rbdo3iOWgiRNadbk6CyaXYChHCKGbF0jWhE0Zksn5nsZDmvZPnwiG6Pos0JEEbU7rnHRkqBOQgjJW8uHj4HYS6oHOk75iCMlLy5ePgchLmgcqTvmIMwUvLm4uFzEOaCypG+Yw7CSMmbi4fPQZgLKkf6jjkIIyVvLh4+B2EuqBzpO+YgjJS8uXj4HIS5oHKk70iAUOOlc+Wmo8D1vbnn/rupKfD/rpK/+r/2etMAAAAASUVORK5CYII=