0 2 2 1 0 7 d3b98059-03da-4b8b-a57a-069658ce8766 Shaded 3 255;199;199;199 255;84;84;84 638252831365521843 XHG..ⵙᔓᔕⵙᗱᗴⵙᙁⵙᑐᑕⵙᴥⵙꖴⵙᑐᑕⵙ◯ⵙ✤ⵙИNⵙᗱᗴⵙᕤᕦⵙИNⵙᗩⵙ✤ⵙ◯ⵙᙁⵙᗩⵙꖴⵙᗝⵙᗩⵙᴥⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙᴥⵙᗩⵙᗝⵙꖴⵙᗩⵙᙁⵙ◯ⵙ✤ⵙᗩⵙИNⵙᕤᕦⵙᗱᗴⵙИNⵙ✤ⵙ◯ⵙᑐᑕⵙꖴⵙᴥⵙᑐᑕⵙᙁⵙᗱᗴⵙᔓᔕⵙ..GHX 0 -471 1320 1 0 0 8 Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null 1.0.0.0 Michael Pryor d94849ce-6c4d-4303-8ff4-765a58e82529 Palette Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null 3.3.0.0 00000000-0000-0000-0000-000000000000 Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null 0.4.0.0 Mateusz Zwierzycki 4442bb24-c702-460c-a1e4-fcdd321eb886 Anemone 0.4 BullantGH, Version=1.5.8.0, Culture=neutral, PublicKeyToken=null 1.5.8.0 Geometry Gym Pty Ltd 2cd3c35a-cada-1a81-ddba-5b184219e513 BullAnt Bubalus_GH2, Version=2.1.5.0, Culture=neutral, PublicKeyToken=null 2.1.5.0 月之眼(邓国超) && 好多猫(萧启明) 8df4d222-85a2-467d-a510-b8dde333d730 BubalusGH2.0 2.1.005 GraphicPlus, Version=1.5.2.0, Culture=neutral, PublicKeyToken=null 1.5.2.0 David Mans a48ac930-c378-48dc-84da-26b2af9d8302 GraphicPlus 1.2.0.0 Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null 3.0.0.0 Michael Pryor 1c9de8a1-315f-4c56-af06-8f69fee80a7a Pufferfish 3.0.0.0 Meshedit2000, Version=2.0.0.0, Culture=neutral, PublicKeyToken=null 2.0.0.0 [uto] 14601aeb-b64f-9304-459d-d5d06df91218 MeshEdit Components 2.0.0.0 194 ac3c856d-819d-4565-a2cc-8d1cbdc05c97 d94849ce-6c4d-4303-8ff4-765a58e82529 Palette Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI. true cf580cd3-8c86-4628-8244-702ca09bb9a6 Palette Palette 190 -1128 256 1344 432 -456 True = Custom False = Standard 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb Mode(Custom/Standard) Mode(Custom/Standard) false 0 192 -1126 228 20 306 -1116 1 1 {0} true This input does nothing, it is just a spacer c8adee2d-568a-431a-9a3b-65078c21d9d3 Spacer Spacer true 0 192 -1106 228 20 306 -1096 Component_Normal_Deselected_Fill_Color f6b959c6-305e-4556-851e-dfe3db8616ce Component_Normal_Deselected_Fill_Color Component_Normal_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 192 -1086 228 20 306 -1076 1 1 {0} 255;255;255;255 Component_Normal_Deselected_Edge_Color 58f3f6bb-4870-4132-b2ed-38ba0cd16373 Component_Normal_Deselected_Edge_Color Component_Normal_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -1066 228 20 306 -1056 1 1 {0} 255;201;201;201 Component_Normal_Deselected_Text_Color 44b220b8-34dd-484a-947e-534161ff26b0 Component_Normal_Deselected_Text_Color Component_Normal_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -1046 228 20 306 -1036 1 1 {0} 255;82;82;82 Component_Normal_Selected_Fill_Color 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643 Component_Normal_Selected_Fill_Color Component_Normal_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 192 -1026 228 20 306 -1016 1 1 {0} 255;224;224;224 Component_Normal_Selected_Edge_Color 3e3bf076-2f8d-473e-8fb4-f92db28df2ff Component_Normal_Selected_Edge_Color Component_Normal_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -1006 228 20 306 -996 1 1 {0} 255;186;186;186 Component_Normal_Selected_Text_Color 095dd5d8-570e-49a2-8e67-cea92b6be7a3 Component_Normal_Selected_Text_Color Component_Normal_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -986 228 20 306 -976 1 1 {0} 255;92;92;92 This input does nothing, it is just a spacer d905c0b0-8e82-4b7f-8eba-51505c30c8e7 Spacer Spacer true 0 192 -966 228 20 306 -956 Component_Hidden_Deselected_Fill_Color 321957b9-2793-4637-848c-5ce91391c786 Component_Hidden_Deselected_Fill_Color Component_Hidden_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 192 -946 228 20 306 -936 1 1 {0} 255;255;255;255 Component_Hidden_Deselected_Edge_Color 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2 Component_Hidden_Deselected_Edge_Color Component_Hidden_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -926 228 20 306 -916 1 1 {0} 255;140;140;140 Component_Hidden_Deselected_Text_Color d4ff0608-c217-43bf-90b9-c3174669c5b5 Component_Hidden_Deselected_Text_Color Component_Hidden_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -906 228 20 306 -896 1 1 {0} 255;66;66;66 Component_Hidden_Selected_Fill_Color fe81550d-42f1-474d-82fa-fc63ded3a33c Component_Hidden_Selected_Fill_Color Component_Hidden_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 192 -886 228 20 306 -876 1 1 {0} 255;207;207;207 Component_Hidden_Selected_Edge_Color d242f68d-4dde-4615-b1e4-cfc397eef79a Component_Hidden_Selected_Edge_Color Component_Hidden_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -866 228 20 306 -856 1 1 {0} 255;148;148;148 Component_Hidden_Selected_Text_Color bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1 Component_Hidden_Selected_Text_Color Component_Hidden_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -846 228 20 306 -836 1 1 {0} 255;0;25;0 This input does nothing, it is just a spacer 4673c598-8f3d-4e72-b57e-b181a741ced8 Spacer Spacer true 0 192 -826 228 20 306 -816 Component_Disabled_Deselected_Fill_Color 7bde9353-e2ff-4945-b4c9-14b806259c72 Component_Disabled_Deselected_Fill_Color Component_Disabled_Deselected_Fill_Color false 1da98593-0ce8-41ff-a667-7c2be94a0815 1 192 -806 228 20 306 -796 1 1 {0} 255;173;173;173 Component_Disabled_Deselected_Edge_Color 71159c9b-1e20-4c06-97da-3c2eb5b91d32 Component_Disabled_Deselected_Edge_Color Component_Disabled_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -786 228 20 306 -776 1 1 {0} 255;135;135;135 Component_Disabled_Deselected_Text_Color 4b17e381-1311-43c2-8544-d1d5b9458697 Component_Disabled_Deselected_Text_Color Component_Disabled_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -766 228 20 306 -756 1 1 {0} 255;66;66;66 Component_Disabled_Selected_Fill_Color 12baaaf6-1012-42ee-86b6-cbdc737d8de1 Component_Disabled_Selected_Fill_Color Component_Disabled_Selected_Fill_Color false 41622ff4-285a-4767-ad45-9c5a68eb3205 1 192 -746 228 20 306 -736 1 1 {0} 255;145;145;145 Component_Disabled_Selected_Edge_Color c8896686-befd-4231-b333-7faff2e2c4fb Component_Disabled_Selected_Edge_Color Component_Disabled_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -726 228 20 306 -716 1 1 {0} 255;122;122;122 Component_Disabled_Selected_Text_Color baa2bdde-0550-4e7c-abf0-07aabbc25870 Component_Disabled_Selected_Text_Color Component_Disabled_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -706 228 20 306 -696 1 1 {0} 255;110;110;110 This input does nothing, it is just a spacer 156de1c3-5ce0-4b3c-b550-7dc589cf19f9 Spacer Spacer true 0 192 -686 228 20 306 -676 Component_Warning_Deselected_Fill_Color f011810c-2c52-41fe-a8af-3048783663f4 Component_Warning_Deselected_Fill_Color Component_Warning_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 192 -666 228 20 306 -656 1 1 {0} 255;255;255;255 Component_Warning_Deselected_Edge_Color 9edde004-fda3-4653-99de-fbc2c5927c8d Component_Warning_Deselected_Edge_Color Component_Warning_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -646 228 20 306 -636 1 1 {0} 255;125;125;125 Component_Warning_Deselected_Text_Color a7c322df-e6ad-4443-833b-a5027d642b5a Component_Warning_Deselected_Text_Color Component_Warning_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -626 228 20 306 -616 1 1 {0} 255;0;0;0 Component_Warning_Selected_Fill_Color 4332093e-f0bf-4490-9902-f6cb75830c83 Component_Warning_Selected_Fill_Color Component_Warning_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 192 -606 228 20 306 -596 1 1 {0} 255;230;230;230 Component_Warning_Selected_Edge_Color 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2 Component_Warning_Selected_Edge_Color Component_Warning_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -586 228 20 306 -576 1 1 {0} 255;0;50;0 Component_Warning_Selected_Text_Color 4ad8f30a-a901-41f6-9368-60f73d1feafa Component_Warning_Selected_Text_Color Component_Warning_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -566 228 20 306 -556 1 1 {0} 255;0;0;0 This input does nothing, it is just a spacer 83a35c52-95be-4aa6-b663-9f62ca3af846 Spacer Spacer true 0 192 -546 228 20 306 -536 Component_Error_Deselected_Fill_Color 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c Component_Error_Deselected_Fill_Color Component_Error_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 192 -526 228 20 306 -516 1 1 {0} 255;200;0;0 Component_Error_Deselected_Edge_Color f2d5a1d2-54e4-4d9e-849a-7a321a51c71f Component_Error_Deselected_Edge_Color Component_Error_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -506 228 20 306 -496 1 1 {0} 255;60;0;0 Component_Error_Deselected_Text_Color 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1 Component_Error_Deselected_Text_Color Component_Error_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -486 228 20 306 -476 1 1 {0} 255;0;0;0 Component_Error_Selected_Fill_Color 3c282599-5602-4c4f-a224-4e67e49976af Component_Error_Selected_Fill_Color Component_Error_Selected_Fill_Color false 0 192 -466 228 20 306 -456 1 1 {0} 255;255;255;255 Component_Error_Selected_Edge_Color 1cce579f-e827-4b62-a4eb-2db9743078b4 Component_Error_Selected_Edge_Color Component_Error_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -446 228 20 306 -436 1 1 {0} 255;0;50;0 Component_Error_Selected_Text_Color 45c987ff-932c-44a5-a12c-9b6313e72b8a Component_Error_Selected_Text_Color Component_Error_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -426 228 20 306 -416 1 1 {0} 255;255;255;255 This input does nothing, it is just a spacer 5b2574b8-2175-4877-90c0-7d3edea60d33 Spacer Spacer true 0 192 -406 228 20 306 -396 Component_Label_Deselected_Fill_Color 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1 Component_Label_Deselected_Fill_Color Component_Label_Deselected_Fill_Color false 0 192 -386 228 20 306 -376 1 1 {0} 255;50;50;50 Component_Label_Deselected_Edge_Color 602244c8-bf52-4371-a87b-388a0612939a Component_Label_Deselected_Edge_Color Component_Label_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -366 228 20 306 -356 1 1 {0} 255;0;0;0 Component_Label_Deselected_Text_Color 4f76b9df-5ef3-4336-a982-66c0a18b2f8c Component_Label_Deselected_Text_Color Component_Label_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -346 228 20 306 -336 1 1 {0} 255;255;255;255 Component_Label_Selected_Fill_Color 4755f628-28f0-43e7-9567-c9f4a6347eb7 Component_Label_Selected_Fill_Color Component_Label_Selected_Fill_Color false 0 192 -326 228 20 306 -316 1 1 {0} 255;25;60;25 Component_Label_Selected_Edge_Color 1a80ded9-3255-4d13-b155-c6a4b3fbc080 Component_Label_Selected_Edge_Color Component_Label_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -306 228 20 306 -296 1 1 {0} 255;0;35;0 Component_Label_Selected_Text_Color 7ceb31d3-04c8-461d-811f-f33619dd34a8 Component_Label_Selected_Text_Color Component_Label_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 192 -286 228 20 306 -276 1 1 {0} 255;190;250;180 This input does nothing, it is just a spacer d652999b-5a4b-41c8-a7b9-a9ae76fb5699 Spacer Spacer true 0 192 -266 228 20 306 -256 Galapagos_Deselected_Fill_Color b9fafc3f-9f97-4907-93d7-d61a29223c7f Galapagos_Deselected_Fill_Color Galapagos_Deselected_Fill_Color false 0 192 -246 228 20 306 -236 1 1 {0} 255;252;252;252 Galapagos_Deselected_Edge_Color 74a688e8-b34e-4091-9b76-27007c49de29 Galapagos_Deselected_Edge_Color Galapagos_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -226 228 20 306 -216 1 1 {0} 255;100;0;50 Galapagos_Selected_Fill_Color 1e33c84f-2937-486e-bb9f-9ab17866e471 Galapagos_Selected_Fill_Color Galapagos_Selected_Fill_Color false 0 192 -206 228 20 306 -196 1 1 {0} 255;255;255;255 Galapagos_Selected_Edge_Color 200dc3d8-e55f-429e-aac4-6083a05e41e4 Galapagos_Selected_Edge_Color Galapagos_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 192 -186 228 20 306 -176 1 1 {0} 255;0;50;0 This input does nothing, it is just a spacer f728dada-ea5d-41b0-b98a-8de512f00fc4 Spacer Spacer true 0 192 -166 228 20 306 -156 Wire_Normal_Color 0fcc9cb5-ff01-4adc-80db-8249b1cb1362 Wire_Normal_Color Wire_Normal_Color false ab85a55e-b675-4974-8817-fc5f46ae741a 1 192 -146 228 20 306 -136 1 1 {0} 255;230;230;230 Wire_Empty_Color 78a2afee-b670-426b-a371-999235a7e337 Wire_Empty_Color Wire_Empty_Color false ab85a55e-b675-4974-8817-fc5f46ae741a 1 192 -126 228 20 306 -116 1 1 {0} 180;230;55;2 Wire_Selected_Start_Color d41f6915-a75d-46dc-b44c-982c253a5b9e Wire_Selected_Start_Color Wire_Selected_Start_Color false 2251b2a2-b627-43f5-aa8b-4c758e59a7bf 1 192 -106 228 20 306 -96 1 1 {0} 255;230;230;230 Wire_Selected_End_Color 2410a63c-6af9-409a-b554-f2e05e8d3950 Wire_Selected_End_Color Wire_Selected_End_Color false 2251b2a2-b627-43f5-aa8b-4c758e59a7bf 1 192 -86 228 20 306 -76 1 1 {0} 255;230;230;230 This input does nothing, it is just a spacer be73375b-cea8-4bb4-b84f-47c1c53dba45 Spacer Spacer true 0 192 -66 228 20 306 -56 Panel_Default_Color This does not change the color of Panels already on the canvas, it changes the default color for new Panels 29278a69-6358-418c-aba8-2f26dfb10578 Panel_Default_Color Panel_Default_Color false 0 192 -46 228 20 306 -36 1 1 {0} 255;255;255;255 Group_Default_Color This does not change the color of Groups already on the canvas, it changes the default color for new Groups 99defed7-0c8b-446e-be4d-436c05592d1b Group_Default_Color Group_Default_Color false 0 192 -26 228 20 306 -16 1 1 {0} 255;255;255;255 This input does nothing, it is just a spacer 19fc00c2-190e-4e70-998b-e26dc4f9f8af Spacer Spacer true 0 192 -6 228 20 306 4 Canvas_Background_Color 8b28a632-1507-43a4-8735-9a181ad39bcc Canvas_Background_Color Canvas_Background_Color false 0 192 14 228 20 306 24 1 1 {0} 255;255;255;255 Canvas_Gridline_Color 72826570-5a41-4ef5-936d-59e648e96383 Canvas_Gridline_Color Canvas_Gridline_Color false 0 192 34 228 20 306 44 1 1 {0} 255;240;240;240 Canvas_Gridline_Width f2e7af00-bbdc-4f45-a020-e3f2020b5345 Canvas_Gridline_Width Canvas_Gridline_Width false 0 192 54 228 20 306 64 1 1 {0} 2 Canvas_Gridline_Height b32ba782-b9e0-40b1-9b49-c17de5b67dae Canvas_Gridline_Height Canvas_Gridline_Height false 0 192 74 228 20 306 84 1 1 {0} 2 Canvas_Edge_Color 5859d87e-580c-4f1f-af8c-3683e3dc94d8 Canvas_Edge_Color Canvas_Edge_Color false 0 192 94 228 20 306 104 1 1 {0} 255;207;207;207 Canvas_Shadow_Color 6f769f3e-eb42-4a27-af68-d95482a87942 Canvas_Shadow_Color Canvas_Shadow_Color false 0 192 114 228 20 306 124 1 1 {0} 0;237;237;237 Canvas_Shadow_Size 57186c1f-9afb-4410-9800-b9138d1f1a74 Canvas_Shadow_Size Canvas_Shadow_Size false 0 192 134 228 20 306 144 1 1 {0} 2 This input does nothing, it is just a spacer 288db22f-a056-435a-ba44-1260facefde8 Spacer Spacer true 0 192 154 228 20 306 164 True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee Monochromatic(On/Off) Monochromatic(On/Off) false 0 192 174 228 20 306 184 1 1 {0} false Monochromatic_Color 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb Monochromatic_Color Monochromatic_Color false 0 192 194 228 20 306 204 1 1 {0} 255;255;255;255 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch b5a6a551-46d2-4806-81c1-4e694142c31a Colour Swatch false 0 255;209;209;209 48 -299 60 20 48 -298.8022 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 5d9fa098-4495-4ddf-aeb5-b9e61060f110 Colour Swatch false 0 255;255;255;255 48 -1079 60 20 48 -1078.802 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch a5070296-591f-454e-b939-4e1ba45b08e2 Colour Swatch false 0 255;115;115;115 48 -339 60 20 48 -338.8022 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 2d4bf402-3325-4e67-89d9-d7cd367c5896 Colour Swatch false 0 255;227;227;227 48 -1019 60 20 48 -1018.802 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch ab85a55e-b675-4974-8817-fc5f46ae741a Colour Swatch false 0 255;222;222;222 48 55 60 20 48 55.94703 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 2251b2a2-b627-43f5-aa8b-4c758e59a7bf Colour Swatch false 0 255;168;168;168 48 115 60 20 48 115.947 de131812-96cf-4cef-b9ee-7c7031802751 00000000-0000-0000-0000-000000000000 InfoGlasses To show the components' advances information.Right click to have advanced options true c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24 0 true InfoGlasses InfoGlasses 0 0 255;255;255;255 255;115;115;115 true true true 255;59;59;59 1000 8 false 0 false true false 2 1 8 false false false 235 -1174 176 28 340 -1160 Run 72e93834-66d7-4933-aef0-991e6bdf6f81 true Run Run false 0 237 -1172 31 24 312.5 -1160 1 1 {0} true ab14760f-87a6-462e-b481-4a2c26a9a0d7 Derivatives Evaluate the derivatives of a curve at a specified parameter. true c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260 true Derivatives Derivatives 551 -4719 120 144 630 -4647 2 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 7 fbac3e32-f100-4292-8692-77240a42fd1a 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 Curve to evaluate f3ee6bc2-fdad-4aa8-bc05-a096970cebc8 true Curve Curve false 0 553 -4717 65 70 585.5 -4682 Parameter on curve domain to evaluate 04c36552-d571-45f3-874e-eb0200b47d22 true Parameter Parameter false 0 553 -4647 65 70 585.5 -4612 Point on curve at {t} baaac401-d9a7-411b-805d-a15c35db80eb true Point Point false 0 642 -4717 27 20 655.5 -4707 First curve derivative at t (Velocity) d5b87ddb-341e-4bd8-afdb-367567c6bba3 true false First derivative 1 false 0 642 -4697 27 20 655.5 -4687 Second curve derivative at t (Acceleration) 2639343a-12c6-4387-90cc-a3114bd783d6 true false Second derivative 2 false 0 642 -4677 27 20 655.5 -4667 Third curve derivative at t (Jolt) 06921a77-02a5-44a5-ab76-62a2ec504ada true false Third derivative 3 false 0 642 -4657 27 20 655.5 -4647 Fourth curve derivative at t (Jounce) 92510296-d128-4ce9-a581-482c09cbc15e true false Fourth derivative 4 false 0 642 -4637 27 20 655.5 -4627 Fifth curve derivative at t ce3af00f-0726-43e6-b974-248803cfe0e6 true false Fifth derivative 5 false 0 642 -4617 27 20 655.5 -4607 Sixth curve derivative at t e943f2d8-f1f9-4bb1-aef8-c108ef86c002 true false Sixth derivative 6 false 0 642 -4597 27 20 655.5 -4587 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true a28e949a-03f8-43f8-b244-d21a8d6e41e4 true Line SDL Line SDL 433 -5982 179 64 576 -5950 Line start point 79adb25f-f822-4463-a547-0638ba3af362 true Start Start false 0 435 -5980 129 20 507.5 -5970 Line tangent (direction) 03636d62-1370-4942-88f4-857a65464d92 true Direction Direction false 06921a77-02a5-44a5-ab76-62a2ec504ada 1 435 -5960 129 20 507.5 -5950 1 1 {0} 0 0 1 Line length 71e8a980-e875-42d1-82e8-80286c8cbc52 -X true Length Length false 0 435 -5940 129 20 507.5 -5930 1 1 {0} 1 Line segment b317086f-b6bc-47a5-ac87-3e7d34547ac2 true Line Line false 0 588 -5980 22 60 599 -5950 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 391756f9-4358-45d1-936e-c496ba6104e0 true Create Material Create Material 471 -6106 152 104 569 -6054 Colour of the diffuse channel 99cd1941-02ef-4b60-9081-2924d6df2987 true Diffuse Diffuse false 0 473 -6104 84 20 515 -6094 1 1 {0} 255;232;232;232 Colour of the specular highlight b4fa067f-1df1-4344-b55f-bc629475264a true Specular Specular false 0 473 -6084 84 20 515 -6074 1 1 {0} 255;0;255;255 Emissive colour of the material 38f16f51-687d-44ec-9aab-4b4c5db2f705 true Emission Emission false 0 473 -6064 84 20 515 -6054 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent f0216951-6a43-4fe8-8f72-957347479ac7 true Transparency Transparency false 0 473 -6044 84 20 515 -6034 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 1a0cdefa-8194-428a-b2af-d416a232075e true Shine Shine false 0 473 -6024 84 20 515 -6014 1 1 {0} 100 Resulting material 200bbd93-5b58-4c27-8078-0adeb21b162c true Material Material false 0 581 -6104 40 100 601 -6054 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true d7be4360-884f-4c85-be96-44fb8a798a7d true Custom Preview Custom Preview 584 -6169 76 44 646 -6147 Geometry to preview true 7d2280d0-5877-4448-8407-b4d0b2e99066 true Geometry Geometry false b317086f-b6bc-47a5-ac87-3e7d34547ac2 1 586 -6167 48 20 610 -6157 The material override 0ab4a55d-2d50-496f-9431-24974e37bb78 true Material Material false 200bbd93-5b58-4c27-8078-0adeb21b162c 1 586 -6147 48 20 610 -6137 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9 true Evaluate Length Evaluate Length 476 -6253 147 64 559 -6221 Curve to evaluate ece5eb15-d68e-4325-8ac6-14e1983b8848 true Curve Curve false b317086f-b6bc-47a5-ac87-3e7d34547ac2 1 478 -6251 69 20 512.5 -6241 Length factor for curve evaluation b7b17610-8182-4eb0-beff-f9003e5cd200 true Length Length false 0 478 -6231 69 20 512.5 -6221 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) e9204942-5fcb-43c4-9bd7-bad7da1f1095 true Normalized Normalized false 0 478 -6211 69 20 512.5 -6201 1 1 {0} true Point at the specified length 0b07833a-e9b0-4c65-b08a-a86c6f095e42 true Point Point false 0 571 -6251 50 20 596 -6241 Tangent vector at the specified length d4d0d2a3-7672-4c9b-847d-0720f0276387 true Tangent Tangent false 0 571 -6231 50 20 596 -6221 Curve parameter at the specified length 4821c9f2-9535-42fb-89a8-46c9b7c32eca true Parameter Parameter false 0 571 -6211 50 20 596 -6201 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true f8bf8b17-5f64-4003-9ce1-9026aaac4695 true Interpolate Interpolate 388 -6357 225 84 561 -6315 1 Interpolation points 5b1939bb-f0f0-413a-9564-dbeb140f85b7 true Vertices Vertices false 0b07833a-e9b0-4c65-b08a-a86c6f095e42 1 390 -6355 159 20 469.5 -6345 Curve degree 03f9d6bf-b682-46a6-9e8a-34324164c9b0 true Degree Degree false 0 390 -6335 159 20 469.5 -6325 1 1 {0} 3 Periodic curve cf0efaf9-d364-4835-a799-f77814defd1e true Periodic Periodic false 0 390 -6315 159 20 469.5 -6305 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 68ab4f2d-155f-49e9-9089-6cceba7398b5 true KnotStyle KnotStyle false 0 390 -6295 159 20 469.5 -6285 1 1 {0} 2 Resulting nurbs curve cd554e84-a87c-47bc-a79c-19347e2f0445 true Curve Curve false 0 573 -6355 38 26 592 -6341.667 Curve length 84582cb4-6638-42b4-a325-f4e841513b71 true Length Length false 0 573 -6329 38 27 592 -6315 Curve domain 2d16f12e-6fb5-4594-8c47-80e046dd4a10 true Domain Domain false 0 573 -6302 38 27 592 -6288.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 59480eb6-f67d-4aed-af3c-80bcc65b0c97 true Create Material Create Material 471 -6481 152 104 569 -6429 Colour of the diffuse channel d0a233c4-5cbf-47b6-b827-30877f3c0605 true Diffuse Diffuse false 0 473 -6479 84 20 515 -6469 1 1 {0} 255;207;207;207 Colour of the specular highlight f52f3c21-e882-40ff-8233-68e3e5495edb true Specular Specular false 0 473 -6459 84 20 515 -6449 1 1 {0} 255;0;255;255 Emissive colour of the material b9730379-a406-4b51-a3c9-a8491583fea5 true Emission Emission false 0 473 -6439 84 20 515 -6429 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 34d39782-03a8-4ac3-8ce4-9b4b5b91336e true Transparency Transparency false 0 473 -6419 84 20 515 -6409 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine cbcb1a83-292f-4d78-a691-b5e20a9d993d true Shine Shine false 0 473 -6399 84 20 515 -6389 1 1 {0} 100 Resulting material d1ae5845-db5c-4627-82e9-c54c822208ed true Material Material false 0 581 -6479 40 100 601 -6429 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 570796f7-f90e-4361-858c-c1f014778449 true Custom Preview Custom Preview 584 -6544 76 44 646 -6522 Geometry to preview true 501744d7-62ef-4952-a5df-acf7700d473f true Geometry Geometry false cd554e84-a87c-47bc-a79c-19347e2f0445 1 586 -6542 48 20 610 -6532 The material override e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8 true Material Material false d1ae5845-db5c-4627-82e9-c54c822208ed 1 586 -6522 48 20 610 -6512 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7bba5658-4cbd-432f-a660-fc5cb3f3794c true Quick Graph Quick Graph false 0 baaac401-d9a7-411b-805d-a15c35db80eb 1 547 -4882 150 150 547.7125 -4881.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 167436ff-de50-491f-8e47-5da60e700291 true Quick Graph Quick Graph false 0 d5b87ddb-341e-4bd8-afdb-367567c6bba3 1 547 -5051 150 150 547.7125 -5050.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7 true Quick Graph Quick Graph false 0 2639343a-12c6-4387-90cc-a3114bd783d6 1 547 -5218 150 150 547.7125 -5217.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 8afb402c-3b86-45d3-84ea-d3432b3a52a6 true Quick Graph Quick Graph false 0 06921a77-02a5-44a5-ab76-62a2ec504ada 1 547 -5387 150 150 547.7125 -5386.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1 true Quick Graph Quick Graph false 0 92510296-d128-4ce9-a581-482c09cbc15e 1 547 -5557 150 150 547.7125 -5556.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph efd6e82c-6389-40c3-b1fa-a1f3d7f406cb true Quick Graph Quick Graph false 0 ce3af00f-0726-43e6-b974-248803cfe0e6 1 547 -5727 150 150 547.7125 -5726.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph dc664508-b5c0-4996-9899-a06cb3c1f6cf true Quick Graph Quick Graph false 0 e943f2d8-f1f9-4bb1-aef8-c108ef86c002 1 547 -5895 150 150 547.7125 -5894.101 -1 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 1da98593-0ce8-41ff-a667-7c2be94a0815 Colour Swatch false 0 255;196;196;196 48 -803 60 20 48 -802.8022 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 41622ff4-285a-4767-ad45-9c5a68eb3205 Colour Swatch false 0 255;176;176;176 48 -743 60 20 48 -742.8022 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21840820-7b03-45cf-914e-8d05118a8772 Digit Scroller false 0 12 1 0.03000000000 675 -3066 250 20 675.8207 -3065.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 154459f8-56b4-47e3-8f74-2be68cd83b0e Digit Scroller false 0 12 1 0.02200000000 675 -3086 250 20 675.8207 -3085.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 Digit Scroller false 0 12 1 0.02200000000 675 -3105 250 20 675.8207 -3104.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers fae63135-516e-4bfe-ab70-dc4f2b45ab66 Digit Scroller false 0 12 1 0.02200000000 675 -3125 250 20 675.8207 -3124.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c6aecd68-308a-4a6a-b29f-68933f542f84 Digit Scroller false 0 12 1 0.02100000000 675 -3145 250 20 675.8207 -3144.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c2a92653-9119-4312-8a0a-bfe4efc11ad1 Digit Scroller false 0 12 2 0.0200000000 675 -3166 250 20 675.8207 -3165.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers cd852686-49f6-43b5-930a-504e7c0e8fa4 Digit Scroller false 0 12 2 0.0200000000 675 -3185 250 20 675.8207 -3184.688 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers dd3e81a3-f392-4fff-9fba-35855c2e8144 Digit Scroller false 0 12 3 0.019000000 675 -3205 250 20 675.8207 -3204.688 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 2 Curve Curve false 329990e8-083a-43f7-baaa-90fed18836f2 1 875 -3027 50 24 908.2197 -3015.688 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXFNJ13dQmqCCigpiCRZEpNp1dSVA6E1BxbYS4QLRkMQkIFixN1TsiA117QXs2LHr2rB3V10L6rriWta18c3cEnIryUOAPO/3uD9duCd3cu//nDll5sw55r6y2OQkRKoqAX+MeDyeCfhbWy5JThBLh6QgCqVYJoWkCHAZkuEfM/gR4r4ARBSHKOBHTHCyBUEK9IWXa4BLwxLzWqTvvx20f/nEG6Nv/X7HLEKBpIiRkZBuAeimkYlglDgr/HIookyMSpMjkFwd/+JaOC1MpkgSSSClJbi6evXqEuKuSESCxKqQOIImFotLbHyReLFUrAJvEaGQyRGFSowoiWHhX2NfkQr9HnPwy67HSTPnTbtnbumLKGMVYrkKf3n4iDzjMFESQvz2pnp0gL+b25M9S1+tnAH+fbIkF/z7eMmOx0t2oz+gv+5eB/+dNwf9N/PxvEXqTxZmhcGfF0yGIyyGtzxZ/qv658cLFzxeuEj9scdLNqlHwz6GDfJqyS54fekE0lcT9+KPhFM3kR9vRen3zsxGP5zB9XP2ZvWA+L/4Fc670J/xN0K/UeMBNqmfDX9O4rFLP4NSsXfEvxR9dxxVdAQcH+JeOpIYwjja2BcRjMD5go9GYh8OL8pZNzf/gOgavYGEwamgJKYJ/FOLuOojS8YmUHViCgBhGwaEEZefavhl0yiRIgFBP9kU/Lroz5KSJs2AZA2QyZKIGXRh89eeJn2BOJO+qga8QvuaGr1j5SGiNFmySvOzFv4KWbKc9uGa/gGCEPFQhUiBTwEjfGaZkD4Kr5hhn0tDnxm/3VqgVCJJQyVpfskSieZUEEQkx8cjinixMtGF3xfTGD3au3nA/1z4PskSVbIC6SFFklUKkcSFH5E8VCKODUbSomTDEWkPKRjNihi6b6m+gSOb4aOYCpJViTIFcblWqDg2UYRI+BGKNJmiWmAcoWVWF61oPMSzb0iu6VzxjyKLUaQZa1H6mGYs31OnVFmED4XsU8PkCP6xxK6RwILXTbHrEKNqOH7G/n1KdZ/nr71PDczd5LfxV6vzx8d9XEx6KhOUVzV8ZFKVSCzF9KgTPoqpt0yBq1aCMaY+MoksWUFoOPh/Jl3VVMBPgOPyZfF8f4VIqUyUyYHu48uwt6oW6ItKD/i7oPerMf0/JITNdH/t9uVl8mJAMsJJJTF3b/z+oGXwwl47hmRd+M0CkKrhJMXoHy5FHpa+ub/l/mmfF1wfkKrjpCcO3UQFbrNCtqzZ4vkGsXICJGOctOOMIOWLvW3A0eeP5naxdngISCY46f2NJ/lr6hWF5Dx/MXhy9JaXgGSKk1Ydam9z43tN/8NG1fLHNc36AkhmOEmeG7Jyi1U3YXqDOYLAVuNGApI5Tpr46RCv9hHj8LxDXYyu7PP/FZBq4KTpJ071OfpHrZCtk5/M6/Lyc1tAssBJ0r2ur06/3C7c/GhLTFen/f8CkiVOqn5w+A2Trj+8ct7Mf7TTvf8NQKqJk2aOa/Xtzc2hfotqRbz5EGE/AJBq4aTUjw0c2sqzgteOm2W27POMfoBUGyd9e9Ky28U3HYP2dY10HbE65gMgWeGk7wcEKwYsWuubXaPkyto7k80ByRonNWu24vzsDo8D5q08e3Kn/5cFgFQHJy0Nfh1SsKVLyPy9bRuvHNDLBZDq4qQ3a2s2zntoHb4zplfcA/vmJwGpHk5yqHGsrUfwO0F+1LeCeSYNugCSDU5qNEi+om7nt4GLjPdbjqgduASQ6uOkh68+bJg9uUHA9mPDn1pvXbYJkBrgpKLWwtNfM3v6HFwmcI8d++kxIDXESeNnZ5mfffvdb7rLtdzf1k1IBCRbnBRfP/Jfo6lj/KYZ7VNIHYKnA5IdTgrPyp+YWj1MsGZIQt3X5pO/AlIjnHQmuX2Hv8elhx56uO7ODfO0CYBkj5MudVowcv7xwqC8uhsO8k9PcAakxjgpa8r1fV9WJAm2vXOoHSfNhhLVhJgOJ8VT6zbMEmb+LWx3PKTHa0BqipO6X212fcHKo4J1Y7ZOTBo+ejMgNSPe6+HG/humdAyfEP/iPo+3cCgg8XHSSnHSwt1r3YTrTLJvH/rRd695oO8QkgZxgJo5UKpUiaSxiH+yWK3MJikum9w5Wi3g6N7Q2Y8KRMYMasM8TBw7XPMyz0KgUinEQ5NVmIbHVTehooz0pqI6V6KKah+Vv+Rb4C2fjT1fdhbsu6rSUFHy3U1yTc2ShLm3XDrOmPhqkIaK2pJ7afvEN78H7xxqHfOmVk9rDRU1oU/Yx7PrU/02yWYETPdOO66hop7+uX/VO/9A7xlt28zlBfCfaqioXbnHfgTs6R8yu+ms4vNLCqw0VFSfqMZnmvYrESw90SGnRtT3DxoqKqq7XdLUlq/DZ4UZfZhUK/iLhooa66+SDVvn6X+w2rXJv9c8+l5DRS1rG9bU7+svYTuUy5ZtcJ6wQ0NFfclK9d0cyPPf2WBWjxeT+vytoaIWTBd2KLQf7bem21rh85O7WmioqOLxdepcnhoasCyg2e4o1zafNFSURWinT1dWNA/IDbrd85eW1y9qqKjCiL/zXF+ECje1WNO0lqfSTUNFzWy7Ns0+IsQ/My3bfufV3gc0VNS+pSfN7M0UIev73WxqduNkfw0V1Wb33bPvPr4Ozlj9zj2yX8OFGiqqWo+d80ftHxe++J+ferSbXnJdQ0Ud/zPi70ZWzsFLXVassNjgt01DRX3M7etnkesVvL+Fe52E3j23aaioe0P44gM3egcsd7jW++aQg6s0VNTMYYLPGRdWBe5Ie18v52loqoaK4v2R0DliT7F3Zst3bwdndL+loaJ4kf1fFFxfG7Tzmt1+k1l362qoqN6demTVi2wr2D1oRpDT3DeTNVTUNLuR9tm7LgTPGi1qePLPYXwNFdU3eYhP+5NpwbvMeuTZfFC00FBRIZdsT6/Ir+O3smB8fP1d7Uo0VNQHzwXCru+KA3b55By4PrhlkoaKMvlrRrKg/8yA6b0EAy/KArw0VNTW9+HrO39u6bvHYsffxyYsUGioqBaffvvTy+GY/3LTrfwp0cb1AMkBJ3V1PhTi7tPZb8eZwE6C4TvnAlJznDTcz7OP6a5V3hNqTckY9+AcdAFaEA8fNXnQluXGfkuHflrf8OConoDUEicddni7OGaarWDqmYW3e2w/fBSQWuGkdKfMzS2azvM+2OZA1JIBj20ByREnjQvZM+BM0ka/fUmdl83p16whILXGSa73+EvjPvcQzuq8omG3fkr4XU7EE/a7WntZSpug7A3Wji9P9pwJSG1w0qI6JWGd4saErnjd/P09ZWgvQHLGSWtd8xbcdpvhNZsfNTXi5Ny7gNQWJzVd2+O380mJfrvXbr+zgtfRB5BccNImo14tz4ZE+ky9mj3ErLvlOUByxUmn51ub/vzu99D1v654FHbx8GFAciOm3tQ1p2vWehu0vpebdXRQc3tAcsdJX+06/vpLu2ivw6v/+SPknIuMZjc82OzGlA0vogWO5wImvDyTYWE1trYe7EY1NrtxZH3Gzxu/5wbtKegedfagsi7pu0zDkpOGIgqy4TDDh2IyCe74J5V8ET9WJpFg8RM0EPESmUgllibw5TKxVMWXogMrGV+fai2YHon2/sT1cPR5sNUFNJoyjQSmLBYhTNGGx0vtxt7pErb/8rjE0LaFUywxMi1+osCpDv+8wQfj0EtwrvDynIW8GPkpHi/Am8crEJhEiFNk6Dhw1vK8XIQXM2WnakfAYEWpQqQqX5FKxB24mXorACCJPA2G0T9kHCFSJRKvXn20x1jjQBWSxOOVLvCYYgjDzxDhH4+X6YWLQ3U2cTiMrN8s/X4+ZLbLqV0eirqDSdjX8ElWpIhgLEiWCGhfTVkk4idhikiSLFIhfFUiwo8lBoAiIUJ/RfgiFfhRKUdixfFiJI4vFynAd6oQhZtpgDguDpGq8WKUFqoDwfLENIEpJWnJ6kInIU8+FrD6C2B1ujeF1YUugDr6lCX69EPEUnkyGk6a4SAzQVPHB319lYyP4BgxvuCYty+d/1y4JjBjoGW7Pms+TCBrA3QM2svhl8uaDFQ3qpyToRggFDEWnwzF1MmQDqfKGBJCRmUg1CqCkAU+0CKYtMTJkoDglYna/NQWuT2Cuwdvu3HzQMOsJgqyWKjHpYtFKaks9H70mycpqpntN616ulv3vtN26wE9IEEc6KWPOlUTQ0+WrMIFzJQDvvoRqK5VQwcm2mjVWEa47AcuuL/YM8Jrj9XjRn43+keShQwdhy5k2GUaTEw48LTHIdMVl6LuAIccKg7m7kJe3hgyDkZl4NBQPdX5KUD5yRRcSMQ9MTcN8ZkVsjrw5y6/vit8rbs+qRBErMdwIQLkhoRINe0RiRUrYiWcsnG+362SgPXHQjeLJH+dtHniZSCIFI7iQsRj1Cnc1sHAkNHWub0Y6vBN8Tl4Yf/rt903brYhvVdNX3GKOA7ho4qUbu7MWIBtg99G2DYwQYCiGpEskvAliDRBlchXIglwY0WplXGjhsDsj0hDn0TVEtZHQAVZpwJYPzGZOODN8KxTdDJxVmoTF4c+DeNL9lyRPO3O85oBk6cd2Twn8OQPwzVwvDZCXvFIgA+fSey8gIqOGMlo4Nj85bqY1wq9IUIuGCEqTK0T42inClth8fxit1HTNlAggq/DABF6uSyIqGGKHiDKS+GCCIhQFTvE8CY+5IgGpwiNycaphpFyiVil5hLUl8PF0uEsEcxv7Y1Xjm4WeHD2lxcNRszsT2ZXMLyPzi7ssr41JeSHPJmLH4WqKuGH2VCZTIKI1AqQR3NtCMViKoiNRZRKzeEZdQ1UeHBPCAsxmTmz4r7IdOOth4I17U2eCeOCjpBjS9ShobOGuK533rji6mQQE2/y3VB1QvN0dISleZRImgAYi7s+qOTGaYHUnsbIxpXBswSTQm9NX3Qg6DEJKXN8UDpWpZSKQAvVLKxoAc1C84J0RKtFacQBowtEa7iowQBl45IYlQ6YJq0iIEMnPytkYPLjbpIJj8VNWjV68Y2/iob7bNzW5vuly+1uMJhnsn9UgwPf1qwLREBoEIU4FvObtPOOqNbdLFQkl4ulCQRS8HX06Ew8aW9cr8aDg6FzVi0c5hQe0KmcllIOdK+HH2DOTIalowHdXIXTYoQEc0zZmDPUaWqLbOMjXnuiW9puPn+nAel1rXyRWBnATZEcq+ILFLF0N9aEhU0/9UbAKyAp2KrNUJES4cslIiniwleI4sTJgHvSOPA3QaKOx+F6jpQvUsRqt2pD3aXhfG4aw6gf0BLxdGALIyYAxC8wubc5bQE1XSf3tjH4bj4IJ32wGAq6uaUPxvjeD/emv7J/N8Bv/7B2mcLwk/dJ712d6V3Ri2WJJjVEK6do5gCgvCBQOQIgp7Q4wBkFSqelCHtvtQyhooLhhsWejECtvWy08Z5Hqt+BZj3rt1Yua0LWp+hoEXA0uj7VoOlbn8a44LhEM+lTa6BPi9N1XJrojc0nrTDx3XPo+JFZD3xnLrzZbtxIy3/Izgs2Et15wa9XBBY56VxYUGWkrEUJvkBToTiBv1DZiKTKNjg8jKCY55+uZ/wh12f72xWqV8WfHpEVPjokXeFjlysCEh4nJDHjCY1ORIU0je4+f2xak24//Ob16TiLt6z/ErLgh4P5E54CvJNoujKvzoJrPR9ZEoAfTDw4+eDNqdopaep+Oduj0OdgKU3bxU+gcQozAXR5ALpHVOhyALAxmTqpZstA+CnMiWN8uWUv6vw4tb1P+OaGZ9rdihRRVjz7wvvocoNdLksbUzdxy6mNrYG+LYDYFAkY9pg+O6PY6KSNa4ajH+NA53XccLuaA+qH7/FKudv+2qNsiqpBlMkS+ooDcV3v88oVB+AzEwDRbigA+LwyZ5tXI46K24rDNvvsOxIuefF04FvSG1n2SgbvArNY5InMzqyW8UNLX7ESWLk0uKOFqKDeSnMlAgno8ybAb2BEnJqBwvp8NNhJRBr2NSJlClW4ZooPg8RSM0i0lFj1aNS4wwmwZDFgWAMf+Jfi2lo4CX2jF5+qRSR7B0rjkFRiOPh/nJU12Fj5um9YiLH7vz6L1l7wWx0eOIAElXEIYB1dORqzMMzBR4HA3UkRXwI+zh+KqEYiiJSvGinDoz3tVCU1SYj+SDS2oVd18FwL5+CeqwfNcwXzgz9HJ/VoDb+cD95DocLek/Gt2tgtf2L0arVw9qCJW37U2mVLlslI9G7mvSESsSx9Sd180oP3WgDBimBc8gJuvnyOTtuQtVGwEBDysEP1dM/PHXa7PvXedKWvqHde1wzyJokQ3MsMlAapLJioLrEeYOJzwlQ4W0ezggkVtkTKiFJiUlpA7wd7fLYddak2ZcS0FtpOE/2bFDdcRvIEcGmU6qq5o9DgesiCTQ+dWyYK+d61of/E9U3NXrUYTV5MNEfBiPQN0T7q9ibrIhxIEFPGg1/j+EPTNCesC1+FL+zBWBzbXHIbq5WyoqYtMj83fWmPoGiJsRcQMKfdAOP7TOH2I6C0nHZVgNKKanBxW1TPIcIpCZZj3G9Z+JEdO1Qv0R077HIlK6oYAJAtBEjONAMLwAw8u0un7SRbFCBCLpzixApsfa0NI1DjExuKNob8LZy1NKDe7jYRlmSV5UvcTFdZpaSyAKNupusBsNRdXIABiaqSzSVscR1+pj2P7U9xT+qGE+GsMgYwKC+xec2cXX5VdKYgLV94wCzg3+kOe6zrBkpViAIwQ5gqVwBXVWOsaq7RZAc+BB2W7sDj18tiKzVZVg9svb2Ti63Td1b1nmFpEl1xTz0bxegDE1783bIoLOPB5852i/surjKjmOOG66M8pmW/CHd0euFG0ZLHYhT7Nqs2fOEOa+/9qyVvfxprHkBe2VVnA2KSpn1ixX4j9a2kvMFYRAEH4MeLsMQeiUyawBerlIRFxL8Ipyv5sSIpcPL5ymS5XAKzDYfKAFFMZEglS+Gt0KBK0TOq4lHgI+hFN75PItSr6IL4wLDBpWmKcNlXJUuAS1fq6AF8BkYQSbI4RMsAgnpegBM2+oI45QNaMpwP4rTMQ6fgEhGDhY4AFjrzYEWkNNofep+c7G4VMvHlji1pB2+s0OMmDXUylVM1eQGE0g/hmzQ01ZQIt3AO0Uw0Vx5Bc5I88uPhii+KGQ4Y+CgjZLVNI+b027dbOM/Y77ejMyfGlE+fl1NRQFQeHeRCBciNASlsXRI9OgTG86MUyYgLOovJ3BIrNfWCk4ebB38c39PNg9m/MtuC5Gxa5hg4edthm9VOHT6Tl0/D1APRl081aBXBOi9O1hUfMIh8ECOdrGwTLNUVmATItdJkcg7/af6DCdUz7Y8EbV146Uhv0Wvy1mnlprzCrQFUywQwMSXHHdUyOu0rOZKzPnQCxqPr9Y42ra19Vt6ucfL2qkLysr8ZPjANGjWhIsBBlQ0rOEDZ6LTR1BqzUqUWXBd04lKXLKze8UDIxrzjD/zbpM/RR2K5HhDy4kQIzGncb6vJY/HbhALntiU9rgs2Pmy66erKt+3Ja31obCGXSYBFp/ts5iw4dyTWM6QwD5a4Pw43eKpEhSw5IbF0pVyX9VbqGUrWp6WvTGoQtT3k00rIKzgK8BUBN2kj1U1K9xDy5EdobpI5oR612ziwKX2sMjKNYt5dsYvanOo3xzj5RODeW7PIqzd9YX0U8IX01Rs1pSwXiqoYy+lCFQL08iB6zXwYpPMs3L46qpMLVRObvnFIggJh9i8v5tR2NB+5QDjrzMqFz368dyY7S77ojXRnCb+u79kJ39+a8/0LjlS1s6SWTB0cJfjIYlkckbLFyIit83e4He6WL9w77I/0AzEvn5FllRiALqtqSkUwA0xWDmbwq4YZtHRYTVZUL4MVbsFSmQqYL1EsPGHp5NEDhKwgskhy4Xv2iE2UKeJc+O16KEcoVOgvzN7q9KYW08esHOA79bzn48TMktNkuwa/IFKVxpBLoUGqCGYVHuZiVvphQ5g5cCjdDmZhG+WQWdJkxVAlxwzK/Mdmcvefi4MmPbGXvpzU9G55QuXyhg6euCK3BW5GIZUd8nbCPsKjunmpuCbn8La65HbyODLkUujc3udCG3rs7l21YS8A4NERHIDbDABA1aKTJ0qYMjTliRGAkTsskzuFOQrXLa3T/7Pl78UUU4beyGDKsOsVAYA5FwCbsw8TjmYtHouj+Z+dOGdDUC8nzqllN/R64px6nL2c7hS/LVB7x1lOnA844CL0tT1O8KA2Gw90zuk252CBXnO6qWVO9Lg0SFWlemCE9TEuRmwsIBhhxcYIfkKLvdNnz/BecGJryNJ/948mv25vRCJKY2YEJaxg8wzqCfgjxQqEr4Aj4ZV5GHGnZgAxPAgNdyN+mZhT88jKmzMPc7Tn4aeZ0qkKKA8eUJxHYG7NhnmNyCUp65OH+ea++Yx05m8ix45WeMwaCv5RiEUS7XcoGpVGu+FyROofwk/Cx9AupKWW6uF8LPoOAOUD2uZdtgaQ5UONDlysQloehBswaXtpoS2XK9oEqx0FZz9cUokTx8cnKxF+bKJIKkUkjC9+x7XjkxP3s7wObfzl0ihHv3Pk9SZfbAT6ehNB0PtqipOQx4OQbGRaTYEFP/L2VYnXaQKUq0xdleuff/4p0SVq5pMZA9e6kiUiBT9RnJAoAX+Z1cL5Id8vTz8+IXTDt++L7Kf9OEEO4CLxQegBnJpSEdyJ2cfFHWtD4E5JCa9El2C6mTBJrFSKgS8YS2IToUIYmSP7devKm1tXB++uOeF108nPD5GZg43IkL9RSqkI5hTs5WIO0CZVzxzIH13C686CJPiVKE/A44A4W4FIY9OwDaAefJlcNALuF3miv5V+gnlG9cq+p2jiZB8yd8b47/IdPyWSj/RHaYxPP9JPolYE8/iczCvcU9XRdumm3iPSpp5xGRzsUcpBZaJYmiYFrhNgH2CXVAZPtXmCnySykSgR/uoBSUmiVOwC89JW6K3lt1784z17m8M/SxUlCZQ0s0SmtA38ckVwLn0PF+c8qpxz8KY4no7rJHVL10k4FeHKEGEvPwdT3/zde99dG/GrCVkRsvpMpRS9r1y54T4E9FPP0twqD1QR4n5qHR6Ln2pnPDry+MEP4UfNc585dhrtQnqr2j7JSpUsiY8XTie7qRBTttNArQUSIOlKPPMAjoFuZicgsiREpUjjy7EBlVaB0lhJchwSKO2NSPHTA+zOK7WYJNez0vhAodeGhbLlMoXKTyxRIeqa0dpiHwH3sPcD7LOYcuU94F7ZftbdGsYYyp/ARiUj4NHKozevNj73zEtH/6m5ki1167WfTxZLYlS6WKoplZzsAk8kP4LIeTHpkWIQe2Xu1ykftX6UhguDHj1TsBWBadI1u8ujBu8C96/zHtyuBSX6+Y+mMAUrqo7QA1ZenFgV51eqziVaN5jhIRf8EHR2HuQ8KDFHcI+PuOjt4V1igto2qlU1JwID4qPw/zU13R7yHTyiwmRdNjVmoOE2tcZt5YXbMVzhduGgig63125opHw0q27A0tmrn1m8OrzUAMLt4iFczkvEEAOIGfLy8ioh3C5aLjx6P6aZ36Jnj/MRVdtXBhFu5/3CGW7/YgDcqZRw++Y/a6xFT9/4TDRftWL82AcRBhFuywdzRmyDDIA5vKoMt4tmvrBay3/us+PL2Vcpw9rNNKhw22MQF/MyB1Z10GZA4XZWYNfTt5p39N7Rxyrco+CX4VUcbhcP4LRYA6qacxUabmdcbPVnx5s1fNa+a1fT3Kp2nkGE26gPwRpuA0WI+6n1eP8Hwm1qF4YqDrfT47nCbT5SOeF2/zhL9+6DewROanKvfyu7Hbv0Hm7ruZooDCFj4rlCyAKkosLtfYVdJ0muPPXfJGkvC3H+6xe9h9tUHaEHrIAccWCVHvf/Vbhtw6bGDDTcpjaHqbRwe/oZrnC76FRFh9sW0zdcz+zfz2dh+IIfzccYrTaAcDv1DJfz4nTGAGKGhw8fVkK43S7LaV2XXq3D5ya0q36u458HDCLcvn2aizvTTxsAdyol3L6VFWK/I3dV4MLX99KeRDlYGkS43YWTOUCbVD1zeFUZblsE7mx+vZ+FYGF684d5t34EGVS4nXWKi3kBVcM8wwy373VZa/3joKPPBI/ZO1taNdlSxeH255NcnNt4sqo5V6HhtlXbFg5dW0YHz5p5cF73NOUmgwi3UR+CNdwGihD3U+vz/g+E29T2hVUdbp/jCrcLz1ZOuO3d1mfJsN5pQXOWxVw7+rvdG72H29RUcD2EkPJzXCEk/1xFhdsv5j+op1JFBe26Nf2r1d6fH+g93KbqCD1gBeSIK9w++/9VuN2ATY0JfqQo/1SNC9yV0OxHhCJmFiWuVbdZYigtCr+GrSxlE1+FCKix3uAlZHzKKFoekaY2VjUNkcUOR+LUN3E+KUMETv6AloLkAXcIpbCSuDdThRnYtEFCU1dcDQQcsBNTUL+XPhFaVRVE42jpVa3A+eFuN29EntgnZ4BTWBqvfQdOcAyqBxGa3pTEVrYRTs2IJJ3UWJNIUZJcAr0QgJpSrEojojN/1lq1+T+//aOoY03fBXUVP+xeLfyNEz0zX2xYhjUOnKBv/wRClCfhgggInQF4jKiM61ASrnZkrEiC1s9nLyPcymZqfPPzc4M3Bc0I6HeylTW3YKMDMjjy6OWyBJvanlkPgi0fzsW1wmGGwDUxT20VGvJYrELyv4fa78yJCl76PXrQjJ9WTic7jL7iBLGKHxmrgIfldOiu2yIsOQk9T6fEb0XVoFKMls3nOt9I5RSnUFAeT6tTX2wT1pwYBV4kbLgp+gXqo2uwIokpcI7jxamlX2ECuxaoi0JbosKXHK/xEbwWOwFZPPGNPIxz2ja8awmkKhHI3CgfuswNeNVSOK0gkYhkbNmY7dP6gnvXSb+H5PitfqfqakduVVGrN5IkkvOxs6JK7fvmtsbuw7mK9REU8aXISHgJFQLs0LBW1o7aLZ3jCWnsJpO1NfsgZs/ZfAoWhGMp/ZqzSafCcrVRbsMQRQEfh7lZ4n5Fkv+AC/6bxj1aOyPrxEM9VvSnNo4vr6qDdfcgPNlMqi4fppZu1smG18Keh+sguUXzjtKz/nL/nZ+C78UJ3M3JZ5yx++lnnPHrZeETcfDaK+sLF0N+TVkV0evfI/X0gE/xJi58gPhUhSkwR6v0pGBAdOdR/+hWaa5WlEiRgKi4mPZpcK/t+3vbBO/vJxw8Z+57cjFNU+x+OtPw63p3q2B7Z06u8AyUKzoty1mhCk+OxOHKl5Exwb2Kg85/vBuyUBLcZ7vzYvLpH9NQ9H46Y/DrFVG3FVUncD2O1jn6kbuQZ7tZt8Ic9moMYC3UWIm4LDy+jDWyDDt3KmT2948Jwm5X35EjAB9sAHoEQBAqApGcTVyIOG0i7Lodj8Wu580P/jDwp26BUz98V5mfuEsuk45/o/ZdeLqri7uTDTh/ZKI4NpGPSGNlSXKRUgk7hfAlYAZBPx83/9oF/Lw/EjpH7Cn2zmz57u3gjO63mJ6XLpPYdR1KultvxEu609r0PIItoTaUtxJaY9zVgMZejK3SwgK92JMwvrjk1V4Lhz5R4atUI/PCnVMOk4WPzbFREyrZ+MNq1zyIoYc3QzebAmcUQ500VnciLsDKvpDKEEtkIxEl1iMA7oXDn0t9Sv7oMOaW31R7XqVVZ2B7ExQwWybA4GYEAAyfzI3YJrPBFNqgSpOeCm38hx18WBeAQbidtZ6r0Eb0egJze4PHnFqvXk+Y1zL+smJvmL9gyadV4xuOTPtDD5jn7+DCPHUHgXljNszD9vldOsc76ZM+wO4n8augOuTQPhTuN8ol4li0yiTdeLEhbR8KfDDgEqjAnRJ+EmkUrWzTNLuR9tm7LgTPGi1qePLPYXyux6LvoJHp2vZMApr0dh6AM4Npp8wawOmUd6qWuior4a0SNtwCbSBH4iX8JjP0cmAcIQP9487OMTpaw/fAXw1Da7WtV0jQjVjolljrNZqMmGPX2QfGngd9XPgRrmC5iZ9YAfS8GLjJ6AoRmV+M/HEzm4yM27vIL3t+/WdtUgaTG8wbCeizQ0CbHUaU2dHk7bH7SxznBy4fnjh8+4hNa8rbrgiw8yxkp4eAIfqAXfBS805pgGRUBkhNI2Gr1jidUEpa5jRm/u8vwzfM/nPm26NScnEqI286St5lovSby4kG56vPCT0646PDa/O6y/SAkhMnSrdzT+EyqJYlLt/CFktSgM6oFgBRNWKVtg0sdMElBrYNpPV4OuuKIoXr0yZs+nRx0ccVrn0yQvb/Fn7MvySnObmIe2mrFe1XcRuUNrKQ8hH1ABb0ti11/MJ7hwqinJqP9ujWe2xzl/A2WunavslDfNqfTAveZdYjz+aDogXnaq/G19Lr0JfStG043lrIC5gEIO/kwxIf3J7IoHONcbgYdK4Rg87N+p5+YPW86MC9GzaFeT1re09fOpUzTaIUC36KSCEWDWVp0is7/+7AbMdYr+W/jXnUSOUs5ka/Lz4UP5yuPMLLVB56bjTKB9zrMglXHjRHO7U1yj2q8uDSsTalyqNU0BlR8zcb6efU4CevDOvj85JXruzBiRqbItFlZ0LbDQJPHJICLwZIrNuhkOA6pCmbDsnOf9R/2tPPgQfy9xzYMfxxCKXTgEiKSOhNR9nUh5OAL4d3aKQ48aUyFYK1rVEhqXhbV+ZQOeSS7ekV+XX8VhaMj6+/q10Jw6PQYOUxoYru6/SGlgBe1Gy2QZFRKmfZZNS8jxJRRIHHJ762la8sGc6MWAnsbgpbysSJVfi7A8sNVxifpK+n8FG9x0Q9CeAo5NlmAD529eGlT/OxCBUpEsTSECSeJBSW2OXeMGFc83oN7HqUTK55lbJb9Lej0Nc645QVCmKEQiaH9daxpzIjngrLUoeXiOQTS5joESiNg5XZ1dJeA16Ey54al1AfWILntGDKH6ahi0USH9hlSM0a00iVAhElqX837qcQyUsVCCaqzdhE1WBCtg+eC4Rd3xUH7PLJOXB9cMskPYVsVPnXQ8hWnMEVsuVlEOqBb/CYU82JnjCntq3XA+aFE7gwz5xAYO7Ahrnnr71PDczd5LfxV6vzx8d9JPdcM/FXyJLlZMwtCcy9ZZq9lI3YZjVDwCHgJ8BxoTX0V4iUykSZHOgInCHKaoG+BGBUBw6QiHCSKr+AVA0nUWcMIFXnMfsJ5oG+Q0jwQweMucrZ+/D1nT+39N1jsePvYxMWKBhwotsLCiN5BCMxnjRn48l/oavd4tNvf3o5HPNfbrqVPyXauF4lu9pOS7lc7fys/+Ou9hHjBa4lt3f7Lg+y7txKtKpfRbraIVGTB21Zbuy3dOin9Q0PjuqpB1fbdimXqw24VzGu9rUn2XsmHo7x3+MkO/b+duR7Q3K1UUhYXW0ACa5DWrDpEANytbs6Hwpx9+nst+NMYCfB8J1z9e5q0wwtlbNV42rLgatdvBrWRa8wV3sUcLWLVv93uNot2UTVYNy+4X6efUx3rfKeUGtKxrgH5+rrye2jyr8e3L7EtVxun9NaQj20MnjMqebEcHcB85ZwYS5fQmDuyIb5l6EDz7S32BC67nD177zE7wuYWrhon0bRNBQRKWHOP7q5jXXnBDYP7wmsXaLEYYe3i2Om2Qqmnll4u8f2w0d1aSqj7dpzGyEvIhogl8+UKJEJkeunUwKktbqzbhIGAOObnZi6SBg9cm/4zPbP/IfnxlGiZkM6xlAMAPKAABUzOUCPnFGAdGu0XWYzoY5Gdu9m+8h99370Ssy7PrtqmwnB7sooAOZMWQ0xbigA+NxqzTa3DHS3N90pc3OLpvO8D7Y5ELVkwGPbStrtTd/GtdtbuPV/u704f7YPb7lxfsoE4caBvgdf7UvurYfd3kV1SsI6xY0JXfG6+ft7ytBeetjHlG/j2sfkb6vo3d5Z9r+Hd/15p3DL+on1kwYpbfWw20tNG9UDSkCsOVBK31qBu73UHf4q3+1FJYZ1txcghetTJzZ9ajD+4biQPQPOJG3025fUedmcfs0aauMfMgSPFe8ebjzB5R4mniAgb2PwkA/vd7X2spQ2QdkbrB1fnuw5Uz+QJyalBfR+sMdn21GXalNGTGuhjwZYczkbYM0lIHc2eMipRkM/kFPdPD1AnrqFC/IuWwjI27JBXj9+f272qXPC5VufjDrfeEwOOUVZmCqXyOIYOmubsCDsiN9BxD3Y+TBlkgg9FahEEpIQrVtpL+j9akz/DwlhM91fu315mbyY8dHo2dM4QVv3DDbVKjwF12UY3LNiAGLE5f8wHkKwB2F8tz9s/BqG777it3da/09fOguX6TEe0nN1ihx45OkyACiO6XBNIswKv6xTl+yOvREgGmjRrTgEni2QKcWQzgfPJ5bwgaSo5YQvApNVBGulxDKieNn0XTWrNcF+2TOmnKrXKYEsITXU30NvDVxK0ntOuBMqMRxw8S4bRB9nI1oMS0i1lschXPGJFlfKLlWiSMVPEg1H+MlydB1kqAgWIWTtIbyx+pBWK7cog5dab0iYNWurNaXMHT4sQ5k7gqJv7uW54sLuy8S9Lu6osNMOLOkInAPR8J6oZ4BQgWQEa5nLodjJs3sHZ79QRDfdnkHe8TQnxqSDpaZUBFgRnGABUcftjwuPxf70bVZt+MId1t77V0ve/jTWnHyQ0Eq9Tcq2GsdWFXS/UekOK26JgGiCHwEY8CRKvChWBYItkUQmTQCxlxJfnXHDvwinK/mxInhqha9MloOIA3BoqAwQwf3YkMlSeCvcc5HKFMDGoSWd0ItufJ9EkTQBWw0cGDaYLycCfGgZVLIEeDJe8ziMaqSMnwQX8bWzjSUxd2/8/qBl8MJeO4ZkXfjNghM2es0Uygd0KVV3FTC8PtPh6RggDllXdLKVdUptJf5AjC87rJ3Qyu/m8oBtIfYjb20/WUePxpKqgcppLOHx8ukQoTls2r/LVZ2MZXOSPOL7fRAzHDC2CLiH6tun4WOvhu64EX4gunuPqCpdUYSoFF3hQgXIjYGWOCzrrHSHwHh+lALWoYSzmMwtsVJTL6BlK8fBcpVtmLOj52eMmpbfJ2T/xi7f1n4qvEZOEghTD0RP0dCgVQTrAjhZ97nQQN0ZruWkJhFo63VgEoiivOJ4qN451uiTz13xNF35PnDCfen+oQXTKRtj6Hh0JYRd1jdT+G64lglgYkqeO6pldDpW7RgFjRVAJAXB7KIOwNiVVC90c/5NuGnhON7CWa8pESQ+MD1MIwgVAQ6qbFjBAcqGBE61MsBpjVmpUguuCzpBc3flnrBKCpxd7WFGanvrReQQRb3sTw9RSkkVgVAAJ0JgTuN+myuPxW87t0wU8r1rQ/+J65uavWox+gjZGw0BPho/0jdE+4UDb/UpdJjfQHjCIEKMB78CvyuND7BVqPhyOKOAssXlFfpeuOs2VivHSTH6h0uRh6Vv7m+5f9rnBddnfm66F01QdDiPXljtNHYenbHOTES10zotK6APoIEBc2m9nd27dqvnG7B5wV99RIenXqIU1YJ3MxTVQi+X5SlR9Z8eDpufhQDJmYSwoC2ItMgAEYEWmyG2RQEi5MIpTqwA4gvozMb21ublTzNqTfBLrycakF/8ZDd5WvoSN9OnZSmpLMA8PT44hz9bFrRyudE2ox/n4/UAWConYECiqsSJwmwG/Ex7HtsfegEarnpyligvObSqYvIBlePQd/4z6ksbjJp0wqIuWmgFMIOeQGsq8I50im5TPgeYwtqkvBlHU0/Z+02uPXyZRQvVBD2w1omTtbwqYi2Tf5ypW9WamiEa+pyRmTY1zFxaZzv6LrKbtr1P60PkDlrGIUwVvbGrFVGcBdVJeQLIC2pNUHd0iuGG0Y3HYhi9rzd8kNJ5l9e2gb/Yzup7mJzoaQO3DlRw6RO20UBgYVdEh1It7j6yJAA5toGBDhNXOgwaHJZWaIkDQqKVRXzi0E1U4DYrZMuaLZ5vECunsh+Yxg7GT2m7qAATkh4Ab6SIKSGJ5yLkPbpf3sotghANUOByA0zMhN6GTMp3IqqOAPRQw4r+hOk0JVyNlo1E4piNyPXkGTY3PUSh+5b81Hp/tqczWcegBdwY6trg18vSMQv9nJ2DI38OWPQi3PP8oK7ty7syAWD2gjAbM2X1dHFGYS7vknArDfarV7diZVIlEpuMigfMcmBe3Rz5wIn3Pait98rDkYGD0pd0J2FpWTouPfwlEfWtEgpccNgGMcGW6obChqsEdzaVcL52i/eenWShU/9+G+x2bbyQWuVQLhHFIvywZImEQRewOcyuxH1SeB+UWbE0RSQRx2FCPlIM8w9BmKLQXhPsOCNI+WJvG3D0+aO5XawdHnI8J1M1Rg2ytoYPlhu8B9C1ZNp8g0WYH90t79xvAI0aWrNJBWsMQSUJEWNOrLl04vLWq0F+izKO/9r/w4tAsvuMDkR3n7HLZU3niZ8O8WofMQ7PO9TF6Mo+/1/LOZ3htmU6RG4Nk8tgDlwGj3ushRq1RM5ejZyCJGpQtJiz604/npbGC/HbdcaszfWes76Qe6zgAsK8pUOm6nsWQ7SAJHGglXm3UlexiAc1j0qTI5o4tNA4gOcWDFxaROIGP6N08w8YAp3cBERBKfsL/5RXcTdADSRkLBgCBNVpGKsZuUw1TOWZJOXtwOKOz4JipjQzngc6C3RaCLPFaq9BXwG1VYToxzFXIwsNdry2NTNoe/KE1TfjP1PKN6FvxbAxgV6uCChQEWeFAog4bqg8eCyGqs33hrbb+dWFe7yLvyJNE8iF+ixRGdE1Lb4JW1o89FO12+t6f+NJ/pp6RSE5z18Mnhy95SXrU9FdAw2iDn0Bbj/EVQXNHfWCqWMPy2uSanjDbXEIAHMhtubSUyZLxwmWjwoKb901exo1HlLShQq7WpYNovpYeqiLfhZClSVg8I2KnFGodIoVbaizTyzlhzBi1HLC2IFW1nHhi+//WPj7FP+bVbq/xXPFgWDMmIfdHAEQ+NzzZJt7qvd3+zsc+iVo4sQ+xl9HvdxOXpFCBRkqUXqnDjiaFZQoPHVbGoekar4Eo6PeGwEvhsBdcWIZOxZPQVbIknSanasOtbe58b2m/2GjavnjmmZ9YXlu+kqamqRD65fiPwDKmUxLqmjmxhOGRHqimQlDIj38q2sivXx/NzfhlIN+kySN6zwTWV4i6MRh9xn3Fp1HRHt9lgv6VTs08F1nfZ9L1o+KuTn82pho0d6AScL1YyIWtPrNUFVMJoxL/8ArbDKujGX+wZRtz7awaAHlDWgVMEUYcemDTI+fPG5J0No7Hl3t968Iovg28D4G3wa9XBYy/wzz/WfWsi6CdWmfFv7BWxmuB2S8OJEBs8EAmlLw1FMPZVBZ2+l28KQqxiAYeKCLWUNlrAV295697tk5foF//vx3R3eqDvUjyzEciy7H6FV9mwDIjpwnXOyIqBp2UPfJebqc3a+JTheRij9a3Jq5Hm+HIlvPLU8GC1flf7A/6rF+jFlosgrWMlB/HZkjjJbASKx3dsjdcL0Bj+zTVnLhOi+YHbhFbsdjscg7hoQ8HzR5R9CMOkPaT2lwgFJKPRIBBlSH9Rp79QanEr1T5yra8tyQlVusugnTG8wRBLYaN5LpcRj6JKDXtT37COLkmMcwiGAysbDcccwjndpSN8KOgGHvCb05dN8cfSTmow7PHnobN3AN3nmwbp1BVu555dm/LG9ABdelIRYqphmdCjdlHle1gtWsbqZLVlnLSBUi5yvFo7B+ZYgoNpGvTEYdC7hKy1FOv8ZMzyHNu64J3mHvcrXvh7nfydMbDktXuOjVimBP3iMu9gBRNVD2lLX92bQ0DMLKeGgxc+60b1DYfni9wMUDb9258RfvGMeOaPVoV8/yrFRQHBtqKFZOxwYy1pqTsQW/VzVj4U2ofSznsludSKopYOQt1XXURfPrfeLBA+CoXvzMtEka7Y5OPNy0tuexmFaDOehFXZbXz0Ev6iFJfdS8v8NZ8/4OAXkHg4d8+olTfY7+UStk6+Qn87q8/NxWP5BTHVE9QP75KRfk+U8JyDuyQa5zLb/aao1V8bX8qNv+GrX8qPuAGrX8qGuxGrX8qAtBgGSMk6iuKyCZ8Jj3xQDJFCdRBYVWHBBqW0YRk+51fXX65Xbh5kdbYro67f9XD8UBO7ExuXnwSdcHOyz8NhjHDb350prM5HpY6qiPRKaEm49oOrD2rfaa+4lhOa9EWP8KGwBNUIBZCzqVlal+cPgNk64/vHLezH+0073/jTIfkQYO04e0XSUG9jz6BphJt5liClj/Ivq6TodG7LHcbbQpuAytXyqDZ0zZT5k5T798+rFYGp63tFbNGo3qjS9P5nbFJkXKAVYBN/BNHFp3qBhYVOE6464uG1b11QdsNLFibhwW182quF3rwAVL+v3SNd7kvuFW6IEoAZnhQOnRNd32HVwiiHmFTjYUM2LKwcQB4iQje+Jt0kjzYjv+/vC9QzL7xfdt3LA8MqaHehOoEDGmd0P37fN13TZFndWL6hAiDB68RxgwMyTdxNx8YVh0g6/Kr4FrbFS3Ll4NJBd/qpoceAjSxutcIEVf1+2UQCtfMfbm6sSnUpHBmtWxKqjNJ/g3vyyzDz1gtah+17GLW5Jz0olx6TnpakpFoGPOiU7+NcL76cxjMYyv+4aFGLv/67No7QW/1eGBA+hpnXRLyNZ13oF8OkB9cHKkDM/Z084QzhzX6tubm0P9FtWKePMhwp7hkZgzTbVNM4FJ/7cAbBe8GdKZ4PIZ/5ZutQS0SvrfZCa52ihptvfGzctbnn84bCJ5fxxdHWMx6yRimUnPFBVX3roCAKwCCBZjV20v4H/Lb+lk62qjYCFgprFDlV09eP3urn38Fs//WOd91DEpWRMJwb3MQGmQKtklgDDxOWEqvKljOboyE7KpJxeqLCEbahpURmBCNq10Ekx5AdDgeqgLmx4y/C7YqR8bOLSVZwWvHTfLbNnnGf04nlB/XbA9vp3i6ILt8VXvXbDffnxs2fznS147P2+sa+Vbp7Eeu2B/PyBYMWDRWt/sGiVX1t6ZbK6HLs98CA9rP+HCr/rugt1E1omvMBEFTah3p0+3oXe36rUL9s0WrT+FCDoItjfpcHL/S8V9PeCT/pULHyA+BtlvWc9dsB1dZ4wumbXed+4BI2OHelNaVXkX7EdfuLiS+cWQuFJ8lOCK/rtgRx089sDb7LEgw7wrktTF6XGVd8FG1Qlrz+eNXyu4C3anHj6nN/aaIJy7buo85TY7SimtKumC7fGVC5H8L4Rd78pjsev/bV2wvz1p2e3im45B+7pGuo5YHfOhgrpg5/x7iqMLtse/ld8F+8Igryuy0L7Cg+03b4o7du4fPXfB1rPxh4cxMyGGrF2wAYZV3AWbas+rvAs2ChhrF2wAGD6Zu7FNZoPZnaJKk57q31P3MvSwPeX0mWt7qugfAvOf2DA30BrdzZqtOD+7w+OAeSvPntzp/2UB12PpsUZ3B6PTHDW67/NO/69GN8afwrSTXe4eKPSf0qNdbVOJxws91Oi+uezsnEcOLcOXf6t2PzfGqtxrJoCdLpCdrNWnjY1OV3CN7gWS1VfXXlwftj1lq5tzh3hfPdTontaxkD99/xOf+aE3kSjBuiI9oATEmgOl3bzTFVejm1pDocprdKMSw1qjGyCF69Pu/2X6dGnw65CCLV1C5u9t23jlgF4ulaRPrUu4eh7E/PhfzwOcP49L2n26fH+m34Ylnuk7Hh/YpAd9+mZtzcZ5D63Dd8b0intg3/ykHjQFr4Srmn/ej4ruedB3xNzAFO9k35kdm1Zb0811tB70KXWRQA8oAbHmQMn6RwX2PKDa0CrXp6jEsOpTgBSuT3uw6VODiQmo08lgq8Gbf+cKCc5+IyD/mQ1ynTPWahGQV0LGGnWbRCNjjbq2opGxRg3oNDLWqJGGRsYa1WhqZKxRpYGWlgbnNKMcOdQ41tYj+J0gP+pbwTyTBl30kJbWU2+crMw+wtTK/hqcpBY21uAkNY1Ng5PUjX3t+wg3GiRfUbfz28BFxvstR9QOXKIHnnix8eS/sI/ww1cfNsye3CBg+7HhT623LttUyX2EbYtOcfQR3vji/3gfYWnb9Yu/5E70y2v7au26li27VWQf4fj6kf8aTR3jN81on0LqEDxdD32EzYtOcfQRBtyrmD7CLZ3XC5beuhW4PVl1/u/jg4YYUh9hFBJ4KJGxjzCABNchAjYdYkB9hItaC09/zezpc3CZwD127KfHDI9Svj7CxT2pR40onK2aPsLFjkJeYTHgY9cK6yP8t6PQ92zxf0cfYW82UTUY/3387Czzs2+/+013uZb727oJiXpa06fKvx4c+IJ3XA58+jtCPfgYPOZUc2K4+yg5z7kwj3lOYO7LhrlBu9pUB07D1abKr4arTZ0xGq42lbHau9rhWfkTU6uHCdYMSaj72nzyVz242kI2ntSIXJKyPnmYb+6bz0hn/qa/yf1R8L3+UPAPcJkk2reVaURkCUj54XJE6h/CT8LH0C4H4Exy+w5/j0sPPfRw3Z0b5mkTOB+L3raF8gFtT/UDZ+us8WkezxaojULaaiw8EFCdVoucKzOqCSakRPsiWIM2GfZ5ShRJgblifHGleEjkgM5x3hkjfH9JUrV8Qs4B8MVGoOcAEAS9nx53AroWQrKRKVcqD3YkMa6SissmsQBa9fQvLi4u0eVcP5/MGFjZKVkiUqCpBRLoiDDyJuvE9qyRK38KPZpV/2vHv7fsonThwgdh6MJFUCqCO3JO7gQYAneANirRJaGwmTBJjBVYiCWxiVAhjMzZ3Ue+r3jgrPAJJzx87U9sGUNmDjYiQ7hdSqkI5vA5mQO0SdUzB/JHkznEwhwbczoLkuBXojwBj6MEtyLS2DSsa08PvkwuGgGb/Hiiv5V+gnlGvTv/a/9dqd+813X+q/WjXR3JhXRrRmmMTy+ESqJWBPMKq3Mxb2PVME+LTkzGZXCwRykHlYliaZoUuLOAfYBdUpkUsg78JJGNRInwVw9IShKlYhcY+She1Kxbr3V/hM06cX+VrK9fIaUcTSLTSQj8ckVwLp2Tc9FVzjl4E1wf0yk7ri62ACOWJnArQrd7sUeWi90CpyeObvnyXNuPZEXI6jOVUvS+x+WG+xAwdjhLc6s8UEWI+6l+PBY/1c54dOTxgx/Cj5rnPnPsNJqyOe+DLclEKJAUMTKSXvqRLZm1tQCWrVdqLOugHcgSEFkSolKk8eXYgEqrQCyBM1DaG5HikQi783qp04KR848XBuXV3XCQf3qCM9ez0hMJyPTafcE/cplC5SeWqLAvZnL3WXPdgbw/NQHYZzElGHgAzmSY0FxaziVZfwIb9Kw0+oxaefQum+us2JfeOHzyjSszx7+aQS41YE6MShdLNaWsiJfaHaO8ES/M+oHIeTHpkWIQD+820anvTv0oDReGL0tBFAoxS9PjhpbBv9R0uCVcV9Pk7KQT2+uVfwpTsKLqCD1glcGJVZxJpepcYkXSDA+54Iegs/Mg50GJOYJ7fMRFbw/vEhPUtlGtqjkRGBAfhf+vqen2kO9Qh9v+bGrsf11c/6MurllTru/7siJJsO2dQ+04afYXTtj01cWVDzwJX7PTsKgHw+G/CFch76SpTq3JtOziesAna9jEB8eDDlQPb7OK1+SpHgtM6FlHegGEukOEZjLNe9j00saMpiMrootrkzo79x68t8xn0rCGO2buTwqu0irXEJU/TblQAXJjMLGDbmf99NfFdUJiz3prZ9cJ2OKxQvAyaOtgg+jiClm3nJN1qqphXaV3cTV5PmnT2SM2vkuLzze+fOxNd8qeZWXWaYELr6iWYSyykeOOaplK6+I69Zez3+43Tvff5n2g6/LZM8i5SZXfxRWCgyobVnCAsqm8Lq6Hb3gcP7L5tPdGk+WhWz7euGMAFWwgQss5EQJzGvfbAngsfptQ4Ny2pMd1wcaHTTddXfmW3MvFEj23K5dJgEWn+2zmLDh3LN0iEZfej5e/AYgrZMkJiXxYBRldqtGlfMuCk+KpdRtmCTP/FrY7HtLjNevT0gudaBC1xDevlZBXZA7wFfnARRcKvukgvPcyZw0xtTxLaVP6WDAXCMOC8dXNnJ03PB4XGbhIGThp3Wn3InLo1BemBzA15iullOVCURVjOV2oQoDeI4heMx8G6TwLLE6+uU4uVE1s+sYhCQqE2b+sNdVyQXb0h6DJl27WtDxwvRnlUCR6I8OhSOy63heHwPtncr5/onlVO0tqydTBUYKPLJbFiWM5yllFjRlq6fptb/AE2wkLH3fqakKWVWIAuqyqKRXBDC9OZthWDTPoxfl12LFwC5bKVMB8iWLh2qmTRw8QsoLIIsmF79kjNlGmiHPht+uhHKFQob8we6tXOr+onZfx2HvOOfmVdEHAJLJdg18QqUqT0KeNBqkimFVsxsWss2aGMHPgUDp5q/VLF7qlyYqhSo4Z1PZcp3x+Xw+feScX7x8x+dY/5QmVyxs6eOKKHJ7uLqSyQ95OuGWzuW5eKq7JObyt0Oi6IabN54TvGPT7nt/k13dWbdgLAEglALjNAABULTp5ooQpY68rk/bN2D/mk1vIpss/fbVv0DOjSs/3QwBqcgHQ94YZ4WgG8v678nG6X212fcHKo4J1Y7ZOTBo+enOl5eM8teDKx7GxqOh8nJHP69S/PHS71+5Pf89bPjIz2ADyce5bcO1u7rYwgKSCmzdvVkI+zvhf3whq3d4WuupJaFz7kuHdDCIfJ4OTO3GGwJ1Kyce5fdKo9VkLZcjCcSWt+rV+etAg8nG6czLHxhCYw6vKfJwdZp2N5v8RI9hlbyv4w75nC4PKx/mzBhfzTtaoamfXgPJxZJk7+76P/yk8f3ZE/C+3B9pXcT7Ock7OqaqccxWaj7MkKTTb56Vn4FzxuKveHueKDCIfB/UhWPNxgCLE/dQg3v+BfJzxDzf23zClY/iE+Bf3ebyFQ6s4H+dPS658nIWWlZOPE98kdIGq4UCvye+ybnnPG5qp93wcamyuhxyTp5ZcOSaHLCsqHydkfFZIilWy1/6loaGtmtesrvd8HKqO0ANWCzmxklj+f5WPE8ymxkYcFbcVh2322XckXPLi6cC35J2SXsnwFKS/QiRPpJ8V1WH7oqWvWCmH58DUuzlprnjDOhEsk5kAv4FR8laKkxbuXusmXGeSffvQj757WZ+PvpOjSaTJX41IoMLCNQ9VMUjlf3jSWT0a9Zw68ASKP53i8Rr4wL+Uk5wWTkLfok+nakUiEsAwJI7UnhtlK8bKEDZW6ny6zEkt2xV/uswqI63b5I51vI+ctNrXJazaLI3TZRnv3zdOv3PHf3Li84FNWpiFa5wum+v5TuS92T9si9vX1tbGDks0Tpedjz4QfNdlsfeewvjZThfdZ2mU5JhrHdpmiX+m35qWd4ZktztcolGS49LgmPvClp/CN/87bkZd37vuGk2kuoVdPbPY8WRAZr9eiiVNpuUCkhkx4GPR6ai7cmGupEG3A5GbPAHJHCctbfLYPn5ad+/NabIHK3Kc4Km5Gjip3eW1PzbEBws32MwauLrG3amAZIGTjiqvPUy2uB46Y2XhOM8z9XYCkiVOmt81+dmC0b8HzhPN71LPUekHSDVxUt26zVt1MOIH5U55cS0w/pcZgFQLJ021iBreMzjOf/PDk42Uvl2vAFJtnDRkCH/Ds8j2fvPm5Ix7lXJ5PiBZ4aSuF4IPTQuOCJveVt5w8OhjIwDJGie12RYff6f9xaDcaqZBq6J/hAJSHZzkdurR4ZaeJ7wyRkUNvbZ82UVAqouTCps4T987/L7fpJ8/N7qaYTEGkOrhpIADAalLixMCch8nN8mqdnc/INngJHmzdrXCruwWZB0tvjqof4MEQKqPk55FHi25d62G4GBTsee/QUd+AaQGOCn24s0abdZkCw83e9Nmyl9dJwFSQ+Lhrz2ND5z6PWTmz515voNP9QUkW0LYom1mHllqJti349Lz073inwGSHU7q0Cfccvhhr7Bd43+sWTEhWwRIjXBSrdi1NhfGDfU/MnH7+fnGbaYAkj1OetW++N+Y14/CVk94uO9MxJwugNQYJ3nLOnxe+TrRd0Jmi91v/905FJCaEFy+i/x7ZW6B90qzca/HFZydCUhNcZLn1doNUt8eCF972nVso5ov/gKkZjhpa7uGr0/cMPHObN5B2vDjefhefJxU5HPSpujUYu+t3YY9r1b/sIJ22NKBx3LYcmndjk2KbF/4TPOyafR2wMVf9HDYMpRNRdWP35+bfeqccPnWJ6PONx6TQ15MFKbKJbI4hgwCtk7Jjvgd6pxPtLuCMkkkkQAlhDeu0DJlgKqgGB+Nvs6JE7QtdwcsAK/OaahfGbzfYlipxFqnjErr0oxK7EEY362dSc29LvZFIbPeX4i16DXihx4TKvXs5OYAgD5bA4Di2PLPCq11ygbo2Bs4TAp07S4OgZW5ZUoxmkIBnk8s4QNJUcsJH3hQfBEMuWIZUXwW2/jSz/2X+ExyqNXmdtfx5KI8NdTfQ98CLSXpvaKyEyoxHHClWxvEfjU9XU/HBriu+ESLK2WXKlGkAvHLcIQPHBB15zX2vdIfT5vK8m+uC1748Z/HDj1PpVJWy/FhGVbLCYq+uZfnigu7LxP3urijwk7bMdUROAcisYdYtEaoQDKC1bv+nr0fs696ZzQpGLV69OfE8qcR6QGsjZxgAVHH7U8Y73+nD/R5+oDqoVfK6QO4bhpS9zRsTclw+iAGiMOFOhVx+uD3yanrU29MD9hr4ti0WSvbcXo0llQNVE5jCZsz+UKE5rBp/8Z1K+X0weq5YudVa8Vhe6Z6Rj+p325VlaZhQFQ+1OFCBciNge6UVN7pgyl3c132PU0Lmrt2Ye1VFyNXGMTpA8i6XzlZN6ZqWFfppw9eNDgtXbLF0Wdm4HGTRWuPX6nC0wd8N1zLMKaP57mjWqbSTh+cmZS9JfSbue+Cux9aeryIdqzi0wcQHFTZsIIDlE3lnT4Y1nd9m35pX7xXppo+rPnTn+QaIFVz+gAi9CsnQmBO435bOI/Fbzu3TBTyvWtD/4nrm5q9ajH6CNkbRdtURvqGaL9w4E3uEot7wiBCjAe/Ar8rTbOVKlC2uLxC3wt33cZq5ThR1y+Zn5vuRRMUHbo5FbY9jXVzYuzSGNFWt2UFrdrJyqZMc7TvIfNel/9Hs1/5G1pTNtnh3Qyb7Ojlsjwlqv7TQ6umsxAgOZMQFsDabm112juzRQEi5MIpTqwA4gvozMb2/IAtEyzGuAkzB54cer/VMXJZ8Bq+xM30aVlKKguwv/rOObW/f6bfhGvNJDdbB5f3QDsELJUTMCBRVeJEYTYDfqY9j+0P/UinOQcvLVFecmhV71k7/szsmCo86JBwbNPu+H/qoodxADPoxZNNBd6RTtFtyucAU1irsJo7+7ndjNA57Z8Pvtor76AeWOvEyVpeFbGWyT/O1K3nY9kti/09at0yee7iPd3KJOBzu37pVdayGLY2RHUSbFksp52ud0enGG4YI3gshtH7esMHKZ13eW0b+IvtrL6HyUV+bWDxTBVc+oTZuAjcH0Z0aHTo7iNLApBjJTzRYeJKh0GDw9L+hnFASLSyiNRtu7IfmMYOxk9pu6gAhH9jQwB6kTdDqXCei5Anb1jes3qCEA1Q4HIDLMoLvQ2ZlO9E9OwD6GGH+OBPmE5TwtVo2UiE5QTONT8n+/bRi/zmNMudKdkTakXWMWj7Y4aukPj1MvMvavdt2NG8u8+Obi7ff1V0aFfelQnYXhLCbOzNUMC6izMKc3mXhFtpsF+9uhUrkyqR2GRUPGDXGObVzeqbk1J7/3LCP/eGT595ooux5KyC0nHp4S+JqG+VUOCCwzaICbZUNxQ2XCX0YlMJ52u3eO/ZSRY69e+3wW7XxgupPcLlElEswg9LlkgYdAGbw+xK3CeF90GZFUtTRBJxHCbkI8WqRL4MhCkK7TUBdZee4zmZeplrkLU1fE5A4TYA6Foybb5FQHQblHfuN4BGDe14qoIdOqGShIgxArDz+K8pCUXXwua/GeV/9olpAdl9Rgeiu8/Y5bKmMzUroZzTGW5bFkDk1jC5DObAZchqwOo+a4mcvRo5BUnUoGgxwrfIb3Xyo4uXAg/ZuIWMPPbmFTlVGxcQ5i0dMlXfsxiiJedEK6BBpTpYxIOaR6XJEU0cWmjk7LgFA5cWkbjBzyjd/AOGQCc3AVFQsoThn/Iq7gaogYSMBUOAoDoNYzVz8jDFMJVnkpQ3kdsdnwXFAga+8jzQWaDTQpgt1rkY+gqorSJEP44Riom+7SzuW/j55B/arUhYMtaYsjEB34phYwK9XBFQyDmhACKOG6rePBZD1eZ7Q9vt/OrCPd7FX5GmCbfIRhiVEbaNODaXtUkoIlImK7CNMCyig+Bifqp2e13UDDHWp6K7BhpEbf0k4AlJbHFVQXNHvYA70MG2vCaphjfcFocAMDcb/3ph2Nz1nkGHqz+/0v1SdC1qPKSkCxV2tSwbRPWxymmDYOJ4HIQqS8DgGxU5o1DpFCvaUGefWMoPYcQoNc5s0PjCOf7bfSYdbZTm+rxK97d4rjgQ5kxOIjwUCoDA514k29xTvb/b3+HQL0ETJ/Yx/jrq5XbyihQqyFCJ0g8uwNGsoEThXY40k1R5LEC36o2AF0PgrjixjB2Lt3RUyJJ0mp3UJE2W56avpKlJOmSQf24EUM5kWlKFyQipjRgaPUOIYBoqQ08p+FfXxqTy/d3chFMO+k2SNK7zTGR5iaAT+bEz7i06j4j2+iwX9Kt2aOC7zvruSaUfFfNP4OU4u6IOXocvmW36a3fKZUNVMZmA58WN8PPrjCtjZxsxdYNmW1i0gPIGtAqYIoy4NKgz5OoSZIX3ApfC/APVw29TfBt4H4Nvg14uC5lq9YIskbHzfHYECW7ku3eYrQdkcjiRAbPBAM6w8dRTD2VQWdvpdrBLEcYgGHigi1lD0TdnLsLpf3fsrVHm/ovntF3SfJSDKVmO4Vh0OUav6tsEQHZEcLLDqWrYQS9To0PftprodBGp+KPFrccyMuBGtaZrexXLQrfkDTP5lvHGyyw0WQX72Km/jswRRktgJNY7O+RuuN4o8GJYyYXrvGB24BY5isdikXcMCXk+aPKOoBl1hrSf0uBAAtnHiESAAdVhvcZevcGpRO+ETg6+9KidoaUeeWB6HLrLg13XtroFiJPz7GAQwWRic4CJ9bDTqbpFI6ylNvae0JtD983RR2J8x7yeDx6ITjmE74lp+FMD8b4Z5dm/LG9ABdelIRYqphmdCmZ0ul1VK1i2kqllZZW1jFQhcr5SPApB18MQUWwiX5mMOhZwlRb7AmaFe7JjR7usBv7r2w8MfzxlJmWvBg5LV7jo1YpgTzQnezwMlj1lbX82LQ2D8CN5Zc+cOoN2+rZYszog483l7aeemPzEsSNaPdrVszwrFRTHhhqKldOxgYw152TsI9uqZiy8CbWP5Vx2qxNJNQWMvKW6jrpofr1PvBg3XC9+ZtokjXZHJx5uWvvwWEyrwbQ6pC7L66c9fAV0OrxQH6+OwNjpcGt9AvK+Bg859RCmfiCnOqJ6gHyMPRfkg+wJyPuxQa7z8d/aao1V8cd/GU7rEmscDKd1ieUNhtO61Xmsp3XVx3/pp3WJ478Mp3WJ479UQaEdoITallHEqId59XCAMpqNyc2DT7o+2GHht8E4bujNl9ZkJtfDUkd9JDIl3HxE04HpIYMpy5Rq7ieGrZwTYe9jbAA0QQFmLeCHWrSLHKgHmMt8RBo4TB/SdpUY2POt9cBMus0UU1iDmeRST6dMSHssdxutLSKDrAF4gF/YT5n97j3+qsPCGV7TFotizhy/sL48mdsVmxQpB1j9Wg/fxCmmap0YWHm4HuOuLhtW9dUHbDSxYkTpTo3cKb/fby6cEjL6WdK7HTyKh1ieQzYT+oR9PLs+1W+TbEbAdO+043pAyYUTpeK6uu07uEQQ8wqdbChmxJSDiQPESUb2xNup3w78JEJ+Fy5zSDpjvVJ1pzwyVt5aSi64EDGmd0P3bUw93TZFndWL6hCiWI0KqNDMkHQT8zFdwatTl5dvDZgiOnbVamzxPAPIgYcgRXGC5FJPt1MCrXzF2JurE59KRQZNU2dXUJY/zhy+kXI5cOkS/z+u8deS+zeYE+PSc9LVlIpAx5gTnft1Ce+nP4/FML7uGxZi7P6vz6K1F/xWhwcOoKd10i2hMQu4DuTTAeqDkyNlOjUhoJbr0DbTVNs0E6CYimwAbBe8GdKZ4PJZpk0FJP2ntetXzzRtl/fBDOPd15znHifvj6OrYyxmnUQsS4tTVVx56woAsB5BsCKYZMwL+N/5NjrZutooWAiYaexQfbc7f31hwzyvxc/rhS7rKfElayIhuJcZKA1SJbsEEKZMTpgSbXQzdmUnZFNPLlRZQjbUNKiMwIRsPs13dEehwfXQADY95NP6gnvXSb+H5PitfqfqateEmtWYJJLzsQU3htV8Nte8NXYfkTuMVjkR8aXISHgJUYhjcQOplVqilgrieEKmvEsNsg6nOm1bn4YHsFlOJ2U56qSoaqNJzViqIHgcxrcc1Tb3zNXT2wJz1rU+v2RDZw+yi4QOQHeRsMtlzTlq1aTyJrYAeKwhPNlMcy4fOJhFjjqdTaqFPQ9X2fixy6buuHJ+keBguvD0pejq/SlrfOj9DGt82PWy8Lm+8dw4ZMkMv8NNXnaa/lQq0QM+BY5c+ADxqYolWnN00TsFA6I7j/pHt75ytaJEigRExcW0jivssnv2Whu6r2GdNSOFBymHjLD76UzDr+tbWUKuyDm5EmBQXCk+SnBFJ/NlhSo8ORLHtU3lfKnHvT3/Lg+YbRux0n5y0HIyY0LR++mMwa9XxLEiVJ3AtURavPoIWLHrjroFZPZqDNDAQiIuC4+zJ5oNCH832neibQ25/Hn1FPIZbR9sAPoZbYJQEYhkOXIhMsiRsOsDeSx2PW9+8IeBP3ULnPrhu8r8xN33ZB5j36h9nmp3dYRBNuD8kYni2ETgVsJKVSKlEtbHVJ+x0mn/nlr1j+l56TKJXdfl1HEr/NQxLXn1EYjqslqVN3m1Me5qQGMvxkoew+1Jb/YknfAVfpZT/irxzenvfuHw5plkw2/G5tioCZVs/NGDyRBDD6ZkzgJnFEOdNFb3MFyisCYvpLI/8HSZElsfgI0lEHWyBLrnOzqMOeuGas+rtMcMjGtRwGyZAIOVvQFg+GQexDaZDWZ3iipN2uxOGfHLFFLqXoYetqdsWnFtT31oSWA+mA3zsH1+l87xTvqkD7D7SfwqqA65BnkoLCQvl4hj0SJDdEXKhrR9KPAHgHlSgTsl/CTSKFrpSWqdU67HopdGJ9O1XbiBuerOAM4MpoUbuEdxvw1DajFhTxhSi+E36ZpaTKXrK3WYK3BrgiVoYanfMgWFX4z8eZo1+Frkx4LAKSsDhw5/Pt6ZxB8jAX12CGizw4gyO7rUjO5+wqNb4KZuw+YnPHdUlXfNBLDTBbLTQ8DgCX8GVGNnpqxhNpCaRiKxMqChdUGpv9PMI18+JftuDvjyPmfL0qtklLzpKHmXidLL4qIDH5xXeC0csKmR+feTA/SAEhBrDpR2tzlNzRblPDuFdZ+AjpEWAFFrKJBtGDYU3Ybh1ytiwRuVmM9MC01nXVGkcH36y3+ZPqUWh64kfTrdiUufejj9T5/i/Klrfnz/zCYzwtZ86tV9xc2EIj3oU2rRbz1oinQnLk0R7VTR+nR1yPpJdtdfC1Y9y1qcf7T/cj3oU+oigR5Q8uBEydypAvUp1YZWuT5FJYZVnwKkcH06hE2fGkxMQJ1O+slY62hk9262j9x370evxLzrs3vrISSY3JorJIhrTUAewwa5zhlrtQjIKyFjjaGjAqHqGToqEBlrDB0ViIw1ho4KRMYaQ0cFImONKg20tDQ4pxnliNpwQQ9paSK9cdKyEjn5n7UeYejDQXCSurFP44kxG0+onS70wJOhbDxZXPRxhWufjJD9v4Uf8y/JIZertyhN1CczhmtjqUFplWspLCOOD2BBT/qv4xfeO1QQ5dR8tEe33mObu4S30cp5pHb7MA2RxQ5H4tQ3sb0CvUhtKU3bU9WthbyaTYBC6+TDsph5vTGDE2mMw8XgRKJ+CcWJzPqefmD1vOjAvRs2hXk9a3tP3+d1GQ1PKRb8FJFCDA/MMaL/cvfftYZlmQXm/3x6pLXdvtvc6PfFh+KH072h8DK9IWoblnKaIz7gnnET3BuiF05qjXJPl7OINqXeUKmgM1fx6TnHz6tax9Cde7qdadX9JzdO1Ng8I6Y1vXI6RY88cUjgoUR6mYB2KCS4Doll0yHZ+Y/6T3v6OfBA/p4DO4Y/JpeXM4kQSREJvS8Ym/pwEvDl8A6N5oZ8qUyFYDXtVUiqCj+AxIgztd0Pw6No4xZZRsYqZBJJb+jawouap6YoMkrlLJuMmvdRIooo8PjE17bylSXDmRErgQ3IYL35OLEKf3cQisDt0Cfp6yl8JDrE0U5JOoKAxwHwsasPL32aj0WoSJEgloYg8SShsMQu94atojWv18CuR8nkmlcpncf+dhQ2i3I4bYWCGKGA5epUYuypzIinYjLKCtHIQGkc7PaglvYa8CLco9W4hAb1ErybHab8YQNqsUjiA1sQqFljGqlSIKIk9e/o2elSBYKJahybqBqM/05tPqWnNX2q/OvBgX/kwOXAFzgQ6gExeMyp5sRw91EiGnNh7qFWyfFsmBu0q83Qro1wtRnatRGuNkO7NsLVpjJWe1eb2s1ND652AhtPakQuSVmfPMw3981npDN/09/k/ij4Xj/RC1X7tjKNiCwBKT9cjkj9Q9TdWrXLAaB2reN8LHrbFsoHtD3VD5yts65wgxY40oW01Vg3Ie+zi06n+ptgQkq0L8IbqPJjE0VSYK4YXzyy7anpx5+2Dc1Oqd96z77J5NDHzBcbgZ4DQBAqogN4gStXB/As1yrJlTKJBdCqp39RUVGJLuf6+WTGEK1p0dQCCXREmKOMN7uGzstt5L+ky7whR4p37qB04cIHYejCRVAqgjtyTu4EGAJ3gDYq0SWhsJkQ7SoMzxaR2MTZql1+NernZt9cBNmm2SL3pt8vkJkjxPsU05mjplQEc/iczAHapOqZA/mjyRxiYY6NOZ0FSfArUZ5oNG/Guvb04MvkohGwyY8n+lvpJ5hn1P73c15OVr72yR82wvbTwgvkYwY1ozTGpxdCJVErgnmFLlzM21g1zNOiE5NxGRzsUcpB2Kk7TQrcWcA+wC6pTApZB36SyEaiRPirByQliVKxC4x8PNanvePD80t9ttttP5QQOIu8iW8Smch0EgK/XBGcS+fkXHSVcw7eBKNBnbLj6mILMGJpArci7LnX7kWjM6N8Dm0osGnZcRu5tcl/1PC+vHtcbrgPAWOHszS3ygNVhLifmshj8VPtjEdHHj/4Ifyoee4zx06jXcib8z7YkkyEAkkRIyPppR/ZkllbC2DZeqXGsg7agSwBkSUhKkUaX44NqLQKxBI4A6W9ESkeibA7r9S+ylzPSk8kINNr9wX/yGUKlZ9YosK+mMndZ811B/L+1A2WHmVKMPAAnMlwY010ZYxr/Qls0LPS6DNq5dHHf1zU3f3Ov4FrhekWp82nfyKLJTEqXSzVlLIiXmp3jPJGvDDrByLnxaRHikE8vNtNp7Mt9aM0XBi+LAVRKMQsTY/HvNvnPd9uROjkFcn3YhY3e1H+KUzBiqoj9IBVBidWcW6VqnOJFUkzPOSCH4LOzoOcByXmCO7xERe9PbxLTFDbRrWq5kRgQHwU/r+mpttDvkMdbovZ1Nj/urj+R11cqe3oK6WLKx/2KPU4DYt6MBz+i3AV8k66V0QX1711lI27bZ4WPDOhVfPrU+p667HAhJ51pBdAqDtEaCbTvIdNL208KqWLa40FGb6rNj4M2sybeP1uSoJblVa5hqj86c6FCpAbg4kddDvrp78urn99a3LYrukfobOu9XBdZHnujEF0cYWsW87JOlXVsK7Su7g2vC+uqzy823/O0B9Nm1zreYuyZ1mZdVrgwiuqZRiLbOS4o1qm0rq4+tvXzr53rJf/Vsm4/ddr/0vWzpXfxRWCgyobVnCAsqm8Lq5GtR+U2MgCgzOa56ZeaDpwjwFUsIEILedECMxp3G8bxmPx24QC57YlPa4LNj5suunqyrftyaVD0HO7cpkEWHS6z2bOgnPH0i0Scen9ePkbgLhClpyQyIdVkNGlGl3Kt8y/i/x7ZW6B90qzca/HFZydyfq09EInGkQt8c1rJeQVeQJ8RT5w0YWCbzoI7708y3uW0qb0sWAuEIYF46vXvHIxeJjvYb+8watFF5cvakgOnfr+P/a+A6yJrHs/7iKiKFYQG8aOSLNXFBJCDUVQxLJqDBGigcQQBMSCCCpWVOyo2BsqNlQsuK5iL7urrr2tupZVse2ya/vfO5kJmZk7Q/IlkHy//+fzuCtzmMnkPfeee+657zkH0gNQjfnKJOW5UFTDaKALdQWg9wCi15yPGJ1nwIpzsKNeLlRN9fSNkkQrJWj/8sany0s//isL2jV/596ZOb3jKEmR2I2IpEj1daMHh8D3z2L9/jEdTe0saUamHo4SfGWpPEoqZilnlbJn+TTHP2oFLU1/f21M4TMJeawSD6CPVY2kIpThyaoMe9Mog16cX48TC9fAOLkKLF8iMYydOrp7gC0r2FnEOnM7eohj5MooZ24nj/hxShX2A9pbXbFr25XVbs9DNnc+eahNdIft5HUNfkC4KllGnzZaoopQVok7m7LOuJvDzIGP0stbtS0LdMclKEfFs8ygW5zlljZPqwQfe1XkXFDqOMuQrbKhW4eOuCGH2d1XqOpQdBJs39ZRPy8Vt+Qs3tYZ4WGZXe91vps2VU25GReeYtptLwAgiQDgBgIAaFr08kSJpYy5rszO270b/nLLzTf7yw9BKyaq2lGWssrN74cA1GQDIOKaO+FojuX8d/FxOv5iY5f0pjBkfbHLpMY1/3hdaXycx53Z+DgNOlc0H+fvp6OGf3rWL/hA7fFVhMfm9TcDPs6dzmynm/s6mwGp4PLly5XAx8n6bd/yoT5i/02hg7s2uHAhxCz4OHNYtRNlDtqpFD5O678XD4rLqeK5KNfttE+t0bvNgo/Th1U5DcxBORxT8nHqyvf3j65u47f1rF+MxYW+P5gVH+fPTmzKO9nJ1M6uGfFx7i8O6+BQdMRn/o49fRdPuNrdxHycHFbNqUyuuQrl42R2jzqc1OeRcIu1W/T06ZlbzYKPg/kQjHwcYAhxP1XG+T/Ax8nr1PDlT9eq8rJadolr+PF8hIn5OH92YePjZHepHD5O/e1W1yLvBQWu9Piz4Zb7rRcYnY9D3ZsbgWPyuAsbx+RIl4ri47gvz/gtcv4y7zV7Vqwausf+ndH5OFQbYQSsslmxknX5/4qPE8tkxsYVSTtIg7fxDxwLkf3xeOgb8klJ/wSYBemrFCli6LmiehxftPaWxitgHpjmNCfZBW9YJ4JlMqPhJyBH3jP+yQbPTi3h5fUa8/Q726NKxvejn+RoC2njr3o4MGEh2klViFH5H2Y6a55GzVMHnoCsNRiVdnz4l5LJWcNR0DymdXGtcIkM5u1FkdpzY2pVqzKOSZV6Z5c5asZ2xWeX2WU5/Nzm4xNh2q22oc6lae+0ssuazw8e0d6tVsDW+l1qv9rS5qtWdtn1b1/eenbaI9isrCJeGZ51TCu7LD5CdKlutZOBh/uHjFr9LHGCVkmOvdf95EMKuwStHnMzmt8jWKRVkuP+prm+pc6vQqbd9+Umr3n4p1YTqfEc+YG/bIYI983+zr7qubV7gagaLuq1+GybJ1ume+54YrnVNik7EIiscFF2SN+bMb8+91l86MpBcciJuUBUHRddrb9UsGaYtyDn0PBa/cf9/AKIauCioCOL3o25FxK86S/l3Q3nQ1sAkTUu8qvxTSlyFwnmrld26Dn23VogqomLatT7IftT/sjAfSe8007G3twMRLVwUfqk25PH9s/mbd1jdzIl/dFVILIh3lA81zKy7gHv9bK6Nd/8m1oLiGrjIqeZg4dFt9oTuCHp1Dy/NZ1SgKgOLsocrLobGL8wZPYThzCbM64Qw7q46PbKXuNGbxsSuLHhMJcZK2ssA6J6uOjEmTGH2x4c7L8pPonbU3YTark+LhqU2LXVZ2FTv1RbX4t5vnVaAVED4q6Ch+Frv0T4rL07YOiWX1QQeVtcdNd1ZLXryznei9b3nvWpzeJ0ILLDRfPnL73X8e9GgTtt3DNlz8YmAlFDXHSgNHPWozN9fNcWDghKG7p9BhDZ46KfO2Q2VzY+wS989EIYfP5MFhA1wkUpHqkNT0l68I6EtD+7If5uPyBqjIumvwh17DbmvfesXLfeOxq+vgNETXDRRW952K2vhT5L6jTZlHvIpw0QNcVFuyLW5fwy60/PnMktBjxbchEOtmbEiLKUzX90J94z3a7/5x5fnZKAyAEXrXu2yqNreiv/HfX+5qVMTlcAUXNc9HTtzZgkwT/BB5zEHgvWpU0EIi4uqtVz60TnO9cEhcl20ceGP39DS7ZswWFIttw2a+WrOy2SgtN+WD7//sPs+0ZItpQzmSjb0Yd2rTh1VpCT92jC+aYTc8nBREGSQiaPQjAImDolt8Xv0HA+se4K8bEimQwYIbxxhY6UAaqBQr4aPc6JC3QtdwezaroXQ/uK8H5LnAWcpO769X0pY1SqXwT53Sw9nhe6rnbmr7+0o1MLh8PGJFQa2cnNBQCdgQBFMfHPcrvrxQboGgYcJiUWu4uSwMrc8ngpRqEA7yeVccFI0YwTLvCguCK45RIjUXQclD/k3k/3eQeXxDRLafv9B/IRqOZz6EegZSKjV1R2xEYMC1yh3c3ivJpO19OzAa4LPtGiytSlihGpwP5lrIQLHBBN5zXms9KJdhefZbzvE5Q/vXX9p0O9G1Ci5fhjEdFyQmJs7eW74IPdG6W9Hm7YYKedmOoJXAuC2EMErSVUIJFgbf1aOmRn5Dnh7D0XBGcPtso3nEZkBLCSWMECQx1ffxQchvXnf9kH/1H2AdVDr5TsAxg3bdqzGLamRGQfjATDIadHRWQfuCTbPuapFvgfvNaunuMHH38jLpZUC2TgYgmbMzWACM1jsv5/9qiU7AP7hT69jjRN9zyUFvnaP/tLqElpGBCVkz3YUAHjxkxPSiov+2DqQ6dPuzoc4BUom7Vd2GxQP7PIPoCqU7GqTmga1VV69kFUYJ57jdRf/Wcon+a3fxE11YTZB1xX3Mog6eP5bpiVqbTsg18HTwhY8a9DQG7x/j9Odml11MTZBxAczNgwgpPToxKzD1wja3SOujzXd+vcIXs+uZSQ25mbJvsAIqRiRQjMadxvG8dh8NvOrhQJv/Rs6Ju2yaHai1Ypx8jeKNamMtxbqHvggEfuEot7wmCHOBr8CPyuZO1WqsDY4uMV+l646zZJJ8eJGr9EvzfdiyYkenRzyg3DuzkhuzRywyqgnezmdRmnPmc9C05P7XFzXuGlN5RDdng34pAdu1yep0S1f0Zo1bQMAqRADcLjHQQcRZheZ2f2GEDEuHCMkiph0rM8Dr3YDhjer+RA5y4B85v+3erv5KYryNPSm7iZPi3LROUBtvtS6YSJi1r5zLz3YuaHomaNjACYHytgYESZxIlSrxnwdzpzmP7QUzqtWHRpjemSxaoKr0wc89bpdsjy11fOTcn9/Xk9LBkHKINePNnSixfuGNneMAeYotr1t4syV504EpT2Z57dpG8DdhtBtaX92VR7pb/5+MdZ+vV8LL9l8fOs73x32L73ObR9cO+Xz5U2JmtZjLU2hFMMtixW0LLr3bAphi+MSg7Dwsi72vDu+O57PXcMHW4/O+IouchvA1g8UwVDn5CNK4HnwxI9Gh268eWxAHJ1CU/sMVFlj8E2h2X9DaPAINFpRaQe25X/wjR1IH9L16ACGPxJfQHoz3iIUuEcZwHHs6+huXpeQi1QYLgBFuWF3oY8jutI9OwD6KmT+OC/1DYtHkaj5YkShgych5Mz1o/tdlBQmFpzzLmf59wg2xis/TGiKyR+vTwb07r2xw4jPnfnbbg51+HIgfX2hkYmAMwKCLMFD1HAuocTBrOhIeE2WurXRLfE8rh4iTgBGx6waww6urmtf3bd47/X9s20yJ038DmH3F/Buuy59O0vSWhsk3DcGYdtGAq2JFcMNtwkxDOZhPM2rd537CYPmv7uTaDrr1ME1B7hCplILOEGJ8hkCFvA5DC7EPfFwfvgmJXGjRfJpFHqQZ4oVcVw5WCbotTdElBP6VneE9XLXEus68LnCAyuB0DXGnX4FgrR9TB07tvBRQ3reKqCHTqhkYSIMbR5vRja9U51r4zmwaO6rw5+RXafsQfR3Wf15fKmM5WVYOB0hseWWRC5dSiXwQq4DDEejO6zjsg10SCnJA01OLSQ8KX95lJjZtgvwdvuNhqU2LDzIjJVGx8g6CMdstTYsxii5cmKlr1HpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WNzqKgLEyGTBJDidxu+Cwo8ULoleOOzQK9AmH26s7F0FfA1ipi6EchobCqtST+a/Bz4WHJ3tDbDZ4/pBxMwG+FOJjALlcEFJ6sUIAhji9UKg7DQtX+S0P7ndzvBft5JZ8kDtHkCivW2BhhOohjclmbBUlE8QlK9UGYekcHwVX7qbqddVEZYoxvRXcNtIS6+knAE+rTDzcVNHfUE7gDFv0MXZKq8+CxOAQA+X2dnj3O627T3+/Ih5cnDz8/OYe6H4qnDyr11fLWIKqPZeAaBInjXSBUy7wQvtEzJwwqvfaKDaizTxrHFaIbL0qXdhCv+tF7mlWB5c8ZtXxNer7FccGBsEI5iTApFACBz70Eprmnen9rcIsjwwPS0gZafJrwfCc5IoUNZGhE6YkL8Gm14YjCuxxpk1Q5DEC3CZOALyaBp+JEGFuMt3RUymP1mp1UkibDe9MjaRqRHgzyM14A5SxUSBWSEfy8ED2lIESQhoroKQX/6tuYVHGol6sg47DPNFnTuk9E1pcIOcGPzby9+LxEVMDP8Rr03ZGhb7sbuyeVcUzMloPB8lFdqvG2/dv2xHGXJU/N1cRkAZ0f98Lz15GRsWVeqO6lTIHFGnC8AasCpggSl59vrRHnzZ7ju6bGmpT96x1aUXwbeB/Ct8Eul4fM89LT2+t0i+Gl9R+3acPrHrlGQEbBigyYDWaQw8bRTD1MQeUdpzeCXYrUCoIbDyyYNQr75ugsmCrXLN/FXAhe1PJAtyfPlpOjvFjHI/o4xq4aewmA6uCyqqPU0yzOyTn69G2riU0XkYqbIm03Ce0Bt0jZ2SbqO//5g/uPclp0P7VaUIIK9rHTfBxZI8iVoIrU6OpQuOJ247gnIpIL47xgduAr8ngOw4q8e4Tw6bD03QGZdUd0zrArJLeXtAyXgAVUj3hNE80BZzx2J3Ry8NCjbgstNeUB9Tp0l0d9XdfqFrBQvSfcRKCW2FywxHI89apu0VjdUlv9PaE3h52bY6+EpkV3tX489ssp/s5xI3NGTHv11JDzS0M3VDAuDbFQoWZ0Emw+ZZoZrUPJ1PJYZa3DVRIFN146QYLFwyQicQw3PgFzLGCUVv0BSAX9ObfFZtv8EyF7x0lCMi5fI6cLWMDH0g0udrUi1OPIqh6O2aqnvONPh7JtEJ6SV/7MsW63s5e4w3Hh7KJ7R/eXdjnBciL6faRLR0MiFRTHhroVM9CxgYq90Y9Nsfn9TK1YeBO2PhoYdqsbTl0K0AekFNdRH8tv9Ik30hW3i6WoQ9JIN2zi4UtrIodhaTWbVofUsLxx2sNXQKfDnD5snQ4n9iEgTzJ7yKlJmMaBnOqIGgFyIY8NcmceAXkyE+R6p//aaCxWxaf/IrJ1iRgHIluXCG8gsnW/5zBm6xLpv4hsXSL9F5GtS6T/UgcKLYESWlvkEKMm8xohgXICk5JbBp50ubu7hs9mi6hR15/XISu5vpo6ypfJ4+HhI0YHpm8ZLBmmVEsfKWzlHAN7H6sfgBEUIGsBT2rRbedATWAu9xVp4KB+SdcoMVjPJ/YCM+kGak9RB8ykzz31YkI2UXO3sdoicqgagAf4gTnLrJEyYtvsYfGee56dnGw31K2PIcztiiVFKgBWql74IU4J1eqMdBJwevRCnuoyYWWrSbDRxgrtQF7+FGoREclfVFBv/uqqK5oaMclm6sDgj2c2JflslWf6zeQlnzACSp97sqF0vKd+5w7OocS8wiYbhhkx5SBxgMhkZCHefu4y/mvaMf8C785pM7jSkybMDrjijA8iJL0bum/CXvodijppguoQIrFWBVS4zJBsExKc+ZN7tVnxcoPXQmmDltwm9UeYAQcegtSaFaTPPfXLEmjjLVV/cw3xqWzIYDR1ZgOV2PhpxErrO8KZ4sif5/24/BKZk048l85J10gqAp2rjAkmEJ28noT3k8JhWBhfRgQLLdz+4S9ef8FnbYj/EDqtk74SWjCA24KcHaBJnEyU69WEgFquQ1emqa40E2CYDvYGsF3gIehMMHw2sncFkP4v9cwIOeY6KHjptSf1elu0oTSCwKJjDMs6SVieFaeaOEPrCgCw8iFYoagx5gn875m99VrrbDCwJGCmMUPlWX1x7BC/08INwsvjC13XDSRbIgG4Fw2UlqiSXQII00hWmHr01m+xK5+QTc1cMBkhG1oabIxAQjaX5ju6YdDgdmgikx3it7vg1nPafWGuz9q3qp6NmlFZjbEiBVcdcENE85lc83bq+wjuMFblRMSNkyTCSxKlVIwvkDqZJWqpIJY3RPEutcR6ZHU+CyqGCdgM2UkxQXoZKhuM1KymCoLXQRed9LDNtvjSiz+jbvQ+v75Dyd+yKvYAuoukvlzenKNWTTKU2ALgeQDhWYGacwdhA5QgvXKTaqnfh61svFPEt7w/njt4ZV8ZO7DNwHWrKDE+7H5EjE99vTx86jduaOXx+KJwY+HnobVn9HU3Aj5ZrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0mSep3b0uvHN86DF+y9bLNtTav2r76crDb9ubGMJteLJqhV7s9JKSRGhFb2Wr9qYwVNIotiOqVSLbYsmNJjlf/Tzw7XXc0c1ISsmCLufrhj8ekWkFWHmBMYSafvVB2AV2xCk34asiQYDbGMhk5aHh03M6EvjllzwyuOITr0SzE8m52jz1Q+g52gTgopAJIYVEecgYl2fxGFY1/MXBn4Y2ruX//QPX1RWP916T9ax+hN156n20ewwyAs4NzFGKo4BbiWsVCWKj4f1MTU5Vnqd31Or/qHelz4m1df1yToW4lnHNPLqA7CrixEaSl5tirsacLGXqksew+NJHjNJZ7LvpNQAf3/fzY0e3hp6256cFlCNybHRCCp58ccSkyGG7igy53EnDEO9LFafYHxEqZu8kMr+wOyyeHV8ADaWkGjIEtiZb0owmnVDXc9N2mMG7msxwOxRgMHK3gAwfDJPZprMZnM6RR1NupxOVeGWO0ipZxlGOJ56HMh2PHUykMB8ChPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueowAXsOKnADzyjyQhHUYmI9QVCL4SfpSy2myo1FHWbbuDVTE7TU1G+5kqIvpH6Onmp58af3YT6blAvX2NunkBOcq3jRZ4cXbXZUocyObgV2/bMCegbNatpyut/xbhMNjZkAdX4OhSbcC+EJlwLp1VAUa5gJJIdwiVgOLLQ+KLnv2JBr3cuOl3csI7D35W19ySjx6CjxykXp5UDlpg2jXXg7rwRGXcz+RWEElPJYUUoPLaayRVlzp9TdJ6BjpANA1BoK5DVM/Sj6GoZfr4iANzZiSlGBpjMuGFK4PU39L7On1OLQlWVPQ1jtafD/7Cmun44Hqj8v7HTRa9uKwesybzRtYQR7Si36bQx7GsxqT4Mr2p4uq/84ffuehX4HlI0sx2yp0t4I9pQaJDCGPWVFKT24Au0pdQ01vT0NZrWnwYQ9ncpkT81mT0CdTsZhrHWt0ujtXL7Cu+CjZ0z+1blhRtgSDAhm2xJ00UCexgS53oy1WgTklcBYQ3RUIEw9oqMCwVhDdFQgGGuIjgoEYw3RUYFgrFFHA42WBuc0chxRGy4YgZY2zWiatK5ETf5nrUcQfTgITVIP9mk6sWDSCbXThRF0ks6kkyXPPq5yGThHeOhcyI++33Jbkiu8lhH1yYphO1iyK6tyHQfLiOMPqEEn/df1CQkL8hrg2DLFvVfYpJbOIe11ch6p3T4shXLxWEmU5iamr0AvUlsm0zWrup2Ac4cPDFo3PkMwcwMf4URa4HAhnEjML6E4kcu+pBauXRDpX7B5a7Dnkw63jZ2vi1x4yrDgjhcppTBhDol+ixq/t+uTPsdzjsu9DmGpO0Xs6Efgj+KG0L2hkHK9IWobFgOXIy7Q3lU+7g3RCye1w7SnTy5igzJvqGygo6v4JA7fPXniJt78FZFVqjz/3osVNSbPCBXTM9ApetARhwQmJdLLBHTCIMFtSAaTDVlx8MHgGY9L/QsP7i/cPfYhOfpSNVQUJ5HR+4IxmQ9HL64C3qHV3JAbJ1dJ1DXtVZIkFZ6AhKb1Udr9IF5FF7fIOlyslMtkYdC1hRe1s6YoY5SqWaYxajUwXqIcAF6f+Ng23vIEODPEMtiADNabj5Kq8O8OtiLwOPRR6iaKHokOcbQsybYCDtcP6LEnn5M6g18jSKSMlsYJJaNJg8JafTkMtorWvl5dfX2AXKF9ldJ57F1bQfOmfsW1MRBDlbBcnUqqfqtqxFuhFmWlKNE/Lgp2e9CM9urwIjyj1bqEbepleDc7tfGHDailIhkftiDQqMYyXKWUiGI1P2O502UGRD1UpzMNVbPx36nNp4wU06eOfyM48Pl+bA58lh9hHmaYPebU5cR8z1G4fDbMORqTPJMJc7N2tRHt2ghXG9GujXC1Ee3aCFebqljdXW1qNzcjuNqZTDqpHr50/KaEMd67XpVKunO3krfstfGzfqIXqu5tZRoTLIE4bohCEucr1HRr1Y0DQO1ax/pa9LYtlF/QNasfOFvLBsADWuBIX6FFY10FnDPhemX1N1MPUqJ9Ed5AlSuOEcWB5Qr5xd+vsvnQ/ey+kDldhn3aljZkHZkD4K1+Ap0DQAgqogN41gC2DuAxA0zClaoqBtBqpv+DBw++6ZPXzyUrhmhNi1ELZNARQepmZXbQDyfnL/PK8X2ZUPgk6ROlCxf+EEQXLkJSEdrxZNWOvTloB1ijb/oQCpsLsK7CMLeIpCbWVu2H/q2f+mb0zqB9NV9c79+3PZmxbiXA+xTTlaORVIRySsLZlAOsiemVA/WjrRwiMMeknO5esfAjMZ1oNW9Wd+3x4MoVonGwyU9H7Key30DPqGt9Bcf3HfjOa0XG3G+7ov32kQuhDtB6Pr0QKklaEcrLZVVekmmUp0MnJotyNOhRpkHYqTs5DrizQH1AXXHyOKg68C+ZPBETwh/doShWlKS+gNTj52Oxl1tenR60eU9ox9xLo9Mo5WhiUJkQ+OWK0Fwoq+YcTa45eBOMj+nFjqunDsBI46LZDeGuH1ou//HiX/57Rzb7Y//7fAvDG94besblivsQcO9whuZWuWOGEPdTZ3EY/NRGFinhJw5/CCmy2vWkbbcUZ/LhPF8dkglVSsZLJYn00o9MZNZ2XrBsfbxWWAfrQBYtkcdKVMpkrkL9wPja/moCp39cmCQO34kwO6/Uvsps70onEpDlNhHgPwq5UuUjlanUH4xy9xm57mC87xsIS4+iCAbuQDPDBjISXZH7Wl8CGyxXGntHnTz6jovPhclrhggK0w/2mnc17hZ5WBJPpQ9LjaTcuoGU7hiG7njhKTVEzhNlR0rAfjh9oF65LbYDtFwYrny8RKmUMjQ9HrKyoFb/TfVDZlg5D7fduG6T4VOYghXVRhgBq2GsWHUZWKk2l4hIVsO3XPCXoLNzN/fuNysJ7vERF3nuvG9VsbWNuqpaERsD4lfh/2tquz3kOzTb7dlMZux/XVz/oy6u1Hb0ldLFlQt7lA4qhkU9EMl/oS4CTnZERXRxLV7Q/j7PMtbnwJ9jS9cOmP/aiAUmjGwjPQFCNSFCs1DzHja9fBxRKV1cIzKdztptrOeX2T+qRr3ZfWqbtMo1ROVIBBsqYNyYzd5Bv1w/43VxrWc9d0t//wBBXuy2RmM3xJAD8Kbq4gpVJ2NVnbdpVFfpXVw7D2gqiB4aGpRWffWHekdH8U1YpwUGXjErgyyykeuGWZlK6+K6YIWwycTHK/wKh1j+s6TuVXIhvMrv4grBwYwNIzjZEZXYxbXB9Jb/1Bm4Mnhu6M8fOyufkStomaaCDURIxooQmNO43zaHw+C3CbycOnzzuOq15Z7D1l9Wv6GUDsHydhVyGVjR6T6bFQPOXcuOSKRl9+PlbwDiSnlCdAwXVkHGQjX6lG/pZSmb/+hOvGe6Xf/PPb46JTG+Lb3QiZZQR3zz2wg4ByMBviI+DLpQ8E0F2/s6kYbmUjYoey3IBVJjgfzq/6xfU7+2tLf/4ucxh69eGUgm8VtFQHoAqjFfmaQ8F4pqGA10oa4A9PIhes35iNF5Bqw4MyP1cqFqqqdvlCRaKUH7l2fTep14e+MJf91M22O31pdQWoJ4YzcikiLV140eHALffyTr9+8RaWpnSTMy9XCU4CtL5VFSMUs5q75b/KdlBocHZDdQBaVuz55NHqvEA+hjVSOpCGXUYVXGs0Fm4f5w9DmxcA2Mk6vA8iUSw9ipo7sH2LKCnUWsM7ejhzhGroxy5nbyiB+nVGE/oL3V8GnXbhSfbSVYMPiP5yU3z8rJ6xr8gHBVsow+bbREFaGs44PYlLXMNMqizBz4KL28VduyQHdcgnJUPMsMSrtrbes2KoSffjh3Uei7bm0M2SobunXoiBtymN19haoORSfB9gmR+nmpuCVn8bZO2GVGWVV/5HVgTkZBb7/SDNNuewEAfgQANxAAQNOilydKLGXMdWW8ix7XmX44xHv23ptD9jTr39ik+f0QgDuDWACI2DiIcDTncv67+Djrnq3y6Jreyn9Hvb95KZPTFZXGx9k3hI2P83hwRfNxuNsTU/YX3eCtf/Ljn29uTPrJDPg4eUPYTjfTh5gBqeD06dOVwMe5NaLKwW4Dh3vvuK3aWzP6dZJZ8HGGsWqnizlop1L4OEUhnJFtQ2r5zW6emt9i+Q9DzIKPU5NVOcCamF45HFPycfr/nPXk+Gl+YGpu59mH8ndamRUf58hgNuVlm0Z55snHcavZ5GntvGLhtN+ftJh1pGcvE/NxZKya8za55iqUj+O8Keo6/7fVvou3zVuV9cPeHLPg42A+BCMfBxhC3E+dx/k/wMd5uvZmTJLgn+ADTmKPBevSJpqYj3NkKBsfJ2po5fBxUi/nTM4+nes7Jyl7sOxAp61G5+NQ9+ZG4JjsG8rGMZkztKL4OPNOBq58lDDMp2BDdLuv3x/fYnQ+DtVGGAGrKFas+gz9/4qPM5/JjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvFo9t050vnNNUJhsF31s+HPm96Of5GgLaeOvejgwYSHaSVWIUfkfZjprnkbNUweegDusxWfHh38pmZw1HAXNnQOLa4VLZEBhkihSe25MrWpVZjGpUu/sMkfN2K747LJF4/5N/L5ZRPDKOav7Tp1yup9WdtmZrguP3K/m67Wjm+2b7r23vtbKLqs9OtPG6twFr8xeblnPO7dO1cou8+n17cc//90RtKregXl3p/aL1yrJ8aDh+ZGx+5y8tv3Y2rF0efYerZIcbeS93343bYpX7oKDUnHR7y+0mki13vXU4te/zvnOnXHs85WrvdYDUTVcZLvi15Cp10YEzDgc+HXbsX86AZEVLjpcc3zJQY+zgn39fncUJiZ3AaLquOjllAZui5p185w54++pXh+3bwCiGrjo07TSz37dsvmLDrk8PfS3nxiIrHFRvVMOJVMLNgtnW1zz7Tfw5k4gqomLzq1YVO1T5yi/eZJqR1/ldvkeiGrhon8C7gQMmrItYHe13VvPnd53HohscFFW7rMbp5TX/NbNjHrwZ60d94GoNi6qLt2wOu3Y55A1+/Y+2fvrXfgadXDR68Y+m+YdTwvIHX7H8vflzvCz6uKidn9Y5dU+ti1gUed0ydKsezFAVA8XnQq3+a2kyznPrXVlz4ZcWR4LRPVx0Yg5G2dxPFx4R4rezL0X5vgbEDXARUrfC/d2BGfwdgfWXhL2T/06QGSLi85eOJGjOtfGP+tRUYeXa3JHAZEdLqoa27uoJCvfd4u9Q+H4Y71HA1FDXDTMMXPl8CUrQ9YuvRXX8NSHM0Bkj4s+Ll3fv/Tdx5DVeX4uYUObPgOiRrjI98GgE4HXtvhPv9/99Mee+3oDUWNctLnEberuzA2+U1d9Xe7eXgzvaoKL5h+0tuqUdzl42pMxPYYPO2MDRE1x0VvpoTcve58TpM3q3Gnjl0xfIGqGi35vYuNw61oJb3qHFnv7vax3HIgciO/VcVqvjyfTvPa5pds6RUYvAaLmuKi7+91BTRLtgxek9H556+6tpUDExUW8J7GpypUXQjKmbHc6fLv5RVqyZQsOQ7JlTkmn+7ZzH3gtEDfv9Gzxe2eE2dA32XIBk4myHX1o14pTZwU5eY8mnG86kdyfspogSSGTRyEYBEydktvid2g4n1h3hfhYkUwGjBDeuEJHygDVQCFfjR7nxAW6lruDK4CoGNpXhPdb4izg3BipX9+XMkal+kXQfPysxTU2FvYM3nn5cuyKdS8KjEioNLKTmwsAcoQARTHxzzgivdgAXcOAw6TEYndREliZWx4vxSgU4P2kMi4YKZpxwgUeFFcEt1xiJIrbvXpuXNVEGVzYpVrhspsTb5OPQDWfQz8CLRMZvaKyIzZiWODKH2kW59V0up6eDXBd8IkWVaYuVYxIBfYvYyVc4IBoOq8xn5UWZwjP/ui4zmvXU17uW573Ukq0HH8sIlpOSIytvXwXfLB7o7TXww0b7LQTUz2Ba0EQe4igtYQKJBKs7xbUcb5d1TJoeQjn4PWLoqqG04iMABY21BnBAkMdX38WchjWn/9lH/xH2QdUD71Ssg9g3HTiqGLYmhKRfTASDIfPoorIPrj4pMT+dvWWQav/7dO9Wc3zNkZcLKkWyMDFEjZnUkGE5jFZf+GoSsk+uNH0UvKzLjLflU6yQSdexZ4wKQ0DotKaFRUwbsz0pKTysg+WbFzw14ePQ3yyf19xXP4pkRxXMVX2AVTdVRGb6vJMo7pKzz4YssIuXuZbVZjZakiN2Xl/9DBh9gHXFbcySPp4vhtmZSot+6CNg7DunHih59Hxt7/VjLCSmTj7AILTmhWcz6JKzD6wS3TrOOnOHd8FXfZfsF5gcdQMsg8gQticZkQIzGncb1vEYfDbzq4UCb/0bOibtsmh2otWKcfI3ijWpjLcW6h74IBH7hKLe8Jghzga/Aj8rmTtVqrA2OLjFfpeuOs2SSfHiRq/RL833YsmJHp0c+JMxLs5Ibs0pqZUQDvZR7wpsmvjtgdnVD2zcnjhO3vKITu8G3HIjl0uz1Oi2j8jtGoqTQEAKVCD8HgHAedKil5nZ/YYQMS4cIySKsHwBXL0YrvttKBg6qRJ/IwfA39ef/vWJPK09CZupk/LMlF5gB29HH7nU1V+4KqeDntGuDs1MAJgW1gBAyPKJE6Ues2Av9OZw/SHntJpxaJLa0yXLFY13lY1YuZTV96utU1ufP756Zt6WDIOUAa9eLKlFy/cMbK9YQ4wRbXhfls5P/QpDNx73ccpbnqQpxFUG8mqWncTqRblH2fp1/Ox/JbF76uFZ+dYe/ume7q1XF7zQIjJWhbD1oaYTYItixW07Ho3bIrhC2M2h2Fh5F1teHd8972eO4YOt58dcZRc5LcBLJ6pgqFPyMaVwPNhiR6NDt348lgAubqEJ/aYqLLHYJvDsv6GUWCQ6LQiUo/tyn9hmjqQv6VrUAEM/hvRAPRnPESpcI6zgJMbbWiunpdQCxQYboBFeaG3IY/jOhI9+wB66iQ++C+1TYuH0Wh5ooQhA+fcTxsncs/OCVj5s2RNh8ART8g2Bmt/jOgKiV8vz8ZU+/zVQvLvEO/5Xm/7PHooMJR/4Q5gvgJhtuAhClj3cMJgNjQk3EZL/ZrollgeFy8RJ2DDA3aNQUc3A+s//8mWvyFgTZ0ogevMYfXJrIKy59K3vyShsU3CcWcctmEo2JJcMdhwk7CYySSct2n1vmM3edD0d28CXX+dIqD2CFfIRGIJNzhBJkPYAiaH2YW4Lw7eB8esNG68SCaNUg/yRKkqhisH2xSl7paAekrP8p6oXuZaYl0XPkdgcEcDdK1Rh2+hEN3Rhs59O7ioYR1PVbBDJzSSEDE0qSpkleef6wd7Lany7fgnB+lTsvuMPYjuPqsvlzedqawEA6czPLYsgcitQ7kMVsBlODOa0X3WEbkmGuSUpKEGhxa6tem03x89uTbNd+Gd8I9e3wr/JVO18QGCPtIhS409iyFauaxoJY2uVAeLeFGrAckKiTYOrbQ4O66BwKWVyFzh78S7+vqNgE5utERJYQnDP4YabjtsgYSKBY8Am+pktaqRWqYuTIZMEkOJ3G74LCjxQuiV447NAr0CYfbqzsXQV8DWKmLoRyGhaJ9rEbtRnuG/vOBg+JSkNbsoBxPwWyEOJrDLFQFFLisUYIjjC9USDsNC1f5LQ/ud3O8F+3klnyQO0b+RF2FsjDAdxDG5rM2CJKL4BKX6IEy9o4Pgqv1U3c66qAwxxreiuwZaQl39JOAJ5cTgpoLmjnoCdyAqxtAlqToPHotDAJDf9+Ha+q0vDPjLM/MlP9TOYlFL6n4onj6o1FfLW4OoPpaBaxAkjmdDqJZ5IXyjZ04YVHrtFRtQZ580jitEV+mdet9lQvIG3uxTzS60eDZxj0nPtzguOBBWKCcRJoUCIPC5t5Rp7qne3xrc4sjwgLS0gRafJjzfSY5IYQMZGlF64gJ8Wm04ovAuR9okVQ4D0G3CJOCLSeCpOBHGFuMtHZXyWL1mJ5WkyfDe9EiaRqQHg9xxLEA5CxVShWSELWMQPaUgRJCGiugpBf/q25hUcaiXqyDjsM80WdO6T0TWlwg5wY/NvL34vERUwM/xGvTdkaFvuxu7J5VxTMyRKhbffvDbFpw9l/9vE7mV3FxNTBbQOXcsnr+OjIyVjkF1L2UKLNaA4w1YFTBFkLiMfhbLv503zm9l41t75fY3m1J8G3gfwrfBLpeHzIvNSc0jBcXeaxTnZpVMuvrFCMhcGcOGDJgNZpDDxtFMPUxB5R2nN4JditQKghsPLJg1Cvvm6KhBSfTbhVFFgtQer9o+ir/jQh7H8Fn0cYxdNfYSANWRyqqOSNOog16mRo++bTWx6SJScVOk7SYhFSD8NCGsYHKNkDSH31RzYh43qhaUoIJ97DQfR9YIciWoIjW6OhSuuN047omI5MI4L5gd+Iq8jMOwIu8eIXw6LH13QGbdEZ0z7AqjyT5GuAQsoHrEa5poDjjjsTuhk4OHHnVbaKkpD6jXobs86uu6VrcA++QHUriJQC2xuWCJHSnVq7pFY3VLbfX3hN4cdm6OvRLyO2YEt5hZJPoYsN3pjti64b/7DDm/NHRDBePSEAsVakYnwYZfUlMbWKaSqeWxylqHqyQKbrx0ggSLh0lE4hhufALmWMAorfoDkAra+OuOm4K8/KDlgxyS/a+tKiRPb/hYusHFrlaEemayqmek2aqnvONPh7JtEJ6SV/7M8bqb9fwBJ8RvdffDa7tej5nBciL6faRLR0MiFRTHhroVM9CxgYrtwarYOiZXLLwJWx8NDLvVDacuBUjdUl1HfSy/0SfeSFfcLpaiDkkj3bCJhy+tyzkMS6vZtDqkhuWN0x6+AjodfpawdTq8IyEgX2H2kFOTMI0DOdURNQLkeWPZIJ8zloB8JRPkeqf/2mgsVsWn/yKydYkYByJblwhvILJ1v+cwZusS6b+IbF0i/ReRrUuk/1IHCi2BElpb5BCjJvMaIYEyh0nJLQNPutzdXcNns0XUqOvP65CVXF9NHeXL5PHw8BGjA9O3DJYMU6qljxS2co6BvY/VD8AICpC1gCe16LZzoCYwl/uKNHBQv6RrlBis53fEYCbdQO0p6oCZNEysFxOyiZq7jdUWkUPVADzAD8xZZlP2NTs34qRNcJrfruZ7j2zPNoS5XbGkSAXA6qoYP8QpoVqdkbB+qhh5qsuEla0mwUYbK3RG0brdBR0CN/vMOjPhrX+v6lOMmGQzdWDwxzObkny2yjP9ZvKSTxgBpWGsKHHF+p07OIcS8wqbbBhmxJSDxAEik5GZeBuRdW71xXbzfXfcG+ff5PnDN4aMMUNrKTnjgwhJ74buW55Yv0NRJ01QHUIk1qqACpcZkm1CgrOqu/C3d72PBy+7ljpXsKYHuYe3aTjwEKR0VpCGifXLEmjjLVV/cw3xqWzIYDR1ZgN1fLn04UH3WP+Dfx1pMOfSpclkTjrxXDonXSOpCHS6sKJTU0x4P6s4DAvjy4hgoYXbP/zF6y/4rA3xH0I9Y4hDlBWwYAC3BTk7QJM4mSjXqwkBtVyHrkxTXWkmwDDZQz/9Ag9BZ4Lhs+NRFUD6n90tYNOFsVHCtZdDr/b05q4mn49j0TGGZZ0kLM+KU02coXUFAFh1IFihqDHmCfzvZ1F6rXU2GFgSMNOYoYpc0aLP3JAI77QHI/dntepOzqGuLgD3ooHSElWySwBhAqOGBaZlUfotduUTsqmZCyYjZENLg40RSMjm0nxHNwwa3A6tZrJD/HYX3HpOuy/M9Vn7VtWzUTMqqzFWpOCqA26IaD6Ta95OfR/BHcaqnIi4cZJEeEmilIrxBVIns0QtFcTyhijepZZYj6xOv8RimIDNkJ10ZrxehsoGIzWrqYLgddBlq0snXYhe/hdvvc152eINHvXILhL2ALqLpL5c3pyjVk0ylNgCe5hDeFag5txB2MM8Ua/cpFrq92ErG+/68MP0ze0fem9euc9ibF69y5QYH3Y/Isanvl4ePntHvPUv6fGzX6owefiMRZK/jYBPyXg2fMDwMUWI1goLeo9XA9GHQ/2jX1+5WgNEymiJik1pvtWl8UETrnsV3Ve4db244ApZaer76UrDrxvbWEKt5LJqJcmstFJSRGhFr+WrNmbwFJIotmOqiBZF37UeW91rzcjrdxYutSRnE1gGYffTFYNfr4i0IsycwFgibb/6AKxiFon6bciaaDDANhYyaXl4PC0eKT/0Z13hTJuX1dt270EulFSNr34APUebEFQEImfGsyEyZzyxrq/hMKzr+QsDPwzt3ct/+ocvKqufbr0n61j9ibrzVPtodhjkBZybGCMVxwC3ElaqEsXHw/qYmhwrvc7vqVX/UO9LH5Pq6/pkHY/Hs45p5NUHYFd3JsFQ8mpT3NWAi71UXfIYHk/ymEk6TTJvtj6wca1w5jdFaUHN9eTKCdWYHBuNoJIXfywxOaEYbuAQZM7jThiGelmsPsH4iFI3eSGV/YHZZfHq+ABsLCHRkCWwM9+UYDTrhrqem7THDNzXYoDZowCDlb0BYPhkzmWazGZzOkUdTbqcTlXhljtIqWcZRjie8k5gO55qrcF8LRPmwQd8Lp3lnOSnDmnUW/oioC65BnkQLCSvkEnFWJEhuiFlQrpJEPAHwPKkAnfKuLGkp+hkJ6l1Ttlei14anSzXNXADueoTAJxzUIEbeEZRcwKCWkysJwhqMfwkfanFVLmxqMNsG7dmaoKWmvotV1L0hdTPJlGNzTVWP/XZv/lK9amusm4k/VTxos8OL9rsqEKZHaf8/35Sc54F79jeWVa72xfPMTRmAtQ5DKrT3QvhCZfCnjcTUKxhJpAcwiViObDQ+qDUcaNn2vQpS/13jMlfnCPKGEVGiUdHiVcuSn/Z9G7FL73uvfzz6svVJjVJMgJKNVlRepxcTGWLsuZOqbtPQMdIB4CoNRTIa5j6UfQ1DL9eEQFvbMSUogJNZ1wwpHB7uu6/zJ5Si0NXkj09mMRmT0cm/c+e4vqZddx/Tcmlgf75a5r42H681sYY9pRS9NsIliI/ic1SzEyqaHuaLl3/qk/HKb6Lf29ka+vXsacR7Ck1SGAElEayotQjqQLtKXUNNbk9xUYMoz0FSOH2dD2TPTWbPQF1OhmHsda1SqO3c/kK74KPnjH5V+eGGWFLsC+RbUuQnUhAvoEJcr0Za7UIyCuBsYboqECYekRHBYKxhuioQDDWEB0VCMYaoqMCwVijjgYaLQ3OaeQ4ojZcMAItbaPRNGldiZr8z1qPIPpwEJqkHuzTdGLBpBNqpwsj6GQTk06WPPu4ymXgHOGhcyE/+n7LJSd21ygj6pMVw3awZFdW5ToOlhHHH1CDTvqv6xMSFuQ1wLFlinuvsEktnUPa6+Q8Urt9WArl4rGSKM1NTF+BXqS2TKZrVnU7AadPLDBo3fgMwUyLWIQTaYHDhXAiMb+E4kQu+5JauHZBpH/B5q3Bnk863DZ2vi5y4SnDgjtepJTChDkk+tFPBHPyJZ+CD02v/mXJvy3msqMfgT+KG0L3hkLK9YaobVgMXI64QHtdYnFviF44qR2mPX1yERuUeUNlAx2J2nLFOyuPhruCU91nWC/5JlexosbkGaFiegY6RQ864pDApER6mYBOGCS4DdnMZENWHHwweMbjUv/Cg/sLd499SC4vVzVUFCeR0fuCMZkPRy+uAt6h1dyQGydXSdQ17VWSJBWegITEmdruB/EqurhF1uFipVwmC4OuLbyonTVFGaNUzTKNUauB8RLlAPD6xMe28ZYnwJkhlsEGZLDefJRUhX93sBWBx6GPUjdR9Eh0iKNlSbYVcBTjgB578jmpM/g1gkTKaGmcUDKaNCis1ZfDYKto7evV1dcHyBXaVymdx961FTSXjSuujYEYqoTl6lRS9VtVI94KtSgrRYn+cVGw24NmtFeHF+EZrdYlbFMvw7vZqY0/bEAtFcn4sAWBRjWW4SqlRBSr+RnLnS4zIOqhuoVpqJqN/05tPmWkmD51/BvBga+jZHPgS8YR5mGr2WNOXU7M9xwlVcaG+UgZgfk2JszN2tVGtGsjXG1EuzbC1Ua0ayNcbapidXe1qd3cjOBqb2fSSfXwpeM3JYzx3vWqVNKdu/UduT8KftZP9ELVva1MY4IlEMcNUUjifIWabq26cQCoXetYX4vetoXyC7pm9QNnq3QSPKAFjvQVWjTWVcBxnKRXVn8z9SAl2hfhDVS54hhRHFiukF98WdtrVkM2Z/jt6RY+dt7j5qvIHABv9RPoHABCUBEdwEsmsXUAPzPJJFypqmIArWb637x585s+ef1csmKI1rQYtUAGHRGkbkISw35rIXsXkv7jqswJ8unWlC5c+EMQXbgISUVoJ5dVO0nmoB1gjb7pQyhsLsC6CsPcIpKaWFu1L/7uYOTPky8FHvvc9XJM+K2xZOUI8D7FdOVoJBWhnFBW5Tiag3KgfrSVQwTmmJTT3SsWfiSmE63mzequPR5cuUI0Djb56Yj9VPYb6BkVW6UkJzyqMKjo+cIJMYsOTSMXQh2g9Xx6IVSStCKUx2FV3o2Jpi6uwNSJyaIcDXqUaRB26k6OA+4sUB9QV5w8DqoO/EsmT8SE8Ed3KIoVJakvIPX4691Hfp8/+YUUyG79dXl9yhpKOZoYVCYEfrkiNJc/kU1zM02uOXgTjI/pxY6rpw7ASOOi2Q2hlzjXekAHle/Mb706NGgUwTe84b2hZ1yuuA8B9w5naG6VO2YIcT81j8PgpzaySAk/cfhDSJHVridtu6WQW/3a8NUhmVClZLxUkkgv/chEZm3nBcvWx2uFdbAOZNESeaxEpUzmKtQPjK/tryZw+seFSeLwnQiz80rtq8z2rnQiAVluEwH+o5ArVT5SmUr9wSh3n5HrDsZ7gymw9CiKYOAONHNkMiPRFbmv9SWwwXKlsXfUyaPn1g0b93fSIcGufzk+YcIRy8nDkngqfVhqJOXteKndMQzd8ULWD0TOE2VHSsB++PFkvXJbbAdouTBc+XiJUillaHpc9PV+a98XbXyWl2wedsVv4ErDpzAFK6qNMAJWYByxYJU9uVJtLhGRrIZvueAvQWfnbu7db1YS3OMjLvLced+qYmsbdVW1IjYGxK/C/9fUdnvId2i22zuYzNj/urj+R11cqe3oK6WLKxd4Er1Si2FRD0TyX6iLgPNhSkV0cR3n+O3QZ9sBQbM6/Hbq+eitZN6oYQUmjGwjPQFC3SBCs1DzHja9bJlaKV1cH31pP7rAuUHQ3lrTpgbV3tTOpFWuISo2rKiAcWM2ewf9cv2M18V16O9rGnH6xgQUDNmzp2VV5w5m0cUVqu7CFDbVbTCN6iq9i2vcsvjG1ebW9Fww9Pah1V0OLzNhnRYYeMWsDLLIRq4bZmUqrYurW/Gadg9+ieQtzJ6yceH4AksTd3GF4NiwggOMTeV1cX1do8GwBdIbnscSPY5tnvTrDjOoYAMRwuY0I0JgTuN+204Og98m8HLq8M3jqteWew5bf1n9pjO5dAiWt6uQy8CKTvfZrBhw7lp2RCItux8vfwMQV8oTomO4sAoyFqrRp3zL701sHG5dK+FN79Bib7+X9Y4zvi290ImWUEd889uAjdJUgK+ID4MuFHxTwfb+YKqhuZQNyl4LcoHUWCC/+o+dSy07nP6dv3DMpaCO1bbnkrdOEZAegGrMVyYpz4WiGkYDXagrAD0riF5zPmJ0noHOgn4uVE319I2SRCslaP/S1uXWg6eCXN4M600/Fv4xex0lKRK7EZEUqb5u9OAQ+P4PUtm+/4VUUztLmpGph6MEX1kqj5KKWcpZLd32RFiYWhqUIwl81PxdRAvyWCUeQB+rGklFKOMgqzI2mEYZ9OL8epxYuAbGyVVg+RKJYezU0d0DbFnBziLWmdvRQxwjV0Y5czt5xI9TqrAf0N5q9R0FNwPGz/JMH9FhhsUE//7kdQ1+QLgqWUafNlqiilBWFquyJprFzIGP0stbtS0LdMclKEfFs8yghK/NOwyfvjb4cJXqL378recDQ7bKhm4dOuKGHGZ3X6GqQ9FJMPCVnl4qbslZvK2jUosJG9tu8j9qe7N5i5zUCNNuewEAV1NxAG4gAICmRS9PlFjKmOvKtIxbPiXarqrnbPd6J6OETo9Nmt8PAVjNBsC2tFTC0dzF+e/i41TtOK3Xx5NpXvvc0m2dIqOXVBofp0YaGx9n3dSK5uPcfFk8asetML/cV8322+VPqGcGfBzLNLbTzXdTzYBUUFRUVAl8nLEtj65YnCIWFr7gcDq8zC02Cz7Ovals2jlnDtqpFD5OWtOZ9W+GnPHe6yNds1d4yMos+DgFrMpZZw7K4ZiSj8N5/HfMb6XDg1a/vFNFWnvYfLPi48xjVd4E0yjPPPk4Ee490jIOq3wLimolfent+sLEfJzRrJoLM7nmKpSPYxvbpc+44kLPNZHj+16W9BGZBR8H8yEY+TjAEOJ+aj7n/wAfp7v73UFNEu2DF6T0fnnr7q2lJubjzEtj4+OMSqscPs5lu533vDfu9p9ZVDgnc5DygtH5ONS9uRE4JrPS2Dgm49Mqio8z5Mj1hs6bZvmvbnrzt+4PPp41Oh+HaiOMgNUoVqyC0/6/4uPsZjJj44qkHaTB2/gHjoXI/ng8lNyOwrp/AsyC9FWKFDH0XFE9ji9ae0vjFTAPTHOak+yCN6wTwTKZ0fATkCOP9yQ2VbnyQkjGlO1Oh283v8j4fvSTHG0hbfxVDwcmLEQ7qQoxKv/DTGfN06h56sATSFWBUWnHh38pmZw1HAXNJ6qKa4VLZEBhkihSe25MrWpV7mFSpd7ZZY6asV3x2WXDxHX7/DH6lGDBg/fn13daL9LKLuN++jX03od6vmsaddzm/2neAa3sslrWUxOvf1V5rRk2pptNemOVVnbZzp9s73zNueG3aF2+w+QTkWFaJTkajTjcY1yfHN8ZvSYelspaFmmV5PCKVDy7u1YQMPeR6/7J3U9FazWR+stZsTk1YaJ3tkP3qmMWjhcAUTVcNMjm5au8Ti8Clg+KPHhzYcp1ILLCRVa7Pl/YV0UaWNgotdnmY5GfgKg6LrIcPPBv/tpjgn1PT88cM2BXHBDVwEXt7wavfpKZGLIx9+vnoa87nAYia1zUrP2/79+9HeWTvspzRC2bN6+AqCYuuvfo3cb4v8WCpeHWw3ff6xQLRLVwkfDJH8O2bkgPzju/ccl3F2JuA5ENLpoRYuN+27fYq3CxRdzKD1V/BaLauGiC5aklaV2O++QsuMjdP3SvExDVwUXdnxcnjwkXB2/a8+zf9j3dAoCoLi6qUluQd7fxDt+pvg1vXH20tRiI6uGiNn6DH9XxmRWyIq5dQHBh3ZtAVB8X3e6WXNQ5IpE/fWTYbOdWq84BUQNc9OTQioxT82v5T33V4qe3q6vuByJbXLT78v7pjWd2ESxf8jKtj+Uz+JXtcFH/s9uepataBOxP2vDy1EShCxA1xEW/dxvf2/O3IMGeJjMaVG+/fwoQ2eOil5cH+I36vj+vcE27r54X5HCwNcJFNSe+e76s/5SgWcedxlwomL4RiBrjovwl9cbFX94cmD7CYu37NDsoaoKLmsfc6dW3VqfgtR2XZJy4dgp+VlNc5Jt+qO3eW35B85rY7q1edZ0FEDXDRfa7ol9vP7E+cFt+6dnGtr2XAZEDLuL/npm0MT2Pv9HexeNA3X67gag5Ltqksqv7cem8gCzV8pb1v9sCX4OLi7bueXHnqyBSuG7ubMe+63qdpCVbtuAwJFtGNbCv5X75ftDCkT9svRjhFoMwG/omW+5lMlG2ow/tWnHqrCAn79GE800nkg+nqwmSFDJ5FIJBwNQpuS1+h4bziXVXiI8VyWTACOGNK3SkDFANFPLV6HFOXKBruTuwAsSlF0P7ivB+S5wFHF66fn1fyhiV6hdBfrfhPGFYw6jvvDbc59Vv59HmpREJlUZ2cnMBQGMgQFFM/LOIdL3YAF3DgMOkxGJ3URJYmVseL8UoFOD9pDIuGCmaccIFHhRXBLdcYiSK4t8/euafsgpeVvzDM887n0PJR6Caz6EfgZaJjF5R2REbMSxwuaabxXk1na6nZwNcF3yiRZWpSxUjUoH9y1gJFzggms5rzGel4e3Xn/hsWxy488q1yEWPTvSlRMvxxyKi5YTE2NrLd8EHuzdKez3csMFOOzHVE7gWBLGHCFpLqECiK5DVmbjQctPfXgWXVnAiI55mGU4jMgJYPFawwFDH1599nP9lHxgz+4DqoVdK9gGMmzbIKIatKRHZByPBcLiq31qpY/ZByT3VmJXf3vkdbrKlXrX4oTFGXCypFsjAxRI2Z6oDEZrHZP0/67dY/qfZB/6P3i3ov+o3731zU9r8NCFqqUlpGBCVZ+lsqFw1zZqow0lJ5WUfTE9/vK2//Z6g1IEf+u2JfXfCLLIPoOqOs6ouz1zdGSNnH7QL+ef9pJxGPoWdVza58mbNDybMPuC64lYGSR/Pd8OsTKVlH6z/Etvyw+ad/LnNbHKa3ptIjgdWfvYBBAczNozgXE2vxOyDTo3/mXu2+wbfw1PtG1gGj/1qBtkHEKHjrAjlafy2/RwGv+3sSpHwS8+GvmmbHKq9aJVyjOyNYm0qw72FugcOeOQusbgnDHaIo8GPwO9K1m6lCowtPl6h74W7bpN0cpyo8Uv0e9O9aEKiRzen6wvwbk7ILo1LFlRAO9nnYsdvO7su8ZsW8GfX+TX+PUc5ZId3Iw7ZscvleUpU+2eEVk2/QIAUqEF4vIOAc2yBXmdn9hhAxLhwjJIqwfAFcvRi+4B38/q+D78JtwhF0yzTY16Tp6U3cTN9WpaJygPswE/Xl3X+dXZQRpVD7q+PN5YZAbBtrICBEWUSJ0q9ZsDf6cxh+kNP6bRi0aU1pksWq3pm1enJwvSfQvZOu7oos6a8qB6WjAOUQS+ebOnFC3eMbG+YA0xR7aD0u/Wbjv5DkON9ot+0p89KjaDaNFbVxplItSj/OEu/no/ltyx+MaXtsnZdbvln/qAK2zU3NtVkLYtha0PMJsGWxQpadr0bNsXwhbGAw7Aw8q42vDu++17PHUOH28+OOEou8tsAFs9UwdAnZONK4PmwRI9Gh258eSyAXF3CE3tMVNljsM1hWX/DKDBIdFoRqcd25b8wTR3I39I1qAAG/4kZAPRnPESpcI6zgLNphqG5el5CLVBguAEW5YXehjyO60j07APoqZP44L/UNi0eRqPliRKGDJwm8W7Hd3c8wsuuUfRlpEWElGxjsPbHiK6Q+PXybMxs4c0Pn8d38lr3+9u7S7f3HWpoZALAfAzCbMFDFLDu4YTBbGhIuI2W+jXRLbE8Ll4iTsCGB+wag45u5v70fa3XVzJ9th4+PPdK+oiuZFZB2XPp21+S0Ngm4bgzDtswFGxJrhhsuEk4wGQSztu0et+xmzxo+rs3ga6/ThFQe4QrZCKxhBucIJMhbAGTw+xC3BcH74NjVho3XiSTRqkHeaJUFcOVg22KUndLQD2lZ3lPVC9zLbGuC5+jgBMG0bVGHb6FAnTbGjz37eCihnU8VcEOndBIQsTQXGPemQ3LvnYRLr5bevqBe18vsvuMPYjuPqsvlzedqawEA6czPLYMhsitQ7kMVsBl6DWD0X3WEbkmGuSUpKEGhxYSvsHTmrg3frgnZPaoOWsnTm+bSKZq4wMEfaRDlhp7FkO02rKiVW9GpTpYxItaDUhWSLRxaKXF2XENBC6tROYKfyfe1ddvBHRyoyVKCksY/jHUcNthCyRULHgE2FQnq1WN1DJ1YTJkkhhK5HbDZ0GJF0KvHHdsFugVCLNXdy6GvgK2VhFDPwq9aD0peJe647pPlvVGh5MPnsymHEzAb4U4mMAuVwQUbVmhqKdZqA5yGBaq9l8a2u/kfi/Yzyv5JHGIJjc5ssbGCNNBHJPL2ixIIopPUKoPwtQ7Ogiu2k/V7ayLyhBjfCu6a6Al1NVPAp5Q65m4qaC5o57AHbCaaeiSVJ0Hj8UhAMjv29nv3cKDF0pC1to1+tx/SPJN6n4onj6o1FfLW4OoPpaBaxAkjnMhVMu8EL7RMycMKr32ig2os08axxUiMYq/tzF/RuBR321eB476qQYVmPR8i+OCA2GFchJhUigAAp97h5jmnur9rcEtjgwPSEsbaPFpwvOd5IgUNpChEaUnLsCn1YYjCu9ypE1S5TAA3SZMAr6YBJ6KE2FsMd7SUSmP1Wt2UkmaDO9Nj6RpRHowyMdkApSzUCFVSEZwykT0lIIQQRoqoqcU/KtvY1LFoV6ugozDPtNkTes+EVlfIuQEPzbz9uLzElEBP8dr0HdHhr7tbuyeVMYxMb8s2b9uW+qQoL2P3vWev3XdZnM1MVlA56Mz8fx1ZGQsLBPVvZQpsFgDjjdgVcAUQSdGOfBqh/V1DyrYLHC4+9fYBIpvA+9D+DbY5fKQ+XdcY17RyxRB7qKT+z9c3Mw1AjJ9WZEBs8EMctg4mqmHKai84/RGsEuRWkFw44EFs0Zh3xypL8eV8uF1vrMULJnKdbgsmulBHsfwWfRxjF019hIA1WHHqo7vTKMOepkaPfq21cSmi0jFTZG2m4RUQN8aa5fKfhjkOYtzt7vV5fMTqgUlqGAfO83HkTWCXAmqSI2uDoUrbjeOeyIiuTDOC2YHviIXchhW5N0jhE+Hpe8OyKw7onOGXSHZ77QMl4AFVI94TRPNAWc8did0cvDQo24LLTXlAfU6dJdHfV3X6hZgn1wMHZkS1BKbC5bY6XTnl206N1a31FZ/T+jNYefm2Cshv2NrofBNg5kLvGbufRBvuaf/TUPOLw3dUMG4NMRChZrRSWBG75xpagPLVDK1PFZZ63CVRMGNl06QYPEwiUgcw41PwBwLGKVVfwBSQXtWiG5fmcf1neN2eYnz0dJfyNMbPpZucLGrFaGeFazqmW626inv+NOhbBuEp+SVP3P+npix67p0sueR/otfro2vNo7lRPT7SJeOhkQqKI4NdStmoGMDFatkVexwkysW3oStjwaG3eqGU5cCpG6prqM+lt/oE2+kK24XS1GHpJFu2MTDl9bDHIal1WxaHVLD8sZpD18BnQ6vTmfrdHhyOgH5EbOHnJqEaRzIqY6oESDPy2SDPEfjQB5lglzv9F8bjcWq+PRfRLYuEeNAZOsS4Q1Etu73HMZsXSL9F5GtS6T/IrJ1ifRf6kChJVBCa4scYtRkXiMkUB5jUnLLwJMud3fX8NlsETXq+vM6ZCXXV1NH+TJ5PDx8xOjA9C2DJcOUaukjha2cY2DvY/UDMIICZC3gSS267RyoCczlviINHNQv6RolBuv5SUhWvoHaU9QBMyk9Qy8mZBM1dxurLSKHqgF4gB+Ys8wG1S2ZHMbjBW2/fSguJPevG4YwtyuWFKkAWB3PwA9xSqhWZySsB5aBPNVlwspWk2CjjRUSpZMWsqn3XReGbPuyvc7oTo+aGjHJZurA4I9nNiX5bJVn+s3kJZ8wAkrprCiNztDv3ME5lJhX2GTDMCOmHCQOEJmMzMTb2bFHnRYH8IVpdxIkE+PSXU2YHXDFGR9ESHo3dN/yMvQ7FHXSBNUhRGKtCqhwmSHZJiQ4tdPP9uqb+o2/Kfdew5UNA8hNSk3DgYcgLWMFKT1DvyyBNt5S9TfXEJ/KhgxGU2c2UM7Raz1Cb/Tz3VB30Kp8J4EFmZNOPJfOSddIKgIdBSs6wzII76eIw7AwvowIFlq4/cNfvP6Cz9oQ/yF0Wid9JbRgALcFOTtAkziZKNerCQG1XIeuTFNdaSbAMI2CfvoFHoLOBMNn3aZXAOn/ruhk/yo+Mp+9SX+qRhTMrE8+H8eiYwzLOklYLiGRYuIMrSsAwBoOwQpFjTFP4H8HTNdrrbPBwJKAmcYMVVLgd34Tn60RFLXb3L5O+5QRZEskAPeigdISVbJLAGHqxgpTy+n6LXblE7KpmQsmI2RDS4ONEUjI5tJ8RzcMGtwOHWeyQ/x2F9x6TrsvzPVZ+1bVs1EzKqsxVqTgqgNuiGg+k2veTn0fwR3GqpyIuHGSRHhJopSK8QVSJ7NELRXE8oYo3qWWWI+szgnzi2ECNkN2Uq/5ehkqG4zUrKYKgtdBR7Ge95y5uVG875IFrh3v7/56huwiYQ+gu0jqy+XNOWrVJEOJLQCe8RCeFag5dxBWspuvV25SLfX7sJWNH5szbuqW2RsCsi/HWR2b3WEcJcaH3Y+I8amvl4fPjG+uf2zc8tV70c3HS4JvRWwyAj7BrPiA4WOKEK0VFvQerwaiD4f6R7++crUGiJTREhWb0m43fT3K6WFOUPZmtwP8V622kJWmvp+uNPy6sY0l1EpbVq3UMyutlBQRWtFr+aqNGTyFJIrtmGrB1Ae/tY4eIdy+eOkPW+Y1JvM4LIOw++mKwa9XRFoRZk5gLJG2X30AVrHI+fptyJpoMMA2FjJpeXg8G/24u8+rIl5GMe+GW8IvnuQcbb76AfQcbUJQEYj0YkWk6XxiXf+Rw7Cu5y8M/DC0dy//6R++qKx+uvWerGP1J+rOU+2j2WGQF3BuYoxUHAPcSlipShQfD+tjanKs9Dq/p1b9Q70vfUyqr+uTdTwPzzqmkVcfgF1d4TxDyatNcVcDLvZSdcljeDzJYybpzH/YplHC11o+K6Y8XrQxv8FR8uBjcmw0gkpe/LHEZIihO4rMedwJw1Avi9UnGB9R6iYvpLI/MLssXh0fgI0lJBqyBHbmmxKMZt1Q13OT9piB+1oMMHsUYLCyNwAMn8wnmCaz2ZxOUUeTLqdTVbjlDlLqWYYRjqeS5rEdT8VoMP+JCfPgAz6XznJO8lOHNOotfRFQl1yDPAgWklfIpGKsyBDdkDIh3SQI+ANgeVKBO2XcWNJTdLKT1DqnbK9FL41OlusauIFcdZj4OwcVuIFnFHeyENRiYj1BUIvhJ+lLLabKjUUdZtu4NVMTtNTUb7mSoi+kfgYs9N6ypMrKwPQDJ8+kjG5CHjZVvOizw4s2O6pQZsfqeU8aHTnnFFI49KrDYIuRhvYAzwXqtIDqdPdCeMKlQFqShWINM4HkEC4Ry4GF1gelR+3GfDzWZIf3vJWLCl5ceVGLjBKPjhKvXJRKa+XfLZGE+qw/nXkqdnPJWCOgBIY1C0pnsoqpbFHW3Cl19wnoGOkAELWGAnkNUz+Kvobh1ysi4I2NmFJUoOmMC4YUbk9P/pfZU2px6Eqyp52y2Oyp5f/sKaGfiRsH7fR/vydw8Z0RKZ+dJj42gj2lFv02gqVwZbUUjSvcnsaOa5XT6lhf3pLrirgbHi47jWBPqUECI6BkyYrSu/kVaE+pa6jJ7Sk2YhjtqaXGnp5isqdmsyegTifjMNa6Vmn0di5f4V3w0TMm/+rcMCNsCfLns20JcjUxlWImyPVmrNUiIK8ExhqiowJh6hEdFQjGGqKjAsFYQ3RUIBhriI4KBGONOhpotDQ4p9HhYkrDBSPQ0k4bTZPWlajJ/6z1CKIPB6FJ6sE+TScWTDqhdrowgk7OMOlkybOPq1wGzhEeOhfyo++33JbkCq9lRH2yYtgOluzKqlzHwTLi+ANq0En/dX1CwoK8Bji2THHvFTappXNIe52cR2q3D0uhXDxWEqW5iekr0IvUlsl0zapuJ+CoZgFT1Y3PEMyMnIVwIi1wuBBOJOaXUJzIZV9SC9cuiPQv2Lw12PNJh9vGztdFLjxlWHDHi5RSmDCHRL+/ouu5pQsLPQtW8627/nG2kB39CPxR3BC6NxRSrjdEbcNi4HLEBdpTzMK9IXrhpHaY9vTJRWxQ5g2VDXQkatfGNmr5PoHjvWdS2zvXd//1jhU1Js8IFdMz0Cl60BGHBCYl0ssEdMIgwW3IWSYbsuLgg8EzHpf6Fx7cX7h77ENyebmqoaI4iYzeF4zJfDh6cRXwDq3mhtw4uUqirmmvkiSp8AQk9OiktPtBvIoubpF1uFgpl8nCoGsLL2pnTVHGKFWzTGPUamC8RDkAvD7xsW285QlwZohlsAEZrDcfJVXh3x1sReBx6KPUTRQ9Eh3iaFmSbQWcWXOAHnvyOakz+DWCRMpoaZxQMpo0KKzVl8Ngq2jt69XV1wfIFdpXKZ3H3rUV1J45p7g2BmKoEparU0nVb1WNeCvUoqwUJfrHRcFuD5rRXh1ehGe0WpewTb0M72anNv6wAbVUJOPDFgQa1ViGq5QSUazmZyx3usyAqIfqOaahajb+O7X5lJFi+tTxbwQH/t4cNgf+0hzCPJw3e8ypy4n5nqPYzWLD3FJjki8wYW7WrjaiXRvhaiPatRGuNqJdG+FqUxWru6tN7eZmBFf7IpNOqocvHb8pYYz3rlelku7cre/I/VHws36iF6rubWUaEyyBOG6IQhLnK9R0a9WNA0DtWsf6WvS2LZRf0DWrHzhbvyyEB7TAkb5Ci8a6CjhjFuqV1d9MPUiJ9kV4A1WuOEYUB5YrdEu7NvZdpp1+E5LXqdqAO12/l5A5AN7qJ9A5AISgIjqAX1rI1gG8cKFJuFJVxQBazfT/+eefv+mT188lK4ZoTYtRC2TQEUF3thiysiAqvX5QToPId03tV8ygdOHCH4LowkVIKkI7m1i1s9ActAOs0Td9CIXNBVhXYZhbRFITa6v2mh+eeHx//ydBxi+z7x9abtGfrBwB3qeYrhyNpCKUM5lVOWPMQTlQP9rKIQJzTMrp7hULPxLTiVbzZnXXHg+uXCEaB5v8dMR+KvsN9IxKO9eiy5cfOMHHTrmuq5uzkdwco+YArefTC6GSpBWhvAhW5fFMozwdOjFZlKNBjzINwk7dyXHAnQXqA+qKk8dB1YF/yeSJmBD+6A5FsaIk9QWkHuW/XlxbcqU2/1hDycfQ1vbtKOVoYlCZEPjlitCcK6vmGptcc/AmGB/Tix1XTx2AkcZFsxvCx7/NPv9+/sOg/QFzpk4eP+aq4Q3vDT3jcsV9CLh3OENzq9wxQ4j7qZc4DH5qI4uU8BOHP4QUWe160rZbijP5cJ6vDsmEKiXjpZJEeulHJjJrOy9Ytj5eK6yDdSCLlshjJSplMlehfmB8bX81gdM/LkwSh+9EmJ1Xal9ltnelEwnIcpsI8B+FXKnykcpU6g9GufuMXHcw3kcugqVHUQQDd6CZLosYia7Ifa0vgQ2WK429o04efQdbIb9DwCfBltli+6653HrkYUk8lT4sNZLydrzU7hiG7ngBcsMgcp4oO1IC9sN+i/TKbbEdoOXCcOXjJUqllKHp8YH96x6Iby70PnK6R4mVg9zC8ClMwYpqI4yAVRdWrLiLKtXmEhHJaviWC/4SdHbu5t79ZiXBPT7iIs+d960qtrZRV1UrYmNA/Cr8f01tt4d8h2a7fZnJjP2vi+t/1MWV2o6+Urq4cmGP0uxiWNQDkfwX6iLgXKHbTiN0cX358PjZd//2CCwY3W/OuberHxmxwISRbaQnQKgmRGgWat7DppeldBtZEV1cBQGvQ/79c77n0Vd5N4/Va01uHljZVa4hKo8XsaFypXKtIeveQb9cP+N1cc0pnXNu7vkqwXOmTvzncOOhE8yiiytU3RFW1W0xjeoqvYtryul6HWt9uixMazZcYT1joo0J67TAwCtmZZBFNnLdMCtTaV1cp2bV/nXXgan+myyeOdW46HXHxF1cITiYsWEE58qiSuziyhnT//U/mVu91/Qt8MtKaUhuN2CaCjYQoSOsCIE5jfttVzgMfpvAy6nDN4+rXlvuOWz9ZfWbzuTSIVjerkIuAys63WezYsC5a9kRibTsfrz8DUBcKU+IjuHCKshYqEaf8i32u6Jfbz+xPnBbfunZxra9lzG+Lb3QiZZQR3zz2wg4j+D0FPFh0IWCbyrY3s/LNjSXskHZa0EukBoL5FfvfXS0y6q0+/xj6xJvdJL/SO40YxUB6QGoxnxlkvJcKKphNNCFugLQuwfRa85HjM4zYMU5l62XC1VTPX2jJNFKCdq/DP2j48xHf34vyPlUMqSP6+tTlKRI7EZEUqT6utGDQ+D7F7B+/3XZpnaWNCNTD0cJvrJUHiUVs5SzOuJycfsx95kh0/zWv0tO/qEReawSD6CPVY2kIpQxj1UZE0yjDHpxfj1OLFwD4+QqsHyJxDB26ujuAbasYGcR68zt6CGOkSujnLmdPOLHKVXYD2hv9e6cvtGPR+0X7Bg8OyFgR83D5HUNfkC4KllGnzZaoopQ1mhWZYWZxcyBj9LLW7UtC3THJShHxbPMoOcFb//4YeLCgKn91u96MXvPUUO2yoZuHTrihhxmd1+hqkPRSTDwp2z9vFTckrN4WyXcQN8Tjnkhs85NEmx+GJ5h2m0vAGAbAcANBADQtOjliRJLGXNdmbxdn9ddbrFbsKJpzOsrbV/XpyxllZvfDwFQsQGwLTKbcDR/5vx38XH4v2cmbUzP42+0d/E4ULff7krj4zxYzMbHSVpc0XyczV+DXvjZVA1cGODa6W2d92Iz4OPcWcx2unlmsRmQCg4ePFgJfJxHEf8ohyy/EbwqaeAfOf8E1TYLPs4+Vu3kmoN2KoWP07mEPyf09ZHAjYtP3Ij9a2+yWfBx5rAqJ8kclMMxJR9nQ/il7TuDJ/ovaLZumWfsuodmxceJYlVeqGmUZ558nFcHD8urDm/vmfboxKu8bt9yTczH6cOqOUeTa65C+TjcOfK0J2OFvFV1WxQND2i0zCz4OJgPwcjHAYYQ91N/4fwf4ONsUtnV/bh0XkCWannL+t9t2WhiPk7UEjY+To8llcPH6X+vxo/Z/e4Ktowr7hfhIRxkdD4OdW9uBI7JyCVsHBPhkori43z0cphiN+hc0NzFb7LFn3O2GZ2PQ7URRsCqBytWrZf8f8XH+ZXJjI0rknaQBm/jHzgWIvvj8dA35JOS/gkwC9JXKVLE0HNF9Ti+aO0tjVfAPDDNaU6yC96wTgTLZEbDT0COvK17Xtz5KogUrps727Hvul4nGd+PfpKjLaSNv+rhwISFaCdVIUblf5jprHkaNU8deAL1YC0+Oz78S8nkrOEoqF1nXnGtcIkMKEwSRWrPjalVrcqrTKrUO7vMUTO2Kz67bLOgS5MGrlf5ixWTxAeqeOdoZZddX1awe+IvSsG+/bykR1EzH2lll12rM1c2q9Er7yNvJcq+OSc9tLLLgjr+Hp7rlC1YfiB9x5BHB5tpleSYmbx6yuBp3KA5Z1xHdP7Q55NWSY5mz08tkRY3ERQdrn576ou8K1pNpLotXswRttrrv/Vo5Nwr73x5QFQNF809NmQC95xv8I6UpdETDt/6AERWxANHr+/Raus63/ymLd6l1fj+PhBVJ0TylYVNHaZ5LlhxrZ7X0eYyIKpBvHyj4Vdin8QFbXYfsFU143YdILLGRTvD//T5+GNy8MyNIz71/XfobCCqiYsGDZfPKy1I9FonEvbYKN8Hy1rUwkVrV7W+M2V9hPe0JR3aBTWuFwNENrjoTlBW4gGPo8KMkdfv1ek6vy8Q1cZFDfeeuZoaetNv9tC8e52Ob6kPRHVwkbzmiqM/efTw2tA+utXH3U3tgKguLnob51FnVcIQn/V7XwfUq3NzOxDVw0WcZY5BNwZY+mz86eTskEHTfwCi+rhoe5XsFEW1DyG7m7T121XwpDUQNcBFvdbUPTXfaU7w3DujL/07Keh3ILIlXuNhP27iKwfvfTOriW97HM4HIjtc9G2045s2Y7Z4TZ8+MeDVcJkfEDXERUdFnKXrznf1mxXW/Glwz9RSILLHRWOnTBy761BC4Iz8OT88eHKtFxA1wkVdn7zalRpQFDRryPROa088ew5EjXHR7HGq4GHT6gozhiTkLUxbFgJETXDRj5YvLldLbSDc0+WTVY2D424AUVNc1GBkQMvOPbf5HPnyQNlC6p0NRM1w0eSiyQeXZMkCFv10stG5B+cg8g6EvqRNN7Ta8Jv/ke9Pf/N6EAgHQHNcdNEv9CfZh7+DZ7Yc10g+YOZSIOLiot+nPU+a/KK616ozF461nH3Lh5Zs2YLDkGyZc2mltUva1IDttz4Nu/yt1juE2dA32fIak4myHX1o14pTZwU5eY8mnG86kbwtqyZIUsjkUQgGAVOn5Lb4HRrOJ9ZdIT5WJJMBI4Q3rtCRMkA1UMhXo8c5cYGu5e7ACvBuaTG0rwjvt8RZwCleql/flzJGpfpF0P6/06LhX0T1gjKWcUdwD/zW14iESiM7ubkAoNcQoCgm/tmtpXqxAbqGAYdJicXuoiSwMrc8XopRKMD7SWVcMFI044QLPCiuCG65xEgURTnPTwi2fuQvk92TV73VdDn5CFTzOfQj0DKR0SsqO2IjhgWuPUvN4ryaTtfTswHu/2vvOuCaur5/UEQEBbfiwLhRWWqdVUsCYYYh4LZqhCdEA8EQEGcdrbvugRu3oBXqYoijKtRZrbuOuq1bnLV1/e99I+S9d98jzwSSfz8/Px9beZf38vI9955z7rnnnK8budCii8WljVVowf5lBCYGDoiOeY2HPCu3Znif91d99n3Vq02nu9dkjGg5+VhEtJwaMbX0stzIye6Dkl5nD3yys05MBQLXmErsoYLWGBNIJFhpvZ1F2zquDpl9w/FG18aPJManEZkArEJesMBUJ+3PRdH/qg9MWX3A9NDLpPoAxk1TUwshNSWi+mAImA59U0uj+uDV2yEpr85fCJl/4Zzf3qbVH5jQWDI1kJHGEpIzLYIIzeHS/hNTy6T6QONdOWDW/RDZ3KsVhy0Mm9HUrGkYEBUVLypg3ljoSUnZVR98Wpu0YPg3Dt57HK7vvrVibjOLqD6AovPhFZ2neURX5tUH53o16GebmOyfP8+j9dYTc743Y/WB2J3UMsj08SwPXMuUWfXBnKXe1qv6TZPuFw9QdViymt4woeyrDyA4Kl5w+qaWYfVBN+fkkFkXdvjOtO5X8VnvlIEWUH0AEfLhRQisadJvuyTi8NuOrVDIP3ap4zd5k3PFR03H0qVui9NURvjIDQ8cSOkssaQnDHaIw8CPwO8arU+lCpQtOV+h70W6buMNcpyY8Uv0e7O9aGpEAJtT/40kmxOSpbHexlKgk61e0fWEMj5Luv7omsV5FcKqMQ7Z4d2IQ3b8ckmeElP/mYCqqTcEKAE1CQ+2kYmkGwWdndXFAaLmhUu0UgOmLxhHG9uAgn09Hm7Ikqxq/+DAcZ+Vh+jL0oe6mb0si4dKAmznLy3qxEV+HTrfNut4lY4HjG1RDwFz5wUMzCizOFGEzYC/017E9Ydd0mnLI0t7XJY8WlVy/2rowN5H/FIDXBc4j7v9ujpejAOEwW6ebCORRrj0bWWcA8wQ7a4Pn9Y8uy/xXb6/x8QLY5qdMoFobXhF+3KD5fjH84RxPpZMWaxtcmd4/yZOfmtswzc18co7YDbKYkhtiOskSFmcwKqu98CXGGkYL4s4DKP0fJ3ryZ12ev00YFDdWb330Zv81oTNM7Uw9AmzcTF4PowJIDr08FbHAciJFp74Y6KLH4NvDov5DaPBJDHIIjKP7Up+YZY4kL9laFABTH7fFQD0B1JEq3CRq0zUeoWxtXoSuR4oMNwAm/JCb0MdL3ahOPsAekQRH/wXodMSYTRaPQrjqMAJCLwkaxOXIlnilKJ91f45nRXZBqc/RrBCktdL0jFvR+87Ffdhqvei7p5DW35Y9srYyASAWQphtpYiGlh3bo3DbGxIuLme+HXRrSh1fCIWlYRPD8gag45uDuvWpVOjmv+GrlqzYrx94X46c5x98XPZ21/aoKlVwkFXEraBKNhS3HHYSJXwB5dKOOHQ9FXbjurgqS+fB7mf+44e5q4SjiWoFFGYOCRJpULoAi6H2Y26Lx7eB+esMj5ZoVJGE5N8lFIbK1aDbYrGcE3APKXneU8Ul7nesKGGz0UmurgcoGuPOnwLA+hmLDd27deGRg1nPNVChk6oJCFi6JIS+7rH774uJ89998ewqVhyO7r7jD+I7T4Tl0tazsysBCOXMzy2PAuRW4dyGWyBy7B/Oaf7bCBy9XXIaWhTDU4tJHxLqvul1Z5XIWhpRm5k9/4Z39JTtckJgj7SoY+aehVDtDJ40VqyvEwdLOpFbSNHJ2D6ODTVy9lxDwIuLaZyh7+T6O7nPxg6uTGYhpElDP8Yq7hr4wYSChY8AmyqRxOiRkqZaZiMWSTGJnJ7kKugSIKQq8gTXwWCAmF1CeZi6Cvgtoqa+tFIKJ7vn7o4PviZf/aLmw8bVP29EeNgAn4rxMEEfrk0oMjghQJMcdJQXRFxGKpWH+vU3S4uL9stLXqPOcdcohthfI5wHcRxuawNgzFFYpKGOAgjdnQQXMJPNeysi5khxvlWbNdAb9BQPwk21FlBqgqWO+oF3IHZRrujlaTwWBwCgPy+eb27nn7QKzLw50XVak+YZtuEuR9KZE8q4mpJNojpYxlpg2Di+AYIVaoE4Rs9aI1DJWivWJO5+pTxYjkSo1ZzHo4cKK4bMn/i9vrfPT+x2aznWyI3EghblJMIi0Jn65zEq1xrT/vqSr/G+YMCJ0/uZf1+zEM6SWIlfCJDJcouXIBPc4QzimQ50k9SFXEA3TwcA18Mg6fiVBg7iqR01KjjBK1OZpImx3uzI2m6IQEZ5M9WApTnoUKqMBlh+0oEpxSECKahIjil4F+hxKQJuV3dZT/s9Z2ialDtnsL+N2qcyo+dcXXxCUyxx3ulpE+5/AEvOpmak8o0Kua7S2PsxxyY7LOj3sUFXdc0aWSpKmYekPmjlWT9OjIydnElir2UK7BoB+cb0CpgiSBxWdYwddXpETO8ci6M39tjyJALDN8G3ofwbfDLJSFTb8kFyaDb44J+8hl7qca960tNgMwhXmTAarCAGjaRbunhAirpON0JshQRAoIbDzyYNRT/5kh5nX7juPlBkaf/T3MzX3is7seYx/BZ7HmMXzW1CYDiWM4rjqnmEQe7TY0A3rbK+HJRaMVjlS3Ho32VLnFnW3tc81tav9XXdttjT1YMTtJCHjvdx9ElgrQEVkqTiyPBndQbB70QkVwY5wWrg7TI10QcFvnnwfL7A7//OXBGtcHtf6idF0P3MSIwYEAFxGvq6w44E/E7oZNDhh4NM7TMkgfU67BdHuK6od0twD45EMJWhDKxacDE2q0U1N2iHkGpTXxP6M3h5+b4K6Ht0st6zoHrJnjn7nzaLXTL+bPGnF8au6GCcWmIhRa1olPAim5ndgXL1TK1pKyyZhFaLEGcqByD4fEwTBEVK05Mwh0LGKUlPgApoDqHd+3s8tMr/8w+92qkVQrtT1/e8LFshYtfLQ3xOPOKx85ixVPS8adz8TaILMkreeUsa/DtoxYdg/3XbJn/ShLTtAHPiWj5vm5tjYlUMBwb5lbMSMcGCvbtCj7B3l5hbsHCm3D7aGTYrVoE0xQgZct0HYVofpMvvCHupF58hzok7euBLzzStF4XcZhWi6E6ZIblTUMPXwpMh32X8zEd+utie39aPuSMIkzTQM50RE0AuecqPsjFqyjIb3BBLrj810GnsUq//BdRrUvFOBDVulR4A1GtW17EWa1Llf8iqnV15b/sal2q/Jc5UVgFlFDbolMaGMW8JiigvMkl5CZBR9yu/2znu9k6eujFh1XpQq5BpI56q9SJ8PARTwdmbxlsOJZUE18lpHKOhdzHxAPwBAWYtUAWtRi2c2AWMJf4iixwUL9kaJQY2HP/ZWAlXUbtKaqClWS7TFAmZH0idxvvLaKGogF4gB+4q8z+HWZzeI26mU9O/tDOh+KL6D6rwMzt0k2KTABY+SwjD3GKmFpnSGuZqMUy5KkuF1a1dAU2+lghURrwesyB01YaSd6dlS1Cs/eWM2GRzaReIW+ObkrxTVfP8J8uHX3IBCjZ8qL0KFXYuYNrGLWu8MWGY0YtOZg4QFUycifexnxs+c3+lS1lk093WGEf1MzRmDlmbC8lV3ISIdO7ofvmuUzYoWhrXVAdQhSl1wEVmhmabkK3/grx6PT+7I7AnBZb11jJk+daQA48BKkBL0i2y4RVCTT3URLfXJf4VDxl8DR1bgWVXKPniH5nFwZvbZc964PMzYqek049l52TrhspDXRec1YIQHRu6ioEbok4DOPj3iFya49/vBevP+m7NjSgP/OMIR7RVsCaA9zG9OoAXeHkKLUgEgJmuw5DM00NTTMBiuk+nFQnpYh0Jhg+yxNm6gxL+t8/a8C5i3/c993p3iux7iLXyvTzcTw6xmHWaYMlaXGmijO2rwAA6zYEKww1x7yA//2bMFvngIOFgZXGDdWN4buGVKxZGLC6YPCd7W8L59E1kQzciwZKb6iMXQIIUx4vTJuWCTN2JSdkMysXzJaQDTUNPkdgQraY5Tt64NCQeug2lx7ybnnSo8uUG/I037UvtF2c6PnNVcKxOEWCmAi4IaL5XK55S+I+KncY73KiEMdjo+AlTKOMIg2kQWqJ2SqI5w1ReZd6wwKqOj+tK4QF2BzVSfvXCVJUDnhSM5EqCF4H+S3HnPao7Xt5vdePI61W5f2UOZLuIuEPYLtIxOWS1hyza5KxiS0Ann8hPMtRay4HOJj31wmqTapCvA9f23jZ+DDFmYVr5fujkjHfJtPLM2J8+P2IGB9xvSR8ugSPvP1x5Zvg3O7XTqQeevzCBPic5cUHTB9zhGht8aB3MgFENxHzjzBeuSqRCk0MpuUT2r+jF4Zm5vgGzw9/V2Vl6gN6YwIb4n620MjrplaWUCoZvFJZYlFSKTpASUWQ+XLEFV4CFs13TCVOHd23Y1ygdMo6m75VvhLl0wUTjN/PFgx5vTTKinB1AmOJrP3qTWDFrq0TtiGrr8MA31iolCXh8c+bjlX6ShyCpn964+bs8VVjeo22N/EAdo02NVAaiOznRSRtHWXX74g47HrWgqDXA77uGjD19Uet7eEr9Dxk8hMNz1Ptptth0A24eFSsMioWuJWwU5UiMRH2x9TVWAk6v2d2/UO9L3tOEteFVB2vI6uOWcmrN8GurgfbrgvMLGtAuhrQ2CuJlsfweFLKnaSTfO+fCu7PKvtlREjeXVu2gR6Nrcjl2OgGytj444XJEENPVDLnwdY4hoI0VrcQckYRJC+0tj+wuiyRiA9AYglMlyyBn/mODUFn3TDtuVk5ZuC+FgesLgow2Nm7h24x3+VazBZzOsWcTYacTlmJSy7/YZxlmOB46sNavuOpJ2spzO9xYR6S7fvbMdER74n9nb5WPgqkNwtwCIaN5BNUyii8yRBbkXIhXT8Y+APAPGnBnSpxHO0pBulJZp9Tvtdit0anjxsauIG56hsAnLNRgRt4RjFkAyK1mLIniNRi+ElCU4uZ46ZKHebbuDUkErSI1G+1hiEvpHxGdKxTWOH3+/J5va463d+9chJNPlYS9uqQsFaHFWN1tLRb+1zUaGTw6uvfRB04XXTY2JgJEOd0KE5PCcITfgdGtRtQWcNcIDlHYFFqoKGFoBS53rVmx9C3IXMXXUxrn/i7Dx0lKRslaYkozXjh+uLCqllBk93ctgzYNsbYXmUQpSG8KMk3FDKzRXlrpwj2CegYGQAQs4cC3YYRj2LbMPJ6aQS88RnzDhVoOuqGI0Xq0/v/z/Qpszl0GenTPev59OnM9f/Tp6R8evkeGf6Dc2ffbN/kqqcH99OYQJ8ym36bQFPsWM+nKVavL2192tV+ldu8S+ODlscO2PL1aut4E+hTZpDABCjN5EUpeX0p6lOmDTW7PsVnDKc+BUiR+vQvLn1qMXsC5nIyTcZaByunFz96J/jseeMVm3X+x3ATbAm+Ws+3JWimg/wBF+SCM9aqUJCXQcYaglGBUvUIRgUqYw3BqEBlrCEYFaiMNQSjApWxxpwNrLQ0uKaR84hJuGCCtLSHJpOkfRlK8suoRxA8HJQkmQf7LJlYc8mEyXRhApk84pLJkgdvVrn1mi3PPR76i9/nNHpht11xoj5dMHwHS7WLu1zHwzbi5APs2En/1XxDw4MlkS5Nxnp2DR/fxDW0lWGbcQbbh41cHTUCi9bdxPUV2E1qi8cMrapuKRO9gym4Hb05gpnXViGcSGsSLoQTifslDCcy9ePEvLXz+wbs2Zwe4nWvzVVT1+siDU8xFuJkhUYJC+aQ6N+ZVNdr4ItA/63rkq41PlQ0nx/93uSjxKFsbyi0RG+IScNipDkSA+m9XkV6Q+zGSS1x6QmpRaxZ7A0VT3R0V47z1Wsd6b/Ia8rV8cEj3u7vx4sal2eEiukZ6RTdbEtCAosS2W0C2uGQkDrkMZcOWZ5zs9+0u+8C8nJ25/084ha9vVyFMEU8pmLzgnGpDxeJOAHeoUduKI5XazGip70WS9GSBUhInJl0P4hXMcQtso+I0qhVqnDo2sKL+lVTjDnKlCzXHLXtlYhpIsHrUx/b3EedBFdGlAoSkMF+89FKLfndwVYEHofenriJIUeKIY5VJdlCJrJNA3Ls4i2aOM3bLlihiVHGy7FhtElhT1wOh1TR+tcrEdcj1Qn6VxnMYy9byBxt0godcRDDNLBdnVZJvFVF6q1QRlmjGBUQHw3ZHnSzvRK8CM9o9S7hm3oVyWZHKH9IQK1UqLwhBYFONDYRWg2miNP9jNdOFysQYqo+4ZqqFuO/M8mnTBTTZ85/EzjwQ9P4HPjwNEo9PLV4zJnmxHLPUZbzlvnM1KnkZ1yYW7SrjaBro1xtBF0b5Woj6NooV5spWMNdbSabmwlc7edcMqkUsTR5U9Jwn8yn77BO4nQ6hZojedZPcaEaTitTj8oSiBeHJmDxfnIdW6thOQBM1jre12LTtjB+wdCqfuBs9d4ED2iBI32GFY11l4mesXuR82VGNSQmKUVfRBKoiqNiFfHAXCG/+O6W8/adGRfivzD8qFbdZ7aYngPgQzyBnQNADZQGA3j4Jj4G8B6bzJIrVSEKQKtb/seOHfsspK5fTBcMRU2LpxaooCOClM3DJ952jhueBOYd65maPb6dC4OFi3wIgoWLGikN6bTmlU5tS5AO0EafhSQUNpLhrMKwtogmJl6q9g/3dgZ4HHHw/dmx6BssNY+evWwrI3mK2cLRjZSGcMrxCueZefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BW17sSFceFregYvK3duSezf0+ndFipH6j2f3QiVNloawruykU94hWYiESiZicm6BAl2L5YgZOoeHQ/cWSA+IK54dTwUHfiXSj0KH4Q/esKhOEUKcQHdjubhrNk2/W7Ipnzq91dT4CYy2tHEoiohyMulIbkdvJJbbXbJwZtgfExQdlx1IgCjjI/hV4QHC/ya1a9vFXAgbeSKRvInXYwnvDf2jMud9CHg3uEoy63yxBUh6acWiTj8VCfrsRGH9r4OPWCbea9Fx7Gu9MN5byIkE6bBkpXYKHbrR65k1pYS2LY+US+sgzOQxWDqOEyrGS1OIB6Y6BhAJHAGxIdj8eROhNt5ZfIq870rO5GAPu7QG/wnQa3R+ipVWuKDUe4+Z647mO93IfapqAQDTyCZnE2cia7Ifa0fhQ1eK42/o0EevbVH7bszNx+WTK6dnr1+2316CYAt9VT2tNSNlLTjZbJjGLvjBcjdhMh5ofRIEdgPn9wkqLalVqSeCyNWJ2MajZKD9PhR1d6zHO+oAzdfcbg9P33HNOOXMAMrpo4wAVY5vFhtKFs/lIpIViS3XPCXoLNzPe36Z1uM9Pioi1JP6ecKuG1jWlVbamNA/Sr8f2V9t4d+h267/YJLjf2PxfWLWFyZdPRlwuIqhhylmwthUw9E8V+Ym0wUubk0WFwTegS0Od7ydNCe7DbqrAMBO0zYYMLEOtILIDQPIjQTte4h6eW4zWXC4rrvXYP9dpLmQRmOHVsvy91DZykr6y7XEJVYXlTAvLGYvYOwWj/Tsbgm3Rjz9FuVq3zN71MGtG3ah95rx1wsrlB0XryiczWP6MqcxbX9imc1+tjN8F14QBEzbHrXumbs0wIDr7iWQTbZSPPAtUyZsbjO2lzxSm0rR/mai/NuVsrpXsvMLK4QnFhecCI3lyGL6yT1hluLyjX0m5ibueGbqom/WkAHG4iQFy9CYE2TfttLEYffJpO0bvO5+3nJlj+d08+uft6e3joEr9tNUKuARWf7bLYcOHcoPiJRFt9Ptr8BiGvUSTGxYtgFGQ/VCGnfMuHAhJwl81SBCw8fcTp+83gNzrdlNzrRGzQQ36zmMtGwLQBfhTcMujDwnQi299W3GFtLWbP4tWAuEIEF8qufeTHsq5jALaG7fz3WbNTR35fRt069YXoAipiveKQkF4qpGI10oc4A9IZC9Bp5I2bnUWBxQrYIcqEqE8s3GovRYGj/MrFeh642w2545Z24kTtiU0V6KMXGB78RURRJXDd5cAh8/66837/FFnM7S7qZKcBRgq+sVEcro3jaWdkeGjTKNf5dyPqavz85PrbZdfpcpR7Anqu6kdIQRnVeYXyyDPdHJOTEwj0oXq0F5ksRBWOnLp7dwZYV7CziXMVtu0fFqjXRruJ23RNHarT4D2hvtdzjvKo2yZv9M7Xlr2ju7fOm2zX4ARHa0Sr2stEbKg1hPdrMJ6yLZt9mUBkygrzVWsWB7vgkzdBEnhU0y37Lp5xX5YKyO1R1XSU93MSYrbKxW4e2pCKH1d1nmOJIaCfr5bdFmJdKanIeb+uU++O/qucEhc6O6p9wqGajSubd9gIA3CkALiMAgKpFkCdKmTLuvjKnDuxt3/jKscCcKTbvm7zZv4xhysq2vh8C8G4zDwAZ13SO5ivR/698nGvKBhuabrgUkF/+18+Sm0GzyiwfJzqdLx/nA9uzNHE+zp/Wp36rN7eL7+Ytzzd57koeZgH5OEPS+U435ekWkFSQlZVVBvk4jm+b/fHcsWvw5n+m+0YNG37fIvJxOvNKp5klSKdM8nESxz732HBkbejKTR0GdPvbtrVF5ONU5RXOB/PsNCwoHyfv6uqcIe7PvKbVsK9a9CBrskXl4zzYwie882bfJlpQPs4T69D3E+2r+/ywsvaHExsrvTZzPs5BXsltM7vkSjUf52nggNiClOOBs2rm3k593b29ReTj4D4EZz4OUISkn/pa9B/IxznlH3ZY9frvkOlNRjqpI6cvNXM+zoN0vnyc/PSyycdpsawwwvW7wbIlF9vcPbKj/B6T5+Mw9+YmyDG5m86XY3ImvbTycXrat3ja71nXwP1O07tkV5K8Nnk+DlNHmACrfF6stpStH2rufJw3XGps5AFlG2VIhnf2/lDVX3cHPKeflPRMglWQfhpFQiy7VlTA8UUzH2ViAqwD053mjHYjCesUsE1mDPwEdGHzlIcpEx5Vkqw6enJ/k1lXfDnfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDrNFYC++2t7wL6OS085F5jhnbWGVCEwFBIZF0+i5cbESonzLJUrB1WUuurld+tVle865NP54YYLvWvclJ988XzxCr7psTY8jrnXmlZfuVTTZdqdBUF296rIJyZPFnWy6BsyQttueJ49U6VWXPfrLPrf1ovd+Ox9HB4593aJIryXHwDUtqoqd0oNmfix/O+TUE6VeSw6/T78uU44pCp19uXpGcM07w/VIpP7otEQz/1FF+az+4dtWeictB0MVyaGMOzPWhmTtkGT2SfFskRi6DwzZkkPd47ZMmfDykd+6cWcLmle1TgVDlcihxclpBZGNHaQHNCtdPwwM3QSG7Mgh3zqb0z3S3vumTp31+7Y/F4eCIXtyqKG27lcvLmkk06+Xr7UrqCNsa1GZHOpc55xVjbMa+Y4aPRJq3Z9XEwxVIYd6/uhbNCjhiCynz9J/N3/uOR0MOVDfy/nsMv+AP0PSj5drVvNR7fZgyJEcSvnTZaNsQh1Jzq1F7+/P330EDFUlh86uGP+5SvZ03+lVFJE1+nlOBUPVyKGql7uNxeaVCz2we1iStvKRO2CoOjn0/Pl9hwcbbL3ndyiq/WJ1o49gqAY5FBIYm/bd1sSQtRfiHsw9l/8bGKpJDnm1kIXeb7tUkvnttx2th0X+AYZqkUOPq92b27763IAtf58LPv+2zmcwVJscqn5m0qPZD38JXdDn+vfK/KDyYKgOObRoc9eC3C6t5Wtr/VRuUBWrNWCoLjnk/v3s9UMPf/af+TxH2vnj2Y1gyIkc6vfN03baJu19F8++9vHHfbWglOuRQ1PCHdpV31HTP2PAUpdzdtp/wFB9csh/oebo0ftr/KY+tZ12rcHxY2CoATkU2czRQf0qUJJ9KTe/tqguxLAhObTUobBH56lf+eW8mbtXFVMvBgw5k0MBaV2fLN3/Vej8ov3hyYO2zwdDjcih2zaOE2rGBkiWa8sNaJkfNwYMicmhU2cHL+5Z4W7wVslev51L06NZxZaNRRzFls2wi39tdT8VMvHbfef6HXg60wTFln9zqahaw3Izlxcck63cdnvMiQbj0ujBRFlKgkodjcgg4GJKbkHeocv5xNkVEuMUKhVQQiRxhYEpA0wFhXw1dpyTHDC03R3kC8gohPoV4f0WucpEv2UI430pzqgkXgT53VaNfjZIYzXca0ncwnEtxtataswpUek6uWkAoLcQoGiu/LPbGYKyATqEA4dJg8fuojHYmVudqMRTKMD7KVViMFN080QMPCixAm65otA1PhsTDp6UP5OumvCLomm3EVfoR6C6z2EfgRYPmbyjsgs+Y3jgysuwiPNqdrqeQAJcN3KhRReLSxur0IL9ywhMDBwQHfMa91npcZs/kkbK2wTseNysdr1eHmJGtJx8LCJaTo2YWnpZbuRk90FJr7MHPtlZJ6YCgWtMJfZQQWuMCSQSrLc3d9Wp8V22z76+SzdZb+2/zvg0IhOA9RsvWGCqk/bnnYjD/vyv+uCLqg+YHnqZVB/AuGna1kJITYmoPhgCO+1uLY3qA6vpky6O27VWsmuVPK+Py8afTWgsmRrISGMJyZlWQoTmcGn/6VvLpPrg4NIazb99WVs2pffm7r0+zU4xaxoGREXLiwqYNxZ6UlJ21Qdn9shGno+dGZR/7cOKx3P/yLKI6gMoOjmv6DqbR3RlXn2wuc+w17mTRssyJ9xbOH3pPAYFWplWH4jdSS2DTB/P8sC1TJlVH3wtUg7dM7mLfFLRrontm56gn6qXffUBBEfLC86QrWVYfbDQ8bl4mDQmaFc1x7GnQ2paW0D1AURIzosQWNOk3/aPiMNvO7ZCIf/YpY7f5E3OFR81Hbuf7o3iNJURPnLDAwdSOkss6QmDHeIw8CPwu0brU6kCZUvOV+h7ka7beMPqEBjxS/R7s71oakQAm9PQHJLNCcnS2CSnFOhkjz3o2ahGmyteM60qnG2hqNOJccgO70YcsuOXS/KUmPrPBFRNgyBACahJeLCNTBSYI+jsrC4OEDUvXKKVGjB9wTja2Hp69zhZ81VSYP6CRo/DeoTPoS9LH+pm9rIsHioJsLAxl7HJQwqkGQ71lzlJXy40AWAdeQEDM8osThRhM+DvtBdx/WGXdNryyNIelyWPVj0fetb5zOdmPvM165L+buT8V3W8GAcIg9082UYijXDp28o4B5ghWsnIqu1H9m8om/f3mtnaofdCTCBaB17R/pttOf7xPGGcjyVTFr/69uioqSlFsm3tWs+tEObWzmyUxZDaENdJkLI4gVVd74EvMdIw/iviMIzS83WuJ3fa6fXTgEF1Z/XeR2/yWxM2z9TC0CfMxsXg+TAmgOjQw1sdByAnWnjij4kufgy+OSzmN4wGk8Qgi8g8tiv5hVniQP6WoUEFMPlDtgPQH0gRrcJFrjJRu+3G1upJ5HqgwHADbMoLvQ11vNiF4uwD6BFFfPBfhE5LhNFo9SiMowKn/7/NF/7jlC6ZX+5DQZ/frlyj6xic/hjBCkleL1HHXPzh3tMtu7225lyrPMk5JcPYyASAORDCbC1FNLDu3BqH2diQcHM98euiW1Hq+EQsKgmfHpA1hoNossXFiHKdOgdvKcRu3L4xvAM9q6D4ueztL23Q1CrhoCsJ20AUbCnuOGykSnjPpRJOODR91bajOnjqy+dB7ue+kzE5whNUiihMHJKkUiF0AZfD7EbdFw/vg3NWGZ+sUCmjiUk+SqmNFavBNkVjuCZgntLzvCeKy1xv2FDD5yIT/fkTQNcedfgWBtDd8ZOxa782NGo446kWMnRCJQkRQwLQ+Q+/PpV6LJBkVKu6O8TBuSndfcYfxHaficslLWdmVoKRyxkeW16ByK1DuQy2wGUo/InTfTYQufo65DS0qQanFvrcOuPFiFurxCFTy6UMd38d9h09VZucIOgjHfqoqVcxRGsHL1qrfypTB4t6UdvI0QmYPg5N9XJ23IOAS4up3OHvJLr7+Q+GTm4MpmFkCcM/xiru2riBhIIFjwCb6tGEqJFSZhomYxaJsYncHuQqKJIg5CryxFeBoEBYXYK5GPoKuK2ipn40EorTdR0cvruqkSyYdtmn19EKnxgHE/BbIQ4m8MulAcUOXijAFCcN1QcRh6Fq9bFO3e3i8rLd0qL3mHPMJboRxucI10Ecl8vaMBhTJCZpiIMwYkcHwSX8VMPOupgZYpxvxXYN9AYN9ZOAJ5S1nVQVLHfUC7gDi4x2RytJ4bE4BAD5fafm/Pxd9Ss5PlkLG/ZIOTNuFnM/lMieVMTVkmwQ08cy0gbBxPFtEKpUCcI3etAah0rQXrEmc/Up48VyJEYnKxwuSs6dHJJzfsf2tWGDq5v1fEvkRgJhi3ISYVHoIp2T+JFr7WlfXenXOH9Q4OTJvazfj3m4nR6RwicyVKLswgX4NEc4o0iWI/0kVREH0M3DMfDFMHgqToWxo0hKR406TtDqZCZpcrw3O5KmGxKQQf42E6A8DxVShckIezIRnFIQIpiGiuCUgn+FEpMm5HZ1l/2w13eKqkG1ewr736hxKj92xtXFJzDFHu+Vkj7l8ge86GRqTirTqJhOwdKw+T29gueJf4l+pBzy2FJVzDwg85eZZP06MjL2ZyaKvZQrsGgH5xvQKmCJIHHx/v3ZzuEtA/y35u6odnCE31SGbwPvQ/g2+OWSkLEKb7v4x133An5OP3+zVfb4QSZA5jgvMmA1WEANm0i39HABlXSc7gRZiggBwY0HHswain9zpLxiFUNXfY51D9ylnto53386veQLZzxiz2P8qqlNABTHOl5xzDGPONhtagTwtlXGl4tCKx6rbDkeTVD99e6Vfbf4+qytNmT1NA9HrGJwkhby2Ok+ji4RpCWwUppcHAnupN446IWI5MI4L1gdpEX+JOKwyD8Plt8f+P3PgTOqDW7/Q+28GLqPEYEBAyogXlNfd8CZiN8JnRwy9GiYoWWWPKBeh+3yENcN7W4BqVUgbEUoE5sGTGz1TEHdLeoRlNrE94TeHH5ujr8Smv7vXWGtlm0P+y44O/OvRnfC/Yw5vzR2QwXj0hALLWpFp4AV3dXsCparZWpJWWXNIrRYgjhROQbD42GYIipWnJiEOxYwSkt8AFJAq48PLm8X9JfPT3Py37dUBNJ5oKzhY9kKF79aGuJpwSue6hYrnpKOP52Lt0FkSV7JKyfrkeekW6njgleuGRX6V/8BuTwnouX7urU1JlLBcGyYWzEjHRso2E/b+QT7aLu5BQtvwu2jkWG3ahFMU4DOf2W4jkI0v8kX3hB3Ui++Qx2S9vXAFx5pWj+LOEyrxVAdMsPypqGHLwWmwyE/8TEdhulie/C5lg05swjTNJAzHVETQN45iw9ylywKcisuyAWX/zroNFbpl/8iqnWpGAeiWpcKbyCqdcuLOKt1qfJfRLUuVf6LqNalyn+ZE4VVQAm1LXKKMYt5TVBAWY5LyE2Cjrhd/9nOd7N19NCLD6vShVyDSB31VqkT4eEjng7M3jLYcCypJr5KSOUcC7mPiQfgCQowa4EsajFs58AsYC7xFVngoH7J0CgxsOdh28BKuozaU1QFK6nqNkGZkPWJ3G28t4gaigbgAX7grjL791hiYN8tdf033fQcey+w4FtjMrdLNykyAWAl30Ye4hQxtc6Q1jKR+zbkqS4XVrV0BTb6WCFRitvr/+jptp+8c2r41ejcM72xCYtsJvUKeXN0U4pvunqG/3Tp6EMmQKkqL0ovtwo7d3ANo9YVvthwzKglBxMHqEpG7sTbyHNHlvm8GO6fOmjY1L5Pro01Zo4Z20vJlZxEyPRu6L513ibsULS1LqgOIYrS64AKzQxNN6Fz4IMifP78oZJ8Uiufub99nU4/JjVPDjwEqRkvSFW3CasSaO6jJL65LvGpeMrgaercCupez39bj7jXOjizhv/vH1avnkjPSaeey85J142UBjofOCsEIDoPdBUC5bkM4+PeIXJrj3+8F68/6bs2NKA/O62TbQmtOcBtTK8O0BVOjlILIiFgtuswNNPU0DQToJiewUl1UopIZ4Lhs0PCTJ1hSf9LjhRpp3ac4rd6eX8n+bmLf9LPx/HoGIdZpw2WpMWZKs7YvgIArEcQrDDUHPMC/vdFYbbOAQcLAyuNG6peBcuq5a/u67tPu81ffMyFbuQqycC9aKD0hsrYJYAwHeKFafs2Ycau5IRsZuWC2RKyoabB5whMyBazfEcPHBpSD1lz6SHvlic9uky5IU/zXftC28WJzsJcJRyLUySIiYAbIprP5Zq3JO6jcofxLicKcTw2Cl7CNMoo0kAapJaYrYJ43hCVd6k3LKCq02ZPISzA5qhOKtwtSFE54EnNRKogeB3kt3RutGbgQre/A6ZGHFJfGnJ1Jd1Fwh/AdpGIyyWtOWbXJGMTWyBNNoRnOWrN5UCa7N2CapOqEO/D1zZ+dvkZvdc9nBC0M/xRW99bY6wYMT78fkSMj7heEj4J34z5ffVX2T6zagSu2N34VpwJ8Lmymw8fMH3MEaK1xYPeyQQQ3UTMP8J45apEKjQxmJZPaF0PpbS8etgmOP1skmZVr++e0oVG3M8WGnnd1MoSSmUHr1RWW5RUig5QUhFkvhxxhZeARfMdU3WcufWerPwCabZ93uabB4cr6IIJxu9nC4a8XhplRbg6gbFE1n71JrBid3cL25DV12GAbyxUypLwOLb3xr9LfB757vunYGT1Vp886DXa3sQD2DXa1EBpIFK4mw+RLbspu16By65nLQh6PeDrrgFTX3/U2h6+8oouY+ITDc9T7abbYdANuHhUrDIqFriVsFOVIjER9sfU1VgJOr9ndv1DvS97ThLXhVQd7yarjlnJqzfBrs6XbdcFZpY1IF0NaOyVRMtjeDwp5U7SkV27c2149BOvec/qXapQJ/cOffJxOTa6gTI2/nhhMsTQE5XMebA1jqEgjdUthJxRBMkLre0PrC5LJOIDkFgC0yVL4Ge+Y0PQWTdMe25Wjhm4r8UBq4sCDHb29tUtZhuLP51iziZDTqesxCVOUuZZhgmOp6x38x1Pvd5FYV6RC/OQbN/fjomOeE/s7/S18lFgNXoP8mDYSD5BpYzCmwyxFSkX0vWDgT8AzJMW3KkSx9GeYpCeZPY55Xstdmt0+rihgRuYq54N4JyNCtzAM4rYbERqMWVPEKnF8JOEphYzx02VOsy3cWtIJGgRqd9qDUNeSPlE/euVVr9mp+C18p53CsOyZtDkYyVhrw4Ja3VYMVZHv+/Ltd8+xzYou2ZS74BvZz41NmYCxDkPitNTgvCE30EO8GxU1jAXSM4RWJQaaGghKOUvXL2j8cvPXvOmNBt32juNXs9qJWWjJC0RpSa3nuytYveP9z7nPfeH/+VzwwQoxfKiFJldyMwW5a2dItgnoGNkAEDMHgp0G0Y8im3DyOulEfDGZ8w7VKDpqBuOFKlPbf+f6VNmc+gy0qf79/Dp0wV7/qdPSflsTG42v72LWD7zRLfmauWT4SbQp8ym3ybQFHl7+DTFpj2lrU8fLpcp54yfLl/Qbsoop4KMGSbQp8wggQlQWsCL0oQ9pahPmTbU7PoUnzGc+hQgRerTSha/J2AuJ9NkrHWwcnrxo3eCz543XrFZ538MN8GWoNsevi2Bqw5yO5NlrFWhIC+DjDUEowKl6hGMClTGGoJRgcpYQzAqUBlrCEYFKmONORtYaWlwTSPnEZNwwQRpafYmk6R9GUryy6hHEDwclCSZB/ssmVhzyYTJdGECmVTmksmSB29WufWaLc89HvqL3+c0OjW0XXGiPl0wfAdLtYu7XMfDNuLkA+zYSf/VfEPDgyWRLk3GenYNH9/ENbSVQc4jk+3DRq6OGoFF627i+grsJrXFY4ZWVbeUiUQ/A4XW0ZsjmHk3C+FEWpNwIZxI3C9hOJGpHyfmrZ3fN2DP5vQQr3ttrpq6XhdpeIqxECcrNEpYMIdEP+DQhojKAx77TXEtbKm68b4zP/q9yUeJQ9neUGiJ3hCThsVIcyQG0vuQRXpD7MZJLXHpCalFrFnsDRVPdCRqv3Vf2utv7J4s88PYoQ+Oas7xosblGaFiekY6RTfbkpDAokR2m4B2OCSkDqnCpUOW59zsN+3uu4C8nN15P4+4RW8vVyFMEY+p2LxgXOrDRSJOgHfokRuK49VajOhpr8VStGQBEhJnJt0P4lUMcYvsI6I0apUqHLq28KJ+1RRjjjIlyzVHbXslYppI8PrUxzb3USfBlRGlggRksN98tFJLfnewFYHHobcnbmLIkWKIY1VJtpCJ7HYCOXbxFk2c5m0XrNDEKOPl2DDapLAnLodDqmj965WI65HqBP2rDOaxly1kjrY7Cx1xEMM0sF2dVkm8VUXqrVBGWaMYFRAfDdkedLO9ErwIz2j1LuGbehXJZkcof0hArVSovCEFgU40NhFaDaaI0/2M104XKxBiqjpYvP/OJJ8yUUyfOf9N4MAP38nnwPffSakHR4vHnGlOLPccZR1vmc8CnUqu+v/S1UbQtVGuNoKujXK1EXRtlKvNFKzhrjaTzc0ErnY1LplUiliavClpuE/m03dYJ3H6Szo/CnnWT3GhGk4rU4/KEogXhyZg8X5yHVurYTkATNY63tdi07YwfsHQqn7gbA3KhQe0wJE+w4rGustEb9m9yPkyoxoSk5SiLyIJVMVRsYp4YK6QXzzw08Mat870lqxeNdu9sduaJHoOgA/xBHYOADVQGgzg/XP5GMB9c82SK1UhCkCrW/7Hjh37LKSuX0wXDEVNi6cWqKAjgu6vttXpUOq76tJtv2YU9hjpx2ADjyAfgmDhokZKQzrteKXjbAnSAdros5CEwkYynFUY1hbRxMRL1T4hwT1r9+uLvts8x2UWfMqNpgtHRvIUs4WjGykN4djxCuetefrQ04UD5aMvHCowxyWcTpI4+JG4TPTImwnWnu5idYJiJCT5aYv/VPwb6BVVa86yXz/8ssd3/4b84+fafRhMb4Qaqfd8diNU2mhpCO92Dp/wfjMTiUDJTEzWJUiwe7EEIVP36HjgzgLxAXHFq+Oh6MC/VOpR+CD80RMOxSlSiAtIOXaZVnDR9omfZO6ZS66vEy8cZLSjiUVVQpCXS0NyebyS22R2ycGbYHxMUHZcdSIAo4yP4VeEY9p3m1l0uU/Ihrnj/mp0L6ai8YT3xp5xuZM+BNw7HGW5VZ64IiT91OpcfqqT9diIQ3tfhx6wzbzXouNYegMzB28iJBOmwZKV2Ch260euZNaWEti2PlEvrIMzkMVg6jhMqxktTiAemOgYQCRwBsSHY/HkToTbeWXyKvO9KzuRgD7u0Bv8J0Gt0foqVVrig1HuPmeuO5jvTyD2qagEA08gmYO5nImuyH2tH4UNXiuNv6NBHn2Hr/5ZIz0cHbJ47tKt65+dpaex2FJPZU9L3UhJO14mO4axO16A3AOInBdKjxSB/fD5XEG1LbUi9VwYsToZ02iUHKTHBbWby5u9nuq7Ia5chV/Kb9to/BJmYMXUESbA6iAvVtvK1g+lIpIVyS0X/CXo7FxPu/7ZFiM9Puqi1FP6uQJu25hW1ZbaGFC/Cv9fWd/tod+h227X4FJj/2Nx/SIWVyYdfZmwuIohR2leIWzqgSj+C3OTiQbmlQaL645DR0dPi+zkNemU383vJhcsNmGDCRPrSC+AUCpEaCZq3UPSy+/zyoTF9aqrW+SklACv3IbDV3+aOY5OzVPWXa4hKgm8qIB5YzF7B2G1fqZjcW2YtG/1QL/1wTM0qa2CJp8bZREsrlB0/ryi+8o8oitzFtd7jnebTBrbXzr7kM2qdTvCe5ixTwsMvOJaBtlkI80D1zJlxuL66UniwHER//gtvu3qdOjMpQNmZnGF4CTwgjMwrwxZXMv7Nk59Osg3dO2Cb9KqzY/PtYAONhAhf16EwJom/baaXH6bTNK6zefu5yVb/nROP7v6OT30a4/X7SaoVcCis302Ww6cOxQfkSiL7yfb3wDENeqkmFgx7IKMh2qEtG9Z6lDYo/PUr/xy3szdq4qpF8P5tuxGJ3qDBuKb1Vwmit8L8FV4w6ALA9+JYHtfb6+xtZQ1i18L5gIRWCC/+owddU85nnomnXrSNtPqUaVn9K1Tb5gegCLmKx4pyYViKkYjXagzAL3hEL1G3ojZeRRYnN57BblQlYnlG43FaDC0f/lpc4FVkIskaH3XxLQVf3ueYBRF4jciiiKJ6yYPDoHvL+X9/u57ze0s6WamAEcJvrJSHa2M4mlndTlCfGhjoVXwvsBpR1xyPAbS5yr1APZc1Y2UhjDq8QrDxjzCYDfnF3Bi4R4Ur9YC86WIgrFTF8/uYMsKdhZxruK23aNi1ZpoV3G77okjNVr8B7S3qli6dPCLznYhqd+F3ml09HIE3a7BD4jQjlaxl43eUGkI62Uen7D+NPs2g8qQEeSt1ioOdMcnaYYm8qyg7ILpXhWen/bLfLKuweFbbx2M2Sobu3VoSypyWN19himOhHayXqF7hXmppCbn8bYWY3WeH/dcKz2Qmx/Ws3P3q+bd9gIAOlIAXEYAAFWLIE+UMmXcfWXkF85lnh2bGrI7o8Ldo/fO9jZrfT8EQMQHQMZdnaNZ6/9ZPk5AWtcnS/d/FTq/aH948qDt88ssH0eVz5ePY51f2vk4i05fLDhR3S1gl6ffiNCAEY0sIB8nNp/vdDMy3wKSCrKyssogH2fN0qorInqG+++9sDJ4063uhy0iH8eLVzquliCdMsnHCR07ul1myvWAnQP/nnnw5de7LSIfpy6vcKwtQTgic+bjXDmU22iZKM9/RuHB20mh6b0tKh+naC+f8K6ZfZtoQfk4Pm/n/r1/ZW+v7KF9fQuvzVxs5nyco7yS22V2yZVqPk7EtKe3lX2WeS1pXm/voKr9P1lEPg7uQ3Dm4wBFSPqptf8L+Ti3bRwn1IwNkCzXlhvQMj9ujJnzcYry+fJxjrBd2lLJx2kzoKh310mZ8pUD82qMcyo32uT5OMy9uQlyTJ7k8+WYXM4vrXycGWvPXMv5Y7Fk3tkN3+77e/4hk+fjMHWECbA6wotVVtm6OubOx6nDpcZGHlC2UYZkeGfvD1X9dXfAc/pJSc8kWAXpp1EkxLJrRQUcXzTzUSYmwDow3WnOaDeSsE4B22TGwE9AzrxTZwcv7lnhbvBWyV6/nUvToznfj32Soz/Imn+VIoAKC9UvqkLMyi+sdNY9jVmnDjyBRbvArKztDf8yKjntXGSOC3YVVonAVEBgWDSNnhsXKyHKulyibL8rRNq1TT///ZkTg2cWZV5iaHkgPo1aRfSmF8BG2lGWAuZXFHEESoYjyUcRp1B4PtSIeLUWZ6cTRDe03i1r4WX3GV4/iiOnhh2Ze4XvjRF2iTYuoEv+kJACkeiIFJHTNMQVjMoLSiGnKfLCJuc761TeezM+xQ8VhceYMKfJxKQ5BwFCXhAhSJrDou2D/ipAyFg+w8be9DlEbqhD4Pxyg2cT7kgUG4wb+65Oy2fSXY+z/3ywuFYneriTY6JQ103tRordSKDEKCMDGQnSggtYAW+BQNXrg8HwD44Qfd2hEfpUZ8O+wrY3A+bLDsyT2Uy/TA/XkQ9jh+uogdLASBTMhxFzMpX7Aozw8y0ylQXgVOIsmvzN4syVV33Slz2bUDl4ywf6WoQPYyNEXi4NfA4G8eEjDiogFb8Tl+Jv9bFO3e3i8rLd0qL3mHMMXfHby2ELaq58Wq59SMNgTJGYpCHyWYkDGEK7w4bWhil35/Xdj5+Ii/XdtX77H6tEHbw534ptufUGDc3BgGq9J8DxkBTRAgayqk8MY6l1gTkYlaSQpgkCgPy+sxpHHpi+8ETIxsR9AesS2/gwuVAS2UlRxNWS9DtT6RmbcAH1O4QqVYJoLgJT/ABUnPodmZxSzEIMG/XhDanlSIz2TZqS9n6cT+CM3Ac7ljSL3SGEe7isj/MmupI4wbQpFk7z3HCcyKVZz4pYSqylad32tcTh1zP+6zt2vGKV2fRweblyKDW29sGqBoPb9pZn2sxVfnpgR9+Vk0d/RNKJ4etW7IcRnhqR/kI0ZRHsl6Vb9Wx2VB7hPfXs8sEVu9kf434zdhRUf1SAxyEOAEjnoxYvLgd/QT6ZWOeTxaDhQFMfdPpzzOGxbrKNu183cCkS1bBcF+0mAEwUQLpo7EbqrXHABMXynHwY80VHb4gmQ650auNR+XVJxhj/gScX/RLDOHYu2wwqLzcSjaqohQptKECDXKj1uWzol3Vc44tqG95xrYLETdqmrUEr027qusLKVZ4HburpXrVvYJP6pdhVDdKxDulVQNCxIlvziiILjG7Ny+yqxmzNW1pd1/jUh8Fd187/NTnkwxhZ8Jz57qebVXy6jaPL2hd15mWaShNQoXpBaSJ7zh4Fo2mRBQI68xqMkcjDZtm3b/wDp07J+D2+p7QzB0Zf1JeXqYZMgBGY0zwYDYkoENKX1/BOdJtvLXMa/0fnkNzTE2KD25z5waw9eUXu5FxB9uR9546jRCrUBlwKtfbtH32qdz3tvbbDnQOZR0f5IKwpOqRYjThvQMApsiOGaG1/yOMJVjsgdGY/8YEw5BilVsE4G5y/QDwxWDxOvIKbPHRi9e321jUqXd8bPGfNouEuof4dyyDVTndSx2TlayYTefoWwPAMtHikKBp+kSispGUuhi/p6n3c9XDtE+XnBB+Y8abxY9vqK76gq7exqA8BqHfOYqLu/F9GfVqHM+Lpube9FwRfxCIlGx+YCfW7okIG6o3+y6g/LHqQ97r1Kq9F/dPr2X480t9cqLdioi7+L6P+uJdm04ZhbtLtZ4KiTy06m2Am1HeFMVFv/F9G/a3D10293130WfZh9emK4+unmAn1mmOYqDf5L6P+rkrW9SIszHf9rzMK4jYXjTAT6jfnMVFv+l9GfcYL1xcXVs0KmuzmtmXAtjEyM6EevYGJerP/MupMMiwzoa7KZqLe/Au3TvAlyhz56sUxfpIQHr1Leu/UYcOgdn299q39+478mKsa8e6IXRJ+2eSotwYaRqPz1/8P true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII= fb4a3cd7-41d4-44c5-9aaf-914e96b16bad DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH true 10 5d2c2b15-5cda-4ff4-b8a3-405e7b306012 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f 70102562-363e-430a-afa5-f663fb2d93c6 867df14b-b84e-4903-880e-679477d08b40 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb a04899d6-6a10-48b7-b519-0ca4e8b4be37 bc983a9a-51bc-45e0-b2f3-5dd524ebe645 ca63a059-0a01-4560-a8ca-8869c5f2d87e d057826f-a473-488a-8c43-ba941c74c870 dac19e22-ff36-4a6a-bfd0-61013cc4fee0 233b0ef6-f843-44d6-99fc-9ecf077d1b78 a67255eb-66a4-422d-aed0-4b64cd94d270 16c32cca-03cb-4d8e-bf89-f521eb08129b bbece122-0a0d-43f9-bd1e-b6e66ae744df a43519fb-325e-4058-bda1-f7e34cc92c6f ddb00df8-65f0-4650-a3c7-89c56da7f06b 20d03587-b988-43e2-924d-d6655441a5e8 f12cf189-9dd5-4b8b-822d-2da85bac7a45 bae8f0e9-2af4-409d-945a-a91a08fdc45a 130433e2-dd09-4dbb-8e9f-946a284f4836 925 -3207 371 204 1282 -3105 10 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Second item for multiplication 867df14b-b84e-4903-880e-679477d08b40 B SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true dd3e81a3-f392-4fff-9fba-35855c2e8144 1 927 -3205 343 20 1098.5 -3195 Second item for multiplication ca63a059-0a01-4560-a8ca-8869c5f2d87e B SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true cd852686-49f6-43b5-930a-504e7c0e8fa4 1 927 -3185 343 20 1098.5 -3175 Second item for multiplication a04899d6-6a10-48b7-b519-0ca4e8b4be37 B FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c2a92653-9119-4312-8a0a-bfe4efc11ad1 1 927 -3165 343 20 1098.5 -3155 Second item for multiplication 5d2c2b15-5cda-4ff4-b8a3-405e7b306012 B FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c6aecd68-308a-4a6a-b29f-68933f542f84 1 927 -3145 343 20 1098.5 -3135 Second item for multiplication 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f B THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true fae63135-516e-4bfe-ab70-dc4f2b45ab66 1 927 -3125 343 20 1098.5 -3115 Second item for multiplication d057826f-a473-488a-8c43-ba941c74c870 B SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 1 927 -3105 343 20 1098.5 -3095 Second item for multiplication bc983a9a-51bc-45e0-b2f3-5dd524ebe645 B FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 154459f8-56b4-47e3-8f74-2be68cd83b0e 1 927 -3085 343 20 1098.5 -3075 Second item for multiplication 70102562-363e-430a-afa5-f663fb2d93c6 B CUWATURE SHAPED STACK GRAPH MAGNITUDE true 21840820-7b03-45cf-914e-8d05118a8772 1 927 -3065 343 20 1098.5 -3055 Contains a collection of generic curves 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb Curve SEGMENT NUMBER true 58b84e16-46ab-4bef-af27-b755fa42c6db 1 927 -3045 343 20 1098.5 -3035 Contains a collection of generic curves true dac19e22-ff36-4a6a-bfd0-61013cc4fee0 Curve CURWE true c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 1 927 -3025 343 20 1098.5 -3015 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 21840820-7b03-45cf-914e-8d05118a8772 154459f8-56b4-47e3-8f74-2be68cd83b0e 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 fae63135-516e-4bfe-ab70-dc4f2b45ab66 c6aecd68-308a-4a6a-b29f-68933f542f84 c2a92653-9119-4312-8a0a-bfe4efc11ad1 cd852686-49f6-43b5-930a-504e7c0e8fa4 dd3e81a3-f392-4fff-9fba-35855c2e8144 c4fdf2ab-39ec-4f9b-947c-a8f85d40334d fb4a3cd7-41d4-44c5-9aaf-914e96b16bad 10 a65c84f5-46fc-4b72-8e74-2acff1ca258b Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 44b95cea-3f46-4b6b-b282-cdac19364d61 2 Curve Curve false 329990e8-083a-43f7-baaa-90fed18836f2 1 97 -3006 50 24 130.0588 -2994.617 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 71bb1397-567c-4d75-8665-b4e3269ab3e7 Digit Scroller false 0 12 3 0.190000000 -102 -3034 250 20 -101.0458 -3033.536 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21aeed4b-3362-447a-b26d-c1b13691a4d9 Digit Scroller false 0 12 3 0.400000000 -102 -3074 250 20 -101.0458 -3073.099 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8d5c2ca0-245f-4e3f-af2c-234a7c61b647 Digit Scroller false 0 12 4 0.02000000 -102 -3113 250 20 -101.0458 -3112.868 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b7d3231e-4e24-4334-aeb6-4329747a1277 Digit Scroller false 0 12 4 0.00000000 -102 -3153 250 20 -101.0458 -3152.757 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 4a308d7b-b922-454e-862c-36cb6bf9879c Digit Scroller false 0 12 5 0.0000000 -102 -3194 250 20 -101.0458 -3193.056 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3a2cac49-3804-45c3-a1f1-9ae387f633dc Digit Scroller false 0 12 5 0.0000000 -102 -3234 250 20 -101.0458 -3233.61 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8f4c10af-71d4-4573-9fd9-fd55b1c360a8 Digit Scroller false 0 12 6 0.000000 -102 -3273 250 20 -101.0458 -3272.636 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers acd1b930-6ee9-4f99-a19b-6cb48f642842 Digit Scroller false 0 12 6 0.000000 -102 -3313 250 20 -101.0458 -3312.745 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers dcd58bba-6ec5-4665-9f5e-9748abeb09fe Digit Scroller false 0 12 7 0.00000 -102 -3353 250 20 -101.0458 -3352.806 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e Digit Scroller false 0 12 1 0.00000000000 -102 -3054 250 20 -101.0458 -3053.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905 Digit Scroller false 0 12 1 1.00000000000 -102 -3094 250 20 -101.0458 -3093.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers aacf07bb-5a48-481d-b1bd-7337be133f9e Digit Scroller false 0 12 1 2.00000000000 -102 -3134 250 20 -101.0458 -3133.28 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b2df309f-5daa-4345-833e-d910c82a19a1 Digit Scroller false 0 12 1 3.00000000000 -102 -3174 250 20 -101.0458 -3173.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 12d062ca-3afb-41be-a33a-cf0b30d40747 Digit Scroller false 0 12 1 4.00000000000 -102 -3214 250 20 -101.0458 -3213.058 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e3ee9ed7-1080-4a98-9406-a1760d620df4 Digit Scroller false 0 12 1 5.00000000000 -102 -3254 250 20 -101.0458 -3253.388 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3aed1e90-8f45-4b3e-8f50-bd809fd87c29 Digit Scroller false 0 12 1 6.00000000000 -102 -3293 250 20 -101.0458 -3292.686 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers a8eb7470-ff2a-44f8-8106-541d81b0944c Digit Scroller false 0 12 1 7.00000000000 -102 -3334 250 20 -101.0458 -3333.029 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3f1d8e98-725f-4789-856a-9ff9dd88ba16 Digit Scroller false 0 12 1 8.00000000000 -102 -3373 250 20 -101.0458 -3372.878 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpQVlCdupGum1alHbt0r7r3pbfOeOMzpyZc+I6Y073d/3/t1/NO3Oc+T7v+7zv+7zP5zlyRp6Ovh4sjs8P4EeKRCJJA//18HL3dWFzlvixuN5sTw7YZA28DDaDP7LgW/ifo7OYTiwu+BZpqFmB32RqBL4sD7w04dGL+DWhGebxXzhNLkYrPstac1l+bNYKsF0BaJexdQWu4tQTetmC5e1qF+DFAps7Q7+4O9Rm6cn1YLqDLUOBV1NSUn7wP2XLcmc5+rCc+G1sNvuHshHLmc1h+wDfwprr6cXi+rBZ3vzLgv91MWL68H6PHPCPY/c9wmNCbsl1NWJ5O3LZXj7QlwdvkdTFkunB4v/rZWd7uome3oO8nY27w4A/H8RlAn/ej8u+H5fL+wvvn7mp4J8xm3l/Rt+PiW15Z028Jfj3bUHgFXaAH3mQtL/l7/e3b7u/PbblbffjDrdcrfltzRdpjDsGvr5zvcCv5n8WuiWo9bDg7e36+XvDE3hvjsT6e0JaywWhP6FXMD/F+zv0jXi/EXYDh1vuDbpP/m3/fA+vtfk7Qr+U990hVXlXgPThf1ZYyWaFIbWbfxHfEJBdoKsJmA+Sl2dZPT0Tur28DdDDwKHgzR8m4E93/quGnr7NA6gzfwgAnc0N6IxQ/+kEvSxjx+S6sHjvHAj8c5cWiTRdDehZ8z09PfgjSGn++ZnSc4DuLPCr5MFXhH6NvI2jF4MZ4OnrA3+vggnX09dL6M3dTOhUBtuBy+RCQ0AKGlnSAm8FX5Ftfl8A756hjytSvb1ZHg7uATRfd3f4UKBa+zo7s7jObG/XEeQ5zR5j+lg9ffD/RpANfd19fLms6RyWrw+X6T6CbO3r4M52NGcF2HkuY3Gmc4Cr9eRfes5PfwNeWRa6igzV18fVk8t/ubsF29GVyXInW3MDPLmdTJ34XialYZf6ktFzGJkyW9jfGxRWCoxYhZ+3KYvye5R+OgsrB9B8LTJJA390bX5NQCzwdZnm10GNOkH6dTGZ/dP3jd5vU7kg8zDt0P6eZ0+u/bhD4K6kebaSN/Tk+DDZnGY/qg1dRcbAkwu5Vr5hZAw93T19uXwPB/6vKF81kEp2Aa9L9nQmm3CZ3t6unl6A7yN7Nn+rTqZGvN4D/Pd9yZHkozMaLUIOpscr2/oaA01SUBM3V8khuH+l+QHtK04a9R9fAU2doKb+x5Yk1c9i0bMis9dl9JxmDjR1hppke6vlOysqWpac/VuB4xVkADR1gZpmXGuw7JuezEi9fj2k+GbnRqBJGmoKNzAKl481oW/f3bBtjV/YdqBJhn+HLr1flTGvW224G+d3ikJvAppkoab8xytOVspUWYY4PKgK+R7ZBWiSg5rSPRgHvyjFWBTU6z5TyEujAk3yUNPLIR/OTl8zy3iz8bWzbAWX5UCTAtSkxRocpzw3jFYQsVSWpJu1DGjqCjX59ZA7UxCjx1h/e04GXa+xBGjqBjXt3vzwplf3y8axdpPZwRpTIoGm7lCTekRolzG6t6wO1r9ec2N67A2gqQfU9CLQ5fPStFT6cZl6I1eZGCmgqSfUxDY7SXa2fE7Zun/C9+cqlNdAkyLU1EVaRUdpuB8j69Nj0yMhX6cATUpQ03HnUaf8aTPo+2b3cFkrrfABaOoFNcV+X/DS1J9pnnNyR2OvKfesgKbeUNNyjbi7Jw1OMjZtHbI2PWZ5Z6BJmX/BnQOuX0+aRg2lzley3uUyFWhSgZq2KHQ/Q8o5YnmcnbA2rqyxDGhShZpG7B8c3meFrfEB//vU+9cT/wKa+kBNtzJjrmidljHLGtZtU7bFYGmgSQ1qWjxE2aKetMIk1LJSe8w4p6NAU1+oie7tprGs5yODmB9SDkn9S/WApn5QEyl9s6P3fF9a2SfLU3PHXNIEmvpDTZcTcpa/mLPSOJIZomNtKFMONKnzb35fjxxmigZl46X5ows8R8QATQOgptuDbfqEXw6hH3tnnqN3qRw0ykCo6fSJ+M8GPXrQ8s+OtpmXVb4BaBoENf35sjz629+ypml2us+GBef0B5rIUBP1eeipJV5ZFpur+1ksLm8IkzM1WiLgQQaDntmU4+3D5DiyTHzZLc5MSV/l0z6j72YpY7e+jH51q16E25CzZDsug79MUqD6+HDZDr4+zR4ect18FyWFm4sa1IEuqrTP0iMpC0Iti85+CrXRCbCFuSjaAd1y2VcvrfJedNZuYH2pgrmoo+waebPZ/U02PLnTcw3F/APMRaVneE88aW5KC+4jzaBVT1aGuSjjtRXJlNAms82LkjgGz/N1YS7q0kJZ9eLlewzzpqp+HDNPWgPmosrnelxd8NHXNHh0X39akOYpmIvyD6lctXn4BErKyLJUOY3ZwTAXxT6wtoQ17rJpajRp8ky9iiSYi1L7MZp0wUXaJEKp79H4SZQSmIuydjI/+CLAnZJ+XCskYmzXIzAXZTdMV/3Kk1KLBDkPTsjWSzYwFzU15/3gyddqLZNLV2vUjBlyBOaiNALchofeizKLq9lZZZcyZCHMRZ0M/yP2agTXMmLNiZsH1t5YCHNRjF2yav79WFaHT7JuVH5SmwZzUQ9TJ7wd8mQgNYW7y/6lbPlKmIuy3PhusGlssWlhjMVchTOqn2AuKrHo24PDO1MN8j1kNiekvdODuaixl1mM6bPkTYLyU0M1V/fbDXNR3Btxh4p6TbZK/XDi73kjjzyCuaj56zn5IyISLeMNHBJyfryThbkoIy9Nm3wFW7PYC3UNmywna8NcFLXpG0dtro7x7muRT/S5qkOExqsa2ngdUfJgTv7ijUaZlXZ7v02trcFhvHbCbbxqdeB4FbFu4I9XEesG/ngVsW7gj1cR6wb+eF11w733812mRgVB5Xb7z2hd/W9J8d+SohVLCuSsDFtSBBl2LkjX8KSmXzFWv3QiRRG2pFgy/0v9IupQ46P2UxiBAfulYEuKEVrj1E5bqNGSWScXelyllsCWFFfmTGCT0/cbH06ITD30JWMCbEmx5BhDmr7pqeF6Hd3yKUrTLws5m0Fozga5bMfB2XTGzdmodqCzEeFR+M5GhEfhOxsRHoXvbER4FL6zEeFR+M5GLkBN81VhrmX4WY/03bWPH8CcTXpTRsyiwi+MaAPqx8lr1obAnI0IP8R3NiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZJN05PMXt/mdaxA7Hwc/dVn6FORvk8BLqvD3ROi9ygsCh83ZB67x6Tx0Gf+U2mW+fd7Vu1KE0ZYHf1c2I7cd2YpENfbl+LME+DBoWNJOo3qkDfYxJdgQ/SGZzfDzJrOW+THeyO4vj4uNK9ma5gPFPbxk628mJxWkJtoiUA9mF0W9RSBWBVoRCLTEnA8AoTryXNMB/1x+vJNWlVpJInwxIpEADaWu2n6cPf01P0s8HWvdXdvVicpkeS9gcL19eYEMW0laUHD15v50MaODEuxuRX/LGhr3FixIG0NIKJ9bXzg29Lmhz0d8OetmK99uaQ768EJeMLeBCHFl8F+BhHeI8uvtG8+011jenft0U3bW5WSio1Up9agB9qkF9yIA+yVSkPkCrf6qAPlKQPp1Q9Oll6evhADov55Z+IVKivd1oX4NnDjfdFW/tPvdW7ViERODXESER7+VfSYScQHGQSBtTIqAL9bAGg2zePsD3NWL6MFvGAElUwFHGgAvI4UqCDWPhN3WxZvq48r9551X6a7qY+rA8SKSfBxMyHJ7U/A+B74NbCry0DIal+th6ubN9WqxEZvqQl7E5y0Sbq/Tr6/IRA84zMgtXfCpROqAvaC5z8HPC5mp+Wchcouwhwulh2SN0P5Y9JknGHrIOnp7uLGaLAyR1a7aGp68PwrHIUB0dWd7e8MuL9DWgwwNDt2QvTzbaQPoY9K33a8ullglbY9h0b9rfApaRseZ9UMg0/Ndxt00e5E4WirLNh1yeOxGQRartsgyxY3JcAMOS/YC50JPL67lOrVCqwVThUpfPW02CR5tnrecc+kNAKTnoosJa/WwRh1ramGoBnkVArU5tV0vDGvw8ywfwyX5Md19Wq+Va9uR+U8ONKfTseZnrr2rdHos4X+BfVVgweJs4JOMNflTJgMEPLZOkSSjLpDOJTMa3yX1MNhwYKNuosapMsCMwgFUR2daIIbxEkkaR2MCQy2L6gEskd/CzkEclO4HnKywnskMAGVCX69Ms9giyD9R9mRwnaAmlt6ZVayfkGl/0fQt3YH5LKzUOLKgk6e8DNNYwFLFmCgU01t8rtGbCmmkUeTcA00Dkt0v76ndvgGWYSfL5k8dry5NzBacYW/DTwlNM88t49zIvQAEyqMADUb0sA1g11uyVyBSjYOgJ7DLZHOgUfywJ/Qe5aMMykBrPQPx+qe3E5jaf5uqINJTXo6r4Hqy+9DS5l5oJz3r9JWAoeSP+h4WMBWsSh8EC92IZTF8yBpNpnqMEjfVmJpaxfrVu68ozVrPjEGmfLT00n3/OeWdQXJ+jMXrqciPBFQGD90HhFQH0ujgsU5+CZZnoFEmvnvmH/qBlhNZsMiT0ubUbA+bvRdoCuV0TsEUX8ONClmh+FW87aOdCLi2LChgF6dRrjvFGCDRx8nvfv2biREbAxDhxFqRjTZwFaSKDDe2bOJ/UubNWDZppsqXC/MtNQ1lKeyZOxFYaublo51YadAaH0rGcgX36/++8eskg5/3bCSbmx267+DhmzN9HkHlVDtNgQI8mzLzK//k5vyLnVazB9st5dayBT6LcskzLvZTArORXz0PaN68iRprqnX73fgRuo8XmU/wSbm+dhsNIc03DMpyahAzXIdPuVKnbMx7bORpkXYmQUpUuNZfotMvzeKjTLjCAoGmX3zmFpl3L47QLZ0inDAPn953KbjRTEvg2PSx83X3YXu5sRyZ468KTL1p/728B2IrlAXzKkelO9hC4SqtmVeQJEdZtCcmNaG+lnIrHAcEOAnJGAt1aHyknHejWcgcru7fEH/i9GpSBFyI1BR2BgC15XoH3sqkTfyzOc6reLFUub1T0qo9Fd93eNfx2KZT2rla8bis0GuSaX0e/cPP98G6XRMI+dxhAY3O9fchsYDiRnT25CHuJtE/NQHnNCd0GWsR22xz7ZdECFwH7SFGFTAK8hOz+UggvhTxya6eXIgHmPASaU58qwktdBdcDBythIkn9QqSBtixHT2Bx2BaVBul9pNhd7G60cd+9KKsLRXKCKhkIq2TwS5Wicw7GB6puYcRcowQ+Hn5zCw4qyWGqVHCgEuqDLX0Jy3+q2bC8AWHAM5pWCIScmQSnveZLCU970Ot4+9OGPKjHNFHBAwCEFu55PKUgfyqH5k93NHzcNXJ2JKPwT6sTJj+ShwhGNo39vbgsb28hX4q10FM1BmOrvK0Mh8xquQDsWvx3KtGsbCyodtpDVulPsVkzZISVTqt8LfLwHO2WhYOxP9taG2IFYykxgMQTgF1MPbK71QMSK8aI8LH8Q2kRPlZKhI+N/xZYlBJjb5p/8LAl5bHurY7wob1/akH2Y3LZTAd30ee3ah9KpM6NpNKT3/Quu39qXaWg2nOgj5KthJ2DVUe70ArAWl4xkHOoQFprewHPWm1xDso/ncPPjixSpbnpCRdotz+YpJ7su5U2wjehVY5Bioy7T1h6DJKggiJCAvoxngSQT5BH8wkJBfXzQh41mRYV5BVlL7vPENxEWzM5LHdBd8C/kigNtalkL/ATvDnI0dfbx9ODzPH0Ac9egNnJh+XvA53FiNQVmQ0j4laEM0ZEqerI9XR3twE9O99/Nf+8mYnok0hLovVJudneLK4dcPv8X6tp5OkLjgRHYAZZBiZFsJzYPtB3B2ZicGfxIPAAwo58cg5pR3phJUk7AbDjHENSYIihggWT68LmMFjOAp2ia/PLNmwXV0E6qPl1O08v+KuCnSHZuLCyCzmhsidPREFETpZ/V6KStrjMFaYcJ7YjDCWSB18Etzuwl3hrWjCU9dOZ23qxHNlMd0NPp5+fBfZ+PlwW06Pl313mcplePx1Gc1dVQOuqZBeN/NCoMINtf2Qwdn4pXCXYP2xY7swAwa4qRxJ5YojWe3tTySvYXBaZC14JykIT2VGRuVkibqRV4x/RG5H9v50eMh5YIC1NhPIFApHuoQmYz8iJfPfQlfCaI6cPnDRH5r7ioLlcNJbm1Vv4mndD07zNqZhd+Zp3BEomnM3I3x6KyGbkp2KKyGbkp2IiDSuUYQgusER2CWSyIw4Zht3RbLK8nK3LtkwzPF5m5f700YLXAr+r6yxfcBoAhPNyFZ4s25CzMNSI7e0FDgQm2ZvFW4oEjOQnLwD/D9gI+A0itUBmd6Len5AiAo1Cw0Xe1pPrYwXvVSIG0T9c2rVcDTkfgku7ZGAQqRqC/wkOolqjgsokTnJldz4HDsxPLH+ByzWbsgeaKUtZB9I4384yokZUHtPn9lokGG4GsxGZIMsqHFCSQbHa1JZNkI8ri5ctyrsAaD5+8ijTBzQpOCU6s1lOZC/+JkKvVZsgJCeAcsfCAfKWptbuMoEdd5YHoPxforJGwT1o1rI2ZY0qtWSNsiCNRH7BkdlrJ+46e8nssMUsk5Xzxp3BMW8USUu008HXAQpFgwrRAYXeIB08GKZLdheZN4qmkObPNCVgd9bcW5w8PYCO90vVSHbfvKf+rcjYPEI16erLWhXBbtFyXeFu8bPpV+p17REXW5anYxalpXJjo+sbHRzUA3oQhnoVbpVtComr8BL6fkoHDLRVPmtEyhUnN6nqWM44w/WL9VZ2jrhxFrG9AK8j3MmaX8Z75xaaB/WiaaJOKc7lVpLeuAunC2Lp0KdlqEPZgVhKDA/vbEzTVaPFr7s9Y+9Rr+y2+xOxKGLtjqUI0G+EUgJbqYgjm+vojtk3vDzMjlcbvaWWl+sYzDc2XUAQRRSXYSni5cZfSoIQxu8KRiBJtw4AIwJdscCIQGf8wYiPK0s2StncYGzcHfN190JKDXEnODDLfKkrVpZ5hYtYwIiiVPOl3Z8r0UMfW5xYlbF4K45gBJLAw0EisguWREAX+reDEYGhO90dpL5bJr0daUPp8ucFCYMR9Swse1BY/0dgxLprzy19xtOoqfF7FDUmbvgqcTCC505Q89YBdyIpMMKmbrjbF/UAy4LJnCdpz+2uEAKM4HkWVLUAzyIxMAK5GSAMGMEb/KiSAYMfWiYpklCWSXtW7ah91bDM8NARnW8XLo6pFTE9i47riNJ3GPROMGDj6Onu3pyiBs5/QKdhcdmOzeum1q2OkLO7rAXTy4vNceErBX4dHBcTSIy9nTMlGVxMWFeCKTPCJ1TnC/IqveKt+MZRQjOOg3awRkKXMkqe/VC1tLM3VAW+bk8jMPPB24fr6+hDpnIdW5+DO9WGBXwFll9z1MaB6c0ie7kzOawRZC7Tie3bfGQFDHT3lv04GM/hkJlcx9ZFbZDFGDDvW8hgyDe0UvFocIHGBRQ/J2p5Gwgsbyu82rS8VQd+NxnYTho276HAZe7PGxP5vbOSZ3z1sWHTkuZsHGHxx3bB+FpnUd+V9+KvuiZyi9bOrhkIhmpAoZJFJajx1rlebQtF9Ddo6UO8rtKsW/PeU6RQlIWqxp+KN5mmDGFxZ5xrWivoT3lXswavJuxPYW14+1NyPqSLvSh/Sge8LYnbxtCETfN4apUmezc2fZTV6my076rPwbzwJycQZ+u8K4lIuml+XRxaLF2OpQWyj/wqKEGmwh2KNvAf6GyYHG8dSB6Rotg92bAp5lKlUflc8qNd/at7CTp83iWFHX7zy+KQhOyFJUmgJ9+j90Lz6KO2rgkYMOU7LWb2+AhS4rw4wY5vBYwfKz9gdWIv7Mw7o+ja29DTA5AfGHjg4AM/7N86J40si4N2K8Jj8GdbK6WzB7eNm8GUWAMR+UUkQNisqDa55q68DKDmRZzIL3fS5P4OzloN0/ScCRdV3tQIJqpKzwE/J9xvml/+lTdG1vFppzemA9oogto0iMrmudqsTdtypZtTfzDUMfxb5mZiqZ/RkfimZ/2ZT1ZINL8vOQ8SoEmUAEPzeAJA46o32rgizGE98lQdp8N6pMXwOKzfgnlYv5mvuTKa5r9hTiWyqJeYcyr1/bFyKq1X/MtzKqtkhvc/ntvFLN8jY8Mzn21FeOZU4uyFwZxKRX+snErAWuLJqdS3u7hrAXOKediKqdpyka9VW+WMxZRTyZMANacSkADyCSpoPoFAOZXIKn3iz6lEWlIyOZV1IMC3CbDjZHHlVIZdLag067yJ2DmV/GQYVbSuSpwlA6JmJE5LBmT/x2HJYB+MtWRQC+a7hz6E1xw5feCkOXIPj4PmNT5Ymlv78DVXQ9O87EDkjEPfMs3yKqbZVRd7C26hZZqPKAVFxzrTHIUa4nV29wR8JMelOY5Obj6QE+2akeXaRN2S8P4Dev1XNhhTu0N5lLEmY6fZJrksu2Ol7V0ZgPUqmFDiDnJalPucV6l2fqmkjzx/zknRFKg79EXrDm0O+POHoNgD/shStzgG95FwMA59gn4EpU/c+phXSXucwR+X/dAM0eZc5xZf2AG5zkhbCKUmg79VpBWRZVNbk5osLSqNhd+lIR37o+l4ccDzZ5+2WlgEHd0xZOTSj4K50F0sPEUl+KCdjAy3A4amtzu4A9X2AD6pA25Em9UhM909AefGhE5aWxdjQz7aQfjehKF08NVW9sM3YKy+COiHX0Wx0WBcTbGoTXG17rzwugvLE9iTcgNEfqXCvsv+2tynyLA06/3CnaZ3JwmeHJtAHxU+OW5p+dXODtn12jlWwaynLFAjiqiwLe+YrqhtWT38PsLb//I6g+hDsKtDB6fVylnG1+wbdqyxv+CZsYyFp0hGnv/6rxya3nl/Ds1G3zxQ2U66K4O0BweRFDFFqigkXtEP/s9QSpvio71bBrkTdlfXfqc/QJN13Spe3b506MzsK+3u6niESnl9mS7KTHW5vL7cphOqZi2cwUfO8fqzE2BY0Z7MLFF5seZjRlTA/bdma3t/F0wTbbmKcJrozyaxBI4x1QA6LTR7qJNQZo90vcI5gy99Ntx+xb3uzZ3GOkSMqjmh2H7e/NYzEVotFa6gdGRnrqcHeZV/wMo1wBrJw8uTAybQtG7+QD7/B+3uhOOVP9vaUD4GjFmSBhqKOD4nAVrXHBeaS/i8vcgIGHQLq/xh31vktzSlLP9hS8tjRDiV5KqofInuZcrxYXGBniIc9+000l6Q77H/eW1hvgfe+CuPeupMTey24GPmCa+WZ9V5H+zfTo+6FJASDCqSKkR1zmRgagYEJ8y24U15W2bAFssG/MqyR+6QsgNeFVHy/MimvafOSBS03Tws281rg+3s7wQEWPhHGqRTByVInZ3a3gQJ0HZkTNsBQ4EwtmtbpmuL7Vb+ynYfBvZVZZevZuxJeSKlzBkSLmi7+Vi2m49lu/aGqcFaFcexjKNPKOO0aWmiCFkHO80IufgTXFk2X0J4ZQm9jvssnAs5OjlRYJMa0EovaNuapDskAkZdtnTt5KzvclrGh658u1uY0e+NROudggqAidjoCtgf569DBpBQ1iHZSxhPFgZlm4UpLRm7SbVIsHKTjC0LfKZp6/ex/VvWIN68T4Ibfigg17qFB/LpgqJuR1jg5tfbQMSB0Anpjah8PXDzqp/XpprT/ZrrZTV/TzJIEbqyoO8v8jsqvOvDVZv9yXhX8c68FeF5HyVYfboaTJABtRgnyqkpA601ecRxam9mtqUi5lBbH5YX2Zu9ksU7x2MxHV3J3r68cD7bjwWZS6SBXo30Xfed7myyvXaDsqp/4RfB6Al4WeHoCe9VcZgnMA/LPPqENQ8/TR7NPAN/QkpQTvyvR85GU1dzttYa42Oj7PaS7C8iHt3ZLmAJ+YDSdi7lQMvV52JZLjpX0pbjA0tCKwWUwy+0eVPJFunrRRoPudH5ZV79L9y9WPb1PGcI4p9C+clgQhgw2qD5dCAJZT7V+dZH7Si5s3GewZu/WQNdBJ/H1JUBWJvcvBxofablAAsW0xuEasHRAfGevEIH7sDVWjetIp/Mi3pXwmtqWGMrdfQHH+WUBeh4UlTWpReYApYlckffhj4nzwsYgwKI7mtf0pLmLuxpnq87OmDUeh/BbLgu4FcSVZTV+9duAmf00xWQyhWUKl5U+o/6cZ5UqAibyH3WT7cKlqbkeVWGSI1UGv5+MsfWjBET99ZjP8WrH3I8SgmNxw5e3yrmQ+KIOu3iwdqAONB4HIQ2HgmUGIScYnBPDBLqrXKh2SMP3V1lme6Qd9AgSrmbZBKDCgA7+h9riZeKITEoJD+/cvHyY3gkBpGEE4NI+BZbI6N11cGdNi0YlnfNPNLhGdX1PEcwO6G7BdPbm0x1AuwglNoKCt8FrcsCawwwCk72AD/PhD7/c/5ocRStmkeQz2rHuEWhrizY3IYDItccqHaA0EkjmKdSkN3euWQQLKnfu7mWL1wrPdGRgJ270g5Nn2KSabDZIu5UNeIUnXdF4aVo88u/mmOQjhkHdt4elLCOShKuY+t0nCdhm6JFfWBFfeFKiRQK6YMkmvM/KR/SIlTUslwbnFJy2s1G92FA4wq4jg/gI8hc3pcRPSns2lww9M2gdKPSkV3mj/v26r4gsmgNXaFZDuGlsNAbxCEY0D0wBHPN5s/Bg9EcW5szTnrxBe+AjBNkqgSsuh7yFAxWXQ8Zp4JV10OutWEPOkauAGAPOkZ6VtiDjvVebg8L3xFmvuNHry89h15YAnvQ8apns96OjtQyOkQa+0q6KCQY9qBjxYEHzxSaf6Buqj+aNm3l7XGwBx1PiJ5NCVF6bbVLPnM5c2rhANiDji9l1oZtKz3PSIxT77zH4fIPofwbsPChyI7858vy6G9/y5qm2ek+Gxac0x+H0oBD0DoU0UsDIh+D3qGlAf8hodByNVGlASNQSgP2pRVUnmZH/Lo0oAaaKX/X5zyV9ll6JGVBqGXR2U+hNjoBtmJ8zpPXK6znPHm9FMNzno5f3BR8wCHdfO/wInWFk1X72hOiFv9znpa+wnr6jOKr/9/nPF2efjP6y6Rd9O2Kpxk0le5vCfKcp4qXWAYDejThUr7E9JynHaRpUwwV7Gkpvfwaa08vO4nrc54UL7h2vWKobJYxcvTOwyNlt+Ew0siYhqt5IemQthif83TQdFp0dr9ZVntZ3ZKXul3dLdHnPPE8HupznoABBE27Q0ko0+5vyNDSDuiWy756aZX3orN2A+tLlZgZWvpNLIa27sa/nKG9llg9P1b1iUVpr9gdl248+ownQ2u8tiKZEtpktnlREsfgeb4uDgztpJtYDC1gLfEwtDnWL1I69z1ET1zr9C1TNvyAJBlangSoDC0gAeQTNNF8AoFC5UfZNfJms/ubbHhyp+caivkHfEPlpy90akAytEhLSu65JPUPxPlckk1GhZWd6h4Qm6Hlh8q10LoqYXjO9AzviSfNTWnBfaQZtOrJyiJu5J/wnMj+jwPPqf0Ii+dseMh3D8MIrzly+sBJc/+QylWbh0+gpIwsS5XTmB2MB0Nbh6V5dB1fc200zYke6Lq0UFa9ePkew7ypqh/HzJPW6NBA1z9cRqAFuqyBhYL2M5RAV5F5QWWS1rNfB7p0CD98Tob/EXs1gmsZsebEzQNrbywkbqUgtRqs4VN3kT98hqNpbnC1zx2/iccoRxYsVouYUyq4olEGv6oPmApoxHZ2ZnFZgE4iUl3RsnJG8eufcfmXcfp5Gd6q5+cBK0g3tWqPUz7X4+qCj76mwaP7+tOCNE/9+oaFTCXyXW3IWqPXgjXBRGXuWAMmqbva3tNWKgMmCrheAlcgTF4dObI2lD8GVixsrooL/q2lxLC7u+cKlpPoSFeNh/qfoxqWGAYmasWt1+2SishN53kzEbnpza//qm8nUaRPXr0whX4w6tLnKvq7l+3s2wWAzJNAmbuISmwZd5wnc3sLV2vCzE92YPmsYLE4vPx+lqMvr3vwTv1Favk89Mbn4WlPrFJPyFncuZknWBik68/rOgl7dXgj3pucN3mQbAtFyaacx5MNcgm6hHfDyOVGa9ywiC0OoqciTYdH8ZVrmMVXrvElH0F4ydkH1pawxl02TY0mTZ6pV5GEj+TI+RQHyd9cwpI86xJf8pFokhP6eXbIng87cUdaCHbijpwaYSfu1k7mB18EuFPSj2uFRIzteqT1z7NT+zGadMFF2iRCqe/R+EmUEhwOrfXQbHK2h8b70RM8LYLfvTbXu7LOWDB3yoYFrMAdWWRLX3f3NgA3I/mf44CfA2dLNgdYurOdmqfXFWwwV9jHFbBDq9cgSDUx7lM4x0ugubUFboGFd/0VoMd3NRSR4wXmmOhfae+qQ9WUlwwLLDeAm/HhLc9AxUQKoGl+btm6Xvom66cmW3S75tyISO0CLyQitYv38q98BbJ/t9NXKILsNKjcXlFHMufAJ+tcQa0x0Url+rcoxxXoamDXEinfxEHltSo9bhgcuV7edVFBRbXg04WgDuIh8jEPgq245xMX8HoShlr1lzv0AIt/o3J2AV4suA4aMAeqZ87icljueuB7vPVM6EtASN2FxUWAHOBPe5eMqrylOWhY4BJkJieg2dQirYxcErdnkLSXksqFRsEbqgi7WufyRkGbSFA1ZBI91PWdREpxpmBLatrBfMs0px0PVBcUCZ6ltZFKwkEKfUwpgC4OTVSjSCgTleVx2oUzpFOGgfP7TmU3mikJfJ8evACvlzvbkSk6ERltldbfAhgGLLDchyPTnewhcJVWzUt2w3TVrzwptUiQ8+CEbL1kg3VbQnoj2lvrMcAnFjQCckaKyj6mgyu1ZyLOAflhAxHngLyMAcQ5IPI4j98uhdLeEeeEA5qZVrD3N2dEC8gn0j6pL/t4D5o53jR3sfyYuXVp6gL2kaIKx5SoHX1QSAKxu0booFBodIAlzymNlTCRpH4h0kBb8LkcTm1Sqb5kg7N21CCLGIeeC29MviyYNyZlIKySwS9Vyr6xdbtG0CaD/UP/iL29LqK9T5ABVXrzDEul5GdtOk5Vg6WL/1ogZNaKRPPFwefv8noMWCNeKHfePY+nFORP9dH8KZELxU3NeT948rVay+TS1Ro1Y4YcEb63dheKk/uAVSjO/j3eheL+iIvdvWqMnnnCp6tWX3Ot03EvFIfMBMKhBlrTe6waaIfei6VQ3HyFddv31WcZpk5eu2hkhas2roXiznW3jJr5Pco0otjD+N0fsWdxEMkeUyS598TLGuT/iKtQHPkvx/fvx+qalro9KYt5MvREu7s6Hgg1ry+jlkYD+rJ4CsXFvHlgcLgXhxL7et76xX1WZBCkUJw9phpAp4Vmj9EklNmD2IXiNALchofeizKLq9lZZZcyZCHa3eFUKE7xHVahOMW3YioUVzZg++am+zONIvY7b9xpqZIpkUJx1KZvHLW5Osa7r0U+0eeqDsGh2BjpHVY9q6y3BErnFVOhuN0WjisMi7OMg/rvrl1+NSVETIXizh8fd8nhb12zw1LfK/de3/gMB9stfYtlO0Ui2U6oLgw+heL6NibuGDr9qnFZYMli5VPqKgQqFFfxBrMC4xviGEcsheKQiz+JF4rjOTrUMmmhb3EvFPdjpepzrfv1lnu+j7b0vPTMXeKF4hTfYikQ/4a/DhlDQlmH/K6g3u57I2Z2uxVgnO8/tnxU+K2uYgT1uqlUYYB6kcpV+IN6chd9aLqnd5pFJsbNKC6mC5ZHJhyo1wUUCBUfuq1c9X8L6hVu+LZq5Pw7Zql2yS9/PFAVfECc5EC9XGUsg0VKxmCSAPW2Nqjc13e+ZbZ5yOX9j4wjZuEK6inRCjSTNhVTjnZycDvZe9ZHHEaaE6bhpknIcB0C6qWOGXDj88juBkkG9q7nmMMFK7B1NKjH83iooB4wgKBpdywJZdr9DUE9taVZB1/QWZaFb2f0c3ctlka7ZZxAPXf5KgxQb5x81b8b1KsO7/fAIJVrUZZUMOvmlpHyeIJ6NdNkI54U9LQ6ntf1WUaNySocQD0n0FqooB5gLfGAeudTY59dJU1mJCrnnogfbGIoSVCPJwEqqAdIAPmEcWg+gUCgXlq+OnUjc49xsunIb6tM0p3F/7BLpCUlB+plda8SI6jnbFJYmXOke9VvAeqNR+uqhMn9vTdsts0a6S/0DQ3aG8sG6FrjRL0g+z8Oyb/WPaowkn/1e/DdwwTCa46cPnDSfM66WxutNVYYhI/QkTp5cwgHB82z5LA0j5bjaz4RTXOig3pHD8v5PGE2mux7YFWokL/zW4eCev9wGYEG6oEVqeoUq0SDegm0gsrvVxWrfgnqTUIz5W8Hje05e3zojaEcq3Dd8sXSnKVrJACNvZCpwoDGcmWEIl/EgMaKdLTHKfULpu064ttt+NGbkxBx6vZBY/231jsc3VfD2DqC+qchY3IiDtDYI1BmVGgMkFmC0FjaYbk/5ywaZZGtUBVNG/BZ8PmbkoXGeLKhQmOAbJBLmIzmEggzoyKnPnwIJqTpcJhQfWSxJlQ7Wb7kUwgv+fPEc1FcIz3zYNmoGLM532bhI/k7ysCupgkXzHJuPvW/nTw/CwfJKdJYkpOl+ZJPRZP8dwGU3l4e84n8eTT16H39rLJAj20Y94kfoDQJ9CGogFK9dHtnuLYASupSnzVuD1AyKF6583VRuj+CWmsXoITs7TgASvqgcqjIjZzg2gCe2SEuQOnJ2pd/p9hwLFK3vI8cGV7NJRSgVC+NpVaBdIcG7n9nQAm5/JIwoMQbBahUjhxi6farDIS2AUqjTocpjHWzNM2YvPjgsdevkyUMKPG6OKoUBS0T1TQSykRFUEDJf/sYh665+YwDD6duvb84hNZBgNKk3lUYgFJ9LxHnH/+fgFLgM6u53MgjFkf6q3JvMY8Y4QAo4XxAAqI3+r2rMNAbud5VYgaUmoZ1K8oKnm11aOFdRmFdTRAOgFLne9sfpBX1Mi8c9WydwY9xL3BQCejWGCoV9GrTMVLbACXkab3EASVej0EFlAClIH86Hc2fEhlQSto4bOXwHTuogX11PG5se3ZTDIBSfJ8qDECJ0kdk2hZqbuCvAaVpj09uNFa4ycgefT366XyZzbgDSsgMCBzYm2hQI1T2xrUP6iK+PYDSoWnGWld8aYz8soTkV73NnHAFlMiTPmkv6PbB9Jj3cLlLg/9wx0EkCqZIan2Ily3F/xEXoPTRzlGN8yaNVm5xLOPdsI8NhACUeH0ZFckB+rJ4AKUDWe5VY1lFlNJLI/onFR30JAigRMFUA+i00Owxg4QyexAbUBomlzn+04t7jE0n3d6cHXPTUcyA0nbVKgxASVlVZJio/YDSMJXLvmsSFloEvbqvPa6mIFEigNIChRDb7nJv6QdsrZTe//3nJhwgl0hQTlSOwkmVQGmMYgKUPnX5Y3zoAGfqVrtOJv3+XO0tJkCporYk0N5OkVoyPq229rEUHQfbTcO0nTKBbEeiiAdQWj11lJ+Kxier43GLaO7R60YRCFB6oYJlnFMqBDKOOAAl5OJP4oASz9Gh4jnWqm1bk7QCULoRNz9YXfUhZY8MlTwm1i9e4oCSMqYCdSr8dchMEso6pM01Dwe19F7x1zxEUkiwmofIdGlYzUNkdhms5iEynw32lEFkUAr2lEFkGhDsKYPILBLYUwaRp86wpwwiz4tgTxlEHtPBnjKIjJQCTV2hJuR+H2jqBjUhl3JAU3eS6ONUoKkH1GT4V40fM4Bmtnt+5fYfRT7g4xh7Qk2dB4WN3b/DzjJS0af6Uo7HO6BJEWp69uhcWR+pbKNAPSN6SkDnYUCTEtS0b/FEsvrpG4zjlwcxxj4fsgJo6gU1lb/qXG308ZxpePcJd6QszeYCTb2hpjdb3VlNUlxK3MFBm1LqdsUCTcpQk6LtcN3pu54abymTzjp8OmYE0KQCNfX86n32lUGcVcrwOYsVZzSaA02qUNOyhpe5svN30NeX2x+62a14AdDUhyR6ISZUD1ONhFIPc2XPOHrCxDhKqE5ZwbQFR/fjUA+TgjZeCXPCj+w8OKUp4ly8ives4y5YR/zxXfg+koqm+e8KcX67Ub/8xsKZFpsWmHZfq9G0UPR94wJxRupjQZzd9MUAcYbay6eHcrmMiNC+A9aMUbhMbIgzSB8LLVuo//8LcUY9rE5ziW+wOBhf1uPCQLYgaiw5iHMcpsG6ScZgkoA4FwyZl7nz7VHz/KndyrYr1WXiCnEG9vm+qdeiSsqeHL9eKqHPHHEYaY9GYRmuZBRxNmm4Q5zslwO8K0/Np4aWHY0tdn4bKFGIk+fxUCFOYABB064BCWXa/Q0hTrlZWjF3N7lY7PO/mRvzh3upmCFOkhYWxFmt+S+HOHv32Mo6f20u7eA13Zpr/YoRz7ZsH8Q5v++FQ9ecKijbltcdvRszLQQHiLNJEwviBKwlHojz9BqHs5u8rE12j1M46Oxw6LkkIU6eBKgQJyAB5BMM0XwCgSBOZlCP1RsZGxkHdr7T3fD22RfxQ5xIS0oO4vQZLk6Ic79RYSXde/jvAXEaoXVVwuzU4wu1Q1fdTTZN7BUUvH547gOcdurI/o/DTl1ZF2un/mE43z0YE15z5PSBk+bLT1ZM6CVPNwtPmDld/rxfe4vogppHa2Jp7tXikmlomhMd4hzvvcEvpGiXWZaec9wuqbMdC3H+w2UEGsQJPm0xeSQKxHnDvKBy0J6Rv4Y4TdBM+dtBnBTmvPsH000tj3C6mH8ivd326xvGHeJ0H4oFcY4bSlCIc7+FxpeEo8qGh19cLYnb2nsnrhDnthE7h9nm7DcIa7ieo7si3RsHiNNpKBbECcgsQYgz465V/NIuc2ibLPxMXYYtFsxRkizEyZMNFeIEZINcAh3NJRBmRkVOffgQhUjT4TChfh2KNaHebpHclPCSh/fo/dz28ljzAzcUl7iMeXsDH8nfhCfmpLkdYuytK+EcSllcjkchiiGYhSiG8CU3Q5P8d4E4B4ek+Go6DTMpPpm8/2n2rMkdAnHmamBBnAs1OhLiNJuSp6UxydUyZdE269GRaYhTx3ZBnMjejgPEmaGBhSUGaXQ4xFkUnmFr+WCJQcljldr5T24LYtmShjgXYqo1TuM/iLOVECdy+SVhiJM3ClDJRWAUiBHiHC4bMn3rJaphxsSG2KTURU8kDHEuxJQC6OLQRGVOQpmoCApxDtzd5+vA/REWmUudOzlqzx2CdVs4QpwlelgQp5PefxAnZJ9O8dXjZjd+Nso9GXb9yNttPXCAOHE+IAHxxFw9LDwxUk/cEKf7ScZ6XRtr+rYXEw0LJ2oLlpP+ZxCnhabKEeb7M7Toa3m3+i99eBkHlZwwVZqmJ0aIE3laL3GIk9djUCFOQCnInzLQ/CmRIc6/7DTNK1jOViWPmZOfJbw0Fr63dkOc6mOxIM5TY/CGOP0vBVcznRYzAoeUHdBifVLFHeJEZkDgwCcqj8XiE1+MEQvE2ePSgQM2OneNEiKHfe3d9Smi8m47Ic7d347fub/hlXHRcrtduhen3MFBJKCrYIiUNIZ42VL8H3FBnLNW1b+38tlA2bd09AS/cOp9QkCcvL6Mii0CfVk8EGeWH9Oe5rKZvrXfrUB1ZSPB3iw5iJPXaVHVADotNHtYkFBmD2JDnK9XVmzLaog33L/B3Kv6AGOsmCFOtTFYEGf8aDFBnJ7lN/sve+JglWZVv2prUI88iUCcH2Z/ORESFmixvtezs/5PC/vjAAIqjsFizRpGEyiNUUwQp+1K+mqO0myzIM3GCfrXTgvmLeAHcXZiePVhfjQ2KHHRy1x9qV6kY2mj7SpGY9kunkC2kxMTxKnqmr5laYiv2ZGqymtP9h8Q9IyShTi9MI1DJ5BxxAJxIhd/Eoc4eY4OFWG8Ohp3iLMfPWiQrYqn6eZRrOXAvkrwSSuSgDjjR2MpsHA0fx1iSUJZh7QZ4hzY0nvFD3EiKSQYxIlMl4ZBnMjsMhjEicxng0GcyKAUDOJEpgHBIE5kFgkM4kSeOsMgTuR5EQziRB7TwSBOZKQUBnEi9/swiBO5lINBnMjjVBjE2TdHUSv0RZVh6JlpoRV3S71hEOfsPudyh34LMM42W7Jgb97deTCIc6ROcUz0nUGU0qVSeTNH98qAQZw733RJvPLXB8tjg95tto11U4ZBnPb6qrmFro+sdmk6JNtF2tXCIM5o+2yryrHdrEq5D1Zt83DoB4M455+W4pydlcXIGZmxePmSgf4wiHOoQ7ViUmYD5WC1uv71uh7RMIgTudoSIjVBpFPk0J/ktSLtbPczZnG1m28tC/6wCwdS0wptUBLmGB/ZQ3DKRcS5ih94jk/GPMcntZzjW6Np/ruSmg+761+3Z/mabL6Vx3w07k8NMZKaQQwsUrMLQwyk5tzsr6vDjr80Kn//pUuFUtJLYpOaqxlY/Jgd4/+X1GxY7vFu6JBFtCM6myo2XulbSRBScwSmwbpIxmCSIDUZysnxtQMKjcIWXPQfr7MlA1dSc+ych4u2zb9hGGcxMnL9ZN1sHEbabXMsw+WaE2cnhjupKV0u9/ltKNu4vFEpQY0ZOliipCbP46GSmsAAgqbdWSSUafc3JDV3esR/llKxMo870Yt0dvmBfWImNbUNsEjNN9R/OalpcfNYYcXFtUY77/zYqP50EuLhpu0jNfOPDVsqzfiDntvtS5Za9bcKHEhNsgEWqQlYSzyk5uFcnS/1M+ZZFYwc8pTiZVUtSVKTJwEqqQlIAPkEGzSfQCBSc6aZz72GA+7UXJugzfVHtw4XP6mJtKRkSE3rwkrSIZo4Sc1488LKP/bTfg9S0xatqxJmp07uHMH4PjmbEup1bcdz1cYGnHbqyP6Pw06dboK1U9c24bsHO8Jrjpw+cNL8pWPkNPlCF4vSXVutaj0/PcNBcy8qlubWLS55NprmRCc15aaGUD6nKVATRktPP7Wm0/gOJTX/4TICi9SsMUUhNc+bFVQqnzP9Nak5B82Uvx2pua2r98P7DUqGGbLOftcG3TKXAKn5YSYWqVkyk6CkZr/dmssUtDNpUZM4lv3u+SXgSmo6fOYcpS61Y6R8W2DywKWsvVm8IKn5YiYWqQnILEFSU1M5yeXolUBK0FS5imG7R7EJRGryZEMlNQHZIJcwF80lEGZGRU59+GCDSNPhMKGupmBNqAspfMntCS/5NacZy3toq1oW9x8//viwol74SP69IDh0ydDJhilds+IMs3zG47FunIG5bpzBl3wemuS/C6nZI0f6jz3xH2gpCof0Zf58uKVDSE3KTCxSs2FGR5KaJvr7P2XW7zU7di6wjFGTK/hct/aRmsjejgOpOWkmFnuoOLPDSU3teqVJTdeCzCMNEwa4377gRihSs2EGlloVM/4jNVtJaiKXXxImNXmjABVPVJwpTlIzeKvJwuCmyQaRtbuHqyzcLkjidDypyeviqFJUtExU80koExVBSc0lXLktjJJtZptnk1OvpY7CvC0cSc0PZlikZpLZf6QmZJ+AdbKkJV6VZkf2VAx7ckZrDw6kJs4HJCCD+MIMi0E8ZSZuUjNw2y39kevKLFMO1ew3TWQLPoz6n5Ga77127sqfn0fJend57o/XQ0bioFISpko+ZmIkNZGn9RInNXk9BpXUBJSC/OkCNH9KZFJTvsymcMBCT6MtTdnZj1x8P4mB1LSzwiI1v1riTWqeWh3gvmNfmGWsVG+XweGHj+JOaiIzIHCAEBlWWBDiUCuxkJouQ5x69H750SywbrXqp3vBiriSmv01bS+uDr9Mz3wz/NYrhuUoHEQCugqGSFctiZctxf8RF6n5nlRgeOX6K+OQ/rSVZWefDm93V8eDTeT1ZVQ2EejL4iE1JyUt/WaQEmFW8o5UebDLd0uCkJq8TouqBtBpodljIQll9iA2qVn4OSrJdIkCfedLWwPa7ZM9xUxqWltikZo1FmIiNd+xnxla9ltFObp1Q6d91wIGS4TUVM9ySA0zO0HdfEfeek1sxQAcaD+6JRZQRpaQR+1IUvO7bLK5XvgYejpdL8F4+6SzYiI1VW0aQ18NKTQsNyv3HrXfZQsOtmuywLIdMBQIYztFMZGaV2w7W1I83xgHJXaXG6v1qR+BSM1DmMYJJJBxxEJqIhd/Eic1eY4OlVPsZok7qWniPUf5yc1zlLKQ/vEuE0YtkjipWWOBpcB2C/46ZBEJZR1CaFITSSHBSE1kujSM1ERml8FITWQ+G4zURAalYKQmMg0IRmois0hgpCby1BlGaiLPi2CkJvKYDkZqIiOlMFITud+HkZrIpRyM1EQep8JIzSXB1YnTOg0wjvgoZfLgXMAVGKmpdTelgVk4yaJc72LU3VcT98JITd+ziVGzA99aZAzr6pSaKhsEIzXTq95rlQdPYBxoTFmaUmtSACM170g9KXIbeYsa5r955fbXE0bDSM3MzOSZtiXuZhsyFUxuFn+kwUhNm6KR1BGKZy1CKoLUo/0GPICRmtE/7vd+do5hGH7vauyZJ4XGMFITudpqPamZNXqCpvuXlfS8ly+4j+6onxUxUNpKai5GG5SEOcZH9hCcchFxLtUHnuNXTMc6x0+ezneES9A0/11JTeSDccVEamoXVZK0ewEaB4vapjXkAIsjJaFtGtaCsHWkpvtTq5TAvEXmiVSdW6tfjjjVHlKzndOtGqAAGVRgvqGIBWAW0AeblIiCYoZnHlchNZEqoi4PVlj244dIuo+/HMIHxRxxS96+/zBX+vbPaZMKvwXPIwCKCRqsRgnLYIckYzCRwcWsmYL/K4xiYhnrlyjmh0+OPT0CiwxKOq2Y+sdy+lOJrlxBywRiWsZeQpbpENZy8Krn41gl9sZpqifcUmXqzkiMtQzNgVyaSNZSv9mpQxPnUtK/bOIc8mPyjg97cumlf12U33z262MxljgoccUqcTDNVQwlDr6OSpTpOsHfcNe2sVctVKZ+JXaJg1xXLPA60pUo8yraj/jmVb9Y1dNZhY9M4qkacfMOP9hKgHkVNJgTpsGmScZgkihxkBVPujR0Od0o9rCpuuK8w7q4ljjY9ddN9QFFcqb7Cxw4U0YObm++M2g4ZUzDvXD5F0+7E/c2Td1iP4uWXVidnjjg8ViJTbtgiQOex0MtcQAMIGjaZZJQpt3fsMTBfZPtWbZnJ9Li9R89S5120knMJQ6GLsYqcfBi0b+8xEH11phPU+RqjYLrow0snk0chmeJg13db1303ffcNO1h6YojW7S0cShxoL4Yq8QBYC3xlDhYemaEptYBN4PoZ7p2EbesnCVZ4oAnAWqJA0ACyCc4oPkEApU4qI4zGvpRoRMl59hp443P1+uJv8QB0pKSK3Gw30GcJQ7KTAsrz6c4/B4lDhzRuiphQtyZk8ffzAjZbhVT5Cq1WXvtCJxC3Mj+j0OIe6kjVoib4sh3D06E1xw5feCkedHb8mvLDnOpmcOsfUeFeKzBQfPcRViab29xySw0zYle4kD6jcpg/VMRBqGkqyODewX3Q70/cZQ4+IfLiJariShxcI6FUuLgA72gctAZ1q9LHDijmfK3K3FQbDCmTmk61yCtb5zn6Wo5LQmUOHizAKvEQcECgpY42BA850PPgdX05IcNWRce9VdCZLq0r8SB54/4/RpXtM22+ldRJqTUthfsAEscNCzAKnEAyCzBEgcaD/uNzVhrR0+ep98UenbzDAKVOODJhlriAJANcgkuaC6BMDMqcurDh7dHmg6HCdV/IdaEar+QL7kr4SU3LdZJHho10XDvtu4nXgUx8/GR/M/K2jlWK+8yUqnaul71c7fhILnRfCzJh87nS85Gk/x3KXHgu3O8xdSbVNPExQZxh4PXze6QEgfTFmCVOHg0vyNLHNRTV8grKMcZH0lRtPcrGWOEY4kDZG/HocTBuAVY0H63BR1e4qBP4t3K4jFJhpkfpsbtLpxdS6gSB4/mY6lVMv+/EgetLHGAXH5JuMQBbxSgcv3dFoizxEHJ4oUqXGZfxpb6tdETZ85AFEbq8BIHvC6OKkVJy0TlRkKZqAha4mDM2nPG1jfq6bncbIPopr6bOqjEQZ0zVomDQOf/ShxA9jl0x3TDi9qX9CAptVexJd264lDiAOcDEhDer3HGgvcPOYu7xEGkxpQ+5Mhs033F/Wt72jXMwqHEgdG6jc/CvvsZpxTVOd3ow3LCQaVATJXsncVY4gB5Wi/xEge8HoNa4gBQCvKny9D8KZFLHKTkXTQPqtY1LZqyLVrh4sPVYihxQF+GVeLgjRveJQ5sQoNX1q32NThePHmAdpDOYtxLHCAzIHCg9ynLsOh9tWViKXFAMc0sG2FiZLXNJGZKSrGfB64lDv407q89NmsyrWCYT44nIzwSB5GAroIhUrUb8bKl+D/iKnEwZcO8GXSSIy2za+NG5yjNNEKUOOD1ZVSoH+jL4ilxMGjE4KqBs9NpO+wyFp57LqNOkBIHvE6LqgbQaaHZw52EMnsQu8RB1O6MVcseW5rE5L0nHz6x2VvMJQ4YblglDs6xxVTiYDw9baRuaYJ5oU1deMJ45WyJlDgIMNW+YB20xWrThR4ulA/yWThg8kZuWCS2uoQ8akeWOPBXfdN4w8DBOG/cnX6699NTxVTiICVFcdpH+QHUozK9L/fvufo6Drb7wMayHTAUCGM7ZTGVOIhVebbSZ24WbUfd3yoD6QqNBCpxsB/TOKsJZByxlDhALv4kXuKA5+hQAX85N9xLHCya7G3x6eQZSrnmo4A+Lzj6Ei9xcI6NpUA0m78O8SChrEPaXOJAvaX3ir/EAZJCgpU4QKZLw0ocILPLYCUOkPlssBIHyKAUrMQBMg0IVuIAmUUCK3GAPHWGlThAnhfBShwgj+lgJQ6QkVJYiQPkfh9W4gC5lIOVOEAep8JKHJi8MNcJ2j2Fus1XZ8WWxcfOw0ocjDxrO8Bjb7ZR8XTHgd92DFWDlThYxD5qaaU02SrF/o+01MFV4bASB3/cV013+BJiUloaZD7HcfEiWIkDDXlbOd2BEfSc61dVWL1IprASB9akxY+s9sy3SLNUujhhj4MirMQBct0kVKwALHggchBz+5L9o1+PMg/aPTet8xnlQTgUK+CgDS/CHMgjbY1TViHO1WrBE/mSeVgn8knz+C7NE03z35W5zD11UnXG648m2cmHm07ZvugvRubSYAMWc9lpgxiYy4u2Xjr5GmzLSAuDPqphDxyIzVzO2IBFgg3f8P/LXBa/s0+as1TaZP3BA5ej4vdLEYS5VMU0WCfJGEwSzOWbfazzFyvemuZQOy+98re0L67MpazRFtkbTT7GidGrqpS/L9XCYaS9Wo9luJvribOnwp25PP3SZcRbtwUGR1W/asxq7JMuUeaS5/FQmUtgAEHTrhcJZdr9DZnLfeThTRcKc6y2/X1L7duD2YFiZi4jV2Ixl3Yr/+XM5fa1J9efZk6g5lVREsglxt/xZC4nJ9eWqC/vZBSfnDhs9y5FNxyYy6CVWMwlYC3xMJcyt183Wr3PNjj4TGbWg0X7FkqSueRJgMpcAhJAPmE5mk8gEHNpcO8KOzLnjvGGifJ5Om96cUXcCs7MJdKSkmMuS9aKk7msNC2sXFi89vdgLrloXZUwO/Vu+a/mTOtsbRjby3bEzE1DYnHaqSP7Px5PZFyH+UTGdXz34E14zZHTB06a50ldvpLCuUVdP6ariay8DAcHzWsCsDTPCuBr7oOmOdGZy43jl3QJs0ywCvHbEHspTN2wQ5nLf7iMwGIu3wWiMJd/0Qsqbd4G/pq59EUz5W/HXK5mz5y0zqOItuXFPfajzs8Mf33DuDOX3fyxmMurKwjKXLpkZIw2P8syL00u8kt8kJmDK3P5fbyX/Z6k74wtk+Iawj89vIkDc9nFH4u5BGSWIHOZZ2/V5+omPcq+W9P7GlxwKCAQc8mTDZW5BGSDXIIfmksgzIyKnPrwAQCRpsNhQt3ujzWh+vjzJV9BeMk1Jo3KUa8OMy5zm0Gx7Ze+Ax/Jb/Rabzt41l6Tsq+nSyhJ0/3xqNXhh1mrw48vuT+a5L8Lc7kjp/HEue7eBvGHD4cXzHrQC+M+8WMu7VdgMZekds9wbWEuq6c8bFrjn2mSUCA79GP2YMRRa7uYS2Rvx4G5tF6BRRFqr+hw5tLuc/iOr6XfzNJSP2cVsDMFC3xLmrkkYapV5/cfc9lK5hK5/JIwc8kbBaigofYKcTKXnFsLZuT1em2xY9TgT+sHNF6RMHNJwpSirmWiCiChTFQEZS4Dm7xKr3VpMix9Myf54eHLvbBuC0fmkrsei7mkrf+PuYTsM6XwuvGAuBSz9RsCGcbFUn44MJc4H5CANCFnPRZNOH+9uJnLK7NDrn+crGMWLfdFnz7hnWDQ7p8xlzKNJ3MNRp0ySjSzN6esXIeHSjRMlcasFyNziTytlzhzyesxqMwloBTkT1ei+VNCM5fmO2NHLZE3TJKLnq4/dv0z4XtrN3OZvxGLuQzfiDdz6X718eAeIa8oYX9fyDIpmHMId+YSmQGBA06YsxELJ9y9USzMpZbnLm6M0z6jY1sPK/1NfTwGV+Zyq1/XqVZDNhol6jGM13gYPcZBpHBMkfw2Ei9biv8jLuZSLedtYYRDMK1w/fNP3t/3d213V8eDMuT1ZVTKEOjL4mEuZefX3ejZ/YTloaSM/e4yxX8RhLkMx1QD6LTQ7LGKhDJ7EJu5bJqn2dVJx9UsuNScNX32dAe0u8OJuRy3EYu5/CCcAowPc6kfQH0btUzNYOM6Gr2Lz8U6iTCXplpcyx7y/alZcd1d3IKeHMKB29PfiMlcSsijdiRzqfnn325RJ/+kRpIarBu3eL4VE3Pp+nz1+FlPelsWnHLbGPFAOQEH28lh2u6DhHKHRdlOTUzMZYoOqXrt0y+UnQetKLMPxZoTiLms34AJxBLIOGJhLpGLP4kzlzxHh0oc9mrjmqQVzOWMQsPGIU/KaQcmhPYPOF9YI3Hm8sMGLAWutWRKryahrEMI/VhpJIUEYy6R6dIw5hKZXQZjLpH5bDDmEhmUgjGXyDQgGHOJzCKBMZfIU2cYc4k8L4Ixl8hjOhhziYyUwplLxH4fxlwil3Iw5hJ5nApjLmnDV9duqrUx3n7UPsht8ekFMOZSyTu0zu36FPPydyqjD3S6ngFjLt9bbo04O3wYbX3X9Een4l9cgzGXpfcPrPkQvcGsbLJm5kIrhfcw5jJjyMRjPTW/GWWHReTphmgpwZhLs96KJ63iZlseWEc/tuLZnusw5tJPbaA86/hLy0iT4GtvV3dVgz1W+tIflw+dnxhIOTpgl+zKd2p/wR4rjVxttf6x0oell6796OJvWqLW5ciK2L1xOJCaa9AGJWGO8ZE9BKdcRJyL7oHn+HW+WOf4Bb58R7gWTfPfldT0c5RKydq31yLtkSuNuv5Bjej7xoXUdI3GIjW1o8VAapqNbpp+rXEzfXtU/Kuynq+riE1qOkVj8WPW0f+/pKZ+5ZilTt2zzXetX0Y97Np3MkFIzWmYBtOWjMEkQWqWpy95sfOqpkHu8QmVB9x1NrVvYYsYaXe3DaudUGXFyL4TMiVwaeFgPJ6OiWk4koQM1yGk5hVjlVHOyfvM1yekDlIberdaoqQmz+OhkprAAIKm3XUklGn3NyQ1NTMfmEye2WhUxJqwTUlVapqYSU3tCCxSs1vEv5zUDJi0K9P5fGej0rsBhaFHeh3Hk9RU3EN+7hUSQC0ZftN0VnHVCBxIzaERWKQmYC3xkJpq9iOfOfoampfeV3Z4p3lPXpKkJk8CVFITkADyCYFoPoFApOaMmZN6yw3PNM8Y2yOr593c4yJuBWdSE2lJyZGarlHiJDUj6IWV512ifg9Scz1aVyXMTn2gXW2iy9Egav4rpRVpI+Yswmmnjuz/eFCDUVg79YoovnvYQHjNkdMHTppXnFL+njghzjQ/f5VG2Lple3HQ/M9wLM2Lwvmab0TTnOikZqfXWoZX7r83CQot/Xo06jytQ0nNf7iMQCM16cBC4etmFFLzhElBpd/fm39NagahmfK3IzUvnfPWMT3mRNt/8Eh+w3cVv1/fMO6kplo4Fqn5NYygpCbHZ8moH1O+G4bqZcn5FXDH4UpqBsjelE38pGGy/QqlH+PScQscSE3lcCxSE5BZgqSm2v2X6n+P/mKSXVXYY3ZsCZ1ApCZPNlRSE5ANcgmb0FwCYWZU5NSHDzaINB0OE+pCzAmV0TKhBhNe8mKXm4Mdjj6i7gyT772tJmsnPpJ/uL5/a/SDg/T8g9+Ca9xex+MguUEYluRjWnp5CJrkvwupGTkw957st/tm+ctdX+249D2xQ0jNsjAsUnNru2e4tpCaSkbjn7KGbzdPrjvxeu7tU4LBjPaRmsjejgOpWRSGxR4eCOtwUtPROlHhxokRJntvkU//8NouWJ9B0qTmVky11ob9R2q2ktRELr8kTGryRgEqnnggTJykptzYc6Fbk+uM8yf2smI9v+0qYVJzK6YUa1smqlASykRFUFLT8GKTlueZ+VY7x59zUNL80KmDSM0NW7BIzTlb/iM1IftUZaklxt7faJI0+N5akzxlwafS/TNSE+cDEpBBXLsFi0F02yJuUlPHTsPJxsDbKO6OV9mi5RTBknb/jNS8uWeMsbaxB+WQht3D+VU/fHBQaQ6mSgZbxEhqIk/rJU5q8noMKqkJKAX50zA0f0pkUvN77pS0V6tP0LKXb+65/loZVQykZnUMFqmZFIM3qWm+wq7HSK2VFjlJJSNnxZ8XTFDAg9REZkDgACGeisGCELNixEJq7k2Za/v6/BXzXVZraTUhNYKJBO0lNYfExrI+1gaaJvchOT6+MfwSDiIlYYoUGkO8bCn+j7hIzU0ji6372rmZpOd4a5XV/MFpd1fHg03k9WVUNhHoy+IhNc+rqCQX+t6gbvm6w23ckk+CXlZypGYSphpAp4Vmj3ASyuxBbFIzL3m7hV/QQVrK9d09ZoXu/ypmUpMWg0VqygjPJfiQml3vRVTemXHMPCa6YrvajDvDJUJqrnQfcsTPTdu4TOHE1XlLvqjjQPsZxGABZXoS8qgdSWreMtpCeX5Sz3zHu1EOeq+j+omJ1Iyt3RH9jPTaqDzi3uoi872NONiuH6btZAhkO3UxkZqBnYtvZR7eQ4mL+/GMNKFGMAQlWVLzXTSWce4SKD9YLKQmcvEncVKT5+hQOcWhbVyTtILUHBPK3N1p9x7TsPcBC84f7RQvcVJTBlOBhpZM6QgSyjqE0KQmkkKCkZrIdGkYqYnMLoORmsh8NhipiQxKwUhNZBoQjNREZpHASE3kqTOM1ESeF8FITeQxHYzUREZKYaQmcr8PIzWRSzkYqYk8ToWRmjfucL1fx00yOuT2N7WsrHMcjNQc63D2QUH+MYMdjSMujp019jCM1DxuldzN4QzNKGvxgQNPv+Srw0hN19QhKTV+blbR8wMWvN/r+BBGaqaPvVusqE1hxFE1/Q8qdkuDkZpjVl3hXDmXQikfGdeYvKxeA0Zq1hzsbpbmv5GxLf1LN72Yc9YwUnNKj7rJYW9dTeMyjE4/oFqMgpGayNVW60nNqKLo1D3HRhsmGT+8WOu4IVbEQGkrqRmJNigJc4yP7CE45SLiXKoPPMf/Hop1jv8qlO8Io9A0l7eN8zvg62aU+bKJNZF8+J3AV+0J7a0sgD+4bKa78K5MFkXqfvxdGYds5cXimDDIHtA1WrcTy9933PVmHwYl2TW3u8wiXU/M2xKyBfINrRTUHljrxJdVApMIsCerETogAQRtKqlE7smwVn8DmmcG0OP7uDan7/l6s8iOrkwOhyX6uD7ZuKa7pfo506BelkPXlD8ZIPDFZY2aryD0hVsa8J5swfTJUFCSQ6KWf01AD5xUVimJ5Z+0IyBty5z7+fPnH23hLcmChvH2Yjn6ujO5ZFe2i6s7mIAv0jbDvRZYV1glUA9/X9xzs90xweweOVvoIsIBqpYWcVinoRTLOvGlBLAOMAP8aMumaZCxB9vbG8wgdBQwE9+FiD6KurTs1fcX+yxS76nuq8k4P1fQOM1XFBEB/tkiDuPQMY0DeBPJGwe0D9w4nX9hnIlUD/BX8mwCxhqBj7I4jgFkbX09ffJ0sqcXc7kvawR5NO9fP98hekRtmXv1LuecBy3/4aWjun9b5wtm19jBri+cXSPQKg7jHSrBMp69ZIwncttbPxNuwS6/sOD0nxb0dmVzAjjA0gkwH2AujicHNB3wN3fPFbxG8J/6YJMH07/5BdEl7vQ+7+93z9Aqvl9KqOWmoGJEZQFXURwt9LI4LCeHabmCYklbDvwQmNfQpmBFr+ZTYTbHBdsR2qgZMfVXbaZv/xJU1M13wVJBR4i6ZvrZgvuxcy60hgDXqdVCy6pcniOE1qmbSSjr1L5dVtmeLP5gVS6X+VhrwipBPKiHYTOKaM1l+bFZK4TxZjTEYhgVzPj3huGM7JWwYyqyV/MFvXuachzdfZ1YphwbFgfa/qMvXjNGZle6zPOiJA072ljS69wBrHsVzu0RbO8xB/jDy5PrQ2O7+zT/YlFbLFSs/DigbjmgfbyoI+tJwJKWXi60pOVvq0TuofinbWAOJSRPq1b0U9bpOq4/1oOWOyxqSv0gu6ftP91D7K603+kP0GRdt4pXty8dOjP7Sjt3V2qAcg2gciLPaO3BtZWgcr8K46vYwZYwZE8/FpfLdhLtTp+cpX6u+UQyjZaPGjbWzZvU/iGM0ArpI3DQio6pVVPH7hL4JK4stOUC3wQudu4k3/khx4JWfPwXDfQNfkjz5jbkrCrH3xjw3wr+bzf4skfwEy0hji1obqzNcccW6K8D4o7ITTcs7oh0aUIBJPDbiuzLei+3h4XvCDPf8aPXl55DLyzBIYAUjaYuQYMZjF2yav79WFaHT7JuVH5Sm9ZhwYymz1jBDPtP4g5mzOg2XdbA34iWP6HQeab8kBEECGY0fMbcLn8mwI7szZs3HRDM+EP1Y94tXW/Lg1F/Nz5KpTIJEcygY1qn6RMBrNMhwYxOE5yr9uw7a1ps9fbdSY3FwYQIZhz6hLkfJoJxSJIMZlyMeFw6xSLTcFP9Jusvh3bTCBXMkMM0XsFHSW+JCRTMWCRjPl9hbqZB6r1XT8O2joqTcDDD9SOW5dQkbjmxBjN8qxLzq9aOMtxH8d03S3nhPUIEM3hrCNRgBuAIoXVqDOlfEMx4mDrh7ZAnA6kp3F32L2XLV0o4mNHwBSuYMelLxwQzNhrq5k1/lWkZnjyQ5L66Zzfcgxnkvxzfvx+ra1rq9qQs5snQEzhs0Ou+YG3QQ7+IK5jxZXjjbG+1WsPdnoHMEQsLB+EezED6CBy0moSpVUPT/1UwYyuaGyN0MAO56YYFM5AurfXBDMuN7wabxhabFsZYzFU4o/oJh2DGNjR1CRrM6DwobOz+HXaWkYo+1ZdyPLBvC89gRmDfKoxgRpaaULY8zsGMxypJ23vVTzTecOqO/PsflyYSIJjhD0qCujS07iuRxFzBHVlDQ0MHBDOi19nRPjX0pER4DqmM0ewdTIhghjamdUhEsE6HBDNqFvierRzRmXHIfWUe4/JRO0IEM+rUsIwDeBPJG4ckyWDGtmNTB1BJFIvDdl1P2LjrPyFUMCMU03hLJWM8YgYz1iRHcnbNzTCOmrxmxfWzf3yTcDBjEqblFCVuObEGM7ZW3hpZZ5hGTzvy19eC73o0QgQzeGsI1GAG4Aihdep20r8gmPHs0bmyPlLZRoF6RvSUgM7DJBzMWN2vCiOYMbQfap0wXIMZN695vHi1U8PgILdf0/vPgz/iHsz4aOeoxnmTRiu3OJbxbtjHBhw26D790Oh5cIPO6NemEgNtCGZYK2S+l02eaVCoGnLaQs/WFvdgBtJH4KDVUEytvnbsOlTSwYxYNDdG6GAGctMNC2YgXVrrgxn7Fk8kq5++wTh+eRBj7PMhK3AIZuxAU5egwYy+OYpaoS+qDEPPTAutuFvq3WHBjG7jsYIZ08aJO5gx3bx6R/dFkxi7hsaHj7i38iMBghldxmMtDW+PI8COrL6+vgOCGQs+a3wsPV9Ai/njnu4eudFRhAhm5I7Dsk4kEazTIcGMYYOPyEwfn2satt9n1KhOfRiECGY4YRpnGhGMQ5JkMOPkkDHsytpBlIID3ooDi5O6ESqYoYxpvBdjJb0lJlAwo6568stHVxpMQl/etOoW8U1NwsGMU2OxLJckccuJNZjx1zHOxa0jOBapy8OzKSkRxwkRzOCtIVCDGYAjhNapcaR/QTBjdp9zuUO/BRhnmy1ZsDfv7jwJBzO6TcAKZuSO75hghnG2wyafr06GxyZvln/1VqP99RKRG/RZq+rfW/lsoOxbOnqCXzj1Pg4b9C4TsDbot8eLK5hxtYK57fDwdxZxpYNfv3jKOI97MAPpI3DQKnc8llaR4/+vghnxaG6M0MEM5KYbFsxAurTWBzNG6hTHRN8ZRCldKpU3c3SvDByCGTvR1CVoMGNJcHXitE4DjCM+Spk8OBdwpcOCGZNmYQUzXK3FHcw41cOgWxpb3Wjf0c5yBZztZgQIZujPwloays0iwI7sxo0bHRDMUMvdu+jcRyXzkimBz1dtc0ogRDCj3hrLOgXWBLBOhwQziivcXhSvemhUsMpv3gL7iHRCBDOiMY3jSgTjkCQZzHhsUFG5w/2r4fZpL5b276yjRKhgBgXTeGqSMR4xgxlmgXl07WQ5+s4wxZ4xtcPeSziY8cYKy3LVVpK2nFiDGYYzB53QMt5NKVa4rBJVPpAYmAlvDYEazAAcIbROTSD9C4IZWndTGpiFkyzK9S5G3X01ca+Egxn6NljBjLpZHRPMeHzp1pqXci6MHfEXWGO7vx+GezDjPanA8Mr1V8Yh/Wkry84+HY7DBl3bBmuDTrIRVzBjwMJ7ufsP7zUJmuanqXx9Df41M5A+Ag8kZxaWVlkdu0uQdDAjEc2NETqYgdx0w4IZSJfW+mCG79nEqNmBby0yhnV1Sk2VDcIhmJGEpi5Bgxn5SVq3R6faGG68df3sMqd+rh0WzJjmgRXMcHcXdzDDzuFBZ9stnak503o4jg2yXkqAYMY4D6ylYTcPAuzILl261AHBjLS4yesUY/oYRe486GtbIp1LiGDGI3cs65S4E8A6HRLMmOQ8l7voiAEl8smfu+TGJHIJEczYjmkcdyIYhyTJYIbc8MbpcjNJ5hFTR0UY9ta5Q6hghhGm8dQlYzxiBjPGDIxe5jZmHGWn1OrqqyovoiQczPiwDMty55ZJ2nJiDWaMOvH6ylKp3sahOyvodtl6pwgRzOCtIVCDGYAjhNapu0j/gmBGmMHXp+zBncyOudhvMxgVc0LCwYxxHKxgxm2PjglmrI+59WIj7alVWdIynZL1XqdxD2ZM2TBvBp3kSMvs2rjROUozDYcN+ggO1ga9C0dcwYxpJX9NerzA32qv0oWZmfZ1LNyDGUgfgYNWtz2wtMrt2F2CpIMZu9HcGKGDGchNNyyYgXRprQ9mmLww1wnaPYW6zVdnxZbFx87jEMzYg6YuQYMZtOGrazfV2hhvP2of5Lb49IIOC2YcDcIKZtCCxB3MGGDyfGGXmzaMjZfOZhTH7btJgGBGWhDW0nBHEAF2ZGfOnOmAYAZzuePYOz28TY9p6T1gbi6mESKYsQHTOhwiWKdDghlZtxiyTqbPTHMW2hbfWpjfiRDBjPmYxqERwTj/a+9M4KHq3jg+KFnKq12bJpUUaX2l3YxtMDNki1bbhLKTtFOIUhGhshNCyJalkCKlRdpLmzbttEqp/71jRubO3Btvd+be1//t876fT91jrnt/z3Oe85znfM8ZApbFDJ9MitbJe8FqOcFDRTcPHZyPq2LGdETjyWJjPHwWMxy3jxHxkdqrtdNhTqbVmF2OGBczJBAt93k71pbjazHD2D9hXHP+IN2DiiVBi8fcm4eLYgYzh4AtZgCBkJWnxhF6QDGjv3vArdU35+iVvR88LVn4ZgbGxQwlP6RiBsFPMMWMgYQNt9e8MdXPuHJg3N+umzRRL2bI5DQX7bLy1yryefXZ/UeSJBpkhh/SBH2QH7+KGf7kmY3zZ5fRvF8/nmb3Mncb6sUMaIxAQSsColavBTtaYl3MiIcLY7guZkAn3Z2KGdCQ1vVixgf6vl01kyZo+UimPzkT+foGCsWMBDh1cVrMgH5HssCKGaKhSMWMmH38LmacPXWIMU5fmBLmU22V+NdzHxwUM4RDkVLDt/twMCOrqKgQQDHDaMD5q0/nJVCCAy49Fh1mIYaLYsadfUjWqcKDdQRSzJg+b3TL3IfvNQNOvhFS2nZxCi6KGTmIxonBg3EIWBYzNokv9HyvuVeneMxAqVP7zh3EVTFjJ6LxPLExHj6LGX3+zrw+SaWZHhZNafYnS/2NcTHDCtFydMwtx9dixqSCTQtrDQgaSeIqP29rBAfjopjBzCFgixlAIGTlqYmEHlDMmGFV01BYkEsOf6l0ecaiGUcwLmZsC0UqZpiGCqaYcdI7RH7UABn9PLNREi1WC6JQL2b4TS4xGGa8Wjs9x12+tPa0EwoT9C2hSBP01aH8KmaoDTt0X8flrk7AERXGrtbnX1EvZkBjBApamSJqRQ79vypmJMGFMVwXM6CT7k7FDGhI63ox47h+XF+rc1oa2SuSk59/LRiJQjHjMJy65w5ZUttmD9Xelizb5+XYjaWc/YYKaEo00qByVzF6w3RZMruKQXQAP+vOsHUEvJdow1gF/NOGaLWeCLyvmwfRxdneyUOJCLy7Ldhu6WRDdGA42XrYKW/uUmzcoWNusdi/VGvno/M2Gal7+/F+bu7+zm7pYjf1BlKjuBigm45VB/4BHQwCgIHYIoZrMEAKadLMB+ikAc+3s27eJj4p5qhmwRHNnxnvguZCkkPw0zySQ+bl3x767Ns28B3dgn5wX4g9xV3r2x/GMRdAoChQoAZecSwD/AarGExyRwl1Z6D72zsBzgj+3AwC/J/ulEFkmPZju62Cjb0b0LuA9om8v1y9/kalsukt/bir7yulG62yOOworsH+MJctOzWhnVqCBvNANJgFNgYT9QTeuH2SzW2spoW8jCX8m84myTRWe1zhaZ+EXNOlDsNPaGRMkR+eZ5zJeWaDKJX5QS7jsK//rqeZ988kb90/jh6xoiB89hoXCRR6GhXRcKoYGY7X/LppYbdman2pnUYLnqZa+F1JMsx6qF6e01ODyxZHOXHFXlRe0+X2q2h3IIU8VsTLJgFGgQ4JtbnMDsQadpMJMMNueOOn6MkmQdSi8/qntH/GyXG8jYSmFzBNYCZc3PMyOF8foulp6bCWtYDA6LhBp3uxf7K/lr4hjWSsILdx6hzDzXJK+hO7NOKKCv9YSTfcqZW5sGlYnOHZGLhH5jJDp7YuSlwLuPqGA4DEKsCo+xDq6g+BKdiKA1X9DED/YgDpO9vTe7HkkdABgwOXJ/dhXtaxYffPyDbv4vgQM52ClCN0taeKdyX1ma7K9Tmx9uu/PmhuU71HqExco/jtUFo/xYG17b+P+TgEVkSCnQv+0oLoaQlMPKwceM9nrL7tbfGwjtM6/jHR4NWPdZxfziRhyvooUZ9LbSF9Lo8XggSmuZsHpaZHauqn3Fw1dsPxapU/DEzlgLU8QWtNBTpEOdRaYYVMa7HE7RAJKRgMai/bgNn3L0fmqVK/L5cZG0L6qvu0PC8sX+S8gjN+t9+GWyEi6jHBIpclQbkaDwkouUwJWDEhBS4mHCx8aL7jSYtOcWF+8bE1jziPsO5tYOnEcOCe6MCFAwUS0QX8RKc6DdHJGXgNZqrtwfDyIILxguHO+9wVityRmeLV2jmjBpzeVeVymsejcM9AeKlq7ebs4GBoCVyHDg8Qn4RaEs4nxUzcGW7GwOOzf+14Dee1YE+wdgCeB6ywMGzsPVjvbg2oBYwnDd7JEDuyJ7tcldCiSkLxIcCOpuoE7x3qEjRLN1t7JypjFYdTSLZfNgRXvTpfF2+/buzs0vkqpzNM0y6q9C46VPUXU0QDN2dgXulh3/5UfdhPxWuW6ma5TsfJxt66/UeZ3VocvAgOz50u0cB6pwNrYt4ezMG1NHtLB3Vnm1+fBXIVD2Ci5tjx716L3SxdfgWMdldNhXNVou3YgoDdgeTQ0xnUA1+LNnL6hyHDwXI9p6uy62OiJGvgDdzZ+sB570AScR2QARPdwDuxpt08HdXhzpbbxbJG1NCG/vnEm2rSPB6kS/0feqYIxP//MEJGAskZMYpVzvXmKrAD45l0FDs8HMG95tDhAyXNY25qS0vlhVECh2f1OZ96aSgKmg8/gKS5REdIToPT3LXMXtGenqZ+vFTf4fmTpe84XlVy0Vow5GgDHccOpgLFqTzceDdOw97dBRTdEsiAmcPe+sntwZloCfxHtAV/A09TRF7Pffpt0RlKgs1uCelPdlthn4/LIByNXKYRN3J289DvXD3jYbB/mEZ03I3HKhQ9GjDYEHXwf06D2WgVVk6kRVf1M2I4AAZj2ACxkOHFcbt2U6bDmZJ8beg9z1m5akeXrpDZZXqSc3QdBHqtB7h8DlIhDLBOyXDnLnrBrYlMUXd2BJKb9r7DvI3Nr9swR2CwHObONK0NkKx2Kd82UBcZNzLpMC36rwcV7lti5X//wFxG5vlTXew/1ccrCXaRgDkayTxycAPw27wiYZdBuuj4JGonUcCxGxwNwSkMkB0rtM8q3YmAesxCGfNv7TUCoFOAi1AMG95Vl7HvD7RdsrXV3tsU86Fmil9vzqzQlNmzuGf1rOu/C1N2p62/qEkvpBTorvzy91Szpj8MU4WAzDagzL3IPDLHmceZMnNNpft0T+fxncxPtGJ4rGMwnMDkyJ1hvZbpHvbAlJ53JrgpKzb8ZHEKbd+VOZZ7xq9T5Ywwv+5rwx1hOjeinXA35bNkW8ZLtkH5TNlYISEDLiTgZkSFDn1dGVF5pNsQT4WaDoUBNSMSaUCN6pD8KO4ltzozkkEwjlLzjSa7zGk224qO5Nviaj/JyASrxVjepoSFnHqLguT7IpAk3xbBljwTTvIaqbEfpqk40/zfv9NTvrqVE4nvZ8gAMg9rBpG+1sGBx4gHt8wzmf05J/BzYGS2dwJSFnub9lC+zt7DjujsYcdw6/p4t2JObNXLiWb0LNLiO1HlN0QRnpPLMpzNXVSXCCQcUqBDS6rzWOhXANRtiPjTEW4IWCx1B4c24GE8mKkAqBhPAcSFFymZimXRvQ2l196g5xVzuiTzRtyLPu2Xf+eXUG//Q7+UBnc/gcol8CpFXwB3P0XALvR3UbkRHcq5cbga6Fo85ZPakkB33iVHSftsckVH/mUyJxjHchCwvMytImcr2mMVqFZDBJJalyIEWrhnP6iY8XoXRmcdxnZa7FbWY7g5MRyUwZ9xV9amrNRx8mDYMtwgTBb450/TkyHMNBA0LHALoqXT+nZT87QyNP36k07yh3atzmP1giYSD7sa5DF7AYc27MVFOCFk6ExtwYyYmZGxXd+GpxRvHs/KtKwYTY3Wv5CSusLQk1MK5ltxS9F+mR9SMF0cVopLHQNVFgFmoKIf17p0jnBG3XvJsLn2L3U5F+OkmIUtFwd7a7CY6MQ9UsFlBCNoQDdgOAKfsrZ0IDpy3KVL41JrndmXkKlEamw9wfXmIfktSI/FjaZxtnc1YgBpfy04FQ7ihaBRgIiRFM1j/YM9ReWx/sFcKYWsf0CXMdjtQjDtglgfGaVl7wbEAtD7mYMlp7142mdM0mj9b1JKuj51hEGmz+3ucthHiMRdiiIJeoGEAJjzQjRrgYSrd1wDv9oiuqqTSEK/EUnWiAFM3my6pVLmDvHwsNzv+ofviC1517dgPqdKZG6VyL9VafnUoq9EWVu1sNV5tAALdTEUVEpCVCk4ulvLSDK/lpG6IBB0tb5LS0ns66jzv/ksj2khgck/RAuHfKZSrHiaDRdPL4969eLzPhrNNzNcbrLFpzWcK+Y0Z09G1/P9ScytAw5gbUbBEfjkRHCVuX16RbR0cHayJVqyajNd26wW82qVm/pIU/UUueUHVs57acv9bNyr+eDVrpYHAF+SiQP0+84rgBLAraKxPLEtOF/qR7Z0Z3RAzry3Htst3H+xrzXp5NpFe9ykDvn9Ma0L7W9QAuIP+9tDQKNBcXAEKhHcbBvXLVp3ANtHmIvbTGfgKZQrdbdr2TsVcpyneNmMZzqpnD2N5sxzIGVf/91Mp3LxhuGmdWPJifVBi8+JzNJAQSTAVRBEuhWLP1qK/WecWrcgnIEdndwG2dXvbA0ek9eQppnfetPmdtDENX/s6n8aL+PyWb5M4WWmW3lMX+5WKt6uBTC4Orb7M1jG4L1zwa94r6a4CT0gSH+kceJaCOLXcRduxO9XEz/UYDotrBqA07JGj2MEmNEjXbnIdMyVL+phVx1uNd17eQsCoDC9j2hmvoR7DBGFkVS+Aw1u913iKjdnR+JGr/UbNhOtnR1dnJ3A6XfXxo8QacbPevEF1Jjd15rP6L+8Cfd03DDSr7ZucHfhoJqyvBBgArgfhHssESPAx8lBrEfY6NXpvXm+5fese+Zul/rolQxUcD5/fbTGAHAO7gZ4CjfUJTzZjLM0b/br3tyl+c6Nv4uot1vWXhXLV6f7jR1oqjTo5p9+F4kFIOc+UM5yXs4ZBwzNWzCKqDwxxrLujIAdll3/O8tOH3x0985IS7VkYSPziW4XOc/ekDRHsp15N2xnIK0wk6KaoRFITewf2yoai4LtViPazhRHtiOqdWcHdYftNvzOdqPPFJ9YM91LO1LOQlfvntdbTtstQbLdEiTb/SmDBhiHjGgcZRwZp5s7OaVZ1gEXLT3c1sIs6kCTP8jCL/MWPBZ+26+jPgrnsQKdGBmsi0HsIQO0esR2LyfpxxIBAWgfsyxbRPbDXFr86odiSiu+mf4Z0I6CAqaICqh25CE5BJg8pNvbv2Q7vJf/27+gu5A6bf+C4tJAkzCBN10GNImwmqA8G9DUi8C7KAU09WY1QTEgoEmU1QSlSICmPgTewBXQJEbgvV4ENImzmqDLdECTBKsJWikFmiTZvwsy3wea+rKaoKkc0NSPwHs5FWiSYjVNkCZ/WacwUeNIbmHj27nvrwBNf7GaqqMbbuQqZqtHql80jRrCaAGapFlNDz5cGVw7QE87cohBYsTtL/VAU39W06pow0GBR4ZR9i6I+rhkS2Ec0DSA1aSau6XmCWG9+vb4uuoxOY2HgaaBrKa79+dNz7t3XyNj9M1mPf01F4CmQawmy6t61uaMweq7JR7KHpAZKwM0DWY17b14fvpTmfu0gyfoEQXbS78DTUMIvLMtrl2DQwkwuwZ179w6vuTLCH3/OfNzrj76lMCjo3R312AuXKfEzTI+1ENQYhGlY4mvXHasJ52YdEdnUUmVEgrr+HTEdfwFHcsjeXCa4/TYKWhHFNixU6bxSMdOvY3j97FTE/svcG7xV9aINPONWpM2lpNXwObYKcN4pEM8FsTj4Oyc4uJiARw7NfkUY8+7AURKbLHRuPBDopxLiVgdOzUJ0TpD8GAdgRw7VXQ7ZIHVsQ16AcOnPn/rdp+z/ovVsVPCiMYBogn2xiFgeeyU6tRqlbONo/QjdBbq0C/ocR6wiPWxU3fiEA90w8Z4+Dx2augFieTH9aPVc3PE50WNE4JkiQI/dioH0XIxmFsO/BDfjp2qvVuyVG1ykfaJbIJn1iZdzowOq2OnmDkE7LFTQCBk5an5BJg89d907BR0qojxsVN18UjHTiXHC+bYqcl6BG8h0lB62EtZV8+Z8rWoHzsFXT5E4SilS/FIRykVx/Pr2Klv0xp6G+5Q0w2c+2Djypv5t1E/dgoaI1DQKhlRq32CzUOxPnaqAC6M4frYKR7VL3bdERrSun7sFLQ4hkIB6TicuqajhdeEHZMmF8U7vJu7WYzCWTXoOMqivTDd9WJGkdCvUzCAYcINmJhYeoB/ZbiBNyCusmQW0NuJJXsPd/aZU6xfxGp3J1pbOhGtgNnmWhcXB3vw2CpnoBH4fPst1zqBHwX30TuBfIADcyRiXlQmqtuBRwMxJ0FL6cuJLmxGk7kFwNnW1oHRsQEL/BmPdc5ER3BjdteKLRtfLGqeFiSvkUqY8bZ38Q5/RNm4iy2QH+hizFAD8jSZ05XAiMJrATwVGJlkKiq7A1P1V2fKCO7VZz0Q7/0QeT/mvRlTo+4PeI7cChXOI756M+/Bg29mXv5dVFV4P3XUeMZN/ciRZifHLTx29Q+j6lRAITFQoZ28oupIIOYWcir0u6qHHIc/spIeUDOWYHAQ48gzwS5BifHamcLTMrYdfaqK6fIPqIpdBZIqgN/gZmbWtLA7hY+ZOquIxm7g9BnsxZzWsnfvHBeYs+0t4Cyb92bVMDHVghmHhtIz59oSFOXInBMyCXrHjbhJlk5t/DBd9Skk03mdwsR0faycnR0Ylp3CZHcmZqMMwI3E4JDAriXarwLDO8KC6vXBU3rrRWdpBgZ9vntr16hCyEko4P24g1D7ZdTny/msKMMT6/LOY0aZbi0oyxuzzrFjAVndESYhN5IR7pdCP/xq9KAYNxrnyf59WDfmLn+zG/ghDjPYwIojAxFH+DfiTGgfpX6N4N1Rp3/qubiQ6Sc141+eixT725eTJhfv2LnBTQX+auKHQsw+DasQ0KdZeVshASZv0yRNUvw5/xop9b7skbqYdzM42RcmnubiDBKk3DmbGIzOf/9agLL/9Xkb1oDnYQfknbZ2xI6jMdrPAuhauiQtm3KuSO8jye9hZtq8DfUzYZ+Wm9Tp1NhFfb2KAAWrAH0t1cGSFkRfaUBfhUquNKmb20kH/XosEEpt14Lnq2edc1kQ23aYsl/07zyhMS2cX3UuZgoeOsTrxIhfLb9LoaCB8Q9TKDtAPTtQvdHqPLzzNTAxlanqVgrVt7372jBs3Ri880v9gMSWknxTUvSDaaPXUIMTOZMlDeYHuZMl1nW0eyf4/tWVSO/vVYl1stThmd1IlMBHtne2sbdu78+8v4gsiuG7ZU2B3qFhhnc/eVRrc/oq+wbcvtrRwg9jKCAa49YZXKQ/hO6sBynrOTl7AMOXpTVYmVaYOh+YsoL8uRJx2nxrO2c3GyXi9Pnurm4ezH/wzlZ1Di4yLM0sInm/uXZH7pof52ZIcfAXGHmsd+DuNp2a+GGsgDNIxlLFxliQnsOsu3QnWx38axnBaa2blTtCD7rwyDjEXKVN47DvwEdXt86p+ZOp8h+aIzuXFchlgDSjlgv6y600aavsXpbKiuQI2ZZE44tv188O096u8/jL9TDDBEynvaAAkZUsAW7xEAAMLd3KRNlDmbMjkFDx/lrqq6SQiNfimkmG2ywUPN2LIEMZ84M8hrL26/wQoPwMggBphmfYiWYR4d9FO6kEm6jt6P9OP1o8y9VybtEogdFOU89XItBOwdVcmSXKtJP9INXqzfZ9dVLuvA2jzfrZHwe0ExGUBHbtuPYcJkGfE9m4f/++AGgn++Kv2o1L02lJEpS5Jd+cTHBBO3mfQ7LOVDxYRyC00yPZvb0+HzxATrjtGtqyZMZbXNBOD6uRjANEE+yNQ8CSdvK+2XYqU/UmNUA35I5q/dbZuKKd1BCN13QW62QXR7TTu7mizfExa/WjbqS7LXTd+BJj2inuLJLlDDC3HF9pp3Opt96aZtZTS4aWjVZzmtOIC9qJmUPA0k5AIGTlqcWEHkA7aYwclzVGqpdm8Rmr0Ny3G19hTDsRL1Qi0E4uNbDFUlRpp2TzzaP2zVam+DwbL3Si/zMD1Gkn6NwcBYJHGlQOluApr+EqlKJEO8k+UtlhKJSqkWEip/Z+xqso1GknaIxAQSvAjxC0ItYINOZiTTuVwIUxXNNO0El3J9oJGtK6TjtdyboeGHryIvVQxEiRWKu6nyjQTifg1P2PdvpHtNOh4raGIwcOkwscRfccTHuvLDDayfs7Eu3k/Y0ftJOnmOTa12dHa+blj/Bc3H9rLIq0E7HV+sOHGYo6J1c/Kw15Nu4UCrSTy3ckOIT4XSC0Uy8Z4fQnrlRa8oBy5z4id6owp51qvyGpAvgNbmZmWNFOyx69WtBW2KKXmZ4immZtjx/aaSqi6R624mK5j++0k2GrBs1X25W+q+kN5eTrIw8wpp2YUQYWVwGijMBop2tiG4ZPUV9DPzh6YhGl4k4IDmgnZrCBFQcINoKjnZ5sFHntVZSsEWJ6++GPYc2iOKGdpiIqBPRpVt52ktAjaKcZdQzq/EXi2r4FhwPGbxoew3faqfwnEu3k8kNwtJPHq14uq5rHqKVVaGRT7LfGoU47QQMjCrRT9k8kZsHiJ8q0082/Di+S2qVKT2yYoWhSkpCJOe0kjfj+5T+wTpb4RTtJpnm0Hh1LIIfcD9nywVDuAC5oJ6CzIhiDiI0xMKedys/Wa57Iq1IrVrV6f/7arXic0E61bUjG8m7DQ8/hJ+009oWj2qrKLaSwkoNDJhDGQb/4QNC0EzOQw9JOmj/Rpp0s9r2Mr18xUi+579hlknpzjmFOOz38gUQ7AaEFZdopQFNfIXDsFXpoxNwBls90J2JOO4khCZB2sI2daJYS/l20k9vtiNTiAbP1D3889c188tEnAqOdLgghne30ncDvs52aWyfu9W5bpuNdYqvgWjrsDQ5opzNCSCdlRAnh4ICaGzduCIB2sml61j9H/xA5zML0zrX5heK4oJ08EK1DxYN1BEI7rZ+8fvtgkySST6WJ17zqjVRc0E7jEI0DRBPsjUPAknbau5jcqkeo0U5YJjV0+sT4y7iina4RkIyXgY3x8Ek7OdSpi05+Ea1/KCrG9YmnCNa0ky+i5ZZhbjm+0k52Sz8NnqIXrF0asqLJTjH7LS5oJ2YOAUs7AYGQlaeWEXoA7bTEx6lAadcheiTZ6mDOz/d9MKadzggjne3kICyYs53cyR7rW5OUKUfmD/nWkHfxBOq0E3RujgLBc0IY6byiMGF+ne1kf89Id+ZQX1JxsMiVqHopEdRpJ2iMQEErB0StNIT/r852KocLY7imnaCT7k60EzSkdZ120nAZb1ggYaS7/9KtRj/6bAUUaKdTcOr+Rzv9I9qp7K1ItcanCzo7+6ncE6LrLhYY7XRhRBUC7UQd0a0vyusi7aRdSZ5iHfKeVDS5qGwk6cBZFGmnT8bWMk5NaVpltNyM9xM+/SlDCsIhZ0CFYOGQqBFcIxA/aCezb6cvPXvsSY6IeJGXe3hoG+a0kweiKoDf4GZmhhXt5PpArf8pGS29nBlW971iTyfihnYah2i678MxMZ3AaacC7yGjWupH6GzbdOAyafv0dIxpJ2aUgcVVgCgjMNrJYq/Yx/BN8poxo5cEFj5SmIUD2skDURwqRBy+0k73DlWcnFX9iBrglX2rzJashBPaaRyiQkCfZuVtFYQeQTs17XNgtAi5qUWkjPaLvxW9n++0k8OoKgTa6cxI2Ak86rRT0zXlhLqJ0lohn91zLg6lTUOddoIGRhRoJxtQPVhmYd6obqVQv6ed1qz+Oqu4xlJt/xu5c0qRWw5jTjsNQnz/1yOxTpb4RTutlV9f7vn+Ksn/o5GHiMTfTrignYDOimCMKGyMgTntZGoyk6p4N0rjiHyO4iZay2qc0E4eiMai4qLn8JN26mt2a3uvFfJqh84lbf1R2m8wxrQTM5DD0U7pyqO6l6X+nnY6O6O/tKh7klqO8UoPv5lfIjGnnb6PrEKgnYDQgjLtVBnYssahzZCck/JGUXTK6XWY007BSAKYmo9kJ5qnCf8u2knaaJLi/OjnmntLe2cfORuiJDDayWw0Eu0UIMtv2mnoMerJaoV3tJSzcns2BF79jAPayWA00tqxwmgcIBuXL18WAO209lRNeNJic1pGZu2X4V4r8UE7ERCtc0sWB9YRCO104eu1trdFo/RSRb6cdntmVocL2ilbFsk4AXgwDgFL2ulYPvnJNQ0PjZA1Igs2Wiym4Ip2skA0nio2xsMn7WTm3yqZuE2TfqyELN7i8LgFY9pJGtFyjaOwthxfaae+dgMmrKnfrhE9puKijuLCg7ignZg5BCztBARCVp56htADaKe/vrvXvCVH6MdPMl0hveClHsa0kwERiXZqGS0Y2mnMCuGTbkPGqR//0TdA69q6CtRpJ+jcHAWCh0JEIniIRH7RTtSSfotHWIjopn8O8gnLjXyEOu0EjREoaNUyGkmrWsHOErCmnSrhwhiuaSfopLsT7QQNaV2nndY0vsnrsySc4lNmlnqnb8lSFGinKjh1/6Od/hHtdKCp16GrrR/puaPf7zHav3qQwGgns1lItNMtFX7QTkeeejrEfKapZ/gdfpGn8WwFirTToo0PP+h7bFNLtJim4rmT9AgF2slgFhIcojBLILTTtMrTEyVlh6gHBUy1eLhe5gfmtBMBURXAb3AzM8OKdprS77LP368TSQHVuxNCv9jL4YZ2ylZBMl0ANqYTOO0kkZGVqTKzTd//wfYXuUa9lmFMOzGjDCyuAkQZgdFO2XU+WuMZLzSP5rb2u3MnKwIHtBMBURwg2AiOdmruo2oXpPdOs2SOXq1jpNlFnNBOzD4NqxDQp1l521lCj6CdzKYOySuye6IfPd4qzjjI+DrfaacWVSTayUBVcLTTDLE6U5eXfrT0g0IpTyRrGlGnnaCBEQXaqUkViVmoVkWZdjK5u1jmcOU43WiD6CPZS7dex5x2ikN8fy9VrJMlftFORq16VQpz6yhxaxgzJe1DKnFBOxkgGkMBG2NgTju9Mh9/9/HlMPpOJw+/XhMfz8AJ7URANNatWXjoOfyknfQWid0blzmGkn15otQzx3fKGNNOzEAOSzsVq6JNO4V4peUMMEjUK2me+lexf7Mj5rRTAFsAnrSTgSratFNx+cYr2+kSOoErI9s0lK4NwZx2GokkgOnTWexEs5rw76Kdgs2O6VfO6Kt/0q1hY6ij1XCB0U5P5iDRToPm8Jt2Iu5X1SoJ2UzKi4rRzz6z+QcOaKf6OUhrx3lzcIBsnD17VgC0U9Xuxy0Dlk3Rz6Y8+6S67zkFF7RTEKJ1bPBgHYHQTilXTBRNtLZqRvcOqlqm1K8eF7TTPETjDMKDcQhY0k5bD2pWuQ+M0A+VeJDb+DVnC65op9ezkYx3ZjbWyS6OaCe7Cy8mvPAN1d62aLHnqzFORhjTTlGIlvPA3HJ8pZ0Sbj7+mLHwJOWIXuYk0UFT7uKCdmLmELC0ExAIWXnqOUIPoJ2WnBVyqlmUTc2ZnLHCdaWsF8a0U/1cJNrJd65gaKeT1NS+4r0e6u+WejPkxCPz6ajTTtC5OQoEz7W5SARPxlx+0U6bRe2rffpM0c2KI01RPrvEAnXaCRojUNDKF1GrZXP/r2in83BhDNe0E3TS3flsJ0hI6zrtNM6qWjoqq1EtpXrk1Ju3pIJRoJ1q4NT9j3b6R7RTetUH+TJ/FWryy3iL+OvahQKjnVyMkGinJkN+0E6mSX+lX05JomeJuw7r18eJhCLt9IFQqH715lvNHSO0NpTWPJ+EAu1kZ4QEh6gZCYR2Kv22Wzzbr49WSXKfJTGP3F9gTjvJIKoC+A1uZmZY0U4umzZsLHIN0j7kkHLo7895gbihnaoNkUwXh43pBE47TfGKuOQeZUg5+e6URngybRzGtBMzysDiKkCUERjt9O7FwJgVy5zIB2MbZScNGKiLA9pJBlEcINgIjnYSPdE7LyZzot5x74iCigbdozihnZh9GlYhoE+z8rYLhB5BO90Tela8evJdUqDXng1h71Sm8Z12kjZBop3sjAVHOwX2URzuuzNBI1xZwX/HWjlT1GknaGBEgXYSM0FiFh4ao0w7rbV5f3KudQ1lT0XOuqwWOTfMaadCY6T3DzbGOlniF+1k8frFCucpWdqZE2YGrTj2yBMXtJMdojHUsDEG5rST4pQBxcsSbUjRUY0blHs7peCEdpJBNFaTER56Dj9ppxup48RKb9ZQsuRCT1n+eEnHmHZiBnJY2qnOGG3aKbZ3X0nVC8lqh0e3BB0YfeEE5rRTnDES7WRnjDbttKh1IyGpbjMlXPneYtnaTymY004zkQQwbTNiJ5oXCf8u2ikrK26h0QkH3W1ZEtp3Sj5pCYx2+m6KRDspmfKbdnKyOTBvwdRz5JRJDZty4ietwQHt9NEUae34gikOkI2ysjIB0E7So5embp5QTwuPWSmndsx/Gy5opyRE62zCg3UEQjv9EHpWqV61XW/vrvV9pn03jMYF7WSMaBwlPBiHgCXtZE2IHaUzPIaSulTt6qqD5lK4op16IRqv3gTrZBdHtNOGmELL6Jof2gVV5+O+JEz5jjHtlGeCZLkgzC3HV9qJcNtpUl2WHTngVabiAH9Fe1zQTswcApZ2AgIhK0+9ROgBtJNh8WSSknQNbUe578hgz1ENGNNOHxcj0U5RiwVDOw0JFV14b+Rk/VD56j6E4CwT1Gkn6NwcBYLn9WIkgufMYn7RTgqGZvvG5KXQct0uVi8RHuWCOu0EjREoaBWFqJXH4v8r2ukyXBjDNe0EnXR3op2gIa3rtFPwz0cDX1ygqu98cG3/uWdFmijQTrWoqdtXgOpusl+outWxWGvv6wf2T0ReqHdSN1+o7mq8012Sz3RJ7T7iok5AkzCraazqlJyR1YGapasXqBkNTw8HmkRYTeE5L09d6OdOjjxyZGfhooYBQFMvVtPtAT5GYxYlaJd+P3tCLWo+N5zWG85c2yadUUqQfqS5bdNpaZVVac9QMNcVOHP9B6f9Izhtco3RKMeEYxol861l28LHyQgMTvN1RoLTejnzA05zfdrPYv5hV92IPOrH1ZstX6EIp83ZZr6AQrDWypJ8uX3V7vFpKMBpm5yRWB5jZ4HAaSuHGMlufBlJLhCLychooJZgDqcpIaoC+A1uJtJYwWkl2tm5JS/DaDGzVBeu3tPWjBs4rd4JyXR5TrhYneU7nHYvsnn9lY0LtGPSaZst37/fhzGcxowysHQREGUEBqddCha/KyZiTd5vSNIjqxdyJnfYwGlKiOL0chYgnDbbRXxP7t4Ktb3eq67Vz1E2xwmcxuzTsAoBfZqVt9URegScttw+k67ff7Z+vNnptMNjqnbyHU5TckWC03xdBAenXc12rxgUGKKe6m1+4qB0HmcyjwacBg2MKMBp41yREJPvLijDaTUafUfKLQnWy8vbneXl+Woo5nDaNRek989wwTpZ4hecdnCa+fqnx7T1gqyT8xPLV3B+9zJWcJovojGWYWMMzOG0fP3alHSfeO2suOnzzsZJquIETpuJaKy+uOg5/ITT6pN/LE852KYWNyN1UtbSvJQ/mSqjgCYxAzksnPbWBW047XV+aa1I9htKVN6UmkSfwmTM4bQTLkhwmq8L2nDatM3SFyZtLSX5Sy1MJFerQub9GMBpBkgCmA5zYSeaVwn/Ljjt9KMh6VZfd2ifPOmrZ2q9YrnA4DQZdyQ4jeLGbzhti/zyrKDvd0g7HS8VfC5cuAkHcJq0O9JSf6MbDgibwsJCAcBp2268sUh9dY4W2udzxiupOM6v18IKTit3Q7JOJB6sIxA4TUfZKHSDiLJGgEr5OFW6+mlcwGkuiMah4ME4BCzhtC/XVpV5XWtUD5x54FPvFV8+4ApOIyIar8UV62QXR3DaPdE1pBuXYvTjH9PTiBJFnGfHCB5Oq3VFslwq5pbjK5z2fNlEsVRLUXLkwzEpKqJ7kv+cbEEBTmPmELBwGhAIWXnqNUIPgNPGihuJKcruouTcvDaYMYCggzGcJu2BBKcVugsGTiM/dn20WDVDr6T4Y7TdMqsc1OE06NwcBeBKzAMJuHrozi84TXJSX5L2oVua+SLZFXZqsfdRh9OgMQIFrQrdkbQKdv+/gtOuw4UxXMNp0El3J3wKGtK6DqcZEFY80Y9dQkuj97+sEmsljQLtdANO3f9op39EO518lLz5Y/A23dLZ47OW6Ut8EBjtdM0PiXYK8+MH7VQ5/PkWcRETWvy6OwvWictPQpF2kslpLtpl5a9V5PPqs/uPJEkUaKdaPyQ45ISfQGiniiFSLkdKe1EDPk7/MUzKbzDmtFMqoiqA3+BmZoYV7TRJ+NKP5a1F5ILH80oVjq+vww3t5I1oOgdsTCdw2inb1c0z+roYNedDhOT9D7o0jGknZpSBxVWAKCMw2ulHWcTTRcvv6heU+L3cdLJPDA5op1REccL8BEg7vWGs9tpikk8O8PpKSu3zdSNOaCdvRIWAPs3K224SegTtlCE3K/ev8W0axwJ35SvukO/Pd9op1R+JdjL2FxztlKA11SrwjS8llhx6uOamliLqtBM0MKJAOyX5Ix5F5Y8y7bT1td7W2ydVKamvlhYdcZqB/VFcmxDf384f62SJX7STzsfXs0SPL9c9vkTNSSNN/B4uaCdjRGOoYWMMzGmnLY4DLWouNmmnp5upjFj+1xec0E5KiMaSwUXP4SftdH9G47ZZRfG6BTr0mqLoob4Y007MQA5HO5kE+qNNOzGuKt7MFF5HTezd+7CIe44w5rSTC1sAnrSTsT/atNM182ULy1ef1z5uMMjQSuyJIua00xwkAdJk/dmJ5i3Cv4t20h0oXaEfYUJP3krJXfci9qbAaKeYHUi0k8oOftNOSwylTqtHDyMH5+yQZ7zPjccB7XRwB9Lasf8OHCAb2dnZAqCdRvrK3pL1NqXGeprFtFVEVuKCdnJDtM4KPFhHILRTrOP1Ph+sHfUSZSfaHHPULsMF7aSLaBwVPBiHgCXttHtB886k2VZaAbuq6s62jYjCFe0kh2g8KWyMh0/aaWxTYrNHlSF5/1ylmnLxE+8xpp1a/ZEs9wwX0xS+0U4OS530H5gaa6Y8nDqpfsP4l7ignZg5BCztBARCVp56m9ADaCdPGVlxxvE39CBt/xvNmyRlMKadhgcg0U5vuVNavtBO9mXnfux4tZZWumeAz6u0kU9Qp52gc3MUCJ4hAUgEj3AAv2inC0SlsqNnX6vvC30TT3mjMA512gkaI1DQ6u0OJK3uCHa0xJp2ugMXxnBNO0En3Z1oJ2hI6zrtdOV0XerFWd5qmaOi+2x4L9OKAu10F07d/2inf0Q72R2Wi6/1XK0fvGT90g8J1o8FRjvJhyHRTs9C+UE79Tt9d//roEJ6jH5CevDhTcEo0k5+k0sMhhmv1k7PcZcvrT3thALtJBeGBIdIhQmEdoo933u75+tF9OioXs3HnOQ8MaedWkORVAH8BjczM6xop+HD9BZG7zPWPrT87WXDwFMOuKGd6hBNV4qN6QROOy0RDqv+66Aw/eA7/y2h2s1UjGknZpSBxVWAKCMw2ml3YP++lA3yugGRUbr0hPNfcEA7MYMNrDhAsBEc7XT+r9efJSqLSAXFab4zJmzNwgntVIeoENCnWXlbPaFH0E7pM+6XSCuoUSNI471SpPum8Z12ag1Dop2SwwRHO5EO7HpQFLmPtF+ylTFt8sQK1GknaGBEgXb6HIbELDR0L4X6Pe30mHrdRTL1Ai0s/vNWsWXv5mBOO11CfP/iMKyTJX7RTidPkQgyux6p71zSMCz2VM55XNBOyYjG2IeNMTCnnexVqfH7/36jHVg558vb2QmrcUI7bUE01mpc9Bx+0k5W4rQtyxTuUYOnl98t01zogzHtxAzksLTT3W5mqb+nnU6VHBaaliKhd8xnDOmHWJk25rRTBVsAnrRTchjatJPJq4VnA+/b6JTtX7tYbUxZMea0UxCSAGkuYexE8x7h30U7Td941enqhXi1sskRL+PWPBwrMNqpaT8S7RSwn9+0k9Jj6zEJcb104o9ta/25WlsDB7TT6/1Ia8e39uMA2UhNTRUA7XRgj1KT1ixDtb3yezxJC0JP4oJ2OoNonWw8WEcgtFOfQ7QxSjEzdXyd5b5a71m6ARe0UxSicQLwYBwClrRTfcXS1J87bOkJG4Ofbzk77hWuaCcPRONZYGM8fNJODTGxRy1U36jFHb8eLhWh7YYx7URFtJwq5pbjK+30vbXcfqxGsGaMVL/JxgOLz+KCdmLmELC0ExAIWXnqfUIPoJ1qU/rppnltp4amf+2rHHLBAGPaySEciXZSCxcM7eQ2Xu64SbK3bkJw6WzxiT5PUaedoHNzFAgeu3Akgsc4nF+009y5FzZv7fVSK/ToBNc2ofuuqNNO0BiBglZqiFophf9f0U4P4MIYrmkn6KS7E+0EDWldp53mSN2aHdhspxORoXG2gUSbggLt9BBO3f9op39EO62KNhwUeGQYZe+CqI9LthTGCYx22pCARDvNSeAH7aQa/vCzPmkKbWfgscJlYseMUKSd7mwNHpPXkKaZ33rT5nbQxDUo0E6eCUhwiFWCQGinJv/VYr77v6jnOpRtulxuPx5z2omOqArgN7iZmWFFO2lMrL2VtXkmJc85abfbtnVrcEM7ySOabgA2phM47TR/zgqipexCndC1KxclzmDsx5h2YkYZWFwFiDICo50mjb8+YtkAIe1SskxBxWjyVxzQTnREceYkCJB2sjyUcal4zALqUV/d8V8a64g4oZ3kERUC+jQrb3tE6BG0k2rulponhPXq2+PrqsfkNB7mO+1ET0SinVq50yS+0U51e9L9lq5xou0Pay1ctk9HGnXaCRoYUaCddBORmAWVRJRppwDzvaT+ymtoh3LCRj0K/SqEOe0kh/j+UolYJ0v8op0+T6kgbh6pQU1sNG5++uCpLy5op9YEJGM8w0f6I3DaSf/HiieU3X9pputTfI6bH96IE9qpDtFYpZhPM/hNO53Zk2MkN1SNliA6xMj99VB7jGknZiCHpZ2mJKJNOy1WMI4RCSzRPNZY0eDlttQPc9ppCFsAnrRTazcz0d/TTtHP6/uYmqdRwj/kOU0m3ZiAOe30MAGJdjrTkWg2EP5dtNPd+/Om5927r5Ex+maznv6aCwKjnTSSkGin+kR+0055ay7Jnig/pB7xvWjqkvDmDTigndSSkNaOlZJwgGzEx8cLgHaiyovd+qSxTC9YbmCvNwcjSnBBO8kgWqcXHqwjENqpok7qneZlDe2oVSseJBY/9sAF7dSUiGScemxmGjiinbwa6dH3Gq5r7FbNW7k8rD8VV7RTNaLx8jCfJuKIdvK7kVtFl63XSZnvr2PgY5qAMe0Uh2i5IMwtx1faiVyyvvys8lPtPdahnk2R87JwQTsxcwhY2gkIhKw89TGhB9BOllf1rM0Zg9V3SzyUPSAzFuuzncqTkGinsCTB0E6rfmQVL194jbS9YfSTjBPbpqFOO0Hn5igQPCeSkAie1CR+0U7qFz5pazTF07abNdUfHzGhN+q0EzRGoKBVGKJW3oLNQ7GmnZ7AhTFc007QSXcn2gka0rpOO+29eH76U5n7tIMn6BEF20u/o0A7PYVTl2g7tiBgdyA59HQG9cDXIs6qaW9DhoPlek51YZaF4LrwQBJxnb0bg+gG3oklIO898C1tTjKLJ2rG3Ah6NtVtiByPB+F+6d9HuHO1+0P9c/UOvnXNvuWeMuIPe20k+EUW7yrbx2VvrkwJGBsU3lWyJH+Ge8mXSuww6ifWTEk20u//4dt5P9xKTh1chSC50mB2KvQc95J/NPl6akegN81nwIsar+dFI3Ar+YWpSJJnTGVL3oh7yUdmWx0O1D1F2nNP3GDz/vJRuJVcjIYkeSOVLfkL3Eu+XkfhkoHvXn2/S1K2ah/Fs3Er+Xc7JMnr7diSv8S95DrybnQp8RGk7Ih+tqt9n6XiVvKgbUiSb9rGlvwV7iXf4CB31HO1gmapxKlr5iu/jsSt5EnBSJKHBbMlf417yW+3rL0qlq9O9xs70FRp0M1JuJW8KQZJ8ocxbMnfwEk+I49OnqNoTinN8qbtbMq6CSmIAGK7OTsQmTSnO/caY28YoVU0vYCpmHU7LchauWfdqh3YYm4dWOPkDPwNmPuwNip0bf3RRW1R/u595RoppeMuHitvakZ6Yh4lHI72LirtDUyis82AdPwMmQf+TwS3rptW8gH/t5qft2SW3CvN8GdG8dYrGcko4v+vvW2/WKQdphwXfahhJxoi9Ie+6AIoFAwq1EQC/gFVqKVdIa6aKluiLqJ/Y9Q5fYi19kQH/WsyiPEo81RxjXZkgbP0EM2T1VKk25fKNDnJABhHYV9Hu+Jans8SisirHkMEWpsWV3KxId0UavhiBrhSylSIs9/xVmjZ+5XNRktNtJIeua3PiPUv5VzZZt2Me2Wb3cAPjQwWI2kEdSbhf6AREwVjUd+ATr/zotarDcV6V1vJkRufTSmtqfrJ2RfBm3ErxLrMD32kTZH0cTFhVwfewgX+iW1DZTKJIpr55KZvDFlbzsAvSbV394DdegZXsh9FY1i6r3Vr3/rVziq1R3cH4G5dC+7K/Ye9SywbS81XIs0ptVl2HvapuHHlTo1dxZXBnaBLAR0rAB0fQnV0Ac9NWMIV1ruJK4uTLd0ZTAF4vu9xvYkfD5w5rb2LsWDkvWGinF/J1wt8Ja4Xbb/6u/gODXp/yiYDUhFBqSKB+F7OazcMIBVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auVasezqtUp4cGtuboSJm7juASYAD767p5eLG6KgXMyvNZpM5Vy8ETb5JF7B0AncYcOkUkM/UidU137G6ElfX7DXtI0nqbC0lUUXljlDW2NMiVHsrdlt8Y/TIldNMqVmie+1/NEpwQkgsSq6dz+56vyVqM9oztXZSnAimJIxu52W+6iKF6WOdSelXNUdeORUvDf9k3MBA59ZuZBxxRoDSJ3h1XtAO5YbdysmIHTmZLW85eJ8UcM2V1EZ21zwQ7Wxwgzr3jw7Z42+KZgEI5m3EStG4XLOxXbBuLXsP04D4CygaPKE7/dKqR+W0QJ0IGeNUowJlJ0w3G2Tns9SQ5tVRwTEUUIPVUZsIMGNoeOOn6MkmQdSi8/qntH/Gca4lSPwKT9yr3nAz1CG/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKXJaMUxKpY5XiOdgHtM7v2Vv9q6KGsqOE6sBGS9xWtRmwI62fLKfh07vNirjezoJKED9lSu1as+zMs6NuyeEdnmXRwfYqZTkHKErvZU8S67XQimXVKf6c9cPUes/fqvG5vbVO8RKhPXKH47lNZPcWBt+/MwH/d34WPgL62ADuFmb2nlwLsbtDbf36VrWKkTXa2SOfuBO2cElzBlfZRI4rKGEImrFwhBQgZ0qPzTCgNgTQJozakkHommAzjqr6jspJEQWhoNVX3rN6FvvN4ekZ29RD4nZsNoRObWiPxbjaBhCAWNAJ9G0Ii4vJLlgB2OhBRVB7XDRGA8/RUAeAfU6+GDpmiOpx7Q9RPLNs7lPOJPtP023AGVdR3tgGqQz/KVFhI4MYHocC2PqRIroDbDBdQhDbs1Bsy5rB7/9+OyrOp1nAdKCpF5r7/3b8dyeEhJkGhv4ijTsSgervIdzwV6IwYwf7ZhZqhMEskRxLxcHOyt4Q8gCM5JifQespcackPN++mkO3sh79AVl+2qLTr4NYgtiMWVBJmUSrASAw5uLNXf/yPV25MVgSs/gfUL3cEk1NnBAXh+MGoAncKWATwFezMd752fV01V7InpSZpHDgYdTv2aoSKAvUBwpigHCRsa1BQf/pEpJM0BKRxdnJ0YTh4CN8gg0/ZSycb1m389BU/1ze6tX0/zCiKnk0YfFKqZuxT2Hbjn8J0b0baEWEkl81AHQmlnS3zsyaHo2O19YWN9/chJ407vr9+6SwWjUER4CfX/Tz3Z/y8en3nF6pui7hGhH5UJN7e/wJH/uzRD/f9zT/Z/kQdhDWnFA/SKprzYSv458zVG/t84oAri/196sv+XXz/hbWYsTTrxd9r160+FKDjyf40hVRD/b+nJ/k8bP/io5YdzWsE38u+OsHhch5H/OyhD/f9rT/Z/YarLUMtPmuQTtspZm648JODI/6unQf2/tSf7/weXA9EFS/LVst/XLf75Tm4yRv6fpAv1/2892f+HGL4MeCtXpF6mW+Y+Jcl2L478n0CH+v/3nuz/Glu3vwj84akZX3zL5vZQhg1G/h+wCur/bT3Z/+Pjped9Eh9FyhQdWDfir003ceT/3+2h/v+jJ/u/6MuKPPKUMxqHdM301DZsXY2R/+v6QP3/Z0/2f7tXm/5e9GwgvfDM6u27GgYdxJH/990O9X9Qth7r/3dip2sqaDqqpY41fryk6qcHRv6/ZC/U/4X+ker/Ev/ffz08+AXhnUbZrgebivUSXuLI/2VDoP4v3JP9f/nUoq9EWVu1sNV5tAALdTGM/D81Gur/Ij3Z/w2kFWZSVDM0AqmJ/WNbRWNx5P9OsVD/7/WPLNG+4VngNhjwi5lzZ9g6MuBOPl2ZS+1N8Xuu7jNRsWxO//l1PJ6dx/oX8zLaqoNcUZx1R/3/fw== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAJdJREFUSEvdk4EKgCAMRPfF9gn9WZ/W6sYWmZqRG0EPRorb3SFGv4P1GwLErdw5i4eZgDBh4zsDnog59Uvbm1QbIL4mWrTmRsmZjjSpG+zJIKDbIQqDU/puuieUBo7pQWbgnR7kBs7pwWEQIQ6uBm5XY4hBVHogqWGge3fkdx+4mm4wxtPU9RsweztvDR4VQqg4CBWvQLQBFW6Sxd+iMagAAAAASUVORK5CYII= fb371ae8-5b99-4464-8511-d9d8f0b30abf true DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH true 20 06ef9e04-bc97-4227-8e5c-0baf1b521abd 1d74ab03-d5a6-4c43-878d-a11593a776e9 24f7bdca-045b-421d-96c9-07956873e094 2eba86c1-c323-4d98-a856-bf3a7dec3965 2edbebac-85ae-4867-9c11-da446ffbc094 56b13bf3-2c10-429e-8166-e8d6dd530880 59b0f9d5-da24-461d-9293-4372ce2a132e 6da74475-a224-46e0-b568-d112ce0c308e 7cbc819b-232a-4183-913f-629dcf38d672 8a33c936-934c-44ed-b2dd-3ea79f64eeb4 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f 8ee68260-160e-4c3c-8412-07c3b2899075 a480cd9d-26c8-4bdf-8aae-345290e945da b3622dfb-344f-48e2-bbc5-3c7e97b001a7 cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb d4d2a496-55de-4893-aaae-2f5c47e61e5d ee03b20d-1501-42ae-a84c-4acca9a161d6 f8a7e30f-9336-45c6-897c-5deca2663077 fa4c9def-0c2a-4b57-beb3-0eb5808c5d64 fd26031c-119d-4d02-99eb-e98e506dbc09 e9837f44-fe89-4576-a1ba-d864d9176564 80bcd5c0-5458-4110-bc35-aad5d5e50148 9492d9b1-8423-4285-a424-c395dc7f8b36 88ea5216-22ee-43b9-bf4a-bf732fa4678f 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 98a7b290-1680-4c8f-91d6-4080e52ada8f d134b7cd-fb62-4a2b-a901-fec5a2d783e9 45329fda-4528-406d-a823-54e35ac6ff74 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 34281050-3848-44ac-894c-a3119ffa069f 7979dd58-784d-428c-ab41-1f9a01cb3b5b 357ceb68-e651-4e13-b8c4-6a838be2149a 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 f9b9305d-1e20-4067-946a-b44d88604308 17704c02-f561-4245-bc67-2eaf7cd1e000 054cb35f-8548-43e7-8129-2bbf3a113dd2 e294df03-baaa-4b12-b92f-e97f42ff34ec 9d9970f3-5ab6-40b5-b0f2-d257ffef222d b4c2ea06-2f42-44c4-9b4a-584b407a7f6a ad15254d-f361-46c9-90d6-b5db1b60e3d2 147 -3386 366 404 499 -3184 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component 8a33c936-934c-44ed-b2dd-3ea79f64eeb4 true Y component EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 3f1d8e98-725f-4789-856a-9ff9dd88ba16 1 149 -3384 338 20 318 -3374 1 1 {0} 8 Second item for multiplication b3622dfb-344f-48e2-bbc5-3c7e97b001a7 true B EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true dcd58bba-6ec5-4665-9f5e-9748abeb09fe 1 149 -3364 338 20 318 -3354 Vector {y} component 7cbc819b-232a-4183-913f-629dcf38d672 true Y component SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true a8eb7470-ff2a-44f8-8106-541d81b0944c 1 149 -3344 338 20 318 -3334 1 1 {0} 7 Second item for multiplication 6da74475-a224-46e0-b568-d112ce0c308e true B SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true acd1b930-6ee9-4f99-a19b-6cb48f642842 1 149 -3324 338 20 318 -3314 Vector {y} component 8ee68260-160e-4c3c-8412-07c3b2899075 true Y component SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 3aed1e90-8f45-4b3e-8f50-bd809fd87c29 1 149 -3304 338 20 318 -3294 1 1 {0} 6 Second item for multiplication fa4c9def-0c2a-4b57-beb3-0eb5808c5d64 true B SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 8f4c10af-71d4-4573-9fd9-fd55b1c360a8 1 149 -3284 338 20 318 -3274 Vector {y} component a480cd9d-26c8-4bdf-8aae-345290e945da true Y component FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true e3ee9ed7-1080-4a98-9406-a1760d620df4 1 149 -3264 338 20 318 -3254 1 1 {0} 5 Second item for multiplication 06ef9e04-bc97-4227-8e5c-0baf1b521abd true B FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 3a2cac49-3804-45c3-a1f1-9ae387f633dc 1 149 -3244 338 20 318 -3234 Vector {y} component 2eba86c1-c323-4d98-a856-bf3a7dec3965 true Y component FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 12d062ca-3afb-41be-a33a-cf0b30d40747 1 149 -3224 338 20 318 -3214 1 1 {0} 4 Second item for multiplication f8a7e30f-9336-45c6-897c-5deca2663077 true B FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 4a308d7b-b922-454e-862c-36cb6bf9879c 1 149 -3204 338 20 318 -3194 Vector {y} component cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb true Y component THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true b2df309f-5daa-4345-833e-d910c82a19a1 1 149 -3184 338 20 318 -3174 1 1 {0} 3 Second item for multiplication fd26031c-119d-4d02-99eb-e98e506dbc09 true B THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true b7d3231e-4e24-4334-aeb6-4329747a1277 1 149 -3164 338 20 318 -3154 Vector {y} component 1d74ab03-d5a6-4c43-878d-a11593a776e9 true Y component SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true aacf07bb-5a48-481d-b1bd-7337be133f9e 1 149 -3144 338 20 318 -3134 1 1 {0} 2 Second item for multiplication ee03b20d-1501-42ae-a84c-4acca9a161d6 true B SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 8d5c2ca0-245f-4e3f-af2c-234a7c61b647 1 149 -3124 338 20 318 -3114 Vector {y} component 59b0f9d5-da24-461d-9293-4372ce2a132e true Y component FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905 1 149 -3104 338 20 318 -3094 1 1 {0} 1 Second item for multiplication 24f7bdca-045b-421d-96c9-07956873e094 true B FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 21aeed4b-3362-447a-b26d-c1b13691a4d9 1 149 -3084 338 20 318 -3074 Vector {y} component 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f true Y component CUWATURE LINEAR STACK GRAPH HEIGHT true ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e 1 149 -3064 338 20 318 -3054 1 1 {0} 0 Second item for multiplication 56b13bf3-2c10-429e-8166-e8d6dd530880 true B CUWATURE LINEAR STACK GRAPH MAGNITUDE true 71bb1397-567c-4d75-8665-b4e3269ab3e7 1 149 -3044 338 20 318 -3034 Number of segments d4d2a496-55de-4893-aaae-2f5c47e61e5d true Count SEGMENT NUMBER true f682b0f6-c58d-441c-aad3-7e78ad618eaa 1 149 -3024 338 20 318 -3014 1 1 {0} 10 Contains a collection of generic curves true 2edbebac-85ae-4867-9c11-da446ffbc094 true Curve CURWE true 44b95cea-3f46-4b6b-b282-cdac19364d61 1 149 -3004 338 20 318 -2994 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 329990e8-083a-43f7-baaa-90fed18836f2 2 Curve Curve false 0 724 -2788 50 24 757.9498 -2776.794 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 58b84e16-46ab-4bef-af27-b755fa42c6db X*2+1 Number Number false 87a4cb63-b93f-4b2e-981a-a3a9a624f47e 1 875 -3047 50 24 908.2197 -3035.688 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers f682b0f6-c58d-441c-aad3-7e78ad618eaa X*2+1 Number Number false 87a4cb63-b93f-4b2e-981a-a3a9a624f47e 1 97 -3026 50 24 130.0588 -3014.15 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 87a4cb63-b93f-4b2e-981a-a3a9a624f47e Number Number false 0 725 -2744 49 24 757.9498 -2732.25 807b86e3-be8d-4970-92b5-f8cdcb45b06b Circle Create a circle defined by base plane and radius. true b62b684a-fb0c-49ce-93d5-ca3d0b737a5a Circle Circle 106 -1408 170 61 233 -1377 Base plane of circle 31eb7c3c-31a6-4647-b9ae-f9b69c7b66fa Plane Plane false 0 108 -1406 113 37 164.5 -1387.5 1 1 {0} 0 0 0.5 1 0 0 0 1 0 Radius of circle 9bc6d8ef-2aa1-4dd2-888c-580e82c8ddd1 Radius Radius false 0 108 -1369 113 20 164.5 -1359 1 1 {0} 0.5 Resulting circle 3af008e7-2631-4fda-baff-8cf92764a364 Circle Circle false 0 245 -1406 29 57 259.5 -1377.5 2162e72e-72fc-4bf8-9459-d4d82fa8aa14 Divide Curve Divide a curve into equal length segments true 378897eb-8264-4973-9a0a-4413d168ad73 Divide Curve Divide Curve 824 -1247 123 64 878 -1215 Curve to divide 4f7e161f-5641-4e1b-a832-2720623b23e0 Curve Curve false fc35d6cd-8716-4f59-960b-72321690ea99 1 826 -1245 40 20 846 -1235 Number of segments 8474d950-9802-4f4c-a8ad-de75c5a145df Count Count false 2521b13e-bd87-411f-8135-7d6754f61478 1 826 -1225 40 20 846 -1215 1 1 {0} 10 Split segments at kinks 29b144f3-3376-4784-8245-9176e17dc26b Kinks Kinks false 0 826 -1205 40 20 846 -1195 1 1 {0} false 1 Division points 0e1e9828-40bc-487b-b3b3-22134e1758eb Points Points false 0 890 -1245 55 20 917.5 -1235 1 Tangent vectors at division points e3b72352-57a2-4fa4-98c6-4d66860142c7 Tangents Tangents false 0 890 -1225 55 20 917.5 -1215 1 Parameter values at division points aed1a17f-e8f0-482a-bab2-50082f42f967 Parameters Parameters false 0 890 -1205 55 20 917.5 -1195 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 2521b13e-bd87-411f-8135-7d6754f61478 Digit Scroller O false 0 12 O 11 2048.0 515 -1156 250 20 515.7685 -1155.856 4c4e56eb-2f04-43f9-95a3-cc46a14f495a Line Create a line between two points. true 57e66279-e327-42eb-b44c-c8b1a662be92 Line Line 858 -1307 102 44 924 -1285 Line start point 2995a86c-3802-448a-a71d-e01a4da30f75 Start Point Start Point false 544bd1fa-0641-4bca-968b-578245bc09d1 1 860 -1305 52 20 886 -1295 1 1 {0} 0 0 0.5 Line end point a41e7bc8-b167-4f62-af84-bfa44f655bc3 End Point End Point false 0e1e9828-40bc-487b-b3b3-22134e1758eb 1 860 -1285 52 20 886 -1275 Line segment 1ddd4f97-44f6-443b-bbfd-13253f781c25 Line Line false 0 936 -1305 22 40 947 -1285 dcaa922d-5491-4826-9a22-5adefa139f43 Circle TanTanTan Create a circle tangent to three curves. true 0072186e-adb6-4016-86df-38adab05701d Circle TanTanTan Circle TanTanTan 1222 -1546 98 84 1277 -1504 First curve for tangency constraint 276f1585-d2db-414d-9cad-55a4df87c615 Curve A Curve A false fc35d6cd-8716-4f59-960b-72321690ea99 1 1224 -1544 41 20 1244.5 -1534 Second curve for tangency constraint 53f3852a-22a8-44ca-b5b6-a4aae3a2e682 Curve B Curve B false 2d532bea-994a-447d-9721-0833770a636f 1 1224 -1524 41 20 1244.5 -1514 Third curve for tangency constraint e555b2be-2f2b-4874-bb3b-a9ff53014d23 Curve C Curve C false c5d3662a-855b-4143-86ee-307efe2b4d18 1 1224 -1504 41 20 1244.5 -1494 Circle center point guide 31795280-140f-4d03-8b25-bcdecd96d4c3 Point Point false 9074b0db-ae1d-4390-9ca2-eb6042869d1c 1 1224 -1484 41 20 1244.5 -1474 Resulting circle 322c6252-a086-4536-8a7c-443661ee7fbb Circle Circle false 0 1289 -1544 29 80 1303.5 -1504 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true c4241e23-4937-41ab-8fcb-27b0b8bd3065 List Item List Item 1008 -1546 77 64 1065 -1514 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 337e3aab-7698-4109-9c0b-6194b465d67a List List false 1ddd4f97-44f6-443b-bbfd-13253f781c25 1 1010 -1544 43 20 1031.5 -1534 Item index 5c7057da-6c86-476d-9e81-41eaaa225bbf Index Index false 0 1010 -1524 43 20 1031.5 -1514 1 1 {0} 0 Wrap index to list bounds 25f4b635-fc06-4ef5-877a-2666feb114bc Wrap Wrap false 0 1010 -1504 43 20 1031.5 -1494 1 1 {0} true Item at {i'} 56092d25-7aab-45c0-be2a-a3c185b8dcd1 false Item i false 0 1077 -1544 6 60 1080 -1514 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 6669c0d7-2364-4acd-b8b5-66174500a89e List Item List Item 1065 -1409 77 64 1122 -1377 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 983e7bfd-2e9a-4ca7-84de-a16f5aefb645 List List false 1ddd4f97-44f6-443b-bbfd-13253f781c25 1 1067 -1407 43 20 1088.5 -1397 Item index 0590ebe3-53d4-4066-aad0-0997967ae5ff Index Index false 0 1067 -1387 43 20 1088.5 -1377 1 1 {0} 1 Wrap index to list bounds 877ee11b-0848-4611-9aeb-a835f314a3dc Wrap Wrap false 0 1067 -1367 43 20 1088.5 -1357 1 1 {0} true Item at {i'} 82ffea96-d981-4d57-8277-d6c12adbfabb false Item i false 0 1134 -1407 6 60 1137 -1377 7cd2f235-466e-4d30-bd3c-3b9573ac7dda 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop Start Loop Start true 4f78a7c0-929b-42e3-bbb4-27f8aa0c2b10 Fast Loop Start Fast Loop Start 1390 -1436 112 64 1449 -1404 2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 3 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 Loop iterations a5888283-2ca8-4d18-b78f-11bfbe4bba8a Iterations Iterations false ff4be73d-571f-43d0-adf1-c59527de9e66 1 1392 -1434 45 30 1414.5 -1419 1 1 {0} 0 2 Data to loop 29631701-bea4-4d59-b002-e57ad0a19213 Data Data true 322c6252-a086-4536-8a7c-443661ee7fbb 1 1392 -1404 45 30 1414.5 -1389 Connect to Loop End f5bac24f-6342-4278-a8ed-caa1ed396d7d > > false 0 1461 -1434 39 20 1480.5 -1424 Counter 2b4ab7b6-8f40-4705-a551-4e65187356a7 Counter Counter false 0 1461 -1414 39 20 1480.5 -1404 2 Data to loop da1014fb-db9d-462e-8277-2a111e46636c Data Data false 0 1461 -1394 39 20 1480.5 -1384 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 9a8e80e5-0815-4577-a696-b9bff9ec2be0 Digit Scroller V false 0 12 V 11 320.0 515 -1089 330 20 515.7685 -1088.257 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a Cluster 5ZcPbBNVHMeva9etHQwQFDRGLox/KiyL04TgH7Zepe2QrWEVDRDxdn3rbuvuzutdyaKBSaZEg4Gh+wNBtkVYEFREN5QgGfFPAkMFE2fEQLcOMIKKLjGgRDbfuz/d7nprl1GiiZe75O73e38/3997v3eZTpYSqwEjDMHLhGGYBT7ZXFAM0MzaMOBDNMsglxeakRtdGaiIWs8NSD/gUZF0xW1XXR4nMtug6cQCfIix/O3Y/N3Bw52v9xzK8PIgTIN1yG+HfmtpBWzFP0kxLwehCl8NB5DbrHQ8UfEVs3w1GUSe2VJvjbFapSAIKAH4Y75GzD/NCcpphhbgLLw8ywFeoEFIbRY9FicpSP1kwo+vFpz7ccaGM5lZThCieJoTlMmjIWKWYrIaqF8DJrcrt7+1dvhuOiC9dPV3Nl/e9UrMEm3YHW1oP91cfLmxo3/nkWj91mh9Q7Tp7d724SJNB6NNHdHtLyrOjj2wrPw+omH17twe361cGNXq2KM0AluTmo2V6W2HvSqt7jwCy8IxyYOLFUHj7mxGc4jrNtfltq2AlFE4hNRQQddE1UqwohxEZjUMIPBKKIjCME0xW30kHwBSyXvg5+bBoaFG+G5ZxbLVw1FUuyR9JZRU05UNWeK6sa2guCfIGlYURpa1u3hW5OIKTxkOh5IyNLhYB0j+LNmmqYXsVtmOGkhTotHienI4uhdu23e23jfXvWPWqsj1qS2EJlImEzRPBQHuIxn5thEsI5A0Iy8atNysqG+DkJtP8ABGJ07ilNyGQDIBuK5wgcWFCh4AnBL5MAjlTvAwIeijgEuk/eqoIvnLXQvW/+bsuosobs3945PEo8ospqmqkSVscgmfz2cvFASeLhMFeeXEhHRATn7JlIO+C55xYrXdBIa5HRi215HupcOshHGmJKgfenuJLI7kyeq1NMOJgrqVmEaZfs5Smg8J8hzxcpZXpk/V4BQMQoGHDAXDma+f+elzDUsOeV5ePMeyARvcr5l5BiG1Vxg3YVNhZonUv7y7SJFkLWVFngJSnMFnzfQJ17BXa5a1FGTb5q+5b2WW7NYEDKo3RmLHELGTkFheIYa1FuqI4c9C72kNMVMSYrNLAUTjHweyYLO9tCiy3fHxorynLg188bMRMkc8MkdSZHWPeCZt2va5u+X8UVPOG4MXU4GsJyGyHzTI0pIFma+C5sdDzPy0uzPiPlf0Xt3qTipy+aoRMSKeGJGUmHfzX/nNbas9G/efKAtO37QoFcR6ExK7oCFmTkLsTmXroOBOBHicYyEhPADJAENO3eHrd5+t8no2BnZ1VYqP9Wk4pXtR7XhK3qSUsoq+b9oxIBJH3rmYzT16HU8FpUsJKV0hJsiUYKpRdi9rAkyTV4CQGBRoJqDs3oZ0rFuW2o+WzHIdPr5l2sSVbd0aOlaZ9JiCyGj+2NjnXxsYuRXpN+++CimGlDyI+jPMgw++WbmBs3y0bN+5DE/VyYu8ZjLZktR4CYNLa0ObBW0JQM5/PEwGRZgHQygRSuuKFOBriAMUXU5TeJClSFTB6qb9fsCoSEyGwPVxk2iMceDtklmO2VTlCpsUVECQQVgx9epbopNOPdrESZfvxLAbULrfHSh0FZHSRhPpjv7XnLctPkW0PXS+68DxdU7D5GiszhRCDAlstdHh2C67RraFZSs2HcTU5no95vHn+jGuoFFlMCvHHw7KcEyVwTwuGdITLJFbKMI8pUNpobHBoHx4x9lyHEoBeLjU5POmoRD3v/XZl/N+rVq2b+cLdZ7by1YbTChOBjPBh1MuBDYXCvGtXgjL/0aIS3ndA9emFTo/vHps4Z+H7cy/JkTtHChERC9E+mhCDL70we6puRbHoTUzdrRzy/cYpUKtEvZbr8TYsviVX77J3v2wq+h999Y6LFBvH3cW1+UQ/elgjIecUQUJQ0HO6AWxjiZIy/ONPVd+qiL2vnvvja9PPdCTdGUkOjXeVEjrfyLGH9I6wPpN6yZPkdhiZetxS4B1p6iCAunvRMGe8d/Hrv8TSRl2/RaVCuyRhNgvEP8A Contains a cluster of Grasshopper components true e3ffa9be-aea1-4c8f-b91a-c84514c8d572 Cluster Cluster true 4 34ba5804-6d3d-4e13-8709-da09a2a07b2f 5d144016-9a6c-41bd-9582-810eb06c98e6 bf133103-cd32-48c3-90cc-64afe677991d d0a8f850-dcc3-4c50-bbb5-eec5359d6b89 f70c175c-8a00-4b79-9f40-0e09285c2a56 0ed1ecee-3ba4-4a47-b048-90840067910a f1ca30e9-14f7-4441-b3f6-c02df8b90a6e ccc3a32b-ed27-4b6b-aa9c-7c844915625b 1519 -1247 50 64 1544 -1215 3 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 1 d1028c72-ff86-4057-9eb0-36c687a4d98c First curve for tangency constraint 34ba5804-6d3d-4e13-8709-da09a2a07b2f Curve A A true da1014fb-db9d-462e-8277-2a111e46636c 1 1521 -1245 11 20 1526.5 -1235 Second curve for tangency constraint d0a8f850-dcc3-4c50-bbb5-eec5359d6b89 Curve B B true 2d532bea-994a-447d-9721-0833770a636f 1 1521 -1225 11 20 1526.5 -1215 Third curve for tangency constraint bf133103-cd32-48c3-90cc-64afe677991d Curve C C true c5d3662a-855b-4143-86ee-307efe2b4d18 1 1521 -1205 11 20 1526.5 -1195 Resulting circle 5d144016-9a6c-41bd-9582-810eb06c98e6 Circle C false 0 1556 -1245 11 60 1561.5 -1215 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 4920cad2-a4aa-4cba-970a-be8f1633bf34 Merge Merge 1608 -1276 69 64 1653 -1244 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 5616e63d-52bc-4ded-815b-6a91f20accbf false Data 1 D1 true da1014fb-db9d-462e-8277-2a111e46636c 1 1610 -1274 31 20 1625.5 -1264 2 Data stream 2 7dfb52c7-d7ca-44b0-83e2-0a95f16ab918 false Data 2 D2 true 5d144016-9a6c-41bd-9582-810eb06c98e6 1 1610 -1254 31 20 1625.5 -1244 2 Data stream 3 bcc1d318-f60f-45d7-abe2-d04d42c1f9dd false Data 3 D3 true 0 1610 -1234 31 20 1625.5 -1224 2 Result of merge 8493b426-1dda-425b-b6d3-9ed1898d1f99 Result R false 0 1665 -1274 10 60 1670 -1244 cc918e80-6e5b-4fb7-9853-33f1d22fc5b4 2cd3c35a-cada-1a81-ddba-5b184219e513 ggRemoveDuplicates Make set of curves without duplicates true be46addd-f598-4c6c-a12b-b846a9734cba ggRemoveDuplicates ggRemoveDuplicates 1677 -1332 147 44 1791 -1310 1 Curves 69e3d697-da9a-4cfe-a8ad-eeaf1521417e Curves Curves false 8493b426-1dda-425b-b6d3-9ed1898d1f99 1 1679 -1330 100 20 1729 -1320 Deviation Tolerance dc41779b-da02-4bce-a778-475ae7c17415 Tol Tol false 0 1679 -1310 100 20 1729 -1300 1 1 {0} 1.52587890625E-05 Set 113f7f03-21ef-4013-a700-0832a33d97b8 Set Set false 0 1803 -1330 19 40 1812.5 -1310 4e5b891f-3e8d-4b3d-b677-996c63b3ac70 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop End Loop End true 7c05896f-662a-40eb-95f6-3569356fae2d Fast Loop End Fast Loop End false 0 1713 -1436 88 64 1762 -1404 3 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 cb95db89-6165-43b6-9c41-5702bc5bf137 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Connect to Loop Start 2b213108-77fc-421b-8162-edd0bd8d62ac < < false f5bac24f-6342-4278-a8ed-caa1ed396d7d 1 1715 -1434 35 20 1732.5 -1424 Set to true to exit the loop 3e82a6f3-a9ab-4f20-aea9-794c8713706b Exit Exit true 0 1715 -1414 35 20 1732.5 -1404 1 1 {0} false 2 Data to loop 8d951d4d-5753-4924-a2fe-0609cdb0b092 Data Data false 113f7f03-21ef-4013-a700-0832a33d97b8 1 1715 -1394 35 20 1732.5 -1384 2 Data to loop 5524857c-89f8-4b2c-ac53-ab50c0128d05 Data Data false 0 1774 -1434 25 60 1786.5 -1404 fca5ad7e-ecac-401d-a357-edda0a251cbc Polar Array Create a polar array of geometry. true 884a8abd-bece-40a4-9c40-2fbc52783232 Polar Array Polar Array 1953 -1361 220 101 2109 -1310 Base geometry 4a03bb7c-6332-4cfc-8cb4-83191ef7edee Geometry Geometry true 5524857c-89f8-4b2c-ac53-ab50c0128d05 1 1955 -1359 142 20 2034 -1349 Polar array plane 2de7a79e-6a2d-4329-aad9-32ff2b3f0421 Plane Plane false 0 1955 -1339 142 37 2034 -1320.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Number of elements in array. c7b61c12-1b3f-4a63-a0e2-fe7d18f25d42 Count Count false 89017df6-cc07-4014-b4ca-46093b4ee03c 1 1955 -1302 142 20 2034 -1292 1 1 {0} 10 Sweep angle in degrees (counter-clockwise, starting from plane x-axis) 06e0fc82-419b-49fb-bdad-c0b0276962a6 Angle Angle false 9075c566-f68b-451d-bd4d-d3c452889c63 1 true 1955 -1282 142 20 2034 -1272 1 1 {0} 6.2831853071795862 1 Arrayed geometry a891ada9-7221-4e23-ba30-6e03eb1cc658 Geometry Geometry false 0 2121 -1359 50 48 2146 -1334.75 1 Transformation data 65c19d13-39cc-4b41-8185-7c0814b2acc2 Transform Transform false 0 2121 -1311 50 49 2146 -1286.25 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 99221558-1d03-4a99-b409-69b169a9610b Evaluate Length Evaluate Length 1039 -1311 147 64 1122 -1279 Curve to evaluate 29f9dad1-4402-41bc-ba2f-1eec8727eebe Curve Curve false 2d532bea-994a-447d-9721-0833770a636f 1 1041 -1309 69 20 1075.5 -1299 Length factor for curve evaluation a4cfa37b-ee2d-4f5f-86c7-9629ee0fed99 Length Length false 0 1041 -1289 69 20 1075.5 -1279 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 68ce42a1-91e4-4e52-a706-aa12f3978a8c Normalized Normalized false 0 1041 -1269 69 20 1075.5 -1259 1 1 {0} true Point at the specified length 9074b0db-ae1d-4390-9ca2-eb6042869d1c Point Point false 0 1134 -1309 50 20 1159 -1299 Tangent vector at the specified length 89b279be-c508-48a9-93d6-d81cc175ba13 Tangent Tangent false 0 1134 -1289 50 20 1159 -1279 Curve parameter at the specified length b3936063-6ef2-4e7b-bed0-70199a5d8f1f Parameter Parameter false 0 1134 -1269 50 20 1159 -1259 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true d69c337d-1a42-40e1-bb0b-af39e1305a7b Rotate Rotate 461 -1428 240 81 637 -1387 Base geometry 0f1cf2f7-8d51-499e-b162-429e8de7b066 Geometry Geometry true 9942603e-d6cb-45f3-bff2-04036f8fd571 1 463 -1426 162 20 562 -1416 Rotation angle in degrees 756d957c-a3b0-49f4-ba36-2f251c9b8ccb -360/X/2 Angle Angle false 2521b13e-bd87-411f-8135-7d6754f61478 1 true 463 -1406 162 20 562 -1396 1 1 {0} 1.5707963267948966 Rotation plane b8f66b61-febb-4fef-917c-4e21a1921c98 Plane Plane false 0 463 -1386 162 37 562 -1367.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 8dec1f28-7f42-485d-a5b4-945afa25340b Geometry Geometry false 0 649 -1426 50 38 674 -1406.75 Transformation data f7d020da-bf61-466b-8676-e1bddbb3e8f4 Transform Transform false 0 649 -1388 50 39 674 -1368.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object fc35d6cd-8716-4f59-960b-72321690ea99 Relay false 5627c44f-6c19-422a-a2e2-8b22223f4a22 1 739 -1307 40 16 759 -1299 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 644328d5-8117-41f1-b5c9-8ebd3c03dcfd Rotate Rotate 497 -1545 204 81 637 -1504 Base geometry c6e09daa-b527-4045-980f-1e2ea94a67c8 Geometry Geometry true 8dec1f28-7f42-485d-a5b4-945afa25340b 1 499 -1543 126 20 562 -1533 Rotation angle in radians 7c65bdac-2c91-43e4-be39-00dfca78aede Angle Angle false 0 false 499 -1523 126 20 562 -1513 1 1 {0} 1.5707963267948966 Rotation plane c21b17da-2bde-4388-93b3-03d649e8bb53 Plane Plane false 0 499 -1503 126 37 562 -1484.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 5627c44f-6c19-422a-a2e2-8b22223f4a22 Geometry Geometry false 0 649 -1543 50 38 674 -1523.75 Transformation data 7aba7d8d-6b9b-4d79-a677-618f9fd36d3f Transform Transform false 0 649 -1505 50 39 674 -1485.25 9c007a04-d0d9-48e4-9da3-9ba142bc4d46 Subtraction Mathematical subtraction true 989aac19-a135-4f2b-ba53-812a3d4664e5 Subtraction Subtraction 875 -1091 85 44 915 -1069 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First operand for subtraction ab9cbe1b-4ee6-45ed-b70d-45fb4e488a24 A A true 9a8e80e5-0815-4577-a696-b9bff9ec2be0 1 877 -1089 26 20 890 -1079 Second operand for subtraction e33a3f82-fc2b-4673-aeb7-9e7e29e2b704 B B true 0 877 -1069 26 20 890 -1059 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of subtraction ff4be73d-571f-43d0-adf1-c59527de9e66 Result Result false 0 927 -1089 31 40 942.5 -1069 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true d7ac4e75-4cde-4200-805f-6f7f962b3fc0 Geometry Geometry false 2a806386-4572-4a01-a8b6-0d1196046ffb 1 276 -1516 50 24 301.2639 -1504 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true 9942603e-d6cb-45f3-bff2-04036f8fd571 Geometry Geometry false f093ce94-87cf-40a2-9e26-1e909c7ce917 1 361 -1488 50 24 386.5 -1476 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2 Geometry Geometry false f8b0679f-d422-4df4-9d8b-dcd720778acf 1 578 -1746 50 24 603.3241 -1734.302 ac2bc2cb-70fb-4dd5-9c78-7e1ea97fe278 Geometry Contains a collection of generic geometry true 6e6f84a1-1046-4f68-8eb3-817c108edbf5 1 Geometry Geometry false ab4af088-af36-410a-84c1-ed38bd369a36 1 808 -1791 50 24 841 -1779.18 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 82dda64f-9f77-4cc5-acf4-97d513eb48e9 Scale Scale 326 -1786 195 64 457 -1754 Base geometry b5636bb4-dcce-4bee-86df-68675fb7a897 Geometry Geometry true d7ac4e75-4cde-4200-805f-6f7f962b3fc0 1 328 -1784 117 20 386.5 -1774 Center of scaling 1cb5b388-cddf-4d74-849e-5a2609d80c7c Center Center false 0 328 -1764 117 20 386.5 -1754 1 1 {0} 0 0 0 Scaling factor 7827fe30-0ca4-4d8c-8109-35fed0a14791 Factor Factor false ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b 1 328 -1744 117 20 386.5 -1734 1 1 {0} 0.5 Scaled geometry f093ce94-87cf-40a2-9e26-1e909c7ce917 Geometry Geometry false 0 469 -1784 50 30 494 -1769 Transformation data 0a216567-1d23-4ecb-9a5d-5d3dd1c8bf05 Transform Transform false 0 469 -1754 50 30 494 -1739 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 13066c57-c507-44ed-9a1b-f7b5009ef564 Scale Scale 521 -1976 195 64 652 -1944 Base geometry 31c0d7dc-64fc-4803-8f7d-8aca73aba599 Geometry Geometry true 38c87da4-13ce-45c8-ac6f-8b1e8d795ee2 1 523 -1974 117 20 581.5 -1964 Center of scaling 985f60a8-5be8-4bb2-ae7c-4f9177e293fd Center Center false 0 523 -1954 117 20 581.5 -1944 1 1 {0} 0 0 0 Scaling factor f33cf61e-b79b-4852-9665-d2364dbfab0b Factor Factor false 144c7ab7-4a5a-4683-9548-40e231b51e32 1 523 -1934 117 20 581.5 -1924 1 1 {0} 0.5 Scaled geometry ab4af088-af36-410a-84c1-ed38bd369a36 Geometry Geometry false 0 664 -1974 50 30 689 -1959 Transformation data 7d246949-f20c-4300-84b1-b79babbee953 Transform Transform false 0 664 -1944 50 30 689 -1929 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 3c3caf03-ec61-40fb-bbbc-55e0509921de One Over X One Over X 278 -1854 88 28 321 -1840 Input value 62f99155-181e-4eef-aa0b-4fb32549cee3 Value Value false ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b 1 280 -1852 29 24 294.5 -1840 Output value 144c7ab7-4a5a-4683-9548-40e231b51e32 Result Result false 0 333 -1852 31 24 348.5 -1840 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. true 18bb0bab-a683-43af-a280-8b11bc5a275e Power Power 193 -1609 85 44 233 -1587 The item to be raised 8d7d79a3-f2e3-4590-b6a2-d315e28041fc A A false 0 195 -1607 26 20 208 -1597 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent a0654839-829a-4b43-93d1-991db9b1c547 B B false 656133c6-fd17-47fd-8579-dbb9ed1f791d 1 195 -1587 26 20 208 -1577 A raised to the B power ffa92d5a-9f92-4b25-8a04-ca88fe9ea14b Result Result false 0 245 -1607 31 40 260.5 -1587 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 656133c6-fd17-47fd-8579-dbb9ed1f791d Digit Scroller false 0 12 2 0.0000000000 -83 -1565 250 20 -82.16093 -1564.382 0ca9be21-459e-4cd0-9d77-05e72a6a1422 8df4d222-85a2-467d-a510-b8dde333d730 Polygon Create a circumscribed polygon with optional round edges. true 3f29085a-a196-4a1c-a7a6-bc1ecf90f2e6 Polygon Polygon true -189 -1448 254 101 11 -1397 Polygon base plane true e5dbf7e1-f194-42f2-9814-83a39933abff Plane Plane false 0 -187 -1446 186 37 -94 -1427.5 1 1 {0} 0 0 0.353553390593274 1 0 0 0 1 0 Radius of polygon (distance from center to edge) 8d5636f9-84cb-42d5-9714-45fff3e395f5 Radius Radius false 0 -187 -1409 186 20 -94 -1399 1 1 {0} 0.35355339059327379 Number of segments 5bee3a72-e7d5-4ca3-b906-2563831ee536 Segments Segments false 2521b13e-bd87-411f-8135-7d6754f61478 1 -187 -1389 186 20 -94 -1379 1 1 {0} 6 Polygon corner fillet radius e9c0f3b5-55a9-435c-a832-e3bf377ab93e Fillet Radius Fillet Radius false 0 -187 -1369 186 20 -94 -1359 1 1 {0} 0 Polygon 2a806386-4572-4a01-a8b6-0d1196046ffb Polygon Polygon false 0 23 -1446 40 48 43 -1421.75 Length of polygon curve 8e3e547e-1833-4408-a514-f97520d59953 Length Length false 0 23 -1398 40 49 43 -1373.25 753aa9da-f7db-4e66-8cff-3c679ff3286f a48ac930-c378-48dc-84da-26b2af9d8302 Gradient Radial Fill Applies a Radial Gradient Fill to a Shape true 3a0370cf-585f-4e6c-bc66-8a382d0b9e32 true Gradient Radial Fill Gradient Radial Fill 794 -1934 150 64 898 -1902 A Graphic Plus Shape, or a Curve, Brep, Mesh 20dfc9c4-85cd-4b70-9df4-0c5b6c345f26 true Shape / Geometry Shape / Geometry false fc8f1eb8-4479-4724-ba40-74767b12e719 1 796 -1932 90 20 841 -1922 1 The Gradient Stop colors afcdc8be-c408-4142-8e14-6e96c51a9e0e true Colors Colors true d8805e36-5b7f-4f4b-b077-b18ef5b8d713 1 796 -1912 90 20 841 -1902 1 1 {0} 131;255;255;255 1 The Gradient Stop parameters c1c538de-e368-49f8-9ac4-ae8c712a87cb true Parameters Parameters true e0a2d02a-9b61-46e5-8b6b-af837c2fd66b 1 796 -1892 90 20 841 -1882 1 1 {0} 1 A Graphic Plus Shape Object true 43cb7391-ffa5-458d-ae72-bcb11223aa25 true Shape Shape false 0 910 -1932 32 60 926 -1902 203a91c3-287a-43b6-a9c5-ebb96240a650 Colors 1 The Gradient Stop colors d9c5622d-0aec-4e65-872b-c180ee35bf2a Colors Colors true 0 692 -1870 50 24 717 -1858.302 1 2 {0} 255;255;255;255 0;0;0;0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Parameters 1 The Gradient Stop parameters e0a2d02a-9b61-46e5-8b6b-af837c2fd66b Parameters Parameters true 0 701 -1806 50 24 726 -1794 1 2 {0} 0 1 fc076e15-dcb0-4d11-bf04-f5c79fc3d200 a48ac930-c378-48dc-84da-26b2af9d8302 Drawing Viewer Preview a Drawing in canvas. Note: Right click on the component to save the image or svg true bc1970ed-dd7b-4d38-b5f8-bab39784ee32 true Drawing Viewer Drawing Viewer 1398 -2530 300 344 1576 -2508 1 A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes). c82f62fe-e186-4950-8e91-0e0e7682c7ff true Drawings / Shapes / Geometry Drawings / Shapes / Geometry false aab4c91b-c8f3-45c3-994e-63fefbac5c2c 1 1400 -2528 164 20 1482 -2518 The PPI (Pixels Per Inch) resolution for the image which must be greater than or equal to 72. 7c1738eb-ecec-4f5d-8379-22745cf7ce2d true Resolution Resolution true 0 1400 -2508 164 20 1482 -2498 1 1 {0} 96 f3220ce3-0aeb-41b4-bfb9-435838423791 a48ac930-c378-48dc-84da-26b2af9d8302 Construct Drawing Constructs a Drawing from a list of Shapes true 897064e6-a16f-4c11-b7c2-13a1d699896f true Construct Drawing Construct Drawing 870 -2179 255 155 1064 -2101 1 A list of Graphic Plus Shapes, or Curves, Breps, Meshes 0923c058-3fad-4c4a-8f2e-b7b2c65b6ebd true Shapes / Geometry Shapes / Geometry false 6e6f84a1-1046-4f68-8eb3-817c108edbf5 1 872 -2177 180 20 962 -2167 An optional frame for the drawing. If blank, the shapes bounding box will be used 1cfb711f-b655-4302-a7e6-cfe398f1f17b true Boundary Boundary true 0 872 -2157 180 71 962 -2121.5 The width of the output drawing 85ece0af-2be9-4a50-a4b8-186b461507d6 true Width Width true 0 872 -2086 180 20 962 -2076 1 1 {0} 1024 The height of the output drawing 8ab66ff6-0bd8-4d88-91d3-df69c1fbbd8a true Height Height true 0 872 -2066 180 20 962 -2056 1 1 {0} 1024 An optional background color dba02cce-f527-40ca-b8cb-228225f95208 true Color Color true 0 872 -2046 180 20 962 -2036 1 1 {0} 0;255;255;255 A Graphic Plus Drawing Object aab4c91b-c8f3-45c3-994e-63fefbac5c2c true Drawing Drawing false 0 1076 -2177 47 75 1099.5 -2139.25 The bounding rectangle a9a49907-4084-4df3-8359-246f26c5f555 true Boundary Boundary false 0 1076 -2102 47 76 1099.5 -2063.75 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 Stroke Applies Stroke properties to a Shape true 3b62aca3-eb60-4806-8b07-757b07c9c96b true Stroke Stroke 901 -1806 184 104 1039 -1754 A Graphic Plus Shape, or a Curve, Brep, Mesh 4030d31f-85c6-49ce-abc4-b737abf1d911 true Shape / Geometry Shape / Geometry false 6e6f84a1-1046-4f68-8eb3-817c108edbf5 1 903 -1804 124 20 965 -1794 The stroke color 19e0212d-1ae7-4bd2-89ff-bc8b9973740a true Color Color true 0 903 -1784 124 20 965 -1774 1 1 {0} 0;184;184;184 The stroke weight 3ded5006-c0f5-44f0-b5f8-9c5d0bc75ca5 true Weight Weight true 7d674bcc-ccf9-4209-bf45-8d4272beda48 1 903 -1764 124 20 965 -1754 1 1 {0} 7 1 The stroke pattern f76a8473-e34e-47a7-b281-e3880e37c6fa true Pattern Pattern true 0 903 -1744 124 20 965 -1734 1 1 {0} 0 The shape to be used at the end of open path bc5da7b5-947a-4121-b7ad-9cd69f1189c3 true End Cap End Cap true 0 903 -1724 124 20 965 -1714 1 1 {0} 0 A Graphic Plus Shape Object true fc8f1eb8-4479-4724-ba40-74767b12e719 true Shape Shape false 0 1051 -1804 32 100 1067 -1754 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true e44eaf02-09c5-4ca9-b519-0dbba3eea3b4 Merge Merge 645 -2110 90 84 690 -2068 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 8f3957d8-3ba6-4c97-94d4-ed1577265058 false Data 1 D1 true 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3 1 647 -2108 31 20 662.5 -2098 2 Data stream 2 1f0189ac-ed74-4b9c-babe-24ae101168e9 false Data 2 D2 true da43bc1d-2327-4d3c-872a-8bcde5db8d8e 1 647 -2088 31 20 662.5 -2078 2 Data stream 3 ae14e5e6-4c3a-4542-b214-577ca4574944 false Data 3 D3 true 0 647 -2068 31 20 662.5 -2058 2 Data stream 4 f001c240-745c-4ea4-83f0-cdc2a8a22020 false Data 4 D4 true 0 647 -2048 31 20 662.5 -2038 2 Result of merge d8805e36-5b7f-4f4b-b077-b18ef5b8d713 Result Result false 0 702 -2108 31 80 717.5 -2068 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 4b9d9e70-e262-4dbf-95dd-eecf70ba18a3 Colour Swatch false 0 255;255;255;255 501 -2171 60 20 501.9104 -2170.41 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch da43bc1d-2327-4d3c-872a-8bcde5db8d8e Colour Swatch false 0 255;0;0;0 501 -2088 60 20 501.9104 -2088 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Pattern 1 The stroke pattern 18d21670-01a6-4888-be2a-fb679edf3f46 Pattern Pattern true 0 820 -1746 50 24 845 -1734 1 4 {0} 1 0 0 1 93b8e93d-f932-402c-b435-84be04d87666 Distance Compute Euclidean distance between two point coordinates. true 4dfa6f82-2462-4b64-acaa-c432ed80052c true Distance Distance 777 -1618 177 44 898 -1596 First point 2fed7015-0dc4-4b1e-84d4-65d070986362 true Point A Point A false 0 779 -1616 107 20 832.5 -1606 1 1 {0} 0 0 0 Second point 4bf86d6d-e035-49ae-9f28-63df5d3ecace true Point B Point B false a6f821da-f498-4973-aa14-e2abfa24b1f8 1 779 -1596 107 20 832.5 -1586 Distance between A and B c74cb0c0-6368-4906-bcbd-e749a7d8fb13 true Distance Distance false 0 910 -1616 42 40 931 -1596 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true 5b362e0b-edfe-4632-99a1-dbf27430406c true Deconstruct Arc Deconstruct Arc 640 -1660 102 64 674 -1628 Arc or Circle to deconstruct b20ba683-a90e-45ff-bcf5-86e4e80dce23 true Arc Arc false 6e6f84a1-1046-4f68-8eb3-817c108edbf5 1 642 -1658 20 60 652 -1628 Base plane of arc or circle a6f821da-f498-4973-aa14-e2abfa24b1f8 true Base Plane Base Plane false 0 686 -1658 54 20 713 -1648 Radius of arc or circle 4654f581-ba2c-4dcc-84fd-f7da8bea95f4 true Radius Radius false 0 686 -1638 54 20 713 -1628 Angle domain (in radians) of arc 263e2ac0-9c38-4a0e-9a1d-183127a1dd78 true Angle Angle false 0 686 -1618 54 20 713 -1608 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 8bb268bc-8f14-4022-bf54-801ab622105f Multiplication Multiplication 995 -1618 70 44 1020 -1596 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 65450a6e-1778-4887-92ef-a65ecaef22a5 A A true c74cb0c0-6368-4906-bcbd-e749a7d8fb13 1 997 -1616 11 20 1002.5 -1606 Second item for multiplication 4e86611a-8619-47ee-b8c4-46d5b5e3d8c4 B B true 74514ff8-3b28-43d1-b7eb-4790ae9f09ec 1 997 -1596 11 20 1002.5 -1586 Result of multiplication 7d674bcc-ccf9-4209-bf45-8d4272beda48 Result Result false 0 1032 -1616 31 40 1047.5 -1596 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 74514ff8-3b28-43d1-b7eb-4790ae9f09ec Digit Scroller Digit Scroller false 0 12 Digit Scroller 4 9.00000000 720 -1524 250 20 5881d944-0281-4fc8-b203-ce6a55dbf2a6 a48ac930-c378-48dc-84da-26b2af9d8302 Solid Fill Applies a Solid Fill color to a Shape true 34005dd2-41a4-4fda-b7bf-5eba48ac6009 true Solid Fill Solid Fill 1120 -1791 162 44 1236 -1769 A Graphic Plus Shape, or a Curve, Brep, Mesh 654b68f0-6f66-4d66-9c80-8d0d25939ce5 true Shape / Geometry Shape / Geometry false 6e6f84a1-1046-4f68-8eb3-817c108edbf5 1 1122 -1789 102 20 1173 -1779 The solid fill Color 20cde91e-968e-4cfc-92f3-af939a769c15 true Color Color true 0 1122 -1769 102 20 1173 -1759 1 1 {0} 255;0;244;124 A Graphic Plus Shape Object true 6d245542-b1d6-46d1-9114-0a70281c6d1a true Shape Shape false 0 1248 -1789 32 40 1264 -1769 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true d9662ff9-2fbf-4ae8-b433-9202141475f0 Deconstruct Arc Deconstruct Arc 1793 -1568 102 64 1827 -1536 Arc or Circle to deconstruct b4e1df75-be22-4209-984b-0cd081fa8a9f Arc Arc false 5524857c-89f8-4b2c-ac53-ab50c0128d05 1 1795 -1566 20 60 1805 -1536 Base plane of arc or circle 33fd2724-392f-4888-88fd-21fca634b995 Base Plane Base Plane false 0 1839 -1566 54 20 1866 -1556 Radius of arc or circle 64095f1f-4811-4ad5-87c9-045eb81a5761 Radius Radius false 0 1839 -1546 54 20 1866 -1536 Angle domain (in radians) of arc 0b2ab5b7-92ce-4159-924f-99571dbf6279 Angle Angle false 0 1839 -1526 54 20 1866 -1516 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph d4a24c35-55b6-44ff-8180-c957318d38f6 Quick Graph Quick Graph false 0 707ebd25-7ab6-4436-9c56-7a63ee0bd788 1 2039 -1718 150 150 2039.654 -1717.571 0 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression LOG(O) true 747d14d7-5f5e-4be3-8999-e9ccf3324cc1 Expression Expression 1933 -1532 116 28 1981 -1518 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 8f10ebc0-218a-4d49-b4cf-e33920e6c383 Variable O O true 64095f1f-4811-4ad5-87c9-045eb81a5761 1 1935 -1530 11 24 1940.5 -1518 Result of expression 707ebd25-7ab6-4436-9c56-7a63ee0bd788 Result Result false 0 2016 -1530 31 24 2031.5 -1518 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 67391784-71ea-4462-8af8-bca850607e0f Quick Graph Quick Graph false 0 64095f1f-4811-4ad5-87c9-045eb81a5761 1 1865 -1754 150 150 1865.989 -1753.217 -1 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression EXP(O) true 253a0641-d5b7-43a6-a7f4-19cb5b78db6e Expression Expression 2020 -1479 116 28 2068 -1465 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable f7078fd8-1240-4f21-b27c-30f22479c30c Variable O O true 707ebd25-7ab6-4436-9c56-7a63ee0bd788 1 2022 -1477 11 24 2027.5 -1465 Result of expression 53f265a0-f6b0-4c0f-ab45-6caf36703cfb Result Result false 0 2103 -1477 31 24 2118.5 -1465 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 9e366565-123d-411f-898a-5174d532ffc1 Quick Graph Quick Graph false 0 53f265a0-f6b0-4c0f-ab45-6caf36703cfb 1 2189 -1580 150 150 2189.648 -1579.582 0 9445ca40-cc73-4861-a455-146308676855 Range Create a range of numbers. true 1473aed8-bfaf-4e9e-a626-b6a22bbfc9fc Range Range 2001 -1889 98 44 2053 -1867 Domain of numeric range 2ebd0a57-69ac-4ad0-a3d0-64a82f589616 Domain Domain false 8c9b5ccf-de38-4263-94a8-9085002de7e2 1 2003 -1887 38 20 2022 -1877 1 1 {0} 0.5 0 Number of steps 95d6218e-b1c9-47e7-8303-7b8260b9167d Steps Steps false a629a790-6f5a-4656-95c4-4293b46c7cbf 1 2003 -1867 38 20 2022 -1857 1 1 {0} 17 1 Range of numbers 1c6f357f-2c34-48b5-9c31-6d29175af4bf Range Range false 0 2065 -1887 32 40 2081 -1867 807b86e3-be8d-4970-92b5-f8cdcb45b06b Circle Create a circle defined by base plane and radius. true eece4c6c-e98f-41ac-a80b-4f191452e75c true Circle Circle 2298 -1918 184 61 2439 -1887 Base plane of circle 0b1f1369-00b9-4af6-aeef-0e339beae743 true Plane Plane false 0 2300 -1916 127 37 2371.5 -1897.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Radius of circle 7c7070db-9469-45fb-9c2a-6e2b174767b8 ABS(X) true Radius Radius false c5c85527-549f-4b6d-b3bb-6729f376c233 1 2300 -1879 127 20 2371.5 -1869 1 1 {0} 0.5 Resulting circle 73b120e5-9aad-439f-aa39-954578812b68 true Circle Circle false 0 2451 -1916 29 57 2465.5 -1887.5 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression (EXP(EXP(EXP(O)))) true 0cb60706-8b6d-4b80-b89f-c2f0f8f91399 Expression Expression 1986 -1766 215 28 2084 -1752 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 5bffcddd-b0f5-4c1e-99a6-0245aa569498 Variable O O true 1c6f357f-2c34-48b5-9c31-6d29175af4bf 1 1988 -1764 11 24 1993.5 -1752 Result of expression b15021d5-865c-476a-9920-3ae0864d99ee Result Result false 0 2168 -1764 31 24 2183.5 -1752 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 61b4c2fa-999e-4cfb-b75d-4afa9e977e1e Bounds Bounds 1943 -1982 110 28 2001 -1968 1 Numbers to include in Bounds 75cd91ac-6a51-4ac8-a1ec-9bb3cccb4e30 Numbers Numbers false b15021d5-865c-476a-9920-3ae0864d99ee 1 1945 -1980 44 24 1967 -1968 Numeric Domain between the lowest and highest numbers in {N} d6aff41c-bf73-4f51-a3a6-e3e1042adf7f Domain Domain false 0 2013 -1980 38 24 2032 -1968 0d1e2027-f153-460d-84c0-f9af431b08cb Maximum Return the greater of two items. true ac9d4c8f-3445-43f5-9c0e-579cea8bb8ae Maximum Maximum 2228 -1754 70 44 2253 -1732 First item for comparison a20d1157-f820-47bd-bd84-3b45d8ae0028 A A false 14f4adbe-1cb9-47b2-bcd0-201c56e2e145 1 2230 -1752 11 20 2235.5 -1742 Second item for comparison 9a15d7e7-271f-4caf-9d5d-3996d2a46d7a B B false 019ec982-4c14-423d-8124-eb669b6fdecc 1 2230 -1732 11 20 2235.5 -1722 The greater of A and B c9d07bb5-25d0-481e-bc83-d864d36217e3 Result Result false 0 2265 -1752 31 40 2280.5 -1732 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true c602bf6d-1738-4cc0-b622-4883e7907e8e Deconstruct Domain Deconstruct Domain 2107 -2016 108 44 2159 -1994 Base domain 361d5091-4891-4fee-8347-bbacc98dd094 Domain Domain false d6aff41c-bf73-4f51-a3a6-e3e1042adf7f 1 2109 -2014 38 40 2128 -1994 Start of domain 14f4adbe-1cb9-47b2-bcd0-201c56e2e145 ABS(X) Start Start false 0 2171 -2014 42 20 2184 -2004 End of domain 019ec982-4c14-423d-8124-eb669b6fdecc ABS(X) End End false 0 2171 -1994 42 20 2184 -1984 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 0468c1be-6c1f-4573-b42d-cf0f8027c4e6 Multiplication Multiplication 2269 -1845 70 44 2294 -1823 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ad0cc104-1dad-4470-b4e3-81ec5cf038ab A A true b15021d5-865c-476a-9920-3ae0864d99ee 1 2271 -1843 11 20 2276.5 -1833 Second item for multiplication 8259cd32-cf88-4d21-89d2-8434fb737e39 B B true e07df8e8-295a-4529-a447-e864247e8ff3 1 2271 -1823 11 20 2276.5 -1813 Result of multiplication a44af545-2078-46ca-b686-c0d960cfb283 Result Result false 0 2306 -1843 31 40 2321.5 -1823 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 21068f26-5320-4499-af36-ff2d38af447a Division Division 2323 -1774 85 44 2363 -1752 Item to divide (dividend) d6ce0710-4bc8-418d-bd24-37999e4ff2c5 A A false 0 2325 -1772 26 20 2338 -1762 1 1 {0} Grasshopper.Kernel.Types.GH_String false .5 Item to divide with (divisor) e5f0c439-b8f2-45ae-a0b8-89b2d5feaa4d B B false c9d07bb5-25d0-481e-bc83-d864d36217e3 1 2325 -1752 26 20 2338 -1742 The result of the Division e07df8e8-295a-4529-a447-e864247e8ff3 Result Result false 0 2375 -1772 31 40 2390.5 -1752 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7f3a5c0f-427e-4293-9a10-5e3437c8c542 Quick Graph Quick Graph false 0 1c6f357f-2c34-48b5-9c31-6d29175af4bf 1 2363 -1718 150 150 2363.224 -1718 -1 2fcc2743-8339-4cdf-a046-a1f17439191d Remap Numbers Remap numbers into a new numeric domain true cf6dbb3d-3342-4cdb-b9ef-448dce9f06f7 Remap Numbers Remap Numbers 2114 -1972 147 64 2207 -1940 Value to remap 5c74c48d-0ee8-4255-b3c0-05b192145913 Value Value false b15021d5-865c-476a-9920-3ae0864d99ee 1 2116 -1970 79 20 2155.5 -1960 Source domain 4027e9d7-e190-4a3a-9a60-5847557011e2 Source Source false eb997057-5684-422c-b087-f6efe7811971 1 2116 -1950 79 20 2155.5 -1940 1 1 {0} 0 1 Target domain 46fd67c1-4f40-40f8-95a3-196cdc16700d Target Target false 0 2116 -1930 79 20 2155.5 -1920 1 1 {0} 0 0.5 Remapped number 9fdbae57-81d4-471d-a8dc-43f40e00bf27 Mapped Mapped false 0 2219 -1970 40 30 2239 -1955 Remapped and clipped number 9bd5dbe0-b389-458e-8503-8197211efff6 Clipped Clipped false 0 2219 -1940 40 30 2239 -1925 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 0c85e0a9-a4af-46cc-9140-5d559bfb67d6 Bounds Bounds 1995 -1954 110 28 2053 -1940 1 Numbers to include in Bounds aa7fd7b1-93de-40eb-8e5b-df496864d5c2 Numbers Numbers false b15021d5-865c-476a-9920-3ae0864d99ee 1 1997 -1952 44 24 2019 -1940 Numeric Domain between the lowest and highest numbers in {N} eb997057-5684-422c-b087-f6efe7811971 Domain Domain false 0 2065 -1952 38 24 2084 -1940 d1a28e95-cf96-4936-bf34-8bf142d731bf Construct Domain Create a numeric domain from two numeric extremes. true 74e82950-7e5d-4a91-869f-3a3292fb1a58 Construct Domain Construct Domain 1775 -1889 143 44 1866 -1867 Start value of numeric domain a2bfe79f-a461-4f02-b943-8d6cbc0ade86 Domain start Domain start false 1f48380e-78c1-4878-9030-ae38073532b5 1 1777 -1887 77 20 1815.5 -1877 1 1 {0} 0.5 End value of numeric domain 73d17688-07c3-464b-93bf-86858c819223 Domain end Domain end false 0 1777 -1867 77 20 1815.5 -1857 1 1 {0} 0 Numeric domain between {A} and {B} 8c9b5ccf-de38-4263-94a8-9085002de7e2 Domain Domain false 0 1878 -1887 38 40 1897 -1867 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers a629a790-6f5a-4656-95c4-4293b46c7cbf Digit Scroller Digit Scroller false 0 12 Digit Scroller 3 16.000000000 1606 -1946 250 20 1606.266 -1946 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1f48380e-78c1-4878-9030-ae38073532b5 Digit Scroller Digit Scroller false 0 12 Digit Scroller 2 0.6000000000 1469 -1865 250 20 1469.458 -1865 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 7ebe48e6-e6b9-40be-bc7f-bf92e3c63165 Bounds Bounds 1712 -1675 110 28 1770 -1661 1 Numbers to include in Bounds e7573b17-b513-41d1-99ad-a71466dc462d Numbers Numbers false c5c85527-549f-4b6d-b3bb-6729f376c233 1 1714 -1673 44 24 1736 -1661 Numeric Domain between the lowest and highest numbers in {N} a81a41d6-4a5f-4635-a6b8-b2d1a58386e8 Domain Domain false 0 1782 -1673 38 24 1801 -1661 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 9a7aadec-810b-4797-a20d-1799a2ee1ae1 Deconstruct Domain Deconstruct Domain 1803 -1810 92 44 1855 -1788 Base domain e09e1b17-8400-47ee-a22d-67c8441fa0bb Domain Domain false a81a41d6-4a5f-4635-a6b8-b2d1a58386e8 1 1805 -1808 38 40 1824 -1788 Start of domain 422dbaec-8cf2-4118-b04e-712f5f84b1b0 Start Start false 0 1867 -1808 26 20 1880 -1798 End of domain 2837c5c8-3c45-4aff-a2bc-2397962e8edc End End false 0 1867 -1788 26 20 1880 -1778 93b8e93d-f932-402c-b435-84be04d87666 Distance Compute Euclidean distance between two point coordinates. true cc5c2207-dafd-45fa-99bb-c1a2798738b8 Distance Distance 1532 -1612 108 44 1584 -1590 First point bd1ab6ad-1b37-4029-972d-caccbfa4e471 Point A Point A false 544bd1fa-0641-4bca-968b-578245bc09d1 1 1534 -1610 38 20 1553 -1600 1 1 {0} 0 0 0 Second point 29f6e553-cc5e-4974-a8f9-32b7336334ee Point B Point B false af44461f-37b2-4fe2-a269-d899c9e7147f 1 1534 -1590 38 20 1553 -1580 Distance between A and B c5c85527-549f-4b6d-b3bb-6729f376c233 Distance Distance false 0 1596 -1610 42 40 1617 -1590 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 84f1803d-f26d-4700-9625-3b1c2cc0cbb8 Quick Graph Quick Graph false 0 c5c85527-549f-4b6d-b3bb-6729f376c233 1 1606 -1825 150 150 1606.266 -1825 -1 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 308e3b77-bc71-4307-8714-814d8553e7cb Evaluate Length Evaluate Length 1822 -1436 149 64 1907 -1404 Curve to evaluate 47b79dcd-8f66-4260-bfeb-381930200e54 Curve Curve false 5524857c-89f8-4b2c-ac53-ab50c0128d05 1 1824 -1434 71 20 1859.5 -1424 Length factor for curve evaluation b9db78d6-73db-44dd-a502-c5612355b5e3 Length Length false 0 1824 -1414 71 20 1859.5 -1404 1 1 {0} 0.5 If True, the Length factor is normalized (0.0 ~ 1.0) 4e892d86-690d-4892-a530-ed7db9f90c65 Normalized Normalized false 0 1824 -1394 71 20 1859.5 -1384 1 1 {0} true Point at the specified length af44461f-37b2-4fe2-a269-d899c9e7147f Point Point false 0 1919 -1434 50 20 1944 -1424 Tangent vector at the specified length ecd45847-bc92-411f-aa2d-9854838399b7 Tangent Tangent false 0 1919 -1414 50 20 1944 -1404 Curve parameter at the specified length 80e640bc-f271-4c3b-85c1-a54f1e1d373e Parameter Parameter false 0 1919 -1394 50 20 1944 -1384 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph b07a33ca-fece-410a-a6ad-2875592745f2 Quick Graph Quick Graph false 0 9fdbae57-81d4-471d-a8dc-43f40e00bf27 1 2310 -2076 150 150 2310.112 -2075.808 -1 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points 544bd1fa-0641-4bca-968b-578245bc09d1 Point Point false 0 622 -983 143 24 753.1235 -971.6412 1 1 {0} 0 0 0.353553390593274 22990b1f-9be6-477c-ad89-f775cd347105 Flip Curve Flip a curve using an optional guide curve. true 683602b5-884d-4565-92ab-09638f726a72 Flip Curve Flip Curve 824 -946 88 44 868 -924 Curve to flip 46c35632-c4a0-4b0e-bcc3-e09c135bb7a5 Curve Curve false 1ddd4f97-44f6-443b-bbfd-13253f781c25 1 826 -944 30 20 841 -934 Optional guide curve 46a2bb1b-09c8-4ae5-8adf-9416a24cef17 Guide Guide true 0 826 -924 30 20 841 -914 Flipped curve b4524b06-8e05-4cd1-8531-0d36de55dd62 Curve Curve false 0 880 -944 30 20 895 -934 Flip action 70c9ed20-56d6-472b-9557-55dbe086e3d9 Flag Flag false 0 880 -924 30 20 895 -914 bb59bffc-f54c-4682-9778-f6c3fe74fce3 Arc Create an arc defined by base plane, radius and angle domain. true b47afabf-616a-4673-87df-c5201ad0b10c Arc Arc 983 -983 187 81 1122 -942 Base plane of arc 10981c88-7313-411c-8fa1-ec2c25d4bdec Plane Plane false 0 985 -981 125 37 1047.5 -962.5 1 1 {0} 0 0 0 0 0 1 0 1 0 Radius of arc 506c805d-9bf0-4e36-bd85-e2d702fcd23f Radius Radius false 178a536c-e731-4a9e-8e69-148d3c49cc3d 1 985 -944 125 20 1047.5 -934 1 1 {0} 1 Angle domain in radians bea25ebd-cb7b-480b-90df-78b21a71488d Angle Angle false 0 985 -924 125 20 1047.5 -914 1 1 {0} 0 0.785398163397448 Resulting arc 1a270909-0d55-4cb8-a28f-6c22882dba60 Arc Arc false 0 1134 -981 34 38 1151 -961.75 Arc length 3b4165c2-3ca9-4fbb-949a-615a11390a22 Length Length false 0 1134 -943 34 39 1151 -923.25 93b8e93d-f932-402c-b435-84be04d87666 Distance Compute Euclidean distance between two point coordinates. true b81203a1-bfb1-49ea-bc45-1e024c16a07d Distance Distance 993 -1045 177 44 1114 -1023 First point 0970bb1f-52db-4ff9-b1ce-84d21e9f90d0 Point A Point A false 0 995 -1043 107 20 1048.5 -1033 1 1 {0} 0 0 0 Second point c10c7986-4c70-4ac1-bdc8-dde002ff3277 Point B Point B false 0e1e9828-40bc-487b-b3b3-22134e1758eb 1 995 -1023 107 20 1048.5 -1013 Distance between A and B 2fa76128-f184-445b-8f9d-5426873e1f20 Distance Distance false 0 1126 -1043 42 40 1147 -1023 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 4cf11d43-7186-4a7c-80ac-b5047dbd1ec5 Rotate Rotate 1226 -1064 240 81 1402 -1023 Base geometry a280bb8c-a1b9-421c-a567-c9e1c7cfb01a Geometry Geometry true 1a270909-0d55-4cb8-a28f-6c22882dba60 1 1228 -1062 162 20 1327 -1052 Rotation angle in degrees 00fad922-87d1-45bb-a357-79de2481fbf7 -360/X/2 Angle Angle false 2521b13e-bd87-411f-8135-7d6754f61478 1 true 1228 -1042 162 20 1327 -1032 1 1 {0} 1.5707963267948966 Rotation plane 0013e6fb-145e-4481-b32c-b1630363bcb2 Plane Plane false 0 1228 -1022 162 37 1327 -1003.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 173bee08-a574-4b98-ad6f-a74fb75e29ab Geometry Geometry false 0 1414 -1062 50 38 1439 -1042.75 Transformation data 84299d7b-6eea-4d82-ae16-9ada37bc8233 Transform Transform false 0 1414 -1024 50 39 1439 -1004.25 fca5ad7e-ecac-401d-a357-edda0a251cbc Polar Array Create a polar array of geometry. true 914fb575-3406-4bd7-b383-27e9d3cbd381 Polar Array Polar Array 1640 -1146 204 101 1780 -1095 Base geometry 87b6fe2a-f8ad-4fed-8b44-6338d67e4e1d Geometry Geometry true 173bee08-a574-4b98-ad6f-a74fb75e29ab 1 1642 -1144 126 20 1705 -1134 Polar array plane 07f9a682-2bf0-481c-b11c-a4046ffcdff1 Plane Plane false 0 1642 -1124 126 37 1705 -1105.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Number of elements in array. a9ae4b62-a012-45a1-b9f2-c14834fb3058 Count Count false 018e8310-9673-4fda-b611-23741855bd4d 1 1642 -1087 126 20 1705 -1077 1 1 {0} 10 Sweep angle in radians (counter-clockwise, starting from plane x-axis) c5cbafdd-8e72-4f4b-b051-adf4543878f1 Angle Angle false 0 false 1642 -1067 126 20 1705 -1057 1 1 {0} 6.2831853071795862 1 Arrayed geometry 06f99071-75d5-444a-a5c6-257606d32036 Geometry Geometry false 0 1792 -1144 50 48 1817 -1119.75 1 Transformation data a74e89da-6bc8-4796-847f-883b5dc3d628 Transform Transform false 0 1792 -1096 50 49 1817 -1071.25 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 2913ccef-ba4c-4599-849a-e59c6ea4747b List Item List Item 901 -1504 77 64 958 -1472 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 1881d584-55ae-4ebf-ac34-ed4f8d94dc6e List List false 06f99071-75d5-444a-a5c6-257606d32036 1 903 -1502 43 20 924.5 -1492 Item index 958073b4-4058-4236-87f0-e0c872a77cdc Index Index false 0 903 -1482 43 20 924.5 -1472 1 1 {0} 0 Wrap index to list bounds aa241db4-3398-4c75-a241-3b2a6126f055 Wrap Wrap false 0 903 -1462 43 20 924.5 -1452 1 1 {0} true Item at {i'} a2b662da-3ac8-4ab9-9ac3-29783a411ee0 false Item i false 0 970 -1502 6 60 973 -1472 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 2494b21e-8efd-4122-9539-8fe533d35f33 List Item List Item 920 -1409 77 64 977 -1377 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list fe911aee-9240-4e93-a031-cbff82486142 List List false 06f99071-75d5-444a-a5c6-257606d32036 1 922 -1407 43 20 943.5 -1397 Item index 19639006-206d-4fee-ab62-9fc2062f99e1 Index Index false 0 922 -1387 43 20 943.5 -1377 1 1 {0} 1 Wrap index to list bounds fec2aeff-bf78-4006-8095-9d8a60be184e Wrap Wrap false 0 922 -1367 43 20 943.5 -1357 1 1 {0} true Item at {i'} de721831-12fd-4f67-87f1-0a90aa984595 false Item i false 0 989 -1407 6 60 992 -1377 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true e93f5b2d-b4ba-4a42-8528-196d3b6e66d0 List Item List Item 835 -902 77 64 892 -870 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list f0802006-d800-4dde-a213-ee73d5a3310c List List false 2fa76128-f184-445b-8f9d-5426873e1f20 1 837 -900 43 20 858.5 -890 Item index 0418bf9f-a9b0-4a2a-b813-f5b4981fe6b4 Index Index false 0 837 -880 43 20 858.5 -870 1 1 {0} 0 Wrap index to list bounds 28ccd62f-5bf2-485d-a4bb-aef5e4998a4d Wrap Wrap false 0 837 -860 43 20 858.5 -850 1 1 {0} true Item at {i'} 178a536c-e731-4a9e-8e69-148d3c49cc3d false Item i false 0 904 -900 6 60 907 -870 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2d532bea-994a-447d-9721-0833770a636f Relay false 56092d25-7aab-45c0-be2a-a3c185b8dcd1 1 1120 -1536 40 16 1140 -1528 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c5d3662a-855b-4143-86ee-307efe2b4d18 Relay false 82ffea96-d981-4d57-8277-d6c12adbfabb 1 1216 -1409 40 16 1236 -1401 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 018e8310-9673-4fda-b611-23741855bd4d Relay false 2521b13e-bd87-411f-8135-7d6754f61478 1 1479 -1103 40 16 1499 -1095 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 23f21373-05c6-4320-81c7-cd300072a715 Number Number false 0 1892 -1096 50 24 1927.99 -1084.55 1 1 {0} 360 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true e7598ddc-7867-46c8-afe5-946382f8a6a7 Division Division 1872 -1230 70 44 1897 -1208 Item to divide (dividend) 53af4f37-e059-4f18-9944-7656f3d8005b A A false 45881c64-e2f3-4464-99c8-5529e6c361e0 1 1874 -1228 11 20 1879.5 -1218 Item to divide with (divisor) 5fed16f6-067e-4f06-8f3f-ccc53825d8a5 B B false 42712f8c-0c4d-44eb-8f11-8ba444be59f1 1 1874 -1208 11 20 1879.5 -1198 The result of the Division 89017df6-cc07-4014-b4ca-46093b4ee03c Result Result false 0 1909 -1228 31 40 1924.5 -1208 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 241297d5-618c-41d0-ba75-3f9b8193d48c Division Division 1995 -1117 70 44 2020 -1095 Item to divide (dividend) 27501195-a5f9-4f91-8001-d81354bafac2 A A false 23f21373-05c6-4320-81c7-cd300072a715 1 1997 -1115 11 20 2002.5 -1105 Item to divide with (divisor) 8e603d55-6bef-4568-ab62-a7477370a085 B B false 42712f8c-0c4d-44eb-8f11-8ba444be59f1 1 1997 -1095 11 20 2002.5 -1085 The result of the Division 9075c566-f68b-451d-bd4d-d3c452889c63 Result Result false 0 2032 -1115 31 40 2047.5 -1095 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 42712f8c-0c4d-44eb-8f11-8ba444be59f1 Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 2.00000000000 1733 -1032 250 20 1733.832 -1031.13 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 3ce76e72-1394-4a6b-9b96-c7de19fdbabf Rotate Rotate 1691 -1004 204 81 1831 -963 Base geometry 962fa6d9-4389-422a-9bc1-43c28d024173 Geometry Geometry true 0 1693 -1002 126 20 1756 -992 Rotation angle in radians 272c9161-9419-4af3-b655-596b5f434c2d Angle Angle false 0 false 1693 -982 126 20 1756 -972 1 1 {0} 1.5707963267948966 Rotation plane 0aa3b363-731f-40f3-906e-eaa5fbd63a95 Plane Plane false 0 1693 -962 126 37 1756 -943.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 7ec807c1-40eb-4e78-b7d9-fb464227036f Geometry Geometry false 0 1843 -1002 50 38 1868 -982.75 Transformation data a6da92fe-faab-449b-9edb-78bfacebcafa Transform Transform false 0 1843 -964 50 39 1868 -944.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 45881c64-e2f3-4464-99c8-5529e6c361e0 Relay false 2521b13e-bd87-411f-8135-7d6754f61478 1 1867 -1291 40 16 1887 -1283 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 35ef0b97-0c82-4a52-adf9-820c1b87b00e Rotate Rotate 2173 -1229 240 81 2349 -1188 Base geometry cea44bd1-fa93-4a03-b8a6-4f0a6cabc256 Geometry Geometry true 8bc71174-26e4-4ccf-a70e-69d5fb015c4d 1 2175 -1227 162 20 2274 -1217 Rotation angle in degrees cf0a3db4-dced-4bbe-9037-5f046fd75848 360/X/2 Angle Angle false 2521b13e-bd87-411f-8135-7d6754f61478 1 true 2175 -1207 162 20 2274 -1197 1 1 {0} 1.5707963267948966 Rotation plane 915b7ff2-4407-4a47-a629-5fd838f8ff2f Plane Plane false 0 2175 -1187 162 37 2274 -1168.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry abf795af-c9f6-4670-b254-6dbeb8fe7fa3 Geometry Geometry false 0 2361 -1227 50 38 2386 -1207.75 Transformation data 6363b01d-41cb-468e-9cbb-35b5b64013f3 Transform Transform false 0 2361 -1189 50 39 2386 -1169.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f8b0679f-d422-4df4-9d8b-dcd720778acf Relay false 905999a1-50d8-405b-91ef-f8a8c1ee24c6 1 2437 -1318 40 16 2457 -1310 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8bc71174-26e4-4ccf-a70e-69d5fb015c4d Relay false a891ada9-7221-4e23-ba30-6e03eb1cc658 1 2186 -1341 40 16 2206 -1333 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 2ae6f261-60f3-4bdc-9a9f-b2ba7db5cd10 Rotate Rotate 2493 -1136 204 81 2633 -1095 Base geometry f7f22279-4ef6-42cd-b4e6-e139d7a8bc3a Geometry Geometry true abf795af-c9f6-4670-b254-6dbeb8fe7fa3 1 2495 -1134 126 20 2558 -1124 Rotation angle in radians 73d59b83-d567-41c8-8181-3f7aa7e0e147 Angle Angle false 0 false 2495 -1114 126 20 2558 -1104 1 1 {0} -0.7853981634 Rotation plane c9b46e6e-b994-4260-8888-cd83da81a207 Plane Plane false 0 2495 -1094 126 37 2558 -1075.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 905999a1-50d8-405b-91ef-f8a8c1ee24c6 Geometry Geometry false 0 2645 -1134 50 38 2670 -1114.75 Transformation data f0911430-744b-48a4-8f74-c93e8d4be448 Transform Transform false 0 2645 -1096 50 39 2670 -1076.25 0ca9be21-459e-4cd0-9d77-05e72a6a1422 8df4d222-85a2-467d-a510-b8dde333d730 Polygon Create a circumscribed polygon with optional round edges. true f0b54d93-c203-4d39-9ab5-def4ec0b18cc Polygon Polygon true 1420 -1791 141 84 1507 -1749 Polygon base plane true 8513ad55-163b-47a9-aaaf-15d5f4a9f4f1 Plane Plane false d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb 1 1422 -1789 73 20 1458.5 -1779 1 1 {0} 0 0 0.353553390593274 1 0 0 0 1 0 Radius of polygon (distance from center to edge) a10f02cf-b9c3-4c42-927f-159ea8922817 Radius Radius false c5c85527-549f-4b6d-b3bb-6729f376c233 1 1422 -1769 73 20 1458.5 -1759 1 1 {0} 0.35355339059327379 Number of segments 5b502e04-97a5-42f2-9642-4c1af3373141 Segments Segments false 2521b13e-bd87-411f-8135-7d6754f61478 1 1422 -1749 73 20 1458.5 -1739 1 1 {0} 6 Polygon corner fillet radius ebe40824-f1da-4e63-a2e2-414abc12ca86 Fillet Radius Fillet Radius false 0 1422 -1729 73 20 1458.5 -1719 1 1 {0} 0 Polygon 247135b9-20be-4bf6-aab0-135cfd64b897 Polygon Polygon false 0 1519 -1789 40 40 1539 -1769 Length of polygon curve d922d5c2-3926-4cda-8212-764bfba52f59 Length Length false 0 1519 -1749 40 40 1539 -1729 429cbba9-55ee-4e84-98ea-876c44db879a Sub Curve Construct a curve from the sub-domain of a base curve. true b5f0a82e-6944-46f8-ba93-8e5c4d33a43a Sub Curve Sub Curve 1365 -1926 128 44 1433 -1904 Base curve 2daa4183-8f9d-4552-bc5c-ed4515d70802 Base curve Base curve false 6bcbb743-b730-408b-85c2-b7e375d97a00 1 1367 -1924 54 20 1394 -1914 Sub-domain to extract 48fbec1d-ef78-4e13-8eb3-ff0b46dc4fbf Domain Domain false 5cac713b-579a-47a8-9677-cce98943631b 1 1367 -1904 54 20 1394 -1894 Resulting sub curve 07e27a89-bbb8-40a7-827e-0a8859a34d63 1 Curve Curve false 0 1445 -1924 46 40 1460 -1904 ccfd6ba8-ecb1-44df-a47e-08126a653c51 Curve Domain Measure and set the curve domain true 7c6c067b-326e-45fb-ace5-d386ede0cf98 Curve Domain Curve Domain 1142 -1981 146 44 1236 -1959 Curve to measure/modify a8460880-28d1-4cec-8342-d959b358481a Curve Curve false 0b4a4482-f1b2-42cb-bd44-98a3294810aa 1 1144 -1979 80 20 1184 -1969 Optional domain, if omitted the curve will not be modified. 876e03a4-1c26-43b5-9c9f-c7f10adf3ba4 Domain Domain true 0 1144 -1959 80 20 1184 -1949 Curve with new domain. 6bcbb743-b730-408b-85c2-b7e375d97a00 Curve Curve false 0 1248 -1979 38 20 1267 -1969 Domain of original curve. e7d3f477-8f2c-4d47-af03-ceed85112c52 Domain Domain false 0 1248 -1959 38 20 1267 -1949 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 61a50e74-7d41-4f1e-8f80-1131da213878 Merge Merge 1198 -1897 90 64 1243 -1865 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 2d7d2971-e7b2-477a-8a80-d9e53102dec6 false Data 1 D1 true d7ac4e75-4cde-4200-805f-6f7f962b3fc0 1 1200 -1895 31 20 1215.5 -1885 2 Data stream 2 373ce0a9-ebd2-4eaa-94e8-2a87a26866c2 false Data 2 D2 true 247135b9-20be-4bf6-aab0-135cfd64b897 1 1200 -1875 31 20 1215.5 -1865 2 Data stream 3 95f0212d-402c-496c-a567-c2887ab4c2d1 false Data 3 D3 true 0 1200 -1855 31 20 1215.5 -1845 2 Result of merge 0b4a4482-f1b2-42cb-bd44-98a3294810aa Result Result false 0 1255 -1895 31 60 1270.5 -1865 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 09c9b250-781c-405d-a49b-17c9aa572e0f Deconstruct Domain Deconstruct Domain 1142 -2039 92 44 1194 -2017 Base domain f7f99898-634a-43b0-a5aa-f7885d440f28 Domain Domain false e7d3f477-8f2c-4d47-af03-ceed85112c52 1 1144 -2037 38 40 1163 -2017 Start of domain c3a5f4c3-5eed-40b9-9879-b3f355ee2914 Start Start false 0 1206 -2037 26 20 1219 -2027 End of domain 058d02ab-4c3a-4848-8cf9-96dde9f41d5c End End false 0 1206 -2017 26 20 1219 -2007 d1a28e95-cf96-4936-bf34-8bf142d731bf Construct Domain Create a numeric domain from two numeric extremes. true 3f619d74-a5e4-4584-ad02-8a67ccf6e117 Construct Domain Construct Domain 1309 -2019 144 44 1401 -1997 Start value of numeric domain 7366d688-b1e8-4aaa-8714-7626c8dd1d4f X*1/8 Domain start Domain start false 058d02ab-4c3a-4848-8cf9-96dde9f41d5c 1 1311 -2017 78 20 1358 -2007 1 1 {0} 0 End value of numeric domain 3736068e-c4da-4a99-a42b-16b65162fd91 X*2/8 Domain end Domain end false 058d02ab-4c3a-4848-8cf9-96dde9f41d5c 1 1311 -1997 78 20 1358 -1987 1 1 {0} 1 Numeric domain between {A} and {B} 5cac713b-579a-47a8-9677-cce98943631b Domain Domain false 0 1413 -2017 38 40 1432 -1997 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true cc994066-92f7-4058-b653-3de247d4ee88 List Item List Item 1309 -2160 77 64 1366 -2128 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list f29b10b7-2978-406f-802d-2e7b681878bd List List false 07e27a89-bbb8-40a7-827e-0a8859a34d63 1 1311 -2158 43 20 1332.5 -2148 Item index 925447eb-232e-49d1-a8c2-b575beb31012 Index Index false 0 1311 -2138 43 20 1332.5 -2128 1 1 {0} 0 Wrap index to list bounds b2f296d0-7766-471b-abd2-7cf75bcd400b Wrap Wrap false 0 1311 -2118 43 20 1332.5 -2108 1 1 {0} true Item at {i'} 30798710-3845-4562-83f3-8991b638e622 false Item i false 0 1378 -2158 6 60 1381 -2128 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true b791a4ed-5cc2-4bec-ac9b-80b0d6b698a2 List Item List Item 1343 -2096 77 64 1400 -2064 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list a1248fa1-b3c2-45c2-8bb2-24a9cd9bdfd8 List List false 07e27a89-bbb8-40a7-827e-0a8859a34d63 1 1345 -2094 43 20 1366.5 -2084 Item index 7957921b-c465-4da1-a3a9-a32354de93a4 Index Index false 0 1345 -2074 43 20 1366.5 -2064 1 1 {0} -1 Wrap index to list bounds 6a7f8782-3f5c-4408-89ce-edbd1e5a0ec9 Wrap Wrap false 0 1345 -2054 43 20 1366.5 -2044 1 1 {0} true Item at {i'} 5336fff3-be75-4ae1-934b-21d01294e503 false Item i false 0 1412 -2094 6 60 1415 -2064 afb96615-c59a-45c9-9cac-e27acb1c7ca0 Explode Explode a curve into smaller segments. true d5b01813-abd5-4795-a99d-2559036eaf32 Explode Explode 1440 -2160 134 44 1511 -2138 Curve to explode 686260a8-f50a-4c21-8a0f-5b6fcb21b00e Curve Curve false 30798710-3845-4562-83f3-8991b638e622 1 1442 -2158 57 20 1470.5 -2148 Recursive decomposition until all segments are atomic b719e15c-a53e-4d2b-91f8-5636268e1ce3 Recursive Recursive false 0 1442 -2138 57 20 1470.5 -2128 1 1 {0} true 1 Exploded segments that make up the base curve ebea818e-fc05-48a9-be1f-651351b99a93 Segments Segments false 0 1523 -2158 49 20 1547.5 -2148 1 Vertices of the exploded segments d1da05cf-4dd7-4d74-ace7-ae5cf9a4a127 Vertices Vertices false 0 1523 -2138 49 20 1547.5 -2128 afb96615-c59a-45c9-9cac-e27acb1c7ca0 Explode Explode a curve into smaller segments. true 5799c9ff-28a9-4a3b-9bd4-b6bc5a9ac7b3 Explode Explode 1453 -2086 134 44 1524 -2064 Curve to explode 9f2a4b6e-c4da-4e96-8e5f-9cd263731e9b Curve Curve false 5336fff3-be75-4ae1-934b-21d01294e503 1 1455 -2084 57 20 1483.5 -2074 Recursive decomposition until all segments are atomic 6f58db0c-fe1a-4564-a0b2-c39034cb1bed Recursive Recursive false 0 1455 -2064 57 20 1483.5 -2054 1 1 {0} true 1 Exploded segments that make up the base curve a8604204-ba17-477f-bb44-6da8cb473689 Segments Segments false 0 1536 -2084 49 20 1560.5 -2074 1 Vertices of the exploded segments d86a63d7-ed17-443b-a0e7-80def287ea57 Vertices Vertices false 0 1536 -2064 49 20 1560.5 -2054 4c4e56eb-2f04-43f9-95a3-cc46a14f495a Line Create a line between two points. true ffc77713-fff2-47ff-9c9d-f886c51d8940 Line Line 1617 -2116 102 44 1683 -2094 Line start point 94144529-9348-47c8-b1da-7f85c44e0354 Start Point Start Point false d1da05cf-4dd7-4d74-ace7-ae5cf9a4a127 1 1619 -2114 52 20 1645 -2104 Line end point d1bedf31-bbd5-4ae7-8bb6-c051bcf28b63 End Point End Point false d86a63d7-ed17-443b-a0e7-80def287ea57 1 1619 -2094 52 20 1645 -2084 Line segment e086c657-1a1e-4234-9675-3cf89dc5b5f9 Line Line false 0 1695 -2114 22 40 1706 -2094 8307c31e-e307-48e9-b7c3-f970591e86d2 2cd3c35a-cada-1a81-ddba-5b184219e513 ggNetworkPolygons Polygon from Curve network true 9b0f7c5b-7377-4c7f-aff8-9ae43e7328d8 ggNetworkPolygons ggNetworkPolygons 2020 -2076 150 44 2131 -2054 1 Input Curves 88d62537-3221-4602-aaf4-3858daf495f0 1 Curves Curves false b2c8b024-bfbd-4212-96bd-3bb43ba03951 1 2022 -2074 97 20 2078.5 -2064 Number of edges considered to be a void or perimeter location fb63db76-55b2-443c-9df9-36b6697d5814 Perim or Void Perim or Void true 0 2022 -2054 97 20 2078.5 -2044 1 1 {0} 4 1 Resultant Polygons 1c67803d-90e4-40d0-9223-ba648c7da95f Cells Cells false 0 2143 -2074 25 40 2155.5 -2054 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true b6802eb6-4e97-4344-b7db-26fc0d0211b0 Merge Merge 1638 -2032 90 64 1683 -2000 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 f976fbce-fc8b-47e3-8d4e-5033a5646fd2 false Data 1 D1 true e086c657-1a1e-4234-9675-3cf89dc5b5f9 1 1640 -2030 31 20 1655.5 -2020 2 Data stream 2 f1fc8029-4be2-420d-8785-aa13ab49b35d false Data 2 D2 true 07e27a89-bbb8-40a7-827e-0a8859a34d63 1 1640 -2010 31 20 1655.5 -2000 2 Data stream 3 de1f2953-b082-40f6-a4d5-700b1e9ff5b9 false Data 3 D3 true 0 1640 -1990 31 20 1655.5 -1980 2 Result of merge 2a732366-e703-4fb6-b7b8-5dfca8ec0b0b Result Result false 0 1695 -2030 31 60 1710.5 -2000 4c0d75e1-4266-45b8-b5b4-826c9ad51ace 00000000-0000-0000-0000-000000000000 Divide Curves on Intersects Divide curves on all of their intersects. true d7915680-0470-47bf-a41f-560890fdd28e Divide Curves on Intersects Divide Curves on Intersects 1775 -2076 190 44 1918 -2054 1 curves to be divided 7ab8632b-5825-42d7-9004-758dc43472b2 1 curves curves false 7c63f046-fa92-4bb1-a7b3-4ebfc64e6373 1 1777 -2074 129 20 1849.5 -2064 ZeroTolerance e7e97663-e42a-449a-b741-29aa75b6cfba Tolerance Tolerance false 0 1777 -2054 129 20 1849.5 -2044 1 1 {0} 1.52587890625E-05 1 aligned curves b2c8b024-bfbd-4212-96bd-3bb43ba03951 curves curves false 0 1930 -2074 33 40 1946.5 -2054 c3f9cea5-6fd4-4db5-959b-08cd08ed9fe1 Simple Mesh Create a mesh that represents a Brep as simply as possible true 3cc61a28-4aa7-4a88-a821-8ab7feacc60f Simple Mesh Simple Mesh 2077 -2124 81 28 2116 -2110 Brep to mesh, only breps with triangle or quad faces are supported. 4782fc5a-6800-4f62-b2b3-e0d225212e89 Brep Brep false 1c67803d-90e4-40d0-9223-ba648c7da95f 1 2079 -2122 25 24 2091.5 -2110 Mesh 49b4590f-1985-41a4-b0c1-a10f591a4cf0 Mesh Mesh false 0 2128 -2122 28 24 2142 -2110 4bc9dbbf-fec8-4348-a3af-e33e7edc8e7b Mesh Join Join a set of meshes into a single mesh true bc1346bb-a66e-47d4-9a9a-044f091b7726 Mesh Join Mesh Join 2178 -2124 94 28 2230 -2110 1 Meshes to join 25e32ac2-e373-4c7a-b61c-2a62f953794c Meshes Meshes false 49b4590f-1985-41a4-b0c1-a10f591a4cf0 1 2180 -2122 38 24 2199 -2110 Mesh join result c1bd4c6d-1df6-4abf-a7a4-b12d0b2e6ca4 Mesh Mesh false 0 2242 -2122 28 24 2256 -2110 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true d9cadc60-06b8-40a5-8670-7d6604b13a55 Scale Scale 1770 -2160 195 64 1901 -2128 Base geometry 7b6fef10-edd2-4b23-8a88-8527c42b4710 Geometry Geometry true 2a732366-e703-4fb6-b7b8-5dfca8ec0b0b 1 1772 -2158 117 20 1830.5 -2148 Center of scaling f74ec72c-58b4-428d-86f3-b0d598afd82a Center Center false 0 1772 -2138 117 20 1830.5 -2128 1 1 {0} 0 0 0 Scaling factor df490fdf-e2fd-4f79-8b80-a99abd41e47d Factor Factor false 363657c8-ee9e-44fe-bf60-e29e6141415c 1 1772 -2118 117 20 1830.5 -2108 1 1 {0} 0.5 Scaled geometry 7c63f046-fa92-4bb1-a7b3-4ebfc64e6373 Geometry Geometry false 0 1913 -2158 50 30 1938 -2143 Transformation data b2a247eb-d2f1-4336-a777-58a0f743ff8a Transform Transform false 0 1913 -2128 50 30 1938 -2113 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. ca19c451-d4b3-43b4-867e-e23204597823 Scale Scale 2144 -2264 195 64 2275 -2232 Base geometry add0eb25-3536-4dd4-b64e-6871f9f75124 Geometry Geometry true 4616153f-b77e-4396-9db0-407a32c43692 1 2146 -2262 117 20 2204.5 -2252 Center of scaling 18b672ac-af69-4d12-9e41-3f589cced19f Center Center false 0 2146 -2242 117 20 2204.5 -2232 1 1 {0} 0 0 0 Scaling factor b2e59736-07e8-4865-882c-5d8e78e51b72 Factor Factor false 0db1a859-a32a-4c96-a6d3-3d4a53580b28 1 2146 -2222 117 20 2204.5 -2212 1 1 {0} 0.5 Scaled geometry 043fb4b6-1a03-448e-bcc2-db8f61394b14 Geometry Geometry false 0 2287 -2262 50 30 2312 -2247 Transformation data f4336505-b20d-4de6-ac77-0b521e54278c Transform Transform false 0 2287 -2232 50 30 2312 -2217 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true eb729bda-2bb3-40e9-b6ef-94a47a07c4f0 One Over X One Over X 1958 -2246 88 28 2001 -2232 Input value f4a9b5a3-7239-43c2-9b7f-f45f9d2f7630 Value Value false 363657c8-ee9e-44fe-bf60-e29e6141415c 1 1960 -2244 29 24 1974.5 -2232 Output value 0db1a859-a32a-4c96-a6d3-3d4a53580b28 Result Result false 0 2013 -2244 31 24 2028.5 -2232 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. true dc3220b0-fb46-4bc9-88ff-bf1eea1af854 Power Power 1965 -2213 85 44 2005 -2191 The item to be raised 366f9e3f-b824-427d-9f09-57ed8d62f462 A A false 0 1967 -2211 26 20 1980 -2201 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 5ee9200f-0632-47b1-90cf-f70a99308002 B B false 9fcb2f6e-bb1b-489f-abc9-00bcc59d4904 1 1967 -2191 26 20 1980 -2181 A raised to the B power 363657c8-ee9e-44fe-bf60-e29e6141415c Result Result false 0 2017 -2211 31 40 2032.5 -2191 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 9fcb2f6e-bb1b-489f-abc9-00bcc59d4904 Digit Scroller false 0 12 2 4.0000000000 1692 -2191 250 20 1692.389 -2190.101 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 6e5efe6a-81a9-4fc5-b975-5916a8c2416a Deconstruct Deconstruct 1256 -1647 120 64 1297 -1615 Input point 32cfad3f-813d-41cd-9317-a1b32ac885e8 Point Point false af44461f-37b2-4fe2-a269-d899c9e7147f 1 1258 -1645 27 60 1271.5 -1615 Point {x} component 2809ab09-d804-48fc-99c8-34051bdc08ea X component X component false 0 1309 -1645 65 20 1341.5 -1635 Point {y} component 8551c667-9184-4cda-850c-45ca1b3ffc0e Y component Y component false 0 1309 -1625 65 20 1341.5 -1615 Point {z} component 6644c9e8-68a3-45d0-8a20-6166c40a131b Z component Z component false 0 1309 -1605 65 20 1341.5 -1595 3581f42a-9592-4549-bd6b-1c0fc39d067b Construct Point Construct a point from {xyz} coordinates. true 60a51f01-5899-49d4-b314-60276bd08212 Construct Point Construct Point 1382 -1668 132 64 1473 -1636 {x} coordinate 070e1907-d83a-47f0-8a2b-c32c8f1686ec X coordinate X coordinate false 0 1384 -1666 77 20 1422.5 -1656 1 1 {0} 0 {y} coordinate e4717a98-86e5-4137-97e4-41a50dc16a97 Y coordinate Y coordinate false 0 1384 -1646 77 20 1422.5 -1636 1 1 {0} 0 {z} coordinate 187c81c4-e8d1-46db-b9d3-f9222945e468 Z coordinate Z coordinate false 6644c9e8-68a3-45d0-8a20-6166c40a131b 1 1384 -1626 77 20 1422.5 -1616 1 1 {0} 0 Point coordinate d71c5c7f-6cfa-4e4c-9db5-58e994ec21eb Point Point false 0 1485 -1666 27 60 1498.5 -1636 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 53886360-af1c-4ca8-a5d5-d5b747804cfd Scale Scale 1239 -1747 126 64 1301 -1715 Base geometry 401c492e-6221-48a7-be26-da01ac185ea8 Geometry Geometry true 2a806386-4572-4a01-a8b6-0d1196046ffb 1 1241 -1745 48 20 1265 -1735 Center of scaling 0faa135d-c825-475a-937f-e62abc306b68 Center Center false 544bd1fa-0641-4bca-968b-578245bc09d1 1 1241 -1725 48 20 1265 -1715 1 1 {0} 0 0 0 Scaling factor 18f4c068-131d-4309-9eae-d516b0f85a2a Factor Factor false 50f8e83a-7adc-47ab-9184-e3a95b9fe87c 1 1241 -1705 48 20 1265 -1695 1 1 {0} 0.5 Scaled geometry 8025ef62-00eb-4034-84bd-92c8573721fc Geometry Geometry false 0 1313 -1745 50 30 1338 -1730 Transformation data 26897bdc-d6c2-4908-b027-65fcd848652c Transform Transform false 0 1313 -1715 50 30 1338 -1700 361790d6-9d66-4808-8c5a-8de9c218c227 Quad Sphere Create a spherical brep made from quad nurbs patches. true 7f3cf3eb-f811-46af-897c-66cd10a62e73 Quad Sphere Quad Sphere 608 -2364 175 61 733 -2333 Base plane 27b9894f-3c01-4858-a391-ed0398c9437e Base Base false 0 610 -2362 111 37 665.5 -2343.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Sphere radius 5a388fa9-9a6d-454e-a7a2-c0133092ccfc Radius Radius false 0 610 -2325 111 20 665.5 -2315 1 1 {0} 0.5 Resulting quad sphere 07275121-8e13-4cbf-aa2e-5ecc016f0404 Sphere Sphere false 0 745 -2362 36 57 763 -2333.5 f24b6e1d-27ba-4eb0-b914-5c3d27b4eeef 1c9de8a1-315f-4c56-af06-8f69fee80a7a Tween Two Curves On Surface Tween between two curves on a surface, if curves are not on the surface they will be pulled to it. true 1ae81de7-dbb2-4005-85aa-45720c7ac2b8 Tween Two Curves On Surface Tween Two Curves On Surface 827 -2427 141 124 920 -2365 Curve on surface to tween from 5fd07bd6-9c2f-41d7-a41d-1fbfa4aa8bf0 Curve A Curve A false b7812d9f-ab80-4a1b-af93-274919e3d197 1 829 -2425 79 20 868.5 -2415 Curve on surface to tween to 15318132-7217-49e2-b230-3f376cd4659a Curve B Curve B false b47b066d-ced9-4a5f-b5f7-cb21f3d787f9 1 829 -2405 79 20 868.5 -2395 Surface to tween curve on f3bc8eaf-ceba-405c-acab-6e6aac3cb7e7 Surface Surface false 3686f319-3b13-4a40-8f63-73640cca8e2e 1 829 -2385 79 20 868.5 -2375 Tween factor (0.0 = Curve A, 1.0 = Curve B) 5d3aeba4-a23a-4d22-b44e-dc0fc3edf022 Factor Factor false 6260ae29-2097-4e32-b627-15c8a4d72ec0 1 829 -2365 79 20 868.5 -2355 1 1 {0} 0.5 Optional Refit match method. (No Integer or 0 = Off, Integer greater than 0 = On and curve degree of refit) If an integer greater than zero, Refit match method is used if possible. When input curves are refit their control points are redistributed, added to, and removed from based on the curves curvature and the input integer degree, while trying to maintain their shapes. Refit results in tighter shaped tweens, with curvature based control point distribution. 7e21208b-cbe9-440a-a905-4121f602ca0d Refit Refit false 0 829 -2345 79 20 868.5 -2335 1 1 {0} 0 Optional Point Sample match method. (No Integer or 0 = Off, Integer greater than 0 = On and amount of sample points) If an integer greater than zero, Point Sample match method is used. When input curves are sampled their control points are recreated by equally dividing the curve by the input integer point count. Point Sample results in looser shaped tweens, with uniform control point distribution. ca67bf69-8349-4179-99ca-63aafaf462b2 Point Sample Point Sample false 0 829 -2325 79 20 868.5 -2315 1 1 {0} 0 Resulting tween curve on surface e910c1ca-a032-498a-8405-5ef9fc92dc05 Tween Tween false 0 932 -2425 34 120 949 -2365 8d372bdc-9800-45e9-8a26-6e33c5253e21 Deconstruct Brep Deconstruct a brep into its constituent parts. true 1911c828-69c9-41f4-a6d8-55ecdc42ed4e Deconstruct Brep Deconstruct Brep 613 -2451 93 64 652 -2419 Base Brep 7d95eba7-f1e6-4e41-9ffe-9be7fcd23f68 Brep Brep false 07275121-8e13-4cbf-aa2e-5ecc016f0404 1 615 -2449 25 60 627.5 -2419 1 Faces of Brep 24a0eb06-eb01-4473-960c-97ac6d0cc461 Faces Faces false 0 664 -2449 40 20 684 -2439 1 Edges of Brep eb6bfdca-7ebb-4547-8b53-46145bc3650e Edges Edges false 0 664 -2429 40 20 684 -2419 1 Vertices of Brep ab19931d-608d-47f9-9d2a-c92c12ed6019 Vertices Vertices false 0 664 -2409 40 20 684 -2399 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 7d9531df-1414-46f9-9741-e68b5bb055f3 List Item List Item 608 -2547 77 64 665 -2515 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list b43ed9d0-27c8-450a-9283-f1c7c4279a78 List List false 24a0eb06-eb01-4473-960c-97ac6d0cc461 1 610 -2545 43 20 631.5 -2535 Item index df80f14a-9d6a-4f50-a933-825753ad2e1b Index Index false 0 610 -2525 43 20 631.5 -2515 1 1 {0} 0 Wrap index to list bounds 797ccd0e-a012-46b3-8e8c-57669e7ccc85 Wrap Wrap false 0 610 -2505 43 20 631.5 -2495 1 1 {0} true Item at {i'} 3686f319-3b13-4a40-8f63-73640cca8e2e false Item i false 0 677 -2545 6 60 680 -2515 0148a65d-6f42-414a-9db7-9a9b2eb78437 Brep Edges Extract the edge curves of a brep. true 67450cf9-31de-4e46-b0e0-063ecf44eb09 Brep Edges Brep Edges 587 -2637 119 64 626 -2605 Base Brep f48b56b6-4b28-48ef-9bc5-9cca48d250a6 Brep Brep false 3686f319-3b13-4a40-8f63-73640cca8e2e 1 589 -2635 25 60 601.5 -2605 1 Naked edge curves 3f91fe68-9295-4f96-8014-59d90677f0a8 Naked Naked false 0 638 -2635 66 20 671 -2625 1 Interior edge curves 3f79cdd6-af68-422c-9295-3cfe8900be7b Interior Interior false 0 638 -2615 66 20 671 -2605 1 Non-Manifold edge curves 07e92cce-f86b-4381-9c73-9c42eb161a27 Non-Manifold Non-Manifold false 0 638 -2595 66 20 671 -2585 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 40052ab1-f242-4744-bc3b-fa2002a93c49 List Item List Item 608 -2720 77 64 665 -2688 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 2713f79b-c43e-4f40-902c-0a267860f3e7 List List false 3f91fe68-9295-4f96-8014-59d90677f0a8 1 610 -2718 43 20 631.5 -2708 Item index e306da52-ba52-4fe1-997a-133380b9d3b4 Index Index false 0 610 -2698 43 20 631.5 -2688 1 1 {0} 2 Wrap index to list bounds 6e77f0d0-a0a2-4db8-a920-e037da477b97 Wrap Wrap false 0 610 -2678 43 20 631.5 -2668 1 1 {0} true Item at {i'} b7812d9f-ab80-4a1b-af93-274919e3d197 false Item i false 0 677 -2718 6 60 680 -2688 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579 Number Number false c5c85527-549f-4b6d-b3bb-6729f376c233 1 389 -2427 50 24 414.3606 -2415 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true a8b0028f-de15-41d6-ac27-8242e61aefc0 Scale Scale 439 -2656 126 64 501 -2624 Base geometry 1b4312a0-9b59-435d-82a3-1c60363e2d35 Geometry Geometry true b7812d9f-ab80-4a1b-af93-274919e3d197 1 441 -2654 48 20 465 -2644 Center of scaling 046d7577-aa81-4237-8654-1a6145d1a6fa Center Center false d772890b-7613-40c8-af8e-e8111ee4e366 1 441 -2634 48 20 465 -2624 1 1 {0} 0 0 0 Scaling factor 0815d3b2-c4a3-49b2-8091-eeb8213b5ad1 Factor Factor false eda9b36e-8d1c-4cb9-832a-cac5dcae6446 1 441 -2614 48 20 465 -2604 1 1 {0} 0.5 Scaled geometry 1b6852ff-5ea0-4377-b091-331cfc003e06 Geometry Geometry false 0 513 -2654 50 30 538 -2639 Transformation data 8ef1e35f-3da8-4aaf-916d-672d3f2368a4 Transform Transform false 0 513 -2624 50 30 538 -2609 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true d772890b-7613-40c8-af8e-e8111ee4e366 Point Point false 544bd1fa-0641-4bca-968b-578245bc09d1 1 306 -2581 50 24 331.5268 -2569.456 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true e37e2ebe-b7b9-404a-a9f0-9ea61110d68d Multiplication Multiplication 421 -2495 125 44 501 -2473 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 2bf1540c-604b-45ac-abc8-9ea27693a630 A A true 0 423 -2493 66 20 456 -2483 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2*SQRT(2) Second item for multiplication 54a5a07e-f54a-4f03-8ef7-0a6389ff4c09 B B true 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579 1 423 -2473 66 20 456 -2463 Result of multiplication eda9b36e-8d1c-4cb9-832a-cac5dcae6446 Result Result false 0 513 -2493 31 40 528.5 -2473 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 7bde713a-d240-4eb7-8d7f-1f01f85ac42e List Item List Item 891 -2530 77 64 948 -2498 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 0e1637ed-9857-4a37-88c0-d1f9108f9443 List List false 07e27a89-bbb8-40a7-827e-0a8859a34d63 1 893 -2528 43 20 914.5 -2518 Item index 91da0cc1-5b97-4a8d-9af3-80fc31c2b6a3 Index Index false 0 893 -2508 43 20 914.5 -2498 1 1 {0} -1 Wrap index to list bounds 2d714977-7592-4cae-8b1e-345112fe7516 Wrap Wrap false 0 893 -2488 43 20 914.5 -2478 1 1 {0} true Item at {i'} b47b066d-ced9-4a5f-b5f7-cb21f3d787f9 false Item i false 0 960 -2528 6 60 963 -2498 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 9eb71f29-a694-4692-9bfe-7dd14e60adc1 Multiplication Multiplication 452 -2284 125 44 532 -2262 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 9dd1aa56-4bb3-49c7-b19b-9e54fd64f465 A A true 0 454 -2282 66 20 487 -2272 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2*SQRT(2) Second item for multiplication 01d98073-ee76-47f0-9167-4c5796587c5c B B true 0fcd7dc2-9d5f-4cc6-bfd0-a12dba503579 1 454 -2262 66 20 487 -2252 Result of multiplication 6260ae29-2097-4e32-b627-15c8a4d72ec0 Result Result false 0 544 -2282 31 40 559.5 -2262 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true ad8332bd-7d14-4f8e-b470-0b4b8f421601 One Over X One Over X 490 -2402 88 28 533 -2388 Input value a97143cc-67af-4d00-9694-2eb88707990f Value Value false 6260ae29-2097-4e32-b627-15c8a4d72ec0 1 492 -2400 29 24 506.5 -2388 Output value cff8fe7f-c614-4d54-87ac-97bc6c5d47e1 Result Result false 0 545 -2400 31 24 560.5 -2388 f1f51397-fc4b-44cf-b4b0-0ab80a80a6e1 14601aeb-b64f-9304-459d-d5d06df91218 Mesh WeldVertices Merge identical or vertices in threshold range true 26817207-8db3-4094-9241-8b83400e4495 Mesh WeldVertices Mesh WeldVertices 2294 -2140 218 44 2418 -2118 The open or closed mesh true 6f2e8e64-40a5-46bf-b759-a5ed72138b64 Mesh Mesh false c1bd4c6d-1df6-4abf-a7a4-b12d0b2e6ca4 1 2296 -2138 110 20 2351 -2128 Weld threshold value for Vertices d9bd9331-8f60-4743-8302-017491e4a5a5 tolerance tolerance true 0 2296 -2118 110 20 2351 -2108 1 1 {0} 2.3283064365386963E-10 1 Print, Reflect and Error Streams e855c6e8-63ca-4b2b-92d4-915f895013b7 RuntimeMessage RuntimeMessage false 0 2430 -2138 80 20 2470 -2128 The constructed mesh 4616153f-b77e-4396-9db0-407a32c43692 Mesh Mesh false 0 2430 -2118 80 20 2470 -2108 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 48cf8656-9d0f-4a59-9fee-89860aaadcfd List Item List Item 1661 -1550 77 64 1718 -1518 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 95956234-134d-413d-bce1-bd30ca4b5f7c List List false c5c85527-549f-4b6d-b3bb-6729f376c233 1 1663 -1548 43 20 1684.5 -1538 Item index 80057069-4cbd-4d72-95b2-fdca8c0f55a0 Index Index false 0 1663 -1528 43 20 1684.5 -1518 1 1 {0} 0 Wrap index to list bounds d1066a1a-d448-4720-a622-0e5d48edb1c1 Wrap Wrap false 0 1663 -1508 43 20 1684.5 -1498 1 1 {0} true Item at {i'} ed83e087-f25b-4099-bfb6-ae3e98600fc7 false Item i false 0 1730 -1548 6 60 1733 -1518 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 93b851d8-db37-4e93-aa4a-a4dd4fd79b7e Division Division 1737 -1612 70 44 1762 -1590 Item to divide (dividend) 2aa70353-9e17-4f3c-8145-c92f48a92b35 A A false c5c85527-549f-4b6d-b3bb-6729f376c233 1 1739 -1610 11 20 1744.5 -1600 Item to divide with (divisor) 0b44422f-9e57-468e-9081-4151227af567 B B false ed83e087-f25b-4099-bfb6-ae3e98600fc7 1 1739 -1590 11 20 1744.5 -1580 The result of the Division 50f8e83a-7adc-47ab-9184-e3a95b9fe87c Result Result false 0 1774 -1610 31 40 1789.5 -1590 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e6cb6edd-7d54-432f-a343-4611d5af073a Panel false 1 8025ef62-00eb-4034-84bd-92c8573721fc 1 Double click to edit panel content… 1401 -1551 160 100 0 0 0 255;255;255;255 true true true false false true 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 3efbb0c3-1854-493f-87f2-2f8358f8c1eb List Item List Item 1596 -1425 77 64 1653 -1393 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 32e5ad80-fcd8-413a-ba8f-5a1144b19222 List List false af44461f-37b2-4fe2-a269-d899c9e7147f 1 1598 -1423 43 20 1619.5 -1413 Item index 00f0b108-79a5-4a55-949a-41406a639786 Index Index false 0 1598 -1403 43 20 1619.5 -1393 1 1 {0} -1 Wrap index to list bounds bfdf8e20-54fd-4fe2-a578-3951de13faa0 Wrap Wrap false 0 1598 -1383 43 20 1619.5 -1373 1 1 {0} true Item at {i'} 48fadd94-119f-4398-82de-9885e8868c65 false Item i false 0 1665 -1423 6 60 1668 -1393 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABwJSURBVHhe7Z1Jc1tXdse1yBfIR8iiXeVNskxXudLdWSW7rFLO3hUnVanqpLJ1lasVuSzLbluyZMkltSK1ZVkS2xooiqLFQVQ0kCIpUiQAYp5nYgYBkBgIUPm9d54eQRAASZCUCTX+3fV0333nnnvO+d9zB+CBPtLD24BXPXQtNij8vwPD+Pj4s2fPTCbTzMwM5UePHkklty9evKAgYh1gamrq7LlzE0+fRMLhSDTq8XqdTofF5hDfWqFWrRgNCy6Xy+F0up0um81ud7lPfvXV9PS02NYxpPnCwsLs7KzuaVPoMXn+/PleIoA7b4JCIM7Mq5Bb8PTpU7yVR51hcnLym2++mXr+PJ9bjsViyVQqlUyEI0sqUy1Rq9VKpRKSiWQqm8mGw2Gbw3n+/Pk9UggTeAQrDKyHDx9qtc2AJDJIIr8X/gDubFCILqDGtnM32gP9hMloNE5MTEhfUIgbHfdIw8ePHweDQZWa5lgrFr0u17p21xyJRGJxcRHbsEpTvUvQkHyCFXFNq90CDOYpOWowGLB876HG+A0KyQ9UY4fElJ7A3vtoADqZQGCRKXRsbIzrXgL35MmTmzdvzs2+yBcK5XKlVluvVMqrq6u1dY2yQqFw5csvRwYG5D63nEmm0qRgpbIGyuVScXWVhm63e3BwkPHUmSW0YlHAKexpo0GCSS9zc3OU9yW2OLVBIZElu2FRpruXL19iFmNKBguW7Vevogf99MJMiD8dU4jBnx4/Pj42EgqFHA6blWXN4bDbnaXKmkrZK+v09L1Ll6QMCvnlRdPCxNS0xWyZnJh4PjPDeogdVofr6O9+RyLu1sF6X6SsPdgCfIRgaO5syIpyGgqkI5INpzYo1CUo0BnBJUUwjlGDffueoGiQ9cBsNnemCg1YODIyMjc7W1HTivSqVslALQWx+/wnn5BhciuoVqtra9VCPpdKZygjXC6XXS53X18flmiqdwYMYHwzJW67KeMp8dx2mgWEAiAjkMgQdhoSf5IKImTECPBog0JRoUNXRJkEZeyQLtJsvxKUhowVi8UiibgrDQjLoMa9QCCgsrMBiIHU3PJyPp/XqtoimUwSING2QzMweIdbSp5unWaVeG2mimC2oYoyNdQz7pFBUoKP8S0prIfeGYWmCYpelCKpi0nDbYEw2ux2O3qwiVvtwXagC4Y/XbMjxZhcNuVwuZlO/YFAJBpzud2kFAuhSpCCcrFgXlz0+31eH//3R6NRv89HgnIOSaQyPp//5MmTDCaM2Ynx2CmUw2IbmyVuQgZ7VECNThVB2zlV6BFQBloHHR8qdI2UZQWVBIVRLKD7XSUoY4JWRIQRTQRFbXsgQ48wh/yZM2emp6fyy1mnyxUMhVxOh93pZlGEj3g8rtKngG1OMhG3WMxmi9lqd0YjEZZDk8lotlhCkaVAMPjxxx9jAMZvawACdN2wpRQ3eSSQW1xjfUUtIZJBLzwBnSoc3wlVrYBrnVBYD71XCpKgmIV9DSsokrqYNNRBJZLigySWYntr65FHJ/qRkTyALZWmDRSLxUwmo93sAKTv0NAQwwKgX+tpC8Qwif7WrMIqfOcRAuiBOZvNJivl3qlqBYzfK4UN0I2jLAmKSzDUJkEpUI+fEhHkcbt+2agHAjxCgFjAH/ppRbAo04UObhn+2k0dXC4XbbEHAb1MPQagGW3UUJCOgOKJCrmla+Zn6VeokuZchVehCjEKWIWRmFevQbzYR+w/hfXAYt36NgkqT6lBklZckZTJR2rqQQ2S6CHWNCdAaKCGI2Z7sHGVLBkdHaXM7gwDKHALEBBV0NOQVeSTZBVjwmq1Ct+Ap8hgeUNWoYfhiBj13Gp2HxgOlsIG6H5Srk9QQIAY3TAn4SCgyBAFYsctUBUo/BE7yAOEj1seEcr2sx9ADFZohRghpgY+pDv0YAlqxRimvq1ZRVtY2TarpEbaSll70BYi2QDpog00uZ3vSPcX0rdmi3q0glHiS1hxnhAQLwJHPQVuZTgDxMgDEoVQcosqrvCn56toBoq0Cso05xGtUE7yoZMyVKEZ1FOFfniCWq2xCj2rpDvR3wARoyPEMIYhqDbVoAmpQAlAEpDBOALoFzCY6BozAEowFasAvWMhwFOAwUCMB9tQqHdPWQodQNo2XOtvAf7jA1bSIy7hALYSDq4sc4RbSOLsIadv3TAKuEE4KHOlrT4Bis94y1W2hQQFPYQJJcjQKVAmWRVSRhtilEU/fUlSUpCI14dbIo5O6RE7GRwyReu9C5RgbwfEaAKkOcypDM6gEEgv9EjXABsU8hs+ncHKeuAPO71YLMZZyuf1ct7y7xLBYJBDt8fjoexFg3r1KcoUSIFKBKRGaaN0ptQ7nU7ykttEIoEe4kj+UUNwoU3Ywh88hA8cJgQSayBR4JEQhrdQiP8SeupRpcRmywAHaAMSTbpDkiBs5UChRZWRjmiCmAS6PtxAwg0wmEEAlARUJwYgAwXgVHtocpuBhnYUsshDQLVazeeyDGLOvxytSjtGuVxmW5/JZLPLCrLavxQar8uZNJvDSCRktTmi4ZDb4/O4nTaX1+/leL6YyRUYO19//bUQCRkMdgimCUnpcDhk7PNIj2k9JUC4l0o44xZhdWQrkHBLxAk0AmjDfeplvZRIAYmaQMKqZLE6zdK1XglEpgGiZN+xDYVEDSoS8RghW4rFISS9YyAcj5PDcf6XkFIduJFKkiy2FHW5lQ9WXG5POBTy+wM+r8fp8pjNJqfDkV3O8+iLL75gpGMGCQp50MbESDYw9qUAhCFhRfhgsJMEEEZYiTXzCjUwREBl5hTocedKKyEY1skYarRwbIGwghj9SnOpf8NoRyG+ESASEZcIH2uSwYD7u4J2XNOuuKuoUP9RdemPGO/UcJWOlNuFheHhYZ563G44k0ATJkJMfImacIY8t1QCaIM8pjVJOHWqewnZ6Nc5lhlPplCdbGiWWQ6v4ZgmCNOdzi6gax2IUUMTzEMDZTVgPw/aUQhU4zdZf6AgZAQdMqRToslVbKhfPPQawgclOp3cElYekWGAWUToFGEYgipZsZg2ucKiTjYauEI20yy5ToF6gABKGsjGBjSQ/ZhaT7OApzrE5gPFNhS+YeC/5AcFrao1kCGOCMMWDBFfyjBB9CGDoFNDZitBVcNKrFHOU7mVeoE8hWNYQSdKYA6qKMNcA9lcGQeyvkqNVDYlWzYvWKvwublTIJUCcaoDHC4K8YRxLZOYVtUayBA4oiz+c1XDoiQcESSabHagBBnKqEWGeY/IIqMq2AA1elYxICADQKoS2rq4UwOENuppCEM0QWdTsnGkHjrTyAjZtMJUNOyF7MNFIcBEEgV/tPvWaCNJoIkO8UJGspPwwRCk6nTqoeFKJSlFBKWS4KK5IVjUI4AY2ijrTynoUFtvgBqRoSEk1ZNNj/tF9qGjEM8xHaMpaFXNgOk4g7cUtKrXoAYPSTiuiotqZCFV5j0000qfbFEi8UJAekSeQNNctAl4RPhkmm1vWBuIMQKU1EMqkemA7MOYhQw3LMMxraoZeAoBOLZVjBqhR3+EToLCLleeAiJFDUEhL1nYhFqihgBccoVCBruEFXlCCX8ElzI1Bw2FTxWqsZtApchgnpB96CgUkCUyV7QCzhB3xqnukoB6RgDNKWhVKisIM5ZZ55QwqEmJfkYxIaDMFQplmAMGPnzDKI8AAwWF6Gno6zAAk7ahULwVt98YZEMhEdSqmgECxEKAJ4ACTZgwGZ7cigsApuUsgU4I5kpWyekQ8qSGAqAAqGfDSdphBlySkWgTY+rVHhK0oxCjsT4YDHJO8ng8nK8PFG63m46Aw+GgzIFeyjzSryJANbeYpJQcDo/HDW1QQptIJCI7EZVZBTBdU6G8NqqiWq1yy1VeetNBzerqKkSOjIyQsuiBP5qTnZQlOyGYyIjmQ0JnOwq1z0hrNeW1FKczl18pl0rFA0CpVFpZWUmn0+oHpsvy6Wkmm83l9E9W5apAXkrzed2hcDTg90WjUYj1BYJOu8Xl8eHF9evX79y5I+v/jz/+SDmfTUXjKR7pgDyg3dRhfX2dBIVCmjM4oFOSj1lXshNGDxudmL0NhaVyOZ1KQmEmqwT0YLCcSaeX1M9Lk0kuXOUf5bLxj1rJNZlKMScEgiHSLhwOOZ0up8ttsyw63V68+O67727cuMH8wUx49erVa9eu5bLpWEKjkPwjt3jE5g6SyDypF5CLUAE9ZrOZzK4nRs/sVnRSLwJvmE7MbkkhaxJOMsxx2G63Ke9+KZ8v7j9EL8sPwaVslqvZLAsSj6Ree6oWbMoXh8prEJQZXljLgoe18KunDleAgMqOgnXmz1oNbshOdnNoCHjdELBgMARCYbvVml7Of3vuHI5DCV3rm9IGbKUTIqETUoVOZERg73SiRBxpBfxqSSEQC7i+eciJTaLQAB4xSdY/ItZEUEwlrKrtSpl60nGtUklnspyQX84vmIxGoszWBnn+ZWWIhIMerycUDsdi8WKpfO7cuf7+fmkIGSgRba2AgMLVgU22aGBh3gqmeilsQyHorOO9g34JxNY8IBYQgOkMQKmhQLyobAgTW00m1b4/9WWSSw8fT4yNDGUKRa/Xg1pSEw1erzLx1oN5lU0rbVGFmOgUbTsBvSMPGrJTp3O3ky2uhcNhzbg66L84EGxD4c8F/GSgbQ0it0QEeiQK3G49CAKpZwTcv39/vVaNRKLPnj5xe31Gg4HlUDxvCvn8BZDokuuaxl1Cp5NyUzqpF4FWdLIifPbZZ2y8NcvqEF8Kk+oWq43zAreHlEIcgwMclijUg0DosyVgxms4CNIEAVZNHqGhUFhZXV3BW4fDzrXwGuxsG8DOisBJ9GWypaAsOC2gd0dZDKgvc6XMygrYGwJuGVWMEuYAxgdXfGyanRTYG585c4bjk8raJhRyy5y57A4HhyhuDymFAMca2MIxQsxig7fccpUlQW4FlAkKmxGbzYawHhfK1AvZbSBKKBBcNj40YSqDWnkVAaRSKa2UTrNj52gaiyvvM4SC7I2JaRRhIsupNhAMKj863gw21fLeAmU5JjHO8EjPTqET1qlhGCFZv21u2EILDi+FeIIbhFKPLDX4KZxRCSv4rz8FIgDxyHCVR1x3DtFDAbIZB5xPErFoLJ7gvLGqHGHLtepaYWWlUim7XM7RsTG70223WUOh0MjosNXhsphNMAcFhkVlpy0hbg+ZuiEPy/WtEEOTrfjAwAAF0nFoaIjRQEYiiWvlclnarq8ri8KhphDr6xckCjqplMkSnWAl/I8eISzM8Yi2esMOQDYQrGPHPonHIpxbOPtYbHafN5hMLNntTtLu+fMJzi5r66+gzbxo+umn++XaK+uiYfbF7NDQQDpfCgYCsGK3c1qxcoRVY94EkER32Iy1YjCjR05Zx48fl/fNZUbFpKNHj37//fc6hSv5LNfDSyFg5dCTScCtTDVMMtApPosAtBEO1ht4JYFU8c4h42BwcDCTUcKkb4L0vWA0EqE7o8kEPblcDr45t7LXpcxIokBKXbhw4fTp06dOnbp69ftEbMnn88cTCRouLcWU18NisdVi+cqV7+gFT6VfPCIjaUv5hx9+IEex5MGDB2QhU84f/vCH4eFhfToVqw41hfiDM7LFAPgmtMEi/nAVGZn0JO0ANMtkK0o6A82FCbY5ariagGxYXV2VcoWZ9vVv/AkxZa4QQAbD8cTEs1Qixn7KbLEY5l/OG02so/iSyubPfvPNnTt3cEHvl6EjqzgOwjR62u+iDzuF+uKnl1nq4VUnjDDBH+xShmZiQdy3Hih3Cxkx589fSMaXWNVY7Xx+XyAQTiXjBuNitbbpZNYKGAbNHOMYcA2HOUGtVq1fLLg2zC4knybaGoeaQnxgPEIYLgHJSOZJ8kxqIJXoQBhl5LkSDj0EewEZwCJ04sSJnLJtzIZDgXAkykYyl8v6/IFmdHQIxgfd6QNO3OGW6927d30+5bP79jjUFAKcgTBZKihw1TmDKkhFAKiyStxJQZl4pWYvQBsra5uJdOdomoKAekakPv6YY1hf5ZY54KOPPmqzDwK1mvJ9y2GnEH9ILGYbZkjcw0kyD4YgsmHBo8wjFpJ94U8Ai8xs9NsBxFSumMS+lC0lm0zM1h6r4Cld6H3xVL9lIF68eLE9hTIyDjuF8ME4xVvWPNIOOmXzIscpTeg1WtXvBWgjF3cO+SyGgtDPPCHbK5kbRKYeei+4BuW68Qij4WdbC+le+UBJ/fWsFABl/VbKbYAMVJF8zCf4SSDgD4bgUt+waZ2p4Fb2Ndr9foB+xdr2EGsFNCHuWAIf2AwlzPnUcxLQf1HcAGIFcJYUpKD1rQLNPw+F2IEPXq+XfbNL3VIHg8FAMCjvUlAGHhXyMzX5NRq36p0CxCKRCLHgGDs0NMQUBH9c5dcO1De4CqAQautH8R6BHmKq/5SuAfI7uoB6cTqVN0UUHwMBpNm7Evd4PI5HzJ+tNAAe4RQcyxiVPbbWvQpuqScajtY4EArpeOj+fQ5GJpPx5bzyK4VMOo0ZMy9mrTZbMpHASWaYudkXT9SX3lkEJtUfOZBwE5OTzyaema02OPvwww/fe++9X/7yl1TDGTFiaFPYyh815CUbGdjVqvYMMoAzmTLIm6G6prx3UywWmdrnDUYbPmYyFot5du6lxWJJJhOM16npaYvFir9amxaAOVhk/DUdfNvOBGjYZwoJ5fUbNz7/7FOfLzA02G/3BDOZtGHBMD76YGbeVCyVpyYn2DM/fvpkeur5n27fZX65/qcf7w+PQEt/f3/frZvfX7+RXa3++7/9669+9Ss23O++++77779/9uxZ+MMfrZvNwHlZJptGoTMwLBKtox8JKXOJw+G8N3DbH03GY0sGg3H4weCi3V0oFPBxbPTB5PSLlWLZbrNpbZqB/QhLA4ul/knhboGSfaaQPPjpp59u3LherVYJqsPpIjmyy8uMU+VTP6tV/uwSAZf3KEymRYYqMkaj8sfYpCYQCF6+fOmdd9759a9//Ytf/KKvr+/atWtyrtgKPOcRGlhOOovCVjAQT5486Q8E1spFg2HB4XL5g0HmTChRI6+hVCoxEC1Wm9Fo4PC4aDLiC/kE9w6HnQJWNT3YlYuFUDCUSCZL5cqNGzfoTut490DbPlMoYAPGehBdWmKuZ9LPZrOsDSwYIJPN8khWglagFU1Onz79wQcffPvtt0SkDT1knmzc9zEFiemxY8cUCiuVTDrFuPL4Aw67PbdSVClQXpSSF+8WFgxjoyOYls1mWLcePBhmPMnCwSo+Pv6IIEiTeuSzaeWLDKuVMfH1qVMM0I5ZRNuBUEi4ZdLDH/KS4EquSBlQaA/kmRghhnkGeVHbCmxE5YBMq51Aa9YCIsMeUr5QbYpkbIntC/lnXlwMR8MvTYvmRfPI8H2zwwOvTKQPx4afz8wVyxWbzal9NN7sY85arcakta2DbYCSA6HwjQHn2Q5ICu4cTVmkUh6REKQ16xMzgRrnJlhTtzO5XB5Jl9s9OzeXTKbYoEEqk2coFDQZjZwHHb6wZeTyk//5my//5a+NJ/+ulElr7V9D1kL61YzYPVDS3RQScfa97Obz+XyOiMorFYW88rmmIJfj/1TxVHuWz8vxUYisZ45ocpDgKZsjRkZ6B3/FDZpZ3eX0trK6GltaisVilMuVSpxNTizuenzzy38+cvefjpz9x79YiUXVRhuAwq1niV0BJV1MIXFn/rx///7LuVkILFfWVldWYKhQWFHj8xrrVVbTarUm/CHGJM8mQqZryTmdOQ45MpNfvPi/TruNsx5EJuJxhX+1raZzx4hM3nn0H0dqZ46E/vtIMtg4M/+5Uwg4TX56/PjTJ4+XolGO0myA7TbLS4MJd1YzmYmzZ5/+8Y+lUpHjNdOdy+U2GRc8gfDAwL1Tp06p22CFObYhwpykI1du2c4ofxbTZpmYnGDPYrXbORqlsjkl8LtBMeqJDZ4IDX4WuHeqmN/4+6ivsT4zM6M50xFQ0d0UEveBgQFoIBa1uu/w2C+Onzjx0W9+c+XqVfYXDPb6rwrINgLHalfPnCikwLaL3SL7Sb/frzXYJ7CCMuX6/b54IsEs63A62ZFevnQJF+hUDNgtUNvdFErScETZRNGrV8uRyMDnn//9e+/d6u+X1xTqv/jmeErbeuYEwh8DgvmZyZaDkNbgNTKZNLlL81QyyS0C3JoWOdpqsKlQf79gcTqVryZYg6UtWKuUvW6XwWTyeNwzU8o+qFha4+y0l6MharubQtLoq69OTk4+83vdTreHjT5zo9PjZcr6z9/+9tJ332Vfb0l8HqfyKq7BuJxfGRwcPHfuHG01LSrgT74DmVD/ROXx48eDwWAuk+S8wKHe43It2uyPxkcfjIwlUpkXUxMer39s9KdHT55OTjy+ePly363+27dvn7946cHY+K07N2/d6e/vH7C7vC6nUwxogAys9fXaw4edL4QAJV1P4ddfn56aep5JJwk052jlE/WQsmsovX7NS8CKuBSNsHNJpJY5ip0/f55U07SoGanzR5mc+PzzzwMB/+pKgR1mNBIyGhfROzk58XJ+IRyJ2m1WtjeTE8/m5udJqempqekXszPqN0oms2V+YX5qmona4HJ7WlGoA5PoUbNj90BDd1MIxscfygf29eDQxtTKSKcg0CdSKtm/1M+iwhn8cdWjyUS69fcMHCHcbrfdZpMjI2dBj9vt8SjfyQSUby387GDZOvl98iWGH8M419B1K2AYo/DPnULAvMfas7S0VFZRqVTgiavy5/waoQgY1L+oKG2b8ieghh1/PcgYtkKyG9Jv51pDl2yFhsm8A7wNFJJMTIl3797lYI4XlUqZwx8HwcKK9nrgVrDLGB0dpS2cMXPCH7Po1lRAM5UHDa2zToE7XU8hUE6Hn34KGXixUshxniMB4smWn62QslBI+IQ/knjvofy5gDtvA4Wc7dhksr9XCWKbJ/9uoLZeSy5n1l6/BE0WjoyMkLvdzh/AnbeBQsDa5tr8O65KuQxDi2ZzLBrLV3LvP3h3IqykKWCJkvUP7vVNTZcCd94GCtkU/P73X7LF5wDA/lD51lj9O6W3bt/MFkpjI2OffHHsxId/+e0//G1w6MHaq1d3B+5duXIFgW7nD7wlFDIlav8t0Xw+lUyFw8p/uclgMD5+8jieTD99/OzytcvHzv7V9c/+K2m2cra4d2/wwoULLIRa+27GW0IhycSUyNkML3RwrgiFQlRyMuN2Njmcqmrf/7Fqsv69BSkIcOdtoJAjwa3btxcW5kvFlVQqXSyWKmvat0I+n285p1BYD9mRao27HLjzNlDIqnb06NHpqamlsH92dm52dmZ0/FE2txIMBtjjkHO1zT/u6lF46EAW9vX1LSwsqAQpWFF/9sdc6nQ60+nG1x1sNluPwsMFWQvJrfhrJJNJ+c8qpNQ/WEC5HrPqj4G1xl2Ot4RCATuUsZ2hq8/yDXirKPzzRI/CrkePwq5Hj8KuR4/CrkePwq5Hj8KuR4/CrkePwq5Hj8KuR4/CrkePwq5Hj8KuR4/CrkePwq5Hj8KuR4/CrkePwq5Hj8KuR4/CrkePwq5Hj8KuxyYKe+hSaBT20MU4cuT/AUWzWRnuDqTOAAAAAElFTkSuQmCC