import numpy as np
import plotly.graph_objects as go
from math import *
import mpmath
from ipywidgets import interact, widgets, Text, Layout
from plotly.subplots import make_subplots
# Input field for formula
formula = widgets.Text(
value='(1-cos(((4)/2)*x))/2',
layout=widgets.Layout(width='100%'),
description='⚪ᗩ⚪ᙁ⚪ᑎ⚪ᙏ⚪ᴥ⚪Ⓞ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪Ⓞ⚪ᴥ⚪ᙏ⚪ᑎ⚪ᙁ⚪ᗩ⚪'
)
RANGE_FROM_SLIDER = widgets.FloatSlider(
min=-4*(4*atan(1)),
max=4*(4*atan(1)),
value=-2*(4*atan(1)),
step=(4*atan(1))/4,
layout=widgets.Layout(width='100%'),
readout_format='.256f',
description='⚪ᙏ⚪Ⓞ⚪ᴥ⚪ꗳ⚪◯⚪ᗱᗴ⚪ᕤᕦ⚪ИN⚪ᗩ⚪ᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥ⚪ᗩ⚪ИN⚪ᕤᕦ⚪ᗱᗴ⚪◯⚪ꗳ⚪ᴥ⚪Ⓞ⚪ᙏ⚪'
)
RANGE_TO_SLIDER = widgets.FloatSlider(
min=-4*(4*atan(1)),
max=4*(4*atan(1)),
value=2*(4*atan(1)),
step=(4*atan(1))/4,
layout=widgets.Layout(width='100%'),
readout_format='.256f',
description='⚪Ⓞ⚪✤⚪◯⚪ᗱᗴ⚪ᕤᕦ⚪ИN⚪ᗩ⚪ᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥ⚪ᗩ⚪ИN⚪ᕤᕦ⚪ᗱᗴ⚪◯⚪✤⚪Ⓞ⚪'
)
N_slider = widgets.IntSlider(
min=1,
max=16,
value=8,
layout=widgets.Layout(width='100%'),
readout_format='.256f',
description='⚪ᴥ⚪ᗱᗴ⚪ᗯ⚪Ⓞ⚪ߦ⚪◯⚪ᴥ⚪ᗱᗴ⚪⚭⚪ᙏ⚪ᑎ⚪ИN⚪◯⚪✤⚪ИN⚪ꖴ⚪Ⓞ⚪ᑫᑭ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑫᑭ⚪Ⓞ⚪ꖴ⚪ИN⚪✤⚪◯⚪ИN⚪ᑎ⚪ᙏ⚪⚭⚪ᗱᗴ⚪ᴥ⚪◯⚪ߦ⚪Ⓞ⚪ᗯ⚪ᗱᗴ⚪ᴥ⚪'
)
O_REDILS_1_W_O_W_1_SLIDER_O = widgets.FloatSlider(
min=-2,
max=2,
value=1,
step=1/256,
layout=widgets.Layout(width='100%'),
readout_format='.256f',
description='⚪·⚪◯⚪ᗱᗴ⚪ᙁ⚪⚭⚪ᗩ⚪ꖴ⚪ᴥ⚪ᗩ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪ᗩ⚪ᴥ⚪ꖴ⚪ᗩ⚪⚭⚪ᙁ⚪ᗱᗴ⚪◯⚪·⚪'
)
O_REDILS_2_W_O_W_2_SLIDER_O=widgets.FloatSlider(
min=-2,
max=2,
value=1,
step=1/256,
layout=widgets.Layout(width='100%'),
readout_format='.256f',
description='⚪꞉⚪◯⚪ᗱᗴ⚪ᙁ⚪⚭⚪ᗩ⚪ꖴ⚪ᴥ⚪ᗩ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪ᗩ⚪ᴥ⚪ꖴ⚪ᗩ⚪⚭⚪ᙁ⚪ᗱᗴ⚪◯⚪꞉⚪'
)
def clamp(x):
return max(min(1, x), -1)
def compute(formula, x, variable1, variable2):
func_dict = {fn: eval(f'lambda *args:mpmath.{fn}(*args)') for fn in dir(mpmath)}
return float(eval(formula, {'x': x, 'O_1_W_O_W_1_O': variable1, 'O_2_W_O_W_2_O': variable2, 'clamp': clamp, **func_dict}))
def plot(formula='1.4795/O_2_W_O_W_2_O-((x)/(4*atan(1)*O_1_W_O_W_1_O/2*O_2_W_O_W_2_O))*1.4795', RANGE_FROM=0*(4*atan(1)), RANGE_TO=4*(4*atan(1)), N=8, O_1_W_O_W_1_O=1, O_2_W_O_W_2_O=1):
num_points = 1 + 2**N
x_vals = np.linspace(RANGE_FROM, RANGE_TO, num_points)
kappa_vals = np.array([compute(formula, x_val, O_1_W_O_W_1_O, O_2_W_O_W_2_O) for x_val in x_vals])
theta_vals = np.cumsum(kappa_vals) * (x_vals[1] - x_vals[0]) if num_points > 1 else np.array([0])
x_coords_ = np.cumsum(np.cos(theta_vals)) * (x_vals[1] - x_vals[0]) if num_points > 1 else np.array([0])
y_coords_ = np.cumsum(np.sin(theta_vals)) * (x_vals[1] - x_vals[0]) if num_points > 1 else np.array([0])
if x_coords_[0] != 0 or y_coords_[0] != 0:
x_coords = np.insert(x_coords_, 0, 0)
y_coords = np.insert(y_coords_, 0, 0)
else:
x_coords = x_coords_
y_coords = y_coords_
y_vals = [compute(formula, x_val, O_1_W_O_W_1_O, O_2_W_O_W_2_O) for x_val in x_vals]
# Determine maximum range for consistency across all charts
min_x_range = min(map(min, [x_coords, x_vals]))
min_y_range = min(map(min, [y_coords, y_vals]))
max_x_range = max(map(max, [x_coords, x_vals]))
max_y_range = max(map(max, [y_coords, y_vals]))
# Create and display the first plot
fig1 = go.Figure()
fig1.add_trace(go.Scatter(x=x_coords, y=y_coords, mode='lines', line=dict(color='#CECECE'), name='', hovertemplate='X:%{x:.256f}' + '
Y:%{y:.256f}'))
fig1.update_layout(
autosize=True,
margin=dict(
l=0, # left margin
r=0, # right margin
b=0, # bottom margin
t=0, # top margin
pad=0 # padding
),
height=512,
xaxis=dict(scaleanchor='y', scaleratio=1, gridcolor='#CECECE',zeroline=True, zerolinecolor='#CECECE', tickfont=dict(color='#9C9C9C',size=16)),
yaxis=dict(gridcolor='#CECECE',zeroline=True, zerolinecolor='#CECECE',tickfont=dict(color='#9C9C9C',size=16)),
hoverlabel=dict(bgcolor="#FFFFFF", font_color='#9C9C9C', bordercolor="#CECECE",font_size=16), plot_bgcolor='#FFFFFF'
)
fig1.update_xaxes(range=[min_x_range, max_x_range])
fig1.update_yaxes(range=[min_y_range, max_y_range])
fig1.show()
# Create and display the second plot
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=x_vals, y=y_vals, mode='lines', line=dict(color='#CECECE'), name='', hovertemplate='X:%{x:.256f}' + '
Y:%{y:.256f}'))
fig2.update_layout(
autosize=True,
margin=dict(
l=0, # left margin
r=0, # right margin
b=0, # bottom margin
t=0, # top margin
pad=0 # padding
),
height=512,
xaxis=dict(scaleanchor='y', scaleratio=1, gridcolor='#CECECE',zeroline=True,zerolinecolor='#CECECE',tickfont=dict(color='#9C9C9C',size=16)),
yaxis=dict(gridcolor='#CECECE',zeroline=True, zerolinecolor='#CECECE',tickfont=dict(color='#9C9C9C',size=16)),
hoverlabel=dict(bgcolor="#FFFFFF", font_color='#9C9C9C', bordercolor="#CECECE",font_size=16), plot_bgcolor='#FFFFFF'
)
fig2.update_xaxes(range=[min_x_range, max_x_range])
fig2.update_yaxes(range=[min_y_range, max_y_range])
fig2.show()
interact(plot,formula=formula,RANGE_FROM=RANGE_FROM_SLIDER,RANGE_TO=RANGE_TO_SLIDER,N=N_slider,O_1_W_O_W_1_O=O_REDILS_1_W_O_W_1_SLIDER_O,O_2_W_O_W_2_O=O_REDILS_2_W_O_W_2_SLIDER_O);