-
0
2
2
-
1
0
7
- d3b98059-03da-4b8b-a57a-069658ce8766
- Shaded
- 3
-
255;191;191;191
-
255;201;201;201
- 638252831365521843
- XHG..ⵙᔓᔕⵙᗱᗴⵙᙁⵙᑐᑕⵙᴥⵙꖴⵙᑐᑕⵙ◯ⵙ✤ⵙИNⵙᗱᗴⵙᕤᕦⵙИNⵙᗩⵙ✤ⵙ◯ⵙᙁⵙᗩⵙꖴⵙᗝⵙᗩⵙᴥⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙᴥⵙᗩⵙᗝⵙꖴⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᗩⵙИNⵙᕤᕦⵙᗱᗴⵙИNⵙ✤ⵙ◯ⵙᑐᑕⵙꖴⵙᴥⵙᑐᑕⵙᙁⵙᗱᗴⵙᔓᔕⵙ..GHX
- 0
-
-3171
3603
- 1.55832875
- 0
- 0
- 8
- Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
- 1.0.0.0
- Michael Pryor
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null
- 3.3.0.0
- 00000000-0000-0000-0000-000000000000
- Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null
- 0.4.0.0
- Mateusz Zwierzycki
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Anemone
- 0.4
- BullantGH, Version=1.5.8.0, Culture=neutral, PublicKeyToken=null
- 1.5.8.0
- Geometry Gym Pty Ltd
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- BullAnt
- Bubalus_GH2, Version=2.1.5.0, Culture=neutral, PublicKeyToken=null
- 2.1.5.0
- 月之眼(邓国超) && 好多猫(萧启明)
- 8df4d222-85a2-467d-a510-b8dde333d730
- BubalusGH2.0
- 2.1.005
- GraphicPlus, Version=1.5.2.0, Culture=neutral, PublicKeyToken=null
- 1.5.2.0
- David Mans
- a48ac930-c378-48dc-84da-26b2af9d8302
- GraphicPlus
- 1.2.0.0
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- Meshedit2000, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null
- 2.0.0.0
- [uto]
- 14601aeb-b64f-9304-459d-d5d06df91218
- MeshEdit Components
- 2.0.0.0
- 190
- ac3c856d-819d-4565-a2cc-8d1cbdc05c97
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI.
- true
- cf580cd3-8c86-4628-8244-702ca09bb9a6
- Palette
- Palette
-
190
-1128
256
1344
-
432
-456
- True = Custom
False = Standard
- 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb
- Mode(Custom/Standard)
- Mode(Custom/Standard)
- false
- 0
-
192
-1126
228
20
-
306
-1116
- 1
- 1
- {0}
- true
- This input does nothing, it is just a spacer
- c8adee2d-568a-431a-9a3b-65078c21d9d3
- Spacer
- Spacer
- true
- 0
-
192
-1106
228
20
-
306
-1096
- Component_Normal_Deselected_Fill_Color
- f6b959c6-305e-4556-851e-dfe3db8616ce
- Component_Normal_Deselected_Fill_Color
- Component_Normal_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-1086
228
20
-
306
-1076
- 1
- 1
- {0}
-
255;255;255;255
- Component_Normal_Deselected_Edge_Color
- 58f3f6bb-4870-4132-b2ed-38ba0cd16373
- Component_Normal_Deselected_Edge_Color
- Component_Normal_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-1066
228
20
-
306
-1056
- 1
- 1
- {0}
-
255;201;201;201
- Component_Normal_Deselected_Text_Color
- 44b220b8-34dd-484a-947e-534161ff26b0
- Component_Normal_Deselected_Text_Color
- Component_Normal_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-1046
228
20
-
306
-1036
- 1
- 1
- {0}
-
255;82;82;82
- Component_Normal_Selected_Fill_Color
- 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643
- Component_Normal_Selected_Fill_Color
- Component_Normal_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-1026
228
20
-
306
-1016
- 1
- 1
- {0}
-
255;224;224;224
- Component_Normal_Selected_Edge_Color
- 3e3bf076-2f8d-473e-8fb4-f92db28df2ff
- Component_Normal_Selected_Edge_Color
- Component_Normal_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-1006
228
20
-
306
-996
- 1
- 1
- {0}
-
255;186;186;186
- Component_Normal_Selected_Text_Color
- 095dd5d8-570e-49a2-8e67-cea92b6be7a3
- Component_Normal_Selected_Text_Color
- Component_Normal_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-986
228
20
-
306
-976
- 1
- 1
- {0}
-
255;92;92;92
- This input does nothing, it is just a spacer
- d905c0b0-8e82-4b7f-8eba-51505c30c8e7
- Spacer
- Spacer
- true
- 0
-
192
-966
228
20
-
306
-956
- Component_Hidden_Deselected_Fill_Color
- 321957b9-2793-4637-848c-5ce91391c786
- Component_Hidden_Deselected_Fill_Color
- Component_Hidden_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-946
228
20
-
306
-936
- 1
- 1
- {0}
-
255;255;255;255
- Component_Hidden_Deselected_Edge_Color
- 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2
- Component_Hidden_Deselected_Edge_Color
- Component_Hidden_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-926
228
20
-
306
-916
- 1
- 1
- {0}
-
255;140;140;140
- Component_Hidden_Deselected_Text_Color
- d4ff0608-c217-43bf-90b9-c3174669c5b5
- Component_Hidden_Deselected_Text_Color
- Component_Hidden_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-906
228
20
-
306
-896
- 1
- 1
- {0}
-
255;66;66;66
- Component_Hidden_Selected_Fill_Color
- fe81550d-42f1-474d-82fa-fc63ded3a33c
- Component_Hidden_Selected_Fill_Color
- Component_Hidden_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-886
228
20
-
306
-876
- 1
- 1
- {0}
-
255;207;207;207
- Component_Hidden_Selected_Edge_Color
- d242f68d-4dde-4615-b1e4-cfc397eef79a
- Component_Hidden_Selected_Edge_Color
- Component_Hidden_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-866
228
20
-
306
-856
- 1
- 1
- {0}
-
255;148;148;148
- Component_Hidden_Selected_Text_Color
- bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1
- Component_Hidden_Selected_Text_Color
- Component_Hidden_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-846
228
20
-
306
-836
- 1
- 1
- {0}
-
255;0;25;0
- This input does nothing, it is just a spacer
- 4673c598-8f3d-4e72-b57e-b181a741ced8
- Spacer
- Spacer
- true
- 0
-
192
-826
228
20
-
306
-816
- Component_Disabled_Deselected_Fill_Color
- 7bde9353-e2ff-4945-b4c9-14b806259c72
- Component_Disabled_Deselected_Fill_Color
- Component_Disabled_Deselected_Fill_Color
- false
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- 1
-
192
-806
228
20
-
306
-796
- 1
- 1
- {0}
-
255;173;173;173
- Component_Disabled_Deselected_Edge_Color
- 71159c9b-1e20-4c06-97da-3c2eb5b91d32
- Component_Disabled_Deselected_Edge_Color
- Component_Disabled_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-786
228
20
-
306
-776
- 1
- 1
- {0}
-
255;135;135;135
- Component_Disabled_Deselected_Text_Color
- 4b17e381-1311-43c2-8544-d1d5b9458697
- Component_Disabled_Deselected_Text_Color
- Component_Disabled_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-766
228
20
-
306
-756
- 1
- 1
- {0}
-
255;66;66;66
- Component_Disabled_Selected_Fill_Color
- 12baaaf6-1012-42ee-86b6-cbdc737d8de1
- Component_Disabled_Selected_Fill_Color
- Component_Disabled_Selected_Fill_Color
- false
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- 1
-
192
-746
228
20
-
306
-736
- 1
- 1
- {0}
-
255;145;145;145
- Component_Disabled_Selected_Edge_Color
- c8896686-befd-4231-b333-7faff2e2c4fb
- Component_Disabled_Selected_Edge_Color
- Component_Disabled_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-726
228
20
-
306
-716
- 1
- 1
- {0}
-
255;122;122;122
- Component_Disabled_Selected_Text_Color
- baa2bdde-0550-4e7c-abf0-07aabbc25870
- Component_Disabled_Selected_Text_Color
- Component_Disabled_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-706
228
20
-
306
-696
- 1
- 1
- {0}
-
255;110;110;110
- This input does nothing, it is just a spacer
- 156de1c3-5ce0-4b3c-b550-7dc589cf19f9
- Spacer
- Spacer
- true
- 0
-
192
-686
228
20
-
306
-676
- Component_Warning_Deselected_Fill_Color
- f011810c-2c52-41fe-a8af-3048783663f4
- Component_Warning_Deselected_Fill_Color
- Component_Warning_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-666
228
20
-
306
-656
- 1
- 1
- {0}
-
255;255;255;255
- Component_Warning_Deselected_Edge_Color
- 9edde004-fda3-4653-99de-fbc2c5927c8d
- Component_Warning_Deselected_Edge_Color
- Component_Warning_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-646
228
20
-
306
-636
- 1
- 1
- {0}
-
255;125;125;125
- Component_Warning_Deselected_Text_Color
- a7c322df-e6ad-4443-833b-a5027d642b5a
- Component_Warning_Deselected_Text_Color
- Component_Warning_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-626
228
20
-
306
-616
- 1
- 1
- {0}
-
255;0;0;0
- Component_Warning_Selected_Fill_Color
- 4332093e-f0bf-4490-9902-f6cb75830c83
- Component_Warning_Selected_Fill_Color
- Component_Warning_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
192
-606
228
20
-
306
-596
- 1
- 1
- {0}
-
255;230;230;230
- Component_Warning_Selected_Edge_Color
- 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2
- Component_Warning_Selected_Edge_Color
- Component_Warning_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-586
228
20
-
306
-576
- 1
- 1
- {0}
-
255;0;50;0
- Component_Warning_Selected_Text_Color
- 4ad8f30a-a901-41f6-9368-60f73d1feafa
- Component_Warning_Selected_Text_Color
- Component_Warning_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-566
228
20
-
306
-556
- 1
- 1
- {0}
-
255;0;0;0
- This input does nothing, it is just a spacer
- 83a35c52-95be-4aa6-b663-9f62ca3af846
- Spacer
- Spacer
- true
- 0
-
192
-546
228
20
-
306
-536
- Component_Error_Deselected_Fill_Color
- 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c
- Component_Error_Deselected_Fill_Color
- Component_Error_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
192
-526
228
20
-
306
-516
- 1
- 1
- {0}
-
255;200;0;0
- Component_Error_Deselected_Edge_Color
- f2d5a1d2-54e4-4d9e-849a-7a321a51c71f
- Component_Error_Deselected_Edge_Color
- Component_Error_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-506
228
20
-
306
-496
- 1
- 1
- {0}
-
255;60;0;0
- Component_Error_Deselected_Text_Color
- 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1
- Component_Error_Deselected_Text_Color
- Component_Error_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-486
228
20
-
306
-476
- 1
- 1
- {0}
-
255;0;0;0
- Component_Error_Selected_Fill_Color
- 3c282599-5602-4c4f-a224-4e67e49976af
- Component_Error_Selected_Fill_Color
- Component_Error_Selected_Fill_Color
- false
- 0
-
192
-466
228
20
-
306
-456
- 1
- 1
- {0}
-
255;255;255;255
- Component_Error_Selected_Edge_Color
- 1cce579f-e827-4b62-a4eb-2db9743078b4
- Component_Error_Selected_Edge_Color
- Component_Error_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-446
228
20
-
306
-436
- 1
- 1
- {0}
-
255;0;50;0
- Component_Error_Selected_Text_Color
- 45c987ff-932c-44a5-a12c-9b6313e72b8a
- Component_Error_Selected_Text_Color
- Component_Error_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-426
228
20
-
306
-416
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 5b2574b8-2175-4877-90c0-7d3edea60d33
- Spacer
- Spacer
- true
- 0
-
192
-406
228
20
-
306
-396
- Component_Label_Deselected_Fill_Color
- 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1
- Component_Label_Deselected_Fill_Color
- Component_Label_Deselected_Fill_Color
- false
- 0
-
192
-386
228
20
-
306
-376
- 1
- 1
- {0}
-
255;50;50;50
- Component_Label_Deselected_Edge_Color
- 602244c8-bf52-4371-a87b-388a0612939a
- Component_Label_Deselected_Edge_Color
- Component_Label_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-366
228
20
-
306
-356
- 1
- 1
- {0}
-
255;0;0;0
- Component_Label_Deselected_Text_Color
- 4f76b9df-5ef3-4336-a982-66c0a18b2f8c
- Component_Label_Deselected_Text_Color
- Component_Label_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-346
228
20
-
306
-336
- 1
- 1
- {0}
-
255;255;255;255
- Component_Label_Selected_Fill_Color
- 4755f628-28f0-43e7-9567-c9f4a6347eb7
- Component_Label_Selected_Fill_Color
- Component_Label_Selected_Fill_Color
- false
- 0
-
192
-326
228
20
-
306
-316
- 1
- 1
- {0}
-
255;25;60;25
- Component_Label_Selected_Edge_Color
- 1a80ded9-3255-4d13-b155-c6a4b3fbc080
- Component_Label_Selected_Edge_Color
- Component_Label_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-306
228
20
-
306
-296
- 1
- 1
- {0}
-
255;0;35;0
- Component_Label_Selected_Text_Color
- 7ceb31d3-04c8-461d-811f-f33619dd34a8
- Component_Label_Selected_Text_Color
- Component_Label_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
192
-286
228
20
-
306
-276
- 1
- 1
- {0}
-
255;190;250;180
- This input does nothing, it is just a spacer
- d652999b-5a4b-41c8-a7b9-a9ae76fb5699
- Spacer
- Spacer
- true
- 0
-
192
-266
228
20
-
306
-256
- Galapagos_Deselected_Fill_Color
- b9fafc3f-9f97-4907-93d7-d61a29223c7f
- Galapagos_Deselected_Fill_Color
- Galapagos_Deselected_Fill_Color
- false
- 0
-
192
-246
228
20
-
306
-236
- 1
- 1
- {0}
-
255;252;252;252
- Galapagos_Deselected_Edge_Color
- 74a688e8-b34e-4091-9b76-27007c49de29
- Galapagos_Deselected_Edge_Color
- Galapagos_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-226
228
20
-
306
-216
- 1
- 1
- {0}
-
255;100;0;50
- Galapagos_Selected_Fill_Color
- 1e33c84f-2937-486e-bb9f-9ab17866e471
- Galapagos_Selected_Fill_Color
- Galapagos_Selected_Fill_Color
- false
- 0
-
192
-206
228
20
-
306
-196
- 1
- 1
- {0}
-
255;255;255;255
- Galapagos_Selected_Edge_Color
- 200dc3d8-e55f-429e-aac4-6083a05e41e4
- Galapagos_Selected_Edge_Color
- Galapagos_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
192
-186
228
20
-
306
-176
- 1
- 1
- {0}
-
255;0;50;0
- This input does nothing, it is just a spacer
- f728dada-ea5d-41b0-b98a-8de512f00fc4
- Spacer
- Spacer
- true
- 0
-
192
-166
228
20
-
306
-156
- Wire_Normal_Color
- 0fcc9cb5-ff01-4adc-80db-8249b1cb1362
- Wire_Normal_Color
- Wire_Normal_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
192
-146
228
20
-
306
-136
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Empty_Color
- 78a2afee-b670-426b-a371-999235a7e337
- Wire_Empty_Color
- Wire_Empty_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
192
-126
228
20
-
306
-116
- 1
- 1
- {0}
-
180;230;55;2
- Wire_Selected_Start_Color
- d41f6915-a75d-46dc-b44c-982c253a5b9e
- Wire_Selected_Start_Color
- Wire_Selected_Start_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
192
-106
228
20
-
306
-96
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Selected_End_Color
- 2410a63c-6af9-409a-b554-f2e05e8d3950
- Wire_Selected_End_Color
- Wire_Selected_End_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
192
-86
228
20
-
306
-76
- 1
- 1
- {0}
-
255;230;230;230
- This input does nothing, it is just a spacer
- be73375b-cea8-4bb4-b84f-47c1c53dba45
- Spacer
- Spacer
- true
- 0
-
192
-66
228
20
-
306
-56
- Panel_Default_Color
This does not change the color of Panels already on the canvas, it changes the default color for new Panels
- 29278a69-6358-418c-aba8-2f26dfb10578
- Panel_Default_Color
- Panel_Default_Color
- false
- 0
-
192
-46
228
20
-
306
-36
- 1
- 1
- {0}
-
255;255;255;255
- Group_Default_Color
This does not change the color of Groups already on the canvas, it changes the default color for new Groups
- 99defed7-0c8b-446e-be4d-436c05592d1b
- Group_Default_Color
- Group_Default_Color
- false
- 0
-
192
-26
228
20
-
306
-16
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 19fc00c2-190e-4e70-998b-e26dc4f9f8af
- Spacer
- Spacer
- true
- 0
-
192
-6
228
20
-
306
4
- Canvas_Background_Color
- 8b28a632-1507-43a4-8735-9a181ad39bcc
- Canvas_Background_Color
- Canvas_Background_Color
- false
- 0
-
192
14
228
20
-
306
24
- 1
- 1
- {0}
-
255;255;255;255
- Canvas_Gridline_Color
- 72826570-5a41-4ef5-936d-59e648e96383
- Canvas_Gridline_Color
- Canvas_Gridline_Color
- false
- 0
-
192
34
228
20
-
306
44
- 1
- 1
- {0}
-
255;240;240;240
- Canvas_Gridline_Width
- f2e7af00-bbdc-4f45-a020-e3f2020b5345
- Canvas_Gridline_Width
- Canvas_Gridline_Width
- false
- 0
-
192
54
228
20
-
306
64
- 1
- 1
- {0}
- 2
- Canvas_Gridline_Height
- b32ba782-b9e0-40b1-9b49-c17de5b67dae
- Canvas_Gridline_Height
- Canvas_Gridline_Height
- false
- 0
-
192
74
228
20
-
306
84
- 1
- 1
- {0}
- 2
- Canvas_Edge_Color
- 5859d87e-580c-4f1f-af8c-3683e3dc94d8
- Canvas_Edge_Color
- Canvas_Edge_Color
- false
- 0
-
192
94
228
20
-
306
104
- 1
- 1
- {0}
-
255;207;207;207
- Canvas_Shadow_Color
- 6f769f3e-eb42-4a27-af68-d95482a87942
- Canvas_Shadow_Color
- Canvas_Shadow_Color
- false
- 0
-
192
114
228
20
-
306
124
- 1
- 1
- {0}
-
0;237;237;237
- Canvas_Shadow_Size
- 57186c1f-9afb-4410-9800-b9138d1f1a74
- Canvas_Shadow_Size
- Canvas_Shadow_Size
- false
- 0
-
192
134
228
20
-
306
144
- 1
- 1
- {0}
- 2
- This input does nothing, it is just a spacer
- 288db22f-a056-435a-ba44-1260facefde8
- Spacer
- Spacer
- true
- 0
-
192
154
228
20
-
306
164
- True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color
False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color
- d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee
- Monochromatic(On/Off)
- Monochromatic(On/Off)
- false
- 0
-
192
174
228
20
-
306
184
- 1
- 1
- {0}
- false
- Monochromatic_Color
- 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb
- Monochromatic_Color
- Monochromatic_Color
- false
- 0
-
192
194
228
20
-
306
204
- 1
- 1
- {0}
-
255;255;255;255
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- b5a6a551-46d2-4806-81c1-4e694142c31a
- Colour Swatch
- false
- 0
-
255;209;209;209
-
48
-299
60
20
-
48
-298.8022
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- Colour Swatch
- false
- 0
-
255;255;255;255
-
48
-1079
60
20
-
48
-1078.802
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- a5070296-591f-454e-b939-4e1ba45b08e2
- Colour Swatch
- false
- 0
-
255;115;115;115
-
48
-339
60
20
-
48
-338.8022
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- Colour Swatch
- false
- 0
-
255;227;227;227
-
48
-1019
60
20
-
48
-1018.802
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- ab85a55e-b675-4974-8817-fc5f46ae741a
- Colour Swatch
- false
- 0
-
255;222;222;222
-
48
55
60
20
-
48
55.94703
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- Colour Swatch
- false
- 0
-
255;168;168;168
-
48
115
60
20
-
48
115.947
- de131812-96cf-4cef-b9ee-7c7031802751
- 00000000-0000-0000-0000-000000000000
- InfoGlasses
- To show the components' advances information.Right click to have advanced options
- true
- c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24
- 0
- true
- InfoGlasses
- InfoGlasses
- 0
- 0
-
255;255;255;255
-
255;115;115;115
- true
- true
- true
-
255;59;59;59
- 1000
- 8
- false
- 0
- false
- true
- false
- 2
- 1
- 8
- false
- false
- false
-
235
-1174
176
28
-
340
-1160
- Run
- 72e93834-66d7-4933-aef0-991e6bdf6f81
- true
- Run
- Run
- false
- 0
-
237
-1172
31
24
-
312.5
-1160
- 1
- 1
- {0}
- true
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- true
- c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260
- true
- Derivatives
- Derivatives
-
551
-4719
120
144
-
630
-4647
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- f3ee6bc2-fdad-4aa8-bc05-a096970cebc8
- true
- Curve
- Curve
- false
- 0
-
553
-4717
65
70
-
585.5
-4682
- Parameter on curve domain to evaluate
- 04c36552-d571-45f3-874e-eb0200b47d22
- true
- Parameter
- Parameter
- false
- 0
-
553
-4647
65
70
-
585.5
-4612
- Point on curve at {t}
- baaac401-d9a7-411b-805d-a15c35db80eb
- true
- Point
- Point
- false
- 0
-
642
-4717
27
20
-
655.5
-4707
- First curve derivative at t (Velocity)
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- true
- false
- First derivative
- 1
- false
- 0
-
642
-4697
27
20
-
655.5
-4687
- Second curve derivative at t (Acceleration)
- 2639343a-12c6-4387-90cc-a3114bd783d6
- true
- false
- Second derivative
- 2
- false
- 0
-
642
-4677
27
20
-
655.5
-4667
- Third curve derivative at t (Jolt)
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- true
- false
- Third derivative
- 3
- false
- 0
-
642
-4657
27
20
-
655.5
-4647
- Fourth curve derivative at t (Jounce)
- 92510296-d128-4ce9-a581-482c09cbc15e
- true
- false
- Fourth derivative
- 4
- false
- 0
-
642
-4637
27
20
-
655.5
-4627
- Fifth curve derivative at t
- ce3af00f-0726-43e6-b974-248803cfe0e6
- true
- false
- Fifth derivative
- 5
- false
- 0
-
642
-4617
27
20
-
655.5
-4607
- Sixth curve derivative at t
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- true
- false
- Sixth derivative
- 6
- false
- 0
-
642
-4597
27
20
-
655.5
-4587
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- a28e949a-03f8-43f8-b244-d21a8d6e41e4
- true
- Line SDL
- Line SDL
-
433
-5982
179
64
-
576
-5950
- Line start point
- 79adb25f-f822-4463-a547-0638ba3af362
- true
- Start
- Start
- false
- 0
-
435
-5980
129
20
-
507.5
-5970
- Line tangent (direction)
- 03636d62-1370-4942-88f4-857a65464d92
- true
- Direction
- Direction
- false
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
435
-5960
129
20
-
507.5
-5950
- 1
- 1
- {0}
-
0
0
1
- Line length
- 71e8a980-e875-42d1-82e8-80286c8cbc52
- -X
- true
- Length
- Length
- false
- 0
-
435
-5940
129
20
-
507.5
-5930
- 1
- 1
- {0}
- 1
- Line segment
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- true
- Line
- Line
- false
- 0
-
588
-5980
22
60
-
599
-5950
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 391756f9-4358-45d1-936e-c496ba6104e0
- true
- Create Material
- Create Material
-
471
-6106
152
104
-
569
-6054
- Colour of the diffuse channel
- 99cd1941-02ef-4b60-9081-2924d6df2987
- true
- Diffuse
- Diffuse
- false
- 0
-
473
-6104
84
20
-
515
-6094
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- b4fa067f-1df1-4344-b55f-bc629475264a
- true
- Specular
- Specular
- false
- 0
-
473
-6084
84
20
-
515
-6074
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 38f16f51-687d-44ec-9aab-4b4c5db2f705
- true
- Emission
- Emission
- false
- 0
-
473
-6064
84
20
-
515
-6054
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- f0216951-6a43-4fe8-8f72-957347479ac7
- true
- Transparency
- Transparency
- false
- 0
-
473
-6044
84
20
-
515
-6034
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1a0cdefa-8194-428a-b2af-d416a232075e
- true
- Shine
- Shine
- false
- 0
-
473
-6024
84
20
-
515
-6014
- 1
- 1
- {0}
- 100
- Resulting material
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- true
- Material
- Material
- false
- 0
-
581
-6104
40
100
-
601
-6054
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- d7be4360-884f-4c85-be96-44fb8a798a7d
- true
- Custom Preview
- Custom Preview
-
584
-6169
76
44
-
646
-6147
- Geometry to preview
- true
- 7d2280d0-5877-4448-8407-b4d0b2e99066
- true
- Geometry
- Geometry
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
586
-6167
48
20
-
610
-6157
- The material override
- 0ab4a55d-2d50-496f-9431-24974e37bb78
- true
- Material
- Material
- false
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- 1
-
586
-6147
48
20
-
610
-6137
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9
- true
- Evaluate Length
- Evaluate Length
-
476
-6253
147
64
-
559
-6221
- Curve to evaluate
- ece5eb15-d68e-4325-8ac6-14e1983b8848
- true
- Curve
- Curve
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
478
-6251
69
20
-
512.5
-6241
- Length factor for curve evaluation
- b7b17610-8182-4eb0-beff-f9003e5cd200
- true
- Length
- Length
- false
- 0
-
478
-6231
69
20
-
512.5
-6221
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- e9204942-5fcb-43c4-9bd7-bad7da1f1095
- true
- Normalized
- Normalized
- false
- 0
-
478
-6211
69
20
-
512.5
-6201
- 1
- 1
- {0}
- true
- Point at the specified length
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- true
- Point
- Point
- false
- 0
-
571
-6251
50
20
-
596
-6241
- Tangent vector at the specified length
- d4d0d2a3-7672-4c9b-847d-0720f0276387
- true
- Tangent
- Tangent
- false
- 0
-
571
-6231
50
20
-
596
-6221
- Curve parameter at the specified length
- 4821c9f2-9535-42fb-89a8-46c9b7c32eca
- true
- Parameter
- Parameter
- false
- 0
-
571
-6211
50
20
-
596
-6201
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- f8bf8b17-5f64-4003-9ce1-9026aaac4695
- true
- Interpolate
- Interpolate
-
388
-6357
225
84
-
561
-6315
- 1
- Interpolation points
- 5b1939bb-f0f0-413a-9564-dbeb140f85b7
- true
- Vertices
- Vertices
- false
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- 1
-
390
-6355
159
20
-
469.5
-6345
- Curve degree
- 03f9d6bf-b682-46a6-9e8a-34324164c9b0
- true
- Degree
- Degree
- false
- 0
-
390
-6335
159
20
-
469.5
-6325
- 1
- 1
- {0}
- 3
- Periodic curve
- cf0efaf9-d364-4835-a799-f77814defd1e
- true
- Periodic
- Periodic
- false
- 0
-
390
-6315
159
20
-
469.5
-6305
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 68ab4f2d-155f-49e9-9089-6cceba7398b5
- true
- KnotStyle
- KnotStyle
- false
- 0
-
390
-6295
159
20
-
469.5
-6285
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- cd554e84-a87c-47bc-a79c-19347e2f0445
- true
- Curve
- Curve
- false
- 0
-
573
-6355
38
26
-
592
-6341.667
- Curve length
- 84582cb4-6638-42b4-a325-f4e841513b71
- true
- Length
- Length
- false
- 0
-
573
-6329
38
27
-
592
-6315
- Curve domain
- 2d16f12e-6fb5-4594-8c47-80e046dd4a10
- true
- Domain
- Domain
- false
- 0
-
573
-6302
38
27
-
592
-6288.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 59480eb6-f67d-4aed-af3c-80bcc65b0c97
- true
- Create Material
- Create Material
-
471
-6481
152
104
-
569
-6429
- Colour of the diffuse channel
- d0a233c4-5cbf-47b6-b827-30877f3c0605
- true
- Diffuse
- Diffuse
- false
- 0
-
473
-6479
84
20
-
515
-6469
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- f52f3c21-e882-40ff-8233-68e3e5495edb
- true
- Specular
- Specular
- false
- 0
-
473
-6459
84
20
-
515
-6449
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b9730379-a406-4b51-a3c9-a8491583fea5
- true
- Emission
- Emission
- false
- 0
-
473
-6439
84
20
-
515
-6429
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 34d39782-03a8-4ac3-8ce4-9b4b5b91336e
- true
- Transparency
- Transparency
- false
- 0
-
473
-6419
84
20
-
515
-6409
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- cbcb1a83-292f-4d78-a691-b5e20a9d993d
- true
- Shine
- Shine
- false
- 0
-
473
-6399
84
20
-
515
-6389
- 1
- 1
- {0}
- 100
- Resulting material
- d1ae5845-db5c-4627-82e9-c54c822208ed
- true
- Material
- Material
- false
- 0
-
581
-6479
40
100
-
601
-6429
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 570796f7-f90e-4361-858c-c1f014778449
- true
- Custom Preview
- Custom Preview
-
584
-6544
76
44
-
646
-6522
- Geometry to preview
- true
- 501744d7-62ef-4952-a5df-acf7700d473f
- true
- Geometry
- Geometry
- false
- cd554e84-a87c-47bc-a79c-19347e2f0445
- 1
-
586
-6542
48
20
-
610
-6532
- The material override
- e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8
- true
- Material
- Material
- false
- d1ae5845-db5c-4627-82e9-c54c822208ed
- 1
-
586
-6522
48
20
-
610
-6512
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7bba5658-4cbd-432f-a660-fc5cb3f3794c
- true
- Quick Graph
- Quick Graph
- false
- 0
- baaac401-d9a7-411b-805d-a15c35db80eb
- 1
-
547
-4882
150
150
-
547.7125
-4881.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 167436ff-de50-491f-8e47-5da60e700291
- true
- Quick Graph
- Quick Graph
- false
- 0
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- 1
-
547
-5051
150
150
-
547.7125
-5050.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7
- true
- Quick Graph
- Quick Graph
- false
- 0
- 2639343a-12c6-4387-90cc-a3114bd783d6
- 1
-
547
-5218
150
150
-
547.7125
-5217.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 8afb402c-3b86-45d3-84ea-d3432b3a52a6
- true
- Quick Graph
- Quick Graph
- false
- 0
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
547
-5387
150
150
-
547.7125
-5386.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1
- true
- Quick Graph
- Quick Graph
- false
- 0
- 92510296-d128-4ce9-a581-482c09cbc15e
- 1
-
547
-5557
150
150
-
547.7125
-5556.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- efd6e82c-6389-40c3-b1fa-a1f3d7f406cb
- true
- Quick Graph
- Quick Graph
- false
- 0
- ce3af00f-0726-43e6-b974-248803cfe0e6
- 1
-
547
-5727
150
150
-
547.7125
-5726.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- dc664508-b5c0-4996-9899-a06cb3c1f6cf
- true
- Quick Graph
- Quick Graph
- false
- 0
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- 1
-
547
-5895
150
150
-
547.7125
-5894.101
- -1
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- Colour Swatch
- false
- 0
-
255;196;196;196
-
48
-803
60
20
-
48
-802.8022
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- Colour Swatch
- false
- 0
-
255;176;176;176
-
48
-743
60
20
-
48
-742.8022
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21840820-7b03-45cf-914e-8d05118a8772
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.03000000000
-
675
-3066
250
20
-
675.8207
-3065.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3086
250
20
-
675.8207
-3085.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3105
250
20
-
675.8207
-3104.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02200000000
-
675
-3125
250
20
-
675.8207
-3124.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c6aecd68-308a-4a6a-b29f-68933f542f84
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.02100000000
-
675
-3145
250
20
-
675.8207
-3144.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0200000000
-
675
-3166
250
20
-
675.8207
-3165.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0200000000
-
675
-3185
250
20
-
675.8207
-3184.688
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.019000000
-
675
-3205
250
20
-
675.8207
-3204.688
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
875
-3027
50
24
-
908.2197
-3015.688
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXFNJ13dQmqCCigpiCRZEpNp1dSVA6E1BxbYS4QLRkMQkIFixN1TsiA117QXs2LHr2rB3V10L6rriWta18c3cEnIryUOAPO/3uD9duCd3cu//nDll5sw55r6y2OQkRKoqAX+MeDyeCfhbWy5JThBLh6QgCqVYJoWkCHAZkuEfM/gR4r4ARBSHKOBHTHCyBUEK9IWXa4BLwxLzWqTvvx20f/nEG6Nv/X7HLEKBpIiRkZBuAeimkYlglDgr/HIookyMSpMjkFwd/+JaOC1MpkgSSSClJbi6evXqEuKuSESCxKqQOIImFotLbHyReLFUrAJvEaGQyRGFSowoiWHhX2NfkQr9HnPwy67HSTPnTbtnbumLKGMVYrkKf3n4iDzjMFESQvz2pnp0gL+b25M9S1+tnAH+fbIkF/z7eMmOx0t2oz+gv+5eB/+dNwf9N/PxvEXqTxZmhcGfF0yGIyyGtzxZ/qv658cLFzxeuEj9scdLNqlHwz6GDfJqyS54fekE0lcT9+KPhFM3kR9vRen3zsxGP5zB9XP2ZvWA+L/4Fc670J/xN0K/UeMBNqmfDX9O4rFLP4NSsXfEvxR9dxxVdAQcH+JeOpIYwjja2BcRjMD5go9GYh8OL8pZNzf/gOgavYGEwamgJKYJ/FOLuOojS8YmUHViCgBhGwaEEZefavhl0yiRIgFBP9kU/Lroz5KSJs2AZA2QyZKIGXRh89eeJn2BOJO+qga8QvuaGr1j5SGiNFmySvOzFv4KWbKc9uGa/gGCEPFQhUiBTwEjfGaZkD4Kr5hhn0tDnxm/3VqgVCJJQyVpfskSieZUEEQkx8cjinixMtGF3xfTGD3au3nA/1z4PskSVbIC6SFFklUKkcSFH5E8VCKODUbSomTDEWkPKRjNihi6b6m+gSOb4aOYCpJViTIFcblWqDg2UYRI+BGKNJmiWmAcoWVWF61oPMSzb0iu6VzxjyKLUaQZa1H6mGYs31OnVFmED4XsU8PkCP6xxK6RwILXTbHrEKNqOH7G/n1KdZ/nr71PDczd5LfxV6vzx8d9XEx6KhOUVzV8ZFKVSCzF9KgTPoqpt0yBq1aCMaY+MoksWUFoOPh/Jl3VVMBPgOPyZfF8f4VIqUyUyYHu48uwt6oW6ItKD/i7oPerMf0/JITNdH/t9uVl8mJAMsJJJTF3b/z+oGXwwl47hmRd+M0CkKrhJMXoHy5FHpa+ub/l/mmfF1wfkKrjpCcO3UQFbrNCtqzZ4vkGsXICJGOctOOMIOWLvW3A0eeP5naxdngISCY46f2NJ/lr6hWF5Dx/MXhy9JaXgGSKk1Ydam9z43tN/8NG1fLHNc36AkhmOEmeG7Jyi1U3YXqDOYLAVuNGApI5Tpr46RCv9hHj8LxDXYyu7PP/FZBq4KTpJ071OfpHrZCtk5/M6/Lyc1tAssBJ0r2ur06/3C7c/GhLTFen/f8CkiVOqn5w+A2Trj+8ct7Mf7TTvf8NQKqJk2aOa/Xtzc2hfotqRbz5EGE/AJBq4aTUjw0c2sqzgteOm2W27POMfoBUGyd9e9Ky28U3HYP2dY10HbE65gMgWeGk7wcEKwYsWuubXaPkyto7k80ByRonNWu24vzsDo8D5q08e3Kn/5cFgFQHJy0Nfh1SsKVLyPy9bRuvHNDLBZDq4qQ3a2s2zntoHb4zplfcA/vmJwGpHk5yqHGsrUfwO0F+1LeCeSYNugCSDU5qNEi+om7nt4GLjPdbjqgduASQ6uOkh68+bJg9uUHA9mPDn1pvXbYJkBrgpKLWwtNfM3v6HFwmcI8d++kxIDXESeNnZ5mfffvdb7rLtdzf1k1IBCRbnBRfP/Jfo6lj/KYZ7VNIHYKnA5IdTgrPyp+YWj1MsGZIQt3X5pO/AlIjnHQmuX2Hv8elhx56uO7ODfO0CYBkj5MudVowcv7xwqC8uhsO8k9PcAakxjgpa8r1fV9WJAm2vXOoHSfNhhLVhJgOJ8VT6zbMEmb+LWx3PKTHa0BqipO6X212fcHKo4J1Y7ZOTBo+ejMgNSPe6+HG/humdAyfEP/iPo+3cCgg8XHSSnHSwt1r3YTrTLJvH/rRd695oO8QkgZxgJo5UKpUiaSxiH+yWK3MJikum9w5Wi3g6N7Q2Y8KRMYMasM8TBw7XPMyz0KgUinEQ5NVmIbHVTehooz0pqI6V6KKah+Vv+Rb4C2fjT1fdhbsu6rSUFHy3U1yTc2ShLm3XDrOmPhqkIaK2pJ7afvEN78H7xxqHfOmVk9rDRU1oU/Yx7PrU/02yWYETPdOO66hop7+uX/VO/9A7xlt28zlBfCfaqioXbnHfgTs6R8yu+ms4vNLCqw0VFSfqMZnmvYrESw90SGnRtT3DxoqKqq7XdLUlq/DZ4UZfZhUK/iLhooa66+SDVvn6X+w2rXJv9c8+l5DRS1rG9bU7+svYTuUy5ZtcJ6wQ0NFfclK9d0cyPPf2WBWjxeT+vytoaIWTBd2KLQf7bem21rh85O7WmioqOLxdepcnhoasCyg2e4o1zafNFSURWinT1dWNA/IDbrd85eW1y9qqKjCiL/zXF+ECje1WNO0lqfSTUNFzWy7Ns0+IsQ/My3bfufV3gc0VNS+pSfN7M0UIev73WxqduNkfw0V1Wb33bPvPr4Ozlj9zj2yX8OFGiqqWo+d80ftHxe++J+ferSbXnJdQ0Ud/zPi70ZWzsFLXVassNjgt01DRX3M7etnkesVvL+Fe52E3j23aaioe0P44gM3egcsd7jW++aQg6s0VNTMYYLPGRdWBe5Ie18v52loqoaK4v2R0DliT7F3Zst3bwdndL+loaJ4kf1fFFxfG7Tzmt1+k1l362qoqN6demTVi2wr2D1oRpDT3DeTNVTUNLuR9tm7LgTPGi1qePLPYXwNFdU3eYhP+5NpwbvMeuTZfFC00FBRIZdsT6/Ir+O3smB8fP1d7Uo0VNQHzwXCru+KA3b55By4PrhlkoaKMvlrRrKg/8yA6b0EAy/KArw0VNTW9+HrO39u6bvHYsffxyYsUGioqBaffvvTy+GY/3LTrfwp0cb1AMkBJ3V1PhTi7tPZb8eZwE6C4TvnAlJznDTcz7OP6a5V3hNqTckY9+AcdAFaEA8fNXnQluXGfkuHflrf8OConoDUEicddni7OGaarWDqmYW3e2w/fBSQWuGkdKfMzS2azvM+2OZA1JIBj20ByREnjQvZM+BM0ka/fUmdl83p16whILXGSa73+EvjPvcQzuq8omG3fkr4XU7EE/a7WntZSpug7A3Wji9P9pwJSG1w0qI6JWGd4saErnjd/P09ZWgvQHLGSWtd8xbcdpvhNZsfNTXi5Ny7gNQWJzVd2+O380mJfrvXbr+zgtfRB5BccNImo14tz4ZE+ky9mj3ErLvlOUByxUmn51ub/vzu99D1v654FHbx8GFAciOm3tQ1p2vWehu0vpebdXRQc3tAcsdJX+06/vpLu2ivw6v/+SPknIuMZjc82OzGlA0vogWO5wImvDyTYWE1trYe7EY1NrtxZH3Gzxu/5wbtKegedfagsi7pu0zDkpOGIgqy4TDDh2IyCe74J5V8ET9WJpFg8RM0EPESmUgllibw5TKxVMWXogMrGV+fai2YHon2/sT1cPR5sNUFNJoyjQSmLBYhTNGGx0vtxt7pErb/8rjE0LaFUywxMi1+osCpDv+8wQfj0EtwrvDynIW8GPkpHi/Am8crEJhEiFNk6Dhw1vK8XIQXM2WnakfAYEWpQqQqX5FKxB24mXorACCJPA2G0T9kHCFSJRKvXn20x1jjQBWSxOOVLvCYYgjDzxDhH4+X6YWLQ3U2cTiMrN8s/X4+ZLbLqV0eirqDSdjX8ElWpIhgLEiWCGhfTVkk4idhikiSLFIhfFUiwo8lBoAiIUJ/RfgiFfhRKUdixfFiJI4vFynAd6oQhZtpgDguDpGq8WKUFqoDwfLENIEpJWnJ6kInIU8+FrD6C2B1ujeF1YUugDr6lCX69EPEUnkyGk6a4SAzQVPHB319lYyP4BgxvuCYty+d/1y4JjBjoGW7Pms+TCBrA3QM2svhl8uaDFQ3qpyToRggFDEWnwzF1MmQDqfKGBJCRmUg1CqCkAU+0CKYtMTJkoDglYna/NQWuT2Cuwdvu3HzQMOsJgqyWKjHpYtFKaks9H70mycpqpntN616ulv3vtN26wE9IEEc6KWPOlUTQ0+WrMIFzJQDvvoRqK5VQwcm2mjVWEa47AcuuL/YM8Jrj9XjRn43+keShQwdhy5k2GUaTEw48LTHIdMVl6LuAIccKg7m7kJe3hgyDkZl4NBQPdX5KUD5yRRcSMQ9MTcN8ZkVsjrw5y6/vit8rbs+qRBErMdwIQLkhoRINe0RiRUrYiWcsnG+362SgPXHQjeLJH+dtHniZSCIFI7iQsRj1Cnc1sHAkNHWub0Y6vBN8Tl4Yf/rt903brYhvVdNX3GKOA7ho4qUbu7MWIBtg99G2DYwQYCiGpEskvAliDRBlchXIglwY0WplXGjhsDsj0hDn0TVEtZHQAVZpwJYPzGZOODN8KxTdDJxVmoTF4c+DeNL9lyRPO3O85oBk6cd2Twn8OQPwzVwvDZCXvFIgA+fSey8gIqOGMlo4Nj85bqY1wq9IUIuGCEqTK0T42inClth8fxit1HTNlAggq/DABF6uSyIqGGKHiDKS+GCCIhQFTvE8CY+5IgGpwiNycaphpFyiVil5hLUl8PF0uEsEcxv7Y1Xjm4WeHD2lxcNRszsT2ZXMLyPzi7ssr41JeSHPJmLH4WqKuGH2VCZTIKI1AqQR3NtCMViKoiNRZRKzeEZdQ1UeHBPCAsxmTmz4r7IdOOth4I17U2eCeOCjpBjS9ShobOGuK533rji6mQQE2/y3VB1QvN0dISleZRImgAYi7s+qOTGaYHUnsbIxpXBswSTQm9NX3Qg6DEJKXN8UDpWpZSKQAvVLKxoAc1C84J0RKtFacQBowtEa7iowQBl45IYlQ6YJq0iIEMnPytkYPLjbpIJj8VNWjV68Y2/iob7bNzW5vuly+1uMJhnsn9UgwPf1qwLREBoEIU4FvObtPOOqNbdLFQkl4ulCQRS8HX06Ew8aW9cr8aDg6FzVi0c5hQe0KmcllIOdK+HH2DOTIalowHdXIXTYoQEc0zZmDPUaWqLbOMjXnuiW9puPn+nAel1rXyRWBnATZEcq+ILFLF0N9aEhU0/9UbAKyAp2KrNUJES4cslIiniwleI4sTJgHvSOPA3QaKOx+F6jpQvUsRqt2pD3aXhfG4aw6gf0BLxdGALIyYAxC8wubc5bQE1XSf3tjH4bj4IJ32wGAq6uaUPxvjeD/emv7J/N8Bv/7B2mcLwk/dJ712d6V3Ri2WJJjVEK6do5gCgvCBQOQIgp7Q4wBkFSqelCHtvtQyhooLhhsWejECtvWy08Z5Hqt+BZj3rt1Yua0LWp+hoEXA0uj7VoOlbn8a44LhEM+lTa6BPi9N1XJrojc0nrTDx3XPo+JFZD3xnLrzZbtxIy3/Izgs2Et15wa9XBBY56VxYUGWkrEUJvkBToTiBv1DZiKTKNjg8jKCY55+uZ/wh12f72xWqV8WfHpEVPjokXeFjlysCEh4nJDHjCY1ORIU0je4+f2xak24//Ob16TiLt6z/ErLgh4P5E54CvJNoujKvzoJrPR9ZEoAfTDw4+eDNqdopaep+Oduj0OdgKU3bxU+gcQozAXR5ALpHVOhyALAxmTqpZstA+CnMiWN8uWUv6vw4tb1P+OaGZ9rdihRRVjz7wvvocoNdLksbUzdxy6mNrYG+LYDYFAkY9pg+O6PY6KSNa4ajH+NA53XccLuaA+qH7/FKudv+2qNsiqpBlMkS+ooDcV3v88oVB+AzEwDRbigA+LwyZ5tXI46K24rDNvvsOxIuefF04FvSG1n2SgbvArNY5InMzqyW8UNLX7ESWLk0uKOFqKDeSnMlAgno8ybAb2BEnJqBwvp8NNhJRBr2NSJlClW4ZooPg8RSM0i0lFj1aNS4wwmwZDFgWAMf+Jfi2lo4CX2jF5+qRSR7B0rjkFRiOPh/nJU12Fj5um9YiLH7vz6L1l7wWx0eOIAElXEIYB1dORqzMMzBR4HA3UkRXwI+zh+KqEYiiJSvGinDoz3tVCU1SYj+SDS2oVd18FwL5+CeqwfNcwXzgz9HJ/VoDb+cD95DocLek/Gt2tgtf2L0arVw9qCJW37U2mVLlslI9G7mvSESsSx9Sd180oP3WgDBimBc8gJuvnyOTtuQtVGwEBDysEP1dM/PHXa7PvXedKWvqHde1wzyJokQ3MsMlAapLJioLrEeYOJzwlQ4W0ezggkVtkTKiFJiUlpA7wd7fLYddak2ZcS0FtpOE/2bFDdcRvIEcGmU6qq5o9DgesiCTQ+dWyYK+d61of/E9U3NXrUYTV5MNEfBiPQN0T7q9ibrIhxIEFPGg1/j+EPTNCesC1+FL+zBWBzbXHIbq5WyoqYtMj83fWmPoGiJsRcQMKfdAOP7TOH2I6C0nHZVgNKKanBxW1TPIcIpCZZj3G9Z+JEdO1Qv0R077HIlK6oYAJAtBEjONAMLwAw8u0un7SRbFCBCLpzixApsfa0NI1DjExuKNob8LZy1NKDe7jYRlmSV5UvcTFdZpaSyAKNupusBsNRdXIABiaqSzSVscR1+pj2P7U9xT+qGE+GsMgYwKC+xec2cXX5VdKYgLV94wCzg3+kOe6zrBkpViAIwQ5gqVwBXVWOsaq7RZAc+BB2W7sDj18tiKzVZVg9svb2Ti63Td1b1nmFpEl1xTz0bxegDE1783bIoLOPB5852i/surjKjmOOG66M8pmW/CHd0euFG0ZLHYhT7Nqs2fOEOa+/9qyVvfxprHkBe2VVnA2KSpn1ixX4j9a2kvMFYRAEH4MeLsMQeiUyawBerlIRFxL8Ipyv5sSIpcPL5ymS5XAKzDYfKAFFMZEglS+Gt0KBK0TOq4lHgI+hFN75PItSr6IL4wLDBpWmKcNlXJUuAS1fq6AF8BkYQSbI4RMsAgnpegBM2+oI45QNaMpwP4rTMQ6fgEhGDhY4AFjrzYEWkNNofep+c7G4VMvHlji1pB2+s0OMmDXUylVM1eQGE0g/hmzQ01ZQIt3AO0Uw0Vx5Bc5I88uPhii+KGQ4Y+CgjZLVNI+b027dbOM/Y77ejMyfGlE+fl1NRQFQeHeRCBciNASlsXRI9OgTG86MUyYgLOovJ3BIrNfWCk4ebB38c39PNg9m/MtuC5Gxa5hg4edthm9VOHT6Tl0/D1APRl081aBXBOi9O1hUfMIh8ECOdrGwTLNUVmATItdJkcg7/af6DCdUz7Y8EbV146Uhv0Wvy1mnlprzCrQFUywQwMSXHHdUyOu0rOZKzPnQCxqPr9Y42ra19Vt6ucfL2qkLysr8ZPjANGjWhIsBBlQ0rOEDZ6LTR1BqzUqUWXBd04lKXLKze8UDIxrzjD/zbpM/RR2K5HhDy4kQIzGncb6vJY/HbhALntiU9rgs2Pmy66erKt+3Ja31obCGXSYBFp/ts5iw4dyTWM6QwD5a4Pw43eKpEhSw5IbF0pVyX9VbqGUrWp6WvTGoQtT3k00rIKzgK8BUBN2kj1U1K9xDy5EdobpI5oR612ziwKX2sMjKNYt5dsYvanOo3xzj5RODeW7PIqzd9YX0U8IX01Rs1pSwXiqoYy+lCFQL08iB6zXwYpPMs3L46qpMLVRObvnFIggJh9i8v5tR2NB+5QDjrzMqFz368dyY7S77ojXRnCb+u79kJ39+a8/0LjlS1s6SWTB0cJfjIYlkckbLFyIit83e4He6WL9w77I/0AzEvn5FllRiALqtqSkUwA0xWDmbwq4YZtHRYTVZUL4MVbsFSmQqYL1EsPGHp5NEDhKwgskhy4Xv2iE2UKeJc+O16KEcoVOgvzN7q9KYW08esHOA79bzn48TMktNkuwa/IFKVxpBLoUGqCGYVHuZiVvphQ5g5cCjdDmZhG+WQWdJkxVAlxwzK/Mdmcvefi4MmPbGXvpzU9G55QuXyhg6euCK3BW5GIZUd8nbCPsKjunmpuCbn8La65HbyODLkUujc3udCG3rs7l21YS8A4NERHIDbDABA1aKTJ0qYMjTliRGAkTsskzuFOQrXLa3T/7Pl78UUU4beyGDKsOsVAYA5FwCbsw8TjmYtHouj+Z+dOGdDUC8nzqllN/R64px6nL2c7hS/LVB7x1lOnA844CL0tT1O8KA2Gw90zuk252CBXnO6qWVO9Lg0SFWlemCE9TEuRmwsIBhhxcYIfkKLvdNnz/BecGJryNJ/948mv25vRCJKY2YEJaxg8wzqCfgjxQqEr4Aj4ZV5GHGnZgAxPAgNdyN+mZhT88jKmzMPc7Tn4aeZ0qkKKA8eUJxHYG7NhnmNyCUp65OH+ea++Yx05m8ix45WeMwaCv5RiEUS7XcoGpVGu+FyROofwk/Cx9AupKWW6uF8LPoOAOUD2uZdtgaQ5UONDlysQloehBswaXtpoS2XK9oEqx0FZz9cUokTx8cnKxF+bKJIKkUkjC9+x7XjkxP3s7wObfzl0ihHv3Pk9SZfbAT6ehNB0PtqipOQx4OQbGRaTYEFP/L2VYnXaQKUq0xdleuff/4p0SVq5pMZA9e6kiUiBT9RnJAoAX+Z1cL5Id8vTz8+IXTDt++L7Kf9OEEO4CLxQegBnJpSEdyJ2cfFHWtD4E5JCa9El2C6mTBJrFSKgS8YS2IToUIYmSP7devKm1tXB++uOeF108nPD5GZg43IkL9RSqkI5hTs5WIO0CZVzxzIH13C686CJPiVKE/A44A4W4FIY9OwDaAefJlcNALuF3miv5V+gnlG9cq+p2jiZB8yd8b47/IdPyWSj/RHaYxPP9JPolYE8/iczCvcU9XRdumm3iPSpp5xGRzsUcpBZaJYmiYFrhNgH2CXVAZPtXmCnySykSgR/uoBSUmiVOwC89JW6K3lt1784z17m8M/SxUlCZQ0s0SmtA38ckVwLn0PF+c8qpxz8KY4no7rJHVL10k4FeHKEGEvPwdT3/zde99dG/GrCVkRsvpMpRS9r1y54T4E9FPP0twqD1QR4n5qHR6Ln2pnPDry+MEP4UfNc585dhrtQnqr2j7JSpUsiY8XTie7qRBTttNArQUSIOlKPPMAjoFuZicgsiREpUjjy7EBlVaB0lhJchwSKO2NSPHTA+zOK7WYJNez0vhAodeGhbLlMoXKTyxRIeqa0dpiHwH3sPcD7LOYcuU94F7ZftbdGsYYyp/ARiUj4NHKozevNj73zEtH/6m5ki1167WfTxZLYlS6WKoplZzsAk8kP4LIeTHpkWIQe2Xu1ykftX6UhguDHj1TsBWBadI1u8ujBu8C96/zHtyuBSX6+Y+mMAUrqo7QA1ZenFgV51eqziVaN5jhIRf8EHR2HuQ8KDFHcI+PuOjt4V1igto2qlU1JwID4qPw/zU13R7yHTyiwmRdNjVmoOE2tcZt5YXbMVzhduGgig63125opHw0q27A0tmrn1m8OrzUAMLt4iFczkvEEAOIGfLy8ioh3C5aLjx6P6aZ36Jnj/MRVdtXBhFu5/3CGW7/YgDcqZRw++Y/a6xFT9/4TDRftWL82AcRBhFuywdzRmyDDIA5vKoMt4tmvrBay3/us+PL2Vcpw9rNNKhw22MQF/MyB1Z10GZA4XZWYNfTt5p39N7Rxyrco+CX4VUcbhcP4LRYA6qacxUabmdcbPVnx5s1fNa+a1fT3Kp2nkGE26gPwRpuA0WI+6n1eP8Hwm1qF4YqDrfT47nCbT5SOeF2/zhL9+6DewROanKvfyu7Hbv0Hm7ruZooDCFj4rlCyAKkosLtfYVdJ0muPPXfJGkvC3H+6xe9h9tUHaEHrIAccWCVHvf/Vbhtw6bGDDTcpjaHqbRwe/oZrnC76FRFh9sW0zdcz+zfz2dh+IIfzccYrTaAcDv1DJfz4nTGAGKGhw8fVkK43S7LaV2XXq3D5ya0q36u458HDCLcvn2aizvTTxsAdyol3L6VFWK/I3dV4MLX99KeRDlYGkS43YWTOUCbVD1zeFUZblsE7mx+vZ+FYGF684d5t34EGVS4nXWKi3kBVcM8wwy373VZa/3joKPPBI/ZO1taNdlSxeH255NcnNt4sqo5V6HhtlXbFg5dW0YHz5p5cF73NOUmgwi3UR+CNdwGihD3U+vz/g+E29T2hVUdbp/jCrcLz1ZOuO3d1mfJsN5pQXOWxVw7+rvdG72H29RUcD2EkPJzXCEk/1xFhdsv5j+op1JFBe26Nf2r1d6fH+g93KbqCD1gBeSIK9w++/9VuN2ATY0JfqQo/1SNC9yV0OxHhCJmFiWuVbdZYigtCr+GrSxlE1+FCKix3uAlZHzKKFoekaY2VjUNkcUOR+LUN3E+KUMETv6AloLkAXcIpbCSuDdThRnYtEFCU1dcDQQcsBNTUL+XPhFaVRVE42jpVa3A+eFuN29EntgnZ4BTWBqvfQdOcAyqBxGa3pTEVrYRTs2IJJ3UWJNIUZJcAr0QgJpSrEojojN/1lq1+T+//aOoY03fBXUVP+xeLfyNEz0zX2xYhjUOnKBv/wRClCfhgggInQF4jKiM61ASrnZkrEiC1s9nLyPcymZqfPPzc4M3Bc0I6HeylTW3YKMDMjjy6OWyBJvanlkPgi0fzsW1wmGGwDUxT20VGvJYrELyv4fa78yJCl76PXrQjJ9WTic7jL7iBLGKHxmrgIfldOiu2yIsOQk9T6fEb0XVoFKMls3nOt9I5RSnUFAeT6tTX2wT1pwYBV4kbLgp+gXqo2uwIokpcI7jxamlX2ECuxaoi0JbosKXHK/xEbwWOwFZPPGNPIxz2ja8awmkKhHI3CgfuswNeNVSOK0gkYhkbNmY7dP6gnvXSb+H5PitfqfqakduVVGrN5IkkvOxs6JK7fvmtsbuw7mK9REU8aXISHgJFQLs0LBW1o7aLZ3jCWnsJpO1NfsgZs/ZfAoWhGMp/ZqzSafCcrVRbsMQRQEfh7lZ4n5Fkv+AC/6bxj1aOyPrxEM9VvSnNo4vr6qDdfcgPNlMqi4fppZu1smG18Keh+sguUXzjtKz/nL/nZ+C78UJ3M3JZ5yx++lnnPHrZeETcfDaK+sLF0N+TVkV0evfI/X0gE/xJi58gPhUhSkwR6v0pGBAdOdR/+hWaa5WlEiRgKi4mPZpcK/t+3vbBO/vJxw8Z+57cjFNU+x+OtPw63p3q2B7Z06u8AyUKzoty1mhCk+OxOHKl5Exwb2Kg85/vBuyUBLcZ7vzYvLpH9NQ9H46Y/DrFVG3FVUncD2O1jn6kbuQZ7tZt8Ic9moMYC3UWIm4LDy+jDWyDDt3KmT2948Jwm5X35EjAB9sAHoEQBAqApGcTVyIOG0i7Lodj8Wu580P/jDwp26BUz98V5mfuEsuk45/o/ZdeLqri7uTDTh/ZKI4NpGPSGNlSXKRUgk7hfAlYAZBPx83/9oF/Lw/EjpH7Cn2zmz57u3gjO63mJ6XLpPYdR1KultvxEu609r0PIItoTaUtxJaY9zVgMZejK3SwgK92JMwvrjk1V4Lhz5R4atUI/PCnVMOk4WPzbFREyrZ+MNq1zyIoYc3QzebAmcUQ500VnciLsDKvpDKEEtkIxEl1iMA7oXDn0t9Sv7oMOaW31R7XqVVZ2B7ExQwWybA4GYEAAyfzI3YJrPBFNqgSpOeCm38hx18WBeAQbidtZ6r0Eb0egJze4PHnFqvXk+Y1zL+smJvmL9gyadV4xuOTPtDD5jn7+DCPHUHgXljNszD9vldOsc76ZM+wO4n8augOuTQPhTuN8ol4li0yiTdeLEhbR8KfDDgEqjAnRJ+EmkUrWzTNLuR9tm7LgTPGi1qePLPYXyux6LvoJHp2vZMApr0dh6AM4Npp8wawOmUd6qWuior4a0SNtwCbSBH4iX8JjP0cmAcIQP9487OMTpaw/fAXw1Da7WtV0jQjVjolljrNZqMmGPX2QfGngd9XPgRrmC5iZ9YAfS8GLjJ6AoRmV+M/HEzm4yM27vIL3t+/WdtUgaTG8wbCeizQ0CbHUaU2dHk7bH7SxznBy4fnjh8+4hNa8rbrgiw8yxkp4eAIfqAXfBS805pgGRUBkhNI2Gr1jidUEpa5jRm/u8vwzfM/nPm26NScnEqI286St5lovSby4kG56vPCT0646PDa/O6y/SAkhMnSrdzT+EyqJYlLt/CFktSgM6oFgBRNWKVtg0sdMElBrYNpPV4OuuKIoXr0yZs+nRx0ccVrn0yQvb/Fn7MvySnObmIe2mrFe1XcRuUNrKQ8hH1ABb0ti11/MJ7hwqinJqP9ujWe2xzl/A2WunavslDfNqfTAveZdYjz+aDogXnaq/G19Lr0JfStG043lrIC5gEIO/kwxIf3J7IoHONcbgYdK4Rg87N+p5+YPW86MC9GzaFeT1re09fOpUzTaIUC36KSCEWDWVp0is7/+7AbMdYr+W/jXnUSOUs5ka/Lz4UP5yuPMLLVB56bjTKB9zrMglXHjRHO7U1yj2q8uDSsTalyqNU0BlR8zcb6efU4CevDOvj85JXruzBiRqbItFlZ0LbDQJPHJICLwZIrNuhkOA6pCmbDsnOf9R/2tPPgQfy9xzYMfxxCKXTgEiKSOhNR9nUh5OAL4d3aKQ48aUyFYK1rVEhqXhbV+ZQOeSS7ekV+XX8VhaMj6+/q10Jw6PQYOUxoYru6/SGlgBe1Gy2QZFRKmfZZNS8jxJRRIHHJ762la8sGc6MWAnsbgpbysSJVfi7A8sNVxifpK+n8FG9x0Q9CeAo5NlmAD529eGlT/OxCBUpEsTSECSeJBSW2OXeMGFc83oN7HqUTK55lbJb9Lej0Nc645QVCmKEQiaH9daxpzIjngrLUoeXiOQTS5joESiNg5XZ1dJeA16Ey54al1AfWILntGDKH6ahi0USH9hlSM0a00iVAhElqX837qcQyUsVCCaqzdhE1WBCtg+eC4Rd3xUH7PLJOXB9cMskPYVsVPnXQ8hWnMEVsuVlEOqBb/CYU82JnjCntq3XA+aFE7gwz5xAYO7Ahrnnr71PDczd5LfxV6vzx8d9JPdcM/FXyJLlZMwtCcy9ZZq9lI3YZjVDwCHgJ8BxoTX0V4iUykSZHOgInCHKaoG+BGBUBw6QiHCSKr+AVA0nUWcMIFXnMfsJ5oG+Q0jwQweMucrZ+/D1nT+39N1jsePvYxMWKBhwotsLCiN5BCMxnjRn48l/oavd4tNvf3o5HPNfbrqVPyXauF4lu9pOS7lc7fys/+Ou9hHjBa4lt3f7Lg+y7txKtKpfRbraIVGTB21Zbuy3dOin9Q0PjuqpB1fbdimXqw24VzGu9rUn2XsmHo7x3+MkO/b+duR7Q3K1UUhYXW0ACa5DWrDpEANytbs6Hwpx9+nst+NMYCfB8J1z9e5q0wwtlbNV42rLgatdvBrWRa8wV3sUcLWLVv93uNot2UTVYNy+4X6efUx3rfKeUGtKxrgH5+rrye2jyr8e3L7EtVxun9NaQj20MnjMqebEcHcB85ZwYS5fQmDuyIb5l6EDz7S32BC67nD177zE7wuYWrhon0bRNBQRKWHOP7q5jXXnBDYP7wmsXaLEYYe3i2Om2Qqmnll4u8f2w0d1aSqj7dpzGyEvIhogl8+UKJEJkeunUwKktbqzbhIGAOObnZi6SBg9cm/4zPbP/IfnxlGiZkM6xlAMAPKAABUzOUCPnFGAdGu0XWYzoY5Gdu9m+8h99370Ssy7PrtqmwnB7sooAOZMWQ0xbigA+NxqzTa3DHS3N90pc3OLpvO8D7Y5ELVkwGPbStrtTd/GtdtbuPV/u704f7YPb7lxfsoE4caBvgdf7UvurYfd3kV1SsI6xY0JXfG6+ft7ytBeetjHlG/j2sfkb6vo3d5Z9r+Hd/15p3DL+on1kwYpbfWw20tNG9UDSkCsOVBK31qBu73UHf4q3+1FJYZ1txcghetTJzZ9ajD+4biQPQPOJG3025fUedmcfs0aauMfMgSPFe8ebjzB5R4mniAgb2PwkA/vd7X2spQ2QdkbrB1fnuw5Uz+QJyalBfR+sMdn21GXalNGTGuhjwZYczkbYM0lIHc2eMipRkM/kFPdPD1AnrqFC/IuWwjI27JBXj9+f272qXPC5VufjDrfeEwOOUVZmCqXyOIYOmubsCDsiN9BxD3Y+TBlkgg9FahEEpIQrVtpL+j9akz/DwlhM91fu315mbyY8dHo2dM4QVv3DDbVKjwF12UY3LNiAGLE5f8wHkKwB2F8tz9s/BqG777it3da/09fOguX6TEe0nN1ihx45OkyACiO6XBNIswKv6xTl+yOvREgGmjRrTgEni2QKcWQzgfPJ5bwgaSo5YQvApNVBGulxDKieNn0XTWrNcF+2TOmnKrXKYEsITXU30NvDVxK0ntOuBMqMRxw8S4bRB9nI1oMS0i1lschXPGJFlfKLlWiSMVPEg1H+MlydB1kqAgWIWTtIbyx+pBWK7cog5dab0iYNWurNaXMHT4sQ5k7gqJv7uW54sLuy8S9Lu6osNMOLOkInAPR8J6oZ4BQgWQEa5nLodjJs3sHZ79QRDfdnkHe8TQnxqSDpaZUBFgRnGABUcftjwuPxf70bVZt+MId1t77V0ve/jTWnHyQ0Eq9Tcq2GsdWFXS/UekOK26JgGiCHwEY8CRKvChWBYItkUQmTQCxlxJfnXHDvwinK/mxInhqha9MloOIA3BoqAwQwf3YkMlSeCvcc5HKFMDGoSWd0ItufJ9EkTQBWw0cGDaYLycCfGgZVLIEeDJe8ziMaqSMnwQX8bWzjSUxd2/8/qBl8MJeO4ZkXfjNghM2es0Uygd0KVV3FTC8PtPh6RggDllXdLKVdUptJf5AjC87rJ3Qyu/m8oBtIfYjb20/WUePxpKqgcppLOHx8ukQoTls2r/LVZ2MZXOSPOL7fRAzHDC2CLiH6tun4WOvhu64EX4gunuPqCpdUYSoFF3hQgXIjYGWOCzrrHSHwHh+lALWoYSzmMwtsVJTL6BlK8fBcpVtmLOj52eMmpbfJ2T/xi7f1n4qvEZOEghTD0RP0dCgVQTrAjhZ97nQQN0ZruWkJhFo63VgEoiivOJ4qN451uiTz13xNF35PnDCfen+oQXTKRtj6Hh0JYRd1jdT+G64lglgYkqeO6pldDpW7RgFjRVAJAXB7KIOwNiVVC90c/5NuGnhON7CWa8pESQ+MD1MIwgVAQ6qbFjBAcqGBE61MsBpjVmpUguuCzpBc3flnrBKCpxd7WFGanvrReQQRb3sTw9RSkkVgVAAJ0JgTuN+myuPxW87t0wU8r1rQ/+J65uavWox+gjZGw0BPho/0jdE+4UDb/UpdJjfQHjCIEKMB78CvyuND7BVqPhyOKOAssXlFfpeuOs2VivHSTH6h0uRh6Vv7m+5f9rnBddnfm66F01QdDiPXljtNHYenbHOTES10zotK6APoIEBc2m9nd27dqvnG7B5wV99RIenXqIU1YJ3MxTVQi+X5SlR9Z8eDpufhQDJmYSwoC2ItMgAEYEWmyG2RQEi5MIpTqwA4gvozMb21ublTzNqTfBLrycakF/8ZDd5WvoSN9OnZSmpLMA8PT44hz9bFrRyudE2ox/n4/UAWConYECiqsSJwmwG/Ex7HtsfegEarnpyligvObSqYvIBlePQd/4z6ksbjJp0wqIuWmgFMIOeQGsq8I50im5TPgeYwtqkvBlHU0/Z+02uPXyZRQvVBD2w1omTtbwqYi2Tf5ypW9WamiEa+pyRmTY1zFxaZzv6LrKbtr1P60PkDlrGIUwVvbGrFVGcBdVJeQLIC2pNUHd0iuGG0Y3HYhi9rzd8kNJ5l9e2gb/Yzup7mJzoaQO3DlRw6RO20UBgYVdEh1It7j6yJAA5toGBDhNXOgwaHJZWaIkDQqKVRXzi0E1U4DYrZMuaLZ5vECunsh+Yxg7GT2m7qAATkh4Ab6SIKSGJ5yLkPbpf3sotghANUOByA0zMhN6GTMp3IqqOAPRQw4r+hOk0JVyNlo1E4piNyPXkGTY3PUSh+5b81Hp/tqczWcegBdwY6trg18vSMQv9nJ2DI38OWPQi3PP8oK7ty7syAWD2gjAbM2X1dHFGYS7vknArDfarV7diZVIlEpuMigfMcmBe3Rz5wIn3Pait98rDkYGD0pd0J2FpWTouPfwlEfWtEgpccNgGMcGW6obChqsEdzaVcL52i/eenWShU/9+G+x2bbyQWuVQLhHFIvywZImEQRewOcyuxH1SeB+UWbE0RSQRx2FCPlIM8w9BmKLQXhPsOCNI+WJvG3D0+aO5XawdHnI8J1M1Rg2ytoYPlhu8B9C1ZNp8g0WYH90t79xvAI0aWrNJBWsMQSUJEWNOrLl04vLWq0F+izKO/9r/w4tAsvuMDkR3n7HLZU3niZ8O8WofMQ7PO9TF6Mo+/1/LOZ3htmU6RG4Nk8tgDlwGj3ushRq1RM5ejZyCJGpQtJiz604/npbGC/HbdcaszfWes76Qe6zgAsK8pUOm6nsWQ7SAJHGglXm3UlexiAc1j0qTI5o4tNA4gOcWDFxaROIGP6N08w8YAp3cBERBKfsL/5RXcTdADSRkLBgCBNVpGKsZuUw1TOWZJOXtwOKOz4JipjQzngc6C3RaCLPFaq9BXwG1VYToxzFXIwsNdry2NTNoe/KE1TfjP1PKN6FvxbAxgV6uCChQEWeFAog4bqg8eCyGqs33hrbb+dWFe7yLvyJNE8iF+ixRGdE1Lb4JW1o89FO12+t6f+NJ/pp6RSE5z18Mnhy95SXrU9FdAw2iDn0Bbj/EVQXNHfWCqWMPy2uSanjDbXEIAHMhtubSUyZLxwmWjwoKb901exo1HlLShQq7WpYNovpYeqiLfhZClSVg8I2KnFGodIoVbaizTyzlhzBi1HLC2IFW1nHhi+//WPj7FP+bVbq/xXPFgWDMmIfdHAEQ+NzzZJt7qvd3+zsc+iVo4sQ+xl9HvdxOXpFCBRkqUXqnDjiaFZQoPHVbGoekar4Eo6PeGwEvhsBdcWIZOxZPQVbIknSanasOtbe58b2m/2GjavnjmmZ9YXlu+kqamqRD65fiPwDKmUxLqmjmxhOGRHqimQlDIj38q2sivXx/NzfhlIN+kySN6zwTWV4i6MRh9xn3Fp1HRHt9lgv6VTs08F1nfZ9L1o+KuTn82pho0d6AScL1YyIWtPrNUFVMJoxL/8ArbDKujGX+wZRtz7awaAHlDWgVMEUYcemDTI+fPG5J0No7Hl3t968Iovg28D4G3wa9XBYy/wzz/WfWsi6CdWmfFv7BWxmuB2S8OJEBs8EAmlLw1FMPZVBZ2+l28KQqxiAYeKCLWUNlrAV295697tk5foF//vx3R3eqDvUjyzEciy7H6FV9mwDIjpwnXOyIqBp2UPfJebqc3a+JTheRij9a3Jq5Hm+HIlvPLU8GC1flf7A/6rF+jFlosgrWMlB/HZkjjJbASKx3dsjdcL0Bj+zTVnLhOi+YHbhFbsdjscg7hoQ8HzR5R9CMOkPaT2lwgFJKPRIBBlSH9Rp79QanEr1T5yra8tyQlVusugnTG8wRBLYaN5LpcRj6JKDXtT37COLkmMcwiGAysbDcccwjndpSN8KOgGHvCb05dN8cfSTmow7PHnobN3AN3nmwbp1BVu555dm/LG9ABdelIRYqphmdCjdlHle1gtWsbqZLVlnLSBUi5yvFo7B+ZYgoNpGvTEYdC7hKy1FOv8ZMzyHNu64J3mHvcrXvh7nfydMbDktXuOjVimBP3iMu9gBRNVD2lLX92bQ0DMLKeGgxc+60b1DYfni9wMUDb9258RfvGMeOaPVoV8/yrFRQHBtqKFZOxwYy1pqTsQW/VzVj4U2ofSznsludSKopYOQt1XXURfPrfeLBA+CoXvzMtEka7Y5OPNy0tuexmFaDOehFXZbXz0Ev6iFJfdS8v8NZ8/4OAXkHg4d8+olTfY7+UStk6+Qn87q8/NxWP5BTHVE9QP75KRfk+U8JyDuyQa5zLb/aao1V8bX8qNv+GrX8qPuAGrX8qGuxGrX8qAtBgGSMk6iuKyCZ8Jj3xQDJFCdRBYVWHBBqW0YRk+51fXX65Xbh5kdbYro67f9XD8UBO7ExuXnwSdcHOyz8NhjHDb350prM5HpY6qiPRKaEm49oOrD2rfaa+4lhOa9EWP8KGwBNUIBZCzqVlal+cPgNk64/vHLezH+0073/jTIfkQYO04e0XSUG9jz6BphJt5liClj/Ivq6TodG7LHcbbQpuAytXyqDZ0zZT5k5T798+rFYGp63tFbNGo3qjS9P5nbFJkXKAVYBN/BNHFp3qBhYVOE6464uG1b11QdsNLFibhwW182quF3rwAVL+v3SNd7kvuFW6IEoAZnhQOnRNd32HVwiiHmFTjYUM2LKwcQB4iQje+Jt0kjzYjv+/vC9QzL7xfdt3LA8MqaHehOoEDGmd0P37fN13TZFndWL6hAiDB68RxgwMyTdxNx8YVh0g6/Kr4FrbFS3Ll4NJBd/qpoceAjSxutcIEVf1+2UQCtfMfbm6sSnUpHBmtWxKqjNJ/g3vyyzDz1gtah+17GLW5Jz0olx6TnpakpFoGPOiU7+NcL76cxjMYyv+4aFGLv/67No7QW/1eGBA+hpnXRLyNZ13oF8OkB9cHKkDM/Z084QzhzX6tubm0P9FtWKePMhwp7hkZgzTbVNM4FJ/7cAbBe8GdKZ4PIZ/5ZutQS0SvrfZCa52ihptvfGzctbnn84bCJ5fxxdHWMx6yRimUnPFBVX3roCAKwCCBZjV20v4H/Lb+lk62qjYCFgprFDlV09eP3urn38Fs//WOd91DEpWRMJwb3MQGmQKtklgDDxOWEqvKljOboyE7KpJxeqLCEbahpURmBCNq10Ekx5AdDgeqgLmx4y/C7YqR8bOLSVZwWvHTfLbNnnGf04nlB/XbA9vp3i6ILt8VXvXbDffnxs2fznS147P2+sa+Vbp7Eeu2B/PyBYMWDRWt/sGiVX1t6ZbK6HLs98CA9rP+HCr/rugt1E1omvMBEFTah3p0+3oXe36rUL9s0WrT+FCDoItjfpcHL/S8V9PeCT/pULHyA+BtlvWc9dsB1dZ4wumbXed+4BI2OHelNaVXkX7EdfuLiS+cWQuFJ8lOCK/rtgRx089sDb7LEgw7wrktTF6XGVd8FG1Qlrz+eNXyu4C3anHj6nN/aaIJy7buo85TY7SimtKumC7fGVC5H8L4Rd78pjsev/bV2wvz1p2e3im45B+7pGuo5YHfOhgrpg5/x7iqMLtse/ld8F+8Igryuy0L7Cg+03b4o7du4fPXfB1rPxh4cxMyGGrF2wAYZV3AWbas+rvAs2ChhrF2wAGD6Zu7FNZoPZnaJKk57q31P3MvSwPeX0mWt7qugfAvOf2DA30BrdzZqtOD+7w+OAeSvPntzp/2UB12PpsUZ3B6PTHDW67/NO/69GN8afwrSTXe4eKPSf0qNdbVOJxws91Oi+uezsnEcOLcOXf6t2PzfGqtxrJoCdLpCdrNWnjY1OV3CN7gWS1VfXXlwftj1lq5tzh3hfPdTontaxkD99/xOf+aE3kSjBuiI9oATEmgOl3bzTFVejm1pDocprdKMSw1qjGyCF69Pu/2X6dGnw65CCLV1C5u9t23jlgF4ulaRPrUu4eh7E/PhfzwOcP49L2n26fH+m34Ylnuk7Hh/YpAd9+mZtzcZ5D63Dd8b0intg3/ykHjQFr4Srmn/ej4ruedB3xNzAFO9k35kdm1Zb0811tB70KXWRQA8oAbHmQMn6RwX2PKDa0CrXp6jEsOpTgBSuT3uw6VODiQmo08lgq8Gbf+cKCc5+IyD/mQ1ynTPWahGQV0LGGnWbRCNjjbq2opGxRg3oNDLWqJGGRsYa1WhqZKxRpYGWlgbnNKMcOdQ41tYj+J0gP+pbwTyTBl30kJbWU2+crMw+wtTK/hqcpBY21uAkNY1Ng5PUjX3t+wg3GiRfUbfz28BFxvstR9QOXKIHnnix8eS/sI/ww1cfNsye3CBg+7HhT623LttUyX2EbYtOcfQR3vji/3gfYWnb9Yu/5E70y2v7au26li27VWQf4fj6kf8aTR3jN81on0LqEDxdD32EzYtOcfQRBtyrmD7CLZ3XC5beuhW4PVl1/u/jg4YYUh9hFBJ4KJGxjzCABNchAjYdYkB9hItaC09/zezpc3CZwD127KfHDI9Svj7CxT2pR40onK2aPsLFjkJeYTHgY9cK6yP8t6PQ92zxf0cfYW82UTUY/3387Czzs2+/+013uZb727oJiXpa06fKvx4c+IJ3XA58+jtCPfgYPOZUc2K4+yg5z7kwj3lOYO7LhrlBu9pUB07D1abKr4arTZ0xGq42lbHau9rhWfkTU6uHCdYMSaj72nzyVz242kI2ntSIXJKyPnmYb+6bz0hn/qa/yf1R8L3+UPAPcJkk2reVaURkCUj54XJE6h/CT8LH0C4H4Exy+w5/j0sPPfRw3Z0b5mkTOB+L3raF8gFtT/UDZ+us8WkezxaojULaaiw8EFCdVoucKzOqCSakRPsiWIM2GfZ5ShRJgblifHGleEjkgM5x3hkjfH9JUrV8Qs4B8MVGoOcAEAS9nx53AroWQrKRKVcqD3YkMa6SissmsQBa9fQvLi4u0eVcP5/MGFjZKVkiUqCpBRLoiDDyJuvE9qyRK38KPZpV/2vHv7fsonThwgdh6MJFUCqCO3JO7gQYAneANirRJaGwmTBJjBVYiCWxiVAhjMzZ3Ue+r3jgrPAJJzx87U9sGUNmDjYiQ7hdSqkI5vA5mQO0SdUzB/JHkznEwhwbczoLkuBXojwBj6MEtyLS2DSsa08PvkwuGgGb/Hiiv5V+gnlGvTv/a/9dqd+813X+q/WjXR3JhXRrRmmMTy+ESqJWBPMKq3Mxb2PVME+LTkzGZXCwRykHlYliaZoUuLOAfYBdUpkUsg78JJGNRInwVw9IShKlYhcY+She1Kxbr3V/hM06cX+VrK9fIaUcTSLTSQj8ckVwLp2Tc9FVzjl4E1wf0yk7ri62ACOWJnArQrd7sUeWi90CpyeObvnyXNuPZEXI6jOVUvS+x+WG+xAwdjhLc6s8UEWI+6l+PBY/1c54dOTxgx/Cj5rnPnPsNJqyOe+DLclEKJAUMTKSXvqRLZm1tQCWrVdqLOugHcgSEFkSolKk8eXYgEqrQCyBM1DaG5HikQi783qp04KR848XBuXV3XCQf3qCM9ez0hMJyPTafcE/cplC5SeWqLAvZnL3WXPdgbw/NQHYZzElGHgAzmSY0FxaziVZfwIb9Kw0+oxaefQum+us2JfeOHzyjSszx7+aQS41YE6MShdLNaWsiJfaHaO8ES/M+oHIeTHpkWIQD+820anvTv0oDReGL0tBFAoxS9PjhpbBv9R0uCVcV9Pk7KQT2+uVfwpTsKLqCD1glcGJVZxJpepcYkXSDA+54Iegs/Mg50GJOYJ7fMRFbw/vEhPUtlGtqjkRGBAfhf+vqen2kO9Qh9v+bGrsf11c/6MurllTru/7siJJsO2dQ+04afYXTtj01cWVDzwJX7PTsKgHw+G/CFch76SpTq3JtOziesAna9jEB8eDDlQPb7OK1+SpHgtM6FlHegGEukOEZjLNe9j00saMpiMrootrkzo79x68t8xn0rCGO2buTwqu0irXEJU/TblQAXJjMLGDbmf99NfFdUJiz3prZ9cJ2OKxQvAyaOtgg+jiClm3nJN1qqphXaV3cTV5PmnT2SM2vkuLzze+fOxNd8qeZWXWaYELr6iWYSyykeOOaplK6+I69Zez3+43Tvff5n2g6/LZM8i5SZXfxRWCgyobVnCAsqm8Lq6Hb3gcP7L5tPdGk+WhWz7euGMAFWwgQss5EQJzGvfbAngsfptQ4Ny2pMd1wcaHTTddXfmW3MvFEj23K5dJgEWn+2zmLDh3LN0iEZfej5e/AYgrZMkJiXxYBRldqtGlfMuCk+KpdRtmCTP/FrY7HtLjNevT0gudaBC1xDevlZBXZA7wFfnARRcKvukgvPcyZw0xtTxLaVP6WDAXCMOC8dXNnJ03PB4XGbhIGThp3Wn3InLo1BemBzA15iullOVCURVjOV2oQoDeI4heMx8G6TwLLE6+uU4uVE1s+sYhCQqE2b+sNdVyQXb0h6DJl27WtDxwvRnlUCR6I8OhSOy63heHwPtncr5/onlVO0tqydTBUYKPLJbFiWM5yllFjRlq6fptb/AE2wkLH3fqakKWVWIAuqyqKRXBDC9OZthWDTPoxfl12LFwC5bKVMB8iWLh2qmTRw8QsoLIIsmF79kjNlGmiHPht+uhHKFQob8we6tXOr+onZfx2HvOOfmVdEHAJLJdg18QqUqT0KeNBqkimFVsxsWss2aGMHPgUDp5q/VLF7qlyYqhSo4Z1PZcp3x+Xw+feScX7x8x+dY/5QmVyxs6eOKKHJ7uLqSyQ95OuGWzuW5eKq7JObyt0Oi6IabN54TvGPT7nt/k13dWbdgLAEglALjNAABULTp5ooQpY68rk/bN2D/mk1vIpss/fbVv0DOjSs/3QwBqcgHQ94YZ4WgG8v678nG6X212fcHKo4J1Y7ZOTBo+enOl5eM8teDKx7GxqOh8nJHP69S/PHS71+5Pf89bPjIz2ADyce5bcO1u7rYwgKSCmzdvVkI+zvhf3whq3d4WuupJaFz7kuHdDCIfJ4OTO3GGwJ1Kyce5fdKo9VkLZcjCcSWt+rV+etAg8nG6czLHxhCYw6vKfJwdZp2N5v8RI9hlbyv4w75nC4PKx/mzBhfzTtaoamfXgPJxZJk7+76P/yk8f3ZE/C+3B9pXcT7Ock7OqaqccxWaj7MkKTTb56Vn4FzxuKveHueKDCIfB/UhWPNxgCLE/dQg3v+BfJzxDzf23zClY/iE+Bf3ebyFQ6s4H+dPS658nIWWlZOPE98kdIGq4UCvye+ybnnPG5qp93wcamyuhxyTp5ZcOSaHLCsqHydkfFZIilWy1/6loaGtmtesrvd8HKqO0ANWCzmxklj+f5WPE8ymxkYcFbcVh2322XckXPLi6cC35J2SXsnwFKS/QiRPpJ8V1WH7oqWvWCmH58DUuzlprnjDOhEsk5kAv4FR8laKkxbuXusmXGeSffvQj757WZ+PvpOjSaTJX41IoMLCNQ9VMUjlf3jSWT0a9Zw68ASKP53i8Rr4wL+Uk5wWTkLfok+nakUiEsAwJI7UnhtlK8bKEDZW6ny6zEkt2xV/uswqI63b5I51vI+ctNrXJazaLI3TZRnv3zdOv3PHf3Li84FNWpiFa5wum+v5TuS92T9si9vX1tbGDks0Tpedjz4QfNdlsfeewvjZThfdZ2mU5JhrHdpmiX+m35qWd4ZktztcolGS49LgmPvClp/CN/87bkZd37vuGk2kuoVdPbPY8WRAZr9eiiVNpuUCkhkx4GPR6ai7cmGupEG3A5GbPAHJHCctbfLYPn5ad+/NabIHK3Kc4Km5Gjip3eW1PzbEBws32MwauLrG3amAZIGTjiqvPUy2uB46Y2XhOM8z9XYCkiVOmt81+dmC0b8HzhPN71LPUekHSDVxUt26zVt1MOIH5U55cS0w/pcZgFQLJ021iBreMzjOf/PDk42Uvl2vAFJtnDRkCH/Ds8j2fvPm5Ix7lXJ5PiBZ4aSuF4IPTQuOCJveVt5w8OhjIwDJGie12RYff6f9xaDcaqZBq6J/hAJSHZzkdurR4ZaeJ7wyRkUNvbZ82UVAqouTCps4T987/L7fpJ8/N7qaYTEGkOrhpIADAalLixMCch8nN8mqdnc/INngJHmzdrXCruwWZB0tvjqof4MEQKqPk55FHi25d62G4GBTsee/QUd+AaQGOCn24s0abdZkCw83e9Nmyl9dJwFSQ+Lhrz2ND5z6PWTmz515voNP9QUkW0LYom1mHllqJti349Lz073inwGSHU7q0Cfccvhhr7Bd43+sWTEhWwRIjXBSrdi1NhfGDfU/MnH7+fnGbaYAkj1OetW++N+Y14/CVk94uO9MxJwugNQYJ3nLOnxe+TrRd0Jmi91v/905FJCaEFy+i/x7ZW6B90qzca/HFZydCUhNcZLn1doNUt8eCF972nVso5ov/gKkZjhpa7uGr0/cMPHObN5B2vDjefhefJxU5HPSpujUYu+t3YY9r1b/sIJ22NKBx3LYcmndjk2KbF/4TPOyafR2wMVf9HDYMpRNRdWP35+bfeqccPnWJ6PONx6TQ15MFKbKJbI4hgwCtk7Jjvgd6pxPtLuCMkkkkQAlhDeu0DJlgKqgGB+Nvs6JE7QtdwcsAK/OaahfGbzfYlipxFqnjErr0oxK7EEY362dSc29LvZFIbPeX4i16DXihx4TKvXs5OYAgD5bA4Di2PLPCq11ygbo2Bs4TAp07S4OgZW5ZUoxmkIBnk8s4QNJUcsJH3hQfBEMuWIZUXwW2/jSz/2X+ExyqNXmdtfx5KI8NdTfQ98CLSXpvaKyEyoxHHClWxvEfjU9XU/HBriu+ESLK2WXKlGkAvHLcIQPHBB15zX2vdIfT5vK8m+uC1748Z/HDj1PpVJWy/FhGVbLCYq+uZfnigu7LxP3urijwk7bMdUROAcisYdYtEaoQDKC1bv+nr0fs696ZzQpGLV69OfE8qcR6QGsjZxgAVHH7U8Y73+nD/R5+oDqoVfK6QO4bhpS9zRsTclw+iAGiMOFOhVx+uD3yanrU29MD9hr4ti0WSvbcXo0llQNVE5jCZsz+UKE5rBp/8Z1K+X0weq5YudVa8Vhe6Z6Rj+p325VlaZhQFQ+1OFCBciNge6UVN7pgyl3c132PU0Lmrt2Ye1VFyNXGMTpA8i6XzlZN6ZqWFfppw9eNDgtXbLF0Wdm4HGTRWuPX6nC0wd8N1zLMKaP57mjWqbSTh+cmZS9JfSbue+Cux9aeryIdqzi0wcQHFTZsIIDlE3lnT4Y1nd9m35pX7xXppo+rPnTn+QaIFVz+gAi9CsnQmBO435bOI/Fbzu3TBTyvWtD/4nrm5q9ajH6CNkbRdtURvqGaL9w4E3uEot7wiBCjAe/Ar8rTbOVKlC2uLxC3wt33cZq5ThR1y+Zn5vuRRMUHbo5FbY9jXVzYuzSGNFWt2UFrdrJyqZMc7TvIfNel/9Hs1/5G1pTNtnh3Qyb7Ojlsjwlqv7TQ6umsxAgOZMQFsDabm112juzRQEi5MIpTqwA4gvozMb2/IAtEyzGuAkzB54cer/VMXJZ8Bq+xM30aVlKKguwv/rOObW/f6bfhGvNJDdbB5f3QDsELJUTMCBRVeJEYTYDfqY9j+0P/UinOQcvLVFecmhV71k7/szsmCo86JBwbNPu+H/qoodxADPoxZNNBd6RTtFtyucAU1irsJo7+7ndjNA57Z8Pvtor76AeWOvEyVpeFbGWyT/O1K3nY9kti/09at0yee7iPd3KJOBzu37pVdayGLY2RHUSbFksp52ud0enGG4YI3gshtH7esMHKZ13eW0b+IvtrL6HyUV+bWDxTBVc+oTZuAjcH0Z0aHTo7iNLApBjJTzRYeJKh0GDw9L+hnFASLSyiNRtu7IfmMYOxk9pu6gAhH9jQwB6kTdDqXCei5Anb1jes3qCEA1Q4HIDLMoLvQ2ZlO9E9OwD6GGH+OBPmE5TwtVo2UiE5QTONT8n+/bRi/zmNMudKdkTakXWMWj7Y4aukPj1MvMvavdt2NG8u8+Obi7ff1V0aFfelQnYXhLCbOzNUMC6izMKc3mXhFtpsF+9uhUrkyqR2GRUPGDXGObVzeqbk1J7/3LCP/eGT595ooux5KyC0nHp4S+JqG+VUOCCwzaICbZUNxQ2XCX0YlMJ52u3eO/ZSRY69e+3wW7XxgupPcLlElEswg9LlkgYdAGbw+xK3CeF90GZFUtTRBJxHCbkI8WqRL4MhCkK7TUBdZee4zmZeplrkLU1fE5A4TYA6Foybb5FQHQblHfuN4BGDe14qoIdOqGShIgxArDz+K8pCUXXwua/GeV/9olpAdl9Rgeiu8/Y5bKmMzUroZzTGW5bFkDk1jC5DObAZchqwOo+a4mcvRo5BUnUoGgxwrfIb3Xyo4uXAg/ZuIWMPPbmFTlVGxcQ5i0dMlXfsxiiJedEK6BBpTpYxIOaR6XJEU0cWmjk7LgFA5cWkbjBzyjd/AOGQCc3AVFQsoThn/Iq7gaogYSMBUOAoDoNYzVz8jDFMJVnkpQ3kdsdnwXFAga+8jzQWaDTQpgt1rkY+gqorSJEP44Riom+7SzuW/j55B/arUhYMtaYsjEB34phYwK9XBFQyDmhACKOG6rePBZD1eZ7Q9vt/OrCPd7FX5GmCbfIRhiVEbaNODaXtUkoIlImK7CNMCyig+Bifqp2e13UDDHWp6K7BhpEbf0k4AlJbHFVQXNHvYA70MG2vCaphjfcFocAMDcb/3ph2Nz1nkGHqz+/0v1SdC1qPKSkCxV2tSwbRPWxymmDYOJ4HIQqS8DgGxU5o1DpFCvaUGefWMoPYcQoNc5s0PjCOf7bfSYdbZTm+rxK97d4rjgQ5kxOIjwUCoDA514k29xTvb/b3+HQL0ETJ/Yx/jrq5XbyihQqyFCJ0g8uwNGsoEThXY40k1R5LEC36o2AF0PgrjixjB2Lt3RUyJJ0mp3UJE2W56avpKlJOmSQf24EUM5kWlKFyQipjRgaPUOIYBoqQ08p+FfXxqTy/d3chFMO+k2SNK7zTGR5iaAT+bEz7i06j4j2+iwX9Kt2aOC7zvruSaUfFfNP4OU4u6IOXocvmW36a3fKZUNVMZmA58WN8PPrjCtjZxsxdYNmW1i0gPIGtAqYIoy4NKgz5OoSZIX3ApfC/APVw29TfBt4H4Nvg14uC5lq9YIskbHzfHYECW7ku3eYrQdkcjiRAbPBAM6w8dRTD2VQWdvpdrBLEcYgGHigi1lD0TdnLsLpf3fsrVHm/ovntF3SfJSDKVmO4Vh0OUav6tsEQHZEcLLDqWrYQS9To0PftprodBGp+KPFrccyMuBGtaZrexXLQrfkDTP5lvHGyyw0WQX72Km/jswRRktgJNY7O+RuuN4o8GJYyYXrvGB24BY5isdikXcMCXk+aPKOoBl1hrSf0uBAAtnHiESAAdVhvcZevcGpRO+ETg6+9KidoaUeeWB6HLrLg13XtroFiJPz7GAQwWRic4CJ9bDTqbpFI6ylNvae0JtD983RR2J8x7yeDx6ITjmE74lp+FMD8b4Z5dm/LG9ABdelIRYqphmdCmZ0ul1VK1i2kqllZZW1jFQhcr5SPApB18MQUWwiX5mMOhZwlRb7AmaFe7JjR7usBv7r2w8MfzxlJmWvBg5LV7jo1YpgTzQnezwMlj1lbX82LQ2D8CN5Zc+cOoN2+rZYszog483l7aeemPzEsSNaPdrVszwrFRTHhhqKldOxgYw152TsI9uqZiy8CbWP5Vx2qxNJNQWMvKW6jrpofr1PvBg3XC9+ZtokjXZHJx5uWvvwWEyrwbQ6pC7L66c9fAV0OrxQH6+OwNjpcGt9AvK+Bg859RCmfiCnOqJ6gHyMPRfkg+wJyPuxQa7z8d/aao1V8cd/GU7rEmscDKd1ieUNhtO61Xmsp3XVx3/pp3WJ478Mp3WJ479UQaEdoITallHEqId59XCAMpqNyc2DT7o+2GHht8E4bujNl9ZkJtfDUkd9JDIl3HxE04HpIYMpy5Rq7ieGrZwTYe9jbAA0QQFmLeCHWrSLHKgHmMt8RBo4TB/SdpUY2POt9cBMus0UU1iDmeRST6dMSHssdxutLSKDrAF4gF/YT5n97j3+qsPCGV7TFotizhy/sL48mdsVmxQpB1j9Wg/fxCmmap0YWHm4HuOuLhtW9dUHbDSxYkTpTo3cKb/fby6cEjL6WdK7HTyKh1ieQzYT+oR9PLs+1W+TbEbAdO+043pAyYUTpeK6uu07uEQQ8wqdbChmxJSDiQPESUb2xNup3w78JEJ+Fy5zSDpjvVJ1pzwyVt5aSi64EDGmd0P3bUw93TZFndWL6hCiWI0KqNDMkHQT8zFdwatTl5dvDZgiOnbVamzxPAPIgYcgRXGC5FJPt1MCrXzF2JurE59KRQZNU2dXUJY/zhy+kXI5cOkS/z+u8deS+zeYE+PSc9LVlIpAx5gTnft1Ce+nP4/FML7uGxZi7P6vz6K1F/xWhwcOoKd10i2hMQu4DuTTAeqDkyNlOjUhoJbr0DbTVNs0E6CYimwAbBe8GdKZ4PJZpk0FJP2ntetXzzRtl/fBDOPd15znHifvj6OrYyxmnUQsS4tTVVx56woAsB5BsCKYZMwL+N/5NjrZutooWAiYaexQfbc7f31hwzyvxc/rhS7rKfElayIhuJcZKA1SJbsEEKZMTpgSbXQzdmUnZFNPLlRZQjbUNKiMwIRsPs13dEehwfXQADY95NP6gnvXSb+H5PitfqfqateEmtWYJJLzsQU3htV8Nte8NXYfkTuMVjkR8aXISHgJUYhjcQOplVqilgrieEKmvEsNsg6nOm1bn4YHsFlOJ2U56qSoaqNJzViqIHgcxrcc1Tb3zNXT2wJz1rU+v2RDZw+yi4QOQHeRsMtlzTlq1aTyJrYAeKwhPNlMcy4fOJhFjjqdTaqFPQ9X2fixy6buuHJ+keBguvD0pejq/SlrfOj9DGt82PWy8Lm+8dw4ZMkMv8NNXnaa/lQq0QM+BY5c+ADxqYolWnN00TsFA6I7j/pHt75ytaJEigRExcW0jivssnv2Whu6r2GdNSOFBymHjLD76UzDr+tbWUKuyDm5EmBQXCk+SnBFJ/NlhSo8ORLHtU3lfKnHvT3/Lg+YbRux0n5y0HIyY0LR++mMwa9XxLEiVJ3AtURavPoIWLHrjroFZPZqDNDAQiIuC4+zJ5oNCH832neibQ25/Hn1FPIZbR9sAPoZbYJQEYhkOXIhMsiRsOsDeSx2PW9+8IeBP3ULnPrhu8r8xN33ZB5j36h9nmp3dYRBNuD8kYni2ETgVsJKVSKlEtbHVJ+x0mn/nlr1j+l56TKJXdfl1HEr/NQxLXn1EYjqslqVN3m1Me5qQGMvxkoew+1Jb/YknfAVfpZT/irxzenvfuHw5plkw2/G5tioCZVs/NGDyRBDD6ZkzgJnFEOdNFb3MFyisCYvpLI/8HSZElsfgI0lEHWyBLrnOzqMOeuGas+rtMcMjGtRwGyZAIOVvQFg+GQexDaZDWZ3iipN2uxOGfHLFFLqXoYetqdsWnFtT31oSWA+mA3zsH1+l87xTvqkD7D7SfwqqA65BnkoLCQvl4hj0SJDdEXKhrR9KPAHgHlSgTsl/CTSKFrpSWqdU67HopdGJ9O1XbiBuerOAM4MpoUbuEdxvw1DajFhTxhSi+E36ZpaTKXrK3WYK3BrgiVoYanfMgWFX4z8eZo1+Frkx4LAKSsDhw5/Pt6ZxB8jAX12CGizw4gyO7rUjO5+wqNb4KZuw+YnPHdUlXfNBLDTBbLTQ8DgCX8GVGNnpqxhNpCaRiKxMqChdUGpv9PMI18+JftuDvjyPmfL0qtklLzpKHmXidLL4qIDH5xXeC0csKmR+feTA/SAEhBrDpR2tzlNzRblPDuFdZ+AjpEWAFFrKJBtGDYU3Ybh1ytiwRuVmM9MC01nXVGkcH36y3+ZPqUWh64kfTrdiUufejj9T5/i/Klrfnz/zCYzwtZ86tV9xc2EIj3oU2rRbz1oinQnLk0R7VTR+nR1yPpJdtdfC1Y9y1qcf7T/cj3oU+oigR5Q8uBEydypAvUp1YZWuT5FJYZVnwKkcH06hE2fGkxMQJ1O+slY62hk9262j9x370evxLzrs3vrISSY3JorJIhrTUAewwa5zhlrtQjIKyFjjaGjAqHqGToqEBlrDB0ViIw1ho4KRMYaQ0cFImONKg20tDQ4pxnliNpwQQ9paSK9cdKyEjn5n7UeYejDQXCSurFP44kxG0+onS70wJOhbDxZXPRxhWufjJD9v4Uf8y/JIZertyhN1CczhmtjqUFplWspLCOOD2BBT/qv4xfeO1QQ5dR8tEe33mObu4S30cp5pHb7MA2RxQ5H4tQ3sb0CvUhtKU3bU9WthbyaTYBC6+TDsph5vTGDE2mMw8XgRKJ+CcWJzPqefmD1vOjAvRs2hXk9a3tP3+d1GQ1PKRb8FJFCDA/MMaL/cvfftYZlmQXm/3x6pLXdvtvc6PfFh+KH072h8DK9IWoblnKaIz7gnnET3BuiF05qjXJPl7OINqXeUKmgM1fx6TnHz6tax9Cde7qdadX9JzdO1Ng8I6Y1vXI6RY88cUjgoUR6mYB2KCS4Doll0yHZ+Y/6T3v6OfBA/p4DO4Y/JpeXM4kQSREJvS8Ym/pwEvDl8A6N5oZ8qUyFYDXtVUiqCj+AxIgztd0Pw6No4xZZRsYqZBJJb+jawouap6YoMkrlLJuMmvdRIooo8PjE17bylSXDmRErgQ3IYL35OLEKf3cQisDt0Cfp6yl8JDrE0U5JOoKAxwHwsasPL32aj0WoSJEgloYg8SShsMQu94atojWv18CuR8nkmlcpncf+dhQ2i3I4bYWCGKGA5epUYuypzIinYjLKCtHIQGkc7PaglvYa8CLco9W4hAb1ErybHab8YQNqsUjiA1sQqFljGqlSIKIk9e/o2elSBYKJahybqBqM/05tPqWnNX2q/OvBgX/kwOXAFzgQ6gExeMyp5sRw91EiGnNh7qFWyfFsmBu0q83Qro1wtRnatRGuNkO7NsLVpjJWe1eb2s1ND652AhtPakQuSVmfPMw3981npDN/09/k/ij4Xj/RC1X7tjKNiCwBKT9cjkj9Q9TdWrXLAaB2reN8LHrbFsoHtD3VD5yts65wgxY40oW01Vg3Ie+zi06n+ptgQkq0L8IbqPJjE0VSYK4YXzyy7anpx5+2Dc1Oqd96z77J5NDHzBcbgZ4DQBAqogN4gStXB/As1yrJlTKJBdCqp39RUVGJLuf6+WTGEK1p0dQCCXREmKOMN7uGzstt5L+ky7whR4p37qB04cIHYejCRVAqgjtyTu4EGAJ3gDYq0SWhsJkQ7SoMzxaR2MTZql1+NernZt9cBNmm2SL3pt8vkJkjxPsU05mjplQEc/iczAHapOqZA/mjyRxiYY6NOZ0FSfArUZ5oNG/Guvb04MvkohGwyY8n+lvpJ5hn1P73c15OVr72yR82wvbTwgvkYwY1ozTGpxdCJVErgnmFLlzM21g1zNOiE5NxGRzsUcpB2Kk7TQrcWcA+wC6pTApZB36SyEaiRPirByQliVKxC4x8PNanvePD80t9ttttP5QQOIu8iW8Smch0EgK/XBGcS+fkXHSVcw7eBKNBnbLj6mILMGJpArci7LnX7kWjM6N8Dm0osGnZcRu5tcl/1PC+vHtcbrgPAWOHszS3ygNVhLifmshj8VPtjEdHHj/4Ifyoee4zx06jXcib8z7YkkyEAkkRIyPppR/ZkllbC2DZeqXGsg7agSwBkSUhKkUaX44NqLQKxBI4A6W9ESkeibA7r9S+ylzPSk8kINNr9wX/yGUKlZ9YosK+mMndZ811B/L+1A2WHmVKMPAAnMlwY010ZYxr/Qls0LPS6DNq5dHHf1zU3f3Ov4FrhekWp82nfyKLJTEqXSzVlLIiXmp3jPJGvDDrByLnxaRHikE8vNtNp7Mt9aM0XBi+LAVRKMQsTY/HvNvnPd9uROjkFcn3YhY3e1H+KUzBiqoj9IBVBidWcW6VqnOJFUkzPOSCH4LOzoOcByXmCO7xERe9PbxLTFDbRrWq5kRgQHwU/r+mpttDvkMdbovZ1Nj/urj+R11cqe3oK6WLKx/2KPU4DYt6MBz+i3AV8k66V0QX1711lI27bZ4WPDOhVfPrU+p667HAhJ51pBdAqDtEaCbTvIdNL208KqWLa40FGb6rNj4M2sybeP1uSoJblVa5hqj86c6FCpAbg4kddDvrp78urn99a3LYrukfobOu9XBdZHnujEF0cYWsW87JOlXVsK7Su7g2vC+uqzy823/O0B9Nm1zreYuyZ1mZdVrgwiuqZRiLbOS4o1qm0rq4+tvXzr53rJf/Vsm4/ddr/0vWzpXfxRWCgyobVnCAsqm8Lq5GtR+U2MgCgzOa56ZeaDpwjwFUsIEILedECMxp3G8bxmPx24QC57YlPa4LNj5suunqyrftyaVD0HO7cpkEWHS6z2bOgnPH0i0Scen9ePkbgLhClpyQyIdVkNGlGl3Kt8y/i/x7ZW6B90qzca/HFZydyfq09EInGkQt8c1rJeQVeQJ8RT5w0YWCbzoI7708y3uW0qb0sWAuEIYF46vXvHIxeJjvYb+8watFF5cvakgOnfr+P/a+A6yJrHs/7iKiKFYQG8aOSLNXFBJCDUVQxLJqDBGigcQQBMSCCCpWVOyo2BsqNlQsuK5iL7urrr2tupZVse2ya/vfO5kJmZk7Q/IlkHy//+fzuCtzmMnkPfeee+657zkH0gNQjfnKJOW5UFTDaKALdQWg9wCi15yPGJ1nwIpzsKNeLlRN9fSNkkQrJWj/8sany0s//isL2jV/596ZOb3jKEmR2I2IpEj1daMHh8D3z2L9/jEdTe0saUamHo4SfGWpPEoqZilnlbJn+TTHP2oFLU1/f21M4TMJeawSD6CPVY2kIpThyaoMe9Mog16cX48TC9fAOLkKLF8iMYydOrp7gC0r2FnEOnM7eohj5MooZ24nj/hxShX2A9pbXbFr25XVbs9DNnc+eahNdIft5HUNfkC4KllGnzZaoopQVok7m7LOuJvDzIGP0stbtS0LdMclKEfFs8ygW5zlljZPqwQfe1XkXFDqOMuQrbKhW4eOuCGH2d1XqOpQdBJs39ZRPy8Vt+Qs3tYZ4WGZXe91vps2VU25GReeYtptLwAgiQDgBgIAaFr08kSJpYy5rszO270b/nLLzTf7yw9BKyaq2lGWssrN74cA1GQDIOKaO+FojuX8d/FxOv5iY5f0pjBkfbHLpMY1/3hdaXycx53Z+DgNOlc0H+fvp6OGf3rWL/hA7fFVhMfm9TcDPs6dzmynm/s6mwGp4PLly5XAx8n6bd/yoT5i/02hg7s2uHAhxCz4OHNYtRNlDtqpFD5O678XD4rLqeK5KNfttE+t0bvNgo/Th1U5DcxBORxT8nHqyvf3j65u47f1rF+MxYW+P5gVH+fPTmzKO9nJ1M6uGfFx7i8O6+BQdMRn/o49fRdPuNrdxHycHFbNqUyuuQrl42R2jzqc1OeRcIu1W/T06ZlbzYKPg/kQjHwcYAhxP1XG+T/Ax8nr1PDlT9eq8rJadolr+PF8hIn5OH92YePjZHepHD5O/e1W1yLvBQWu9Piz4Zb7rRcYnY9D3ZsbgWPyuAsbx+RIl4ri47gvz/gtcv4y7zV7Vqwausf+ndH5OFQbYQSsslmxknX5/4qPE8tkxsYVSTtIg7fxDxwLkf3xeOgb8klJ/wSYBemrFCli6LmiehxftPaWxitgHpjmNCfZBW9YJ4JlMqPhJyBH3jP+yQbPTi3h5fUa8/Q726NKxvejn+RoC2njr3o4MGEh2klViFH5H2Y6a55GzVMHnoCsNRiVdnz4l5LJWcNR0DymdXGtcIkM5u1FkdpzY2pVqzKOSZV6Z5c5asZ2xWeX2WU5/Nzm4xNh2q22oc6lae+0ssuazw8e0d6tVsDW+l1qv9rS5qtWdtn1b1/eenbaI9isrCJeGZ51TCu7LD5CdKlutZOBh/uHjFr9LHGCVkmOvdf95EMKuwStHnMzmt8jWKRVkuP+prm+pc6vQqbd9+Umr3n4p1YTqfEc+YG/bIYI983+zr7qubV7gagaLuq1+GybJ1ume+54YrnVNik7EIiscFF2SN+bMb8+91l86MpBcciJuUBUHRddrb9UsGaYtyDn0PBa/cf9/AKIauCioCOL3o25FxK86S/l3Q3nQ1sAkTUu8qvxTSlyFwnmrld26Dn23VogqomLatT7IftT/sjAfSe8007G3twMRLVwUfqk25PH9s/mbd1jdzIl/dFVILIh3lA81zKy7gHv9bK6Nd/8m1oLiGrjIqeZg4dFt9oTuCHp1Dy/NZ1SgKgOLsocrLobGL8wZPYThzCbM64Qw7q46PbKXuNGbxsSuLHhMJcZK2ssA6J6uOjEmTGH2x4c7L8pPonbU3YTark+LhqU2LXVZ2FTv1RbX4t5vnVaAVED4q6Ch+Frv0T4rL07YOiWX1QQeVtcdNd1ZLXryznei9b3nvWpzeJ0ILLDRfPnL73X8e9GgTtt3DNlz8YmAlFDXHSgNHPWozN9fNcWDghKG7p9BhDZ46KfO2Q2VzY+wS989EIYfP5MFhA1wkUpHqkNT0l68I6EtD+7If5uPyBqjIumvwh17DbmvfesXLfeOxq+vgNETXDRRW952K2vhT5L6jTZlHvIpw0QNcVFuyLW5fwy60/PnMktBjxbchEOtmbEiLKUzX90J94z3a7/5x5fnZKAyAEXrXu2yqNreiv/HfX+5qVMTlcAUXNc9HTtzZgkwT/BB5zEHgvWpU0EIi4uqtVz60TnO9cEhcl20ceGP39DS7ZswWFIttw2a+WrOy2SgtN+WD7//sPs+0ZItpQzmSjb0Yd2rTh1VpCT92jC+aYTc8nBREGSQiaPQjAImDolt8Xv0HA+se4K8bEimQwYIbxxhY6UAaqBQr4aPc6JC3QtdwezaroXQ/uK8H5LnAWcpO769X0pY1SqXwT53Sw9nhe6rnbmr7+0o1MLh8PGJFQa2cnNBQCdgQBFMfHPcrvrxQboGgYcJiUWu4uSwMrc8ngpRqEA7yeVccFI0YwTLvCguCK45RIjUXQclD/k3k/3eQeXxDRLafv9B/IRqOZz6EegZSKjV1R2xEYMC1yh3c3ivJpO19OzAa4LPtGiytSlihGpwP5lrIQLHBBN5zXms9KJdhefZbzvE5Q/vXX9p0O9G1Ci5fhjEdFyQmJs7eW74IPdG6W9Hm7YYKedmOoJXAuC2EMErSVUIJFgbf1aOmRn5Dnh7D0XBGcPtso3nEZkBLCSWMECQx1ffxQchvXnf9kH/1H2AdVDr5TsAxg3bdqzGLamRGQfjATDIadHRWQfuCTbPuapFvgfvNaunuMHH38jLpZUC2TgYgmbMzWACM1jsv5/9qiU7AP7hT69jjRN9zyUFvnaP/tLqElpGBCVkz3YUAHjxkxPSiov+2DqQ6dPuzoc4BUom7Vd2GxQP7PIPoCqU7GqTmga1VV69kFUYJ57jdRf/Wcon+a3fxE11YTZB1xX3Mog6eP5bpiVqbTsg18HTwhY8a9DQG7x/j9Odml11MTZBxAczNgwgpPToxKzD1wja3SOujzXd+vcIXs+uZSQ25mbJvsAIqRiRQjMadxvG8dh8NvOrhQJv/Rs6Ju2yaHai1Ypx8jeKNamMtxbqHvggEfuEot7wmCHOBr8CPyuZO1WqsDY4uMV+l646zZJJ8eJGr9EvzfdiyYkenRzyg3DuzkhuzRywyqgnezmdRmnPmc9C05P7XFzXuGlN5RDdng34pAdu1yep0S1f0Zo1bQMAqRADcLjHQQcRZheZ2f2GEDEuHCMkiph0rM8Dr3YDhjer+RA5y4B85v+3erv5KYryNPSm7iZPi3LROUBtvtS6YSJi1r5zLz3YuaHomaNjACYHytgYESZxIlSrxnwdzpzmP7QUzqtWHRpjemSxaoKr0wc89bpdsjy11fOTcn9/Xk9LBkHKINePNnSixfuGNneMAeYotr1t4syV504EpT2Z57dpG8DdhtBtaX92VR7pb/5+MdZ+vV8LL9l8fOs73x32L73ObR9cO+Xz5U2JmtZjLU2hFMMtixW0LLr3bAphi+MSg7Dwsi72vDu+O57PXcMHW4/O+IouchvA1g8UwVDn5CNK4HnwxI9Gh268eWxAHJ1CU/sMVFlj8E2h2X9DaPAINFpRaQe25X/wjR1IH9L16ACGPxJfQHoz3iIUuEcZwHHs6+huXpeQi1QYLgBFuWF3oY8jutI9OwD6KmT+OC/1DYtHkaj5YkShgych5Mz1o/tdlBQmFpzzLmf59wg2xis/TGiKyR+vTwb07r2xw4jPnfnbbg51+HIgfX2hkYmAMwKCLMFD1HAuocTBrOhIeE2WurXRLfE8rh4iTgBGx6waww6urmtf3bd47/X9s20yJ038DmH3F/Buuy59O0vSWhsk3DcGYdtGAq2JFcMNtwkxDOZhPM2rd537CYPmv7uTaDrr1ME1B7hCplILOEGJ8hkCFvA5DC7EPfFwfvgmJXGjRfJpFHqQZ4oVcVw5WCbotTdElBP6VneE9XLXEus68LnCAyuB0DXGnX4FgrR9TB07tvBRQ3reKqCHTqhkYSIMbR5vRja9U51r4zmwaO6rw5+RXafsQfR3Wf15fKmM5WVYOB0hseWWRC5dSiXwQq4DDEejO6zjsg10SCnJA01OLSQ8KX95lJjZtgvwdvuNhqU2LDzIjJVGx8g6CMdstTYsxii5cmKlr1HpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WNzqKgLEyGTBJDidxu+Cwo8ULoleOOzQK9AmH26s7F0FfA1ipi6EchobCqtST+a/Bz4WHJ3tDbDZ4/pBxMwG+FOJjALlcEFJ6sUIAhji9UKg7DQtX+S0P7ndzvBft5JZ8kDtHkCivW2BhhOohjclmbBUlE8QlK9UGYekcHwVX7qbqddVEZYoxvRXcNtIS6+knAE+rTDzcVNHfUE7gDFv0MXZKq8+CxOAQA+X2dnj3O627T3+/Ih5cnDz8/OYe6H4qnDyr11fLWIKqPZeAaBInjXSBUy7wQvtEzJwwqvfaKDaizTxrHFaIbL0qXdhCv+tF7mlWB5c8ZtXxNer7FccGBsEI5iTApFACBz70Eprmnen9rcIsjwwPS0gZafJrwfCc5IoUNZGhE6YkL8Gm14YjCuxxpk1Q5DEC3CZOALyaBp+JEGFuMt3RUymP1mp1UkibDe9MjaRqRHgzyM14A5SxUSBWSEfy8ED2lIESQhoroKQX/6tuYVHGol6sg47DPNFnTuk9E1pcIOcGPzby9+LxEVMDP8Rr03ZGhb7sbuyeVcUzMloPB8lFdqvG2/dv2xHGXJU/N1cRkAZ0f98Lz15GRsWVeqO6lTIHFGnC8AasCpggSl59vrRHnzZ7ju6bGmpT96x1aUXwbeB/Ct8Eul4fM89LT2+t0i+Gl9R+3acPrHrlGQEbBigyYDWaQw8bRTD1MQeUdpzeCXYrUCoIbDyyYNQr75ugsmCrXLN/FXAhe1PJAtyfPlpOjvFjHI/o4xq4aewmA6uCyqqPU0yzOyTn69G2riU0XkYqbIm03Ce0Bt0jZ2SbqO//5g/uPclp0P7VaUIIK9rHTfBxZI8iVoIrU6OpQuOJ247gnIpIL47xgduAr8ngOw4q8e4Tw6bD03QGZdUd0zrArJLeXtAyXgAVUj3hNE80BZzx2J3Ry8NCjbgstNeUB9Tp0l0d9XdfqFrBQvSfcRKCW2FywxHI89apu0VjdUlv9PaE3h52bY6+EpkV3tX489ssp/s5xI3NGTHv11JDzS0M3VDAuDbFQoWZ0Emw+ZZoZrUPJ1PJYZa3DVRIFN146QYLFwyQicQw3PgFzLGCUVv0BSAX9ObfFZtv8EyF7x0lCMi5fI6cLWMDH0g0udrUi1OPIqh6O2aqnvONPh7JtEJ6SV/7MsW63s5e4w3Hh7KJ7R/eXdjnBciL6faRLR0MiFRTHhroVM9CxgYq90Y9Nsfn9TK1YeBO2PhoYdqsbTl0K0AekFNdRH8tv9Ik30hW3i6WoQ9JIN2zi4UtrIodhaTWbVofUsLxx2sNXQKfDnD5snQ4n9iEgTzJ7yKlJmMaBnOqIGgFyIY8NcmceAXkyE+R6p//aaCxWxaf/IrJ1iRgHIluXCG8gsnW/5zBm6xLpv4hsXSL9F5GtS6T/UgcKLYESWlvkEKMm8xohgXICk5JbBp50ubu7hs9mi6hR15/XISu5vpo6ypfJ4+HhI0YHpm8ZLBmmVEsfKWzlHAN7H6sfgBEUIGsBT2rRbedATWAu9xVp4KB+SdcoMVjPJ/YCM+kGak9RB8ykzz31YkI2UXO3sdoicqgagAf4gTnLrJEyYtvsYfGee56dnGw31K2PIcztiiVFKgBWql74IU4J1eqMdBJwevRCnuoyYWWrSbDRxgrtQF7+FGoREclfVFBv/uqqK5oaMclm6sDgj2c2JflslWf6zeQlnzACSp97sqF0vKd+5w7OocS8wiYbhhkx5SBxgMhkZCHefu4y/mvaMf8C785pM7jSkybMDrjijA8iJL0bum/CXvodijppguoQIrFWBVS4zJBsExKc+ZN7tVnxcoPXQmmDltwm9UeYAQcegtSaFaTPPfXLEmjjLVV/cw3xqWzIYDR1ZgOV2PhpxErrO8KZ4sif5/24/BKZk048l85J10gqAp2rjAkmEJ28noT3k8JhWBhfRgQLLdz+4S9ef8FnbYj/EDqtk74SWjCA24KcHaBJnEyU69WEgFquQ1emqa40E2CYDvYGsF3gIehMMHw2sncFkP4v9cwIOeY6KHjptSf1elu0oTSCwKJjDMs6SVieFaeaOEPrCgCw8iFYoagx5gn875m99VrrbDCwJGCmMUPlWX1x7BC/08INwsvjC13XDSRbIgG4Fw2UlqiSXQII00hWmHr01m+xK5+QTc1cMBkhG1oabIxAQjaX5ju6YdDgdmgikx3it7vg1nPafWGuz9q3qp6NmlFZjbEiBVcdcENE85lc83bq+wjuMFblRMSNkyTCSxKlVIwvkDqZJWqpIJY3RPEutcR6ZHU+CyqGCdgM2UkxQXoZKhuM1KymCoLXQRed9LDNtvjSiz+jbvQ+v75Dyd+yKvYAuoukvlzenKNWTTKU2ALgeQDhWYGacwdhA5QgvXKTaqnfh61svFPEt7w/njt4ZV8ZO7DNwHWrKDE+7H5EjE99vTx86jduaOXx+KJwY+HnobVn9HU3Aj5ZrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0mSep3b0uvHN86DF+y9bLNtTav2r76crDb9ubGMJteLJqhV7s9JKSRGhFb2Wr9qYwVNIotiOqVSLbYsmNJjlf/Tzw7XXc0c1ISsmCLufrhj8ekWkFWHmBMYSafvVB2AV2xCk34asiQYDbGMhk5aHh03M6EvjllzwyuOITr0SzE8m52jz1Q+g52gTgopAJIYVEecgYl2fxGFY1/MXBn4Y2ruX//QPX1RWP916T9ax+hN156n20ewwyAs4NzFGKo4BbiWsVCWKj4f1MTU5Vnqd31Or/qHelz4m1df1yToW4lnHNPLqA7CrixEaSl5tirsacLGXqksew+NJHjNJZ7LvpNQAf3/fzY0e3hp6256cFlCNybHRCCp58ccSkyGG7igy53EnDEO9LFafYHxEqZu8kMr+wOyyeHV8ADaWkGjIEtiZb0owmnVDXc9N2mMG7msxwOxRgMHK3gAwfDJPZprMZnM6RR1NupxOVeGWO0ipZxlGOJ56HMh2PHUykMB8ChPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueowAXsOKnADzyjyQhHUYmI9QVCL4SfpSy2myo1FHWbbuDVTE7TU1G+5kqIvpH6Onmp58af3YT6blAvX2NunkBOcq3jRZ4cXbXZUocyObgV2/bMCegbNatpyut/xbhMNjZkAdX4OhSbcC+EJlwLp1VAUa5gJJIdwiVgOLLQ+KLnv2JBr3cuOl3csI7D35W19ySjx6CjxykXp5UDlpg2jXXg7rwRGXcz+RWEElPJYUUoPLaayRVlzp9TdJ6BjpANA1BoK5DVM/Sj6GoZfr4iANzZiSlGBpjMuGFK4PU39L7On1OLQlWVPQ1jtafD/7Cmun44Hqj8v7HTRa9uKwesybzRtYQR7Si36bQx7GsxqT4Mr2p4uq/84ffuehX4HlI0sx2yp0t4I9pQaJDCGPWVFKT24Au0pdQ01vT0NZrWnwYQ9ncpkT81mT0CdTsZhrHWt0ujtXL7Cu+CjZ0z+1blhRtgSDAhm2xJ00UCexgS53oy1WgTklcBYQ3RUIEw9oqMCwVhDdFQgGGuIjgoEYw3RUYFgrFFHA42WBuc0chxRGy4YgZY2zWiatK5ETf5nrUcQfTgITVIP9mk6sWDSCbXThRF0ks6kkyXPPq5yGThHeOhcyI++33Jbkiu8lhH1yYphO1iyK6tyHQfLiOMPqEEn/df1CQkL8hrg2DLFvVfYpJbOIe11ch6p3T4shXLxWEmU5iamr0AvUlsm0zWrup2Ac4cPDFo3PkMwcwMf4URa4HAhnEjML6E4kcu+pBauXRDpX7B5a7Dnkw63jZ2vi1x4yrDgjhcppTBhDol+ixq/t+uTPsdzjsu9DmGpO0Xs6Efgj+KG0L2hkHK9IWobFgOXIy7Q3lU+7g3RCye1w7SnTy5igzJvqGygo6v4JA7fPXniJt78FZFVqjz/3osVNSbPCBXTM9ApetARhwQmJdLLBHTCIMFtSAaTDVlx8MHgGY9L/QsP7i/cPfYhOfpSNVQUJ5HR+4IxmQ9HL64C3qHV3JAbJ1dJ1DXtVZIkFZ6AhKb1Udr9IF5FF7fIOlyslMtkYdC1hRe1s6YoY5SqWaYxajUwXqIcAF6f+Ng23vIEODPEMtiADNabj5Kq8O8OtiLwOPRR6iaKHokOcbQsybYCDtcP6LEnn5M6g18jSKSMlsYJJaNJg8JafTkMtorWvl5dfX2AXKF9ldJ57F1bQfOmfsW1MRBDlbBcnUqqfqtqxFuhFmWlKNE/Lgp2e9CM9urwIjyj1bqEbepleDc7tfGHDailIhkftiDQqMYyXKWUiGI1P2O502UGRD1UpzMNVbPx36nNp4wU06eOfyM48Pl+bA58lh9hHmaYPebU5cR8z1G4fDbMORqTPJMJc7N2tRHt2ghXG9GujXC1Ee3aCFebqljdXW1qNzcjuNqZTDqpHr50/KaEMd67XpVKunO3krfstfGzfqIXqu5tZRoTLIE4bohCEucr1HRr1Y0DQO1ax/pa9LYtlF/QNasfOFvLBsADWuBIX6FFY10FnDPhemX1N1MPUqJ9Ed5AlSuOEcWB5Qr5xd+vsvnQ/ey+kDldhn3aljZkHZkD4K1+Ap0DQAgqogN41gC2DuAxA0zClaoqBtBqpv+DBw++6ZPXzyUrhmhNi1ELZNARQepmZXbQDyfnL/PK8X2ZUPgk6ROlCxf+EEQXLkJSEdrxZNWOvTloB1ijb/oQCpsLsK7CMLeIpCbWVu2H/q2f+mb0zqB9NV9c79+3PZmxbiXA+xTTlaORVIRySsLZlAOsiemVA/WjrRwiMMeknO5esfAjMZ1oNW9Wd+3x4MoVonGwyU9H7Key30DPqGt9Bcf3HfjOa0XG3G+7ov32kQuhDtB6Pr0QKklaEcrLZVVekmmUp0MnJotyNOhRpkHYqTs5DrizQH1AXXHyOKg68C+ZPBETwh/doShWlKS+gNTj52Oxl1tenR60eU9ox9xLo9Mo5WhiUJkQ+OWK0Fwoq+YcTa45eBOMj+nFjqunDsBI46LZDeGuH1ou//HiX/57Rzb7Y//7fAvDG94besblivsQcO9whuZWuWOGEPdTZ3EY/NRGFinhJw5/CCmy2vWkbbcUZ/LhPF8dkglVSsZLJYn00o9MZNZ2XrBsfbxWWAfrQBYtkcdKVMpkrkL9wPja/moCp39cmCQO34kwO6/Uvsps70onEpDlNhHgPwq5UuUjlanUH4xy9xm57mC87xsIS4+iCAbuQDPDBjISXZH7Wl8CGyxXGntHnTz6jovPhclrhggK0w/2mnc17hZ5WBJPpQ9LjaTcuoGU7hiG7njhKTVEzhNlR0rAfjh9oF65LbYDtFwYrny8RKmUMjQ9HrKyoFb/TfVDZlg5D7fduG6T4VOYghXVRhgBq2GsWHUZWKk2l4hIVsO3XPCXoLNzN/fuNysJ7vERF3nuvG9VsbWNuqpaERsD4lfh/2tquz3kOzTb7dlMZux/XVz/oy6u1Hb0ldLFlQt7lA4qhkU9EMl/oS4CTnZERXRxLV7Q/j7PMtbnwJ9jS9cOmP/aiAUmjGwjPQFCNSFCs1DzHja9fBxRKV1cIzKdztptrOeX2T+qRr3ZfWqbtMo1ROVIBBsqYNyYzd5Bv1w/43VxrWc9d0t//wBBXuy2RmM3xJAD8Kbq4gpVJ2NVnbdpVFfpXVw7D2gqiB4aGpRWffWHekdH8U1YpwUGXjErgyyykeuGWZlK6+K6YIWwycTHK/wKh1j+s6TuVXIhvMrv4grBwYwNIzjZEZXYxbXB9Jb/1Bm4Mnhu6M8fOyufkStomaaCDURIxooQmNO43zaHw+C3CbycOnzzuOq15Z7D1l9Wv6GUDsHydhVyGVjR6T6bFQPOXcuOSKRl9+PlbwDiSnlCdAwXVkHGQjX6lG/pZSmb/+hOvGe6Xf/PPb46JTG+Lb3QiZZQR3zz2wg4ByMBviI+DLpQ8E0F2/s6kYbmUjYoey3IBVJjgfzq/6xfU7+2tLf/4ucxh69eGUgm8VtFQHoAqjFfmaQ8F4pqGA10oa4A9PIhes35iNF5Bqw4MyP1cqFqqqdvlCRaKUH7l2fTep14e+MJf91M22O31pdQWoJ4YzcikiLV140eHALffyTr9+8RaWpnSTMy9XCU4CtL5VFSMUs5q75b/KdlBocHZDdQBaVuz55NHqvEA+hjVSOpCGXUYVXGs0Fm4f5w9DmxcA2Mk6vA8iUSw9ipo7sH2LKCnUWsM7ejhzhGroxy5nbyiB+nVGE/oL3V8GnXbhSfbSVYMPiP5yU3z8rJ6xr8gHBVsow+bbREFaGs44PYlLXMNMqizBz4KL28VduyQHdcgnJUPMsMSrtrbes2KoSffjh3Uei7bm0M2SobunXoiBtymN19haoORSfB9gmR+nmpuCVn8bZO2GVGWVV/5HVgTkZBb7/SDNNuewEAfgQANxAAQNOilydKLGXMdWW8ix7XmX44xHv23ptD9jTr39ik+f0QgDuDWACI2DiIcDTncv67+Djrnq3y6Jreyn9Hvb95KZPTFZXGx9k3hI2P83hwRfNxuNsTU/YX3eCtf/Ljn29uTPrJDPg4eUPYTjfTh5gBqeD06dOVwMe5NaLKwW4Dh3vvuK3aWzP6dZJZ8HGGsWqnizlop1L4OEUhnJFtQ2r5zW6emt9i+Q9DzIKPU5NVOcCamF45HFPycfr/nPXk+Gl+YGpu59mH8ndamRUf58hgNuVlm0Z55snHcavZ5GntvGLhtN+ftJh1pGcvE/NxZKya8za55iqUj+O8Keo6/7fVvou3zVuV9cPeHLPg42A+BCMfBxhC3E+dx/k/wMd5uvZmTJLgn+ADTmKPBevSJpqYj3NkKBsfJ2po5fBxUi/nTM4+nes7Jyl7sOxAp61G5+NQ9+ZG4JjsG8rGMZkztKL4OPNOBq58lDDMp2BDdLuv3x/fYnQ+DtVGGAGrKFas+gz9/4qPM5/JjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvFo9t050vnNNUJhsF31s+HPm96Of5GgLaeOvejgwYSHaSVWIUfkfZjprnkbNUweegDusxWfHh38pmZw1HAXNnQOLa4VLZEBhkihSe25MrWpVZjGpUu/sMkfN2K747LJF4/5N/L5ZRPDKOav7Tp1yup9WdtmZrguP3K/m67Wjm+2b7r23vtbKLqs9OtPG6twFr8xeblnPO7dO1cou8+n17cc//90RtKregXl3p/aL1yrJ8aDh+ZGx+5y8tv3Y2rF0efYerZIcbeS93343bYpX7oKDUnHR7y+0mki13vXU4te/zvnOnXHs85WrvdYDUTVcZLvi15Cp10YEzDgc+HXbsX86AZEVLjpcc3zJQY+zgn39fncUJiZ3AaLquOjllAZui5p185w54++pXh+3bwCiGrjo07TSz37dsvmLDrk8PfS3nxiIrHFRvVMOJVMLNgtnW1zz7Tfw5k4gqomLzq1YVO1T5yi/eZJqR1/ldvkeiGrhon8C7gQMmrItYHe13VvPnd53HohscFFW7rMbp5TX/NbNjHrwZ60d94GoNi6qLt2wOu3Y55A1+/Y+2fvrXfgadXDR68Y+m+YdTwvIHX7H8vflzvCz6uKidn9Y5dU+ti1gUed0ydKsezFAVA8XnQq3+a2kyznPrXVlz4ZcWR4LRPVx0Yg5G2dxPFx4R4rezL0X5vgbEDXARUrfC/d2BGfwdgfWXhL2T/06QGSLi85eOJGjOtfGP+tRUYeXa3JHAZEdLqoa27uoJCvfd4u9Q+H4Y71HA1FDXDTMMXPl8CUrQ9YuvRXX8NSHM0Bkj4s+Ll3fv/Tdx5DVeX4uYUObPgOiRrjI98GgE4HXtvhPv9/99Mee+3oDUWNctLnEberuzA2+U1d9Xe7eXgzvaoKL5h+0tuqUdzl42pMxPYYPO2MDRE1x0VvpoTcve58TpM3q3Gnjl0xfIGqGi35vYuNw61oJb3qHFnv7vax3HIgciO/VcVqvjyfTvPa5pds6RUYvAaLmuKi7+91BTRLtgxek9H556+6tpUDExUW8J7GpypUXQjKmbHc6fLv5RVqyZQsOQ7JlTkmn+7ZzH3gtEDfv9Gzxe2eE2dA32XIBk4myHX1o14pTZwU5eY8mnG86kdyfspogSSGTRyEYBEydktvid2g4n1h3hfhYkUwGjBDeuEJHygDVQCFfjR7nxAW6lruDK4CoGNpXhPdb4izg3BipX9+XMkal+kXQfPysxTU2FvYM3nn5cuyKdS8KjEioNLKTmwsAcoQARTHxzzgivdgAXcOAw6TEYndREliZWx4vxSgU4P2kMi4YKZpxwgUeFFcEt1xiJIrbvXpuXNVEGVzYpVrhspsTb5OPQDWfQz8CLRMZvaKyIzZiWODKH2kW59V0up6eDXBd8IkWVaYuVYxIBfYvYyVc4IBoOq8xn5UWZwjP/ui4zmvXU17uW573Ukq0HH8sIlpOSIytvXwXfLB7o7TXww0b7LQTUz2Ba0EQe4igtYQKJBKs7xbUcb5d1TJoeQjn4PWLoqqG04iMABY21BnBAkMdX38WchjWn/9lH/xH2QdUD71Ssg9g3HTiqGLYmhKRfTASDIfPoorIPrj4pMT+dvWWQav/7dO9Wc3zNkZcLKkWyMDFEjZnUkGE5jFZf+GoSsk+uNH0UvKzLjLflU6yQSdexZ4wKQ0DotKaFRUwbsz0pKTysg+WbFzw14ePQ3yyf19xXP4pkRxXMVX2AVTdVRGb6vJMo7pKzz4YssIuXuZbVZjZakiN2Xl/9DBh9gHXFbcySPp4vhtmZSot+6CNg7DunHih59Hxt7/VjLCSmTj7AILTmhWcz6JKzD6wS3TrOOnOHd8FXfZfsF5gcdQMsg8gQticZkQIzGncb1vEYfDbzq4UCb/0bOibtsmh2otWKcfI3ijWpjLcW6h74IBH7hKLe8Jghzga/Aj8rmTtVqrA2OLjFfpeuOs2SSfHiRq/RL833YsmJHp0c+JMxLs5Ibs0pqZUQDvZR7wpsmvjtgdnVD2zcnjhO3vKITu8G3HIjl0uz1Oi2j8jtGoqTQEAKVCD8HgHAedKil5nZ/YYQMS4cIySKsHwBXL0YrvttKBg6qRJ/IwfA39ef/vWJPK09CZupk/LMlF5gB29HH7nU1V+4KqeDntGuDs1MAJgW1gBAyPKJE6Ues2Av9OZw/SHntJpxaJLa0yXLFY13lY1YuZTV96utU1ufP756Zt6WDIOUAa9eLKlFy/cMbK9YQ4wRbXhfls5P/QpDNx73ccpbnqQpxFUG8mqWncTqRblH2fp1/Ox/JbF76uFZ+dYe/ume7q1XF7zQIjJWhbD1oaYTYItixW07Ho3bIrhC2M2h2Fh5F1teHd8972eO4YOt58dcZRc5LcBLJ6pgqFPyMaVwPNhiR6NDt348lgAubqEJ/aYqLLHYJvDsv6GUWCQ6LQiUo/tyn9hmjqQv6VrUAEM/hvRAPRnPESpcI6zgJMbbWiunpdQCxQYboBFeaG3IY/jOhI9+wB66iQ++C+1TYuH0Wh5ooQhA+fcTxsncs/OCVj5s2RNh8ART8g2Bmt/jOgKiV8vz8ZU+/zVQvLvEO/5Xm/7PHooMJR/4Q5gvgJhtuAhClj3cMJgNjQk3EZL/ZrollgeFy8RJ2DDA3aNQUc3A+s//8mWvyFgTZ0ogevMYfXJrIKy59K3vyShsU3CcWcctmEo2JJcMdhwk7CYySSct2n1vmM3edD0d28CXX+dIqD2CFfIRGIJNzhBJkPYAiaH2YW4Lw7eB8esNG68SCaNUg/yRKkqhisH2xSl7paAekrP8p6oXuZaYl0XPkdgcEcDdK1Rh2+hEN3Rhs59O7ioYR1PVbBDJzSSEDE0qSpkleef6wd7Lany7fgnB+lTsvuMPYjuPqsvlzedqawEA6czPLYsgcitQ7kMVsBlODOa0X3WEbkmGuSUpKEGhxa6tem03x89uTbNd+Gd8I9e3wr/JVO18QGCPtIhS409iyFauaxoJY2uVAeLeFGrAckKiTYOrbQ4O66BwKWVyFzh78S7+vqNgE5utERJYQnDP4YabjtsgYSKBY8Am+pktaqRWqYuTIZMEkOJ3G74LCjxQuiV447NAr0CYfbqzsXQV8DWKmLoRyGhaJ9rEbtRnuG/vOBg+JSkNbsoBxPwWyEOJrDLFQFFLisUYIjjC9USDsNC1f5LQ/ud3O8F+3klnyQO0b+RF2FsjDAdxDG5rM2CJKL4BKX6IEy9o4Pgqv1U3c66qAwxxreiuwZaQl39JOAJ5cTgpoLmjnoCdyAqxtAlqToPHotDAJDf9+Ha+q0vDPjLM/MlP9TOYlFL6n4onj6o1FfLW4OoPpaBaxAkjmdDqJZ5IXyjZ04YVHrtFRtQZ580jitEV+mdet9lQvIG3uxTzS60eDZxj0nPtzguOBBWKCcRJoUCIPC5t5Rp7qne3xrc4sjwgLS0gRafJjzfSY5IYQMZGlF64gJ8Wm04ovAuR9okVQ4D0G3CJOCLSeCpOBHGFuMtHZXyWL1mJ5WkyfDe9EiaRqQHg9xxLEA5CxVShWSELWMQPaUgRJCGiugpBf/q25hUcaiXqyDjsM80WdO6T0TWlwg5wY/NvL34vERUwM/xGvTdkaFvuxu7J5VxTMyRKhbffvDbFpw9l/9vE7mV3FxNTBbQOXcsnr+OjIyVjkF1L2UKLNaA4w1YFTBFkLiMfhbLv503zm9l41t75fY3m1J8G3gfwrfBLpeHzIvNSc0jBcXeaxTnZpVMuvrFCMhcGcOGDJgNZpDDxtFMPUxB5R2nN4JditQKghsPLJg1Cvvm6KhBSfTbhVFFgtQer9o+ir/jQh7H8Fn0cYxdNfYSANWRyqqOSNOog16mRo++bTWx6SJScVOk7SYhFSD8NCGsYHKNkDSH31RzYh43qhaUoIJ97DQfR9YIciWoIjW6OhSuuN047omI5MI4L5gd+Iq8jMOwIu8eIXw6LH13QGbdEZ0z7AqjyT5GuAQsoHrEa5poDjjjsTuhk4OHHnVbaKkpD6jXobs86uu6VrcA++QHUriJQC2xuWCJHSnVq7pFY3VLbfX3hN4cdm6OvRLyO2YEt5hZJPoYsN3pjti64b/7DDm/NHRDBePSEAsVakYnwYZfUlMbWKaSqeWxylqHqyQKbrx0ggSLh0lE4hhufALmWMAorfoDkAra+OuOm4K8/KDlgxyS/a+tKiRPb/hYusHFrlaEemayqmek2aqnvONPh7JtEJ6SV/7M8bqb9fwBJ8RvdffDa7tej5nBciL6faRLR0MiFRTHhroVM9CxgYrtwarYOiZXLLwJWx8NDLvVDacuBUjdUl1HfSy/0SfeSFfcLpaiDkkj3bCJhy+tyzkMS6vZtDqkhuWN0x6+AjodfpawdTq8IyEgX2H2kFOTMI0DOdURNQLkeWPZIJ8zloB8JRPkeqf/2mgsVsWn/yKydYkYByJblwhvILJ1v+cwZusS6b+IbF0i/ReRrUuk/1IHCi2BElpb5BCjJvMaIYEyh0nJLQNPutzdXcNns0XUqOvP65CVXF9NHeXL5PHw8BGjA9O3DJYMU6qljxS2co6BvY/VD8AICpC1gCe16LZzoCYwl/uKNHBQv6RrlBis53fEYCbdQO0p6oCZNEysFxOyiZq7jdUWkUPVADzAD8xZZlP2NTs34qRNcJrfruZ7j2zPNoS5XbGkSAXA6qoYP8QpoVqdkbB+qhh5qsuEla0mwUYbK3RG0brdBR0CN/vMOjPhrX+v6lOMmGQzdWDwxzObkny2yjP9ZvKSTxgBpWGsKHHF+p07OIcS8wqbbBhmxJSDxAEik5GZeBuRdW71xXbzfXfcG+ff5PnDN4aMMUNrKTnjgwhJ74buW55Yv0NRJ01QHUIk1qqACpcZkm1CgrOqu/C3d72PBy+7ljpXsKYHuYe3aTjwEKR0VpCGifXLEmjjLVV/cw3xqWzIYDR1ZgN1fLn04UH3WP+Dfx1pMOfSpclkTjrxXDonXSOpCHS6sKJTU0x4P6s4DAvjy4hgoYXbP/zF6y/4rA3xH0I9Y4hDlBWwYAC3BTk7QJM4mSjXqwkBtVyHrkxTXWkmwDDZQz/9Ag9BZ4Lhs+NRFUD6n90tYNOFsVHCtZdDr/b05q4mn49j0TGGZZ0kLM+KU02coXUFAFh1IFihqDHmCfzvZ1F6rXU2GFgSMNOYoYpc0aLP3JAI77QHI/dntepOzqGuLgD3ooHSElWySwBhAqOGBaZlUfotduUTsqmZCyYjZENLg40RSMjm0nxHNwwa3A6tZrJD/HYX3HpOuy/M9Vn7VtWzUTMqqzFWpOCqA26IaD6Ta95OfR/BHcaqnIi4cZJEeEmilIrxBVIns0QtFcTyhijepZZYj6xOv8RimIDNkJ10ZrxehsoGIzWrqYLgddBlq0snXYhe/hdvvc152eINHvXILhL2ALqLpL5c3pyjVk0ylNgCe5hDeFag5txB2MM8Ua/cpFrq92ErG+/68MP0ze0fem9euc9ibF69y5QYH3Y/Isanvl4ePntHvPUv6fGzX6owefiMRZK/jYBPyXg2fMDwMUWI1goLeo9XA9GHQ/2jX1+5WgNEymiJik1pvtWl8UETrnsV3Ve4db244ApZaer76UrDrxvbWEKt5LJqJcmstFJSRGhFr+WrNmbwFJIotmOqiBZF37UeW91rzcjrdxYutSRnE1gGYffTFYNfr4i0IsycwFgibb/6AKxiFon6bciaaDDANhYyaXl4PC0eKT/0Z13hTJuX1dt270EulFSNr34APUebEFQEImfGsyEyZzyxrq/hMKzr+QsDPwzt3ct/+ocvKqufbr0n61j9ibrzVPtodhjkBZybGCMVxwC3ElaqEsXHw/qYmhwrvc7vqVX/UO9LH5Pq6/pkHY/Hs45p5NUHYFd3JsFQ8mpT3NWAi71UXfIYHk/ymEk6TTJvtj6wca1w5jdFaUHN9eTKCdWYHBuNoJIXfywxOaEYbuAQZM7jThiGelmsPsH4iFI3eSGV/YHZZfHq+ABsLCHRkCWwM9+UYDTrhrqem7THDNzXYoDZowCDlb0BYPhkzmWazGZzOkUdTbqcTlXhljtIqWcZRjie8k5gO55qrcF8LRPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueoTAJxzUIEbeEZRcwKCWkysJwhqMfwkfanFVLmxqMNsG7dmaoKWmvotV1L0hdTPJlGNzTVWP/XZv/lK9amusm4k/VTxos8OL9rsqEKZHaf8/35Sc54F79jeWVa72xfPMTRmAtQ5DKrT3QvhCZfCnjcTUKxhJpAcwiViObDQ+qDUcaNn2vQpS/13jMlfnCPKGEVGiUdHiVcuSn/Z9G7FL73uvfzz6svVJjVJMgJKNVlRepxcTGWLsuZOqbtPQMdIB4CoNRTIa5j6UfQ1DL9eEQFvbMSUogJNZ1wwpHB7uu6/zJ5Si0NXkj09mMRmT0cm/c+e4vqZddx/Tcmlgf75a5r42H681sYY9pRS9NsIliI/ic1SzEyqaHuaLl3/qk/HKb6Lf29ka+vXsacR7Ck1SGAElEayotQjqQLtKXUNNbk9xUYMoz0FSOH2dD2TPTWbPQF1OhmHsda1SqO3c/kK74KPnjH5V+eGGWFLsC+RbUuQnUhAvoEJcr0Za7UIyCuBsYboqECYekRHBYKxhuioQDDWEB0VCMYaoqMCwVijjgYaLQ3OaeQ4ojZcMAItbaPRNGldiZr8z1qPIPpwEJqkHuzTdGLBpBNqpwsj6GQTk06WPPu4ymXgHOGhcyE/+n7LJSd21ygj6pMVw3awZFdW5ToOlhHHH1CDTvqv6xMSFuQ1wLFlinuvsEktnUPa6+Q8Urt9WArl4rGSKM1NTF+BXqS2TKZrVnU7AadPLDBo3fgMwUyLWIQTaYHDhXAiMb+E4kQu+5JauHZBpH/B5q3Bnk863DZ2vi5y4SnDgjtepJTChDkk+tFPBHPyJZ+CD02v/mXJvy3msqMfgT+KG0L3hkLK9YaobVgMXI64QHtdYnFviF44qR2mPX1yERuUeUNlAx2J2nLFOyuPhruCU91nWC/5JlexosbkGaFiegY6RQ864pDApER6mYBOGCS4DdnMZENWHHwweMbjUv/Cg/sLd499SC4vVzVUFCeR0fuCMZkPRy+uAt6h1dyQGydXSdQ17VWSJBWegITEmdruB/EqurhF1uFipVwmC4OuLbyonTVFGaNUzTKNUauB8RLlAPD6xMe28ZYnwJkhlsEGZLDefJRUhX93sBWBx6GPUjdR9Eh0iKNlSbYVcBTjgB578jmpM/g1gkTKaGmcUDKaNCis1ZfDYKto7evV1dcHyBXaVymdx961FTSXjSuujYEYqoTl6lRS9VtVI94KtSgrRYn+cVGw24NmtFeHF+EZrdYlbFMvw7vZqY0/bEAtFcn4sAWBRjWW4SqlRBSr+RnLnS4zIOqhuoVpqJqN/05tPmWkmD51/BvBga+jZHPgS8YR5mGr2WNOXU7M9xwlVcaG+UgZgfk2JszN2tVGtGsjXG1EuzbC1Ua0ayNcbapidXe1qd3cjOBqb2fSSfXwpeM3JYzx3vWqVNKdu/UduT8KftZP9ELVva1MY4IlEMcNUUjifIWabq26cQCoXetYX4vetoXyC7pm9QNnq3QSPKAFjvQVWjTWVcBxnKRXVn8z9SAl2hfhDVS54hhRHFiukF98WdtrVkM2Z/jt6RY+dt7j5qvIHABv9RPoHABCUBEdwEsmsXUAPzPJJFypqmIArWb637x585s+ef1csmKI1rQYtUAGHRGkbkISw35rIXsXkv7jqswJ8unWlC5c+EMQXbgISUVoJ5dVO0nmoB1gjb7pQyhsLsC6CsPcIpKaWFu1L/7uYOTPky8FHvvc9XJM+K2xZOUI8D7FdOVoJBWhnFBW5Tiag3KgfrSVQwTmmJTT3SsWfiSmE63mzequPR5cuUI0Djb56Yj9VPYb6BkVW6UkJzyqMKjo+cIJMYsOTSMXQh2g9Xx6IVSStCKUx2FV3o2Jpi6uwNSJyaIcDXqUaRB26k6OA+4sUB9QV5w8DqoO/EsmT8SE8Ed3KIoVJakvIPX4691Hfp8/+YUUyG79dXl9yhpKOZoYVCYEfrkiNJc/kU1zM02uOXgTjI/pxY6rpw7ASOOi2Q2hlzjXekAHle/Mb706NGgUwTe84b2hZ1yuuA8B9w5naG6VO2YIcT81j8PgpzaySAk/cfhDSJHVridtu6WQW/3a8NUhmVClZLxUkkgv/chEZm3nBcvWx2uFdbAOZNESeaxEpUzmKtQPjK/tryZw+seFSeLwnQiz80rtq8z2rnQiAVluEwH+o5ArVT5SmUr9wSh3n5HrDsZ7gymw9CiKYOAONHNkMiPRFbmv9SWwwXKlsXfUyaPn1g0b93fSIcGufzk+YcIRy8nDkngqfVhqJOXteKndMQzd8ULWD0TOE2VHSsB++PFkvXJbbAdouTBc+XiJUillaHpc9PV+a98XbXyWl2wedsVv4ErDpzAFK6qNMAJWYByxYJU9uVJtLhGRrIZvueAvQWfnbu7db1YS3OMjLvLced+qYmsbdVW1IjYGxK/C/9fUdnvId2i22zuYzNj/urj+R11cqe3oK6WLKxd4Er1Si2FRD0TyX6iLgPNhSkV0cR3n+O3QZ9sBQbM6/Hbq+eitZN6oYQUmjGwjPQFC3SBCs1DzHja9bJlaKV1cH31pP7rAuUHQ3lrTpgbV3tTOpFWuISo2rKiAcWM2ewf9cv2M18V16O9rGnH6xgQUDNmzp2VV5w5m0cUVqu7CFDbVbTCN6iq9i2vcsvjG1ebW9Fww9Pah1V0OLzNhnRYYeMWsDLLIRq4bZmUqrYurW/Gadg9+ieQtzJ6yceH4AksTd3GF4NiwggOMTeV1cX1do8GwBdIbnscSPY5tnvTrDjOoYAMRwuY0I0JgTuN+204Og98m8HLq8M3jqteWew5bf1n9pjO5dAiWt6uQy8CKTvfZrBhw7lp2RCItux8vfwMQV8oTomO4sAoyFqrRp3zL701sHG5dK+FN79Bib7+X9Y4zvi290ImWUEd889uAjdJUgK+ID4MuFHxTwfb+YKqhuZQNyl4LcoHUWCC/+o+dSy07nP6dv3DMpaCO1bbnkrdOEZAegGrMVyYpz4WiGkYDXagrAD0riF5zPmJ0noHOgn4uVE319I2SRCslaP/S1uXWg6eCXN4M600/Fv4xex0lKRK7EZEUqb5u9OAQ+P4PUtm+/4VUUztLmpGph6MEX1kqj5KKWcpZLd32RFiYWhqUIwl81PxdRAvyWCUeQB+rGklFKOMgqzI2mEYZ9OL8epxYuAbGyVVg+RKJYezU0d0DbFnBziLWmdvRQxwjV0Y5czt5xI9TqrAf0N5q9R0FNwPGz/JMH9FhhsUE//7kdQ1+QLgqWUafNlqiilBWFquyJprFzIGP0stbtS0LdMclKEfFs8yghK/NOwyfvjb4cJXqL378recDQ7bKhm4dOuKGHGZ3X6GqQ9FJMPCVnl4qbslZvK2jUosJG9tu8j9qe7N5i5zUCNNuewEAV1NxAG4gAICmRS9PlFjKmOvKtIxbPiXarqrnbPd6J6OETo9Nmt8PAVjNBsC2tFTC0dzF+e/i41TtOK3Xx5NpXvvc0m2dIqOXVBofp0YaGx9n3dSK5uPcfFk8asetML/cV8322+VPqGcGfBzLNLbTzXdTzYBUUFRUVAl8nLEtj65YnCIWFr7gcDq8zC02Cz7Ovals2jlnDtqpFD5OWtOZ9W+GnPHe6yNds1d4yMos+DgFrMpZZw7K4ZiSj8N5/HfMb6XDg1a/vFNFWnvYfLPi48xjVd4E0yjPPPk4Ee490jIOq3wLimolfent+sLEfJzRrJoLM7nmKpSPYxvbpc+44kLPNZHj+16W9BGZBR8H8yEY+TjAEOJ+aj7n/wAfp7v73UFNEu2DF6T0fnnr7q2lJubjzEtj4+OMSqscPs5lu533vDfu9p9ZVDgnc5DygtH5ONS9uRE4JrPS2Dgm49Mqio8z5Mj1hs6bZvmvbnrzt+4PPp41Oh+HaiOMgNUoVqyC0/6/4uPsZjJj44qkHaTB2/gHjoXI/ng8lNyOwrp/AsyC9FWKFDH0XFE9ji9ae0vjFTAPTHOak+yCN6wTwTKZ0fATkCOP9yQ2VbnyQkjGlO1Oh283v8j4fvSTHG0hbfxVDwcmLEQ7qQoxKv/DTGfN06h56sATSFWBUWnHh38pmZw1HAXNJ6qKa4VLZEBhkihSe25MrWpV7mFSpd7ZZY6asV3x2WXDxHX7/DH6lGDBg/fn13daL9LKLuN++jX03od6vmsaddzm/2neAa3sslrWUxOvf1V5rRk2pptNemOVVnbZzp9s73zNueG3aF2+w+QTkWFaJTkajTjcY1yfHN8ZvSYelspaFmmV5PCKVDy7u1YQMPeR6/7J3U9FazWR+stZsTk1YaJ3tkP3qmMWjhcAUTVcNMjm5au8Ti8Clg+KPHhzYcp1ILLCRVa7Pl/YV0UaWNgotdnmY5GfgKg6LrIcPPBv/tpjgn1PT88cM2BXHBDVwEXt7wavfpKZGLIx9+vnoa87nAYia1zUrP2/79+9HeWTvspzRC2bN6+AqCYuuvfo3cb4v8WCpeHWw3ff6xQLRLVwkfDJH8O2bkgPzju/ccl3F2JuA5ENLpoRYuN+27fYq3CxRdzKD1V/BaLauGiC5aklaV2O++QsuMjdP3SvExDVwUXdnxcnjwkXB2/a8+zf9j3dAoCoLi6qUluQd7fxDt+pvg1vXH20tRiI6uGiNn6DH9XxmRWyIq5dQHBh3ZtAVB8X3e6WXNQ5IpE/fWTYbOdWq84BUQNc9OTQioxT82v5T33V4qe3q6vuByJbXLT78v7pjWd2ESxf8jKtj+Uz+JXtcFH/s9uepataBOxP2vDy1EShCxA1xEW/dxvf2/O3IMGeJjMaVG+/fwoQ2eOil5cH+I36vj+vcE27r54X5HCwNcJFNSe+e76s/5SgWcedxlwomL4RiBrjovwl9cbFX94cmD7CYu37NDsoaoKLmsfc6dW3VqfgtR2XZJy4dgp+VlNc5Jt+qO3eW35B85rY7q1edZ0FEDXDRfa7ol9vP7E+cFt+6dnGtr2XAZEDLuL/npm0MT2Pv9HexeNA3X67gag5Ltqksqv7cem8gCzV8pb1v9sCX4OLi7bueXHnqyBSuG7ubMe+63qdpCVbtuAwJFtGNbCv5X75ftDCkT9svRjhFoMwG/omW+5lMlG2ow/tWnHqrCAn79GE800nkg+nqwmSFDJ5FIJBwNQpuS1+h4bziXVXiI8VyWTACOGNK3SkDFANFPLV6HFOXKBruTuwAsSlF0P7ivB+S5wFHF66fn1fyhiV6hdBfrfhPGFYw6jvvDbc59Vv59HmpREJlUZ2cnMBQGMgQFFM/LOIdL3YAF3DgMOkxGJ3URJYmVseL8UoFOD9pDIuGCmaccIFHhRXBLdcYiSK4t8/euafsgpeVvzDM887n0PJR6Caz6EfgZaJjF5R2REbMSxwuaabxXk1na6nZwNcF3yiRZWpSxUjUoH9y1gJFzggms5rzGel4e3Xn/hsWxy488q1yEWPTvSlRMvxxyKi5YTE2NrLd8EHuzdKez3csMFOOzHVE7gWBLGHCFpLqECiK5DVmbjQctPfXgWXVnAiI55mGU4jMgJYPFawwFDH1599nP9lHxgz+4DqoVdK9gGMmzbIKIatKRHZByPBcLiq31qpY/ZByT3VmJXf3vkdbrKlXrX4oTFGXCypFsjAxRI2Z6oDEZrHZP0/67dY/qfZB/6P3i3ov+o3731zU9r8NCFqqUlpGBCVZ+lsqFw1zZqow0lJ5WUfTE9/vK2//Z6g1IEf+u2JfXfCLLIPoOqOs6ouz1zdGSNnH7QL+ef9pJxGPoWdVza58mbNDybMPuC64lYGSR/Pd8OsTKVlH6z/Etvyw+ad/LnNbHKa3ptIjgdWfvYBBAczNozgXE2vxOyDTo3/mXu2+wbfw1PtG1gGj/1qBtkHEKHjrAjlafy2/RwGv+3sSpHwS8+GvmmbHKq9aJVyjOyNYm0qw72FugcOeOQusbgnDHaIo8GPwO9K1m6lCowtPl6h74W7bpN0cpyo8Uv0e9O9aEKiRzen6wvwbk7ILo1LFlRAO9nnYsdvO7su8ZsW8GfX+TX+PUc5ZId3Iw7ZscvleUpU+2eEVk2/QIAUqEF4vIOAc2yBXmdn9hhAxLhwjJIqwfAFcvRi+4B38/q+D78JtwhF0yzTY16Tp6U3cTN9WpaJygPswE/Xl3X+dXZQRpVD7q+PN5YZAbBtrICBEWUSJ0q9ZsDf6cxh+kNP6bRi0aU1pksWq3pm1enJwvSfQvZOu7oos6a8qB6WjAOUQS+ebOnFC3eMbG+YA0xR7aD0u/Wbjv5DkON9ot+0p89KjaDaNFbVxplItSj/OEu/no/ltyx+MaXtsnZdbvln/qAK2zU3NtVkLYtha0PMJsGWxQpadr0bNsXwhbGAw7Aw8q42vDu++17PHUOH28+OOEou8tsAFs9UwdAnZONK4PmwRI9Gh258eSyAXF3CE3tMVNljsM1hWX/DKDBIdFoRqcd25b8wTR3I39I1qAAG/4kZAPRnPESpcI6zgLNphqG5el5CLVBguAEW5YXehjyO60j07APoqZP44L/UNi0eRqPliRKGDJwm8W7Hd3c8wsuuUfRlpEWElGxjsPbHiK6Q+PXybMxs4c0Pn8d38lr3+9u7S7f3HWpoZALAfAzCbMFDFLDu4YTBbGhIuI2W+jXRLbE8Ll4iTsCGB+wag45u5v70fa3XVzJ9th4+PPdK+oiuZFZB2XPp21+S0Ngm4bgzDtswFGxJrhhsuEk4wGQSztu0et+xmzxo+rs3ga6/ThFQe4QrZCKxhBucIJMhbAGTw+xC3BcH74NjVho3XiSTRqkHeaJUFcOVg22KUndLQD2lZ3lPVC9zLbGuC5+jgBMG0bVGHb6FAnTbGjz37eCihnU8VcEOndBIQsTQXGPemQ3LvnYRLr5bevqBe18vsvuMPYjuPqsvlzedqawEA6czPLYMhsitQ7kMVsBl6DWD0X3WEbkmGuSUpKEGhxYSvsHTmrg3frgnZPaoOWsnTm+bSKZq4wMEfaRDlhp7FkO02rKiVW9GpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WN1DJ1YTJkkhhK5HbDZ0GJF0KvHHdsFugVCLNXdy6GvgK2VhFDPwq9aD0peJe647pPlvVGh5MPnsymHEzAb4U4mMAuVwQUbVmhqKdZqA5yGBaq9l8a2u/kfi/Yzyv5JHGIJjc5ssbGCNNBHJPL2ixIIopPUKoPwtQ7Ogiu2k/V7ayLyhBjfCu6a6Al1NVPAp5Q65m4qaC5o57AHbCaaeiSVJ0Hj8UhAMjv29nv3cKDF0pC1to1+tx/SPJN6n4onj6o1FfLW4OoPpaBaxAkjnMhVMu8EL7RMycMKr32ig2os08axxUiMYq/tzF/RuBR321eB476qQYVmPR8i+OCA2GFchJhUigAAp97h5jmnur9rcEtjgwPSEsbaPFpwvOd5IgUNpChEaUnLsCn1YYjCu9ypE1S5TAA3SZMAr6YBJ6KE2FsMd7SUSmP1Wt2UkmaDO9Nj6RpRHowyMdkApSzUCFVSEZwykT0lIIQQRoqoqcU/KtvY1LFoV6ugozDPtNkTes+EVlfIuQEPzbz9uLzElEBP8dr0HdHhr7tbuyeVMYxMb8s2b9uW+qQoL2P3vWev3XdZnM1MVlA56Mz8fx1ZGQsLBPVvZQpsFgDjjdgVcAUQSdGOfBqh/V1DyrYLHC4+9fYBIpvA+9D+DbY5fKQ+XdcY17RyxRB7qKT+z9c3Mw1AjJ9WZEBs8EMctg4mqmHKai84/RGsEuRWkFw44EFs0Zh3xypL8eV8uF1vrMULJnKdbgsmulBHsfwWfRxjF019hIA1WHHqo7vTKMOepkaPfq21cSmi0jFTZG2m4RUQN8aa5fKfhjkOYtzt7vV5fMTqgUlqGAfO83HkTWCXAmqSI2uDoUrbjeOeyIiuTDOC2YHviIXchhW5N0jhE+Hpe8OyKw7onOGXSHZ77QMl4AFVI94TRPNAWc8did0cvDQo24LLTXlAfU6dJdHfV3X6hZgn1wMHZkS1BKbC5bY6XTnl206N1a31FZ/T+jNYefm2Cshv2NrofBNg5kLvGbufRBvuaf/TUPOLw3dUMG4NMRChZrRSWBG75xpagPLVDK1PFZZ63CVRMGNl06QYPEwiUgcw41PwBwLGKVVfwBSQXtWiG5fmcf1neN2eYnz0dJfyNMbPpZucLGrFaGeFazqmW626inv+NOhbBuEp+SVP3P+npix67p0sueR/otfro2vNo7lRPT7SJeOhkQqKI4NdStmoGMDFatkVexwkysW3oStjwaG3eqGU5cCpG6prqM+lt/oE2+kK24XS1GHpJFu2MTDl9bDHIal1WxaHVLD8sZpD18BnQ6vTmfrdHhyOgH5EbOHnJqEaRzIqY6oESDPy2SDPEfjQB5lglzv9F8bjcWq+PRfRLYuEeNAZOsS4Q1Etu73HMZsXSL9F5GtS6T/IrJ1ifRf6kChJVBCa4scYtRkXiMkUB5jUnLLwJMud3fX8NlsETXq+vM6ZCXXV1NH+TJ5PDx8xOjA9C2DJcOUaukjha2cY2DvY/UDMIICZC3gSS267RyoCczlviINHNQv6RolBuv5SUhWvoHaU9QBMyk9Qy8mZBM1dxurLSKHqgF4gB+Ys8wG1S2ZHMbjBW2/fSguJPevG4YwtyuWFKkAWB3PwA9xSqhWZySsB5aBPNVlwspWk2CjjRUSpZMWsqn3XReGbPuyvc7oTo+aGjHJZurA4I9nNiX5bJVn+s3kJZ8wAkrprCiNztDv3ME5lJhX2GTDMCOmHCQOEJmMzMTb2bFHnRYH8IVpdxIkE+PSXU2YHXDFGR9ESHo3dN/yMvQ7FHXSBNUhRGKtCqhwmSHZJiQ4tdPP9uqb+o2/Kfdew5UNA8hNSk3DgYcgLWMFKT1DvyyBNt5S9TfXEJ/KhgxGU2c2UM7Raz1Cb/Tz3VB30Kp8J4EFmZNOPJfOSddIKgIdBSs6wzII76eIw7AwvowIFlq4/cNfvP6Cz9oQ/yF0Wid9JbRgALcFOTtAkziZKNerCQG1XIeuTFNdaSbAMI2CfvoFHoLOBMNn3aZXAOn/ruhk/yo+Mp+9SX+qRhTMrE8+H8eiYwzLOklYLiGRYuIMrSsAwBoOwQpFjTFP4H8HTNdrrbPBwJKAmcYMVVLgd34Tn60RFLXb3L5O+5QRZEskAPeigdISVbJLAGHqxgpTy+n6LXblE7KpmQsmI2RDS4ONEUjI5tJ8RzcMGtwOHWeyQ/x2F9x6TrsvzPVZ+1bVs1EzKqsxVqTgqgNuiGg+k2veTn0fwR3GqpyIuHGSRHhJopSK8QVSJ7NELRXE8oYo3qWWWI+szgnzi2ECNkN2Uq/5ehkqG4zUrKYKgtdBR7Ge95y5uVG875IFrh3v7/56huwiYQ+gu0jqy+XNOWrVJEOJLQCe8RCeFag5dxBWspuvV25SLfX7sJWNH5szbuqW2RsCsi/HWR2b3WEcJcaH3Y+I8amvl4fPjG+uf2zc8tV70c3HS4JvRWwyAj7BrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0m43fT3K6WFOUPZmtwP8V622kJWmvp+uNPy6sY0l1EpbVq3UMyutlBQRWtFr+aqNGTyFJIrtmGrB1Ae/tY4eIdy+eOkPW+Y1JvM4LIOw++mKwa9XRFoRZk5gLJG2X30AVrHI+fptyJpoMMA2FjJpeXg8G/24u8+rIl5GMe+GW8IvnuQcbb76AfQcbUJQEYj0YkWk6XxiXf+Rw7Cu5y8M/DC0dy//6R++qKx+uvWerGP1J+rOU+2j2WGQF3BuYoxUHAPcSlipShQfD+tjanKs9Dq/p1b9Q70vfUyqr+uTdTwPzzqmkVcfgF1d4TxDyatNcVcDLvZSdcljeDzJYybpzH/YplHC11o+K6Y8XrQxv8FR8uBjcmw0gkpe/LHEZIihO4rMedwJw1Avi9UnGB9R6iYvpLI/MLssXh0fgI0lJBqyBHbmmxKMZt1Q13OT9piB+1oMMHsUYLCyNwAMn8wnmCaz2ZxOUUeTLqdTVbjlDlLqWYYRjqeS5rEdT8VoMP+JCfPgAz6XznJO8lOHNOotfRFQl1yDPAgWklfIpGKsyBDdkDIh3SQI+ANgeVKBO2XcWNJTdLKT1DqnbK9FL41OlusauIFcdZj4OwcVuIFnFHeyENRiYj1BUIvhJ+lLLabKjUUdZtu4NVMTtNTUb7mSoi+kfgYs9N6ypMrKwPQDJ8+kjG5CHjZVvOizw4s2O6pQZsfqeU8aHTnnFFI49KrDYIuRhvYAzwXqtIDqdPdCeMKlQFqShWINM4HkEC4Ry4GF1gelR+3GfDzWZIf3vJWLCl5ceVGLjBKPjhKvXJRKa+XfLZGE+qw/nXkqdnPJWCOgBIY1C0pnsoqpbFHW3Cl19wnoGOkAELWGAnkNUz+Kvobh1ysi4I2NmFJUoOmMC4YUbk9P/pfZU2px6Eqyp52y2Oyp5f/sKaGfiRsH7fR/vydw8Z0RKZ+dJj42gj2lFv02gqVwZbUUjSvcnsaOa5XT6lhf3pLrirgbHi47jWBPqUECI6BkyYrSu/kVaE+pa6jJ7Sk2YhjtqaXGnp5isqdmsyegTifjMNa6Vmn0di5f4V3w0TMm/+rcMCNsCfLns20JcjUxlWImyPVmrNUiIK8ExhqiowJh6hEdFQjGGqKjAsFYQ3RUIBhriI4KBGONOhpotDQ4p9HhYkrDBSPQ0k4bTZPWlajJ/6z1CKIPB6FJ6sE+TScWTDqhdrowgk7OMOlkybOPq1wGzhEeOhfyo++33JbkCq9lRH2yYtgOluzKqlzHwTLi+ANq0En/dX1CwoK8Bji2THHvFTappXNIe52cR2q3D0uhXDxWEqW5iekr0IvUlsl0zapuJ+CoZgFT1Y3PEMyMnIVwIi1wuBBOJOaXUJzIZV9SC9cuiPQv2Lw12PNJh9vGztdFLjxlWHDHi5RSmDCHRL+/ouu5pQsLPQtW8627/nG2kB39CPxR3BC6NxRSrjdEbcNi4HLEBdpTzMK9IXrhpHaY9vTJRWxQ5g2VDXQkatfGNmr5PoHjvWdS2zvXd//1jhU1Js8IFdMz0Cl60BGHBCYl0ssEdMIgwW3IWSYbsuLgg8EzHpf6Fx7cX7h77ENyebmqoaI4iYzeF4zJfDh6cRXwDq3mhtw4uUqirmmvkiSp8AQk9OiktPtBvIoubpF1uFgpl8nCoGsLL2pnTVHGKFWzTGPUamC8RDkAvD7xsW285QlwZohlsAEZrDcfJVXh3x1sReBx6KPUTRQ9Eh3iaFmSbQWcWXOAHnvyOakz+DWCRMpoaZxQMpo0KKzVl8Ngq2jt69XV1wfIFdpXKZ3H3rUV1J45p7g2BmKoEparU0nVb1WNeCvUoqwUJfrHRcFuD5rRXh1ehGe0WpewTb0M72anNv6wAbVUJOPDFgQa1ViGq5QSUazmZyx3usyAqIfqOaahajb+O7X5lJFi+tTxbwQH/t4cNgf+0hzCPJw3e8ypy4n5nqPYzWLD3FJjki8wYW7WrjaiXRvhaiPatRGuNqJdG+FqUxWru6tN7eZmBFf7IpNOqocvHb8pYYz3rlelku7cre/I/VHws36iF6rubWUaEyyBOG6IQhLnK9R0a9WNA0DtWsf6WvS2LZRf0DWrHzhbvyyEB7TAkb5Ci8a6CjhjFuqV1d9MPUiJ9kV4A1WuOEYUB5YrdEu7NvZdpp1+E5LXqdqAO12/l5A5AN7qJ9A5AISgIjqAX1rI1gG8cKFJuFJVxQBazfT/+eefv+mT188lK4ZoTYtRC2TQEUF3thiysiAqvX5QToPId03tV8ygdOHCH4LowkVIKkI7m1i1s9ActAOs0Td9CIXNBVhXYZhbRFITa6v2mh+eeHx//ydBxi+z7x9abtGfrBwB3qeYrhyNpCKUM5lVOWPMQTlQP9rKIQJzTMrp7hULPxLTiVbzZnXXHg+uXCEaB5v8dMR+KvsN9IxKO9eiy5cfOMHHTrmuq5uzkdwco+YArefTC6GSpBWhvAhW5fFMozwdOjFZlKNBjzINwk7dyXHAnQXqA+qKk8dB1YF/yeSJmBD+6A5FsaIk9QWkHuW/XlxbcqU2/1hDycfQ1vbtKOVoYlCZEPjlitCcK6vmGptcc/AmGB/Tix1XTx2AkcZFsxvCx7/NPv9+/sOg/QFzpk4eP+aq4Q3vDT3jcsV9CLh3OENzq9wxQ4j7qZc4DH5qI4uU8BOHP4QUWe160rZbijP5cJ6vDsmEKiXjpZJEeulHJjJrOy9Ytj5eK6yDdSCLlshjJSplMlehfmB8bX81gdM/LkwSh+9EmJ1Xal9ltnelEwnIcpsI8B+FXKnykcpU6g9GufuMXHcw3kcugqVHUQQDd6CZLosYia7Ifa0vgQ2WK429o04efQdbIb9DwCfBltli+6653HrkYUk8lT4sNZLydrzU7hiG7ngBcsMgcp4oO1IC9sN+i/TKbbEdoOXCcOXjJUqllKHp8YH96x6Iby70PnK6R4mVg9zC8ClMwYpqI4yAVRdWrLiLKtXmEhHJaviWC/4SdHbu5t79ZiXBPT7iIs+d960qtrZRV1UrYmNA/Cr8f01tt4d8h2a7fZnJjP2vi+t/1MWV2o6+Urq4cmGP0uxiWNQDkfwX6iLgXKHbTiN0cX358PjZd//2CCwY3W/OuberHxmxwISRbaQnQKgmRGgWat7DppeldBtZEV1cBQGvQ/79c77n0Vd5N4/Va01uHljZVa4hKo8XsaFypXKtIeveQb9cP+N1cc0pnXNu7vkqwXOmTvzncOOhE8yiiytU3RFW1W0xjeoqvYtryul6HWt9uixMazZcYT1joo0J67TAwCtmZZBFNnLdMCtTaV1cp2bV/nXXgan+myyeOdW46HXHxF1cITiYsWEE58qiSuziyhnT//U/mVu91/Qt8MtKaUhuN2CaCjYQoSOsCIE5jfttVzgMfpvAy6nDN4+rXlvuOWz9ZfWbzuTSIVjerkIuAys63WezYsC5a9kRibTsfrz8DUBcKU+IjuHCKshYqEaf8i32u6Jfbz+xPnBbfunZxra9lzG+Lb3QiZZQR3zz2wg4j+D0FPFh0IWCbyrY3s/LNjSXskHZa0EukBoL5FfvfXS0y6q0+/xj6xJvdJL/SO40YxUB6QGoxnxlkvJcKKphNNCFugLQuwfRa85HjM4zYMU5l62XC1VTPX2jJNFKCdq/DP2j48xHf34vyPlUMqSP6+tTlKRI7EZEUqT6utGDQ+D7F7B+/3XZpnaWNCNTD0cJvrJUHiUVs5SzOuJycfsx95kh0/zWv0tO/qEReawSD6CPVY2kIpQxj1UZE0yjDHpxfj1OLFwD4+QqsHyJxDB26ujuAbasYGcR68zt6CGOkSujnLmdPOLHKVXYD2hv9e6cvtGPR+0X7Bg8OyFgR83D5HUNfkC4KllGnzZaoopQ1mhWZYWZxcyBj9LLW7UtC3THJShHxbPMoOcFb//4YeLCgKn91u96MXvPUUO2yoZuHTrihhxmd1+hqkPRSTDwp2z9vFTckrN4WyXcQN8Tjnkhs85NEmx+GJ5h2m0vAGAbAcANBADQtOjliRJLGXNdmbxdn9ddbrFbsKJpzOsrbV/XpyxllZvfDwFQsQGwLTKbcDR/5vx38XH4v2cmbUzP42+0d/E4ULff7krj4zxYzMbHSVpc0XyczV+DXvjZVA1cGODa6W2d92Iz4OPcWcx2unlmsRmQCg4ePFgJfJxHEf8ohyy/EbwqaeAfOf8E1TYLPs4+Vu3kmoN2KoWP07mEPyf09ZHAjYtP3Ij9a2+yWfBx5rAqJ8kclMMxJR9nQ/il7TuDJ/ovaLZumWfsuodmxceJYlVeqGmUZ558nFcHD8urDm/vmfboxKu8bt9yTczH6cOqOUeTa65C+TjcOfK0J2OFvFV1WxQND2i0zCz4OJgPwcjHAYYQ91N/4fwf4ONsUtnV/bh0XkCWannL+t9t2WhiPk7UEjY+To8llcPH6X+vxo/Z/e4Ktowr7hfhIRxkdD4OdW9uBI7JyCVsHBPhkori43z0cphiN+hc0NzFb7LFn3O2GZ2PQ7URRsCqBytWrZf8f8XH+ZXJjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvK17Xtz5KogUrps727Hvul4nGd+PfpKjLaSNv+rhwISFaCdVIUblf5jprHkaNU8deAL1YC0+Oz78S8nkrOEoqF1nXnGtcIkMKEwSRWrPjalVrcqrTKrUO7vMUTO2Kz67bLOgS5MGrlf5ixWTxAeqeOdoZZddX1awe+IvSsG+/bykR1EzH2lll12rM1c2q9Er7yNvJcq+OSc9tLLLgjr+Hp7rlC1YfiB9x5BHB5tpleSYmbx6yuBp3KA5Z1xHdP7Q55NWSY5mz08tkRY3ERQdrn576ou8K1pNpLotXswRttrrv/Vo5Nwr73x5QFQNF809NmQC95xv8I6UpdETDt/6AERWxANHr+/Raus63/ymLd6l1fj+PhBVJ0TylYVNHaZ5LlhxrZ7X0eYyIKpBvHyj4Vdin8QFbXYfsFU143YdILLGRTvD//T5+GNy8MyNIz71/XfobCCqiYsGDZfPKy1I9FonEvbYKN8Hy1rUwkVrV7W+M2V9hPe0JR3aBTWuFwNENrjoTlBW4gGPo8KMkdfv1ek6vy8Q1cZFDfeeuZoaetNv9tC8e52Ob6kPRHVwkbzmiqM/efTw2tA+utXH3U3tgKguLnob51FnVcIQn/V7XwfUq3NzOxDVw0WcZY5BNwZY+mz86eTskEHTfwCi+rhoe5XsFEW1DyG7m7T121XwpDUQNcBFvdbUPTXfaU7w3DujL/07Keh3ILIlXuNhP27iKwfvfTOriW97HM4HIjtc9G2045s2Y7Z4TZ8+MeDVcJkfEDXERUdFnKXrznf1mxXW/Glwz9RSILLHRWOnTBy761BC4Iz8OT88eHKtFxA1wkVdn7zalRpQFDRryPROa088ew5EjXHR7HGq4GHT6gozhiTkLUxbFgJETXDRj5YvLldLbSDc0+WTVY2D424AUVNc1GBkQMvOPbf5HPnyQNlC6p0NRM1w0eSiyQeXZMkCFv10stG5B+cg8g6EvqRNN7Ta8Jv/ke9Pf/N6EAgHQHNcdNEv9CfZh7+DZ7Yc10g+YOZSIOLiot+nPU+a/KK616ozF461nH3Lh5Zs2YLDkGyZc2mltUva1IDttz4Nu/yt1juE2dA32fIak4myHX1o14pTZwU5eY8mnG86kbwtqyZIUsjkUQgGAVOn5Lb4HRrOJ9ZdIT5WJJMBI4Q3rtCRMkA1UMhXo8c5cYGu5e7ACvBuaTG0rwjvt8RZwCleql/flzJGpfpF0P6/06LhX0T1gjKWcUdwD/zW14iESiM7ubkAoNcQoCgm/tmtpXqxAbqGAYdJicXuoiSwMrc8XopRKMD7SWVcMFI044QLPCiuCG65xEgURTnPTwi2fuQvk92TV73VdDn5CFTzOfQj0DKR0SsqO2IjhgWuPUvN4ryaTtfTswHu/2vvOuCaur5/UEQEBbfiwLhRWWqdVUsCYYYh4LZqhCdEA8EQEGcdrbvugRu3oBXqYoijKtRZrbuOuq1bnLV1/e99I+S9d98jzwSSfz8/Px9beZf38vI9955z7rnnnK8budCii8WljVVowf5lBCYGDoiOeY2HPCu3Znif91d99n3Vq02nu9dkjGg5+VhEtJwaMbX0stzIye6Dkl5nD3yys05MBQLXmErsoYLWGBNIJFhpvZ1F2zquDpl9w/FG18aPJManEZkArEJesMBUJ+3PRdH/qg9MWX3A9NDLpPoAxk1TUwshNSWi+mAImA59U0uj+uDV2yEpr85fCJl/4Zzf3qbVH5jQWDI1kJHGEpIzLYIIzeHS/hNTy6T6QONdOWDW/RDZ3KsVhy0Mm9HUrGkYEBUVLypg3ljoSUnZVR98Wpu0YPg3Dt57HK7vvrVibjOLqD6AovPhFZ2neURX5tUH53o16GebmOyfP8+j9dYTc743Y/WB2J3UMsj08SwPXMuUWfXBnKXe1qv6TZPuFw9QdViymt4woeyrDyA4Kl5w+qaWYfVBN+fkkFkXdvjOtO5X8VnvlIEWUH0AEfLhRQisadJvuyTi8NuOrVDIP3ap4zd5k3PFR03H0qVui9NURvjIDQ8cSOkssaQnDHaIw8CPwO8arU+lCpQtOV+h70W6buMNcpyY8Uv0e7O9aGpEAJtT/40kmxOSpbHexlKgk61e0fWEMj5Luv7omsV5FcKqMQ7Z4d2IQ3b8ckmeElP/mYCqqTcEKAE1CQ+2kYmkGwWdndXFAaLmhUu0UgOmLxhHG9uAgn09Hm7Ikqxq/+DAcZ+Vh+jL0oe6mb0si4dKAmznLy3qxEV+HTrfNut4lY4HjG1RDwFz5wUMzCizOFGEzYC/017E9Ydd0mnLI0t7XJY8WlVy/2rowN5H/FIDXBc4j7v9ujpejAOEwW6ebCORRrj0bWWcA8wQ7a4Pn9Y8uy/xXb6/x8QLY5qdMoFobXhF+3KD5fjH84RxPpZMWaxtcmd4/yZOfmtswzc18co7YDbKYkhtiOskSFmcwKqu98CXGGkYL4s4DKP0fJ3ryZ12ev00YFDdWb330Zv81oTNM7Uw9AmzcTF4PowJIDr08FbHAciJFp74Y6KLH4NvDov5DaPBJDHIIjKP7Up+YZY4kL9laFABTH7fFQD0B1JEq3CRq0zUeoWxtXoSuR4oMNwAm/JCb0MdL3ahOPsAekQRH/wXodMSYTRaPQrjqMAJCLwkaxOXIlnilKJ91f45nRXZBqc/RrBCktdL0jFvR+87Ffdhqvei7p5DW35Y9srYyASAWQphtpYiGlh3bo3DbGxIuLme+HXRrSh1fCIWlYRPD8gag45uDuvWpVOjmv+GrlqzYrx94X46c5x98XPZ21/aoKlVwkFXEraBKNhS3HHYSJXwB5dKOOHQ9FXbjurgqS+fB7mf+44e5q4SjiWoFFGYOCRJpULoAi6H2Y26Lx7eB+esMj5ZoVJGE5N8lFIbK1aDbYrGcE3APKXneU8Ul7nesKGGz0UmurgcoGuPOnwLA+hmLDd27deGRg1nPNVChk6oJCFi6JIS+7rH774uJ89998ewqVhyO7r7jD+I7T4Tl0tazsysBCOXMzy2PAuRW4dyGWyBy7B/Oaf7bCBy9XXIaWhTDU4tJHxLqvul1Z5XIWhpRm5k9/4Z39JTtckJgj7SoY+aehVDtDJ40VqyvEwdLOpFbSNHJ2D6ODTVy9lxDwIuLaZyh7+T6O7nPxg6uTGYhpElDP8Yq7hr4wYSChY8AmyqRxOiRkqZaZiMWSTGJnJ7kKugSIKQq8gTXwWCAmF1CeZi6Cvgtoqa+tFIKJ7vn7o4PviZf/aLmw8bVP29EeNgAn4rxMEEfrk0oMjghQJMcdJQXRFxGKpWH+vU3S4uL9stLXqPOcdcohthfI5wHcRxuawNgzFFYpKGOAgjdnQQXMJPNeysi5khxvlWbNdAb9BQPwk21FlBqgqWO+oF3IHZRrujlaTwWBwCgPy+eb27nn7QKzLw50XVak+YZtuEuR9KZE8q4mpJNojpYxlpg2Di+AYIVaoE4Rs9aI1DJWivWJO5+pTxYjkSo1ZzHo4cKK4bMn/i9vrfPT+x2aznWyI3EghblJMIi0Jn65zEq1xrT/vqSr/G+YMCJ0/uZf1+zEM6SWIlfCJDJcouXIBPc4QzimQ50k9SFXEA3TwcA18Mg6fiVBg7iqR01KjjBK1OZpImx3uzI2m6IQEZ5M9WApTnoUKqMBlh+0oEpxSECKahIjil4F+hxKQJuV3dZT/s9Z2ialDtnsL+N2qcyo+dcXXxCUyxx3ulpE+5/AEvOpmak8o0Kua7S2PsxxyY7LOj3sUFXdc0aWSpKmYekPmjlWT9OjIydnElir2UK7BoB+cb0CpgiSBxWdYwddXpETO8ci6M39tjyJALDN8G3ofwbfDLJSFTb8kFyaDb44J+8hl7qca960tNgMwhXmTAarCAGjaRbunhAirpON0JshQRAoIbDzyYNRT/5kh5nX7juPlBkaf/T3MzX3is7seYx/BZ7HmMXzW1CYDiWM4rjqnmEQe7TY0A3rbK+HJRaMVjlS3Ho32VLnFnW3tc81tav9XXdttjT1YMTtJCHjvdx9ElgrQEVkqTiyPBndQbB70QkVwY5wWrg7TI10QcFvnnwfL7A7//OXBGtcHtf6idF0P3MSIwYEAFxGvq6w44E/E7oZNDhh4NM7TMkgfU67BdHuK6od0twD45EMJWhDKxacDE2q0U1N2iHkGpTXxP6M3h5+b4K6Ht0st6zoHrJnjn7nzaLXTL+bPGnF8au6GCcWmIhRa1olPAim5ndgXL1TK1pKyyZhFaLEGcqByD4fEwTBEVK05Mwh0LGKUlPgApoDqHd+3s8tMr/8w+92qkVQrtT1/e8LFshYtfLQ3xOPOKx85ixVPS8adz8TaILMkreeUsa/DtoxYdg/3XbJn/ShLTtAHPiWj5vm5tjYlUMBwb5lbMSMcGCvbtCj7B3l5hbsHCm3D7aGTYrVoE0xQgZct0HYVofpMvvCHupF58hzok7euBLzzStF4XcZhWi6E6ZIblTUMPXwpMh32X8zEd+utie39aPuSMIkzTQM50RE0AuecqPsjFqyjIb3BBLrj810GnsUq//BdRrUvFOBDVulR4A1GtW17EWa1Llf8iqnV15b/sal2q/Jc5UVgFlFDbolMaGMW8JiigvMkl5CZBR9yu/2znu9k6eujFh1XpQq5BpI56q9SJ8PARTwdmbxlsOJZUE18lpHKOhdzHxAPwBAWYtUAWtRi2c2AWMJf4iixwUL9kaJQY2HP/ZWAlXUbtKaqClWS7TFAmZH0idxvvLaKGogF4gB+4q8z+HWZzeI26mU9O/tDOh+KL6D6rwMzt0k2KTABY+SwjD3GKmFpnSGuZqMUy5KkuF1a1dAU2+lghURrwesyB01YaSd6dlS1Cs/eWM2GRzaReIW+ObkrxTVfP8J8uHX3IBCjZ8qL0KFXYuYNrGLWu8MWGY0YtOZg4QFUycifexnxs+c3+lS1lk093WGEf1MzRmDlmbC8lV3ISIdO7ofvmuUzYoWhrXVAdQhSl1wEVmhmabkK3/grx6PT+7I7AnBZb11jJk+daQA48BKkBL0i2y4RVCTT3URLfXJf4VDxl8DR1bgWVXKPniH5nFwZvbZc964PMzYqek049l52TrhspDXRec1YIQHRu6ioEbok4DOPj3iFya49/vBevP+m7NjSgP/OMIR7RVsCaA9zG9OoAXeHkKLUgEgJmuw5DM00NTTMBiuk+nFQnpYh0Jhg+yxNm6gxL+t8/a8C5i3/c993p3iux7iLXyvTzcTw6xmHWaYMlaXGmijO2rwAA6zYEKww1x7yA//2bMFvngIOFgZXGDdWN4buGVKxZGLC6YPCd7W8L59E1kQzciwZKb6iMXQIIUx4vTJuWCTN2JSdkMysXzJaQDTUNPkdgQraY5Tt64NCQeug2lx7ybnnSo8uUG/I037UvtF2c6PnNVcKxOEWCmAi4IaL5XK55S+I+KncY73KiEMdjo+AlTKOMIg2kQWqJ2SqI5w1ReZd6wwKqOj+tK4QF2BzVSfvXCVJUDnhSM5EqCF4H+S3HnPao7Xt5vdePI61W5f2UOZLuIuEPYLtIxOWS1hyza5KxiS0Ann8hPMtRay4HOJj31wmqTapCvA9f23jZ+DDFmYVr5fujkjHfJtPLM2J8+P2IGB9xvSR8ugSPvP1x5Zvg3O7XTqQeevzCBPic5cUHTB9zhGht8aB3MgFENxHzjzBeuSqRCk0MpuUT2r+jF4Zm5vgGzw9/V2Vl6gN6YwIb4n620MjrplaWUCoZvFJZYlFSKTpASUWQ+XLEFV4CFs13TCVOHd23Y1ygdMo6m75VvhLl0wUTjN/PFgx5vTTKinB1AmOJrP3qTWDFrq0TtiGrr8MA31iolCXh8c+bjlX6ShyCpn964+bs8VVjeo22N/EAdo02NVAaiOznRSRtHWXX74g47HrWgqDXA77uGjD19Uet7eEr9Dxk8hMNz1Ptptth0A24eFSsMioWuJWwU5UiMRH2x9TVWAk6v2d2/UO9L3tOEteFVB2vI6uOWcmrN8GurgfbrgvMLGtAuhrQ2CuJlsfweFLKnaSTfO+fCu7PKvtlREjeXVu2gR6Nrcjl2OgGytj444XJEENPVDLnwdY4hoI0VrcQckYRJC+0tj+wuiyRiA9AYglMlyyBn/mODUFn3TDtuVk5ZuC+FgesLgow2Nm7h24x3+VazBZzOsWcTYacTlmJSy7/YZxlmOB46sNavuOpJ2spzO9xYR6S7fvbMdER74n9nb5WPgqkNwtwCIaN5BNUyii8yRBbkXIhXT8Y+APAPGnBnSpxHO0pBulJZp9Tvtdit0anjxsauIG56hsAnLNRgRt4RjFkAyK1mLIniNRi+ElCU4uZ46ZKHebbuDUkErSI1G+1hiEvpHxGdKxTWOH3+/J5va463d+9chJNPlYS9uqQsFaHFWN1tLRb+1zUaGTw6uvfRB04XXTY2JgJEOd0KE5PCcITfgdGtRtQWcNcIDlHYFFqoKGFoBS53rVmx9C3IXMXXUxrn/i7Dx0lKRslaYkozXjh+uLCqllBk93ctgzYNsbYXmUQpSG8KMk3FDKzRXlrpwj2CegYGQAQs4cC3YYRj2LbMPJ6aQS88RnzDhVoOuqGI0Xq0/v/z/Qpszl0GenTPev59OnM9f/Tp6R8evkeGf6Dc2ffbN/kqqcH99OYQJ8ym36bQFPsWM+nKVavL2192tV+ldu8S+ODlscO2PL1aut4E+hTZpDABCjN5EUpeX0p6lOmDTW7PsVnDKc+BUiR+vQvLn1qMXsC5nIyTcZaByunFz96J/jseeMVm3X+x3ATbAm+Ws+3JWimg/wBF+SCM9aqUJCXQcYaglGBUvUIRgUqYw3BqEBlrCEYFaiMNQSjApWxxpwNrLQ0uKaR84hJuGCCtLSHJpOkfRlK8suoRxA8HJQkmQf7LJlYc8mEyXRhApk84pLJkgdvVrn1mi3PPR76i9/nNHpht11xoj5dMHwHS7WLu1zHwzbi5APs2En/1XxDw4MlkS5Nxnp2DR/fxDW0lWGbcQbbh41cHTUCi9bdxPUV2E1qi8cMrapuKRO9gym4Hb05gpnXViGcSGsSLoQTifslDCcy9ePEvLXz+wbs2Zwe4nWvzVVT1+siDU8xFuJkhUYJC+aQ6N+ZVNdr4ItA/63rkq41PlQ0nx/93uSjxKFsbyi0RG+IScNipDkSA+m9XkV6Q+zGSS1x6QmpRaxZ7A0VT3R0V47z1Wsd6b/Ia8rV8cEj3u7vx4sal2eEiukZ6RTdbEtCAosS2W0C2uGQkDrkMZcOWZ5zs9+0u+8C8nJ25/084ha9vVyFMEU8pmLzgnGpDxeJOAHeoUduKI5XazGip70WS9GSBUhInJl0P4hXMcQtso+I0qhVqnDo2sKL+lVTjDnKlCzXHLXtlYhpIsHrUx/b3EedBFdGlAoSkMF+89FKLfndwVYEHofenriJIUeKIY5VJdlCJrJNA3Ls4i2aOM3bLlihiVHGy7FhtElhT1wOh1TR+tcrEdcj1Qn6VxnMYy9byBxt0godcRDDNLBdnVZJvFVF6q1QRlmjGBUQHw3ZHnSzvRK8CM9o9S7hm3oVyWZHKH9IQK1UqLwhBYFONDYRWg2miNP9jNdOFysQYqo+4ZqqFuO/M8mnTBTTZ85/EzjwQ9P4HPjwNEo9PLV4zJnmxHLPUZbzlvnM1KnkZ1yYW7SrjaBro1xtBF0b5Woj6NooV5spWMNdbSabmwlc7edcMqkUsTR5U9Jwn8yn77BO4nQ6hZojedZPcaEaTitTj8oSiBeHJmDxfnIdW6thOQBM1jre12LTtjB+wdCqfuBs9d4ED2iBI32GFY11l4mesXuR82VGNSQmKUVfRBKoiqNiFfHAXCG/+O6W8/adGRfivzD8qFbdZ7aYngPgQzyBnQNADZQGA3j4Jj4G8B6bzJIrVSEKQKtb/seOHfsspK5fTBcMRU2LpxaooCOClM3DJ952jhueBOYd65maPb6dC4OFi3wIgoWLGikN6bTmlU5tS5AO0EafhSQUNpLhrMKwtogmJl6q9g/3dgZ4HHHw/dmx6BssNY+evWwrI3mK2cLRjZSGcMrxCueZefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BW17sSFceFregYvK3duSezf0+ndFipH6j2f3QiVNloawruykU94hWYiESiZicm6BAl2L5YgZOoeHQ/cWSA+IK54dTwUHfiXSj0KH4Q/esKhOEUKcQHdjubhrNk2/W7Ipnzq91dT4CYy2tHEoiohyMulIbkdvJJbbXbJwZtgfExQdlx1IgCjjI/hV4QHC/ya1a9vFXAgbeSKRvInXYwnvDf2jMud9CHg3uEoy63yxBUh6acWiTj8VCfrsRGH9r4OPWCbea9Fx7Gu9MN5byIkE6bBkpXYKHbrR65k1pYS2LY+US+sgzOQxWDqOEyrGS1OIB6Y6BhAJHAGxIdj8eROhNt5ZfIq870rO5GAPu7QG/wnQa3R+ipVWuKDUe4+Z647mO93IfapqAQDTyCZnE2cia7Ifa0fhQ1eK42/o0EevbVH7bszNx+WTK6dnr1+2316CYAt9VT2tNSNlLTjZbJjGLvjBcjdhMh5ofRIEdgPn9wkqLalVqSeCyNWJ2MajZKD9PhR1d6zHO+oAzdfcbg9P33HNOOXMAMrpo4wAVY5vFhtKFs/lIpIViS3XPCXoLNzPe36Z1uM9Pioi1JP6ecKuG1jWlVbamNA/Sr8f2V9t4d+h267/YJLjf2PxfWLWFyZdPRlwuIqhhylmwthUw9E8V+Ym0wUubk0WFwTegS0Od7ydNCe7DbqrAMBO0zYYMLEOtILIDQPIjQTte4h6eW4zWXC4rrvXYP9dpLmQRmOHVsvy91DZykr6y7XEJVYXlTAvLGYvYOwWj/Tsbgm3Rjz9FuVq3zN71MGtG3ah95rx1wsrlB0XryiczWP6MqcxbX9imc1+tjN8F14QBEzbHrXumbs0wIDr7iWQTbZSPPAtUyZsbjO2lzxSm0rR/mai/NuVsrpXsvMLK4QnFhecCI3lyGL6yT1hluLyjX0m5ibueGbqom/WkAHG4iQFy9CYE2TfttLEYffJpO0bvO5+3nJlj+d08+uft6e3joEr9tNUKuARWf7bLYcOHcoPiJRFt9Ptr8BiGvUSTGxYtgFGQ/VCGnfMuHAhJwl81SBCw8fcTp+83gNzrdlNzrRGzQQ36zmMtGwLQBfhTcMujDwnQi299W3GFtLWbP4tWAuEIEF8qufeTHsq5jALaG7fz3WbNTR35fRt069YXoAipiveKQkF4qpGI10oc4A9IZC9Bp5I2bnUWBxQrYIcqEqE8s3GovRYGj/MrFeh642w2545Z24kTtiU0V6KMXGB78RURRJXDd5cAh8/66837/FFnM7S7qZKcBRgq+sVEcro3jaWdkeGjTKNf5dyPqavz85PrbZdfpcpR7Anqu6kdIQRnVeYXyyDPdHJOTEwj0oXq0F5ksRBWOnLp7dwZYV7CziXMVtu0fFqjXRruJ23RNHarT4D2hvtdzjvKo2yZv9M7Xlr2ju7fOm2zX4ARHa0Sr2stEbKg1hPdrMJ6yLZt9mUBkygrzVWsWB7vgkzdBEnhU0y37Lp5xX5YKyO1R1XSU93MSYrbKxW4e2pCKH1d1nmOJIaCfr5bdFmJdKanIeb+uU++O/qucEhc6O6p9wqGajSubd9gIA3CkALiMAgKpFkCdKmTLuvjKnDuxt3/jKscCcKTbvm7zZv4xhysq2vh8C8G4zDwAZ13SO5ivR/698nGvKBhuabrgUkF/+18+Sm0GzyiwfJzqdLx/nA9uzNHE+zp/Wp36rN7eL7+Ytzzd57koeZgH5OEPS+U435ekWkFSQlZVVBvk4jm+b/fHcsWvw5n+m+0YNG37fIvJxOvNKp5klSKdM8nESxz732HBkbejKTR0GdPvbtrVF5ONU5RXOB/PsNCwoHyfv6uqcIe7PvKbVsK9a9CBrskXl4zzYwie882bfJlpQPs4T69D3E+2r+/ywsvaHExsrvTZzPs5BXsltM7vkSjUf52nggNiClOOBs2rm3k593b29ReTj4D4EZz4OUISkn/pa9B/IxznlH3ZY9frvkOlNRjqpI6cvNXM+zoN0vnyc/PSyycdpsawwwvW7wbIlF9vcPbKj/B6T5+Mw9+YmyDG5m86XY3ImvbTycXrat3ja71nXwP1O07tkV5K8Nnk+DlNHmACrfF6stpStH2rufJw3XGps5AFlG2VIhnf2/lDVX3cHPKeflPRMglWQfhpFQiy7VlTA8UUzH2ViAqwD053mjHYjCesUsE1mDPwEdGHzlIcpEx5Vkqw6enJ/k1lXfDnfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDrNFYC++2t7wL6OS085F5jhnbWGVCEwFBIZF0+i5cbESonzLJUrB1WUuurld+tVle865NP54YYLvWvclJ988XzxCr7psTY8jrnXmlZfuVTTZdqdBUF296rIJyZPFnWy6BsyQttueJ49U6VWXPfrLPrf1ovd+Ox9HB4593aJIryXHwDUtqoqd0oNmfix/O+TUE6VeSw6/T78uU44pCp19uXpGcM07w/VIpP7otEQz/1FF+az+4dtWeictB0MVyaGMOzPWhmTtkGT2SfFskRi6DwzZkkPd47ZMmfDykd+6cWcLmle1TgVDlcihxclpBZGNHaQHNCtdPwwM3QSG7Mgh3zqb0z3S3vumTp31+7Y/F4eCIXtyqKG27lcvLmkk06+Xr7UrqCNsa1GZHOpc55xVjbMa+Y4aPRJq3Z9XEwxVIYd6/uhbNCjhiCynz9J/N3/uOR0MOVDfy/nsMv+AP0PSj5drVvNR7fZgyJEcSvnTZaNsQh1Jzq1F7+/P330EDFUlh86uGP+5SvZ03+lVFJE1+nlOBUPVyKGql7uNxeaVCz2we1iStvKRO2CoOjn0/Pl9hwcbbL3ndyiq/WJ1o49gqAY5FBIYm/bd1sSQtRfiHsw9l/8bGKpJDnm1kIXeb7tUkvnttx2th0X+AYZqkUOPq92b27763IAtf58LPv+2zmcwVJscqn5m0qPZD38JXdDn+vfK/KDyYKgOObRoc9eC3C6t5Wtr/VRuUBWrNWCoLjnk/v3s9UMPf/af+TxH2vnj2Y1gyIkc6vfN03baJu19F8++9vHHfbWglOuRQ1PCHdpV31HTP2PAUpdzdtp/wFB9csh/oebo0ftr/KY+tZ12rcHxY2CoATkU2czRQf0qUJJ9KTe/tqguxLAhObTUobBH56lf+eW8mbtXFVMvBgw5k0MBaV2fLN3/Vej8ov3hyYO2zwdDjcih2zaOE2rGBkiWa8sNaJkfNwYMicmhU2cHL+5Z4W7wVslev51L06NZxZaNRRzFls2wi39tdT8VMvHbfef6HXg60wTFln9zqahaw3Izlxcck63cdnvMiQbj0ujBRFlKgkodjcgg4GJKbkHeocv5xNkVEuMUKhVQQiRxhYEpA0wFhXw1dpyTHDC03R3kC8gohPoV4f0WucpEv2UI430pzqgkXgT53VaNfjZIYzXca0ncwnEtxtataswpUek6uWkAoLcQoGiu/LPbGYKyATqEA4dJg8fuojHYmVudqMRTKMD7KVViMFN080QMPCixAm65otA1PhsTDp6UP5OumvCLomm3EVfoR6C6z2EfgRYPmbyjsgs+Y3jgysuwiPNqdrqeQAJcN3KhRReLSxur0IL9ywhMDBwQHfMa91npcZs/kkbK2wTseNysdr1eHmJGtJx8LCJaTo2YWnpZbuRk90FJr7MHPtlZJ6YCgWtMJfZQQWuMCSQSrLc3d9Wp8V22z76+SzdZb+2/zvg0IhOA9RsvWGCqk/bnnYjD/vyv+uCLqg+YHnqZVB/AuGna1kJITYmoPhgCO+1uLY3qA6vpky6O27VWsmuVPK+Py8afTWgsmRrISGMJyZlWQoTmcGn/6VvLpPrg4NIazb99WVs2pffm7r0+zU4xaxoGREXLiwqYNxZ6UlJ21Qdn9shGno+dGZR/7cOKx3P/yLKI6gMoOjmv6DqbR3RlXn2wuc+w17mTRssyJ9xbOH3pPAYFWplWH4jdSS2DTB/P8sC1TJlVH3wtUg7dM7mLfFLRrontm56gn6qXffUBBEfLC86QrWVYfbDQ8bl4mDQmaFc1x7GnQ2paW0D1AURIzosQWNOk3/aPiMNvO7ZCIf/YpY7f5E3OFR81Hbuf7o3iNJURPnLDAwdSOkss6QmDHeIw8CPwu0brU6kCZUvOV+h7ka7beMPqEBjxS/R7s71oakQAm9PQHJLNCcnS2CSnFOhkjz3o2ahGmyteM60qnG2hqNOJccgO70YcsuOXS/KUmPrPBFRNgyBACahJeLCNTBSYI+jsrC4OEDUvXKKVGjB9wTja2Hp69zhZ81VSYP6CRo/DeoTPoS9LH+pm9rIsHioJsLAxl7HJQwqkGQ71lzlJXy40AWAdeQEDM8osThRhM+DvtBdx/WGXdNryyNIelyWPVj0fetb5zOdmPvM165L+buT8V3W8GAcIg9082UYijXDp28o4B5ghWsnIqu1H9m8om/f3mtnaofdCTCBaB17R/pttOf7xPGGcjyVTFr/69uioqSlFsm3tWs+tEObWzmyUxZDaENdJkLI4gVVd74EvMdIw/iviMIzS83WuJ3fa6fXTgEF1Z/XeR2/yWxM2z9TC0CfMxsXg+TAmgOjQw1sdByAnWnjij4kufgy+OSzmN4wGk8Qgi8g8tiv5hVniQP6WoUEFMPlDtgPQH0gRrcJFrjJRu+3G1upJ5HqgwHADbMoLvQ11vNiF4uwD6BFFfPBfhE5LhNFo9SiMowKn/7/NF/7jlC6ZX+5DQZ/frlyj6xic/hjBCkleL1HHXPzh3tMtu7225lyrPMk5JcPYyASAORDCbC1FNLDu3BqH2diQcHM98euiW1Hq+EQsKgmfHpA1hoNossXFiHKdOgdvKcRu3L4xvAM9q6D4ueztL23Q1CrhoCsJ20AUbCnuOGykSnjPpRJOODR91bajOnjqy+dB7ue+kzE5whNUiihMHJKkUiF0AZfD7EbdFw/vg3NWGZ+sUCmjiUk+SqmNFavBNkVjuCZgntLzvCeKy1xv2FDD5yIT/fkTQNcedfgWBtDd8ZOxa782NGo446kWMnRCJQkRQwLQ+Q+/PpV6LJBkVKu6O8TBuSndfcYfxHaficslLWdmVoKRyxkeW16ByK1DuQy2wGUo/InTfTYQufo65DS0qQanFvrcOuPFiFurxCFTy6UMd38d9h09VZucIOgjHfqoqVcxRGsHL1qrfypTB4t6UdvI0QmYPg5N9XJ23IOAS4up3OHvJLr7+Q+GTm4MpmFkCcM/xiru2riBhIIFjwCb6tGEqJFSZhomYxaJsYncHuQqKJIg5CryxFeBoEBYXYK5GPoKuK2ipn40EorTdR0cvruqkSyYdtmn19EKnxgHE/BbIQ4m8MulAcUOXijAFCcN1QcRh6Fq9bFO3e3i8rLd0qL3mHPMJboRxucI10Ecl8vaMBhTJCZpiIMwYkcHwSX8VMPOupgZYpxvxXYN9AYN9ZOAJ5S1nVQVLHfUC7gDi4x2RytJ4bE4BAD5fafm/Pxd9Ss5PlkLG/ZIOTNuFnM/lMieVMTVkmwQ08cy0gbBxPFtEKpUCcI3etAah0rQXrEmc/Up48VyJEYnKxwuSs6dHJJzfsf2tWGDq5v1fEvkRgJhi3ISYVHoIp2T+JFr7WlfXenXOH9Q4OTJvazfj3m4nR6RwicyVKLswgX4NEc4o0iWI/0kVREH0M3DMfDFMHgqToWxo0hKR406TtDqZCZpcrw3O5KmGxKQQf42E6A8DxVShckIezIRnFIQIpiGiuCUgn+FEpMm5HZ1l/2w13eKqkG1ewr736hxKj92xtXFJzDFHu+Vkj7l8ge86GRqTirTqJhOwdKw+T29gueJf4l+pBzy2FJVzDwg85eZZP06MjL2ZyaKvZQrsGgH5xvQKmCJIHHx/v3ZzuEtA/y35u6odnCE31SGbwPvQ/g2+OWSkLEKb7v4x133An5OP3+zVfb4QSZA5jgvMmA1WEANm0i39HABlXSc7gRZiggBwY0HHswain9zpLxiFUNXfY51D9ylnto53386veQLZzxiz2P8qqlNABTHOl5xzDGPONhtagTwtlXGl4tCKx6rbDkeTVD99e6Vfbf4+qytNmT1NA9HrGJwkhby2Ok+ji4RpCWwUppcHAnupN446IWI5MI4L1gdpEX+JOKwyD8Plt8f+P3PgTOqDW7/Q+28GLqPEYEBAyogXlNfd8CZiN8JnRwy9GiYoWWWPKBeh+3yENcN7W4BqVUgbEUoE5sGTGz1TEHdLeoRlNrE94TeHH5ujr8Smv7vXWGtlm0P+y44O/OvRnfC/Yw5vzR2QwXj0hALLWpFp4AV3dXsCparZWpJWWXNIrRYgjhROQbD42GYIipWnJiEOxYwSkt8AFJAq48PLm8X9JfPT3Py37dUBNJ5oKzhY9kKF79aGuJpwSue6hYrnpKOP52Lt0FkSV7JKyfrkeekW6njgleuGRX6V/8BuTwnouX7urU1JlLBcGyYWzEjHRso2E/b+QT7aLu5BQtvwu2jkWG3ahFMU4DOf2W4jkI0v8kX3hB3Ui++Qx2S9vXAFx5pWj+LOEyrxVAdMsPypqGHLwWmwyE/8TEdhulie/C5lg05swjTNJAzHVETQN45iw9ylywKcisuyAWX/zroNFbpl/8iqnWpGAeiWpcKbyCqdcuLOKt1qfJfRLUuVf6LqNalyn+ZE4VVQAm1LXKKMYt5TVBAWY5LyE2Cjrhd/9nOd7N19NCLD6vShVyDSB31VqkT4eEjng7M3jLYcCypJr5KSOUcC7mPiQfgCQowa4EsajFs58AsYC7xFVngoH7J0CgxsOdh28BKuozaU1QFK6nqNkGZkPWJ3G28t4gaigbgAX7grjL791hiYN8tdf033fQcey+w4FtjMrdLNykyAWAl30Ye4hQxtc6Q1jKR+zbkqS4XVrV0BTb6WCFRitvr/+jptp+8c2r41ejcM72xCYtsJvUKeXN0U4pvunqG/3Tp6EMmQKkqL0ovtwo7d3ANo9YVvthwzKglBxMHqEpG7sTbyHNHlvm8GO6fOmjY1L5Pro01Zo4Z20vJlZxEyPRu6L513ibsULS1LqgOIYrS64AKzQxNN6Fz4IMifP78oZJ8Uiufub99nU4/JjVPDjwEqRkvSFW3CasSaO6jJL65LvGpeMrgaercCupez39bj7jXOjizhv/vH1avnkjPSaeey85J142UBjofOCsEIDoPdBUC5bkM4+PeIXJrj3+8F68/6bs2NKA/O62TbQmtOcBtTK8O0BVOjlILIiFgtuswNNPU0DQToJiewUl1UopIZ4Lhs0PCTJ1hSf9LjhRpp3ac4rd6eX8n+bmLf9LPx/HoGIdZpw2WpMWZKs7YvgIArEcQrDDUHPMC/vdFYbbOAQcLAyuNG6peBcuq5a/u67tPu81ffMyFbuQqycC9aKD0hsrYJYAwHeKFafs2Ycau5IRsZuWC2RKyoabB5whMyBazfEcPHBpSD1lz6SHvlic9uky5IU/zXftC28WJzsJcJRyLUySIiYAbIprP5Zq3JO6jcofxLicKcTw2Cl7CNMoo0kAapJaYrYJ43hCVd6k3LKCq02ZPISzA5qhOKtwtSFE54EnNRKogeB3kt3RutGbgQre/A6ZGHFJfGnJ1Jd1Fwh/AdpGIyyWtOWbXJGMTWyBNNoRnOWrN5UCa7N2CapOqEO/D1zZ+dvkZvdc9nBC0M/xRW99bY6wYMT78fkSMj7heEj4J34z5ffVX2T6zagSu2N34VpwJ8Lmymw8fMH3MEaK1xYPeyQQQ3UTMP8J45apEKjQxmJZPaF0PpbS8etgmOP1skmZVr++e0oVG3M8WGnnd1MoSSmUHr1RWW5RUig5QUhFkvhxxhZeARfMdU3WcufWerPwCabZ93uabB4cr6IIJxu9nC4a8XhplRbg6gbFE1n71JrBid3cL25DV12GAbyxUypLwOLb3xr9LfB757vunYGT1Vp886DXa3sQD2DXa1EBpIFK4mw+RLbspu16By65nLQh6PeDrrgFTX3/U2h6+8oouY+ITDc9T7abbYdANuHhUrDIqFriVsFOVIjER9sfU1VgJOr9ndv1DvS97ThLXhVQd7yarjlnJqzfBrs6XbdcFZpY1IF0NaOyVRMtjeDwp5U7SkV27c2149BOvec/qXapQJ/cOffJxOTa6gTI2/nhhMsTQE5XMebA1jqEgjdUthJxRBMkLre0PrC5LJOIDkFgC0yVL4Ge+Y0PQWTdMe25Wjhm4r8UBq4sCDHb29tUtZhuLP51iziZDTqesxCVOUuZZhgmOp6x38x1Pvd5FYV6RC/OQbN/fjomOeE/s7/S18lFgNXoP8mDYSD5BpYzCmwyxFSkX0vWDgT8AzJMW3KkSx9GeYpCeZPY55Xstdmt0+rihgRuYq54N4JyNCtzAM4rYbERqMWVPEKnF8JOEphYzx02VOsy3cWtIJGgRqd9qDUNeSPlE/euVVr9mp+C18p53CsOyZtDkYyVhrw4Ja3VYMVZHv+/Ltd8+xzYou2ZS74BvZz41NmYCxDkPitNTgvCE30EO8GxU1jAXSM4RWJQaaGghKOUvXL2j8cvPXvOmNBt32juNXs9qJWWjJC0RpSa3nuytYveP9z7nPfeH/+VzwwQoxfKiFJldyMwW5a2dItgnoGNkAEDMHgp0G0Y8im3DyOulEfDGZ8w7VKDpqBuOFKlPbf+f6VNmc+gy0qf79/Dp0wV7/qdPSflsTG42v72LWD7zRLfmauWT4SbQp8ym3ybQFHl7+DTFpj2lrU8fLpcp54yfLl/Qbsoop4KMGSbQp8wggQlQWsCL0oQ9pahPmTbU7PoUnzGc+hQgRerTSha/J2AuJ9NkrHWwcnrxo3eCz543XrFZ538MN8GWoNsevi2Bqw5yO5NlrFWhIC+DjDUEowKl6hGMClTGGoJRgcpYQzAqUBlrCEYFKmONORtYaWlwTSPnEZNwwQRpafYmk6R9GUryy6hHEDwclCSZB/ssmVhzyYTJdGECmVTmksmSB29WufWaLc89HvqL3+c0OjW0XXGiPl0wfAdLtYu7XMfDNuLkA+zYSf/VfEPDgyWRLk3GenYNH9/ENbSVQc4jk+3DRq6OGoFF627i+grsJrXFY4ZWVbeUiUQ/A4XW0ZsjmHk3C+FEWpNwIZxI3C9hOJGpHyfmrZ3fN2DP5vQQr3ttrpq6XhdpeIqxECcrNEpYMIdEP+DQhojKAx77TXEtbKm68b4zP/q9yUeJQ9neUGiJ3hCThsVIcyQG0vuQRXpD7MZJLXHpCalFrFnsDRVPdCRqv3Vf2utv7J4s88PYoQ+Oas7xosblGaFiekY6RTfbkpDAokR2m4B2OCSkDqnCpUOW59zsN+3uu4C8nN15P4+4RW8vVyFMEY+p2LxgXOrDRSJOgHfokRuK49VajOhpr8VStGQBEhJnJt0P4lUMcYvsI6I0apUqHLq28KJ+1RRjjjIlyzVHbXslYppI8PrUxzb3USfBlRGlggRksN98tFJLfnewFYHHobcnbmLIkWKIY1VJtpCJ7HYCOXbxFk2c5m0XrNDEKOPl2DDapLAnLodDqmj965WI65HqBP2rDOaxly1kjrY7Cx1xEMM0sF2dVkm8VUXqrVBGWaMYFRAfDdkedLO9ErwIz2j1LuGbehXJZkcof0hArVSovCEFgU40NhFaDaaI0/2M104XKxBiqjpYvP/OJJ8yUUyfOf9N4MAP38nnwPffSakHR4vHnGlOLPccZR1vmc8CnUqu+v/S1UbQtVGuNoKujXK1EXRtlKvNFKzhrjaTzc0ErnY1LplUiliavClpuE/m03dYJ3H6Szo/CnnWT3GhGk4rU4/KEogXhyZg8X5yHVurYTkATNY63tdi07YwfsHQqn7gbA3KhQe0wJE+w4rGustEb9m9yPkyoxoSk5SiLyIJVMVRsYp4YK6QXzzw08Mat870lqxeNdu9sduaJHoOgA/xBHYOADVQGgzg/XP5GMB9c82SK1UhCkCrW/7Hjh37LKSuX0wXDEVNi6cWqKAjgu6vttXpUOq76tJtv2YU9hjpx2ADjyAfgmDhokZKQzrteKXjbAnSAdros5CEwkYynFUY1hbRxMRL1T4hwT1r9+uLvts8x2UWfMqNpgtHRvIUs4WjGykN4djxCuetefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BVVa86yXz/8ssd3/4b84+fafRhMb4Qaqfd8diNU2mhpCO92Dp/wfjMTiUDJTEzWJUiwe7EEIVP36HjgzgLxAXHFq+Oh6MC/VOpR+CD80RMOxSlSiAtIOXaZVnDR9omfZO6ZS66vEy8cZLSjiUVVQpCXS0NyebyS22R2ycGbYHxMUHZcdSIAo4yP4VeEY9p3m1l0uU/Ihrnj/mp0L6ai8YT3xp5xuZM+BNw7HGW5VZ64IiT91OpcfqqT9diIQ3tfhx6wzbzXouNYegMzB28iJBOmwZKV2Ch260euZNaWEti2PlEvrIMzkMVg6jhMqxktTiAemOgYQCRwBsSHY/HkToTbeWXyKvO9KzuRgD7u0Bv8J0Gt0foqVVrig1HuPmeuO5jvTyD2qagEA08gmYO5nImuyH2tH4UNXiuNv6NBHn2Hr/5ZIz0cHbJ47tKt65+dpaex2FJPZU9L3UhJO14mO4axO16A3AOInBdKjxSB/fD5XEG1LbUi9VwYsToZ02iUHKTHBbWby5u9nuq7Ia5chV/Kb9to/BJmYMXUESbA6iAvVtvK1g+lIpIVyS0X/CXo7FxPu/7ZFiM9Puqi1FP6uQJu25hW1ZbaGFC/Cv9fWd/tod+h227X4FJj/2Nx/SIWVyYdfZmwuIohR2leIWzqgSj+C3OTiQbmlQaL645DR0dPi+zkNemU383vJhcsNmGDCRPrSC+AUCpEaCZq3UPSy+/zyoTF9aqrW+SklACv3IbDV3+aOY5OzVPWXa4hKgm8qIB5YzF7B2G1fqZjcW2YtG/1QL/1wTM0qa2CJp8bZREsrlB0/ryi+8o8oitzFtd7jnebTBrbXzr7kM2qdTvCe5ixTwsMvOJaBtlkI80D1zJlxuL66UniwHER//gtvu3qdOjMpQNmZnGF4CTwgjMwrwxZXMv7Nk59Osg3dO2Cb9KqzY/PtYAONhAhf16EwJom/baaXH6bTNK6zefu5yVb/nROP7v6OT30a4/X7SaoVcCis302Ww6cOxQfkSiL7yfb3wDENeqkmFgx7IKMh2qEtG9Z6lDYo/PUr/xy3szdq4qpF8P5tuxGJ3qDBuKb1Vwmit8L8FV4w6ALA9+JYHtfb6+xtZQ1i18L5gIRWCC/+owddU85nnomnXrSNtPqUaVn9K1Tb5gegCLmKx4pyYViKkYjXagzAL3hEL1G3ojZeRRYnN57BblQlYnlG43FaDC0f/lpc4FVkIskaH3XxLQVf3ueYBRF4jciiiKJ6yYPDoHvL+X9/u57ze0s6WamAEcJvrJSHa2M4mlndTlCfGhjoVXwvsBpR1xyPAbS5yr1APZc1Y2UhjDq8QrDxjzCYDfnF3Bi4R4Ur9YC86WIgrFTF8/uYMsKdhZxruK23aNi1ZpoV3G77okjNVr8B7S3qli6dPCLznYhqd+F3ml09HIE3a7BD4jQjlaxl43eUGkI62Uen7D+NPs2g8qQEeSt1ioOdMcnaYYm8qyg7ILpXhWen/bLfLKuweFbbx2M2Sobu3VoSypyWN19himOhHayXqF7hXmppCbn8bYWY3WeH/dcKz2Qmx/Ws3P3q+bd9gIAOlIAXEYAAFWLIE+UMmXcfWXkF85lnh2bGrI7o8Ldo/fO9jZrfT8EQMQHQMZdnaNZ6/9ZPk5AWtcnS/d/FTq/aH948qDt88ssH0eVz5ePY51f2vk4i05fLDhR3S1gl6ffiNCAEY0sIB8nNp/vdDMy3wKSCrKyssogH2fN0qorInqG+++9sDJ4063uhy0iH8eLVzquliCdMsnHCR07ul1myvWAnQP/nnnw5de7LSIfpy6vcKwtQTgic+bjXDmU22iZKM9/RuHB20mh6b0tKh+naC+f8K6ZfZtoQfk4Pm/n/r1/ZW+v7KF9fQuvzVxs5nyco7yS22V2yZVqPk7EtKe3lX2WeS1pXm/voKr9P1lEPg7uQ3Dm4wBFSPqptf8L+Ti3bRwn1IwNkCzXlhvQMj9ujJnzcYry+fJxjrBd2lLJx2kzoKh310mZ8pUD82qMcyo32uT5OMy9uQlyTJ7k8+WYXM4vrXycGWvPXMv5Y7Fk3tkN3+77e/4hk+fjMHWECbA6wotVVtm6OubOx6nDpcZGHlC2UYZkeGfvD1X9dXfAc/pJSc8kWAXpp1EkxLJrRQUcXzTzUSYmwDow3WnOaDeSsE4B22TGwE9AzrxTZwcv7lnhbvBWyV6/nUvToznfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDjyBRbvArKztDf8yKjntXGSOC3YVVonAVEBgWDSNnhsXKyHKulyibL8rRNq1TT///ZkTg2cWZV5iaHkgPo1aRfSmF8BG2lGWAuZXFHEESoYjyUcRp1B4PtSIeLUWZ6cTRDe03i1r4WX3GV4/iiOnhh2Ze4XvjRF2iTYuoEv+kJACkeiIFJHTNMQVjMoLSiGnKfLCJuc761TeezM+xQ8VhceYMKfJxKQ5BwFCXhAhSJrDou2D/ipAyFg+w8be9DlEbqhD4Pxyg2cT7kgUG4wb+65Oy2fSXY+z/3ywuFYneriTY6JQ103tRordSKDEKCMDGQnSggtYAW+BQNXrg8HwD44Qfd2hEfpUZ8O+wrY3A+bLDsyT2Uy/TA/XkQ9jh+uogdLASBTMhxFzMpX7Aozw8y0ylQXgVOIsmvzN4syVV33Slz2bUDl4ywf6WoQPYyNEXi4NfA4G8eEjDiogFb8Tl+Jv9bFO3e3i8rLd0qL3mHMMXfHby2ELaq58Wq59SMNgTJGYpCHyWYkDGEK7w4bWhil35/Xdj5+Ii/XdtX77H6tEHbw534ptufUGDc3BgGq9J8DxkBTRAgayqk8MY6l1gTkYlaSQpgkCgPy+sxpHHpi+8ETIxsR9AesS2/gwuVAS2UlRxNWS9DtT6RmbcAH1O4QqVYJoLgJT/ABUnPodmZxSzEIMG/XhDanlSIz2TZqS9n6cT+CM3Ac7ljSL3SGEe7isj/MmupI4wbQpFk7z3HCcyKVZz4pYSqylad32tcTh1zP+6zt2vGKV2fRweblyKDW29sGqBoPb9pZn2sxVfnpgR9+Vk0d/RNKJ4etW7IcRnhqR/kI0ZRHsl6Vb9Wx2VB7hPfXs8sEVu9kf434zdhRUf1SAxyEOAEjnoxYvLgd/QT6ZWOeTxaDhQFMfdPpzzOGxbrKNu183cCkS1bBcF+0mAEwUQLpo7EbqrXHABMXynHwY80VHb4gmQ650auNR+XVJxhj/gScX/RLDOHYu2wwqLzcSjaqohQptKECDXKj1uWzol3Vc44tqG95xrYLETdqmrUEr027qusLKVZ4HburpXrVvYJP6pdhVDdKxDulVQNCxIlvziiILjG7Ny+yqxmzNW1pd1/jUh8Fd187/NTnkwxhZ8Jz57qebVXy6jaPL2hd15mWaShNQoXpBaSJ7zh4Fo2mRBQI68xqMkcjDZtm3b/wDp07J+D2+p7QzB0Zf1JeXqYZMgBGY0zwYDYkoENKX1/BOdJtvLXMa/0fnkNzTE2KD25z5waw9eUXu5FxB9uR9546jRCrUBlwKtfbtH32qdz3tvbbDnQOZR0f5IKwpOqRYjThvQMApsiOGaG1/yOMJVjsgdGY/8YEw5BilVsE4G5y/QDwxWDxOvIKbPHRi9e321jUqXd8bPGfNouEuof4dyyDVTndSx2TlayYTefoWwPAMtHikKBp+kSispGUuhi/p6n3c9XDtE+XnBB+Y8abxY9vqK76gq7exqA8BqHfOYqLu/F9GfVqHM+Lpube9FwRfxCIlGx+YCfW7okIG6o3+y6g/LHqQ97r1Kq9F/dPr2X480t9cqLdioi7+L6P+uJdm04ZhbtLtZ4KiTy06m2Am1HeFMVFv/F9G/a3D10293130WfZh9emK4+unmAn1mmOYqDf5L6P+rkrW9SIszHf9rzMK4jYXjTAT6jfnMVFv+l9GfcYL1xcXVs0KmuzmtmXAtjEyM6EevYGJerP/MupMMiwzoa7KZqLe/Au3TvAlyhz56sUxfpIQHr1Leu/UYcOgdn299q39+478mKsa8e6IXRJ+2eSotwYaRqPz1/8P
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII=
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 10
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- 70102562-363e-430a-afa5-f663fb2d93c6
- 867df14b-b84e-4903-880e-679477d08b40
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- d057826f-a473-488a-8c43-ba941c74c870
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 20d03587-b988-43e2-924d-d6655441a5e8
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 130433e2-dd09-4dbb-8e9f-946a284f4836
-
925
-3207
371
204
-
1282
-3105
- 10
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Second item for multiplication
- 867df14b-b84e-4903-880e-679477d08b40
- B
- SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- 1
-
927
-3205
343
20
-
1098.5
-3195
- Second item for multiplication
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- B
- SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- 1
-
927
-3185
343
20
-
1098.5
-3175
- Second item for multiplication
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- B
- FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- 1
-
927
-3165
343
20
-
1098.5
-3155
- Second item for multiplication
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- B
- FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c6aecd68-308a-4a6a-b29f-68933f542f84
- 1
-
927
-3145
343
20
-
1098.5
-3135
- Second item for multiplication
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- B
- THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- 1
-
927
-3125
343
20
-
1098.5
-3115
- Second item for multiplication
- d057826f-a473-488a-8c43-ba941c74c870
- B
- SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- 1
-
927
-3105
343
20
-
1098.5
-3095
- Second item for multiplication
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- B
- FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 1
-
927
-3085
343
20
-
1098.5
-3075
- Second item for multiplication
- 70102562-363e-430a-afa5-f663fb2d93c6
- B
- CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 21840820-7b03-45cf-914e-8d05118a8772
- 1
-
927
-3065
343
20
-
1098.5
-3055
- Contains a collection of generic curves
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- Curve
- SEGMENT NUMBER
- true
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- 1
-
927
-3045
343
20
-
1098.5
-3035
- Contains a collection of generic curves
- true
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- Curve
- CURWE
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 1
-
927
-3025
343
20
-
1098.5
-3015
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 21840820-7b03-45cf-914e-8d05118a8772
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- c6aecd68-308a-4a6a-b29f-68933f542f84
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- 10
- a65c84f5-46fc-4b72-8e74-2acff1ca258b
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
97
-3006
50
24
-
130.0588
-2994.617
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.190000000
-
-102
-3034
250
20
-
-101.0458
-3033.536
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.400000000
-
-102
-3074
250
20
-
-101.0458
-3073.099
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 0.02000000
-
-102
-3113
250
20
-
-101.0458
-3112.868
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b7d3231e-4e24-4334-aeb6-4329747a1277
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 0.00000000
-
-102
-3153
250
20
-
-101.0458
-3152.757
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 0.0000000
-
-102
-3194
250
20
-
-101.0458
-3193.056
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 0.0000000
-
-102
-3234
250
20
-
-101.0458
-3233.61
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
-102
-3273
250
20
-
-101.0458
-3272.636
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
-102
-3313
250
20
-
-101.0458
-3312.745
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 0.00000
-
-102
-3353
250
20
-
-101.0458
-3352.806
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.00000000000
-
-102
-3054
250
20
-
-101.0458
-3053.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 1.00000000000
-
-102
-3094
250
20
-
-101.0458
-3093.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 2.00000000000
-
-102
-3134
250
20
-
-101.0458
-3133.28
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b2df309f-5daa-4345-833e-d910c82a19a1
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 3.00000000000
-
-102
-3174
250
20
-
-101.0458
-3173.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 4.00000000000
-
-102
-3214
250
20
-
-101.0458
-3213.058
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 5.00000000000
-
-102
-3254
250
20
-
-101.0458
-3253.388
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 6.00000000000
-
-102
-3293
250
20
-
-101.0458
-3292.686
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 7.00000000000
-
-102
-3334
250
20
-
-101.0458
-3333.029
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 8.00000000000
-
-102
-3373
250
20
-
-101.0458
-3372.878
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTr+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpQVlCdupGum1alHbt0r7r3pbfOeOMzpyZc+I6Y073d/3/t1/NO3Oc+T7v+7zv+7zP5zlyRp6Ovh4sjs8P4EeKRCJJA//18HL3dWFzlvixuN5sTw7YZA28DDaDP7LgW/ifo7OYTiwu+BZpqFmB32RqBL4sD7w04dGL+DWhGebxXzhNLkYrPstac1l+bNYKsF0BaJexdQWu4tQTetmC5e1qF+DFAps7Q7+4O9Rm6cn1YLqDLUOBV1NSUn7wP2XLcmc5+rCc+G1sNvuHshHLmc1h+wDfwprr6cXi+rBZ3vzLgv91MWL68H6PHPCPY/c9wmNCbsl1NWJ5O3LZXj7QlwdvkdTFkunB4v/rZWd7uome3oO8nY27w4A/H8RlAn/ej8u+H5fL+wvvn7mp4J8xm3l/Rt+PiW15Z028Jfj3bUHgFXaAH3mQtL/l7/e3b7u/PbblbffjDrdcrfltzRdpjDsGvr5zvcCv5n8WuiWo9bDg7e36+XvDE3hvjsT6e0JaywWhP6FXMD/F+zv0jXi/EXYDh1vuDbpP/m3/fA+vtfk7Qr+U990hVXlXgPThf1ZYyWaFIbWbfxHfEJBdoKsJmA+Sl2dZPT0Tur28DdDDwKHgzR8m4E93/quGnr7NA6gzfwgAnc0N6IxQ/+kEvSxjx+S6sHjvHAj8c5cWiTRdDehZ8z09PfgjSGn++ZnSc4DuLPCr5MFXhH6NvI2jF4MZ4OnrA3+vggnX09dL6M3dTOhUBtuBy+RCQ0AKGlnSAm8FX5Ftfl8A756hjytSvb1ZHg7uATRfd3f4UKBa+zo7s7jObG/XEeQ5zR5j+lg9ffD/RpANfd19fLms6RyWrw+X6T6CbO3r4M52NGcF2HkuY3Gmc4Cr9eRfes5PfwNeWRa6igzV18fVk8t/ubsF29GVyXInW3MDPLmdTJ34XialYZf6ktFzGJkyW9jfGxRWCoxYhZ+3KYvye5R+OgsrB9B8LTJJA390bX5NQCzwdZnm10GNOkH6dTGZ/dP3jd5vU7kg8zDt0P6eZ0+u/bhD4K6kebaSN/Tk+DDZnGY/qg1dRcbAkwu5Vr5hZAw93T19uXwPB/6vKF81kEp2Aa9L9nQmm3CZ3t6unl6A7yN7Nn+rTqZGvN4D/Pd9yZHkozMaLUIOpscr2/oaA01SUBM3V8khuH+l+QHtK04a9R9fAU2doKb+x5Yk1c9i0bMis9dl9JxmDjR1hppke6vlOysqWpac/VuB4xVkADR1gZpmXGuw7JuezEi9fj2k+GbnRqBJGmoKNzAKl481oW/f3bBtjV/YdqBJhn+HLr1flTGvW224G+d3ikJvAppkoab8xytOVspUWYY4PKgK+R7ZBWiSg5rSPRgHvyjFWBTU6z5TyEujAk3yUNPLIR/OTl8zy3iz8bWzbAWX5UCTAtSkxRocpzw3jFYQsVSWpJu1DGjqCjX59ZA7UxCjx1h/e04GXa+xBGjqBjXt3vzwplf3y8axdpPZwRpTIoGm7lCTekRolzG6t6wO1r9ec2N67A2gqQfU9CLQ5fPStFT6cZl6I1eZGCmgqSfUxDY7SXa2fE7Zun/C9+cqlNdAkyLU1EVaRUdpuB8j69Nj0yMhX6cATUpQ03HnUaf8aTPo+2b3cFkrrfABaOoFNcV+X/DS1J9pnnNyR2OvKfesgKbeUNNyjbi7Jw1OMjZtHbI2PWZ5Z6BJmX/BnQOuX0+aRg2lzley3uUyFWhSgZq2KHQ/Q8o5YnmcnbA2rqyxDGhShZpG7B8c3meFrfEB//vU+9cT/wKa+kBNtzJjrmidljHLGtZtU7bFYGmgSQ1qWjxE2aKetMIk1LJSe8w4p6NAU1+oie7tprGs5yODmB9SDkn9S/WApn5QEyl9s6P3fF9a2SfLU3PHXNIEmvpDTZcTcpa/mLPSOJIZomNtKFMONKnzb35fjxxmigZl46X5ows8R8QATQOgptuDbfqEXw6hH3tnnqN3qRw0ykCo6fSJ+M8GPXrQ8s+OtpmXVb4BaBoENf35sjz629+ypml2us+GBef0B5rIUBP1eeipJV5ZFpur+1ksLm8IkzM1WiLgQQaDntmU4+3D5DiyTHzZLc5MSV/l0z6j72YpY7e+jH51q16E25CzZDsug79MUqD6+HDZDr4+zR4ect18FyWFm4sa1IEuqrTP0iMpC0Iti85+CrXRCbCFuSjaAd1y2VcvrfJedNZuYH2pgrmoo+waebPZ/U02PLnTcw3F/APMRaVneE88aW5KC+4jzaBVT1aGuSjjtRXJlNAms82LkjgGz/N1YS7q0kJZ9eLlewzzpqp+HDNPWgPmosrnelxd8NHXNHh0X39akOYpmIvyD6lctXn4BErKyLJUOY3ZwTAXxT6wtoQ17rJpajRp8ky9iiSYi1L7MZp0wUXaJEKp79H4SZQSmIuydjI/+CLAnZJ+XCskYmzXIzAXZTdMV/3Kk1KLBDkPTsjWSzYwFzU15/3gyddqLZNLV2vUjBlyBOaiNALchofeizKLq9lZZZcyZCHMRZ0M/yP2agTXMmLNiZsH1t5YCHNRjF2yav79WFaHT7JuVH5SmwZzUQ9TJ7wd8mQgNYW7y/6lbPlKmIuy3PhusGlssWlhjMVchTOqn2AuKrHo24PDO1MN8j1kNiekvdODuaixl1mM6bPkTYLyU0M1V/fbDXNR3Btxh4p6TbZK/XDi73kjjzyCuaj56zn5IyISLeMNHBJyfryThbkoIy9Nm3wFW7PYC3UNmywna8NcFLXpG0dtro7x7muRT/S5qkOExqsa2ngdUfJgTv7ijUaZlXZ7v02trcFhvHbCbbxqdeB4FbFu4I9XEesG/ngVsW7gj1cR6wb+eF11w733812mRgVB5Xb7z2hd/W9J8d+SohVLCuSsDFtSBBl2LkjX8KSmXzFWv3QiRRG2pFgy/0v9IupQ46P2UxiBAfulYEuKEVrj1E5bqNGSWScXelyllsCWFFfmTGCT0/cbH06ITD30JWMCbEmx5BhDmr7pqeF6Hd3yKUrTLws5m0Fozga5bMfB2XTGzdmodqCzEeFR+M5GhEfhOxsRHoXvbER4FL6zEeFR+M5GLkBN81VhrmX4WY/03bWPH8CcTXpTRsyiwi+MaAPqx8lr1obAnI0IP8R3NiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZJN05PMXt/mdaxA7Hwc/dVn6FORvk8BLqvD3ROi9ygsCh83ZB67x6Tx0Gf+U2mW+fd7Vu1KE0ZYHf1c2I7cd2YpENfbl+LME+DBoWNJOo3qkDfYxJdgQ/SGZzfDzJrOW+THeyO4vj4uNK9ma5gPFPbxk628mJxWkJtoiUA9mF0W9RSBWBVoRCLTEnA8AoTryXNMB/1x+vJNWlVpJInwxIpEADaWu2n6cPf01P0s8HWvdXdvVicpkeS9gcL19eYEMW0laUHD15v50MaODEuxuRX/LGhr3FixIG0NIKJ9bXzg29Lmhz0d8OetmK99uaQ768EJeMLeBCHFl8F+BhHeI8uvtG8+011jenft0U3bW5WSio1Up9agB9qkF9yIA+yVSkPkCrf6qAPlKQPp1Q9Oll6evhADov55Z+IVKivd1oX4NnDjfdFW/tPvdW7ViERODXESER7+VfSYScQHGQSBtTIqAL9bAGg2zePsD3NWL6MFvGAElUwFHGgAvI4UqCDWPhN3WxZvq48r9551X6a7qY+rA8SKSfBxMyHJ7U/A+B74NbCry0DIal+th6ubN9WqxEZvqQl7E5y0Sbq/Tr6/IRA84zMgtXfCpROqAvaC5z8HPC5mp+Wchcouwhwulh2SN0P5Y9JknGHrIOnp7uLGaLAyR1a7aGp68PwrHIUB0dWd7e8MuL9DWgwwNDt2QvTzbaQPoY9K33a8ullglbY9h0b9rfApaRseZ9UMg0/Ndxt00e5E4WirLNh1yeOxGQRartsgyxY3JcAMOS/YC50JPL67lOrVCqwVThUpfPW02CR5tnrecc+kNAKTnoosJa/WwRh1ramGoBnkVArU5tV0vDGvw8ywfwyX5Md19Wq+Va9uR+U8ONKfTseZnrr2rdHos4X+BfVVgweJs4JOMNflTJgMEPLZOkSSjLpDOJTMa3yX1MNhwYKNuosapMsCMwgFUR2daIIbxEkkaR2MCQy2L6gEskd/CzkEclO4HnKywnskMAGVCX69Ms9giyD9R9mRwnaAmlt6ZVayfkGl/0fQt3YH5LKzUOLKgk6e8DNNYwFLFmCgU01t8rtGbCmmkUeTcA00Dkt0v76ndvgGWYSfL5k8dry5NzBacYW/DTwlNM88t49zIvQAEyqMADUb0sA1g11uyVyBSjYOgJ7DLZHOgUfywJ/Qe5aMMykBrPQPx+qe3E5jaf5uqINJTXo6r4Hqy+9DS5l5oJz3r9JWAoeSP+h4WMBWsSh8EC92IZTF8yBpNpnqMEjfVmJpaxfrVu68ozVrPjEGmfLT00n3/OeWdQXJ+jMXrqciPBFQGD90HhFQH0ujgsU5+CZZnoFEmvnvmH/qBlhNZsMiT0ubUbA+bvRdoCuV0TsEUX8ONClmh+FW87aOdCLi2LChgF6dRrjvFGCDRx8nvfv2biREbAxDhxFqRjTZwFaSKDDe2bOJ/UubNWDZppsqXC/MtNQ1lKeyZOxFYaublo51YadAaH0rGcgX36/++8eskg5/3bCSbmx267+DhmzN9HkHlVDtNgQI8mzLzK//k5vyLnVazB9st5dayBT6LcskzLvZTArORXz0PaN68iRprqnX73fgRuo8XmU/wSbm+dhsNIc03DMpyahAzXIdPuVKnbMx7bORpkXYmQUpUuNZfotMvzeKjTLjCAoGmX3zmFpl3L47QLZ0inDAPn953KbjRTEvg2PSx83X3YXu5sRyZ468KTL1p/728B2IrlAXzKkelO9hC4SqtmVeQJEdZtCcmNaG+lnIrHAcEOAnJGAt1aHyknHejWcgcru7fEH/i9GpSBFyI1BR2BgC15XoH3sqkTfyzOc6reLFUub1T0qo9Fd93eNfx2KZT2rla8bis0GuSaX0e/cPP98G6XRMI+dxhAY3O9fchsYDiRnT25CHuJtE/NQHnNCd0GWsR22xz7ZdECFwH7SFGFTAK8hOz+UggvhTxya6eXIgHmPASaU58qwktdBdcDBythIkn9QqSBtixHT2Bx2BaVBul9pNhd7G60cd+9KKsLRXKCKhkIq2TwS5Wicw7GB6puYcRcowQ+Hn5zCw4qyWGqVHCgEuqDLX0Jy3+q2bC8AWHAM5pWCIScmQSnveZLCU970Ot4+9OGPKjHNFHBAwCEFu55PKUgfyqH5k93NHzcNXJ2JKPwT6sTJj+ShwhGNo39vbgsb28hX4q10FM1BmOrvK0Mh8xquQDsWvx3KtGsbCyodtpDVulPsVkzZISVTqt8LfLwHO2WhYOxP9taG2IFYykxgMQTgF1MPbK71QMSK8aI8LH8Q2kRPlZKhI+N/xZYlBJjb5p/8LAl5bHurY7wob1/akH2Y3LZTAd30ee3ah9KpM6NpNKT3/Quu39qXaWg2nOgj5KthJ2DVUe70ArAWl4xkHOoQFprewHPWm1xDso/ncPPjixSpbnpCRdotz+YpJ7su5U2wjehVY5Bioy7T1h6DJKggiJCAvoxngSQT5BH8wkJBfXzQh41mRYV5BVlL7vPENxEWzM5LHdBd8C/kigNtalkL/ATvDnI0dfbx9ODzPH0Ac9egNnJh+XvA53FiNQVmQ0j4laEM0ZEqerI9XR3twE9O99/Nf+8mYnok0hLovVJudneLK4dcPv8X6tp5OkLjgRHYAZZBiZFsJzYPtB3B2ZicGfxIPAAwo58cg5pR3phJUk7AbDjHENSYIihggWT68LmMFjOAp2ia/PLNmwXV0E6qPl1O08v+KuCnSHZuLCyCzmhsidPREFETpZ/V6KStrjMFaYcJ7YjDCWSB18Etzuwl3hrWjCU9dOZ23qxHNlMd0NPp5+fBfZ+PlwW06Pl313mcplePx1Gc1dVQOuqZBeN/NCoMINtf2Qwdn4pXCXYP2xY7swAwa4qRxJ5YojWe3tTySvYXBaZC14JykIT2VGRuVkibqRV4x/RG5H9v50eMh5YIC1NhPIFApHuoQmYz8iJfPfQlfCaI6cPnDRH5r7ioLlcNJbm1Vv4mndD07zNqZhd+Zp3BEomnM3I3x6KyGbkp2KKyGbkp2IiDSuUYQgusER2CWSyIw4Zht3RbLK8nK3LtkwzPF5m5f700YLXAr+r6yxfcBoAhPNyFZ4s25CzMNSI7e0FDgQm2ZvFW4oEjOQnLwD/D9gI+A0itUBmd6Len5AiAo1Cw0Xe1pPrYwXvVSIG0T9c2rVcDTkfgku7ZGAQqRqC/wkOolqjgsokTnJldz4HDsxPLH+ByzWbsgeaKUtZB9I4384yokZUHtPn9lokGG4GsxGZIMsqHFCSQbHa1JZNkI8ri5ctyrsAaD5+8ijTBzQpOCU6s1lOZC/+JkKvVZsgJCeAcsfCAfKWptbuMoEdd5YHoPxforJGwT1o1rI2ZY0qtWSNsiCNRH7BkdlrJ+46e8nssMUsk5Xzxp3BMW8USUu008HXAQpFgwrRAYXeIB08GKZLdheZN4qmkObPNCVgd9bcW5w8PYCO90vVSHbfvKf+rcjYPEI16erLWhXBbtFyXeFu8bPpV+p17REXW5anYxalpXJjo+sbHRzUA3oQhnoVbpVtComr8BL6fkoHDLRVPmtEyhUnN6nqWM44w/WL9VZ2jrhxFrG9AK8j3MmaX8Z75xaaB/WiaaJOKc7lVpLeuAunC2Lp0KdlqEPZgVhKDA/vbEzTVaPFr7s9Y+9Rr+y2+xOxKGLtjqUI0G+EUgJbqYgjm+vojtk3vDzMjlcbvaWWl+sYzDc2XUAQRRSXYSni5cZfSoIQxu8KRiBJtw4AIwJdscCIQGf8wYiPK0s2StncYGzcHfN190JKDXEnODDLfKkrVpZ5hYtYwIiiVPOl3Z8r0UMfW5xYlbF4K45gBJLAw0EisguWREAX+reDEYGhO90dpL5bJr0daUPp8ucFCYMR9Swse1BY/0dgxLprzy19xtOoqfF7FDUmbvgqcTCC505Q89YBdyIpMMKmbrjbF/UAy4LJnCdpz+2uEAKM4HkWVLUAzyIxMAK5GSAMGMEb/KiSAYMfWiYpklCWSXtW7ah91bDM8NARnW8XLo6pFTE9i47riNJ3GPROMGDj6Onu3pyiBs5/QKdhcdmOzeum1q2OkLO7rAXTy4vNceErBX4dHBcTSIy9nTMlGVxMWFeCKTPCJ1TnC/IqveKt+MZRQjOOg3awRkKXMkqe/VC1tLM3VAW+bk8jMPPB24fr6+hDpnIdW5+DO9WGBXwFll9z1MaB6c0ie7kzOawRZC7Tie3bfGQFDHT3lv04GM/hkJlcx9ZFbZDFGDDvW8hgyDe0UvFocIHGBRQ/J2p5Gwgsbyu82rS8VQd+NxnYTho276HAZe7PGxP5vbOSZ3z1sWHTkuZsHGHxx3bB+FpnUd+V9+KvuiZyi9bOrhkIhmpAoZJFJajx1rlebQtF9Ddo6UO8rtKsW/PeU6RQlIWqxp+KN5mmDGFxZ5xrWivoT3lXswavJuxPYW14+1NyPqSLvSh/Sge8LYnbxtCETfN4apUmezc2fZTV6my076rPwbzwJycQZ+u8K4lIuml+XRxaLF2OpQWyj/wqKEGmwh2KNvAf6GyYHG8dSB6Rotg92bAp5lKlUflc8qNd/at7CTp83iWFHX7zy+KQhOyFJUmgJ9+j90Lz6KO2rgkYMOU7LWb2+AhS4rw4wY5vBYwfKz9gdWIv7Mw7o+ja29DTA5AfGHjg4AM/7N86J40si4N2K8Jj8GdbK6WzB7eNm8GUWAMR+UUkQNisqDa55q68DKDmRZzIL3fS5P4OzloN0/ScCRdV3tQIJqpKzwE/J9xvml/+lTdG1vFppzemA9oogto0iMrmudqsTdtypZtTfzDUMfxb5mZiqZ/RkfimZ/2ZT1ZINL8vOQ8SoEmUAEPzeAJA46o32rgizGE98lQdp8N6pMXwOKzfgnlYv5mvuTKa5r9hTiWyqJeYcyr1/bFyKq1X/MtzKqtkhvc/ntvFLN8jY8Mzn21FeOZU4uyFwZxKRX+snErAWuLJqdS3u7hrAXOKediKqdpyka9VW+WMxZRTyZMANacSkADyCSpoPoFAOZXIKn3iz6lEWlIyOZV1IMC3CbDjZHHlVIZdLag067yJ2DmV/GQYVbSuSpwlA6JmJE5LBmT/x2HJYB+MtWRQC+a7hz6E1xw5feCkOXIPj4PmNT5Ymlv78DVXQ9O87EDkjEPfMs3yKqbZVRd7C26hZZqPKAVFxzrTHIUa4nV29wR8JMelOY5Obj6QE+2akeXaRN2S8P4Dev1XNhhTu0N5lLEmY6fZJrksu2Ol7V0ZgPUqmFDiDnJalPucV6l2fqmkjzx/zknRFKg79EXrDm0O+POHoNgD/shStzgG95FwMA59gn4EpU/c+phXSXucwR+X/dAM0eZc5xZf2AG5zkhbCKUmg79VpBWRZVNbk5osLSqNhd+lIR37o+l4ccDzZ5+2WlgEHd0xZOTSj4K50F0sPEUl+KCdjAy3A4amtzu4A9X2AD6pA25Em9UhM909AefGhE5aWxdjQz7aQfjehKF08NVW9sM3YKy+COiHX0Wx0WBcTbGoTXG17rzwugvLE9iTcgNEfqXCvsv+2tynyLA06/3CnaZ3JwmeHJtAHxU+OW5p+dXODtn12jlWwaynLFAjiqiwLe+YrqhtWT38PsLb//I6g+hDsKtDB6fVylnG1+wbdqyxv+CZsYyFp0hGnv/6rxya3nl/Ds1G3zxQ2U66K4O0BweRFDFFqigkXtEP/s9QSpvio71bBrkTdlfXfqc/QJN13Spe3b506MzsK+3u6niESnl9mS7KTHW5vL7cphOqZi2cwUfO8fqzE2BY0Z7MLFF5seZjRlTA/bdma3t/F0wTbbmKcJrozyaxBI4x1QA6LTR7qJNQZo90vcI5gy99Ntx+xb3uzZ3GOkSMqjmh2H7e/NYzEVotFa6gdGRnrqcHeZV/wMo1wBrJw8uTAybQtG7+QD7/B+3uhOOVP9vaUD4GjFmSBhqKOD4nAVrXHBeaS/i8vcgIGHQLq/xh31vktzSlLP9hS8tjRDiV5KqofInuZcrxYXGBniIc9+000l6Q77H/eW1hvgfe+CuPeupMTey24GPmCa+WZ9V5H+zfTo+6FJASDCqSKkR1zmRgagYEJ8y24U15W2bAFssG/MqyR+6QsgNeFVHy/MimvafOSBS03Tws281rg+3s7wQEWPhHGqRTByVInZ3a3gQJ0HZkTNsBQ4EwtmtbpmuL7Vb+ynYfBvZVZZevZuxJeSKlzBkSLmi7+Vi2m49lu/aGqcFaFcexjKNPKOO0aWmiCFkHO80IufgTXFk2X0J4ZQm9jvssnAs5OjlRYJMa0EovaNuapDskAkZdtnTt5KzvclrGh658u1uY0e+NROudggqAidjoCtgf569DBpBQ1iHZSxhPFgZlm4UpLRm7SbVIsHKTjC0LfKZp6/ex/VvWIN68T4Ibfigg17qFB/LpgqJuR1jg5tfbQMSB0Anpjah8PXDzqp/XpprT/ZrrZTV/TzJIEbqyoO8v8jsqvOvDVZv9yXhX8c68FeF5HyVYfboaTJABtRgnyqkpA601ecRxam9mtqUi5lBbH5YX2Zu9ksU7x2MxHV3J3r68cD7bjwWZS6SBXo30Xfed7myyvXaDsqp/4RfB6Al4WeHoCe9VcZgnMA/LPPqENQ8/TR7NPAN/QkpQTvyvR85GU1dzttYa42Oj7PaS7C8iHt3ZLmAJ+YDSdi7lQMvV52JZLjpX0pbjA0tCKwWUwy+0eVPJFunrRRoPudH5ZV79L9y9WPb1PGcI4p9C+clgQhgw2qD5dCAJZT7V+dZH7Si5s3GewZu/WQNdBJ/H1JUBWJvcvBxofablAAsW0xuEasHRAfGevEIH7sDVWjetIp/Mi3pXwmtqWGMrdfQHH+WUBeh4UlTWpReYApYlckffhj4nzwsYgwKI7mtf0pLmLuxpnq87OmDUeh/BbLgu4FcSVZTV+9duAmf00xWQyhWUKl5U+o/6cZ5UqAibyH3WT7cKlqbkeVWGSI1UGv5+MsfWjBET99ZjP8WrH3I8SgmNxw5e3yrmQ+KIOu3iwdqAONB4HIQ2HgmUGIScYnBPDBLqrXKh2SMP3V1lme6Qd9AgSrmbZBKDCgA7+h9riZeKITEoJD+/cvHyY3gkBpGEE4NI+BZbI6N11cGdNi0YlnfNPNLhGdX1PEcwO6G7BdPbm0x1AuwglNoKCt8FrcsCawwwCk72AD/PhD7/c/5ocRStmkeQz2rHuEWhrizY3IYDItccqHaA0EkjmKdSkN3euWQQLKnfu7mWL1wrPdGRgJ270g5Nn2KSabDZIu5UNeIUnXdF4aVo88u/mmOQjhkHdt4elLCOShKuY+t0nCdhm6JFfWBFfeFKiRQK6YMkmvM/KR/SIlTUslwbnFJy2s1G92FA4wq4jg/gI8hc3pcRPSns2lww9M2gdKPSkV3mj/v26r4gsmgNXaFZDuGlsNAbxCEY0D0wBHPN5s/Bg9EcW5szTnrxBe+AjBNkqgSsuh7yFAxWXQ8Zp4JV10OutWEPOkauAGAPOkZ6VtiDjvVebg8L3xFmvuNHry89h15YAnvQ8apns96OjtQyOkQa+0q6KCQY9qBjxYEHzxSaf6Buqj+aNm3l7XGwBx1PiJ5NCVF6bbVLPnM5c2rhANiDji9l1oZtKz3PSIxT77zH4fIPofwbsPChyI7858vy6G9/y5qm2ek+Gxac0x+H0oBD0DoU0UsDIh+D3qGlAf8hodByNVGlASNQSgP2pRVUnmZH/Lo0oAaaKX/X5zyV9ll6JGVBqGXR2U+hNjoBtmJ8zpPXK6znPHm9FMNzno5f3BR8wCHdfO/wInWFk1X72hOiFv9znpa+wnr6jOKr/9/nPF2efjP6y6Rd9O2Kpxk0le5vCfKcp4qXWAYDejThUr7E9JynHaRpUwwV7Gkpvfwaa08vO4nrc54UL7h2vWKobJYxcvTOwyNlt+Ew0siYhqt5IemQthif83TQdFp0dr9ZVntZ3ZKXul3dLdHnPPE8HupznoABBE27Q0ko0+5vyNDSDuiWy756aZX3orN2A+tLlZgZWvpNLIa27sa/nKG9llg9P1b1iUVpr9gdl248+ownQ2u8tiKZEtpktnlREsfgeb4uDgztpJtYDC1gLfEwtDnWL1I69z1ET1zr9C1TNvyAJBlangSoDC0gAeQTNNF8AoFC5UfZNfJms/ubbHhyp+caivkHfEPlpy90akAytEhLSu65JPUPxPlckk1GhZWd6h4Qm6Hlh8q10LoqYXjO9AzviSfNTWnBfaQZtOrJyiJu5J/wnMj+jwPPqf0Ii+dseMh3D8MIrzly+sBJc/+QylWbh0+gpIwsS5XTmB2MB0Nbh6V5dB1fc200zYke6Lq0UFa9ePkew7ypqh/HzJPW6NBA1z9cRqAFuqyBhYL2M5RAV5F5QWWS1rNfB7p0CD98Tob/EXs1gmsZsebEzQNrbywkbqUgtRqs4VN3kT98hqNpbnC1zx2/iccoRxYsVouYUyq4olEGv6oPmApoxHZ2ZnFZgE4iUl3RsnJG8eufcfmXcfp5Gd6q5+cBK0g3tWqPUz7X4+qCj76mwaP7+tOCNE/9+oaFTCXyXW3IWqPXgjXBRGXuWAMmqbva3tNWKgMmCrheAlcgTF4dObI2lD8GVixsrooL/q2lxLC7u+cKlpPoSFeNh/qfoxqWGAYmasWt1+2SishN53kzEbnpza//qm8nUaRPXr0whX4w6tLnKvq7l+3s2wWAzJNAmbuISmwZd5wnc3sLV2vCzE92YPmsYLE4vPx+lqMvr3vwTv1Favk89Mbn4WlPrFJPyFncuZknWBik68/rOgl7dXgj3pucN3mQbAtFyaacx5MNcgm6hHfDyOVGa9ywiC0OoqciTYdH8ZVrmMVXrvElH0F4ydkH1pawxl02TY0mTZ6pV5GEj+TI+RQHyd9cwpI86xJf8pFokhP6eXbIng87cUdaCHbijpwaYSfu1k7mB18EuFPSj2uFRIzteqT1z7NT+zGadMFF2iRCqe/R+EmUEhwOrfXQbHK2h8b70RM8LYLfvTbXu7LOWDB3yoYFrMAdWWRLX3f3NgA3I/mf44CfA2dLNgdYurOdmqfXFWwwV9jHFbBDq9cgSDUx7lM4x0ugubUFboGFd/0VoMd3NRSR4wXmmOhfae+qQ9WUlwwLLDeAm/HhLc9AxUQKoGl+btm6Xvom66cmW3S75tyISO0CLyQitYv38q98BbJ/t9NXKILsNKjcXlFHMufAJ+tcQa0x0Url+rcoxxXoamDXEinfxEHltSo9bhgcuV7edVFBRbXg04WgDuIh8jEPgq245xMX8HoShlr1lzv0AIt/o3J2AV4suA4aMAeqZ87icljueuB7vPVM6EtASN2FxUWAHOBPe5eMqrylOWhY4BJkJieg2dQirYxcErdnkLSXksqFRsEbqgi7WufyRkGbSFA1ZBI91PWdREpxpmBLatrBfMs0px0PVBcUCZ6ltZFKwkEKfUwpgC4OTVSjSCgTleVx2oUzpFOGgfP7TmU3mikJfJ8evACvlzvbkSk6ERltldbfAhgGLLDchyPTnewhcJVWzUt2w3TVrzwptUiQ8+CEbL1kg3VbQnoj2lvrMcAnFjQCckaKyj6mgyu1ZyLOAflhAxHngLyMAcQ5IPI4j98uhdLeEeeEA5qZVrD3N2dEC8gn0j6pL/t4D5o53jR3sfyYuXVp6gL2kaIKx5SoHX1QSAKxu0booFBodIAlzymNlTCRpH4h0kBb8LkcTm1Sqb5kg7N21CCLGIeeC29MviyYNyZlIKySwS9Vyr6xdbtG0CaD/UP/iL29LqK9T5ABVXrzDEul5GdtOk5Vg6WL/1ogZNaKRPPFwefv8noMWCNeKHfePY+nFORP9dH8KZELxU3NeT948rVay+TS1Ro1Y4YcEb63dheKk/uAVSjO/j3eheL+iIvdvWqMnnnCp6tWX3Ot03EvFIfMBMKhBlrTe6waaIfei6VQ3HyFddv31WcZpk5eu2hkhas2roXiznW3jJr5Pco0otjD+N0fsWdxEMkeUyS598TLGuT/iKtQHPkvx/fvx+qalro9KYt5MvREu7s6Hgg1ry+jlkYD+rJ4CsXFvHlgcLgXhxL7et76xX1WZBCkUJw9phpAp4Vmj9EklNmD2IXiNALchofeizKLq9lZZZcyZCHa3eFUKE7xHVahOMW3YioUVzZg++am+zONIvY7b9xpqZIpkUJx1KZvHLW5Osa7r0U+0eeqDsGh2BjpHVY9q6y3BErnFVOhuN0WjisMi7OMg/rvrl1+NSVETIXizh8fd8nhb12zw1LfK/de3/gMB9stfYtlO0Ui2U6oLgw+heL6NibuGDr9qnFZYMli5VPqKgQqFFfxBrMC4xviGEcsheKQiz+JF4rjOTrUMmmhb3EvFPdjpepzrfv1lnu+j7b0vPTMXeKF4hTfYikQ/4a/DhlDQlmH/K6g3u57I2Z2uxVgnO8/tnxU+K2uYgT1uqlUYYB6kcpV+IN6chd9aLqnd5pFJsbNKC6mC5ZHJhyo1wUUCBUfuq1c9X8L6hVu+LZq5Pw7Zql2yS9/PFAVfECc5EC9XGUsg0VKxmCSAPW2Nqjc13e+ZbZ5yOX9j4wjZuEK6inRCjSTNhVTjnZycDvZe9ZHHEaaE6bhpknIcB0C6qWOGXDj88juBkkG9q7nmMMFK7B1NKjH83iooB4wgKBpdywJZdr9DUE9taVZB1/QWZaFb2f0c3ctlka7ZZxAPXf5KgxQb5x81b8b1KsO7/fAIJVrUZZUMOvmlpHyeIJ6NdNkI54U9LQ6ntf1WUaNySocQD0n0FqooB5gLfGAeudTY59dJU1mJCrnnogfbGIoSVCPJwEqqAdIAPmEcWg+gUCgXlq+OnUjc49xsunIb6tM0p3F/7BLpCUlB+plda8SI6jnbFJYmXOke9VvAeqNR+uqhMn9vTdsts0a6S/0DQ3aG8sG6FrjRL0g+z8Oyb/WPaowkn/1e/DdwwTCa46cPnDSfM66WxutNVYYhI/QkTp5cwgHB82z5LA0j5bjaz4RTXOig3pHD8v5PGE2mux7YFWokL/zW4eCev9wGYEG6oEVqeoUq0SDegm0gsrvVxWrfgnqTUIz5W8Hje05e3zojaEcq3Dd8sXSnKVrJACNvZCpwoDGcmWEIl/EgMaKdLTHKfULpu064ttt+NGbkxBx6vZBY/231jsc3VfD2DqC+qchY3IiDtDYI1BmVGgMkFmC0FjaYbk/5ywaZZGtUBVNG/BZ8PmbkoXGeLKhQmOAbJBLmIzmEggzoyKnPnwIJqTpcJhQfWSxJlQ7Wb7kUwgv+fPEc1FcIz3zYNmoGLM532bhI/k7ysCupgkXzHJuPvW/nTw/CwfJKdJYkpOl+ZJPRZP8dwGU3l4e84n8eTT16H39rLJAj20Y94kfoDQJ9CGogFK9dHtnuLYASupSnzVuD1AyKF6583VRuj+CWmsXoITs7TgASvqgcqjIjZzg2gCe2SEuQOnJ2pd/p9hwLFK3vI8cGV7NJRSgVC+NpVaBdIcG7n9nQAm5/JIwoMQbBahUjhxi6farDIS2AUqjTocpjHWzNM2YvPjgsdevkyUMKPG6OKoUBS0T1TQSykRFUEDJf/sYh665+YwDD6duvb84hNZBgNKk3lUYgFJ9LxHnH/+fgFLgM6u53MgjFkf6q3JvMY8Y4QAo4XxAAqI3+r2rMNAbud5VYgaUmoZ1K8oKnm11aOFdRmFdTRAOgFLne9sfpBX1Mi8c9WydwY9xL3BQCejWGCoV9GrTMVLbACXkab3EASVej0EFlAClIH86Hc2fEhlQSto4bOXwHTuogX11PG5se3ZTDIBSfJ8qDECJ0kdk2hZqbuCvAaVpj09uNFa4ycgefT366XyZzbgDSsgMCBzYm2hQI1T2xrUP6iK+PYDSoWnGWld8aYz8soTkV73NnHAFlMiTPmkv6PbB9Jj3cLlLg/9wx0EkCqZIan2Ily3F/xEXoPTRzlGN8yaNVm5xLOPdsI8NhACUeH0ZFckB+rJ4AKUDWe5VY1lFlNJLI/onFR30JAigRMFUA+i00Owxg4QyexAbUBomlzn+04t7jE0n3d6cHXPTUcyA0nbVKgxASVlVZJio/YDSMJXLvmsSFloEvbqvPa6mIFEigNIChRDb7nJv6QdsrZTe//3nJhwgl0hQTlSOwkmVQGmMYgKUPnX5Y3zoAGfqVrtOJv3+XO0tJkCporYk0N5OkVoyPq229rEUHQfbTcO0nTKBbEeiiAdQWj11lJ+Kxier43GLaO7R60YRCFB6oYJlnFMqBDKOOAAl5OJP4oASz9Gh4jnWqm1bk7QCULoRNz9YXfUhZY8MlTwm1i9e4oCSMqYCdSr8dchMEso6pM01Dwe19F7x1zxEUkiwmofIdGlYzUNkdhms5iEynw32lEFkUAr2lEFkGhDsKYPILBLYUwaRp86wpwwiz4tgTxlEHtPBnjKIjJQCTV2hJuR+H2jqBjUhl3JAU3eS6ONUoKkH1GT4V40fM4Bmtnt+5fYfRT7g4xh7Qk2dB4WN3b/DzjJS0af6Uo7HO6BJEWp69uhcWR+pbKNAPSN6SkDnYUCTEtS0b/FEsvrpG4zjlwcxxj4fsgJo6gU1lb/qXG308ZxpePcJd6QszeYCTb2hpjdb3VlNUlxK3MFBm1LqdsUCTcpQk6LtcN3pu54abymTzjp8OmYE0KQCNfX86n32lUGcVcrwOYsVZzSaA02qUNOyhpe5svN30NeX2x+62a14AdDUhyR6ISZUD1ONhFIPc2XPOHrCxDhKqE5ZwbQFR/fjUA+TgjZeCXPCj+w8OKUp4ly8ives4y5YR/zxXfg+koqm+e8KcX67Ub/8xsKZFpsWmHZfq9G0UPR94wJxRupjQZzd9MUAcYbay6eHcrmMiNC+A9aMUbhMbIgzSB8LLVuo//8LcUY9rE5ziW+wOBhf1uPCQLYgaiw5iHMcpsG6ScZgkoA4FwyZl7nz7VHz/KndyrYr1WXiCnEG9vm+qdeiSsqeHL9eKqHPHHEYaY9GYRmuZBRxNmm4Q5zslwO8K0/Np4aWHY0tdn4bKFGIk+fxUCFOYABB064BCWXa/Q0hTrlZWjF3N7lY7PO/mRvzh3upmCFOkhYWxFmt+S+HOHv32Mo6f20u7eA13Zpr/YoRz7ZsH8Q5v++FQ9ecKijbltcdvRszLQQHiLNJEwviBKwlHojz9BqHs5u8rE12j1M46Oxw6LkkIU6eBKgQJyAB5BMM0XwCgSBOZlCP1RsZGxkHdr7T3fD22RfxQ5xIS0oO4vQZLk6Ic79RYSXde/jvAXEaoXVVwuzU4wu1Q1fdTTZN7BUUvH547gOcdurI/o/DTl1ZF2un/mE43z0YE15z5PSBk+bLT1ZM6CVPNwtPmDld/rxfe4vogppHa2Jp7tXikmlomhMd4hzvvcEvpGiXWZaec9wuqbMdC3H+w2UEGsQJPm0xeSQKxHnDvKBy0J6Rv4Y4TdBM+dtBnBTmvPsH000tj3C6mH8ivd326xvGHeJ0H4oFcY4bSlCIc7+FxpeEo8qGh19cLYnb2nsnrhDnthE7h9nm7DcIa7ieo7si3RsHiNNpKBbECcgsQYgz465V/NIuc2ibLPxMXYYtFsxRkizEyZMNFeIEZINcAh3NJRBmRkVOffgQhUjT4TChfh2KNaHebpHclPCSh/fo/dz28ljzAzcUl7iMeXsDH8nfhCfmpLkdYuytK+EcSllcjkchiiGYhSiG8CU3Q5P8d4E4B4ek+Go6DTMpPpm8/2n2rMkdAnHmamBBnAs1OhLiNJuSp6UxydUyZdE269GRaYhTx3ZBnMjejgPEmaGBhSUGaXQ4xFkUnmFr+WCJQcljldr5T24LYtmShjgXYqo1TuM/iLOVECdy+SVhiJM3ClDJRWAUiBHiHC4bMn3rJaphxsSG2KTURU8kDHEuxJQC6OLQRGVOQpmoCApxDtzd5+vA/REWmUudOzlqzx2CdVs4QpwlelgQp5PefxAnZJ9O8dXjZjd+Nso9GXb9yNttPXCAOHE+IAHxxFw9LDwxUk/cEKf7ScZ6XRtr+rYXEw0LJ2oLlpP+ZxCnhabKEeb7M7Toa3m3+i99eBkHlZwwVZqmJ0aIE3laL3GIk9djUCFOQCnInzLQ/CmRIc6/7DTNK1jOViWPmZOfJbw0Fr63dkOc6mOxIM5TY/CGOP0vBVcznRYzAoeUHdBifVLFHeJEZkDgwCcqj8XiE1+MEQvE2ePSgQM2OneNEiKHfe3d9Smi8m47Ic7d347fub/hlXHRcrtduhen3MFBJKCrYIiUNIZ42VL8H3FBnLNW1b+38tlA2bd09AS/cOp9QkCcvL6Mii0CfVk8EGeWH9Oe5rKZvrXfrUB1ZSPB3iw5iJPXaVHVADotNHtYkFBmD2JDnK9XVmzLaog33L/B3Kv6AGOsmCFOtTFYEGf8aDFBnJ7lN/sve+JglWZVv2prUI88iUCcH2Z/ORESFmixvtezs/5PC/vjAAIqjsFizRpGEyiNUUwQp+1K+mqO0myzIM3GCfrXTgvmLeAHcXZiePVhfjQ2KHHRy1x9qV6kY2mj7SpGY9kunkC2kxMTxKnqmr5laYiv2ZGqymtP9h8Q9IyShTi9MI1DJ5BxxAJxIhd/Eoc4eY4OFWG8Ohp3iLMfPWiQrYqn6eZRrOXAvkrwSSuSgDjjR2MpsHA0fx1iSUJZh7QZ4hzY0nvFD3EiKSQYxIlMl4ZBnMjsMhjEicxng0GcyKAUDOJEpgHBIE5kFgkM4kSeOsMgTuR5EQziRB7TwSBOZKQUBnEi9/swiBO5lINBnMjjVBjE2TdHUSv0RZVh6JlpoRV3S71hEOfsPudyh34LMM42W7Jgb97deTCIc6ROcUz0nUGU0qVSeTNH98qAQZw733RJvPLXB8tjg95tto11U4ZBnPb6qrmFro+sdmk6JNtF2tXCIM5o+2yryrHdrEq5D1Zt83DoB4M455+W4pydlcXIGZmxePmSgf4wiHOoQ7ViUmYD5WC1uv71uh7RMIgTudoSIjVBpFPk0J/ktSLtbPczZnG1m28tC/6wCwdS0wptUBLmGB/ZQ3DKRcS5ih94jk/GPMcntZzjW6Np/ruSmg+761+3Z/mabL6Vx3w07k8NMZKaQQwsUrMLQwyk5tzsr6vDjr80Kn//pUuFUtJLYpOaqxlY/Jgd4/+X1GxY7vFu6JBFtCM6myo2XulbSRBScwSmwbpIxmCSIDUZysnxtQMKjcIWXPQfr7MlA1dSc+ych4u2zb9hGGcxMnL9ZN1sHEbabXMsw+WaE2cnhjupKV0u9/ltKNu4vFEpQY0ZOliipCbP46GSmsAAgqbdWSSUafc3JDV3esR/llKxMo870Yt0dvmBfWImNbUNsEjNN9R/OalpcfNYYcXFtUY77/zYqP50EuLhpu0jNfOPDVsqzfiDntvtS5Za9bcKHEhNsgEWqQlYSzyk5uFcnS/1M+ZZFYwc8pTiZVUtSVKTJwEqqQlIAPkEGzSfQCBSc6aZz72GA+7UXJugzfVHtw4XP6mJtKRkSE3rwkrSIZo4Sc1488LKP/bTfg9S0xatqxJmp07uHMH4PjmbEup1bcdz1cYGnHbqyP6Pw06dboK1U9c24bsHO8Jrjpw+cNL8pWPkNPlCF4vSXVutaj0/PcNBcy8qlubWLS55NprmRCc15aaGUD6nKVATRktPP7Wm0/gOJTX/4TICi9SsMUUhNc+bFVQqnzP9Nak5B82Uvx2pua2r98P7DUqGGbLOftcG3TKXAKn5YSYWqVkyk6CkZr/dmssUtDNpUZM4lv3u+SXgSmo6fOYcpS61Y6R8W2DywKWsvVm8IKn5YiYWqQnILEFSU1M5yeXolUBK0FS5imG7R7EJRGryZEMlNQHZIJcwF80lEGZGRU59+GCDSNPhMKGupmBNqAspfMntCS/5NacZy3toq1oW9x8//viwol74SP69IDh0ydDJhilds+IMs3zG47FunIG5bpzBl3wemuS/C6nZI0f6jz3xH2gpCof0Zf58uKVDSE3KTCxSs2FGR5KaJvr7P2XW7zU7di6wjFGTK/hct/aRmsjejgOpOWkmFnuoOLPDSU3teqVJTdeCzCMNEwa4377gRihSs2EGlloVM/4jNVtJaiKXXxImNXmjABVPVJwpTlIzeKvJwuCmyQaRtbuHqyzcLkjidDypyeviqFJUtExU80koExVBSc0lXLktjJJtZptnk1OvpY7CvC0cSc0PZlikZpLZf6QmZJ+AdbKkJV6VZkf2VAx7ckZrDw6kJs4HJCCD+MIMi0E8ZSZuUjNw2y39kevKLFMO1ew3TWQLPoz6n5Ga77127sqfn0fJend57o/XQ0bioFISpko+ZmIkNZGn9RInNXk9BpXUBJSC/OkCNH9KZFJTvsymcMBCT6MtTdnZj1x8P4mB1LSzwiI1v1riTWqeWh3gvmNfmGWsVG+XweGHj+JOaiIzIHCAEBlWWBDiUCuxkJouQ5x69H750SywbrXqp3vBiriSmv01bS+uDr9Mz3wz/NYrhuUoHEQCugqGSFctiZctxf8RF6n5nlRgeOX6K+OQ/rSVZWefDm93V8eDTeT1ZVQ2EejL4iE1JyUt/WaQEmFW8o5UebDLd0uCkJq8TouqBtBpodljIQll9iA2qVn4OSrJdIkCfedLWwPa7ZM9xUxqWltikZo1FmIiNd+xnxla9ltFObp1Q6d91wIGS4TUVM9ySA0zO0HdfEfeek1sxQAcaD+6JRZQRpaQR+1IUvO7bLK5XvgYejpdL8F4+6SzYiI1VW0aQ18NKTQsNyv3HrXfZQsOtmuywLIdMBQIYztFMZGaV2w7W1I83xgHJXaXG6v1qR+BSM1DmMYJJJBxxEJqIhd/Eic1eY4OlVPsZok7qWniPUf5yc1zlLKQ/vEuE0YtkjipWWOBpcB2C/46ZBEJZR1CaFITSSHBSE1kujSM1ERml8FITWQ+G4zURAalYKQmMg0IRmois0hgpCby1BlGaiLPi2CkJvKYDkZqIiOlMFITud+HkZrIpRyM1EQep8JIzSXB1YnTOg0wjvgoZfLgXMAVGKmpdTelgVk4yaJc72LU3VcT98JITd+ziVGzA99aZAzr6pSaKhsEIzXTq95rlQdPYBxoTFmaUmtSACM170g9KXIbeYsa5r955fbXE0bDSM3MzOSZtiXuZhsyFUxuFn+kwUhNm6KR1BGKZy1CKoLUo/0GPICRmtE/7vd+do5hGH7vauyZJ4XGMFITudpqPamZNXqCpvuXlfS8ly+4j+6onxUxUNpKai5GG5SEOcZH9hCcchFxLtUHnuNXTMc6x0+ezneES9A0/11JTeSDccVEamoXVZK0ewEaB4vapjXkAIsjJaFtGtaCsHWkpvtTq5TAvEXmiVSdW6tfjjjVHlKzndOtGqAAGVRgvqGIBWAW0AeblIiCYoZnHlchNZEqoi4PVlj244dIuo+/HMIHxRxxS96+/zBX+vbPaZMKvwXPIwCKCRqsRgnLYIckYzCRwcWsmYL/K4xiYhnrlyjmh0+OPT0CiwxKOq2Y+sdy+lOJrlxBywRiWsZeQpbpENZy8Krn41gl9sZpqifcUmXqzkiMtQzNgVyaSNZSv9mpQxPnUtK/bOIc8mPyjg97cumlf12U33z262MxljgoccUqcTDNVQwlDr6OSpTpOsHfcNe2sVctVKZ+JXaJg1xXLPA60pUo8yraj/jmVb9Y1dNZhY9M4qkacfMOP9hKgHkVNJgTpsGmScZgkihxkBVPujR0Od0o9rCpuuK8w7q4ljjY9ddN9QFFcqb7Cxw4U0YObm++M2g4ZUzDvXD5F0+7E/c2Td1iP4uWXVidnjjg8ViJTbtgiQOex0MtcQAMIGjaZZJQpt3fsMTBfZPtWbZnJ9Li9R89S5120knMJQ6GLsYqcfBi0b+8xEH11phPU+RqjYLrow0snk0chmeJg13db1303ffcNO1h6YojW7S0cShxoL4Yq8QBYC3xlDhYemaEptYBN4PoZ7p2EbesnCVZ4oAnAWqJA0ACyCc4oPkEApU4qI4zGvpRoRMl59hp443P1+uJv8QB0pKSK3Gw30GcJQ7KTAsrz6c4/B4lDhzRuiphQtyZk8ffzAjZbhVT5Cq1WXvtCJxC3Mj+j0OIe6kjVoib4sh3D06E1xw5feCkedHb8mvLDnOpmcOsfUeFeKzBQfPcRViab29xySw0zYle4kD6jcpg/VMRBqGkqyODewX3Q70/cZQ4+IfLiJariShxcI6FUuLgA72gctAZ1q9LHDijmfK3K3FQbDCmTmk61yCtb5zn6Wo5LQmUOHizAKvEQcECgpY42BA850PPgdX05IcNWRce9VdCZLq0r8SB54/4/RpXtM22+ldRJqTUthfsAEscNCzAKnEAyCzBEgcaD/uNzVhrR0+ep98UenbzDAKVOODJhlriAJANcgkuaC6BMDMqcurDh7dHmg6HCdV/IdaEar+QL7kr4SU3LdZJHho10XDvtu4nXgUx8/GR/M/K2jlWK+8yUqnaul71c7fhILnRfCzJh87nS85Gk/x3KXHgu3O8xdSbVNPExQZxh4PXze6QEgfTFmCVOHg0vyNLHNRTV8grKMcZH0lRtPcrGWOEY4kDZG/HocTBuAVY0H63BR1e4qBP4t3K4jFJhpkfpsbtLpxdS6gSB4/mY6lVMv+/EgetLHGAXH5JuMQBbxSgcv3dFoizxEHJ4oUqXGZfxpb6tdETZ85AFEbq8BIHvC6OKkVJy0TlRkKZqAha4mDM2nPG1jfq6bncbIPopr6bOqjEQZ0zVomDQOf/ShxA9jl0x3TDi9qX9CAptVexJd264lDiAOcDEhDer3HGgvcPOYu7xEGkxpQ+5Mhs033F/Wt72jXMwqHEgdG6jc/CvvsZpxTVOd3ow3LCQaVATJXsncVY4gB5Wi/xEge8HoNa4gBQCvKny9D8KZFLHKTkXTQPqtY1LZqyLVrh4sPVYihxQF+GVeLgjRveJQ5sQoNX1q32NThePHmAdpDOYtxLHCAzIHCg9ynLsOh9tWViKXFAMc0sG2FiZLXNJGZKSrGfB64lDv407q89NmsyrWCYT44nIzwSB5GAroIhUrUb8bKl+D/iKnEwZcO8GXSSIy2za+NG5yjNNEKUOOD1ZVSoH+jL4ilxMGjE4KqBs9NpO+wyFp57LqNOkBIHvE6LqgbQaaHZw52EMnsQu8RB1O6MVcseW5rE5L0nHz6x2VvMJQ4YblglDs6xxVTiYDw9baRuaYJ5oU1deMJ45WyJlDgIMNW+YB20xWrThR4ulA/yWThg8kZuWCS2uoQ8akeWOPBXfdN4w8DBOG/cnX6699NTxVTiICVFcdpH+QHUozK9L/fvufo6Drb7wMayHTAUCGM7ZTGVOIhVebbSZ24WbUfd3yoD6QqNBCpxsB/TOKsJZByxlDhALv4kXuKA5+hQAX85N9xLHCya7G3x6eQZSrnmo4A+Lzj6Ei9xcI6NpUA0m78O8SChrEPaXOJAvaX3ir/EAZJCgpU4QKZLw0ocILPLYCUOkPlssBIHyKAUrMQBMg0IVuIAmUUCK3GAPHWGlThAnhfBShwgj+lgJQ6QkVJYiQPkfh9W4gC5lIOVOEAep8JKHJi8MNcJ2j2Fus1XZ8WWxcfOw0ocjDxrO8Bjb7ZR8XTHgd92DFWDlThYxD5qaaU02SrF/o+01MFV4bASB3/cV013+BJiUloaZD7HcfEiWIkDDXlbOd2BEfSc61dVWL1IprASB9akxY+s9sy3SLNUujhhj4MirMQBct0kVKwALHggchBz+5L9o1+PMg/aPTet8xnlQTgUK+CgDS/CHMgjbY1TViHO1WrBE/mSeVgn8knz+C7NE03z35W5zD11UnXG648m2cmHm07ZvugvRubSYAMWc9lpgxiYy4u2Xjr5GmzLSAuDPqphDxyIzVzO2IBFgg3f8P/LXBa/s0+as1TaZP3BA5ej4vdLEYS5VMU0WCfJGEwSzOWbfazzFyvemuZQOy+98re0L67MpazRFtkbTT7GidGrqpS/L9XCYaS9Wo9luJvribOnwp25PP3SZcRbtwUGR1W/asxq7JMuUeaS5/FQmUtgAEHTrhcJZdr9DZnLfeThTRcKc6y2/X1L7duD2YFiZi4jV2Ixl3Yr/+XM5fa1J9efZk6g5lVREsglxt/xZC4nJ9eWqC/vZBSfnDhs9y5FNxyYy6CVWMwlYC3xMJcyt183Wr3PNjj4TGbWg0X7FkqSueRJgMpcAhJAPmE5mk8gEHNpcO8KOzLnjvGGifJ5Om96cUXcCs7MJdKSkmMuS9aKk7msNC2sXFi89vdgLrloXZUwO/Vu+a/mTOtsbRjby3bEzE1DYnHaqSP7Px5PZFyH+UTGdXz34E14zZHTB06a50ldvpLCuUVdP6ariay8DAcHzWsCsDTPCuBr7oOmOdGZy43jl3QJs0ywCvHbEHspTN2wQ5nLf7iMwGIu3wWiMJd/0Qsqbd4G/pq59EUz5W/HXK5mz5y0zqOItuXFPfajzs8Mf33DuDOX3fyxmMurKwjKXLpkZIw2P8syL00u8kt8kJmDK3P5fbyX/Z6k74wtk+Iawj89vIkDc9nFH4u5BGSWIHOZZ2/V5+omPcq+W9P7GlxwKCAQc8mTDZW5BGSDXIIfmksgzIyKnPrwAQCRpsNhQt3ujzWh+vjzJV9BeMk1Jo3KUa8OMy5zm0Gx7Ze+Ax/Jb/Rabzt41l6Tsq+nSyhJ0/3xqNXhh1mrw48vuT+a5L8Lc7kjp/HEue7eBvGHD4cXzHrQC+M+8WMu7VdgMZekds9wbWEuq6c8bFrjn2mSUCA79GP2YMRRa7uYS2Rvx4G5tF6BRRFqr+hw5tLuc/iOr6XfzNJSP2cVsDMFC3xLmrkkYapV5/cfc9lK5hK5/JIwc8kbBaigofYKcTKXnFsLZuT1em2xY9TgT+sHNF6RMHNJwpSirmWiCiChTFQEZS4Dm7xKr3VpMix9Myf54eHLvbBuC0fmkrsei7mkrf+PuYTsM6XwuvGAuBSz9RsCGcbFUn44MJc4H5CANCFnPRZNOH+9uJnLK7NDrn+crGMWLfdFnz7hnWDQ7p8xlzKNJ3MNRp0ySjSzN6esXIeHSjRMlcasFyNziTytlzhzyesxqMwloBTkT1ei+VNCM5fmO2NHLZE3TJKLnq4/dv0z4XtrN3OZvxGLuQzfiDdz6X718eAeIa8oYX9fyDIpmHMId+YSmQGBA06YsxELJ9y9USzMpZbnLm6M0z6jY1sPK/1NfTwGV+Zyq1/XqVZDNhol6jGM13gYPcZBpHBMkfw2Ei9biv8jLuZSLedtYYRDMK1w/fNP3t/3d213V8eDMuT1ZVTKEOjL4mEuZefX3ejZ/YTloaSM/e4yxX8RhLkMx1QD6LTQ7LGKhDJ7EJu5bJqn2dVJx9UsuNScNX32dAe0u8OJuRy3EYu5/CCcAowPc6kfQH0btUzNYOM6Gr2Lz8U6iTCXplpcyx7y/alZcd1d3IKeHMKB29PfiMlcSsijdiRzqfnn325RJ/+kRpIarBu3eL4VE3Pp+nz1+FlPelsWnHLbGPFAOQEH28lh2u6DhHKHRdlOTUzMZYoOqXrt0y+UnQetKLMPxZoTiLms34AJxBLIOGJhLpGLP4kzlzxHh0oc9mrjmqQVzOWMQsPGIU/KaQcmhPYPOF9YI3Hm8sMGLAWutWRKryahrEMI/VhpJIUEYy6R6dIw5hKZXQZjLpH5bDDmEhmUgjGXyDQgGHOJzCKBMZfIU2cYc4k8L4Ixl8hjOhhziYyUwplLxH4fxlwil3Iw5hJ5nApjLmnDV9duqrUx3n7UPsht8ekFMOZSyTu0zu36FPPydyqjD3S6ngFjLt9bbo04O3wYbX3X9Een4l9cgzGXpfcPrPkQvcGsbLJm5kIrhfcw5jJjyMRjPTW/GWWHReTphmgpwZhLs96KJ63iZlseWEc/tuLZnusw5tJPbaA86/hLy0iT4GtvV3dVgz1W+tIflw+dnxhIOTpgl+zKd2p/wR4rjVxttf6x0oell6796OJvWqLW5ciK2L1xOJCaa9AGJWGO8ZE9BKdcRJyL7oHn+HW+WOf4Bb58R7gWTfPfldT0c5RKydq31yLtkSuNuv5Bjej7xoXUdI3GIjW1o8VAapqNbpp+rXEzfXtU/Kuynq+riE1qOkVj8WPW0f+/pKZ+5ZilTt2zzXetX0Y97Np3MkFIzWmYBtOWjMEkQWqWpy95sfOqpkHu8QmVB9x1NrVvYYsYaXe3DaudUGXFyL4TMiVwaeFgPJ6OiWk4koQM1yGk5hVjlVHOyfvM1yekDlIberdaoqQmz+OhkprAAIKm3XUklGn3NyQ1NTMfmEye2WhUxJqwTUlVapqYSU3tCCxSs1vEv5zUDJi0K9P5fGej0rsBhaFHeh3Hk9RU3EN+7hUSQC0ZftN0VnHVCBxIzaERWKQmYC3xkJpq9iOfOfoampfeV3Z4p3lPXpKkJk8CVFITkADyCYFoPoFApOaMmZN6yw3PNM8Y2yOr593c4yJuBWdSE2lJyZGarlHiJDUj6IWV512ifg9Scz1aVyXMTn2gXW2iy9Egav4rpRVpI+Yswmmnjuz/eFCDUVg79YoovnvYQHjNkdMHTppXnFL+njghzjQ/f5VG2Lple3HQ/M9wLM2Lwvmab0TTnOikZqfXWoZX7r83CQot/Xo06jytQ0nNf7iMQCM16cBC4etmFFLzhElBpd/fm39NagahmfK3IzUvnfPWMT3mRNt/8Eh+w3cVv1/fMO6kplo4Fqn5NYygpCbHZ8moH1O+G4bqZcn5FXDH4UpqBsjelE38pGGy/QqlH+PScQscSE3lcCxSE5BZgqSm2v2X6n+P/mKSXVXYY3ZsCZ1ApCZPNlRSE5ANcgmb0FwCYWZU5NSHDzaINB0OE+pCzAmV0TKhBhNe8mKXm4Mdjj6i7gyT772tJmsnPpJ/uL5/a/SDg/T8g9+Ca9xex+MguUEYluRjWnp5CJrkvwupGTkw957st/tm+ctdX+249D2xQ0jNsjAsUnNru2e4tpCaSkbjn7KGbzdPrjvxeu7tU4LBjPaRmsjejgOpWRSGxR4eCOtwUtPROlHhxokRJntvkU//8NouWJ9B0qTmVky11ob9R2q2ktRELr8kTGryRgEqnnggTJykptzYc6Fbk+uM8yf2smI9v+0qYVJzK6YUa1smqlASykRFUFLT8GKTlueZ+VY7x59zUNL80KmDSM0NW7BIzTlb/iM1IftUZaklxt7faJI0+N5akzxlwafS/TNSE+cDEpBBXLsFi0F02yJuUlPHTsPJxsDbKO6OV9mi5RTBknb/jNS8uWeMsbaxB+WQht3D+VU/fHBQaQ6mSgZbxEhqIk/rJU5q8noMKqkJKAX50zA0f0pkUvN77pS0V6tP0LKXb+65/loZVQykZnUMFqmZFIM3qWm+wq7HSK2VFjlJJSNnxZ8XTFDAg9REZkDgACGeisGCELNixEJq7k2Za/v6/BXzXVZraTUhNYKJBO0lNYfExrI+1gaaJvchOT6+MfwSDiIlYYoUGkO8bCn+j7hIzU0ji6372rmZpOd4a5XV/MFpd1fHg03k9WVUNhHoy+IhNc+rqCQX+t6gbvm6w23ckk+CXlZypGYSphpAp4Vmj3ASyuxBbFIzL3m7hV/QQVrK9d09ZoXu/ypmUpMWg0VqygjPJfiQml3vRVTemXHMPCa6YrvajDvDJUJqrnQfcsTPTdu4TOHE1XlLvqjjQPsZxGABZXoS8qgdSWreMtpCeX5Sz3zHu1EOeq+j+omJ1Iyt3RH9jPTaqDzi3uoi872NONiuH6btZAhkO3UxkZqBnYtvZR7eQ4mL+/GMNKFGMAQlWVLzXTSWce4SKD9YLKQmcvEncVKT5+hQOcWhbVyTtILUHBPK3N1p9x7TsPcBC84f7RQvcVJTBlOBhpZM6QgSyjqE0KQmkkKCkZrIdGkYqYnMLoORmsh8NhipiQxKwUhNZBoQjNREZpHASE3kqTOM1ESeF8FITeQxHYzUREZKYaQmcr8PIzWRSzkYqYk8ToWRmjfucL1fx00yOuT2N7WsrHMcjNQc63D2QUH+MYMdjSMujp019jCM1DxuldzN4QzNKGvxgQNPv+Srw0hN19QhKTV+blbR8wMWvN/r+BBGaqaPvVusqE1hxFE1/Q8qdkuDkZpjVl3hXDmXQikfGdeYvKxeA0Zq1hzsbpbmv5GxLf1LN72Yc9YwUnNKj7rJYW9dTeMyjE4/oFqMgpGayNVW60nNqKLo1D3HRhsmGT+8WOu4IVbEQGkrqRmJNigJc4yP7CE45SLiXKoPPMf/Hop1jv8qlO8Io9A0l7eN8zvg62aU+bKJNZF8+J3AV+0J7a0sgD+4bKa78K5MFkXqfvxdGYds5cXimDDIHtA1WrcTy9933PVmHwYl2TW3u8wiXU/M2xKyBfINrRTUHljrxJdVApMIsCerETogAQRtKqlE7smwVn8DmmcG0OP7uDan7/l6s8iOrkwOhyX6uD7ZuKa7pfo506BelkPXlD8ZIPDFZY2aryD0hVsa8J5swfTJUFCSQ6KWf01AD5xUVimJ5Z+0IyBty5z7+fPnH23hLcmChvH2Yjn6ujO5ZFe2i6s7mIAv0jbDvRZYV1glUA9/X9xzs90xweweOVvoIsIBqpYWcVinoRTLOvGlBLAOMAP8aMumaZCxB9vbG8wgdBQwE9+FiD6KurTs1fcX+yxS76nuq8k4P1fQOM1XFBEB/tkiDuPQMY0DeBPJGwe0D9w4nX9hnIlUD/BX8mwCxhqBj7I4jgFkbX09ffJ0sqcXc7kvawR5NO9fP98hekRtmXv1LuecBy3/4aWjun9b5wtm19jBri+cXSPQKg7jHSrBMp69ZIwncttbPxNuwS6/sOD0nxb0dmVzAjjA0gkwH2AujicHNB3wN3fPFbxG8J/6YJMH07/5BdEl7vQ+7+93z9Aqvl9KqOWmoGJEZQFXURwt9LI4LCeHabmCYklbDvwQmNfQpmBFr+ZTYTbHBdsR2qgZMfVXbaZv/xJU1M13wVJBR4i6ZvrZgvuxcy60hgDXqdVCy6pcniOE1qmbSSjr1L5dVtmeLP5gVS6X+VhrwipBPKiHYTOKaM1l+bFZK4TxZjTEYhgVzPj3huGM7JWwYyqyV/MFvXuachzdfZ1YphwbFgfa/qMvXjNGZle6zPOiJA072ljS69wBrHsVzu0RbO8xB/jDy5PrQ2O7+zT/YlFbLFSs/DigbjmgfbyoI+tJwJKWXi60pOVvq0TuofinbWAOJSRPq1b0U9bpOq4/1oOWOyxqSv0gu6ftP91D7K603+kP0GRdt4pXty8dOjP7Sjt3V2qAcg2gciLPaO3BtZWgcr8K46vYwZYwZE8/FpfLdhLtTp+cpX6u+UQyjZaPGjbWzZvU/iGM0ArpI3DQio6pVVPH7hL4JK4stOUC3wQudu4k3/khx4JWfPwXDfQNfkjz5jbkrCrH3xjw3wr+bzf4skfwEy0hji1obqzNcccW6K8D4o7ITTcs7oh0aUIBJPDbiuzLei+3h4XvCDPf8aPXl55DLyzBIYAUjaYuQYMZjF2yav79WFaHT7JuVH5Sm9ZhwYymz1jBDPtP4g5mzOg2XdbA34iWP6HQeab8kBEECGY0fMbcLn8mwI7szZs3HRDM+EP1Y94tXW/Lg1F/Nz5KpTIJEcygY1qn6RMBrNMhwYxOE5yr9uw7a1ps9fbdSY3FwYQIZhz6hLkfJoJxSJIMZlyMeFw6xSLTcFP9Jusvh3bTCBXMkMM0XsFHSW+JCRTMWCRjPl9hbqZB6r1XT8O2joqTcDDD9SOW5dQkbjmxBjN8qxLzq9aOMtxH8d03S3nhPUIEM3hrCNRgBuAIoXVqDOlfEMx4mDrh7ZAnA6kp3F32L2XLV0o4mNHwBSuYMelLxwQzNhrq5k1/lWkZnjyQ5L66Zzfcgxnkvxzfvx+ra1rq9qQs5snQEzhs0Ou+YG3QQ7+IK5jxZXjjbG+1WsPdnoHMEQsLB+EezED6CBy0moSpVUPT/1UwYyuaGyN0MAO56YYFM5AurfXBDMuN7wabxhabFsZYzFU4o/oJh2DGNjR1CRrM6DwobOz+HXaWkYo+1ZdyPLBvC89gRmDfKoxgRpaaULY8zsGMxypJ23vVTzTecOqO/PsflyYSIJjhD0qCujS07iuRxFzBHVlDQ0MHBDOi19nRPjX0pER4DqmM0ewdTIhghjamdUhEsE6HBDNqFvierRzRmXHIfWUe4/JRO0IEM+rUsIwDeBPJG4ckyWDGtmNTB1BJFIvDdl1P2LjrPyFUMCMU03hLJWM8YgYz1iRHcnbNzTCOmrxmxfWzf3yTcDBjEqblFCVuObEGM7ZW3hpZZ5hGTzvy19eC73o0QgQzeGsI1GAG4Aihdep20r8gmPHs0bmyPlLZRoF6RvSUgM7DJBzMWN2vCiOYMbQfap0wXIMZN695vHi1U8PgILdf0/vPgz/iHsz4aOeoxnmTRiu3OJbxbtjHBhw26D790Oh5cIPO6NemEgNtCGZYK2S+l02eaVCoGnLaQs/WFvdgBtJH4KDVUEytvnbsOlTSwYxYNDdG6GAGctMNC2YgXVrrgxn7Fk8kq5++wTh+eRBj7PMhK3AIZuxAU5egwYy+OYpaoS+qDEPPTAutuFvq3WHBjG7jsYIZ08aJO5gx3bx6R/dFkxi7hsaHj7i38iMBghldxmMtDW+PI8COrL6+vgOCGQs+a3wsPV9Ai/njnu4eudFRhAhm5I7Dsk4kEazTIcGMYYOPyEwfn2satt9n1KhOfRiECGY4YRpnGhGMQ5JkMOPkkDHsytpBlIID3ooDi5O6ESqYoYxpvBdjJb0lJlAwo6568stHVxpMQl/etOoW8U1NwsGMU2OxLJckccuJNZjx1zHOxa0jOBapy8OzKSkRxwkRzOCtIVCDGYAjhNapcaR/QTBjdp9zuUO/BRhnmy1ZsDfv7jwJBzO6TcAKZuSO75hghnG2wyafr06GxyZvln/1VqP99RKRG/RZq+rfW/lsoOxbOnqCXzj1Pg4b9C4TsDbot8eLK5hxtYK57fDwdxZxpYNfv3jKOI97MAPpI3DQKnc8llaR4/+vghnxaG6M0MEM5KYbFsxAurTWBzNG6hTHRN8ZRCldKpU3c3SvDByCGTvR1CVoMGNJcHXitE4DjCM+Spk8OBdwpcOCGZNmYQUzXK3FHcw41cOgWxpb3Wjf0c5yBZztZgQIZujPwloays0iwI7sxo0bHRDMUMvdu+jcRyXzkimBz1dtc0ogRDCj3hrLOgXWBLBOhwQziivcXhSvemhUsMpv3gL7iHRCBDOiMY3jSgTjkCQZzHhsUFG5w/2r4fZpL5b276yjRKhgBgXTeGqSMR4xgxlmgXl07WQ5+s4wxZ4xtcPeSziY8cYKy3LVVpK2nFiDGYYzB53QMt5NKVa4rBJVPpAYmAlvDYEazAAcIbROTSD9C4IZWndTGpiFkyzK9S5G3X01ca+Egxn6NljBjLpZHRPMeHzp1pqXci6MHfEXWGO7vx+GezDjPanA8Mr1V8Yh/Wkry84+HY7DBl3bBmuDTrIRVzBjwMJ7ufsP7zUJmuanqXx9Df41M5A+Ag8kZxaWVlkdu0uQdDAjEc2NETqYgdx0w4IZSJfW+mCG79nEqNmBby0yhnV1Sk2VDcIhmJGEpi5Bgxn5SVq3R6faGG68df3sMqd+rh0WzJjmgRXMcHcXdzDDzuFBZ9stnak503o4jg2yXkqAYMY4D6ylYTcPAuzILl261AHBjLS4yesUY/oYRe486GtbIp1LiGDGI3cs65S4E8A6HRLMmOQ8l7voiAEl8smfu+TGJHIJEczYjmkcdyIYhyTJYIbc8MbpcjNJ5hFTR0UY9ta5Q6hghhGm8dQlYzxiBjPGDIxe5jZmHGWn1OrqqyovoiQczPiwDMty55ZJ2nJiDWaMOvH6ylKp3sahOyvodtl6pwgRzOCtIVCDGYAjhNapu0j/gmBGmMHXp+zBncyOudhvMxgVc0LCwYxxHKxgxm2PjglmrI+59WIj7alVWdIynZL1XqdxD2ZM2TBvBp3kSMvs2rjROUozDYcN+ggO1ga9C0dcwYxpJX9NerzA32qv0oWZmfZ1LNyDGUgfgYNWtz2wtMrt2F2CpIMZu9HcGKGDGchNNyyYgXRprQ9mmLww1wnaPYW6zVdnxZbFx87jEMzYg6YuQYMZtOGrazfV2hhvP2of5Lb49IIOC2YcDcIKZtCCxB3MGGDyfGGXmzaMjZfOZhTH7btJgGBGWhDW0nBHEAF2ZGfOnOmAYAZzuePYOz28TY9p6T1gbi6mESKYsQHTOhwiWKdDghlZtxiyTqbPTHMW2hbfWpjfiRDBjPmYxqERwTj/a+9M4KHq3jg+KFnKq12bJpUUaX2l3YxtMDNki1bbhLKTtFOIUhGhshNCyJalkCKlRdpLmzbttEqp/71jRubO3Btvd+be1//t876fT91jrnt/z3Oe85znfM8ZApbFDJ9MitbJe8FqOcFDRTcPHZyPq2LGdETjyWJjPHwWMxy3jxHxkdqrtdNhTqbVmF2OGBczJBAt93k71pbjazHD2D9hXHP+IN2DiiVBi8fcm4eLYgYzh4AtZgCBkJWnxhF6QDGjv3vArdU35+iVvR88LVn4ZgbGxQwlP6RiBsFPMMWMgYQNt9e8MdXPuHJg3N+umzRRL2bI5DQX7bLy1yryefXZ/UeSJBpkhh/SBH2QH7+KGf7kmY3zZ5fRvF8/nmb3Mncb6sUMaIxAQSsColavBTtaYl3MiIcLY7guZkAn3Z2KGdCQ1vVixgf6vl01kyZo+UimPzkT+foGCsWMBDh1cVrMgH5HssCKGaKhSMWMmH38LmacPXWIMU5fmBLmU22V+NdzHxwUM4RDkVLDt/twMCOrqKgQQDHDaMD5q0/nJVCCAy49Fh1mIYaLYsadfUjWqcKDdQRSzJg+b3TL3IfvNQNOvhFS2nZxCi6KGTmIxonBg3EIWBYzNokv9HyvuVeneMxAqVP7zh3EVTFjJ6LxPLExHj6LGX3+zrw+SaWZHhZNafYnS/2NcTHDCtFydMwtx9dixqSCTQtrDQgaSeIqP29rBAfjopjBzCFgixlAIGTlqYmEHlDMmGFV01BYkEsOf6l0ecaiGUcwLmZsC0UqZpiGCqaYcdI7RH7UABn9PLNREi1WC6JQL2b4TS4xGGa8Wjs9x12+tPa0EwoT9C2hSBP01aH8KmaoDTt0X8flrk7AERXGrtbnX1EvZkBjBApamSJqRQ79vypmJMGFMVwXM6CT7k7FDGhI63ox47h+XF+rc1oa2SuSk59/LRiJQjHjMJy65w5ZUttmD9Xelizb5+XYjaWc/YYKaEo00qByVzF6w3RZMruKQXQAP+vOsHUEvJdow1gF/NOGaLWeCLyvmwfRxdneyUOJCLy7Ldhu6WRDdGA42XrYKW/uUmzcoWNusdi/VGvno/M2Gal7+/F+bu7+zm7pYjf1BlKjuBigm45VB/4BHQwCgIHYIoZrMEAKadLMB+ikAc+3s27eJj4p5qhmwRHNnxnvguZCkkPw0zySQ+bl3x767Ns28B3dgn5wX4g9xV3r2x/GMRdAoChQoAZecSwD/AarGExyRwl1Z6D72zsBzgj+3AwC/J/ulEFkmPZju62Cjb0b0LuA9om8v1y9/kalsukt/bir7yulG62yOOworsH+MJctOzWhnVqCBvNANJgFNgYT9QTeuH2SzW2spoW8jCX8m84myTRWe1zhaZ+EXNOlDsNPaGRMkR+eZ5zJeWaDKJX5QS7jsK//rqeZ988kb90/jh6xoiB89hoXCRR6GhXRcKoYGY7X/LppYbdman2pnUYLnqZa+F1JMsx6qF6e01ODyxZHOXHFXlRe0+X2q2h3IIU8VsTLJgFGgQ4JtbnMDsQadpMJMMNueOOn6MkmQdSi8/qntH/GyXG8jYSmFzBNYCZc3PMyOF8foulp6bCWtYDA6LhBp3uxf7K/lr4hjWSsILdx6hzDzXJK+hO7NOKKCv9YSTfcqZW5sGlYnOHZGLhH5jJDp7YuSlwLuPqGA4DEKsCo+xDq6g+BKdiKA1X9DED/YgDpO9vTe7HkkdABgwOXJ/dhXtaxYffPyDbv4vgQM52ClCN0taeKdyX1ma7K9Tmx9uu/PmhuU71HqExco/jtUFo/xYG17b+P+TgEVkSCnQv+0oLoaQlMPKwceM9nrL7tbfGwjtM6/jHR4NWPdZxfziRhyvooUZ9LbSF9Lo8XggSmuZsHpaZHauqn3Fw1dsPxapU/DEzlgLU8QWtNBTpEOdRaYYVMa7HE7RAJKRgMai/bgNn3L0fmqVK/L5cZG0L6qvu0PC8sX+S8gjN+t9+GWyEi6jHBIpclQbkaDwkouUwJWDEhBS4mHCx8aL7jSYtOcWF+8bE1jziPsO5tYOnEcOCe6MCFAwUS0QX8RKc6DdHJGXgNZqrtwfDyIILxguHO+9wVityRmeLV2jmjBpzeVeVymsejcM9AeKlq7ebs4GBoCVyHDg8Qn4RaEs4nxUzcGW7GwOOzf+14Dee1YE+wdgCeB6ywMGzsPVjvbg2oBYwnDd7JEDuyJ7tcldCiSkLxIcCOpuoE7x3qEjRLN1t7JypjFYdTSLZfNgRXvTpfF2+/buzs0vkqpzNM0y6q9C46VPUXU0QDN2dgXulh3/5UfdhPxWuW6ma5TsfJxt66/UeZ3VocvAgOz50u0cB6pwNrYt4ezMG1NHtLB3Vnm1+fBXIVD2Ci5tjx716L3SxdfgWMdldNhXNVou3YgoDdgeTQ0xnUA1+LNnL6hyHDwXI9p6uy62OiJGvgDdzZ+sB570AScR2QARPdwDuxpt08HdXhzpbbxbJG1NCG/vnEm2rSPB6kS/0feqYIxP//MEJGAskZMYpVzvXmKrAD45l0FDs8HMG95tDhAyXNY25qS0vlhVECh2f1OZ96aSgKmg8/gKS5REdIToPT3LXMXtGenqZ+vFTf4fmTpe84XlVy0Vow5GgDHccOpgLFqTzceDdOw97dBRTdEsiAmcPe+sntwZloCfxHtAV/A09TRF7Pffpt0RlKgs1uCelPdlthn4/LIByNXKYRN3J289DvXD3jYbB/mEZ03I3HKhQ9GjDYEHXwf06D2WgVVk6kRVf1M2I4AAZj2ACxkOHFcbt2U6bDmZJ8beg9z1m5akeXrpDZZXqSc3QdBHqtB7h8DlIhDLBOyXDnLnrBrYlMUXd2BJKb9r7DvI3Nr9swR2CwHObONK0NkKx2Kd82UBcZNzLpMC36rwcV7lti5X//wFxG5vlTXew/1ccrCXaRgDkayTxycAPw27wiYZdBuuj4JGonUcCxGxwNwSkMkB0rtM8q3YmAesxCGfNv7TUCoFOAi1AMG95Vl7HvD7RdsrXV3tsU86Fmil9vzqzQlNmzuGf1rOu/C1N2p62/qEkvpBTorvzy91Szpj8MU4WAzDagzL3IPDLHmceZMnNNpft0T+fxncxPtGJ4rGMwnMDkyJ1hvZbpHvbAlJ53JrgpKzb8ZHEKbd+VOZZ7xq9T5Ywwv+5rwx1hOjeinXA35bNkW8ZLtkH5TNlYISEDLiTgZkSFDn1dGVF5pNsQT4WaDoUBNSMSaUCN6pD8KO4ltzozkkEwjlLzjSa7zGk224qO5Nviaj/JyASrxVjepoSFnHqLguT7IpAk3xbBljwTTvIaqbEfpqk40/zfv9NTvrqVE4nvZ8gAMg9rBpG+1sGBx4gHt8wzmf05J/BzYGS2dwJSFnub9lC+zt7DjujsYcdw6/p4t2JObNXLiWb0LNLiO1HlN0QRnpPLMpzNXVSXCCQcUqBDS6rzWOhXANRtiPjTEW4IWCx1B4c24GE8mKkAqBhPAcSFFymZimXRvQ2l196g5xVzuiTzRtyLPu2Xf+eXUG//Q7+UBnc/gcol8CpFXwB3P0XALvR3UbkRHcq5cbga6Fo85ZPakkB33iVHSftsckVH/mUyJxjHchCwvMytImcr2mMVqFZDBJJalyIEWrhnP6iY8XoXRmcdxnZa7FbWY7g5MRyUwZ9xV9amrNRx8mDYMtwgTBb450/TkyHMNBA0LHALoqXT+nZT87QyNP36k07yh3atzmP1giYSD7sa5DF7AYc27MVFOCFk6ExtwYyYmZGxXd+GpxRvHs/KtKwYTY3Wv5CSusLQk1MK5ltxS9F+mR9SMF0cVopLHQNVFgFmoKIf17p0jnBG3XvJsLn2L3U5F+OkmIUtFwd7a7CY6MQ9UsFlBCNoQDdgOAKfsrZ0IDpy3KVL41JrndmXkKlEamw9wfXmIfktSI/FjaZxtnc1YgBpfy04FQ7ihaBRgIiRFM1j/YM9ReWx/sFcKYWsf0CXMdjtQjDtglgfGaVl7wbEAtD7mYMlp7142mdM0mj9b1JKuj51hEGmz+3ucthHiMRdiiIJeoGEAJjzQjRrgYSrd1wDv9oiuqqTSEK/EUnWiAFM3my6pVLmDvHwsNzv+ofviC1517dgPqdKZG6VyL9VafnUoq9EWVu1sNV5tAALdTEUVEpCVCk4ulvLSDK/lpG6IBB0tb5LS0ns66jzv/ksj2khgck/RAuHfKZSrHiaDRdPL4969eLzPhrNNzNcbrLFpzWcK+Y0Z09G1/P9ScytAw5gbUbBEfjkRHCVuX16RbR0cHayJVqyajNd26wW82qVm/pIU/UUueUHVs57acv9bNyr+eDVrpYHAF+SiQP0+84rgBLAraKxPLEtOF/qR7Z0Z3RAzry3Htst3H+xrzXp5NpFe9ykDvn9Ma0L7W9QAuIP+9tDQKNBcXAEKhHcbBvXLVp3ANtHmIvbTGfgKZQrdbdr2TsVcpyneNmMZzqpnD2N5sxzIGVf/91Mp3LxhuGmdWPJifVBi8+JzNJAQSTAVRBEuhWLP1qK/WecWrcgnIEdndwG2dXvbA0ek9eQppnfetPmdtDENX/s6n8aL+PyWb5M4WWmW3lMX+5WKt6uBTC4Orb7M1jG4L1zwa94r6a4CT0gSH+kceJaCOLXcRduxO9XEz/UYDotrBqA07JGj2MEmNEjXbnIdMyVL+phVx1uNd17eQsCoDC9j2hmvoR7DBGFkVS+Aw1u913iKjdnR+JGr/UbNhOtnR1dnJ3A6XfXxo8QacbPevEF1Jjd15rP6L+8Cfd03DDSr7ZucHfhoJqyvBBgArgfhHssESPAx8lBrEfY6NXpvXm+5fese+Zul/rolQxUcD5/fbTGAHAO7gZ4CjfUJTzZjLM0b/br3tyl+c6Nv4uot1vWXhXLV6f7jR1oqjTo5p9+F4kFIOc+UM5yXs4ZBwzNWzCKqDwxxrLujIAdll3/O8tOH3x0985IS7VkYSPziW4XOc/ekDRHsp15N2xnIK0wk6KaoRFITewf2yoai4LtViPazhRHtiOqdWcHdYftNvzOdqPPFJ9YM91LO1LOQlfvntdbTtstQbLdEiTb/SmDBhiHjGgcZRwZp5s7OaVZ1gEXLT3c1sIs6kCTP8jCL/MWPBZ+26+jPgrnsQKdGBmsi0HsIQO0esR2LyfpxxIBAWgfsyxbRPbDXFr86odiSiu+mf4Z0I6CAqaICqh25CE5BJg8pNvbv2Q7vJf/27+gu5A6bf+C4tJAkzCBN10GNImwmqA8G9DUi8C7KAU09WY1QTEgoEmU1QSlSICmPgTewBXQJEbgvV4ENImzmqDLdECTBKsJWikFmiTZvwsy3wea+rKaoKkc0NSPwHs5FWiSYjVNkCZ/WacwUeNIbmHj27nvrwBNf7GaqqMbbuQqZqtHql80jRrCaAGapFlNDz5cGVw7QE87cohBYsTtL/VAU39W06pow0GBR4ZR9i6I+rhkS2Ec0DSA1aSau6XmCWG9+vb4uuoxOY2HgaaBrKa79+dNz7t3XyNj9M1mPf01F4CmQawmy6t61uaMweq7JR7KHpAZKwM0DWY17b14fvpTmfu0gyfoEQXbS78DTUMIvLMtrl2DQwkwuwZ179w6vuTLCH3/OfNzrj76lMCjo3R312AuXKfEzTI+1ENQYhGlY4mvXHasJ52YdEdnUUmVEgrr+HTEdfwFHcsjeXCa4/TYKWhHFNixU6bxSMdOvY3j97FTE/svcG7xV9aINPONWpM2lpNXwObYKcN4pEM8FsTj4Oyc4uJiARw7NfkUY8+7AURKbLHRuPBDopxLiVgdOzUJ0TpD8GAdgRw7VXQ7ZIHVsQ16AcOnPn/rdp+z/ovVsVPCiMYBogn2xiFgeeyU6tRqlbONo/QjdBbq0C/ocR6wiPWxU3fiEA90w8Z4+Dx2augFieTH9aPVc3PE50WNE4JkiQI/dioH0XIxmFsO/BDfjp2qvVuyVG1ykfaJbIJn1iZdzowOq2OnmDkE7LFTQCBk5an5BJg89d907BR0qojxsVN18UjHTiXHC+bYqcl6BG8h0lB62EtZV8+Z8rWoHzsFXT5E4SilS/FIRykVx/Pr2Klv0xp6G+5Q0w2c+2Djypv5t1E/dgoaI1DQKhlRq32CzUOxPnaqAC6M4frYKR7VL3bdERrSun7sFLQ4hkIB6TicuqajhdeEHZMmF8U7vJu7WYzCWTXoOMqivTDd9WJGkdCvUzCAYcINmJhYeoB/ZbiBNyCusmQW0NuJJXsPd/aZU6xfxGp3J1pbOhGtgNnmWhcXB3vw2CpnoBH4fPst1zqBHwX30TuBfIADcyRiXlQmqtuBRwMxJ0FL6cuJLmxGk7kFwNnW1oHRsQEL/BmPdc5ER3BjdteKLRtfLGqeFiSvkUqY8bZ38Q5/RNm4iy2QH+hizFAD8jSZ05XAiMJrATwVGJlkKiq7A1P1V2fKCO7VZz0Q7/0QeT/mvRlTo+4PeI7cChXOI756M+/Bg29mXv5dVFV4P3XUeMZN/ciRZifHLTx29Q+j6lRAITFQoZ28oupIIOYWcir0u6qHHIc/spIeUDOWYHAQ48gzwS5BifHamcLTMrYdfaqK6fIPqIpdBZIqgN/gZmbWtLA7hY+ZOquIxm7g9BnsxZzWsnfvHBeYs+0t4Cyb92bVMDHVghmHhtIz59oSFOXInBMyCXrHjbhJlk5t/DBd9Skk03mdwsR0faycnR0Ylp3CZHcmZqMMwI3E4JDAriXarwLDO8KC6vXBU3rrRWdpBgZ9vntr16hCyEko4P24g1D7ZdTny/msKMMT6/LOY0aZbi0oyxuzzrFjAVndESYhN5IR7pdCP/xq9KAYNxrnyf59WDfmLn+zG/ghDjPYwIojAxFH+DfiTGgfpX6N4N1Rp3/qubiQ6Sc141+eixT725eTJhfv2LnBTQX+auKHQsw+DasQ0KdZeVshASZv0yRNUvw5/xop9b7skbqYdzM42RcmnubiDBKk3DmbGIzOf/9agLL/9Xkb1oDnYQfknbZ2xI6jMdrPAuhauiQtm3KuSO8jye9hZtq8DfUzYZ+Wm9Tp1NhFfb2KAAWrAH0t1cGSFkRfaUBfhUquNKmb20kH/XosEEpt14Lnq2edc1kQ23aYsl/07zyhMS2cX3UuZgoeOsTrxIhfLb9LoaCB8Q9TKDtAPTtQvdHqPLzzNTAxlanqVgrVt7372jBs3Ri880v9gMSWknxTUvSDaaPXUIMTOZMlDeYHuZMl1nW0eyf4/tWVSO/vVYl1stThmd1IlMBHtne2sbdu78+8v4gsiuG7ZU2B3qFhhnc/eVRrc/oq+wbcvtrRwg9jKCAa49YZXKQ/hO6sBynrOTl7AMOXpTVYmVaYOh+YsoL8uRJx2nxrO2c3GyXi9Pnurm4ezH/wzlZ1Di4yLM0sInm/uXZH7pof52ZIcfAXGHmsd+DuNp2a+GGsgDNIxlLFxliQnsOsu3QnWx38axnBaa2blTtCD7rwyDjEXKVN47DvwEdXt86p+ZOp8h+aIzuXFchlgDSjlgv6y600aavsXpbKiuQI2ZZE44tv188O096u8/jL9TDDBEynvaAAkZUsAW7xEAAMLd3KRNlDmbMjkFDx/lrqq6SQiNfimkmG2ywUPN2LIEMZ84M8hrL26/wQoPwMggBphmfYiWYR4d9FO6kEm6jt6P9OP1o8y9VybtEogdFOU89XItBOwdVcmSXKtJP9INXqzfZ9dVLuvA2jzfrZHwe0ExGUBHbtuPYcJkGfE9m4f/++AGgn++Kv2o1L02lJEpS5Jd+cTHBBO3mfQ7LOVDxYRyC00yPZvb0+HzxATrjtGtqyZMZbXNBOD6uRjANEE+yNQ8CSdvK+2XYqU/UmNUA35I5q/dbZuKKd1BCN13QW62QXR7TTu7mizfExa/WjbqS7LXTd+BJj2inuLJLlDDC3HF9pp3Opt96aZtZTS4aWjVZzmtOIC9qJmUPA0k5AIGTlqcWEHkA7aYwclzVGqpdm8Rmr0Ny3G19hTDsRL1Qi0E4uNbDFUlRpp2TzzaP2zVam+DwbL3Si/zMD1Gkn6NwcBYJHGlQOluApr+EqlKJEO8k+UtlhKJSqkWEip/Z+xqso1GknaIxAQSvAjxC0ItYINOZiTTuVwIUxXNNO0El3J9oJGtK6TjtdyboeGHryIvVQxEiRWKu6nyjQTifg1P2PdvpHtNOh4raGIwcOkwscRfccTHuvLDDayfs7Eu3k/Y0ftJOnmOTa12dHa+blj/Bc3H9rLIq0E7HV+sOHGYo6J1c/Kw15Nu4UCrSTy3ckOIT4XSC0Uy8Z4fQnrlRa8oBy5z4id6owp51qvyGpAvgNbmZmWNFOyx69WtBW2KKXmZ4immZtjx/aaSqi6R624mK5j++0k2GrBs1X25W+q+kN5eTrIw8wpp2YUQYWVwGijMBop2tiG4ZPUV9DPzh6YhGl4k4IDmgnZrCBFQcINoKjnZ5sFHntVZSsEWJ6++GPYc2iOKGdpiIqBPRpVt52ktAjaKcZdQzq/EXi2r4FhwPGbxoew3faqfwnEu3k8kNwtJPHq14uq5rHqKVVaGRT7LfGoU47QQMjCrRT9k8kZsHiJ8q0082/Di+S2qVKT2yYoWhSkpCJOe0kjfj+5T+wTpb4RTtJpnm0Hh1LIIfcD9nywVDuAC5oJ6CzIhiDiI0xMKedys/Wa57Iq1IrVrV6f/7arXic0E61bUjG8m7DQ8/hJ+009oWj2qrKLaSwkoNDJhDGQb/4QNC0EzOQw9JOmj/Rpp0s9r2Mr18xUi+579hlknpzjmFOOz38gUQ7AaEFZdopQFNfIXDsFXpoxNwBls90J2JOO4khCZB2sI2daJYS/l20k9vtiNTiAbP1D3889c188tEnAqOdLgghne30ncDvs52aWyfu9W5bpuNdYqvgWjrsDQ5opzNCSCdlRAnh4ICaGzduCIB2sml61j9H/xA5zML0zrX5heK4oJ08EK1DxYN1BEI7rZ+8fvtgkySST6WJ17zqjVRc0E7jEI0DRBPsjUPAknbau5jcqkeo0U5YJjV0+sT4y7iina4RkIyXgY3x8Ek7OdSpi05+Ea1/KCrG9YmnCNa0ky+i5ZZhbjm+0k52Sz8NnqIXrF0asqLJTjH7LS5oJ2YOAUs7AYGQlaeWEXoA7bTEx6lAadcheiTZ6mDOz/d9MKadzggjne3kICyYs53cyR7rW5OUKUfmD/nWkHfxBOq0E3RujgLBc0IY6byiMGF+ne1kf89Id+ZQX1JxsMiVqHopEdRpJ2iMQEErB0StNIT/r852KocLY7imnaCT7k60EzSkdZ120nAZb1ggYaS7/9KtRj/6bAUUaKdTcOr+Rzv9I9qp7K1ItcanCzo7+6ncE6LrLhYY7XRhRBUC7UQd0a0vyusi7aRdSZ5iHfKeVDS5qGwk6cBZFGmnT8bWMk5NaVpltNyM9xM+/SlDCsIhZ0CFYOGQqBFcIxA/aCezb6cvPXvsSY6IeJGXe3hoG+a0kweiKoDf4GZmhhXt5PpArf8pGS29nBlW971iTyfihnYah2i678MxMZ3AaacC7yGjWupH6GzbdOAyafv0dIxpJ2aUgcVVgCgjMNrJYq/Yx/BN8poxo5cEFj5SmIUD2skDURwqRBy+0k73DlWcnFX9iBrglX2rzJashBPaaRyiQkCfZuVtFYQeQTs17XNgtAi5qUWkjPaLvxW9n++0k8OoKgTa6cxI2Ak86rRT0zXlhLqJ0lohn91zLg6lTUOddoIGRhRoJxtQPVhmYd6obqVQv6ed1qz+Oqu4xlJt/xu5c0qRWw5jTjsNQnz/1yOxTpb4RTutlV9f7vn+Ksn/o5GHiMTfTrignYDOimCMKGyMgTntZGoyk6p4N0rjiHyO4iZay2qc0E4eiMai4qLn8JN26mt2a3uvFfJqh84lbf1R2m8wxrQTM5DD0U7pyqO6l6X+nnY6O6O/tKh7klqO8UoPv5lfIjGnnb6PrEKgnYDQgjLtVBnYssahzZCck/JGUXTK6XWY007BSAKYmo9kJ5qnCf8u2knaaJLi/OjnmntLe2cfORuiJDDayWw0Eu0UIMtv2mnoMerJaoV3tJSzcns2BF79jAPayWA00tqxwmgcIBuXL18WAO209lRNeNJic1pGZu2X4V4r8UE7ERCtc0sWB9YRCO104eu1trdFo/RSRb6cdntmVocL2ilbFsk4AXgwDgFL2ulYPvnJNQ0PjZA1Igs2Wiym4Ip2skA0nio2xsMn7WTm3yqZuE2TfqyELN7i8LgFY9pJGtFyjaOwthxfaae+dgMmrKnfrhE9puKijuLCg7ignZg5BCztBARCVp56htADaKe/vrvXvCVH6MdPMl0hveClHsa0kwERiXZqGS0Y2mnMCuGTbkPGqR//0TdA69q6CtRpJ+jcHAWCh0JEIniIRH7RTtSSfotHWIjopn8O8gnLjXyEOu0EjREoaNUyGkmrWsHOErCmnSrhwhiuaSfopLsT7QQNaV2nndY0vsnrsySc4lNmlnqnb8lSFGinKjh1/6Od/hHtdKCp16GrrR/puaPf7zHav3qQwGgns1lItNMtFX7QTkeeejrEfKapZ/gdfpGn8WwFirTToo0PP+h7bFNLtJim4rmT9AgF2slgFhIcojBLILTTtMrTEyVlh6gHBUy1eLhe5gfmtBMBURXAb3AzM8OKdprS77LP368TSQHVuxNCv9jL4YZ2ylZBMl0ANqYTOO0kkZGVqTKzTd//wfYXuUa9lmFMOzGjDCyuAkQZgdFO2XU+WuMZLzSP5rb2u3MnKwIHtBMBURwg2AiOdmruo2oXpPdOs2SOXq1jpNlFnNBOzD4NqxDQp1l521lCj6CdzKYOySuye6IfPd4qzjjI+DrfaacWVSTayUBVcLTTDLE6U5eXfrT0g0IpTyRrGlGnnaCBEQXaqUkViVmoVkWZdjK5u1jmcOU43WiD6CPZS7dex5x2ikN8fy9VrJMlftFORq16VQpz6yhxaxgzJe1DKnFBOxkgGkMBG2NgTju9Mh9/9/HlMPpOJw+/XhMfz8AJ7URANNatWXjoOfyknfQWid0blzmGkn15otQzx3fKGNNOzEAOSzsVq6JNO4V4peUMMEjUK2me+lexf7Mj5rRTAFsAnrSTgSratFNx+cYr2+kSOoErI9s0lK4NwZx2GokkgOnTWexEs5rw76Kdgs2O6VfO6Kt/0q1hY6ij1XCB0U5P5iDRToPm8Jt2Iu5X1SoJ2UzKi4rRzz6z+QcOaKf6OUhrx3lzcIBsnD17VgC0U9Xuxy0Dlk3Rz6Y8+6S67zkFF7RTEKJ1bPBgHYHQTilXTBRNtLZqRvcOqlqm1K8eF7TTPETjDMKDcQhY0k5bD2pWuQ+M0A+VeJDb+DVnC65op9ezkYx3ZjbWyS6OaCe7Cy8mvPAN1d62aLHnqzFORhjTTlGIlvPA3HJ8pZ0Sbj7+mLHwJOWIXuYk0UFT7uKCdmLmELC0ExAIWXnqOUIPoJ2WnBVyqlmUTc2ZnLHCdaWsF8a0U/1cJNrJd65gaKeT1NS+4r0e6u+WejPkxCPz6ajTTtC5OQoEz7W5SARPxlx+0U6bRe2rffpM0c2KI01RPrvEAnXaCRojUNDKF1GrZXP/r2in83BhDNe0E3TS3flsJ0hI6zrtNM6qWjoqq1EtpXrk1Ju3pIJRoJ1q4NT9j3b6R7RTetUH+TJ/FWryy3iL+OvahQKjnVyMkGinJkN+0E6mSX+lX05JomeJuw7r18eJhCLt9IFQqH715lvNHSO0NpTWPJ+EAu1kZ4QEh6gZCYR2Kv22Wzzbr49WSXKfJTGP3F9gTjvJIKoC+A1uZmZY0U4umzZsLHIN0j7kkHLo7895gbihnaoNkUwXh43pBE47TfGKuOQeZUg5+e6URngybRzGtBMzysDiKkCUERjt9O7FwJgVy5zIB2MbZScNGKiLA9pJBlEcINgIjnYSPdE7LyZzot5x74iCigbdozihnZh9GlYhoE+z8rYLhB5BO90Tela8evJdUqDXng1h71Sm8Z12kjZBop3sjAVHOwX2URzuuzNBI1xZwX/HWjlT1GknaGBEgXYSM0FiFh4ao0w7rbV5f3KudQ1lT0XOuqwWOTfMaadCY6T3DzbGOlniF+1k8frFCucpWdqZE2YGrTj2yBMXtJMdojHUsDEG5rST4pQBxcsSbUjRUY0blHs7peCEdpJBNFaTER56Dj9ppxup48RKb9ZQsuRCT1n+eEnHmHZiBnJY2qnOGG3aKbZ3X0nVC8lqh0e3BB0YfeEE5rRTnDES7WRnjDbttKh1IyGpbjMlXPneYtnaTymY004zkQQwbTNiJ5oXCf8u2ikrK26h0QkH3W1ZEtp3Sj5pCYx2+m6KRDspmfKbdnKyOTBvwdRz5JRJDZty4ietwQHt9NEUae34gikOkI2ysjIB0E7So5embp5QTwuPWSmndsx/Gy5opyRE62zCg3UEQjv9EHpWqV61XW/vrvV9pn03jMYF7WSMaBwlPBiHgCXtZE2IHaUzPIaSulTt6qqD5lK4op16IRqv3gTrZBdHtNOGmELL6Jof2gVV5+O+JEz5jjHtlGeCZLkgzC3HV9qJcNtpUl2WHTngVabiAH9Fe1zQTswcApZ2AgIhK0+9ROgBtJNh8WSSknQNbUe578hgz1ENGNNOHxcj0U5RiwVDOw0JFV14b+Rk/VD56j6E4CwT1Gkn6NwcBYLn9WIkgufMYn7RTgqGZvvG5KXQct0uVi8RHuWCOu0EjREoaBWFqJXH4v8r2ukyXBjDNe0EnXR3op2gIa3rtFPwz0cDX1ygqu98cG3/uWdFmijQTrWoqdtXgOpusl+outWxWGvv6wf2T0ReqHdSN1+o7mq8012Sz3RJ7T7iok5AkzCraazqlJyR1YGapasXqBkNTw8HmkRYTeE5L09d6OdOjjxyZGfhooYBQFMvVtPtAT5GYxYlaJd+P3tCLWo+N5zWG85c2yadUUqQfqS5bdNpaZVVac9QMNcVOHP9B6f9Izhtco3RKMeEYxol861l28LHyQgMTvN1RoLTejnzA05zfdrPYv5hV92IPOrH1ZstX6EIp83ZZr6AQrDWypJ8uX3V7vFpKMBpm5yRWB5jZ4HAaSuHGMlufBlJLhCLychooJZgDqcpIaoC+A1uJtJYwWkl2tm5JS/DaDGzVBeu3tPWjBs4rd4JyXR5TrhYneU7nHYvsnn9lY0LtGPSaZst37/fhzGcxowysHQREGUEBqddCha/KyZiTd5vSNIjqxdyJnfYwGlKiOL0chYgnDbbRXxP7t4Ktb3eq67Vz1E2xwmcxuzTsAoBfZqVt9URegScttw+k67ff7Z+vNnptMNjqnbyHU5TckWC03xdBAenXc12rxgUGKKe6m1+4qB0HmcyjwacBg2MKMBp41yREJPvLijDaTUafUfKLQnWy8vbneXl+Woo5nDaNRek989wwTpZ4hecdnCa+fqnx7T1gqyT8xPLV3B+9zJWcJovojGWYWMMzOG0fP3alHSfeO2suOnzzsZJquIETpuJaKy+uOg5/ITT6pN/LE852KYWNyN1UtbSvJQ/mSqjgCYxAzksnPbWBW047XV+aa1I9htKVN6UmkSfwmTM4bQTLkhwmq8L2nDatM3SFyZtLSX5Sy1MJFerQub9GMBpBkgCmA5zYSeaVwn/Ljjt9KMh6VZfd2ifPOmrZ2q9YrnA4DQZdyQ4jeLGbzhti/zyrKDvd0g7HS8VfC5cuAkHcJq0O9JSf6MbDgibwsJCAcBp2268sUh9dY4W2udzxiupOM6v18IKTit3Q7JOJB6sIxA4TUfZKHSDiLJGgEr5OFW6+mlcwGkuiMah4ME4BCzhtC/XVpV5XWtUD5x54FPvFV8+4ApOIyIar8UV62QXR3DaPdE1pBuXYvTjH9PTiBJFnGfHCB5Oq3VFslwq5pbjK5z2fNlEsVRLUXLkwzEpKqJ7kv+cbEEBTmPmELBwGhAIWXnqNUIPgNPGihuJKcruouTcvDaYMYCggzGcJu2BBKcVugsGTiM/dn20WDVDr6T4Y7TdMqsc1OE06NwcBeBKzAMJuHrozi84TXJSX5L2oVua+SLZFXZqsfdRh9OgMQIFrQrdkbQKdv+/gtOuw4UxXMNp0El3J3wKGtK6DqcZEFY80Y9dQkuj97+sEmsljQLtdANO3f9op39EO518lLz5Y/A23dLZ47OW6Ut8EBjtdM0PiXYK8+MH7VQ5/PkWcRETWvy6OwvWictPQpF2kslpLtpl5a9V5PPqs/uPJEkUaKdaPyQ45ISfQGiniiFSLkdKe1EDPk7/MUzKbzDmtFMqoiqA3+BmZoYV7TRJ+NKP5a1F5ILH80oVjq+vww3t5I1oOgdsTCdw2inb1c0z+roYNedDhOT9D7o0jGknZpSBxVWAKCMw2ulHWcTTRcvv6heU+L3cdLJPDA5op1REccL8BEg7vWGs9tpikk8O8PpKSu3zdSNOaCdvRIWAPs3K224SegTtlCE3K/ev8W0axwJ35SvukO/Pd9op1R+JdjL2FxztlKA11SrwjS8llhx6uOamliLqtBM0MKJAOyX5Ix5F5Y8y7bT1td7W2ydVKamvlhYdcZqB/VFcmxDf384f62SJX7STzsfXs0SPL9c9vkTNSSNN/B4uaCdjRGOoYWMMzGmnLY4DLWouNmmnp5upjFj+1xec0E5KiMaSwUXP4SftdH9G47ZZRfG6BTr0mqLoob4Y007MQA5HO5kE+qNNOzGuKt7MFF5HTezd+7CIe44w5rSTC1sAnrSTsT/atNM182ULy1ef1z5uMMjQSuyJIua00xwkAdJk/dmJ5i3Cv4t20h0oXaEfYUJP3krJXfci9qbAaKeYHUi0k8oOftNOSwylTqtHDyMH5+yQZ7zPjccB7XRwB9Lasf8OHCAb2dnZAqCdRvrK3pL1NqXGeprFtFVEVuKCdnJDtM4KPFhHILRTrOP1Ph+sHfUSZSfaHHPULsMF7aSLaBwVPBiHgCXttHtB886k2VZaAbuq6s62jYjCFe0kh2g8KWyMh0/aaWxTYrNHlSF5/1ylmnLxE+8xpp1a/ZEs9wwX0xS+0U4OS530H5gaa6Y8nDqpfsP4l7ignZg5BCztBARCVp56m9ADaCdPGVlxxvE39CBt/xvNmyRlMKadhgcg0U5vuVNavtBO9mXnfux4tZZWumeAz6u0kU9Qp52gc3MUCJ4hAUgEj3AAv2inC0SlsqNnX6vvC30TT3mjMA512gkaI1DQ6u0OJK3uCHa0xJp2ugMXxnBNO0En3Z1oJ2hI6zrtdOV0XerFWd5qmaOi+2x4L9OKAu10F07d/2inf0Q72R2Wi6/1XK0fvGT90g8J1o8FRjvJhyHRTs9C+UE79Tt9d//roEJ6jH5CevDhTcEo0k5+k0sMhhmv1k7PcZcvrT3thALtJBeGBIdIhQmEdoo933u75+tF9OioXs3HnOQ8MaedWkORVAH8BjczM6xop+HD9BZG7zPWPrT87WXDwFMOuKGd6hBNV4qN6QROOy0RDqv+66Aw/eA7/y2h2s1UjGknZpSBxVWAKCMw2ml3YP++lA3yugGRUbr0hPNfcEA7MYMNrDhAsBEc7XT+r9efJSqLSAXFab4zJmzNwgntVIeoENCnWXlbPaFH0E7pM+6XSCuoUSNI471SpPum8Z12ag1Dop2SwwRHO5EO7HpQFLmPtF+ylTFt8sQK1GknaGBEgXb6HIbELDR0L4X6Pe30mHrdRTL1Ai0s/vNWsWXv5mBOO11CfP/iMKyTJX7RTidPkQgyux6p71zSMCz2VM55XNBOyYjG2IeNMTCnnexVqfH7/36jHVg558vb2QmrcUI7bUE01mpc9Bx+0k5W4rQtyxTuUYOnl98t01zogzHtxAzksLTT3W5mqb+nnU6VHBaaliKhd8xnDOmHWJk25rRTBVsAnrRTchjatJPJq4VnA+/b6JTtX7tYbUxZMea0UxCSAGkuYexE8x7h30U7Td941enqhXi1sskRL+PWPBwrMNqpaT8S7RSwn9+0k9Jj6zEJcb104o9ta/25WlsDB7TT6/1Ia8e39uMA2UhNTRUA7XRgj1KT1ixDtb3yezxJC0JP4oJ2OoNonWw8WEcgtFOfQ7QxSjEzdXyd5b5a71m6ARe0UxSicQLwYBwClrRTfcXS1J87bOkJG4Ofbzk77hWuaCcPRONZYGM8fNJODTGxRy1U36jFHb8eLhWh7YYx7URFtJwq5pbjK+30vbXcfqxGsGaMVL/JxgOLz+KCdmLmELC0ExAIWXnqfUIPoJ1qU/rppnltp4amf+2rHHLBAGPaySEciXZSCxcM7eQ2Xu64SbK3bkJw6WzxiT5PUaedoHNzFAgeu3Akgsc4nF+009y5FzZv7fVSK/ToBNc2ofuuqNNO0BiBglZqiFophf9f0U4P4MIYrmkn6KS7E+0EDWldp53mSN2aHdhspxORoXG2gUSbggLt9BBO3f9op39EO62KNhwUeGQYZe+CqI9LthTGCYx22pCARDvNSeAH7aQa/vCzPmkKbWfgscJlYseMUKSd7mwNHpPXkKaZ33rT5nbQxDUo0E6eCUhwiFWCQGinJv/VYr77v6jnOpRtulxuPx5z2omOqArgN7iZmWFFO2lMrL2VtXkmJc85abfbtnVrcEM7ySOabgA2phM47TR/zgqipexCndC1KxclzmDsx5h2YkYZWFwFiDICo50mjb8+YtkAIe1SskxBxWjyVxzQTnREceYkCJB2sjyUcal4zALqUV/d8V8a64g4oZ3kERUC+jQrb3tE6BG0k2rulponhPXq2+PrqsfkNB7mO+1ET0SinVq50yS+0U51e9L9lq5xou0Pay1ctk9HGnXaCRoYUaCddBORmAWVRJRppwDzvaT+ymtoh3LCRj0K/SqEOe0kh/j+UolYJ0v8op0+T6kgbh6pQU1sNG5++uCpLy5op9YEJGM8w0f6I3DaSf/HiieU3X9pputTfI6bH96IE9qpDtFYpZhPM/hNO53Zk2MkN1SNliA6xMj99VB7jGknZiCHpZ2mJKJNOy1WMI4RCSzRPNZY0eDlttQPc9ppCFsAnrRTazcz0d/TTtHP6/uYmqdRwj/kOU0m3ZiAOe30MAGJdjrTkWg2EP5dtNPd+/Om5927r5Ex+maznv6aCwKjnTSSkGin+kR+0055ay7Jnig/pB7xvWjqkvDmDTigndSSkNaOlZJwgGzEx8cLgHaiyovd+qSxTC9YbmCvNwcjSnBBO8kgWqcXHqwjENqpok7qneZlDe2oVSseJBY/9sAF7dSUiGScemxmGjiinbwa6dH3Gq5r7FbNW7k8rD8VV7RTNaLx8jCfJuKIdvK7kVtFl63XSZnvr2PgY5qAMe0Uh2i5IMwtx1faiVyyvvys8lPtPdahnk2R87JwQTsxcwhY2gkIhKw89TGhB9BOllf1rM0Zg9V3SzyUPSAzFuuzncqTkGinsCTB0E6rfmQVL194jbS9YfSTjBPbpqFOO0Hn5igQPCeSkAie1CR+0U7qFz5pazTF07abNdUfHzGhN+q0EzRGoKBVGKJW3oLNQ7GmnZ7AhTFc007QSXcn2gka0rpOO+29eH76U5n7tIMn6BEF20u/o0A7PYVTl2g7tiBgdyA59HQG9cDXIs6qaW9DhoPlek51YZaF4LrwQBJxnb0bg+gG3oklIO898C1tTjKLJ2rG3Ah6NtVtiByPB+F+6d9HuHO1+0P9c/UOvnXNvuWeMuIPe20k+EUW7yrbx2VvrkwJGBsU3lWyJH+Ge8mXSuww6ifWTEk20u//4dt5P9xKTh1chSC50mB2KvQc95J/NPl6akegN81nwIsar+dFI3Ar+YWpSJJnTGVL3oh7yUdmWx0O1D1F2nNP3GDz/vJRuJVcjIYkeSOVLfkL3Eu+XkfhkoHvXn2/S1K2ah/Fs3Er+Xc7JMnr7diSv8S95DrybnQp8RGk7Ih+tqt9n6XiVvKgbUiSb9rGlvwV7iXf4CB31HO1gmapxKlr5iu/jsSt5EnBSJKHBbMlf417yW+3rL0qlq9O9xs70FRp0M1JuJW8KQZJ8ocxbMnfwEk+I49OnqNoTinN8qbtbMq6CSmIAGK7OTsQmTSnO/caY28YoVU0vYCpmHU7LchauWfdqh3YYm4dWOPkDPwNmPuwNip0bf3RRW1R/u595RoppeMuHitvakZ6Yh4lHI72LirtDUyis82AdPwMmQf+TwS3rptW8gH/t5qft2SW3CvN8GdG8dYrGcko4v+vvW2/WKQdphwXfahhJxoi9Ie+6AIoFAwq1EQC/gFVqKVdIa6aKluiLqJ/Y9Q5fYi19kQH/WsyiPEo81RxjXZkgbP0EM2T1VKk25fKNDnJABhHYV9Hu+Jans8SisirHkMEWpsWV3KxId0UavhiBrhSylSIs9/xVmjZ+5XNRktNtJIeua3PiPUv5VzZZt2Me2Wb3cAPjQwWI2kEdSbhf6AREwVjUd+ATr/zotarDcV6V1vJkRufTSmtqfrJ2RfBm3ErxLrMD32kTZH0cTFhVwfewgX+iW1DZTKJIpr55KZvDFlbzsAvSbV394DdegZXsh9FY1i6r3Vr3/rVziq1R3cH4G5dC+7K/Ye9SywbS81XIs0ptVl2HvapuHHlTo1dxZXBnaBLAR0rAB0fQnV0Ac9NWMIV1ruJK4uTLd0ZTAF4vu9xvYkfD5w5rb2LsWDkvWGinF/J1wt8Ja4Xbb/6u/gODXp/yiYDUhFBqSKB+F7OazcMIBVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auVasezqtUp4cGtuboSJm7juASYAD767p5eLG6KgXMyvNZpM5Vy8ETb5JF7B0AncYcOkUkM/UidU137G6ElfX7DXtI0nqbC0lUUXljlDW2NMiVHsrdlt8Y/TIldNMqVmie+1/NEpwQkgsSq6dz+56vyVqM9oztXZSnAimJIxu52W+6iKF6WOdSelXNUdeORUvDf9k3MBA59ZuZBxxRoDSJ3h1XtAO5YbdysmIHTmZLW85eJ8UcM2V1EZ21zwQ7Wxwgzr3jw7Z42+KZgEI5m3EStG4XLOxXbBuLXsP04D4CygaPKE7/dKqR+W0QJ0IGeNUowJlJ0w3G2Tns9SQ5tVRwTEUUIPVUZsIMGNoeOOn6MkmQdSi8/qntH/Gca4lSPwKT9yr3nAz1CG/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKXJaMUxKpY5XiOdgHtM7v2Vv9q6KGsqOE6sBGS9xWtRmwI62fLKfh07vNirjezoJKED9lSu1as+zMs6NuyeEdnmXRwfYqZTkHKErvZU8S67XQimXVKf6c9cPUes/fqvG5vbVO8RKhPXKH47lNZPcWBt+/MwH/d34WPgL62ADuFmb2nlwLsbtDbf36VrWKkTXa2SOfuBO2cElzBlfZRI4rKGEImrFwhBQgZ0qPzTCgNgTQJozakkHommAzjqr6jspJEQWhoNVX3rN6FvvN4ekZ29RD4nZsNoRObWiPxbjaBhCAWNAJ9G0Ii4vJLlgB2OhBRVB7XDRGA8/RUAeAfU6+GDpmiOpx7Q9RPLNs7lPOJPtP023AGVdR3tgGqQz/KVFhI4MYHocC2PqRIroDbDBdQhDbs1Bsy5rB7/9+OyrOp1nAdKCpF5r7/3b8dyeEhJkGhv4ijTsSgervIdzwV6IwYwf7ZhZqhMEskRxLxcHOyt4Q8gCM5JifQespcackPN++mkO3sh79AVl+2qLTr4NYgtiMWVBJmUSrASAw5uLNXf/yPV25MVgSs/gfUL3cEk1NnBAXh+MGoAncKWATwFezMd752fV01V7InpSZpHDgYdTv2aoSKAvUBwpigHCRsa1BQf/pEpJM0BKRxdnJ0YTh4CN8gg0/ZSycb1m389BU/1ze6tX0/zCiKnk0YfFKqZuxT2Hbjn8J0b0baEWEkl81AHQmlnS3zsyaHo2O19YWN9/chJ407vr9+6SwWjUER4CfX/Tz3Z/y8en3nF6pui7hGhH5UJN7e/wJH/uzRD/f9zT/Z/kQdhDWnFA/SKprzYSv458zVG/t84oAri/196sv+XXz/hbWYsTTrxd9r160+FKDjyf40hVRD/b+nJ/k8bP/io5YdzWsE38u+OsHhch5H/OyhD/f9rT/Z/YarLUMtPmuQTtspZm648JODI/6unQf2/tSf7/weXA9EFS/LVst/XLf75Tm4yRv6fpAv1/2892f+HGL4MeCtXpF6mW+Y+Jcl2L478n0CH+v/3nuz/Glu3vwj84akZX3zL5vZQhg1G/h+wCur/bT3Z/+Pjped9Eh9FyhQdWDfir003ceT/3+2h/v+jJ/u/6MuKPPKUMxqHdM301DZsXY2R/+v6QP3/Z0/2f7tXm/5e9GwgvfDM6u27GgYdxJH/990O9X9Qth7r/3dip2sqaDqqpY41fryk6qcHRv6/ZC/U/4X+ker/Ev/ffz08+AXhnUbZrgebivUSXuLI/2VDoP4v3JP9f/nUoq9EWVu1sNV5tAALdTGM/D81Gur/Ij3Z/w2kFWZSVDM0AqmJ/WNbRWNx5P9OsVD/7/WPLNG+4VngNhjwi5lzZ9g6MuBOPl2ZS+1N8Xuu7jNRsWxO//l1PJ6dx/oX8zLaqoNcUZx1R/3/fw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAJdJREFUSEvdk4EKgCAMRPfF9gn9WZ/W6sYWmZqRG0EPRorb3SFGv4P1GwLErdw5i4eZgDBh4zsDnog59Uvbm1QbIL4mWrTmRsmZjjSpG+zJIKDbIQqDU/puuieUBo7pQWbgnR7kBs7pwWEQIQ6uBm5XY4hBVHogqWGge3fkdx+4mm4wxtPU9RsweztvDR4VQqg4CBWvQLQBFW6Sxd+iMagAAAAASUVORK5CYII=
- fb371ae8-5b99-4464-8511-d9d8f0b30abf
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- true
- 20
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- 24f7bdca-045b-421d-96c9-07956873e094
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- 2edbebac-85ae-4867-9c11-da446ffbc094
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- 6da74475-a224-46e0-b568-d112ce0c308e
- 7cbc819b-232a-4183-913f-629dcf38d672
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- 8ee68260-160e-4c3c-8412-07c3b2899075
- a480cd9d-26c8-4bdf-8aae-345290e945da
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- f8a7e30f-9336-45c6-897c-5deca2663077
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- fd26031c-119d-4d02-99eb-e98e506dbc09
- e9837f44-fe89-4576-a1ba-d864d9176564
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 45329fda-4528-406d-a823-54e35ac6ff74
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 34281050-3848-44ac-894c-a3119ffa069f
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- f9b9305d-1e20-4067-946a-b44d88604308
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
-
147
-3386
366
404
-
499
-3184
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- true
- Y component
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- 1
-
149
-3384
338
20
-
318
-3374
- 1
- 1
- {0}
- 8
- Second item for multiplication
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- true
- B
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- 1
-
149
-3364
338
20
-
318
-3354
- Vector {y} component
- 7cbc819b-232a-4183-913f-629dcf38d672
- true
- Y component
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- 1
-
149
-3344
338
20
-
318
-3334
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 6da74475-a224-46e0-b568-d112ce0c308e
- true
- B
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- 1
-
149
-3324
338
20
-
318
-3314
- Vector {y} component
- 8ee68260-160e-4c3c-8412-07c3b2899075
- true
- Y component
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- 1
-
149
-3304
338
20
-
318
-3294
- 1
- 1
- {0}
- 6
- Second item for multiplication
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- true
- B
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- 1
-
149
-3284
338
20
-
318
-3274
- Vector {y} component
- a480cd9d-26c8-4bdf-8aae-345290e945da
- true
- Y component
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- 1
-
149
-3264
338
20
-
318
-3254
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- true
- B
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- 1
-
149
-3244
338
20
-
318
-3234
- Vector {y} component
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- true
- Y component
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- 1
-
149
-3224
338
20
-
318
-3214
- 1
- 1
- {0}
- 4
- Second item for multiplication
- f8a7e30f-9336-45c6-897c-5deca2663077
- true
- B
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- 1
-
149
-3204
338
20
-
318
-3194
- Vector {y} component
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- true
- Y component
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- b2df309f-5daa-4345-833e-d910c82a19a1
- 1
-
149
-3184
338
20
-
318
-3174
- 1
- 1
- {0}
- 3
- Second item for multiplication
- fd26031c-119d-4d02-99eb-e98e506dbc09
- true
- B
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- b7d3231e-4e24-4334-aeb6-4329747a1277
- 1
-
149
-3164
338
20
-
318
-3154
- Vector {y} component
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- true
- Y component
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- 1
-
149
-3144
338
20
-
318
-3134
- 1
- 1
- {0}
- 2
- Second item for multiplication
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- true
- B
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- 1
-
149
-3124
338
20
-
318
-3114
- Vector {y} component
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- true
- Y component
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- 1
-
149
-3104
338
20
-
318
-3094
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 24f7bdca-045b-421d-96c9-07956873e094
- true
- B
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- 1
-
149
-3084
338
20
-
318
-3074
- Vector {y} component
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- true
- Y component
- CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- 1
-
149
-3064
338
20
-
318
-3054
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- true
- B
- CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- 1
-
149
-3044
338
20
-
318
-3034
- Number of segments
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- true
- Count
- SEGMENT NUMBER
- true
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- 1
-
149
-3024
338
20
-
318
-3014
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 2edbebac-85ae-4867-9c11-da446ffbc094
- true
- Curve
- CURWE
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 1
-
149
-3004
338
20
-
318
-2994
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 329990e8-083a-43f7-baaa-90fed18836f2
- 2
- Curve
- Curve
- false
- 0
-
724
-2788
50
24
-
757.9498
-2776.794
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
875
-3047
50
24
-
908.2197
-3035.688
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
97
-3026
50
24
-
130.0588
-3014.15
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- Number
- Number
- false
- 0
-
725
-2744
49
24
-
757.9498
-2732.25
- 807b86e3-be8d-4970-92b5-f8cdcb45b06b
- Circle
- Create a circle defined by base plane and radius.
- true
- b62b684a-fb0c-49ce-93d5-ca3d0b737a5a
- Circle
- Circle
-
106
-1408
170
61
-
233
-1377
- Base plane of circle
- 31eb7c3c-31a6-4647-b9ae-f9b69c7b66fa
- Plane
- Plane
- false
- 0
-
108
-1406
113
37
-
164.5
-1387.5
- 1
- 1
- {0}
-
0
0
0.5
1
0
0
0
1
0
- Radius of circle
- 9bc6d8ef-2aa1-4dd2-888c-580e82c8ddd1
- Radius
- Radius
- false
- 0
-
108
-1369
113
20
-
164.5
-1359
- 1
- 1
- {0}
- 0.5
- Resulting circle
- 3af008e7-2631-4fda-baff-8cf92764a364
- Circle
- Circle
- false
- 0
-
245
-1406
29
57
-
259.5
-1377.5
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 378897eb-8264-4973-9a0a-4413d168ad73
- Divide Curve
- Divide Curve
-
824
-1247
123
64
-
878
-1215
- Curve to divide
- 4f7e161f-5641-4e1b-a832-2720623b23e0
- Curve
- Curve
- false
- fc35d6cd-8716-4f59-960b-72321690ea99
- 1
-
826
-1245
40
20
-
846
-1235
- Number of segments
- 8474d950-9802-4f4c-a8ad-de75c5a145df
- Count
- Count
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
826
-1225
40
20
-
846
-1215
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 29b144f3-3376-4784-8245-9176e17dc26b
- Kinks
- Kinks
- false
- 0
-
826
-1205
40
20
-
846
-1195
- 1
- 1
- {0}
- false
- 1
- Division points
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- Points
- Points
- false
- 0
-
890
-1245
55
20
-
917.5
-1235
- 1
- Tangent vectors at division points
- e3b72352-57a2-4fa4-98c6-4d66860142c7
- Tangents
- Tangents
- false
- 0
-
890
-1225
55
20
-
917.5
-1215
- 1
- Parameter values at division points
- aed1a17f-e8f0-482a-bab2-50082f42f967
- Parameters
- Parameters
- false
- 0
-
890
-1205
55
20
-
917.5
-1195
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2521b13e-bd87-411f-8135-7d6754f61478
- Digit Scroller
- O
- false
- 0
- 12
- O
- 11
- 40.0
-
515
-1156
250
20
-
515.7685
-1155.856
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- 57e66279-e327-42eb-b44c-c8b1a662be92
- Line
- Line
-
858
-1307
102
44
-
924
-1285
- Line start point
- 2995a86c-3802-448a-a71d-e01a4da30f75
- Start Point
- Start Point
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
860
-1305
52
20
-
886
-1295
- 1
- 1
- {0}
-
0
0
0.5
- Line end point
- a41e7bc8-b167-4f62-af84-bfa44f655bc3
- End Point
- End Point
- false
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- 1
-
860
-1285
52
20
-
886
-1275
- Line segment
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- Line
- Line
- false
- 0
-
936
-1305
22
40
-
947
-1285
- dcaa922d-5491-4826-9a22-5adefa139f43
- Circle TanTanTan
- Create a circle tangent to three curves.
- true
- 0072186e-adb6-4016-86df-38adab05701d
- Circle TanTanTan
- Circle TanTanTan
-
1222
-1546
98
84
-
1277
-1504
- First curve for tangency constraint
- 276f1585-d2db-414d-9cad-55a4df87c615
- Curve A
- Curve A
- false
- fc35d6cd-8716-4f59-960b-72321690ea99
- 1
-
1224
-1544
41
20
-
1244.5
-1534
- Second curve for tangency constraint
- 53f3852a-22a8-44ca-b5b6-a4aae3a2e682
- Curve B
- Curve B
- false
- 2d532bea-994a-447d-9721-0833770a636f
- 1
-
1224
-1524
41
20
-
1244.5
-1514
- Third curve for tangency constraint
- e555b2be-2f2b-4874-bb3b-a9ff53014d23
- Curve C
- Curve C
- false
- c5d3662a-855b-4143-86ee-307efe2b4d18
- 1
-
1224
-1504
41
20
-
1244.5
-1494
- Circle center point guide
- 31795280-140f-4d03-8b25-bcdecd96d4c3
- Point
- Point
- false
- 9074b0db-ae1d-4390-9ca2-eb6042869d1c
- 1
-
1224
-1484
41
20
-
1244.5
-1474
- Resulting circle
- 322c6252-a086-4536-8a7c-443661ee7fbb
- Circle
- Circle
- false
- 0
-
1289
-1544
29
80
-
1303.5
-1504
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- c4241e23-4937-41ab-8fcb-27b0b8bd3065
- List Item
- List Item
-
1008
-1546
77
64
-
1065
-1514
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 337e3aab-7698-4109-9c0b-6194b465d67a
- List
- List
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
1010
-1544
43
20
-
1031.5
-1534
- Item index
- 5c7057da-6c86-476d-9e81-41eaaa225bbf
- Index
- Index
- false
- 0
-
1010
-1524
43
20
-
1031.5
-1514
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 25f4b635-fc06-4ef5-877a-2666feb114bc
- Wrap
- Wrap
- false
- 0
-
1010
-1504
43
20
-
1031.5
-1494
- 1
- 1
- {0}
- true
- Item at {i'}
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- false
- Item
- i
- false
- 0
-
1077
-1544
6
60
-
1080
-1514
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 6669c0d7-2364-4acd-b8b5-66174500a89e
- List Item
- List Item
-
1065
-1409
77
64
-
1122
-1377
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 983e7bfd-2e9a-4ca7-84de-a16f5aefb645
- List
- List
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
1067
-1407
43
20
-
1088.5
-1397
- Item index
- 0590ebe3-53d4-4066-aad0-0997967ae5ff
- Index
- Index
- false
- 0
-
1067
-1387
43
20
-
1088.5
-1377
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- 877ee11b-0848-4611-9aeb-a835f314a3dc
- Wrap
- Wrap
- false
- 0
-
1067
-1367
43
20
-
1088.5
-1357
- 1
- 1
- {0}
- true
- Item at {i'}
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- false
- Item
- i
- false
- 0
-
1134
-1407
6
60
-
1137
-1377
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- 4f78a7c0-929b-42e3-bbb4-27f8aa0c2b10
- Fast Loop Start
- Fast Loop Start
-
1390
-1436
112
64
-
1449
-1404
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- a5888283-2ca8-4d18-b78f-11bfbe4bba8a
- Iterations
- Iterations
- false
- ff4be73d-571f-43d0-adf1-c59527de9e66
- 1
-
1392
-1434
45
30
-
1414.5
-1419
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- 29631701-bea4-4d59-b002-e57ad0a19213
- Data
- Data
- true
- 322c6252-a086-4536-8a7c-443661ee7fbb
- 1
-
1392
-1404
45
30
-
1414.5
-1389
- Connect to Loop End
- f5bac24f-6342-4278-a8ed-caa1ed396d7d
- >
- >
- false
- 0
-
1461
-1434
39
20
-
1480.5
-1424
- Counter
- 2b4ab7b6-8f40-4705-a551-4e65187356a7
- Counter
- Counter
- false
- 0
-
1461
-1414
39
20
-
1480.5
-1404
- 2
- Data to loop
- da1014fb-db9d-462e-8277-2a111e46636c
- Data
- Data
- false
- 0
-
1461
-1394
39
20
-
1480.5
-1384
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9a8e80e5-0815-4577-a696-b9bff9ec2be0
- Digit Scroller
- V
- false
- 0
- 12
- V
- 11
- 16.0
-
515
-1089
330
20
-
515.7685
-1088.257
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- Cluster
-
5ZcPbBNVHMeva9etHQwQFDRGLox/KiyL04TgH7Zepe2QrWEVDRDxdn3rbuvuzutdyaKBSaZEg4Gh+wNBtkVYEFREN5QgGfFPAkMFE2fEQLcOMIKKLjGgRDbfuz/d7nprl1GiiZe75O73e38/3997v3eZTpYSqwEjDMHLhGGYBT7ZXFAM0MzaMOBDNMsglxeakRtdGaiIWs8NSD/gUZF0xW1XXR4nMtug6cQCfIix/O3Y/N3Bw52v9xzK8PIgTIN1yG+HfmtpBWzFP0kxLwehCl8NB5DbrHQ8UfEVs3w1GUSe2VJvjbFapSAIKAH4Y75GzD/NCcpphhbgLLw8ywFeoEFIbRY9FicpSP1kwo+vFpz7ccaGM5lZThCieJoTlMmjIWKWYrIaqF8DJrcrt7+1dvhuOiC9dPV3Nl/e9UrMEm3YHW1oP91cfLmxo3/nkWj91mh9Q7Tp7d724SJNB6NNHdHtLyrOjj2wrPw+omH17twe361cGNXq2KM0AluTmo2V6W2HvSqt7jwCy8IxyYOLFUHj7mxGc4jrNtfltq2AlFE4hNRQQddE1UqwohxEZjUMIPBKKIjCME0xW30kHwBSyXvg5+bBoaFG+G5ZxbLVw1FUuyR9JZRU05UNWeK6sa2guCfIGlYURpa1u3hW5OIKTxkOh5IyNLhYB0j+LNmmqYXsVtmOGkhTotHienI4uhdu23e23jfXvWPWqsj1qS2EJlImEzRPBQHuIxn5thEsI5A0Iy8atNysqG+DkJtP8ABGJ07ilNyGQDIBuK5wgcWFCh4AnBL5MAjlTvAwIeijgEuk/eqoIvnLXQvW/+bsuosobs3945PEo8ospqmqkSVscgmfz2cvFASeLhMFeeXEhHRATn7JlIO+C55xYrXdBIa5HRi215HupcOshHGmJKgfenuJLI7kyeq1NMOJgrqVmEaZfs5Smg8J8hzxcpZXpk/V4BQMQoGHDAXDma+f+elzDUsOeV5ePMeyARvcr5l5BiG1Vxg3YVNhZonUv7y7SJFkLWVFngJSnMFnzfQJ17BXa5a1FGTb5q+5b2WW7NYEDKo3RmLHELGTkFheIYa1FuqI4c9C72kNMVMSYrNLAUTjHweyYLO9tCiy3fHxorynLg188bMRMkc8MkdSZHWPeCZt2va5u+X8UVPOG4MXU4GsJyGyHzTI0pIFma+C5sdDzPy0uzPiPlf0Xt3qTipy+aoRMSKeGJGUmHfzX/nNbas9G/efKAtO37QoFcR6ExK7oCFmTkLsTmXroOBOBHicYyEhPADJAENO3eHrd5+t8no2BnZ1VYqP9Wk4pXtR7XhK3qSUsoq+b9oxIBJH3rmYzT16HU8FpUsJKV0hJsiUYKpRdi9rAkyTV4CQGBRoJqDs3oZ0rFuW2o+WzHIdPr5l2sSVbd0aOlaZ9JiCyGj+2NjnXxsYuRXpN+++CimGlDyI+jPMgw++WbmBs3y0bN+5DE/VyYu8ZjLZktR4CYNLa0ObBW0JQM5/PEwGRZgHQygRSuuKFOBriAMUXU5TeJClSFTB6qb9fsCoSEyGwPVxk2iMceDtklmO2VTlCpsUVECQQVgx9epbopNOPdrESZfvxLAbULrfHSh0FZHSRhPpjv7XnLctPkW0PXS+68DxdU7D5GiszhRCDAlstdHh2C67RraFZSs2HcTU5no95vHn+jGuoFFlMCvHHw7KcEyVwTwuGdITLJFbKMI8pUNpobHBoHx4x9lyHEoBeLjU5POmoRD3v/XZl/N+rVq2b+cLdZ7by1YbTChOBjPBh1MuBDYXCvGtXgjL/0aIS3ndA9emFTo/vHps4Z+H7cy/JkTtHChERC9E+mhCDL70we6puRbHoTUzdrRzy/cYpUKtEvZbr8TYsviVX77J3v2wq+h999Y6LFBvH3cW1+UQ/elgjIecUQUJQ0HO6AWxjiZIy/ONPVd+qiL2vnvvja9PPdCTdGUkOjXeVEjrfyLGH9I6wPpN6yZPkdhiZetxS4B1p6iCAunvRMGe8d/Hrv8TSRl2/RaVCuyRhNgvEP8A
- Contains a cluster of Grasshopper components
- true
- e3ffa9be-aea1-4c8f-b91a-c84514c8d572
- Cluster
- Cluster
- true
- 4
- 34ba5804-6d3d-4e13-8709-da09a2a07b2f
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- bf133103-cd32-48c3-90cc-64afe677991d
- d0a8f850-dcc3-4c50-bbb5-eec5359d6b89
- f70c175c-8a00-4b79-9f40-0e09285c2a56
- 0ed1ecee-3ba4-4a47-b048-90840067910a
- f1ca30e9-14f7-4441-b3f6-c02df8b90a6e
- ccc3a32b-ed27-4b6b-aa9c-7c844915625b
-
1519
-1247
50
64
-
1544
-1215
- 3
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 1
- d1028c72-ff86-4057-9eb0-36c687a4d98c
- First curve for tangency constraint
- 34ba5804-6d3d-4e13-8709-da09a2a07b2f
- Curve A
- A
- true
- da1014fb-db9d-462e-8277-2a111e46636c
- 1
-
1521
-1245
11
20
-
1526.5
-1235
- Second curve for tangency constraint
- d0a8f850-dcc3-4c50-bbb5-eec5359d6b89
- Curve B
- B
- true
- 2d532bea-994a-447d-9721-0833770a636f
- 1
-
1521
-1225
11
20
-
1526.5
-1215
- Third curve for tangency constraint
- bf133103-cd32-48c3-90cc-64afe677991d
- Curve C
- C
- true
- c5d3662a-855b-4143-86ee-307efe2b4d18
- 1
-
1521
-1205
11
20
-
1526.5
-1195
- Resulting circle
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- Circle
- C
- false
- 0
-
1556
-1245
11
60
-
1561.5
-1215
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 4920cad2-a4aa-4cba-970a-be8f1633bf34
- Merge
- Merge
-
1608
-1276
69
64
-
1653
-1244
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 5616e63d-52bc-4ded-815b-6a91f20accbf
- false
- Data 1
- D1
- true
- da1014fb-db9d-462e-8277-2a111e46636c
- 1
-
1610
-1274
31
20
-
1625.5
-1264
- 2
- Data stream 2
- 7dfb52c7-d7ca-44b0-83e2-0a95f16ab918
- false
- Data 2
- D2
- true
- 5d144016-9a6c-41bd-9582-810eb06c98e6
- 1
-
1610
-1254
31
20
-
1625.5
-1244
- 2
- Data stream 3
- bcc1d318-f60f-45d7-abe2-d04d42c1f9dd
- false
- Data 3
- D3
- true
- 0
-
1610
-1234
31
20
-
1625.5
-1224
- 2
- Result of merge
- 8493b426-1dda-425b-b6d3-9ed1898d1f99
- Result
- R
- false
- 0
-
1665
-1274
10
60
-
1670
-1244
- cc918e80-6e5b-4fb7-9853-33f1d22fc5b4
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- ggRemoveDuplicates
- Make set of curves without duplicates
- true
- be46addd-f598-4c6c-a12b-b846a9734cba
- ggRemoveDuplicates
- ggRemoveDuplicates
-
1677
-1332
147
44
-
1791
-1310
- 1
- Curves
- 69e3d697-da9a-4cfe-a8ad-eeaf1521417e
- Curves
- Curves
- false
- 8493b426-1dda-425b-b6d3-9ed1898d1f99
- 1
-
1679
-1330
100
20
-
1729
-1320
- Deviation Tolerance
- dc41779b-da02-4bce-a778-475ae7c17415
- Tol
- Tol
- false
- 0
-
1679
-1310
100
20
-
1729
-1300
- 1
- 1
- {0}
- 1.52587890625E-05
- Set
- 113f7f03-21ef-4013-a700-0832a33d97b8
- Set
- Set
- false
- 0
-
1803
-1330
19
40
-
1812.5
-1310
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- true
- 7c05896f-662a-40eb-95f6-3569356fae2d
- Fast Loop End
- Fast Loop End
- false
- 0
-
1713
-1436
88
64
-
1762
-1404
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- 2b213108-77fc-421b-8162-edd0bd8d62ac
- <
- <
- false
- f5bac24f-6342-4278-a8ed-caa1ed396d7d
- 1
-
1715
-1434
35
20
-
1732.5
-1424
- Set to true to exit the loop
- 3e82a6f3-a9ab-4f20-aea9-794c8713706b
- Exit
- Exit
- true
- 0
-
1715
-1414
35
20
-
1732.5
-1404
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 8d951d4d-5753-4924-a2fe-0609cdb0b092
- Data
- Data
- false
- 113f7f03-21ef-4013-a700-0832a33d97b8
- 1
-
1715
-1394
35
20
-
1732.5
-1384
- 2
- Data to loop
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- Data
- Data
- false
- 0
-
1774
-1434
25
60
-
1786.5
-1404
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
- Create a polar array of geometry.
- true
- 884a8abd-bece-40a4-9c40-2fbc52783232
- Polar Array
- Polar Array
-
1953
-1361
220
101
-
2109
-1310
- Base geometry
- 4a03bb7c-6332-4cfc-8cb4-83191ef7edee
- Geometry
- Geometry
- true
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1955
-1359
142
20
-
2034
-1349
- Polar array plane
- 2de7a79e-6a2d-4329-aad9-32ff2b3f0421
- Plane
- Plane
- false
- 0
-
1955
-1339
142
37
-
2034
-1320.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Number of elements in array.
- c7b61c12-1b3f-4a63-a0e2-fe7d18f25d42
- Count
- Count
- false
- 89017df6-cc07-4014-b4ca-46093b4ee03c
- 1
-
1955
-1302
142
20
-
2034
-1292
- 1
- 1
- {0}
- 10
- Sweep angle in degrees (counter-clockwise, starting from plane x-axis)
- 06e0fc82-419b-49fb-bdad-c0b0276962a6
- Angle
- Angle
- false
- 9075c566-f68b-451d-bd4d-d3c452889c63
- 1
- true
-
1955
-1282
142
20
-
2034
-1272
- 1
- 1
- {0}
- 6.2831853071795862
- 1
- Arrayed geometry
- a891ada9-7221-4e23-ba30-6e03eb1cc658
- Geometry
- Geometry
- false
- 0
-
2121
-1359
50
48
-
2146
-1334.75
- 1
- Transformation data
- 65c19d13-39cc-4b41-8185-7c0814b2acc2
- Transform
- Transform
- false
- 0
-
2121
-1311
50
49
-
2146
-1286.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 99221558-1d03-4a99-b409-69b169a9610b
- Evaluate Length
- Evaluate Length
-
1039
-1311
147
64
-
1122
-1279
- Curve to evaluate
- 29f9dad1-4402-41bc-ba2f-1eec8727eebe
- Curve
- Curve
- false
- 2d532bea-994a-447d-9721-0833770a636f
- 1
-
1041
-1309
69
20
-
1075.5
-1299
- Length factor for curve evaluation
- a4cfa37b-ee2d-4f5f-86c7-9629ee0fed99
- Length
- Length
- false
- 0
-
1041
-1289
69
20
-
1075.5
-1279
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 68ce42a1-91e4-4e52-a706-aa12f3978a8c
- Normalized
- Normalized
- false
- 0
-
1041
-1269
69
20
-
1075.5
-1259
- 1
- 1
- {0}
- true
- Point at the specified length
- 9074b0db-ae1d-4390-9ca2-eb6042869d1c
- Point
- Point
- false
- 0
-
1134
-1309
50
20
-
1159
-1299
- Tangent vector at the specified length
- 89b279be-c508-48a9-93d6-d81cc175ba13
- Tangent
- Tangent
- false
- 0
-
1134
-1289
50
20
-
1159
-1279
- Curve parameter at the specified length
- b3936063-6ef2-4e7b-bed0-70199a5d8f1f
- Parameter
- Parameter
- false
- 0
-
1134
-1269
50
20
-
1159
-1259
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- d69c337d-1a42-40e1-bb0b-af39e1305a7b
- Rotate
- Rotate
-
461
-1428
240
81
-
637
-1387
- Base geometry
- 0f1cf2f7-8d51-499e-b162-429e8de7b066
- Geometry
- Geometry
- true
- 9942603e-d6cb-45f3-bff2-04036f8fd571
- 1
-
463
-1426
162
20
-
562
-1416
- Rotation angle in degrees
- 756d957c-a3b0-49f4-ba36-2f251c9b8ccb
- -360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
463
-1406
162
20
-
562
-1396
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- b8f66b61-febb-4fef-917c-4e21a1921c98
- Plane
- Plane
- false
- 0
-
463
-1386
162
37
-
562
-1367.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 8dec1f28-7f42-485d-a5b4-945afa25340b
- Geometry
- Geometry
- false
- 0
-
649
-1426
50
38
-
674
-1406.75
- Transformation data
- f7d020da-bf61-466b-8676-e1bddbb3e8f4
- Transform
- Transform
- false
- 0
-
649
-1388
50
39
-
674
-1368.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fc35d6cd-8716-4f59-960b-72321690ea99
- Relay
- false
- 5627c44f-6c19-422a-a2e2-8b22223f4a22
- 1
-
739
-1307
40
16
-
759
-1299
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 644328d5-8117-41f1-b5c9-8ebd3c03dcfd
- Rotate
- Rotate
-
497
-1545
204
81
-
637
-1504
- Base geometry
- c6e09daa-b527-4045-980f-1e2ea94a67c8
- Geometry
- Geometry
- true
- 8dec1f28-7f42-485d-a5b4-945afa25340b
- 1
-
499
-1543
126
20
-
562
-1533
- Rotation angle in radians
- 7c65bdac-2c91-43e4-be39-00dfca78aede
- Angle
- Angle
- false
- 0
- false
-
499
-1523
126
20
-
562
-1513
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- c21b17da-2bde-4388-93b3-03d649e8bb53
- Plane
- Plane
- false
- 0
-
499
-1503
126
37
-
562
-1484.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 5627c44f-6c19-422a-a2e2-8b22223f4a22
- Geometry
- Geometry
- false
- 0
-
649
-1543
50
38
-
674
-1523.75
- Transformation data
- 7aba7d8d-6b9b-4d79-a677-618f9fd36d3f
- Transform
- Transform
- false
- 0
-
649
-1505
50
39
-
674
-1485.25
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- 989aac19-a135-4f2b-ba53-812a3d4664e5
- Subtraction
- Subtraction
-
875
-1091
85
44
-
915
-1069
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- ab9cbe1b-4ee6-45ed-b70d-45fb4e488a24
- A
- A
- true
- 9a8e80e5-0815-4577-a696-b9bff9ec2be0
- 1
-
877
-1089
26
20
-
890
-1079
- Second operand for subtraction
- e33a3f82-fc2b-4673-aeb7-9e7e29e2b704
- B
- B
- true
- 0
-
877
-1069
26
20
-
890
-1059
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of subtraction
- ff4be73d-571f-43d0-adf1-c59527de9e66
- Result
- Result
- false
- 0
-
927
-1089
31
40
-
942.5
-1069
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- Geometry
- Geometry
- false
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- 1
-
276
-1516
50
24
-
301.2639
-1504
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 9942603e-d6cb-45f3-bff2-04036f8fd571
- Geometry
- Geometry
- false
- f093ce94-87cf-40a2-9e26-1e909c7ce917
- 1
-
361
-1488
50
24
-
386.5
-1476
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2
- Geometry
- Geometry
- false
- f8b0679f-d422-4df4-9d8b-dcd720778acf
- 1
-
578
-1746
50
24
-
603.3241
-1734.302
- ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278
- Geometry
- Contains a collection of generic geometry
- true
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
- Geometry
- Geometry
- false
- ab4af088-af36-410a-84c1-ed38bd369a36
- 1
-
808
-1791
50
24
-
841
-1779.18
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 82dda64f-9f77-4cc5-acf4-97d513eb48e9
- Scale
- Scale
-
326
-1786
195
64
-
457
-1754
- Base geometry
- b5636bb4-dcce-4bee-86df-68675fb7a897
- Geometry
- Geometry
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- 1
-
328
-1784
117
20
-
386.5
-1774
- Center of scaling
- 1cb5b388-cddf-4d74-849e-5a2609d80c7c
- Center
- Center
- false
- 0
-
328
-1764
117
20
-
386.5
-1754
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 7827fe30-0ca4-4d8c-8109-35fed0a14791
- Factor
- Factor
- false
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- 1
-
328
-1744
117
20
-
386.5
-1734
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- f093ce94-87cf-40a2-9e26-1e909c7ce917
- Geometry
- Geometry
- false
- 0
-
469
-1784
50
30
-
494
-1769
- Transformation data
- 0a216567-1d23-4ecb-9a5d-5d3dd1c8bf05
- Transform
- Transform
- false
- 0
-
469
-1754
50
30
-
494
-1739
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 13066c57-c507-44ed-9a1b-f7b5009ef564
- Scale
- Scale
-
521
-1976
195
64
-
652
-1944
- Base geometry
- 31c0d7dc-64fc-4803-8f7d-8aca73aba599
- Geometry
- Geometry
- true
- 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2
- 1
-
523
-1974
117
20
-
581.5
-1964
- Center of scaling
- 985f60a8-5be8-4bb2-ae7c-4f9177e293fd
- Center
- Center
- false
- 0
-
523
-1954
117
20
-
581.5
-1944
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- f33cf61e-b79b-4852-9665-d2364dbfab0b
- Factor
- Factor
- false
- 144c7ab7-4a5a-4683-9548-40e231b51e32
- 1
-
523
-1934
117
20
-
581.5
-1924
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ab4af088-af36-410a-84c1-ed38bd369a36
- Geometry
- Geometry
- false
- 0
-
664
-1974
50
30
-
689
-1959
- Transformation data
- 7d246949-f20c-4300-84b1-b79babbee953
- Transform
- Transform
- false
- 0
-
664
-1944
50
30
-
689
-1929
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 3c3caf03-ec61-40fb-bbbc-55e0509921de
- One Over X
- One Over X
-
278
-1854
88
28
-
321
-1840
- Input value
- 62f99155-181e-4eef-aa0b-4fb32549cee3
- Value
- Value
- false
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- 1
-
280
-1852
29
24
-
294.5
-1840
- Output value
- 144c7ab7-4a5a-4683-9548-40e231b51e32
- Result
- Result
- false
- 0
-
333
-1852
31
24
-
348.5
-1840
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 18bb0bab-a683-43af-a280-8b11bc5a275e
- Power
- Power
-
193
-1609
85
44
-
233
-1587
- The item to be raised
- 8d7d79a3-f2e3-4590-b6a2-d315e28041fc
- A
- A
- false
- 0
-
195
-1607
26
20
-
208
-1597
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- a0654839-829a-4b43-93d1-991db9b1c547
- B
- B
- false
- 656133c6-fd17-47fd-8579-dbb9ed1f791d
- 1
-
195
-1587
26
20
-
208
-1577
- A raised to the B power
- ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b
- Result
- Result
- false
- 0
-
245
-1607
31
40
-
260.5
-1587
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 656133c6-fd17-47fd-8579-dbb9ed1f791d
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0000000000
-
-83
-1565
250
20
-
-82.16093
-1564.382
- 0ca9be21-459e-4cd0-9d77-05e72a6a1422
- 8df4d222-85a2-467d-a510-b8dde333d730
- Polygon
- Create a circumscribed polygon with optional round edges.
- true
- 3f29085a-a196-4a1c-a7a6-bc1ecf90f2e6
- Polygon
- Polygon
- true
-
-189
-1448
254
101
-
11
-1397
- Polygon base plane
- true
- e5dbf7e1-f194-42f2-9814-83a39933abff
- Plane
- Plane
- false
- 0
-
-187
-1446
186
37
-
-94
-1427.5
- 1
- 1
- {0}
-
0
0
0.353553390593274
1
0
0
0
1
0
- Radius of polygon (distance from center to edge)
- 8d5636f9-84cb-42d5-9714-45fff3e395f5
- Radius
- Radius
- false
- 0
-
-187
-1409
186
20
-
-94
-1399
- 1
- 1
- {0}
- 0.35355339059327379
- Number of segments
- 5bee3a72-e7d5-4ca3-b906-2563831ee536
- Segments
- Segments
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
-187
-1389
186
20
-
-94
-1379
- 1
- 1
- {0}
- 6
- Polygon corner fillet radius
- e9c0f3b5-55a9-435c-a832-e3bf377ab93e
- Fillet Radius
- Fillet Radius
- false
- 0
-
-187
-1369
186
20
-
-94
-1359
- 1
- 1
- {0}
- 0
- Polygon
- 2a806386-4572-4a01-a8b6-0d1196046ffb
- Polygon
- Polygon
- false
- 0
-
23
-1446
40
48
-
43
-1421.75
- Length of polygon curve
- 8e3e547e-1833-4408-a514-f97520d59953
- Length
- Length
- false
- 0
-
23
-1398
40
49
-
43
-1373.25
- 753aa9da-f7db-4e66-8cff-3c679ff3286f
- a48ac930-c378-48dc-84da-26b2af9d8302
- Gradient Radial Fill
- Applies a Radial Gradient Fill to a Shape
- true
- 3a0370cf-585f-4e6c-bc66-8a382d0b9e32
- true
- Gradient Radial Fill
- Gradient Radial Fill
-
794
-1934
150
64
-
898
-1902
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 20dfc9c4-85cd-4b70-9df4-0c5b6c345f26
- true
- Shape / Geometry
- Shape / Geometry
- false
- fc8f1eb8-4479-4724-ba40-74767b12e719
- 1
-
796
-1932
90
20
-
841
-1922
- 1
- The Gradient Stop colors
- afcdc8be-c408-4142-8e14-6e96c51a9e0e
- true
- Colors
- Colors
- true
- d8805e36-5b7f-4f4b-b077-b18ef5b8d713
- 1
-
796
-1912
90
20
-
841
-1902
- 1
- 1
- {0}
-
131;255;255;255
- 1
- The Gradient Stop parameters
- c1c538de-e368-49f8-9ac4-ae8c712a87cb
- true
- Parameters
- Parameters
- true
- e0a2d02a-9b61-46e5-8b6b-af837c2fd66b
- 1
-
796
-1892
90
20
-
841
-1882
- 1
- 1
- {0}
- 1
- A Graphic Plus Shape Object
- true
- 43cb7391-ffa5-458d-ae72-bcb11223aa25
- true
- Shape
- Shape
- false
- 0
-
910
-1932
32
60
-
926
-1902
- 203a91c3-287a-43b6-a9c5-ebb96240a650
- Colors
- 1
- The Gradient Stop colors
- d9c5622d-0aec-4e65-872b-c180ee35bf2a
- Colors
- Colors
- true
- 0
-
692
-1870
50
24
-
717
-1858.302
- 1
- 2
- {0}
-
255;255;255;255
-
0;0;0;0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Parameters
- 1
- The Gradient Stop parameters
- e0a2d02a-9b61-46e5-8b6b-af837c2fd66b
- Parameters
- Parameters
- true
- 0
-
701
-1806
50
24
-
726
-1794
- 1
- 2
- {0}
- 0
- 1
- fc076e15-dcb0-4d11-bf04-f5c79fc3d200
- a48ac930-c378-48dc-84da-26b2af9d8302
- Drawing Viewer
- Preview a Drawing in canvas.
Note: Right click on the component to save the image or svg
- true
- bc1970ed-dd7b-4d38-b5f8-bab39784ee32
- true
- Drawing Viewer
- Drawing Viewer
-
1398
-2530
300
344
-
1576
-2508
- 1
- A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes).
- c82f62fe-e186-4950-8e91-0e0e7682c7ff
- true
- Drawings / Shapes / Geometry
- Drawings / Shapes / Geometry
- false
- aab4c91b-c8f3-45c3-994e-63fefbac5c2c
- 1
-
1400
-2528
164
20
-
1482
-2518
- The PPI (Pixels Per Inch) resolution for the image which must be greater than or equal to 72.
- 7c1738eb-ecec-4f5d-8379-22745cf7ce2d
- true
- Resolution
- Resolution
- true
- 0
-
1400
-2508
164
20
-
1482
-2498
- 1
- 1
- {0}
- 96
- f3220ce3-0aeb-41b4-bfb9-435838423791
- a48ac930-c378-48dc-84da-26b2af9d8302
- Construct Drawing
- Constructs a Drawing from a list of Shapes
- true
- 897064e6-a16f-4c11-b7c2-13a1d699896f
- true
- Construct Drawing
- Construct Drawing
-
870
-2179
255
155
-
1064
-2101
- 1
- A list of Graphic Plus Shapes, or Curves, Breps, Meshes
- 0923c058-3fad-4c4a-8f2e-b7b2c65b6ebd
- true
- Shapes / Geometry
- Shapes / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
872
-2177
180
20
-
962
-2167
- An optional frame for the drawing. If blank, the shapes bounding box will be used
- 1cfb711f-b655-4302-a7e6-cfe398f1f17b
- true
- Boundary
- Boundary
- true
- 0
-
872
-2157
180
71
-
962
-2121.5
- The width of the output drawing
- 85ece0af-2be9-4a50-a4b8-186b461507d6
- true
- Width
- Width
- true
- 0
-
872
-2086
180
20
-
962
-2076
- 1
- 1
- {0}
- 1024
- The height of the output drawing
- 8ab66ff6-0bd8-4d88-91d3-df69c1fbbd8a
- true
- Height
- Height
- true
- 0
-
872
-2066
180
20
-
962
-2056
- 1
- 1
- {0}
- 1024
- An optional background color
- dba02cce-f527-40ca-b8cb-228225f95208
- true
- Color
- Color
- true
- 0
-
872
-2046
180
20
-
962
-2036
- 1
- 1
- {0}
-
0;255;255;255
- A Graphic Plus Drawing Object
- aab4c91b-c8f3-45c3-994e-63fefbac5c2c
- true
- Drawing
- Drawing
- false
- 0
-
1076
-2177
47
75
-
1099.5
-2139.25
- The bounding rectangle
- a9a49907-4084-4df3-8359-246f26c5f555
- true
- Boundary
- Boundary
- false
- 0
-
1076
-2102
47
76
-
1099.5
-2063.75
- 030b487b-a566-476f-96a4-a0ae2ad283af
- a48ac930-c378-48dc-84da-26b2af9d8302
- Stroke
- Applies Stroke properties to a Shape
- true
- 3b62aca3-eb60-4806-8b07-757b07c9c96b
- true
- Stroke
- Stroke
-
901
-1806
184
104
-
1039
-1754
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 4030d31f-85c6-49ce-abc4-b737abf1d911
- true
- Shape / Geometry
- Shape / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
903
-1804
124
20
-
965
-1794
- The stroke color
- 19e0212d-1ae7-4bd2-89ff-bc8b9973740a
- true
- Color
- Color
- true
- 0
-
903
-1784
124
20
-
965
-1774
- 1
- 1
- {0}
-
0;184;184;184
- The stroke weight
- 3ded5006-c0f5-44f0-b5f8-9c5d0bc75ca5
- true
- Weight
- Weight
- true
- 7d674bcc-ccf9-4209-bf45-8d4272beda48
- 1
-
903
-1764
124
20
-
965
-1754
- 1
- 1
- {0}
- 7
- 1
- The stroke pattern
- f76a8473-e34e-47a7-b281-e3880e37c6fa
- true
- Pattern
- Pattern
- true
- 0
-
903
-1744
124
20
-
965
-1734
- 1
- 1
- {0}
- 0
- The shape to be used at the end of open path
- bc5da7b5-947a-4121-b7ad-9cd69f1189c3
- true
- End Cap
- End Cap
- true
- 0
-
903
-1724
124
20
-
965
-1714
- 1
- 1
- {0}
- 0
- A Graphic Plus Shape Object
- true
- fc8f1eb8-4479-4724-ba40-74767b12e719
- true
- Shape
- Shape
- false
- 0
-
1051
-1804
32
100
-
1067
-1754
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- e44eaf02-09c5-4ca9-b519-0dbba3eea3b4
- Merge
- Merge
-
645
-2110
90
84
-
690
-2068
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8f3957d8-3ba6-4c97-94d4-ed1577265058
- false
- Data 1
- D1
- true
- 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3
- 1
-
647
-2108
31
20
-
662.5
-2098
- 2
- Data stream 2
- 1f0189ac-ed74-4b9c-babe-24ae101168e9
- false
- Data 2
- D2
- true
- da43bc1d-2327-4d3c-872a-8bcde5db8d8e
- 1
-
647
-2088
31
20
-
662.5
-2078
- 2
- Data stream 3
- ae14e5e6-4c3a-4542-b214-577ca4574944
- false
- Data 3
- D3
- true
- 0
-
647
-2068
31
20
-
662.5
-2058
- 2
- Data stream 4
- f001c240-745c-4ea4-83f0-cdc2a8a22020
- false
- Data 4
- D4
- true
- 0
-
647
-2048
31
20
-
662.5
-2038
- 2
- Result of merge
- d8805e36-5b7f-4f4b-b077-b18ef5b8d713
- Result
- Result
- false
- 0
-
702
-2108
31
80
-
717.5
-2068
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3
- Colour Swatch
- false
- 0
-
255;255;255;255
-
501
-2171
60
20
-
501.9104
-2170.41
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- da43bc1d-2327-4d3c-872a-8bcde5db8d8e
- Colour Swatch
- false
- 0
-
255;0;0;0
-
501
-2088
60
20
-
501.9104
-2088
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Pattern
- 1
- The stroke pattern
- 18d21670-01a6-4888-be2a-fb679edf3f46
- Pattern
- Pattern
- true
- 0
-
820
-1746
50
24
-
845
-1734
- 1
- 4
- {0}
- 1
- 0
- 0
- 1
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- 4dfa6f82-2462-4b64-acaa-c432ed80052c
- true
- Distance
- Distance
-
777
-1618
177
44
-
898
-1596
- First point
- 2fed7015-0dc4-4b1e-84d4-65d070986362
- true
- Point A
- Point A
- false
- 0
-
779
-1616
107
20
-
832.5
-1606
- 1
- 1
- {0}
-
0
0
0
- Second point
- 4bf86d6d-e035-49ae-9f28-63df5d3ecace
- true
- Point B
- Point B
- false
- a6f821da-f498-4973-aa14-e2abfa24b1f8
- 1
-
779
-1596
107
20
-
832.5
-1586
- Distance between A and B
- c74cb0c0-6368-4906-bcbd-e749a7d8fb13
- true
- Distance
- Distance
- false
- 0
-
910
-1616
42
40
-
931
-1596
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 5b362e0b-edfe-4632-99a1-dbf27430406c
- true
- Deconstruct Arc
- Deconstruct Arc
-
640
-1660
102
64
-
674
-1628
- Arc or Circle to deconstruct
- b20ba683-a90e-45ff-bcf5-86e4e80dce23
- true
- Arc
- Arc
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
642
-1658
20
60
-
652
-1628
- Base plane of arc or circle
- a6f821da-f498-4973-aa14-e2abfa24b1f8
- true
- Base Plane
- Base Plane
- false
- 0
-
686
-1658
54
20
-
713
-1648
- Radius of arc or circle
- 4654f581-ba2c-4dcc-84fd-f7da8bea95f4
- true
- Radius
- Radius
- false
- 0
-
686
-1638
54
20
-
713
-1628
- Angle domain (in radians) of arc
- 263e2ac0-9c38-4a0e-9a1d-183127a1dd78
- true
- Angle
- Angle
- false
- 0
-
686
-1618
54
20
-
713
-1608
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 8bb268bc-8f14-4022-bf54-801ab622105f
- Multiplication
- Multiplication
-
995
-1618
70
44
-
1020
-1596
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 65450a6e-1778-4887-92ef-a65ecaef22a5
- A
- A
- true
- c74cb0c0-6368-4906-bcbd-e749a7d8fb13
- 1
-
997
-1616
11
20
-
1002.5
-1606
- Second item for multiplication
- 4e86611a-8619-47ee-b8c4-46d5b5e3d8c4
- B
- B
- true
- 74514ff8-3b28-43d1-b7eb-4790ae9f09ec
- 1
-
997
-1596
11
20
-
1002.5
-1586
- Result of multiplication
- 7d674bcc-ccf9-4209-bf45-8d4272beda48
- Result
- Result
- false
- 0
-
1032
-1616
31
40
-
1047.5
-1596
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 74514ff8-3b28-43d1-b7eb-4790ae9f09ec
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 4
- 9.00000000
-
720
-1524
250
20
- 5881d944-0281-4fc8-b203-ce6a55dbf2a6
- a48ac930-c378-48dc-84da-26b2af9d8302
- Solid Fill
- Applies a Solid Fill color to a Shape
- true
- 34005dd2-41a4-4fda-b7bf-5eba48ac6009
- true
- Solid Fill
- Solid Fill
-
1120
-1791
162
44
-
1236
-1769
- A Graphic Plus Shape, or a Curve, Brep, Mesh
- 654b68f0-6f66-4d66-9c80-8d0d25939ce5
- true
- Shape / Geometry
- Shape / Geometry
- false
- 6e6f84a1-1046-4f68-8eb3-817c108edbf5
- 1
-
1122
-1789
102
20
-
1173
-1779
- The solid fill Color
- 20cde91e-968e-4cfc-92f3-af939a769c15
- true
- Color
- Color
- true
- 0
-
1122
-1769
102
20
-
1173
-1759
- 1
- 1
- {0}
-
255;0;244;124
- A Graphic Plus Shape Object
- true
- 6d245542-b1d6-46d1-9114-0a70281c6d1a
- true
- Shape
- Shape
- false
- 0
-
1248
-1789
32
40
-
1264
-1769
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- d9662ff9-2fbf-4ae8-b433-9202141475f0
- Deconstruct Arc
- Deconstruct Arc
-
1793
-1568
102
64
-
1827
-1536
- Arc or Circle to deconstruct
- b4e1df75-be22-4209-984b-0cd081fa8a9f
- Arc
- Arc
- false
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1795
-1566
20
60
-
1805
-1536
- Base plane of arc or circle
- 33fd2724-392f-4888-88fd-21fca634b995
- Base Plane
- Base Plane
- false
- 0
-
1839
-1566
54
20
-
1866
-1556
- Radius of arc or circle
- 64095f1f-4811-4ad5-87c9-045eb81a5761
- Radius
- Radius
- false
- 0
-
1839
-1546
54
20
-
1866
-1536
- Angle domain (in radians) of arc
- 0b2ab5b7-92ce-4159-924f-99571dbf6279
- Angle
- Angle
- false
- 0
-
1839
-1526
54
20
-
1866
-1516
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- d4a24c35-55b6-44ff-8180-c957318d38f6
- Quick Graph
- Quick Graph
- false
- 0
- 707ebd25-7ab6-4436-9c56-7a63ee0bd788
- 1
-
2039
-1718
150
150
-
2039.654
-1717.571
- 0
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- LOG(O)
- true
- 747d14d7-5f5e-4be3-8999-e9ccf3324cc1
- Expression
- Expression
-
1933
-1532
116
28
-
1981
-1518
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 8f10ebc0-218a-4d49-b4cf-e33920e6c383
- Variable O
- O
- true
- 64095f1f-4811-4ad5-87c9-045eb81a5761
- 1
-
1935
-1530
11
24
-
1940.5
-1518
- Result of expression
- 707ebd25-7ab6-4436-9c56-7a63ee0bd788
- Result
- Result
- false
- 0
-
2016
-1530
31
24
-
2031.5
-1518
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 67391784-71ea-4462-8af8-bca850607e0f
- Quick Graph
- Quick Graph
- false
- 0
- 64095f1f-4811-4ad5-87c9-045eb81a5761
- 1
-
1865
-1754
150
150
-
1865.989
-1753.217
- -1
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- EXP(O)
- true
- 253a0641-d5b7-43a6-a7f4-19cb5b78db6e
- Expression
- Expression
-
2020
-1479
116
28
-
2068
-1465
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f7078fd8-1240-4f21-b27c-30f22479c30c
- Variable O
- O
- true
- 707ebd25-7ab6-4436-9c56-7a63ee0bd788
- 1
-
2022
-1477
11
24
-
2027.5
-1465
- Result of expression
- 53f265a0-f6b0-4c0f-ab45-6caf36703cfb
- Result
- Result
- false
- 0
-
2103
-1477
31
24
-
2118.5
-1465
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 9e366565-123d-411f-898a-5174d532ffc1
- Quick Graph
- Quick Graph
- false
- 0
- 53f265a0-f6b0-4c0f-ab45-6caf36703cfb
- 1
-
2189
-1580
150
150
-
2189.648
-1579.582
- 0
- 9445ca40-cc73-4861-a455-146308676855
- Range
- Create a range of numbers.
- true
- 1473aed8-bfaf-4e9e-a626-b6a22bbfc9fc
- Range
- Range
-
2001
-1889
98
44
-
2053
-1867
- Domain of numeric range
- 2ebd0a57-69ac-4ad0-a3d0-64a82f589616
- Domain
- Domain
- false
- 8c9b5ccf-de38-4263-94a8-9085002de7e2
- 1
-
2003
-1887
38
20
-
2022
-1877
- 1
- 1
- {0}
-
0.5
0
- Number of steps
- 95d6218e-b1c9-47e7-8303-7b8260b9167d
- Steps
- Steps
- false
- a629a790-6f5a-4656-95c4-4293b46c7cbf
- 1
-
2003
-1867
38
20
-
2022
-1857
- 1
- 1
- {0}
- 17
- 1
- Range of numbers
- 1c6f357f-2c34-48b5-9c31-6d29175af4bf
- Range
- Range
- false
- 0
-
2065
-1887
32
40
-
2081
-1867
- 807b86e3-be8d-4970-92b5-f8cdcb45b06b
- Circle
- Create a circle defined by base plane and radius.
- true
- eece4c6c-e98f-41ac-a80b-4f191452e75c
- true
- Circle
- Circle
-
2298
-1918
184
61
-
2439
-1887
- Base plane of circle
- 0b1f1369-00b9-4af6-aeef-0e339beae743
- true
- Plane
- Plane
- false
- 0
-
2300
-1916
127
37
-
2371.5
-1897.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Radius of circle
- 7c7070db-9469-45fb-9c2a-6e2b174767b8
- ABS(X)
- true
- Radius
- Radius
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
2300
-1879
127
20
-
2371.5
-1869
- 1
- 1
- {0}
- 0.5
- Resulting circle
- 73b120e5-9aad-439f-aa39-954578812b68
- true
- Circle
- Circle
- false
- 0
-
2451
-1916
29
57
-
2465.5
-1887.5
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- (EXP(EXP(EXP(O))))
- true
- 0cb60706-8b6d-4b80-b89f-c2f0f8f91399
- Expression
- Expression
-
1986
-1766
215
28
-
2084
-1752
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 5bffcddd-b0f5-4c1e-99a6-0245aa569498
- Variable O
- O
- true
- 1c6f357f-2c34-48b5-9c31-6d29175af4bf
- 1
-
1988
-1764
11
24
-
1993.5
-1752
- Result of expression
- b15021d5-865c-476a-9920-3ae0864d99ee
- Result
- Result
- false
- 0
-
2168
-1764
31
24
-
2183.5
-1752
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 61b4c2fa-999e-4cfb-b75d-4afa9e977e1e
- Bounds
- Bounds
-
1943
-1982
110
28
-
2001
-1968
- 1
- Numbers to include in Bounds
- 75cd91ac-6a51-4ac8-a1ec-9bb3cccb4e30
- Numbers
- Numbers
- false
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
1945
-1980
44
24
-
1967
-1968
- Numeric Domain between the lowest and highest numbers in {N}
- d6aff41c-bf73-4f51-a3a6-e3e1042adf7f
- Domain
- Domain
- false
- 0
-
2013
-1980
38
24
-
2032
-1968
- 0d1e2027-f153-460d-84c0-f9af431b08cb
- Maximum
- Return the greater of two items.
- true
- ac9d4c8f-3445-43f5-9c0e-579cea8bb8ae
- Maximum
- Maximum
-
2228
-1754
70
44
-
2253
-1732
- First item for comparison
- a20d1157-f820-47bd-bd84-3b45d8ae0028
- A
- A
- false
- 14f4adbe-1cb9-47b2-bcd0-201c56e2e145
- 1
-
2230
-1752
11
20
-
2235.5
-1742
- Second item for comparison
- 9a15d7e7-271f-4caf-9d5d-3996d2a46d7a
- B
- B
- false
- 019ec982-4c14-423d-8124-eb669b6fdecc
- 1
-
2230
-1732
11
20
-
2235.5
-1722
- The greater of A and B
- c9d07bb5-25d0-481e-bc83-d864d36217e3
- Result
- Result
- false
- 0
-
2265
-1752
31
40
-
2280.5
-1732
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- c602bf6d-1738-4cc0-b622-4883e7907e8e
- Deconstruct Domain
- Deconstruct Domain
-
2107
-2016
108
44
-
2159
-1994
- Base domain
- 361d5091-4891-4fee-8347-bbacc98dd094
- Domain
- Domain
- false
- d6aff41c-bf73-4f51-a3a6-e3e1042adf7f
- 1
-
2109
-2014
38
40
-
2128
-1994
- Start of domain
- 14f4adbe-1cb9-47b2-bcd0-201c56e2e145
- ABS(X)
- Start
- Start
- false
- 0
-
2171
-2014
42
20
-
2184
-2004
- End of domain
- 019ec982-4c14-423d-8124-eb669b6fdecc
- ABS(X)
- End
- End
- false
- 0
-
2171
-1994
42
20
-
2184
-1984
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 0468c1be-6c1f-4573-b42d-cf0f8027c4e6
- Multiplication
- Multiplication
-
2269
-1845
70
44
-
2294
-1823
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- ad0cc104-1dad-4470-b4e3-81ec5cf038ab
- A
- A
- true
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
2271
-1843
11
20
-
2276.5
-1833
- Second item for multiplication
- 8259cd32-cf88-4d21-89d2-8434fb737e39
- B
- B
- true
- e07df8e8-295a-4529-a447-e864247e8ff3
- 1
-
2271
-1823
11
20
-
2276.5
-1813
- Result of multiplication
- a44af545-2078-46ca-b686-c0d960cfb283
- Result
- Result
- false
- 0
-
2306
-1843
31
40
-
2321.5
-1823
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 21068f26-5320-4499-af36-ff2d38af447a
- Division
- Division
-
2323
-1774
85
44
-
2363
-1752
- Item to divide (dividend)
- d6ce0710-4bc8-418d-bd24-37999e4ff2c5
- A
- A
- false
- 0
-
2325
-1772
26
20
-
2338
-1762
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- .5
- Item to divide with (divisor)
- e5f0c439-b8f2-45ae-a0b8-89b2d5feaa4d
- B
- B
- false
- c9d07bb5-25d0-481e-bc83-d864d36217e3
- 1
-
2325
-1752
26
20
-
2338
-1742
- The result of the Division
- e07df8e8-295a-4529-a447-e864247e8ff3
- Result
- Result
- false
- 0
-
2375
-1772
31
40
-
2390.5
-1752
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7f3a5c0f-427e-4293-9a10-5e3437c8c542
- Quick Graph
- Quick Graph
- false
- 0
- 1c6f357f-2c34-48b5-9c31-6d29175af4bf
- 1
-
2363
-1718
150
150
-
2363.224
-1718
- -1
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- cf6dbb3d-3342-4cdb-b9ef-448dce9f06f7
- Remap Numbers
- Remap Numbers
-
2114
-1972
147
64
-
2207
-1940
- Value to remap
- 5c74c48d-0ee8-4255-b3c0-05b192145913
- Value
- Value
- false
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
2116
-1970
79
20
-
2155.5
-1960
- Source domain
- 4027e9d7-e190-4a3a-9a60-5847557011e2
- Source
- Source
- false
- eb997057-5684-422c-b087-f6efe7811971
- 1
-
2116
-1950
79
20
-
2155.5
-1940
- 1
- 1
- {0}
-
0
1
- Target domain
- 46fd67c1-4f40-40f8-95a3-196cdc16700d
- Target
- Target
- false
- 0
-
2116
-1930
79
20
-
2155.5
-1920
- 1
- 1
- {0}
-
0
0.5
- Remapped number
- 9fdbae57-81d4-471d-a8dc-43f40e00bf27
- Mapped
- Mapped
- false
- 0
-
2219
-1970
40
30
-
2239
-1955
- Remapped and clipped number
- 9bd5dbe0-b389-458e-8503-8197211efff6
- Clipped
- Clipped
- false
- 0
-
2219
-1940
40
30
-
2239
-1925
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 0c85e0a9-a4af-46cc-9140-5d559bfb67d6
- Bounds
- Bounds
-
1995
-1954
110
28
-
2053
-1940
- 1
- Numbers to include in Bounds
- aa7fd7b1-93de-40eb-8e5b-df496864d5c2
- Numbers
- Numbers
- false
- b15021d5-865c-476a-9920-3ae0864d99ee
- 1
-
1997
-1952
44
24
-
2019
-1940
- Numeric Domain between the lowest and highest numbers in {N}
- eb997057-5684-422c-b087-f6efe7811971
- Domain
- Domain
- false
- 0
-
2065
-1952
38
24
-
2084
-1940
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- 74e82950-7e5d-4a91-869f-3a3292fb1a58
- Construct Domain
- Construct Domain
-
1775
-1889
143
44
-
1866
-1867
- Start value of numeric domain
- a2bfe79f-a461-4f02-b943-8d6cbc0ade86
- Domain start
- Domain start
- false
- 1f48380e-78c1-4878-9030-ae38073532b5
- 1
-
1777
-1887
77
20
-
1815.5
-1877
- 1
- 1
- {0}
- 0.5
- End value of numeric domain
- 73d17688-07c3-464b-93bf-86858c819223
- Domain end
- Domain end
- false
- 0
-
1777
-1867
77
20
-
1815.5
-1857
- 1
- 1
- {0}
- 0
- Numeric domain between {A} and {B}
- 8c9b5ccf-de38-4263-94a8-9085002de7e2
- Domain
- Domain
- false
- 0
-
1878
-1887
38
40
-
1897
-1867
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a629a790-6f5a-4656-95c4-4293b46c7cbf
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 3
- 16.000000000
-
1606
-1946
250
20
-
1606.266
-1946
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1f48380e-78c1-4878-9030-ae38073532b5
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.6000000000
-
1469
-1865
250
20
-
1469.458
-1865
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 7ebe48e6-e6b9-40be-bc7f-bf92e3c63165
- Bounds
- Bounds
-
1712
-1675
110
28
-
1770
-1661
- 1
- Numbers to include in Bounds
- e7573b17-b513-41d1-99ad-a71466dc462d
- Numbers
- Numbers
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1714
-1673
44
24
-
1736
-1661
- Numeric Domain between the lowest and highest numbers in {N}
- a81a41d6-4a5f-4635-a6b8-b2d1a58386e8
- Domain
- Domain
- false
- 0
-
1782
-1673
38
24
-
1801
-1661
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 9a7aadec-810b-4797-a20d-1799a2ee1ae1
- Deconstruct Domain
- Deconstruct Domain
-
1803
-1810
92
44
-
1855
-1788
- Base domain
- e09e1b17-8400-47ee-a22d-67c8441fa0bb
- Domain
- Domain
- false
- a81a41d6-4a5f-4635-a6b8-b2d1a58386e8
- 1
-
1805
-1808
38
40
-
1824
-1788
- Start of domain
- 422dbaec-8cf2-4118-b04e-712f5f84b1b0
- Start
- Start
- false
- 0
-
1867
-1808
26
20
-
1880
-1798
- End of domain
- 2837c5c8-3c45-4aff-a2bc-2397962e8edc
- End
- End
- false
- 0
-
1867
-1788
26
20
-
1880
-1778
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- cc5c2207-dafd-45fa-99bb-c1a2798738b8
- Distance
- Distance
-
1620
-1590
108
44
-
1672
-1568
- First point
- bd1ab6ad-1b37-4029-972d-caccbfa4e471
- Point A
- Point A
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
1622
-1588
38
20
-
1641
-1578
- 1
- 1
- {0}
-
0
0
0
- Second point
- 29f6e553-cc5e-4974-a8f9-32b7336334ee
- Point B
- Point B
- false
- af44461f-37b2-4fe2-a269-d899c9e7147f
- 1
-
1622
-1568
38
20
-
1641
-1558
- Distance between A and B
- c5c85527-549f-4b6d-b3bb-6729f376c233
- Distance
- Distance
- false
- 0
-
1684
-1588
42
40
-
1705
-1568
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 84f1803d-f26d-4700-9625-3b1c2cc0cbb8
- Quick Graph
- Quick Graph
- false
- 0
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1606
-1825
150
150
-
1606.266
-1825
- -1
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 308e3b77-bc71-4307-8714-814d8553e7cb
- Evaluate Length
- Evaluate Length
-
1364
-1570
149
64
-
1449
-1538
- Curve to evaluate
- 47b79dcd-8f66-4260-bfeb-381930200e54
- Curve
- Curve
- false
- 5524857c-89f8-4b2c-ac53-ab50c0128d05
- 1
-
1366
-1568
71
20
-
1401.5
-1558
- Length factor for curve evaluation
- b9db78d6-73db-44dd-a502-c5612355b5e3
- Length
- Length
- false
- 0
-
1366
-1548
71
20
-
1401.5
-1538
- 1
- 1
- {0}
- 0.5
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 4e892d86-690d-4892-a530-ed7db9f90c65
- Normalized
- Normalized
- false
- 0
-
1366
-1528
71
20
-
1401.5
-1518
- 1
- 1
- {0}
- true
- Point at the specified length
- af44461f-37b2-4fe2-a269-d899c9e7147f
- Point
- Point
- false
- 0
-
1461
-1568
50
20
-
1486
-1558
- Tangent vector at the specified length
- ecd45847-bc92-411f-aa2d-9854838399b7
- Tangent
- Tangent
- false
- 0
-
1461
-1548
50
20
-
1486
-1538
- Curve parameter at the specified length
- 80e640bc-f271-4c3b-85c1-a54f1e1d373e
- Parameter
- Parameter
- false
- 0
-
1461
-1528
50
20
-
1486
-1518
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b07a33ca-fece-410a-a6ad-2875592745f2
- Quick Graph
- Quick Graph
- false
- 0
- 9fdbae57-81d4-471d-a8dc-43f40e00bf27
- 1
-
2310
-2076
150
150
-
2310.112
-2075.808
- -1
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 544bd1fa-0641-4bca-968b-578245bc09d1
- Point
- Point
- false
- 0
-
622
-983
143
24
-
753.1235
-971.6412
- 1
- 1
- {0}
-
0
0
0.353553390593274
- 22990b1f-9be6-477c-ad89-f775cd347105
- Flip Curve
- Flip a curve using an optional guide curve.
- true
- 683602b5-884d-4565-92ab-09638f726a72
- Flip Curve
- Flip Curve
-
824
-946
88
44
-
868
-924
- Curve to flip
- 46c35632-c4a0-4b0e-bcc3-e09c135bb7a5
- Curve
- Curve
- false
- 1ddd4f97-44f6-443b-bbfd-13253f781c25
- 1
-
826
-944
30
20
-
841
-934
- Optional guide curve
- 46a2bb1b-09c8-4ae5-8adf-9416a24cef17
- Guide
- Guide
- true
- 0
-
826
-924
30
20
-
841
-914
- Flipped curve
- b4524b06-8e05-4cd1-8531-0d36de55dd62
- Curve
- Curve
- false
- 0
-
880
-944
30
20
-
895
-934
- Flip action
- 70c9ed20-56d6-472b-9557-55dbe086e3d9
- Flag
- Flag
- false
- 0
-
880
-924
30
20
-
895
-914
- bb59bffc-f54c-4682-9778-f6c3fe74fce3
- Arc
- Create an arc defined by base plane, radius and angle domain.
- true
- b47afabf-616a-4673-87df-c5201ad0b10c
- Arc
- Arc
-
983
-983
187
81
-
1122
-942
- Base plane of arc
- 10981c88-7313-411c-8fa1-ec2c25d4bdec
- Plane
- Plane
- false
- 0
-
985
-981
125
37
-
1047.5
-962.5
- 1
- 1
- {0}
-
0
0
0
0
0
1
0
1
0
- Radius of arc
- 506c805d-9bf0-4e36-bd85-e2d702fcd23f
- Radius
- Radius
- false
- 178a536c-e731-4a9e-8e69-148d3c49cc3d
- 1
-
985
-944
125
20
-
1047.5
-934
- 1
- 1
- {0}
- 1
- Angle domain in radians
- bea25ebd-cb7b-480b-90df-78b21a71488d
- Angle
- Angle
- false
- 0
-
985
-924
125
20
-
1047.5
-914
- 1
- 1
- {0}
-
0
0.785398163397448
- Resulting arc
- 1a270909-0d55-4cb8-a28f-6c22882dba60
- Arc
- Arc
- false
- 0
-
1134
-981
34
38
-
1151
-961.75
- Arc length
- 3b4165c2-3ca9-4fbb-949a-615a11390a22
- Length
- Length
- false
- 0
-
1134
-943
34
39
-
1151
-923.25
- 93b8e93d-f932-402c-b435-84be04d87666
- Distance
- Compute Euclidean distance between two point coordinates.
- true
- b81203a1-bfb1-49ea-bc45-1e024c16a07d
- Distance
- Distance
-
993
-1045
177
44
-
1114
-1023
- First point
- 0970bb1f-52db-4ff9-b1ce-84d21e9f90d0
- Point A
- Point A
- false
- 0
-
995
-1043
107
20
-
1048.5
-1033
- 1
- 1
- {0}
-
0
0
0
- Second point
- c10c7986-4c70-4ac1-bdc8-dde002ff3277
- Point B
- Point B
- false
- 0e1e9828-40bc-487b-b3b3-22134e1758eb
- 1
-
995
-1023
107
20
-
1048.5
-1013
- Distance between A and B
- 2fa76128-f184-445b-8f9d-5426873e1f20
- Distance
- Distance
- false
- 0
-
1126
-1043
42
40
-
1147
-1023
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 4cf11d43-7186-4a7c-80ac-b5047dbd1ec5
- Rotate
- Rotate
-
1226
-1064
240
81
-
1402
-1023
- Base geometry
- a280bb8c-a1b9-421c-a567-c9e1c7cfb01a
- Geometry
- Geometry
- true
- 1a270909-0d55-4cb8-a28f-6c22882dba60
- 1
-
1228
-1062
162
20
-
1327
-1052
- Rotation angle in degrees
- 00fad922-87d1-45bb-a357-79de2481fbf7
- -360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
1228
-1042
162
20
-
1327
-1032
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 0013e6fb-145e-4481-b32c-b1630363bcb2
- Plane
- Plane
- false
- 0
-
1228
-1022
162
37
-
1327
-1003.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 173bee08-a574-4b98-ad6f-a74fb75e29ab
- Geometry
- Geometry
- false
- 0
-
1414
-1062
50
38
-
1439
-1042.75
- Transformation data
- 84299d7b-6eea-4d82-ae16-9ada37bc8233
- Transform
- Transform
- false
- 0
-
1414
-1024
50
39
-
1439
-1004.25
- fca5ad7e-ecac-401d-a357-edda0a251cbc
- Polar Array
- Create a polar array of geometry.
- true
- 914fb575-3406-4bd7-b383-27e9d3cbd381
- Polar Array
- Polar Array
-
1640
-1146
204
101
-
1780
-1095
- Base geometry
- 87b6fe2a-f8ad-4fed-8b44-6338d67e4e1d
- Geometry
- Geometry
- true
- 173bee08-a574-4b98-ad6f-a74fb75e29ab
- 1
-
1642
-1144
126
20
-
1705
-1134
- Polar array plane
- 07f9a682-2bf0-481c-b11c-a4046ffcdff1
- Plane
- Plane
- false
- 0
-
1642
-1124
126
37
-
1705
-1105.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Number of elements in array.
- a9ae4b62-a012-45a1-b9f2-c14834fb3058
- Count
- Count
- false
- 018e8310-9673-4fda-b611-23741855bd4d
- 1
-
1642
-1087
126
20
-
1705
-1077
- 1
- 1
- {0}
- 10
- Sweep angle in radians (counter-clockwise, starting from plane x-axis)
- c5cbafdd-8e72-4f4b-b051-adf4543878f1
- Angle
- Angle
- false
- 0
- false
-
1642
-1067
126
20
-
1705
-1057
- 1
- 1
- {0}
- 6.2831853071795862
- 1
- Arrayed geometry
- 06f99071-75d5-444a-a5c6-257606d32036
- Geometry
- Geometry
- false
- 0
-
1792
-1144
50
48
-
1817
-1119.75
- 1
- Transformation data
- a74e89da-6bc8-4796-847f-883b5dc3d628
- Transform
- Transform
- false
- 0
-
1792
-1096
50
49
-
1817
-1071.25
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2913ccef-ba4c-4599-849a-e59c6ea4747b
- List Item
- List Item
-
901
-1504
77
64
-
958
-1472
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 1881d584-55ae-4ebf-ac34-ed4f8d94dc6e
- List
- List
- false
- 06f99071-75d5-444a-a5c6-257606d32036
- 1
-
903
-1502
43
20
-
924.5
-1492
- Item index
- 958073b4-4058-4236-87f0-e0c872a77cdc
- Index
- Index
- false
- 0
-
903
-1482
43
20
-
924.5
-1472
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- aa241db4-3398-4c75-a241-3b2a6126f055
- Wrap
- Wrap
- false
- 0
-
903
-1462
43
20
-
924.5
-1452
- 1
- 1
- {0}
- true
- Item at {i'}
- a2b662da-3ac8-4ab9-9ac3-29783a411ee0
- false
- Item
- i
- false
- 0
-
970
-1502
6
60
-
973
-1472
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2494b21e-8efd-4122-9539-8fe533d35f33
- List Item
- List Item
-
920
-1409
77
64
-
977
-1377
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- fe911aee-9240-4e93-a031-cbff82486142
- List
- List
- false
- 06f99071-75d5-444a-a5c6-257606d32036
- 1
-
922
-1407
43
20
-
943.5
-1397
- Item index
- 19639006-206d-4fee-ab62-9fc2062f99e1
- Index
- Index
- false
- 0
-
922
-1387
43
20
-
943.5
-1377
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- fec2aeff-bf78-4006-8095-9d8a60be184e
- Wrap
- Wrap
- false
- 0
-
922
-1367
43
20
-
943.5
-1357
- 1
- 1
- {0}
- true
- Item at {i'}
- de721831-12fd-4f67-87f1-0a90aa984595
- false
- Item
- i
- false
- 0
-
989
-1407
6
60
-
992
-1377
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- e93f5b2d-b4ba-4a42-8528-196d3b6e66d0
- List Item
- List Item
-
835
-902
77
64
-
892
-870
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- f0802006-d800-4dde-a213-ee73d5a3310c
- List
- List
- false
- 2fa76128-f184-445b-8f9d-5426873e1f20
- 1
-
837
-900
43
20
-
858.5
-890
- Item index
- 0418bf9f-a9b0-4a2a-b813-f5b4981fe6b4
- Index
- Index
- false
- 0
-
837
-880
43
20
-
858.5
-870
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 28ccd62f-5bf2-485d-a4bb-aef5e4998a4d
- Wrap
- Wrap
- false
- 0
-
837
-860
43
20
-
858.5
-850
- 1
- 1
- {0}
- true
- Item at {i'}
- 178a536c-e731-4a9e-8e69-148d3c49cc3d
- false
- Item
- i
- false
- 0
-
904
-900
6
60
-
907
-870
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2d532bea-994a-447d-9721-0833770a636f
- Relay
- false
- 56092d25-7aab-45c0-be2a-a3c185b8dcd1
- 1
-
1120
-1536
40
16
-
1140
-1528
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c5d3662a-855b-4143-86ee-307efe2b4d18
- Relay
- false
- 82ffea96-d981-4d57-8277-d6c12adbfabb
- 1
-
1216
-1409
40
16
-
1236
-1401
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 018e8310-9673-4fda-b611-23741855bd4d
- Relay
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1479
-1103
40
16
-
1499
-1095
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 23f21373-05c6-4320-81c7-cd300072a715
- Number
- Number
- false
- 0
-
1892
-1096
50
24
-
1927.99
-1084.55
- 1
- 1
- {0}
- 360
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- e7598ddc-7867-46c8-afe5-946382f8a6a7
- Division
- Division
-
1872
-1230
70
44
-
1897
-1208
- Item to divide (dividend)
- 53af4f37-e059-4f18-9944-7656f3d8005b
- A
- A
- false
- 45881c64-e2f3-4464-99c8-5529e6c361e0
- 1
-
1874
-1228
11
20
-
1879.5
-1218
- Item to divide with (divisor)
- 5fed16f6-067e-4f06-8f3f-ccc53825d8a5
- B
- B
- false
- 42712f8c-0c4d-44eb-8f11-8ba444be59f1
- 1
-
1874
-1208
11
20
-
1879.5
-1198
- The result of the Division
- 89017df6-cc07-4014-b4ca-46093b4ee03c
- Result
- Result
- false
- 0
-
1909
-1228
31
40
-
1924.5
-1208
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 241297d5-618c-41d0-ba75-3f9b8193d48c
- Division
- Division
-
1995
-1117
70
44
-
2020
-1095
- Item to divide (dividend)
- 27501195-a5f9-4f91-8001-d81354bafac2
- A
- A
- false
- 23f21373-05c6-4320-81c7-cd300072a715
- 1
-
1997
-1115
11
20
-
2002.5
-1105
- Item to divide with (divisor)
- 8e603d55-6bef-4568-ab62-a7477370a085
- B
- B
- false
- 42712f8c-0c4d-44eb-8f11-8ba444be59f1
- 1
-
1997
-1095
11
20
-
2002.5
-1085
- The result of the Division
- 9075c566-f68b-451d-bd4d-d3c452889c63
- Result
- Result
- false
- 0
-
2032
-1115
31
40
-
2047.5
-1095
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 42712f8c-0c4d-44eb-8f11-8ba444be59f1
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 4.00000000000
-
1733
-1032
250
20
-
1733.832
-1031.13
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 3ce76e72-1394-4a6b-9b96-c7de19fdbabf
- Rotate
- Rotate
-
1691
-1004
204
81
-
1831
-963
- Base geometry
- 962fa6d9-4389-422a-9bc1-43c28d024173
- Geometry
- Geometry
- true
- 0
-
1693
-1002
126
20
-
1756
-992
- Rotation angle in radians
- 272c9161-9419-4af3-b655-596b5f434c2d
- Angle
- Angle
- false
- 0
- false
-
1693
-982
126
20
-
1756
-972
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 0aa3b363-731f-40f3-906e-eaa5fbd63a95
- Plane
- Plane
- false
- 0
-
1693
-962
126
37
-
1756
-943.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 7ec807c1-40eb-4e78-b7d9-fb464227036f
- Geometry
- Geometry
- false
- 0
-
1843
-1002
50
38
-
1868
-982.75
- Transformation data
- a6da92fe-faab-449b-9edb-78bfacebcafa
- Transform
- Transform
- false
- 0
-
1843
-964
50
39
-
1868
-944.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 45881c64-e2f3-4464-99c8-5529e6c361e0
- Relay
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1867
-1291
40
16
-
1887
-1283
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 35ef0b97-0c82-4a52-adf9-820c1b87b00e
- Rotate
- Rotate
-
2173
-1229
240
81
-
2349
-1188
- Base geometry
- cea44bd1-fa93-4a03-b8a6-4f0a6cabc256
- Geometry
- Geometry
- true
- 8bc71174-26e4-4ccf-a70e-69d5fb015c4d
- 1
-
2175
-1227
162
20
-
2274
-1217
- Rotation angle in degrees
- cf0a3db4-dced-4bbe-9037-5f046fd75848
- 360/X/2
- Angle
- Angle
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
- true
-
2175
-1207
162
20
-
2274
-1197
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 915b7ff2-4407-4a47-a629-5fd838f8ff2f
- Plane
- Plane
- false
- 0
-
2175
-1187
162
37
-
2274
-1168.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- abf795af-c9f6-4670-b254-6dbeb8fe7fa3
- Geometry
- Geometry
- false
- 0
-
2361
-1227
50
38
-
2386
-1207.75
- Transformation data
- 6363b01d-41cb-468e-9cbb-35b5b64013f3
- Transform
- Transform
- false
- 0
-
2361
-1189
50
39
-
2386
-1169.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f8b0679f-d422-4df4-9d8b-dcd720778acf
- Relay
- false
- 905999a1-50d8-405b-91ef-f8a8c1ee24c6
- 1
-
2437
-1318
40
16
-
2457
-1310
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8bc71174-26e4-4ccf-a70e-69d5fb015c4d
- Relay
- false
- a891ada9-7221-4e23-ba30-6e03eb1cc658
- 1
-
2186
-1341
40
16
-
2206
-1333
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 2ae6f261-60f3-4bdc-9a9f-b2ba7db5cd10
- Rotate
- Rotate
-
2493
-1136
204
81
-
2633
-1095
- Base geometry
- f7f22279-4ef6-42cd-b4e6-e139d7a8bc3a
- Geometry
- Geometry
- true
- abf795af-c9f6-4670-b254-6dbeb8fe7fa3
- 1
-
2495
-1134
126
20
-
2558
-1124
- Rotation angle in radians
- 73d59b83-d567-41c8-8181-3f7aa7e0e147
- Angle
- Angle
- false
- 0
- false
-
2495
-1114
126
20
-
2558
-1104
- 1
- 1
- {0}
- -0.7853981634
- Rotation plane
- c9b46e6e-b994-4260-8888-cd83da81a207
- Plane
- Plane
- false
- 0
-
2495
-1094
126
37
-
2558
-1075.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 905999a1-50d8-405b-91ef-f8a8c1ee24c6
- Geometry
- Geometry
- false
- 0
-
2645
-1134
50
38
-
2670
-1114.75
- Transformation data
- f0911430-744b-48a4-8f74-c93e8d4be448
- Transform
- Transform
- false
- 0
-
2645
-1096
50
39
-
2670
-1076.25
- 0ca9be21-459e-4cd0-9d77-05e72a6a1422
- 8df4d222-85a2-467d-a510-b8dde333d730
- Polygon
- Create a circumscribed polygon with optional round edges.
- true
- f0b54d93-c203-4d39-9ab5-def4ec0b18cc
- Polygon
- Polygon
- true
-
1424
-1796
141
84
-
1511
-1754
- Polygon base plane
- true
- 8513ad55-163b-47a9-aaaf-15d5f4a9f4f1
- Plane
- Plane
- false
- d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb
- 1
-
1426
-1794
73
20
-
1462.5
-1784
- 1
- 1
- {0}
-
0
0
0.353553390593274
1
0
0
0
1
0
- Radius of polygon (distance from center to edge)
- a10f02cf-b9c3-4c42-927f-159ea8922817
- Radius
- Radius
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1426
-1774
73
20
-
1462.5
-1764
- 1
- 1
- {0}
- 0.35355339059327379
- Number of segments
- 5b502e04-97a5-42f2-9642-4c1af3373141
- Segments
- Segments
- false
- 2521b13e-bd87-411f-8135-7d6754f61478
- 1
-
1426
-1754
73
20
-
1462.5
-1744
- 1
- 1
- {0}
- 6
- Polygon corner fillet radius
- ebe40824-f1da-4e63-a2e2-414abc12ca86
- Fillet Radius
- Fillet Radius
- false
- 0
-
1426
-1734
73
20
-
1462.5
-1724
- 1
- 1
- {0}
- 0
- Polygon
- 247135b9-20be-4bf6-aab0-135cfd64b897
- Polygon
- Polygon
- false
- 0
-
1523
-1794
40
40
-
1543
-1774
- Length of polygon curve
- d922d5c2-3926-4cda-8212-764bfba52f59
- Length
- Length
- false
- 0
-
1523
-1754
40
40
-
1543
-1734
- 429cbba9-55ee-4e84-98ea-876c44db879a
- Sub Curve
- Construct a curve from the sub-domain of a base curve.
- true
- b5f0a82e-6944-46f8-ba93-8e5c4d33a43a
- Sub Curve
- Sub Curve
-
1365
-1926
128
44
-
1433
-1904
- Base curve
- 2daa4183-8f9d-4552-bc5c-ed4515d70802
- Base curve
- Base curve
- false
- 6bcbb743-b730-408b-85c2-b7e375d97a00
- 1
-
1367
-1924
54
20
-
1394
-1914
- Sub-domain to extract
- 48fbec1d-ef78-4e13-8eb3-ff0b46dc4fbf
- Domain
- Domain
- false
- 5cac713b-579a-47a8-9677-cce98943631b
- 1
-
1367
-1904
54
20
-
1394
-1894
- Resulting sub curve
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
- Curve
- Curve
- false
- 0
-
1445
-1924
46
40
-
1460
-1904
- ccfd6ba8-ecb1-44df-a47e-08126a653c51
- Curve Domain
- Measure and set the curve domain
- true
- 7c6c067b-326e-45fb-ace5-d386ede0cf98
- Curve Domain
- Curve Domain
-
1142
-1981
146
44
-
1236
-1959
- Curve to measure/modify
- a8460880-28d1-4cec-8342-d959b358481a
- Curve
- Curve
- false
- 0b4a4482-f1b2-42cb-bd44-98a3294810aa
- 1
-
1144
-1979
80
20
-
1184
-1969
- Optional domain, if omitted the curve will not be modified.
- 876e03a4-1c26-43b5-9c9f-c7f10adf3ba4
- Domain
- Domain
- true
- 0
-
1144
-1959
80
20
-
1184
-1949
- Curve with new domain.
- 6bcbb743-b730-408b-85c2-b7e375d97a00
- Curve
- Curve
- false
- 0
-
1248
-1979
38
20
-
1267
-1969
- Domain of original curve.
- e7d3f477-8f2c-4d47-af03-ceed85112c52
- Domain
- Domain
- false
- 0
-
1248
-1959
38
20
-
1267
-1949
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 61a50e74-7d41-4f1e-8f80-1131da213878
- Merge
- Merge
-
1198
-1897
90
64
-
1243
-1865
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 2d7d2971-e7b2-477a-8a80-d9e53102dec6
- false
- Data 1
- D1
- true
- d7ac4e75-4cde-4200-805f-6f7f962b3fc0
- 1
-
1200
-1895
31
20
-
1215.5
-1885
- 2
- Data stream 2
- 373ce0a9-ebd2-4eaa-94e8-2a87a26866c2
- false
- Data 2
- D2
- true
- 247135b9-20be-4bf6-aab0-135cfd64b897
- 1
-
1200
-1875
31
20
-
1215.5
-1865
- 2
- Data stream 3
- 95f0212d-402c-496c-a567-c2887ab4c2d1
- false
- Data 3
- D3
- true
- 0
-
1200
-1855
31
20
-
1215.5
-1845
- 2
- Result of merge
- 0b4a4482-f1b2-42cb-bd44-98a3294810aa
- Result
- Result
- false
- 0
-
1255
-1895
31
60
-
1270.5
-1865
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 09c9b250-781c-405d-a49b-17c9aa572e0f
- Deconstruct Domain
- Deconstruct Domain
-
1142
-2039
92
44
-
1194
-2017
- Base domain
- f7f99898-634a-43b0-a5aa-f7885d440f28
- Domain
- Domain
- false
- e7d3f477-8f2c-4d47-af03-ceed85112c52
- 1
-
1144
-2037
38
40
-
1163
-2017
- Start of domain
- c3a5f4c3-5eed-40b9-9879-b3f355ee2914
- Start
- Start
- false
- 0
-
1206
-2037
26
20
-
1219
-2027
- End of domain
- 058d02ab-4c3a-4848-8cf9-96dde9f41d5c
- End
- End
- false
- 0
-
1206
-2017
26
20
-
1219
-2007
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- 3f619d74-a5e4-4584-ad02-8a67ccf6e117
- Construct Domain
- Construct Domain
-
1309
-2019
144
44
-
1401
-1997
- Start value of numeric domain
- 7366d688-b1e8-4aaa-8714-7626c8dd1d4f
- X*1/8
- Domain start
- Domain start
- false
- 058d02ab-4c3a-4848-8cf9-96dde9f41d5c
- 1
-
1311
-2017
78
20
-
1358
-2007
- 1
- 1
- {0}
- 0
- End value of numeric domain
- 3736068e-c4da-4a99-a42b-16b65162fd91
- X*3/8
- Domain end
- Domain end
- false
- 058d02ab-4c3a-4848-8cf9-96dde9f41d5c
- 1
-
1311
-1997
78
20
-
1358
-1987
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- 5cac713b-579a-47a8-9677-cce98943631b
- Domain
- Domain
- false
- 0
-
1413
-2017
38
40
-
1432
-1997
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- cc994066-92f7-4058-b653-3de247d4ee88
- List Item
- List Item
-
1309
-2160
77
64
-
1366
-2128
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- f29b10b7-2978-406f-802d-2e7b681878bd
- List
- List
- false
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
1311
-2158
43
20
-
1332.5
-2148
- Item index
- 925447eb-232e-49d1-a8c2-b575beb31012
- Index
- Index
- false
- 0
-
1311
-2138
43
20
-
1332.5
-2128
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- b2f296d0-7766-471b-abd2-7cf75bcd400b
- Wrap
- Wrap
- false
- 0
-
1311
-2118
43
20
-
1332.5
-2108
- 1
- 1
- {0}
- true
- Item at {i'}
- 30798710-3845-4562-83f3-8991b638e622
- false
- Item
- i
- false
- 0
-
1378
-2158
6
60
-
1381
-2128
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- b791a4ed-5cc2-4bec-ac9b-80b0d6b698a2
- List Item
- List Item
-
1343
-2096
77
64
-
1400
-2064
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- a1248fa1-b3c2-45c2-8bb2-24a9cd9bdfd8
- List
- List
- false
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
1345
-2094
43
20
-
1366.5
-2084
- Item index
- 7957921b-c465-4da1-a3a9-a32354de93a4
- Index
- Index
- false
- 0
-
1345
-2074
43
20
-
1366.5
-2064
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 6a7f8782-3f5c-4408-89ce-edbd1e5a0ec9
- Wrap
- Wrap
- false
- 0
-
1345
-2054
43
20
-
1366.5
-2044
- 1
- 1
- {0}
- true
- Item at {i'}
- 5336fff3-be75-4ae1-934b-21d01294e503
- false
- Item
- i
- false
- 0
-
1412
-2094
6
60
-
1415
-2064
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- d5b01813-abd5-4795-a99d-2559036eaf32
- Explode
- Explode
-
1440
-2160
134
44
-
1511
-2138
- Curve to explode
- 686260a8-f50a-4c21-8a0f-5b6fcb21b00e
- Curve
- Curve
- false
- 30798710-3845-4562-83f3-8991b638e622
- 1
-
1442
-2158
57
20
-
1470.5
-2148
- Recursive decomposition until all segments are atomic
- b719e15c-a53e-4d2b-91f8-5636268e1ce3
- Recursive
- Recursive
- false
- 0
-
1442
-2138
57
20
-
1470.5
-2128
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- ebea818e-fc05-48a9-be1f-651351b99a93
- Segments
- Segments
- false
- 0
-
1523
-2158
49
20
-
1547.5
-2148
- 1
- Vertices of the exploded segments
- d1da05cf-4dd7-4d74-ace7-ae5cf9a4a127
- Vertices
- Vertices
- false
- 0
-
1523
-2138
49
20
-
1547.5
-2128
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- 5799c9ff-28a9-4a3b-9bd4-b6bc5a9ac7b3
- Explode
- Explode
-
1453
-2086
134
44
-
1524
-2064
- Curve to explode
- 9f2a4b6e-c4da-4e96-8e5f-9cd263731e9b
- Curve
- Curve
- false
- 5336fff3-be75-4ae1-934b-21d01294e503
- 1
-
1455
-2084
57
20
-
1483.5
-2074
- Recursive decomposition until all segments are atomic
- 6f58db0c-fe1a-4564-a0b2-c39034cb1bed
- Recursive
- Recursive
- false
- 0
-
1455
-2064
57
20
-
1483.5
-2054
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- a8604204-ba17-477f-bb44-6da8cb473689
- Segments
- Segments
- false
- 0
-
1536
-2084
49
20
-
1560.5
-2074
- 1
- Vertices of the exploded segments
- d86a63d7-ed17-443b-a0e7-80def287ea57
- Vertices
- Vertices
- false
- 0
-
1536
-2064
49
20
-
1560.5
-2054
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- ffc77713-fff2-47ff-9c9d-f886c51d8940
- Line
- Line
-
1617
-2116
102
44
-
1683
-2094
- Line start point
- 94144529-9348-47c8-b1da-7f85c44e0354
- Start Point
- Start Point
- false
- d1da05cf-4dd7-4d74-ace7-ae5cf9a4a127
- 1
-
1619
-2114
52
20
-
1645
-2104
- Line end point
- d1bedf31-bbd5-4ae7-8bb6-c051bcf28b63
- End Point
- End Point
- false
- d86a63d7-ed17-443b-a0e7-80def287ea57
- 1
-
1619
-2094
52
20
-
1645
-2084
- Line segment
- e086c657-1a1e-4234-9675-3cf89dc5b5f9
- Line
- Line
- false
- 0
-
1695
-2114
22
40
-
1706
-2094
- 8307c31e-e307-48e9-b7c3-f970591e86d2
- 2cd3c35a-cada-1a81-ddba-5b184219e513
- ggNetworkPolygons
- Polygon from Curve network
- true
- 9b0f7c5b-7377-4c7f-aff8-9ae43e7328d8
- ggNetworkPolygons
- ggNetworkPolygons
-
2020
-2076
150
44
-
2131
-2054
- 1
- Input Curves
- 88d62537-3221-4602-aaf4-3858daf495f0
- 1
- Curves
- Curves
- false
- b2c8b024-bfbd-4212-96bd-3bb43ba03951
- 1
-
2022
-2074
97
20
-
2078.5
-2064
- Number of edges considered to be a void or perimeter location
- fb63db76-55b2-443c-9df9-36b6697d5814
- Perim or Void
- Perim or Void
- true
- 0
-
2022
-2054
97
20
-
2078.5
-2044
- 1
- 1
- {0}
- 4
- 1
- Resultant Polygons
- 1c67803d-90e4-40d0-9223-ba648c7da95f
- Cells
- Cells
- false
- 0
-
2143
-2074
25
40
-
2155.5
-2054
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- b6802eb6-4e97-4344-b7db-26fc0d0211b0
- Merge
- Merge
-
1638
-2032
90
64
-
1683
-2000
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- f976fbce-fc8b-47e3-8d4e-5033a5646fd2
- false
- Data 1
- D1
- true
- e086c657-1a1e-4234-9675-3cf89dc5b5f9
- 1
-
1640
-2030
31
20
-
1655.5
-2020
- 2
- Data stream 2
- f1fc8029-4be2-420d-8785-aa13ab49b35d
- false
- Data 2
- D2
- true
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
1640
-2010
31
20
-
1655.5
-2000
- 2
- Data stream 3
- de1f2953-b082-40f6-a4d5-700b1e9ff5b9
- false
- Data 3
- D3
- true
- 0
-
1640
-1990
31
20
-
1655.5
-1980
- 2
- Result of merge
- 2a732366-e703-4fb6-b7b8-5dfca8ec0b0b
- Result
- Result
- false
- 0
-
1695
-2030
31
60
-
1710.5
-2000
- 4c0d75e1-4266-45b8-b5b4-826c9ad51ace
- 00000000-0000-0000-0000-000000000000
- Divide Curves on Intersects
- Divide curves on all of their intersects.
- true
- d7915680-0470-47bf-a41f-560890fdd28e
- Divide Curves on Intersects
- Divide Curves on Intersects
-
1775
-2076
190
44
-
1918
-2054
- 1
- curves to be divided
- 7ab8632b-5825-42d7-9004-758dc43472b2
- 1
- curves
- curves
- false
- 7c63f046-fa92-4bb1-a7b3-4ebfc64e6373
- 1
-
1777
-2074
129
20
-
1849.5
-2064
- ZeroTolerance
- e7e97663-e42a-449a-b741-29aa75b6cfba
- Tolerance
- Tolerance
- false
- 0
-
1777
-2054
129
20
-
1849.5
-2044
- 1
- 1
- {0}
- 1.52587890625E-05
- 1
- aligned curves
- b2c8b024-bfbd-4212-96bd-3bb43ba03951
- curves
- curves
- false
- 0
-
1930
-2074
33
40
-
1946.5
-2054
- c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1
- Simple Mesh
- Create a mesh that represents a Brep as simply as possible
- true
- 3cc61a28-4aa7-4a88-a821-8ab7feacc60f
- Simple Mesh
- Simple Mesh
-
2077
-2124
81
28
-
2116
-2110
- Brep to mesh, only breps with triangle or quad faces are supported.
- 4782fc5a-6800-4f62-b2b3-e0d225212e89
- Brep
- Brep
- false
- 1c67803d-90e4-40d0-9223-ba648c7da95f
- 1
-
2079
-2122
25
24
-
2091.5
-2110
- Mesh
- 49b4590f-1985-41a4-b0c1-a10f591a4cf0
- Mesh
- Mesh
- false
- 0
-
2128
-2122
28
24
-
2142
-2110
- 4bc9dbbf-fec8-4348-a3af-e33e7edc8e7b
- Mesh Join
- Join a set of meshes into a single mesh
- true
- bc1346bb-a66e-47d4-9a9a-044f091b7726
- Mesh Join
- Mesh Join
-
2178
-2124
94
28
-
2230
-2110
- 1
- Meshes to join
- 25e32ac2-e373-4c7a-b61c-2a62f953794c
- Meshes
- Meshes
- false
- 49b4590f-1985-41a4-b0c1-a10f591a4cf0
- 1
-
2180
-2122
38
24
-
2199
-2110
- Mesh join result
- c1bd4c6d-1df6-4abf-a7a4-b12d0b2e6ca4
- Mesh
- Mesh
- false
- 0
-
2242
-2122
28
24
-
2256
-2110
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- d9cadc60-06b8-40a5-8670-7d6604b13a55
- Scale
- Scale
-
1770
-2160
195
64
-
1901
-2128
- Base geometry
- 7b6fef10-edd2-4b23-8a88-8527c42b4710
- Geometry
- Geometry
- true
- 2a732366-e703-4fb6-b7b8-5dfca8ec0b0b
- 1
-
1772
-2158
117
20
-
1830.5
-2148
- Center of scaling
- f74ec72c-58b4-428d-86f3-b0d598afd82a
- Center
- Center
- false
- 0
-
1772
-2138
117
20
-
1830.5
-2128
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- df490fdf-e2fd-4f79-8b80-a99abd41e47d
- Factor
- Factor
- false
- 363657c8-ee9e-44fe-bf60-e29e6141415c
- 1
-
1772
-2118
117
20
-
1830.5
-2108
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 7c63f046-fa92-4bb1-a7b3-4ebfc64e6373
- Geometry
- Geometry
- false
- 0
-
1913
-2158
50
30
-
1938
-2143
- Transformation data
- b2a247eb-d2f1-4336-a777-58a0f743ff8a
- Transform
- Transform
- false
- 0
-
1913
-2128
50
30
-
1938
-2113
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- ca19c451-d4b3-43b4-867e-e23204597823
- Scale
- Scale
-
2099
-2246
195
64
-
2230
-2214
- Base geometry
- add0eb25-3536-4dd4-b64e-6871f9f75124
- Geometry
- Geometry
- true
- 4616153f-b77e-4396-9db0-407a32c43692
- 1
-
2101
-2244
117
20
-
2159.5
-2234
- Center of scaling
- 18b672ac-af69-4d12-9e41-3f589cced19f
- Center
- Center
- false
- 0
-
2101
-2224
117
20
-
2159.5
-2214
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- b2e59736-07e8-4865-882c-5d8e78e51b72
- Factor
- Factor
- false
- 0db1a859-a32a-4c96-a6d3-3d4a53580b28
- 1
-
2101
-2204
117
20
-
2159.5
-2194
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 043fb4b6-1a03-448e-bcc2-db8f61394b14
- Geometry
- Geometry
- false
- 0
-
2242
-2244
50
30
-
2267
-2229
- Transformation data
- f4336505-b20d-4de6-ac77-0b521e54278c
- Transform
- Transform
- false
- 0
-
2242
-2214
50
30
-
2267
-2199
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- eb729bda-2bb3-40e9-b6ef-94a47a07c4f0
- One Over X
- One Over X
-
1958
-2246
88
28
-
2001
-2232
- Input value
- f4a9b5a3-7239-43c2-9b7f-f45f9d2f7630
- Value
- Value
- false
- 363657c8-ee9e-44fe-bf60-e29e6141415c
- 1
-
1960
-2244
29
24
-
1974.5
-2232
- Output value
- 0db1a859-a32a-4c96-a6d3-3d4a53580b28
- Result
- Result
- false
- 0
-
2013
-2244
31
24
-
2028.5
-2232
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- dc3220b0-fb46-4bc9-88ff-bf1eea1af854
- Power
- Power
-
1965
-2213
85
44
-
2005
-2191
- The item to be raised
- 366f9e3f-b824-427d-9f09-57ed8d62f462
- A
- A
- false
- 0
-
1967
-2211
26
20
-
1980
-2201
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 5ee9200f-0632-47b1-90cf-f70a99308002
- B
- B
- false
- 9fcb2f6e-bb1b-489f-abc9-00bcc59d4904
- 1
-
1967
-2191
26
20
-
1980
-2181
- A raised to the B power
- 363657c8-ee9e-44fe-bf60-e29e6141415c
- Result
- Result
- false
- 0
-
2017
-2211
31
40
-
2032.5
-2191
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9fcb2f6e-bb1b-489f-abc9-00bcc59d4904
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 4.0000000000
-
1692
-2191
250
20
-
1692.389
-2190.101
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 6e5efe6a-81a9-4fc5-b975-5916a8c2416a
- Deconstruct
- Deconstruct
-
1256
-1647
120
64
-
1297
-1615
- Input point
- 32cfad3f-813d-41cd-9317-a1b32ac885e8
- Point
- Point
- false
- af44461f-37b2-4fe2-a269-d899c9e7147f
- 1
-
1258
-1645
27
60
-
1271.5
-1615
- Point {x} component
- 2809ab09-d804-48fc-99c8-34051bdc08ea
- X component
- X component
- false
- 0
-
1309
-1645
65
20
-
1341.5
-1635
- Point {y} component
- 8551c667-9184-4cda-850c-45ca1b3ffc0e
- Y component
- Y component
- false
- 0
-
1309
-1625
65
20
-
1341.5
-1615
- Point {z} component
- 6644c9e8-68a3-45d0-8a20-6166c40a131b
- Z component
- Z component
- false
- 0
-
1309
-1605
65
20
-
1341.5
-1595
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
- Construct a point from {xyz} coordinates.
- true
- 60a51f01-5899-49d4-b314-60276bd08212
- Construct Point
- Construct Point
-
1429
-1654
132
64
-
1520
-1622
- {x} coordinate
- 070e1907-d83a-47f0-8a2b-c32c8f1686ec
- X coordinate
- X coordinate
- false
- 0
-
1431
-1652
77
20
-
1469.5
-1642
- 1
- 1
- {0}
- 0
- {y} coordinate
- e4717a98-86e5-4137-97e4-41a50dc16a97
- Y coordinate
- Y coordinate
- false
- 0
-
1431
-1632
77
20
-
1469.5
-1622
- 1
- 1
- {0}
- 0
- {z} coordinate
- 187c81c4-e8d1-46db-b9d3-f9222945e468
- Z coordinate
- Z coordinate
- false
- 6644c9e8-68a3-45d0-8a20-6166c40a131b
- 1
-
1431
-1612
77
20
-
1469.5
-1602
- 1
- 1
- {0}
- 0
- Point coordinate
- d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb
- Point
- Point
- false
- 0
-
1532
-1652
27
60
-
1545.5
-1622
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 53886360-af1c-4ca8-a5d5-d5b747804cfd
- Scale
- Scale
-
1166
-1730
126
64
-
1228
-1698
- Base geometry
- 401c492e-6221-48a7-be26-da01ac185ea8
- Geometry
- Geometry
- true
- 0
-
1168
-1728
48
20
-
1192
-1718
- Center of scaling
- 0faa135d-c825-475a-937f-e62abc306b68
- Center
- Center
- false
- d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb
- 1
-
1168
-1708
48
20
-
1192
-1698
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 18f4c068-131d-4309-9eae-d516b0f85a2a
- Factor
- Factor
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
1168
-1688
48
20
-
1192
-1678
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 8025ef62-00eb-4034-84bd-92c8573721fc
- Geometry
- Geometry
- false
- 0
-
1240
-1728
50
30
-
1265
-1713
- Transformation data
- 26897bdc-d6c2-4908-b027-65fcd848652c
- Transform
- Transform
- false
- 0
-
1240
-1698
50
30
-
1265
-1683
- 361790d6-9d66-4808-8c5a-8de9c218c227
- Quad Sphere
- Create a spherical brep made from quad nurbs patches.
- true
- 7f3cf3eb-f811-46af-897c-66cd10a62e73
- Quad Sphere
- Quad Sphere
-
608
-2364
175
61
-
733
-2333
- Base plane
- 27b9894f-3c01-4858-a391-ed0398c9437e
- Base
- Base
- false
- 0
-
610
-2362
111
37
-
665.5
-2343.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Sphere radius
- 5a388fa9-9a6d-454e-a7a2-c0133092ccfc
- Radius
- Radius
- false
- 0
-
610
-2325
111
20
-
665.5
-2315
- 1
- 1
- {0}
- 0.5
- Resulting quad sphere
- 07275121-8e13-4cbf-aa2e-5ecc016f0404
- Sphere
- Sphere
- false
- 0
-
745
-2362
36
57
-
763
-2333.5
- f24b6e1d-27ba-4eb0-b914-5c3d27b4eeef
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Tween Two Curves On Surface
- Tween between two curves on a surface, if curves are not on the surface they will be pulled to it.
- true
- 1ae81de7-dbb2-4005-85aa-45720c7ac2b8
- Tween Two Curves On Surface
- Tween Two Curves On Surface
-
827
-2427
141
124
-
920
-2365
- Curve on surface to tween from
- 5fd07bd6-9c2f-41d7-a41d-1fbfa4aa8bf0
- Curve A
- Curve A
- false
- b7812d9f-ab80-4a1b-af93-274919e3d197
- 1
-
829
-2425
79
20
-
868.5
-2415
- Curve on surface to tween to
- 15318132-7217-49e2-b230-3f376cd4659a
- Curve B
- Curve B
- false
- b47b066d-ced9-4a5f-b5f7-cb21f3d787f9
- 1
-
829
-2405
79
20
-
868.5
-2395
- Surface to tween curve on
- f3bc8eaf-ceba-405c-acab-6e6aac3cb7e7
- Surface
- Surface
- false
- 3686f319-3b13-4a40-8f63-73640cca8e2e
- 1
-
829
-2385
79
20
-
868.5
-2375
- Tween factor (0.0 = Curve A, 1.0 = Curve B)
- 5d3aeba4-a23a-4d22-b44e-dc0fc3edf022
- Factor
- Factor
- false
- 6260ae29-2097-4e32-b627-15c8a4d72ec0
- 1
-
829
-2365
79
20
-
868.5
-2355
- 1
- 1
- {0}
- 0.5
- Optional Refit match method.
(No Integer or 0 = Off, Integer greater than 0 = On and curve degree of refit)
If an integer greater than zero, Refit match method is used if possible. When input curves are refit their control points are redistributed, added to, and removed from based on the curves curvature and the input integer degree, while trying to maintain their shapes. Refit results in tighter shaped tweens, with curvature based control point distribution.
- 7e21208b-cbe9-440a-a905-4121f602ca0d
- Refit
- Refit
- false
- 0
-
829
-2345
79
20
-
868.5
-2335
- 1
- 1
- {0}
- 0
- Optional Point Sample match method.
(No Integer or 0 = Off, Integer greater than 0 = On and amount of sample points)
If an integer greater than zero, Point Sample match method is used. When input curves are sampled their control points are recreated by equally dividing the curve by the input integer point count. Point Sample results in looser shaped tweens, with uniform control point distribution.
- ca67bf69-8349-4179-99ca-63aafaf462b2
- Point Sample
- Point Sample
- false
- 0
-
829
-2325
79
20
-
868.5
-2315
- 1
- 1
- {0}
- 0
- Resulting tween curve on surface
- e910c1ca-a032-498a-8405-5ef9fc92dc05
- Tween
- Tween
- false
- 0
-
932
-2425
34
120
-
949
-2365
- 8d372bdc-9800-45e9-8a26-6e33c5253e21
- Deconstruct Brep
- Deconstruct a brep into its constituent parts.
- true
- 1911c828-69c9-41f4-a6d8-55ecdc42ed4e
- Deconstruct Brep
- Deconstruct Brep
-
613
-2451
93
64
-
652
-2419
- Base Brep
- 7d95eba7-f1e6-4e41-9ffe-9be7fcd23f68
- Brep
- Brep
- false
- 07275121-8e13-4cbf-aa2e-5ecc016f0404
- 1
-
615
-2449
25
60
-
627.5
-2419
- 1
- Faces of Brep
- 24a0eb06-eb01-4473-960c-97ac6d0cc461
- Faces
- Faces
- false
- 0
-
664
-2449
40
20
-
684
-2439
- 1
- Edges of Brep
- eb6bfdca-7ebb-4547-8b53-46145bc3650e
- Edges
- Edges
- false
- 0
-
664
-2429
40
20
-
684
-2419
- 1
- Vertices of Brep
- ab19931d-608d-47f9-9d2a-c92c12ed6019
- Vertices
- Vertices
- false
- 0
-
664
-2409
40
20
-
684
-2399
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 7d9531df-1414-46f9-9741-e68b5bb055f3
- List Item
- List Item
-
608
-2547
77
64
-
665
-2515
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- b43ed9d0-27c8-450a-9283-f1c7c4279a78
- List
- List
- false
- 24a0eb06-eb01-4473-960c-97ac6d0cc461
- 1
-
610
-2545
43
20
-
631.5
-2535
- Item index
- df80f14a-9d6a-4f50-a933-825753ad2e1b
- Index
- Index
- false
- 0
-
610
-2525
43
20
-
631.5
-2515
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 797ccd0e-a012-46b3-8e8c-57669e7ccc85
- Wrap
- Wrap
- false
- 0
-
610
-2505
43
20
-
631.5
-2495
- 1
- 1
- {0}
- true
- Item at {i'}
- 3686f319-3b13-4a40-8f63-73640cca8e2e
- false
- Item
- i
- false
- 0
-
677
-2545
6
60
-
680
-2515
- 0148a65d-6f42-414a-9db7-9a9b2eb78437
- Brep Edges
- Extract the edge curves of a brep.
- true
- 67450cf9-31de-4e46-b0e0-063ecf44eb09
- Brep Edges
- Brep Edges
-
587
-2637
119
64
-
626
-2605
- Base Brep
- f48b56b6-4b28-48ef-9bc5-9cca48d250a6
- Brep
- Brep
- false
- 3686f319-3b13-4a40-8f63-73640cca8e2e
- 1
-
589
-2635
25
60
-
601.5
-2605
- 1
- Naked edge curves
- 3f91fe68-9295-4f96-8014-59d90677f0a8
- Naked
- Naked
- false
- 0
-
638
-2635
66
20
-
671
-2625
- 1
- Interior edge curves
- 3f79cdd6-af68-422c-9295-3cfe8900be7b
- Interior
- Interior
- false
- 0
-
638
-2615
66
20
-
671
-2605
- 1
- Non-Manifold edge curves
- 07e92cce-f86b-4381-9c73-9c42eb161a27
- Non-Manifold
- Non-Manifold
- false
- 0
-
638
-2595
66
20
-
671
-2585
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 40052ab1-f242-4744-bc3b-fa2002a93c49
- List Item
- List Item
-
608
-2720
77
64
-
665
-2688
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 2713f79b-c43e-4f40-902c-0a267860f3e7
- List
- List
- false
- 3f91fe68-9295-4f96-8014-59d90677f0a8
- 1
-
610
-2718
43
20
-
631.5
-2708
- Item index
- e306da52-ba52-4fe1-997a-133380b9d3b4
- Index
- Index
- false
- 0
-
610
-2698
43
20
-
631.5
-2688
- 1
- 1
- {0}
- 2
- Wrap index to list bounds
- 6e77f0d0-a0a2-4db8-a920-e037da477b97
- Wrap
- Wrap
- false
- 0
-
610
-2678
43
20
-
631.5
-2668
- 1
- 1
- {0}
- true
- Item at {i'}
- b7812d9f-ab80-4a1b-af93-274919e3d197
- false
- Item
- i
- false
- 0
-
677
-2718
6
60
-
680
-2688
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579
- Number
- Number
- false
- c5c85527-549f-4b6d-b3bb-6729f376c233
- 1
-
389
-2427
50
24
-
414.3606
-2415
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- a8b0028f-de15-41d6-ac27-8242e61aefc0
- Scale
- Scale
-
439
-2656
126
64
-
501
-2624
- Base geometry
- 1b4312a0-9b59-435d-82a3-1c60363e2d35
- Geometry
- Geometry
- true
- b7812d9f-ab80-4a1b-af93-274919e3d197
- 1
-
441
-2654
48
20
-
465
-2644
- Center of scaling
- 046d7577-aa81-4237-8654-1a6145d1a6fa
- Center
- Center
- false
- d772890b-7613-40c8-af8e-e8111ee4e366
- 1
-
441
-2634
48
20
-
465
-2624
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 0815d3b2-c4a3-49b2-8091-eeb8213b5ad1
- Factor
- Factor
- false
- eda9b36e-8d1c-4cb9-832a-cac5dcae6446
- 1
-
441
-2614
48
20
-
465
-2604
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 1b6852ff-5ea0-4377-b091-331cfc003e06
- Geometry
- Geometry
- false
- 0
-
513
-2654
50
30
-
538
-2639
- Transformation data
- 8ef1e35f-3da8-4aaf-916d-672d3f2368a4
- Transform
- Transform
- false
- 0
-
513
-2624
50
30
-
538
-2609
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- d772890b-7613-40c8-af8e-e8111ee4e366
- Point
- Point
- false
- 544bd1fa-0641-4bca-968b-578245bc09d1
- 1
-
306
-2581
50
24
-
331.5268
-2569.456
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e37e2ebe-b7b9-404a-a9f0-9ea61110d68d
- Multiplication
- Multiplication
-
421
-2495
125
44
-
501
-2473
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 2bf1540c-604b-45ac-abc8-9ea27693a630
- A
- A
- true
- 0
-
423
-2493
66
20
-
456
-2483
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2*SQRT(2)
- Second item for multiplication
- 54a5a07e-f54a-4f03-8ef7-0a6389ff4c09
- B
- B
- true
- 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579
- 1
-
423
-2473
66
20
-
456
-2463
- Result of multiplication
- eda9b36e-8d1c-4cb9-832a-cac5dcae6446
- Result
- Result
- false
- 0
-
513
-2493
31
40
-
528.5
-2473
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 7bde713a-d240-4eb7-8d7f-1f01f85ac42e
- List Item
- List Item
-
891
-2530
77
64
-
948
-2498
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 0e1637ed-9857-4a37-88c0-d1f9108f9443
- List
- List
- false
- 07e27a89-bbb8-40a7-827e-0a8859a34d63
- 1
-
893
-2528
43
20
-
914.5
-2518
- Item index
- 91da0cc1-5b97-4a8d-9af3-80fc31c2b6a3
- Index
- Index
- false
- 0
-
893
-2508
43
20
-
914.5
-2498
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 2d714977-7592-4cae-8b1e-345112fe7516
- Wrap
- Wrap
- false
- 0
-
893
-2488
43
20
-
914.5
-2478
- 1
- 1
- {0}
- true
- Item at {i'}
- b47b066d-ced9-4a5f-b5f7-cb21f3d787f9
- false
- Item
- i
- false
- 0
-
960
-2528
6
60
-
963
-2498
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 9eb71f29-a694-4692-9bfe-7dd14e60adc1
- Multiplication
- Multiplication
-
452
-2284
125
44
-
532
-2262
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 9dd1aa56-4bb3-49c7-b19b-9e54fd64f465
- A
- A
- true
- 0
-
454
-2282
66
20
-
487
-2272
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2*SQRT(2)
- Second item for multiplication
- 01d98073-ee76-47f0-9167-4c5796587c5c
- B
- B
- true
- 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579
- 1
-
454
-2262
66
20
-
487
-2252
- Result of multiplication
- 6260ae29-2097-4e32-b627-15c8a4d72ec0
- Result
- Result
- false
- 0
-
544
-2282
31
40
-
559.5
-2262
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- ad8332bd-7d14-4f8e-b470-0b4b8f421601
- One Over X
- One Over X
-
490
-2402
88
28
-
533
-2388
- Input value
- a97143cc-67af-4d00-9694-2eb88707990f
- Value
- Value
- false
- 6260ae29-2097-4e32-b627-15c8a4d72ec0
- 1
-
492
-2400
29
24
-
506.5
-2388
- Output value
- cff8fe7f-c614-4d54-87ac-97bc6c5d47e1
- Result
- Result
- false
- 0
-
545
-2400
31
24
-
560.5
-2388
- f1f51397-fc4b-44cf-b4b0-0ab80a80a6e1
- 14601aeb-b64f-9304-459d-d5d06df91218
- Mesh WeldVertices
- Merge identical or vertices in threshold range
- true
- 26817207-8db3-4094-9241-8b83400e4495
- Mesh WeldVertices
- Mesh WeldVertices
-
2284
-2150
218
44
-
2408
-2128
- The open or closed mesh
- true
- 6f2e8e64-40a5-46bf-b759-a5ed72138b64
- Mesh
- Mesh
- false
- c1bd4c6d-1df6-4abf-a7a4-b12d0b2e6ca4
- 1
-
2286
-2148
110
20
-
2341
-2138
- Weld threshold value for Vertices
- d9bd9331-8f60-4743-8302-017491e4a5a5
- tolerance
- tolerance
- true
- 0
-
2286
-2128
110
20
-
2341
-2118
- 1
- 1
- {0}
- 1.52587890625E-05
- 1
- Print, Reflect and Error Streams
- e855c6e8-63ca-4b2b-92d4-915f895013b7
- RuntimeMessage
- RuntimeMessage
- false
- 0
-
2420
-2148
80
20
-
2460
-2138
- The constructed mesh
- 4616153f-b77e-4396-9db0-407a32c43692
- Mesh
- Mesh
- false
- 0
-
2420
-2128
80
20
-
2460
-2118
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB+4SURBVHhe7Z1pcFTXlcc7NUnNTKoyrszU1MynxMkXJzUex/nABGPPmMSJsWdScVxAbDIxOxhw4tjC2MYLBnsMxiwCYgoikAAtSGqtqLUjLEtoQWYRQgLtaqF939fWNr9+5+mppZZ6kbqFJPgX9Th973333Xv+Z7vdLUn3AAsBIw8wbzFG4VcPMA/xgMJ5j3EUJicnq83OgLvmMtRVLlyMo/BLBWqPA0BBjBdNzU04u6P5iHEUtra23r59+9KlS2qnTaCar7/+urm5uaOjo62tjXvnJhzf0TzFOApBQ0NDSkoK9qv2T43U1NS8vDxu6e3tlXvnJmpra5OSktRFL0SwxzEKh4aGcnNzfX19MzIy1P4pkJmZuWvXLj8/P/i7c+dOZWVlRUUF9NfU1CBUK6DRaDRWVVXhqQMDA4o+7wHq6+vT0tIcMcp5CvY4RmFnZyeqf+WVV8LCwi5fvqwOsQJuynXlypUQRqTKycm5efMmQRWnvH79emFhIQJaKygoIIiVlpbShXEo+nQZhoeHWSoLMJlMg4ODmAgC9sSDENiIyIy8cePG0aNHsTlZ/MIDexyjsKurC0o2btwYHR1tw3LJgrdu3dq7d6+3tzd3dXd3o0T0hR4RRL8IgBbmbGlpodG16O/vZw2YCAEDu0G+evUqIQTCsJjs7GzMCMOSJL127drz58+np6erG1hYQBtjFAL2f/DgweLi4vz8fLLdpOUcjVlZWUVFRehI7pod9PYOmyziMRGyvLyca2Njo8QDnI9gDgjdyER4mKZr9erVer0eo1Q3sLCAKsZRyP7ZKiUc5gyRxJ9JyzkcFEtHO3KX48Blm5qaKDG4Sgvui5vyXGbr6+uTRnx3wrDcjMvJ3psvnlhTdDNbWuxCAilx/vTp0/dLIMVmoU3qN5i7cuUKL+ESt5sQVHFQg8Fw8eJFs6pGQfysq6tD+/ISDUpcBXRxhaczZ84EBgYS02JiYoh1tJNZvby8EhISmDM+Pp4cBnMyDGNiWEmZsa6s8PqFvSOm5M60R2MPP99Q50Rkxk3J6/dLOcNrWNHcDuZQKxEVXctLaQdwsGnTJlKmoiUVhDJqGQggzJKWKGfwACyAgEaJUVZWRuANCAjgXgbjeXFxccRAJsEa7t69SyNhnBvx7+DgYJIcLbCec6cwL/2r0Jf/pfbcspHCZRle/3H7Zr75eY4B576PDhVUjyha3E66MV5AsQA3+IS04zfgd7/7HdWEoiUV8ERyolBkMIrD/CEGmcxEL5xhComJiXg2L6XW5xamohKRkgfumQGjwYzItbQ0NjUnxsVmJ/oVxi0zvKi7dfgHoUe3trb10OUg7i8KBWjTMv9BIS/RMqrHS6QLFzl58iTnQvUex1BSUgJhUn0wIYTRCKkcJTk+wj2BlPDLg7Rh2Tm3wvWRN84uMV17KGDHIxGnztTVmQ3CcTCJ5XYWHtjjRAqpIAinav8o0AIBUKpQfBGQYMSfHAepEUfEywmVXCltaMQdr127xrRcjUajDJPjAcNAd48pN+1CpOdGmpRpzCDjEmPVF6PgRtxafTEK4grbsXHMne9gjxMp5CyFNvEDdcgoJIoSPMltCAyYlEKpXNwN7IzjII5LrIb4yspK/Bi+MRF8mmhMO8ujxCULrF+/nlhKXlf2sdCANiZSiHbwNvxAOLMEQZVGNIWCfHx8fH191XtGQf2CWnGvnp4eUiAFDgIeI/W9C4G3UTcRJHFfAG2siqdDGwJXGGUXkmJfffXVU6dO2X3XcJ6CDY5RSK5C3Rj1jh07pAqdFLBIJluzZg1jzOq0AOpDrUIzVQnZDl9BxdrpwuXQnF6zkgnmwlL/9Kc/4YLWcWVhgD2OUUj6kQQDhUePHuVcqI4aD3RBMblhwwYOA2YlWYCT5cDAAJWIvFdCTMYPaFS77wVwRxLhQuUPsMcxCtE1YM+c+YiZNkoAujh0k2AULc1p1NXV3XeHCjFb0ol1LrQEHFPaELUIZXMNrIrQLW+7U9rcdxQS/ag5OUJAkjpqapDtSDZzBBxbSb1kaAoZzhJYoXyUIVUYcGRH8w5QNpFCKklOgQ7uFr0weE6BJbEwTBBSqVExR8DRgpMSjbJmsGDohLKJFFKJoAi1f95C8zwKGflMkWMSRTJA4CWNdMkYMH8ZhbIxCgmhgKPFAqDQEhqdyNTSeCdOiWtCJ5GW8w+1N6cOGQPmF53jKGTpslu1cyFCNig8UbWRyzm2QqTQiUwL7fRKTEZQ75yrmIRCtec+AJsVOgFeiC/ikUKnpE/8Fa9lpIyZm8oZR6Hadl/Cks5J0yfVkGX6NBv73GD0AYWTQOg0V7dKTSDFrZY+5cOWzMzMOULngqUQnQoHM0dSUtJFBQjQBnlQiF8Scjm0cBgld2qUzxzOWsPCpBAtoNbq6mrOuE0W4OWEFmfR2NjY0NAgX5traWnpUNDe3q5NS6MIk8LuApicegqDUHfiABYghfBHDUImY0ezj5l/rEa4lpJY3Y89cMtCo5Ciw8vLa8+ePcPjP3yuq6uj4CQG1tbWYuy85AQ8kx8IGRqa+AmavCtSU1PT2dmJp1ZVVVVWVvI4noWHmb9Hkp3NuaWoqIgFiNtxCyPxXcYgsOYzZ858/PHHU31MZA2eu9AopHRcs2ZNYmKiotUxtLW1Yd2kLpIZYxAKCgpQnNrtPK5ey33v47WFZX4pl5Mzs+/09fURUYUkDKWwsJBMScqk/EHGsHgogBtAfYRMqEDgPMN43I4xJpOJ+L98+XJeknfVLdkEK1lQFLJzVOPt7Y0XKnoeAwY+qPzgAGrq7+/H/+QzDbXbeeSVXk3f+I3BwG8dWfc3L/7on1NS06QdLnt6eph8YGCAB/EIoMnyEQprYBhgGfIBH8lVvvjj7+//5ptvOv7dZW5ZaBSyeayeigB9mTXqNgyHfj7yd7obb3/3wuZvJvz6G0nJl9WOmQETdFc5g3aoqqcNKcrVuSxA8pCuGUImYTYqOnkj20EK8QlSFzGwazwoNWlHkGt3d7cIgK6KquovtrzedPTbgXu+s2/Zd0L/+5spKaoXzhCkTBvferEGtzhEoURqkgcGbo27d+9WVFaXlJZRIBQXF6utVuAgRdxnKnVSBSQMtdsmSktLjUYj86uvJwPLY36hMDIy0hy/FBYlQE0KWAkLC4uIiOBGbomKirpw4QIC17i4uNjY2PDwcAQGhISExMfH0y5dp06d9vLX/2XXP1x8R9fwju69RX8bFXdJndQxYDSYBdYgL1mkfMMIF5Syy0Ff5BaHKMTAy8vLzY+aDDdu3klL/qqjratnaMT2VxBZGY4ic7JEzELWbRetHR3lFRU9fXa+hpOfn3/r1i1PT8/PPvuMmTHnsrIy7a0y7IAWMTJqRfNbZ/n5er2ewgEBhuAsODg4OjoantAjMY2yCCMjOBsMBhYMl1BOwXLu3NnY2Lj3Pvjoz+uf99rwyB/+7dsB+gh1EY6BJfFcgGXLF3QBRGI027dv5+kTbH0qMJV9CnkMV3QhMUdZwBiuXLnme+R/MyJfKLq06dhrzwYEBNNIipa8LWO0+l4KMHQBkdSH6enppHSGaSPBhADY09lZmp9vCAvz8/FJio2rKjNShJiUL1VYuxd6gSEPDw844KGYHdoBHLbk66ZyqKCFyIHXgoSEBCkgcV84Y4UAztgvVT43IlNDcgurxeY4dCIHBQVVVFTwxPaugcK7jRHR8UQBWYOD4ESB3WBVPIIJWQBLog6iZeXKlZra7YKp7FCoGErKtm3b2CGbR/s8CdUANDIwNBzsc7z4o2+PJD069MnDxT/SffXXfUyFLqjaUY182Z61oll0euTIEfwDE8Mzzp49u3PnToIJOuIl2mRmBuMozIwMunv7c5LCI1d8K3r5v3ptef7y+r8PWPaP1XerjRUVrAeFyi2oAMA9LrJ3715ch6tmNzbAvRiTfPlfDnAapIUSnysyI2EUmSt7x0XUKVyNc+fOOfVjydxih0J8Bb2sW7cOjcAHWsM8MXb57LSnf7Cm9M7dt3UjB3T9W3Rt/67zWvNcR5+JpAWFDIMbAhGARRwOYfXq1egdHVE6E5d4LmOIIXKiQsYeJYhhAXXNbTkx51Oe0CU8rjv6wuN5v9LpH9EV5Re3tLXhGQxgGJQj8EQKDRLMSy+9BIWEU7M+HACmw+NkkY6AmVkkrKv3uxrYoovfncEF0f5bb72FjJlrsUtLxbV1TUXvPzTyuW7kE132E7rDb/+5tXvsLQ+IJ+JpsfHw4cP79+9HZSgdL9yxY8eEEMpg8R6uvBwaHs5PS/b77VPe//Ofx7euCfztYu/f/KLCOJaVzWMUyMvQ0FCiKHZGuIZUvNkuIMNZEAMxQfV+lwLjZvEOFjICdm2HQswBMydeEz0ULU1ETUPbvvVLMj74SdzHz+16c1Nzm1piTQqcxjIX4so2ykUNHYMj8anpwWERV3IL+iwyqzVYJ/PLypWzhvohwzyC4/4nYNf2KSSNE0CwO0VLE4HnFBmrmzoHKEf77J3EcL7pVaTQRqpXX0wNohC0yfz3Cdi1HQqB2AXlA1mKdIiz45FcqVCwesIsxV5xcQnqo4XUQos1aMebcZEJVoZxTHWLBgbwaBuTA+nCrZ214vkOhygU4DRi4NQRJDNKFRI7gRGt4VhUEEAJXbZgrV/uVftcgfuNP+AEhQJ0JMmW6EphxrEU8+eKTAvt9N6HeryHcJpCDcIl9SpOyWGAiAqXuKZ8EUFj+gHcjXEUovdpgEgIWyQ5yCOxkZCgk0gLtRAsTmkN9fn3AuoK7hHURbgO4yg0vw0zXTCXuB1FJmUnoVVLllLlq+MUaINnH2JS6jpmHTza5RsfR2HnFOjq6pKft1Zf2wTnfcDB3/ypTFdXb2+vfEyjQdqJutrpYtbAE4n5Pffot2+iw6amJoKTa1lk5jEKbQCl2zhQTwO1tbUcY9VVzBagkI3U1dTog4Kio6NjYmK4imAtiwAsG6chg6ioKIPBIO9DkWtca7vMaZ/CxsbGsrKy1tbWhoaGkpKS+vp6OR1y7Z/uD2HX1dVJYFEXMivA/IdGRuKCgjYuXWqIj+cQgn7j4+MxJmQUnZCQoLxDchGZM5Imi0AvMiORuQtWzOeYpKS4uDjmETk2NhbyRKaRLu4KCgp65513sFriE8tw7a5Rpn0KIQ8Kq6qqrl69CoUcsTElChZetre3q4NGMTgyUlVdXVVba/uNGkIKVQ8V0GyyCIUDw8NJISF7li6tb23FIzHKtrY2c2Tv6sI02Y5EeywMdSNwRZZGehkjg7lLk1uUXwMouaO5uRmLl3YEurgL7Z0+fbqyspKN5+Xl3QMvBH19fZaf/4Eh5S1p9cUoeD3Q3t6wdWulh4dptNdkMmlvzmmUYwfywRu+qK7F/RAKv4qKeu/hh9vb2lgGqVp7ixwONBkCRAC0i0Aq0WRGam/4oRbty4yEJXQlsnwUyki49PPzq6mpwSAw2XvghY6je2CgcsuWisjIOj+/dk9PSZ/l5eWsvrS0VApUruyNcmbDhg34MYdIdS3uBxSaBgYy0tK2f/e7pTdudPf2utALRbb2QkYajUa8kDCGQtj+vfFCG5CvsbI+eMLiug8cqE9IGGxo6F216upHH7Uo364kcUIhPkf6JJKwK1xz06ZN/v7++KK6FvcDCvGS63l5737ve/kGA6uFGFoQAOuULxsAVogDIXClXRpZM7IMZiTsiowLMo/IEk5FRpDvGJIFz507V11dTYtTnwU6AigYo5A8J4FCIgNXcSO5sia8h73J0mUM8ZCkTQ7HuFjZjVu3qvLyilasaNizp1qvz0xKqq2v515r4I47d+6cTf4AFLKFm0VFnyxenHXoEMsgGMKNLAn9ajKUaHunXRqFFZEZqQVVqNWCKvNrQRWBLkbiowRSrJyXbJxlqAtyBXjQGIXp6em4SFZWFnwgcDbnhA5VxAHqDrIxcmZmJl1UIlwpaqDtgvKVL26H3dSUFIqEW7m55fX1khDYtvL/RGCY8p7qbEK8MLug4Ngf/pC4eTPLmGUKeTq5w40Usm6ALxLQCfRQQoRkBVwJg7Iy1kGvpDeu2BRrIk7SRUTNUH4PrCPgdspudRWzBaGQbHzqww9Dnn2WMNfQ2Mg2ZeNsU5PlAIAwIRdqMiNRkciSC0Wm0iYFiqzlQqlI2TKsu/zjMJQ5RuE0AHkwgYMSUeFvXlB49fr1iICAoCefNHV0kKkkXwCUrsmSLBC40i6NWLMmMxKPFJk54UZkDB2PFBmBLkZCtnghjXOxnIHFwsJCShWuxA211R7uIYVZX3+dcOmSfunS5ps3Wa4WPN0dSNkyloELutELocFZ4HzyNo2AIKx22APJ1bUpwRGoFGZlJWVmGlauLPb3x+lmxwt9fX21o71rbXcchUw9a5h9/oBQeOXKFUNyctJbb6Vt396u1NgQA9ydC2VO93qh2rZwMeaFaWm5/v5JK1dSLg9avCPj1kA6G7lQbXMeYlnugPoAF0GjMJ4Da0HBhSef7GhuNhOlwN0Uyu9Ldm9FqrY5CRaUovyS2csuAlMJrL/uNkNoFEZHR3cPDMQ+91xBeDgZD24AUQ6NiyzvyCBwlbwIyGqazEhoFhnaoFZkuIQnkRHoYiThl1wIhTzdvedCtc0ZoGKU3traylqdBftBKeqLUaAy1MHmpRa44fDPaDkCoZBcGBYW1tzbm7V7d9zatd39/ZDBQ8ltMIcMUDpsiazlPHqRGYlMhsO3kAEJj7QnsvxCC5ER6OIuo9Ho7e0NhdDp3ndn1DZnwGrQiMQcZwF/bE99MYo7d+4kJCTExMQkJiZShefk5PAIV32agVujRLwwLi6ud3CwOScn/Ikn1Ae7+ZMKf3//ORpIhUJcR1mzc2BLOFmp8idqOFMWFBTgzUwIhQEBAfHx8fCHuzj1g+dTAa2lp6eHhITgPYSy2NhY/A5Oop56qnn0B2jcSuHcLWdQDZFB2/lUqK6o+ovfXzdne/650ufVuH0xEQb2D2H4XHl5ufxAk8SujIyMQ4cOrV279sSJE+wWR1y1ahWxWn3edIHtBwcHb9y4Eb/nSGowGAhxLDp127Ybe/eSDrFCuiAAAcA02kfgSrs04sGazEhWKzL8EVpFhmPoFxmBLkbKJxWzcbRX25wEjsIqYUKzXI1RsUGEpoam//P87I1kz4NVkeu839OfDxJTlQisxWEE2Dp27Nj+/fuPHz+OgxJ/Tp48mTvZH81wHNzLgdrHx+fdd9/lEfh0REQEFoOP5IeEXHjmmX7lGC7nOQRAnoMMBK60SyMb1GRGkupEhldSoMjYJcYhsiRCRt5V/qwHXsge3Xu0V9scBiF0165dqBsK5SuHBEMcC8iXM2hkxWyPyXdsfys93vy8fR9+4uc/5R97Qk1Yg/yYFtPeVoCPTptCCfUEanz9/fffhxvCBrkQh+BxHCr0jz/ep/ywIGxpxqeZI9CCJ/RrMiMhSWRHAim2OLe8EL2wjqKiou3btxOgWCWcsUSyGtonCnGFPF5SwvGSAaQ3dMdTiGko1LzFycCe8Q8MHF2jMkZiGdOmkLvwuXzlB/CpiZC1ckYoBBdXrcr19EQgArqVQsmFWPY9zoVCHhUBDod+SSp7ySV2c2F19eHDh0NDQ5EJvNnZ6l8CZZPMg77IHGyeKATBPEK+EIbqpTSFgGlQyC3MRkjAmKhFeQl4ChRGRUVhJdDJwaUyPT308cdNfX1tyh9xphEQAxmJIKuSRlaryYzENEWGVwKmyIRNjENkBLoYyfbPnj2LifPSvRWp8ualGWxV7bcAjTybWkCiJRaNNWHaBCgIUBiZEmweZ0V3yEzFLdKORkh+RE5CLj5aUlLCy/PnzxOc9Xo9BstTtm7dOg0KGc9UEocR5HauUEJcjYyMJDyg3BZOtAMDMc89l3f6dGd/P8ZEI5Cch8AVsqURAjSZkSQIkaEKykWGVzYlMgJdjKyoqDhz5gxE8nT3Hu2xegGKs7QUHgkgQHpRgbRI17QPFYAtkfMwYXaOwJ4p/T09PTdt2kQVg/bZ8LZt25ylkMXjdjgfpsaE2r0IPNEykKJorjVffhm1ZInJIpZMGkiBJhMStUDK9mUewPyWgZQuy0CKa7r3aK8Bq8EX6eZhAJKEPDYvLXIzkF67gdRxEGMDAwPDw8PxRfYsX8+FDMuH2oYYH27NgjmiTFitNYWQgRD99NO3g4KUJZgxKYUzzIWzcbSXzQAim3TjjhgykVO+s2utR1pQk1DI7WJ0MwGToA42D3iJ/3H8xxdt//ypphQEQARmzRItpF2gUXjhwgXUioz3o1bT4GBxWFjQo4+S+kzK77sjSLIA4UPyImBhmgx/xAyR4Zt5RMYyCCoiI9DFSGyRXCjlDDtyYznDM6gkcXY2+cc//hHyKFhQH0qxJs8SuA4mj1LYiQZ2KFenwC3sXMBL4gHGC7AqIq01GGA0GomWLJKVcGUxYnOTGhya1SiEHh4BhdQtA8PD8cuXp77+OsZIu+Q5BK5CJ4AMKBSZuzSZEoZ5mBkZCtmCtCPQxUi0Si6cjc8LMV5CFqtBJhtRUFgmkqkga6Lun3ZGnDkIm/giS2UZ8DdVvqERzU4IpPi6TNLR2Bjwgx/UpqQgd1n8kis4EGGGgRQiaUTDLFVdkCvAnGMUShwDeN6WLVvYsCPvLxPcqTYPHDjAjUyCbeIWnO0QuEo80XboJhAD0AvLhj8bH27QLl44KYX8V3nxYuDDD1OPWn4FyFUUzsbRXgMc8Bj50U67wPA3b95MASL3sm58F1VCP114NlMR8aR3GsC5CQxT2QF6RLNkSlZSpPwyOhsKEgrJkRwqGhoamBA7I10hAAImzF3duzf4xz+uLysbUAhmflcdKiQXuvdorwEK5Ue27ELO3fI7ndSbFbUCNsPq2Qb5AMWpfc6De7EGiCHJwVBxcTGxSN7Aw/nIeQyIiIjw8PAgc7MluxTihdrRXizDfA43mcyqVxwo59Ah3+9/v6WkxPx0pV0GYJ2azF1sUGSoZR6R7R7ttbTtKrDIMQqxd8BCcXx0VOoA8DZcDVUSmriXSVwOAhEmxakf8CwOi1xhC5SVlbEAWCEXrlq1Cu2o25oCUMjupgqk6FeTc44fD/jhD4uUP9yvWd8MAylE0jJpnTUT8KAxCsPCwo4cOeLr64uOlDU4BHSKI6LNmVOIIr5KTDr46T69b8CxA4fOnDwVERqm9o0CpVg/CBs/efIkxxt1W1PAdi60pJAHNGVnRyxZkrhiRV1urjSCmVBIIMU10a0bKSSfffHFFxQmx48fJ3zDCmGBpxLolSWNgxQvANsnpsEimkUvMyGyvb3N4/M9P3xq0Qtb1v/4l//1i9+/uPr1LWqfTeCRlx34iSGhkFwoHzbBAfmMPZrjvtWHTTgfcTVj9+6Axx77cv36isuXOah2Dg+bc6TyXQ1CsQwmijKPyERa1CUyAl2MpBTw8fEhkJJZHFmnU2D7YxTyeOI7x3nKUc6Fr732GrtlYyQh4iqkSvDEmiTMEt8gkkT9wgsvkA7RDjUhBzjA9hiGEXAYYmT9FD/fNBHDw0vPf6DzX6kLWqsL36g7/utTaRP/aPekkEOFuqepoXlhdHQ0+sXa0C8tCAB1azJ6MDuQMnl7Q8PNgwfDly4Nf+aZjD17ajIzyYq0awG2jxSofMrBjbgpPMkkCHgnc8pHvlLOsFQ3ljOExKy09JGhYVNXT3dze1R4ZHNLC4/njE+xh6th7PBBKIAqWkhO+Cgh/qGHHqLiYM+MBMxDdqS4h0vGI0C/sln76Bzqe+bap7q8V3TX1+y5Hqi22oOzFMrRnsVDFe6CAKSqZACQ4zwCV8pKHkH4NiYlXdy2DSLDfv7z+NWrMz/91BgX11xcTD3aORo84dVcImON7IWCtq+PGatras6eO1c7C4eK1JTUL0KD8/vaC02tef31B7yONdaZ/34JBkWvlieAFkWBl5fX+vXr9+3bRyMs0sJIZBkv9zoIbslISfvs7F/+6cizjxx8KSJAHx8Xjy2r3VPDcQqhish/+vRp7IyzNkZJLMHCkKmMsDlkgAnKWz8ic62sqqpuajI2NtY0Nt5OTU329NSvXu23bJnPkiXeS5ac++UvQ15+Ofr11+M//DD52LGrQUE5sbE3EhJy09IKs7OzUlMP7t+PF7JUymk3emF8dMyiU4efuh765NdeT9zxfP7g1uoio1lDNoF3Ukfgl5YcTw9YwIsvvrhk0eJXV637/W9WLFq0aPHixfi6dNmwBlzfwVwIhZxMdu/eTfwPCAggvvn5+SEAaiKKjkllEWhBPh8YGBQaGhwVFRgVFWIw0O518KCnh8dnr7yy61e/euenP93x2GNv/+QnO3/2sw+efnr3889/snz5rpdffnvdOk6IxGqW4UYvBF2dnQP9/cR6U19/h9U3BCcFmRIPgEjbFJJ1iMlYIpau1W+ArEmely7CGukTFVMcAamSCGU4Ir7CjfgK4Y4oJ1UD4wnUPNfb2/vzzz8nc6vbmgKYP/7EQzEI1kAI5SqwlG1j4kii7eAgwQf7Yv/yD5l/NJr4NzysfYyFFbI79+ZC8+/0JJPdvsO/gnzzbxAlRk0FetEy5p+QkIA5Ezzhg3YsHbUKmJaX5ACKQI4r15Q/VMR4GKULSohpMTExBoOBAZiCZYjWAGFQBYXcjrunKn/kKE3582jQhk4hfsWKFbTbfkcQ82cMZiEJe/agPE40RiZ2oxeiwWkAnXp4eJw4cYIZoIrsghmwUAKgFmOpfTixwBxFhDyIMXgeTOj1eojBNqGEYy+OxQBrEIKgCnek3AdSPQJMAdYxjjfeeINaWt2WFTB8We1F5bf+3EOwAFmJgNiuLnG6QDljFD7APIVK4QPMY+h0/w9yVwlxLs6jKQAAAABJRU5ErkJggg==