-
0
2
2
-
1
0
7
- a61aec93-d774-48cf-8598-6718e7650341
- Shaded
- 1
-
127;201;201;201
-
127;176;176;176
- 633740217794324378
- XHG.⠀⠀⠀⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀⠀⠀⠀.GHX
- 0
-
-119
9
- 0.6018993
- 0
- 0
- 22
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- f8463a6a-537d-44ae-a102-2cbf6773c33a
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
988
154
115
44
-
1049
176
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- ce1f978e-a982-441e-8781-42beeed9349f
- Forward
- Forward
- true
- 1
- true
- 11d6ae9c-db85-41da-a72e-197fbac37970
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
990
156
44
20
-
1013.5
166
- 1
- false
- Script Variable Left
- 57e2c9a0-b37d-4c4b-9e2b-b0e17a521d43
- Left
- Left
- true
- 1
- true
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
990
176
44
20
-
1013.5
186
- Print, Reflect and Error streams
- 33dd288d-3d90-4a29-8ab3-866accaf2be0
- Output
- out
- false
- 0
-
1064
156
37
20
-
1082.5
166
- Output parameter Points
- a7101779-445c-4899-9b31-ce0a4803f08d
- Points
- Points
- false
- 0
-
1064
176
37
20
-
1082.5
186
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- 3091dae8-d5dc-4fac-a891-c5a5c7118bd1
- Series
- Series
-
356
212
64
64
-
387
244
- First number in the series
- bfe8e6e2-eddc-4584-8ce4-005a112f16fc
- Start
- S
- false
- 0
-
358
214
14
20
-
366.5
224
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3ef6124c-d6dc-426b-a979-0ad9d65d59da
- Step
- N
- false
- ff0daf69-230f-4e05-8c98-bf9c091a451d
- 1
-
358
234
14
20
-
366.5
244
- 1
- 1
- {0}
- 1
- Number of values in the series
- 41382c6d-efca-4f46-89a4-f4a83cdfe7f4
- Count
- C
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
358
254
14
20
-
366.5
264
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- Series
- S
- false
- 0
-
402
214
16
60
-
410
244
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- b15849e1-cdad-4c2e-becd-859af856d608
- Duplicate Data
- Dup
-
358
134
65
64
-
389
166
- 1
- Data to duplicate
- 907f9087-e15f-4411-b460-551d6e02779d
- Data
- D
- false
- 04e916a1-e753-499e-a557-73ec31b3076e
- 1
-
360
136
14
20
-
368.5
146
- Number of duplicates
- 4af8efc9-5fa2-429a-bc4a-bc67bfcdce44
- Number
- N
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
360
156
14
20
-
368.5
166
- 1
- 1
- {0}
- 500
- Retain list order
- 96c94299-014f-4d47-a2bf-e758b61acfb5
- Order
- O
- false
- 0
-
360
176
14
20
-
368.5
186
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 11d6ae9c-db85-41da-a72e-197fbac37970
- Data
- D
- false
- 0
-
404
136
17
60
-
412.5
166
- f5ea9d41-f062-487e-8dbf-7666ca53fbcd
- Interpolate
- Create an interpolated curve through a set of points.
- 6264624f-4741-4ad5-b390-ffeaf96b650b
- Interpolate
- IntCrv
-
1124
151
65
64
-
1155
183
- 1
- Interpolation points
- 9fa61b9f-3d6a-4de9-b3cf-891575df3642
- Vertices
- V
- false
- a7101779-445c-4899-9b31-ce0a4803f08d
- 1
-
1126
153
14
20
-
1134.5
163
- Curve degree
- 45884fa8-c111-46db-9464-f554212d0881
- Degree
- D
- false
- 0
-
1126
173
14
20
-
1134.5
183
- 1
- 1
- {0}
- 3
- Periodic curve
- 39a08521-0941-45d2-b08b-e760b22d1cfd
- Periodic
- P
- false
- 0
-
1126
193
14
20
-
1134.5
203
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- fbac77a5-b15a-4a25-8bf0-69012470613a
- Curve
- C
- false
- 0
-
1170
153
17
20
-
1178.5
163
- Curve length
- 9e8512d8-16fc-432e-836f-b8d89a934da4
- Length
- L
- false
- 0
-
1170
173
17
20
-
1178.5
183
- Curve domain
- 0b6cb763-0a93-4ae2-96a2-fdcd7eb5bc57
- Domain
- D
- false
- 0
-
1170
193
17
20
-
1178.5
203
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Sine wave distribution
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
498
280
100
100
-
498.7607
280.108
- false
- 0
- 0.02
- 0
- 0.0625
- 7d54f77a-a866-49ed-95eb-b1f9fb25a1f1
- Sine
- 0
- 0.880133867263794
- 0
- 1
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- (O_EZIS_O_SIZE_O^O_REWOP_O_POWER_O-abs(X-1)^O_REWOP_O_POWER_O)^(1/O_REWOP_TOOR_O_ROOT_POWER_O)
- 8763ca8a-5eda-4215-b1b6-6bf027e56362
- Expression
- Expression
-
347
388
1010
84
-
938
430
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6f4478b4-8c39-4912-b676-863469bfc82c
- Variable X
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
349
390
188
20
-
444.5
400
- Expression variable
- c0769443-461d-4126-a64c-6247b39f222a
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- ecdc8107-f664-40c6-8a7c-3ba81b6844d6
- 1
-
349
410
188
20
-
444.5
420
- Expression variable
- 2148e6a1-a572-410c-b12c-b29e37906877
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- 1
-
349
430
188
20
-
444.5
440
- Expression variable
- 37614104-e34b-4a95-b9e4-2f987743f51d
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- ede642c9-e41e-43f5-a264-51551af1dc77
- 1
-
349
450
188
20
-
444.5
460
- Result of expression
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- Result
- R
- false
- 0
-
1339
390
16
80
-
1347
430
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- f485a3d6-fb5f-4a4e-8821-7994b356eb8e
- Stream Filter
- Stream Filter
-
870
188
92
104
-
915
240
- 5
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- 847151af-072a-4900-879d-0fe8241f89ca
- Gate
- Gate
- false
- b20871fa-e78c-47ec-a58d-208c8959ba69
- 1
-
872
190
28
20
-
887.5
200
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 883bcf08-8a23-46f2-949b-114847055ec4
- false
- Stream 0
- 0
- true
- 476fd755-34c1-41fd-94b7-5d27abb8249b
- 1
-
872
210
28
20
-
887.5
220
- 2
- Input stream at index 1
- da7a30e8-0b2e-44d7-b1f2-d66b32e249dd
- false
- Stream 1
- 1
- true
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- 1
-
872
230
28
20
-
887.5
240
- 2
- Input stream at index 2
- fb5094ba-00a6-4552-bcba-3fe5f92e662f
- false
- Stream 2
- 2
- true
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- 1
-
872
250
28
20
-
887.5
260
- 2
- Input stream at index 3
- bf5e7ea2-18bd-4125-bb52-89c062cb16fa
- false
- Stream 3
- 3
- true
- 373c6a08-8824-4c99-a557-ae06da3113d5
- 1
-
872
270
28
20
-
887.5
280
- 2
- Filtered stream
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- false
- Stream
- S(1)
- false
- 0
-
930
190
30
100
-
945
240
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
88
430
250
20
-
88.89829
430.9977
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ede642c9-e41e-43f5-a264-51551af1dc77
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
89
450
250
20
-
89.28435
450.8743
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
- Draws Rhino Curvature Graphs.
- 5cbda035-78a6-49e1-bc63-6d8b78998d5b
- Curvature Graph
- Curvature Graph
-
356
501
71
64
-
413
533
- Curve for Curvature graph display
- true
- a0ca1a0e-cbeb-422d-97ac-6bb51c73d82b
- Curve
- Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
358
503
40
20
-
379.5
513
- Sampling density of the Graph
- 82986a14-b7f4-46a2-923a-d5796d52aa6c
- Density
- Density
- false
- e5a2bf12-6574-4c19-848d-8871fc76cafe
- 1
-
358
523
40
20
-
379.5
533
- 1
- 1
- {0}
- 5
- Scale of graph
- 059120bb-9495-4b12-b0f3-464a2d863378
- Scale
- Scale
- false
- 83a16af3-1073-4b04-bad1-a89ab18700fb
- 1
-
358
543
40
20
-
379.5
553
- 1
- 1
- {0}
- 105
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Linear distribution
Linear distribution
- 476fd755-34c1-41fd-94b7-5d27abb8249b
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
496
175
100
100
-
496.2162
175.8607
- false
- 0
- 1
- 0
- 1
- 1
- 0
- 71629651-0343-46d7-ac9e-d6041f9fe66b
- Linear
- 0.25
- 0.75
- 0.25
- 0.75
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- sin(4*atan(1)*x)
- 82eb3cd4-0390-4f09-a917-57e17ff721ba
- Expression
- Expression
-
459
482
367
84
-
729
524
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 995b6377-1efc-4d78-89de-fceed0c461b6
- Variable X
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
461
484
188
20
-
556.5
494
- Expression variable
- 7d6761e4-0d16-4147-b712-3a37c9a0e5cf
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- 0
-
461
504
188
20
-
556.5
514
- Expression variable
- f823d676-a5d4-4ecc-9c6f-db91da944fb4
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 0
-
461
524
188
20
-
556.5
534
- Expression variable
- c2796797-c80c-4619-b81c-a427bea8133c
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- 0
-
461
544
188
20
-
556.5
554
- Result of expression
- 373c6a08-8824-4c99-a557-ae06da3113d5
- Result
- R
- false
- 0
-
808
484
16
80
-
816
524
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- 87ff8105-2e9a-4775-93c9-e06b14dd7f83
- Curvature
- Curvature
-
1004
501
140
64
-
1074
533
- Curve to evaluate
- 23e95288-b807-41de-8f49-8399b01a42d3
- Curve
- Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1006
503
53
30
-
1034
518
- Parameter on curve domain to evaluate
- 8b12d188-950f-4335-b199-9062498f2aab
- Parameter
- Parameter
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
1006
533
53
30
-
1034
548
- 1
- 1
- {0}
- 0.5
- Point on curve at {t}
- 18dbee9f-1506-455b-b657-289702f7e0c4
- Point
- Point
- false
- 0
-
1089
503
53
20
-
1115.5
513
- Curvature vector at {t}
- 32eded9f-30ee-4e0f-ada7-49db7fa1257d
- Curvature
- Curvature
- false
- 0
-
1089
523
53
20
-
1115.5
533
- Curvature circle at {t}
- 8b5d83b7-ae43-4de7-a467-9924c3742f73
- Curvature
- Curvature
- false
- 0
-
1089
543
53
20
-
1115.5
553
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 6db8ba10-69cd-44aa-b46c-8f9438ba262b
- Deconstruct Arc
- DArc
-
1165
497
65
64
-
1196
529
- Arc or Circle to deconstruct
- 51317f3f-3050-425a-a722-3a7261c4c518
- Arc
- A
- false
- 8b5d83b7-ae43-4de7-a467-9924c3742f73
- 1
-
1167
499
14
60
-
1175.5
529
- Base plane of arc or circle
- 6af7723e-ae31-443d-a80c-93de3ed8f828
- Base Plane
- B
- false
- 0
-
1211
499
17
20
-
1219.5
509
- Radius of arc or circle
- a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362
- Radius
- R
- false
- 0
-
1211
519
17
20
-
1219.5
529
- Angle domain (in radians) of arc
- c9cf1cf1-9b72-4b32-a69a-c4430a4e8787
- Angle
- A
- false
- 0
-
1211
539
17
20
-
1219.5
549
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a235a197-60ae-480c-90e3-7cda396883f0
- Panel
- false
- 0
- a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362
- 1
- Double click to edit panel content…
-
1260
508
96
42
- 0
- 0
- 0
-
1260.479
508.6545
-
255;255;250;90
- true
- true
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff0daf69-230f-4e05-8c98-bf9c091a451d
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00070038828
-
81
234
250
20
-
81.07772
234.3882
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a16af3-1073-4b04-bad1-a89ab18700fb
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 114.0
-
89
548
250
20
-
89.11871
548.6367
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e5a2bf12-6574-4c19-848d-8871fc76cafe
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 1.0
-
89
528
250
20
-
89.27643
528.2802
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ecdc8107-f664-40c6-8a7c-3ba81b6844d6
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
89
410
250
20
-
89.30597
410.6705
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 402.0
-
81
194
250
20
-
81.42269
194.2125
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 04e916a1-e753-499e-a557-73ec31b3076e
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
81
136
250
20
-
81.06453
136.4197
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b20871fa-e78c-47ec-a58d-208c8959ba69
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 1.0
-
602
190
250
20
-
602.5042
190.6908
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABmmSURBVHhe7ZzpcxRHmsb9d+0Xf3Js7Ied9SwY49nY2AiPZwxhI0CAJJDQhe6zW1Krdd8I3RISEmAQp8Cg+z44BYPtwOPd2bFnxju7O2Z/3Y+dW13dSC1o1GpHZVRUZGdnZWW+z3vlm5n11ltO+hlQ4IWTYpYCP7If/b/mpBikAMA5EMYgbpYuOxDGNn703oHQgTDmKRDzA3Ck0IEw5ikQ8wNwpNCBMOYpEPMDcKTQgTDmKRDzA3Ck0IEw5ikQ8wNwpNCBMOYpEPMDcKTw5wVhf3//9evXY35MrzoAxm5Lr9rStj4XIIUDAwNXr17d1ve/mZeBxI0bN4IhCS6hGl3gPjo6ev78+QuWxM/Lly+rwk5OARAODg7eunVrbGyMe+ym27dvQ/G+vj6GMzQ0dO7cOe4omLNnz8KjKieR6e3t5S9GCn7kP/vss4v+RAYoufMUPD0+Pn7Hn2gZ4uw0RRUAYXV1dVNT05lQqaOjo9OXuIe8OqkQ8sHtL6Qnbrcb0kNuZOjKlSvkFxeXlpeX1x8/fLL+GCRA5eHDh8+ePTt9+jQoFhQUAPDi4uLv/embb75ZXV19/NhXMyEhoayszOVyVVRUNDY2Uu3SpUu0vHPkMgDC4uLioqIir9dbGZiqqqo8ngqG4Xa/9KqoKK+qsj9oa2fbfqanp09MTMzNzX3++efAMDU1tby88tu4vJQs7+z84tzcLGl9ff2rr75qb28HoZSUFCD58ssvgW1mZubBgwdknj59CgfA1l1dXS0tLXT+1KlTSUlJ8AfA7xxZDIAQZaIxczcJBXLz5s2Kiprc3NL8fFfwVVDgzs/ncqGOpqenYPCIp7t379IrekJGOi1k4l+6DQYoSdQjcoYwLSwsAOGjh/fdle1/9/efujytS4vzQAjGa2traNT8/HwkjMzk5CSow8eooqWlpfv372MLQcv6drSrx+MpLCxEuHcIigEQwm7B3QI/DHtSUvrg4MXbtydv3Lh7/fod7v7rztjYxK1bk83N7fHxyV1dPbIxShgSc+8JTPBK+Km7uxvLBDZQjTbRe7Jt5kUmg6mjt62trQcPHgRyEAKS4eFh6gPkvXurA2dH8F1GRkYwkFRGc4IHiqeuro6xgzfNlpaWoodAncd5try8XMZVLgLPIohoVBXuhBQAIVol2AGDKFDwxImMsbHxe/fWl5cfwKDcuVZXH3IfGbl08+ZdZLGgoMTl8ty54xNgpIQxc6dBuHh+fh5qmoQQQKNNE4/jXeGIHD+e2tXViU4zpEREEDI0nknoPdQAQwCStrY2AQ/F5Z6QOX9+5MqVy36fxee2yHkBDNoUWyC+9JMMfOxTtbOzVIAppYdgFKBFQLkDLSU7AT/6EAAhXYfRbILol8ILx4+nX7t2a2np3tzc8tzcCvf5+dXFxXslJe6hoQsrKw+ys4szMnJKSz2rqyvQYmVlBXLA+xACpYRpeWRJUB8MrAAE56UGaWR09OpHH32Kx5GbmwvqEBRFDWA4I7+zpOfPn8M0yBMkhmkgPXK2cULmAInWSkpKkF1GSld5KUkyB5y8FIWBsNbW1sIHcCRGcYeoUPFQAISwWG9vH+ypAWgWReby5dGkpLQrV8bQRjMzy1ygCIT9/cMXL14lMz29mJ6e19TUUl1dg0No9U6VRzhIVu9U1aw1VYeE+YGgSk1NjVVV1bW19RgqlDEkxgcBXRL+CJxh0hdffMF45J7Qf/AIJwEJ1cCSdyHEklpMILYDZYuMAiH9gSZoTjijpqYG+d65HinEgoDoKxITCIbECOk9DHjoUCJe+vz8GmjNzvog7OsbunIFtr3Pz6mpheTkU6WlbuZgjNCasDH+2UgnxEW/NTc3wygNDQ2IC+SQ9wuP41BgdUj4e7i+GCQlvxvs5l+kMDExEeFG8KDmyurqk2fPhCUJCaecDiN2PLVVX0P2HsyYM9BDWsjOzqZXiLLhZl7KKKAMPL1DVGgIKezvH5ienoTXIAETifj4ePyCtLTUkydTDxw4hhSC3PT0ElLY2zsIvsgf4AHq1NR8cnLWsWOJQMLIrclMJBg8mNXX18PakAk3He5GCsEY8cLSSOlpMg5BFSuBgZAJsEEfwASoaCGGo7kyPv7l8+eP/BbxHlZ6fZ2aPALYZMLUdYAHNnAq5g0Oo4d0T4FGLLoxeNQBTphJmmnnQtjQ0AixGICQgLgQFEIjBHFxCaOjN8EMFMGPwNPc3Ork5LwgxBvHZQWIiYlJRrtpMqEfeFzJqvT4V6EQOAk4ARjwpNOwrCA4NTPD7CF/715PZibaDe3HIxgwZAhJhfk29jXAQMiBBI/IQ0HToDwYvkIwVpBoHIARTThj53gxpocBtvC99/a8/fbb77zzTlZWFjYccaT33M+dGz54MHF0dAzAiovd58+PAiRT54mJea7JyYXx8dnExDQk6nWUDJSVQMBDSAMkw7eE8ZFj6AuEiBfuDFAtr67O3rlzet++9qqqiSnfTHR6epo5AH2mfrBHptHKriuchtCjzEEOrQCLGOSCJUz44e/IRdhR8hdCkWLSMeaHDx9GhUJESEYw6fbtW2in+PgTSB72r6urHyD9+OmaRQTHx2cSEtLOnOl8NQgFHjwOTsyaAQ/JQD4IjImNyCCRqF+kE3PIfQremZ29//gxDg6JGR7QIo502DYv4qcCvwwNYwY3aG6g+OfGYU/pT/qz04JqVk6yT+1x4rFSQAhBUV8QlPEDYVzcsfr6ZgwE/sv0NPEO30WGa2YGWzh35EhKe3vHK0AohJAGoiTwDSaQEmgnlYVWlIMDPxGuROAIdVKOg7qwSKjs/xPlaF0kRmsUYEYjZCjEyMlHg0f5KY7ZVCVSB2Hl7cjozpS/EFLIjGJkZJgIE+ChvtBOMCDcigRgCw8dSiLGlpFRkJn545Wenu/PF546VRgXl0hAZktDlUHCoxF4UAoPwsgQhAbavLw8rDJ/YQXRePwLaHQMv8aWEEQkBnVHI/AfShWZhgMQO14BF8q3DHPxiEaYAuEEQKZNwY6udrUtNg3hTMPIkAAg0VeMH/VFYBIvMiUlMykp9fjxNF0pKRkff3zg0KFjqan4osmEZiBTmARizICHZtPMAcmDZDY7JJ8QSOjS/v37jxw5gm6gS4QLeJDHARUsTQJCuA1pJoGcHEuwl/0L342UyaQRpBbwwh9RtIAMgBBioTqkf4AQIWAYSCTmsKioLCuriGC3211VVlbNncvjqSOudvToiZSUtE8/PdrY2ELNTUcCXaAROg2nCXc3pE6jA1olQH/idyAQcBLdA2z+Ahj6RiNWvx8hwwQw3VQMJRxVGdxV+kb7yD3GUnTYdDhRr2BftZerDXWIceBQcMd4wIuIWl/fucePv1hZeahrbe3xwgJ+/AhOzerqo7y80oqKqo0hhLIQnQZx8GjZ7yuFDhbTAab51JEsCi3yzHOQLRQjcO7bt+/DDz/85JNPcE+YD2j91qqKt0pc3oLQoxXwenZOFHvTUQRAaPpNBjaEgtBR3kFaWnZ399m1tUf+AKnvIl7a3T2AbwicTKyLiipKS8tRuSFfiYhAXGRIKzVYNc0fQlZGFOAeqqmOcSkxyYCEb4KWQzSRYKQTsdOSLNYU0hsRDN/sqQ+8i8ACvMUrYgg/eh56B5v2ksDgAIkTiDpBCru6BliaIMBNRI0FCnaW4MODHz+5l5R4jh5NIpoGVJqESWHqJ/oZbkAroj8FyQbMxb+KwzELpB1sM1BhlbWpAGnDVMtrNb4rzEEdxBH9T8IXA2AelPNJNWnIkC9VHTgDVtjhzmfI/oeGUE45E0R8RT+9xvBlOjv7WZGYmVmanfXN68+c6UEW/VFv9jQ8YMm3osLb2uoLm2mSJ4mBmsgTUgKJRawNDIzQhWmQLZCgKWAjz7NGvELuXtGDklrBiUeDSBEcQO6xkXRGs0DZSNMHOSy8BRaJCeclGMXQEDJOhs2oUE2Qkn0Mv/71/p6eoaWlB4TTFhfvK8amqDfX8vL94mLPb36znwA1fuOxY8ek3KAj1MSB3MAtNHM4Omf0JHMJNkMgRsalDN8zNHACiabzJtZDr6yeKrxC+6gHv8sWG85LWBCKQyEi49eaLXu9Dh481tHRz7wesWOBt6OjVzFuXdhF3JnU1Mzh4XM4KZqNaRvEy2ySJoUKmuCMYNsQBYwcFNdyD27FBtpvUyOvCnRec3zudAwlzCuYrSOdqAcQTU1NxTCDpeqEzyhhdmAbqoWQQugOQYHBWDVgSE7OOH26m/VCtGh7ezeuJfqTMLeuhYU1phzl5d7xcXZj+NxOmB3et03ITJQSxwSHBbuo5QsyCqcZYSWDEEPcLcUKNqaXEXfpUoQvOTmZybvWtugJji5KWBMScV7sTSrEtnArIqjFQjkmjIVJPZsZ2Jk3PHypv//cT2HuHyOlzC4I0OCRsnnKOHjwAfCIu42VQsiwbfAH/yJ8CJyCJrYICCXMH5CSiDuHxvjBZOgYsSnzHOwucilvCPOJFadQnqrNfG6DYG3pFXYpZEiMBENoaCcIExJSursHkbyenrMABoT+hV+fd8q1tvYwO7uITRgGQuBni5jkDE8ED1MuA5QSaQAppGNiek8LqLvI7lLRzA+xQ+Csxs/mDfEvvdVSCcKqmDuawzjAO0o6AyCEpjgUOJBWIyQIjx49ztSwoIDB9+HXMMFgmtjV9eM1MDDCDjbm6xMTPqMCRYBNIZWTJ0+mpaXRLOZtS1FK2gFvKChBef1EO4QFNp35Wc0neKPMURugrpUvqze0Q6QzAEKQo6PYfNkwk/jpdpft3x93+HDSkSMnuPszx8nrio9PSkg4yUoF7gwSrNV5dCZRU5wa7beQddlSAnL4SccEtvRgcGWa0to1FlcRnHCSfC7pW6SQuT8SCVehbLkDJyWyOLYkk7Q9wmrfhAi7QTK41ZbQJJQMDPiuwUFfvru7i51N2sIEWuxTYhLJwrqm1domij3jXzJM6rVX0+x6CieDBGCWUGhYzXDqv6wO74WlcnJyyGy1D6ZNxkg3dBKDAWLOaZCZD34DLGvdzaUooEIQ24BiAIRsP2ETkXVbmDXPv2z9Y8UVlmQDINND7TsySY8/efKEErMxSZmQhbY6IX/SJimcmhvXoUt0Prhjr9Yy7WiwtBncPdZSoI+iwRvHoV7fOtBCAIQQWklbNNnWRyJjfurUAVsc6Dqr5JSrjpOsFIAy7JRE/aJCMCVy3CKC1uYBNiNPLMXRDya8sJL242q7AyXgB5cBJFIIAxrUnYyhAJQBUUiH+4P3hCGI7ATXBmSAFLLDWpusNR/CoUenSxVg2OkHJfLFAZvVc7OH06qOpKzA2Fpo/RmszQzr2NoxTamCGrHtCtfP4AeDy83j1kaUt6lTSiCCKTRb0YOHaUpM93Q2SvvBCRTA99AQq0kI/g3JYgCELEAgbSS2ZZLnjsyphMSo9FN3Osq+IwSUn9p7z0/uElMVqgSuVCFt6i+dWGDBHT5QifYv8VPl3K1PUaLWuFPO27VznmeV11PaimH+pSb12WWjv3iL6TA9IW/6oyMf1FEHGDj/mm05pnv8pZo8qN6SWE6h3H/shtMKc1SG3fF78UgJF+MeEqDQaantgFAhCSZDiB0OGBM7JA8p5I7HxcQAl4y/YC4GAGkEOZRShkLzU4Q2SQgxPGra/hLFRVO1oKSaOuFgeEtvUTVl9Kx50JTYyq39tPIl9dUf66v1Xmvn9bgp0VPBvVUFKAOcTDaIQOnYMER7Q/jZ3RntQ5GIaJeRuAzWM4XEXMSMTPggk5XikFK0NneVBP/cuFAtWJ8yoJq/gls2dcxfppGQXQrZgu3ZcDof3FtRBgjlkb7pCWKAIuWtTGCZ0DBj1cY1LYESW2FeiCzqjAFBVB2glZJ0ko0CogzKTOcd35wvqpYDINTpBXwWwmMkFDpo6c5P8EMnaFcuEOLXRBZCadSNGcKo7uBq0nU7IQEh3YBWiMF2Q6jjsjqegtgpkdenI0g6tKdIDZaSIIU5UfayTPifS2AWRVjcdlwN82wSryPIQiiEjLWcvMIlxPZs5dv/kyHwUsjIXUtX2yqF+uiM1Cmvt50ItIFhOx0YDJWiYpSbw4IbZMCAcGhGRgYjp5qOJMIoKAB5BCQ6RjmxOrpnCrU+rNMUVLCWRyuv88PbE12zK1I8YEK3kB45g981wQ9p4TctRK1hydEn+jCBnPWNkyqrPv49Th0Sr5OCSiglGMus5ptybROR82yNzuuR8BPnqyQ0/lVfX1Al6LK3b3ud7eeblr8QthDG13kfOJ0VIkJrRNSIor0smagS1awRJn6SAIOAhQKkX3/9NQepw0nUpD5zUCoDmPVrVHhSaHL4zBZ4BEI4T5uYbVTDrnNqFc8wOPEPBp4Kvir+hKHAgQPy0dHLnFjmDElDQ4v/YjtdG5m2tnZj2/yng1n9Z7E65MVfbzCoZh1mgDsDvRRQwCCjmpAkQmjWaIg1TxhC0RzEhZomssOsC9lVdIM6/EUFRYTDSdSkPi3ABDpDqhgjBKNj4IfA2SBEaMCBGbQ5UkMFdrRyRKSkpNrr5ZMxzVVVnIzxXeR1sWOb7W1ud21ZWZ1KyssbPB62Gdzyn4ZpaG0damoaaG4eIFNaWu/1tufllaHmNU8A/p6err4+Drf6rt6fMvrZ09sNt23DMoVdkUJ3kNO0gWUj6AgMwiY4AY8+BQHhiAMAv1bX/OtQ3WSwTJpoAyqCpTUHHZA3eVOiJREFXTVxJo9uRJ+z1k+b2kbMKl1IH48+I0boD+01BXg+apKfX1hfz4LXZ62tg7hK7KbgzvbSjs6LnT2c2xopKmTDv7eiooUtV2fOnO/uvsxXIXgQx42dC1RoOzNyun24veMCe/mam88CYUNDvf/Yze2hwfjVxX9YnH13dfGXKwu+a3n+l/Mz7y7MvMv9weo/Xr7wryPD2/EJtwApZDEQp1M0IhYDHRUyBUh9kQIwzJcqkBVF4JSQNu6USC4ViyFjIlKaeiuUo0OBmkKY4AAZRel4FsCoBniEiXFz2NEaFxfHJnw8BW2RCgaSEoUldSqYHa2JiSfY0wR+jY29bJ9wuepdroam5oG25oG6ktqW1kE2gYAoV1sbW16RubMuVyUyTwuFhd76xr7qoursj+Iqc8pr62GmnpKSKtQtLxoaunbx/G//58+/+Pbfd/3Xd7u///a97/+4+y9/3P3df+z60x92ffeHXS/++s8Tn+9hq8o2qNPAJd/qauwDXcSJgJ1xqwg04NqYmQY/9VkBHA3pEx3shm1ZxMAH03fqIAE6hL9MWEew6S7RNFNA4xkphslPgMSjgRX0SQU6QMtwFRqCn0wetONNW0zN5kFpLW2boHxycoIN+2Vl2LM+qM+RUGnF2tqulJT8j3f/ylXI1u/a4uKa7OwyrtzccvDOyMjj8zQnTiSnpRW4Pa2FB5IS/uWj3H3xxa6G8vKWjIwivjyAJk9PL25v2/3D/+7503/u+f679//y7ft//fNeMspzvfjbBzev/ROHFPgCz5t2agIgJLYmRQp1sDqQA2C4y6cgQ/RPEkCCyiBKEvsTjdOJXG0Rk0EFQrmj1nCiVeyC89SkPk8Bp6bGatBsYEQQ0dsoWKlNtAU/4SEYTu4rnSGxi6e19XRBQXVVFXuZ+FIF9w6OXbA5OTenPP6DD11F1ZVevnDSxIYYXV7vmZycovr6OpzekpKa2vpeT2lD3oEkd0FVTV03Z/Fzc904QH4pvH7tyr4XL3a9+O/3X/yw98Xf9r548YEv88MHvrzv596l+V/xrYLtlkIAAEJRDV0EfmCgVQiSRIo72IAlkiFoqcxP8DORXEip7x0wN6Ccu1V5Gi0aMkNNPcWL9P0CGxeb7aBk/D5FD0IpedVRXm2Vq6ur5QscqamFiYlZycl5ycm5x49nI3+eytNeT1tlaQOZwsIaVGtRUY3/qnW7m/Pz+XpXJd4IJ1PZQEKdytpub3VnTnZ5fr735Mk8AGb4HMm6eP7I0ye/WH/w3rMne56t26/fPd118/q/cVBzu6f2gKHv4uDOZGZmKsBtPQytvFnK0F4S2F+6l3J+UohY0AIL1oimwuJbkkLqwz2YSZqSCn1ZMmpT0i/tTX/8Xzu5WFBQlJfnBZjS0kZmvNy5yspayspbyz2nXa6mU6fKMjNdJ08WcqWmFlFy4MDRjo52LAWQ5+WxO6aSi/1A1MzOrjx6NI3v8lg80s7eXg7FhbhwVtlhFAWPFEdOkVmStjDpe6y2pJmUPg1D0lfpdM5dH4vh7p9v+ZJADf7k3QYlqq8z8ls1JGZyjazwQZuUlJysrBLrdepUsS4Ks7NdOTku1CNXTo4b+6dvyMEHfG/K68Xu1v50MfGoYbJo3KhN54UY5a12/tXqB9hCnaGlId319dyQSfFSk0wE1VqivFY5tpr0FKL8OozMswgkPAZThXNRE9MgJtAmbmvyf+Vz8zPMrwbD6zwVAKFVcSs6Fc5my03rSKy3lGhTivF1xiYXbEvp9d/4mh1+hcdDH057hYacR6JFAQfCaFE+Yu91IIwYKaPVkANhtCgfsfc6EEaMlNFqyIEwWpSP2HsdCCNGymg15EAYLcpH7L0OhBEjZbQaciCMFuUj9l4HwoiRMloNORBGi/IRe68DYcRIGa2GHAijRfmIvdeBMGKkjFZDDoTRonzE3utAGDFSRqshB8JoUT5i73UgjBgpo9WQA2G0KB+x9zoQRoyU0WrIgTBalI/Yex0II0bKaDXkQBgtykfsvQ6EESNltBpyIIwW5SP23gAI+eGkWKTAW076GVDg/wD9DAjTTub1cQAAAABJRU5ErkJggg==