-
0
2
2
-
1
0
7
- 0141bd6a-9454-4dc0-8c73-3979d84677f6
- Shaded
- 0
-
255;217;217;217
-
255;207;207;207
- 637917650197246944
- XHG.⠀⠀⠀⠀ⵙИNⵙⓄⵙᔓᔕⵙꖴⵙᴥⵙᗩⵙߦⵙᙏⵙⓄⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙᗩⵙᴥⵙᗱᗴⵙ✤ⵙꖴⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙᗱᗴⵙᙁⵙ✤ⵙᴥⵙᑎⵙ✤ⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙ✤ⵙᑎⵙᴥⵙ✤ⵙᙁⵙᗱᗴⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙꖴⵙ✤ⵙᗱᗴⵙᴥⵙᗩⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙⓄⵙᙏⵙߦⵙᗩⵙᴥⵙꖴⵙᔓᔕⵙⓄⵙИNⵙ⠀⠀⠀⠀.GHX
- 0
-
-2933
2640
- 0.736150146
- 0
- 0
- 2
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- Heteroptera, Version=0.7.2.4, Culture=neutral, PublicKeyToken=null
- 0.7.2.4
- Amin Bahrami [Studio Helioripple]
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- Heteroptera
- 0.7.2.4
- 918
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ac0563c4-269d-48f2-89e5-9a7e37533987
- b883c1db-e29a-419a-b27d-3b96c2dc49e7
- 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
- 0d292809-70fb-4714-b8b2-a4596f68805b
- 04b97450-c000-42e5-b63f-6bbaaadb98c0
- af76057b-70c5-4de0-822b-c12366bb72b7
- 6
- 5fe594b6-2c64-43cd-90e0-283742d5e25d
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 08c21db0-e294-4d35-b427-295e2bca8d25
- 1b305121-20a8-4f71-a8a4-f82ca0722c55
- c9cbf642-d6b2-483e-a764-4c29904a12e2
- 8a30de04-d86f-4ebf-88d4-62eba780928a
- ae3f2420-9704-498d-850c-ca28fe138783
- 7ab314cb-067f-4bd5-a6ec-83e62b45e892
- fe23f036-7c14-45f0-96b8-41f076f4d4c3
- 97046d4d-bee4-43cb-b58d-50c530c4704a
- bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
- 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
- b3a26ec3-225e-4749-9a1f-d5f47e692ae6
- 0051b812-f1a7-4227-a6b0-0fe8d3e93817
- cffe417a-70fa-4fe7-b301-c33b00e0067e
- 52267b50-1f37-44ac-be6d-01357b9b1067
- 27480f60-8e25-4221-a310-6e3b1ee2be45
- f74aec3b-86bd-4ed7-9020-9f2d86c45dd0
- 0848c2e1-bf66-439b-86d3-98f687a0e949
- b8b2549f-b370-49e7-bfa1-b0006b67c848
- cdaf463b-e347-48f5-833f-a1e0838e3931
- 3dbe5a4f-9520-461c-b7a9-55161e8424fa
- a6053e60-d038-433b-a2fc-6eb3aece1ec1
- 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
- 251642cc-53d1-4155-b8f9-31b81b470402
- 45fa6e2b-7726-4ce3-b5ad-b8bca22253b0
- d781137a-8110-4106-a4c8-0c2474e530da
- df5a1603-3787-4e24-8583-d12d307fd6fd
- 7bc34872-6323-4903-9256-fff4bb1813a5
- eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
- 246ad2c1-626a-454f-9aa8-bbafcd899aed
- 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
- 9e6ecb05-d56c-432f-af9b-825392b28a58
- 7cc4addf-023b-44f8-a4af-916931180c33
- 15dddce0-0e1b-4a30-bce0-f450d57b1564
- c4021ab4-235a-4b82-96c5-ab6df1d33381
- 9932a4f2-08f3-4e18-b948-51507591c861
- f46ed69f-b1eb-4476-b946-8f8cabd86dad
- 1eca1c19-a8f4-49cd-9222-51d85b78d014
- ddfc10a5-d2cd-4fa3-bb6d-b967aa1f7b45
- e5cfd78e-6de5-4679-ad21-f5b87fe45130
- 4f3aa960-fddc-4094-a378-3c820581d11e
- aa3317fe-01e5-49e4-a4a0-545f18f9a6fe
- e0c44022-95ec-431a-b6ac-3c9b92814529
- 8fbaba83-827d-4344-aac8-13d1142d93a0
- 3d81ae53-2d90-4091-8fdb-880e28db7265
- fd185e0b-5eff-4ceb-89d0-899b754ee2c5
- 2d2c9a13-6f18-4b63-b16b-982f5f207b1d
- 023d6ed4-d8cf-4983-97c4-e762f533d605
- f994613c-79e3-4423-a1c7-5941f394260b
- 6656a797-31bc-4afa-b33c-41944efe32e3
- bf5d5229-bc45-49d0-8f32-31b60e0aec6e
- 1549ecf8-8453-4a13-9f8c-4ad9aaeed473
- 03f97897-283b-4634-86b0-431945f07618
- b4622cd9-013d-4e09-ad4a-06ee6e3b6af3
- 4bb07e56-0cd3-4737-a6d3-d621d22da99e
- 67f6db11-1233-4a02-b46a-f4fe966e1889
- 26d9c13f-79ff-4367-baad-c775d2229988
- f4161164-94c0-4338-9747-25ef6aee8e11
- 1001b801-f1f0-43e1-92c0-e39a6260a7a7
- f71a0d4d-671e-4330-a6e7-80d35dd45d24
- f4a6511e-2fa9-4adc-845c-882c5823e3cf
- 0c9278c9-41ff-4720-aab1-bab44aeb2749
- 710ff60f-7299-433f-bde9-7885ee19b9ca
- 62
- c3ee1515-27ed-4423-a768-cd9cbd0b57b5
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 3dbe5a4f-9520-461c-b7a9-55161e8424fa
- 1
- 08c21db0-e294-4d35-b427-295e2bca8d25
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c9cbf642-d6b2-483e-a764-4c29904a12e2
- 8a30de04-d86f-4ebf-88d4-62eba780928a
- ae3f2420-9704-498d-850c-ca28fe138783
- 7ab314cb-067f-4bd5-a6ec-83e62b45e892
- fe23f036-7c14-45f0-96b8-41f076f4d4c3
- 97046d4d-bee4-43cb-b58d-50c530c4704a
- bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
- 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
- 0051b812-f1a7-4227-a6b0-0fe8d3e93817
- b3a26ec3-225e-4749-9a1f-d5f47e692ae6
- 08c21db0-e294-4d35-b427-295e2bca8d25
- 0c9278c9-41ff-4720-aab1-bab44aeb2749
- 710ff60f-7299-433f-bde9-7885ee19b9ca
- 13
- 1b305121-20a8-4f71-a8a4-f82ca0722c55
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- c9cbf642-d6b2-483e-a764-4c29904a12e2
- Duplicate Data
- Duplicate Data
-
3753
11542
104
64
-
3812
11574
- 1
- Data to duplicate
- f6819fc8-b1f2-44ff-9a8f-547bf101dc5d
- Data
- Data
- false
- 741061e5-8838-40ff-af91-077bcc0dd190
- 1
-
3755
11544
42
20
-
3777.5
11554
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- 8f7b417d-7852-4ac9-bd3a-6dbdb1ad230a
- Number
- Number
- false
- 26d9c13f-79ff-4367-baad-c775d2229988
- 1
-
3755
11564
42
20
-
3777.5
11574
- 1
- 1
- {0}
- 500
- Retain list order
- 037e5528-5ac9-406e-9d23-c593b1abd4d7
- Order
- Order
- false
- 0
-
3755
11584
42
20
-
3777.5
11594
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 468310c5-beed-4a8e-85fc-148aedb5d5f7
- Data
- Data
- false
- 0
-
3827
11544
28
60
-
3842.5
11574
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 8a30de04-d86f-4ebf-88d4-62eba780928a
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
3748
10583
116
44
-
3809
10605
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- a65b3e85-d2df-49dd-9087-77e2bf89e8cd
- Forward
- Forward
- true
- 1
- true
- 468310c5-beed-4a8e-85fc-148aedb5d5f7
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
3750
10585
44
20
-
3773.5
10595
- 1
- false
- Script Variable Left
- 04d40d0e-549e-482e-b755-9938e1664249
- Left
- Left
- true
- 1
- true
- f4a6511e-2fa9-4adc-845c-882c5823e3cf
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
3750
10605
44
20
-
3773.5
10615
- Print, Reflect and Error streams
- 44e19548-7cb3-449b-80a4-2380800e030e
- Output
- Output
- false
- 0
-
3824
10585
38
20
-
3844.5
10595
- Output parameter Points
- 210595a4-1d10-4344-bd58-627eab3a32ef
- Points
- Points
- false
- 0
-
3824
10605
38
20
-
3844.5
10615
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- ae3f2420-9704-498d-850c-ca28fe138783
- Point
- Point
- false
- 55afe88e-7557-479e-9e1c-b4203f6192a6
- 1
-
3776
10371
50
24
-
3801
10383.22
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 7ab314cb-067f-4bd5-a6ec-83e62b45e892
- Series
- Series
-
3756
11051
101
64
-
3806
11083
- First number in the series
- f36fe072-babf-42c1-b82b-3e41dab5c16e
- Start
- Start
- false
- 0
-
3758
11053
33
20
-
3776
11063
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 571955aa-1291-494f-aa76-8259884bccbd
- Step
- Step
- false
- c489cc86-c206-4031-ad44-eecb7d194733
- 1
-
3758
11073
33
20
-
3776
11083
- 1
- 1
- {0}
- 1
- Number of values in the series
- f301e105-e974-4f41-9aab-3224d38c3f3f
- Count
- Count
- false
- 26d9c13f-79ff-4367-baad-c775d2229988
- 1
-
3758
11093
33
20
-
3776
11103
- 1
- Series of numbers
- 5ee66eb4-ccfc-4657-a144-114058b11774
- Series
- Series
- false
- 0
-
3821
11053
34
60
-
3839.5
11083
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- fe23f036-7c14-45f0-96b8-41f076f4d4c3
- Number Slider
-
- false
- 0
-
3732
11713
150
20
-
3732.29
11713.13
- 0
- 1
- 0
- 65536
- 0
- 0
- 256
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 97046d4d-bee4-43cb-b58d-50c530c4704a
- Radians
- Radians
-
3746
11176
120
28
-
3807
11190
- Angle in degrees
- 2b5d6a5e-095e-45f9-b258-8ca7130cda3a
- Degrees
- Degrees
- false
- 80d6a883-8558-4a4b-bb1b-d14373512a75
- 1
-
3748
11178
44
24
-
3771.5
11190
- Angle in radians
- c489cc86-c206-4031-ad44-eecb7d194733
- Radians
- Radians
- false
- 0
-
3822
11178
42
24
-
3844.5
11190
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00000007490
-
3679
11507
250
20
-
3679.252
11507.02
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- b3a26ec3-225e-4749-9a1f-d5f47e692ae6
- Interpolate (t)
- Interpolate (t)
-
3733
10084
144
84
-
3819
10126
- 1
- Interpolation points
- 89e19858-663c-4637-8f9e-c5048c966d24
- Vertices
- Vertices
- false
- 4227074c-5231-425a-b277-d5164885ffc0
- 1
-
3735
10086
69
20
-
3771
10096
- Tangent at start of curve
- 63814256-86b6-442c-ada6-70ff28d01590
- Tangent Start
- Tangent Start
- false
- 0
-
3735
10106
69
20
-
3771
10116
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- f46582bf-595f-4a7e-916d-da420a11b0d3
- Tangent End
- Tangent End
- false
- 0
-
3735
10126
69
20
-
3771
10136
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- c2b86664-6e49-4126-8fba-abcebb7b7c28
- KnotStyle
- KnotStyle
- false
- 0
-
3735
10146
69
20
-
3771
10156
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 9b548d52-14a3-4819-ba2a-bb66575cdbd7
- Curve
- Curve
- false
- 0
-
3834
10086
41
26
-
3856
10099.33
- Curve length
- 2041db34-fcc7-4954-9c1a-f34b98c0b642
- Length
- Length
- false
- 0
-
3834
10112
41
27
-
3856
10126
- Curve domain
- 603e7e72-0ea2-4f95-a009-61e36cdef3fb
- Domain
- Domain
- false
- 0
-
3834
10139
41
27
-
3856
10152.67
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c9cbf642-d6b2-483e-a764-4c29904a12e2
- 8a30de04-d86f-4ebf-88d4-62eba780928a
- ae3f2420-9704-498d-850c-ca28fe138783
- 7ab314cb-067f-4bd5-a6ec-83e62b45e892
- fe23f036-7c14-45f0-96b8-41f076f4d4c3
- 97046d4d-bee4-43cb-b58d-50c530c4704a
- bbef6bf9-0dd2-4946-a0e2-d0d2da526ecb
- 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
- a598cad4-d1e2-46ad-bc9b-a7dbf66bbaf0
- 9
- 0051b812-f1a7-4227-a6b0-0fe8d3e93817
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- cffe417a-70fa-4fe7-b301-c33b00e0067e
- Evaluate Length
- Evaluate Length
-
3733
9916
144
64
-
3807
9948
- Curve to evaluate
- 36831cd5-ce3f-4885-8d10-051b05506f8c
- Curve
- Curve
- false
- 9b548d52-14a3-4819-ba2a-bb66575cdbd7
- 1
-
3735
9918
57
20
-
3765
9928
- Length factor for curve evaluation
- bb6aac52-fd26-401a-a275-9eaab033b5b3
- Length
- Length
- false
- 0
-
3735
9938
57
20
-
3765
9948
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- a741c6a7-7efc-4b50-a64f-ee96190b508d
- Normalized
- Normalized
- false
- 0
-
3735
9958
57
20
-
3765
9968
- 1
- 1
- {0}
- true
- Point at the specified length
- 21c07a27-cbbc-4431-98a6-86cbd91ac3d5
- Point
- Point
- false
- 0
-
3822
9918
53
20
-
3850
9928
- Tangent vector at the specified length
- a73921d2-6c5b-4578-8997-7788e8c96ca7
- Tangent
- Tangent
- false
- 0
-
3822
9938
53
20
-
3850
9948
- Curve parameter at the specified length
- 1972eecd-2e1f-43d4-b3fd-c1e703ca4bd4
- Parameter
- Parameter
- false
- 0
-
3822
9958
53
20
-
3850
9968
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 52267b50-1f37-44ac-be6d-01357b9b1067
- Mirror
- Mirror
-
3736
9854
138
44
-
3804
9876
- Base geometry
- db90bb81-7d20-4959-8f64-facad32f22df
- Geometry
- Geometry
- true
- 9b548d52-14a3-4819-ba2a-bb66575cdbd7
- 1
-
3738
9856
51
20
-
3765
9866
- Mirror plane
- c633a089-ff60-479b-aa83-059e8a9de6c2
- Plane
- Plane
- false
- 041ebd5e-27e5-419f-8b6b-d2d30b24a07f
- 1
-
3738
9876
51
20
-
3765
9886
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- e22dc444-a9d6-4ca1-9fa8-bdec4f0867a8
- Geometry
- Geometry
- false
- 0
-
3819
9856
53
20
-
3847
9866
- Transformation data
- 0d981e75-a6c6-426e-9af5-dd630e2c9c50
- Transform
- Transform
- false
- 0
-
3819
9876
53
20
-
3847
9886
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 27480f60-8e25-4221-a310-6e3b1ee2be45
- Line SDL
- Line SDL
-
3752
10000
106
64
-
3816
10032
- Line start point
- 9435c587-f8a3-4ee7-af5c-c925682cee23
- Start
- Start
- false
- 21c07a27-cbbc-4431-98a6-86cbd91ac3d5
- 1
-
3754
10002
47
20
-
3779
10012
- Line tangent (direction)
- cb0d6e85-ef16-4930-ab65-f2d1d6efffae
- Direction
- Direction
- false
- a73921d2-6c5b-4578-8997-7788e8c96ca7
- 1
-
3754
10022
47
20
-
3779
10032
- 1
- 1
- {0}
-
0
0
1
- Line length
- 71a7c7bd-28e6-4e04-9b06-2b918de9412e
- Length
- Length
- false
- 0
-
3754
10042
47
20
-
3779
10052
- 1
- 1
- {0}
- 1
- Line segment
- 041ebd5e-27e5-419f-8b6b-d2d30b24a07f
- Line
- Line
- false
- 0
-
3831
10002
25
60
-
3845
10032
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- f74aec3b-86bd-4ed7-9020-9f2d86c45dd0
- Join Curves
- Join Curves
-
3746
9792
118
44
-
3809
9814
- 1
- Curves to join
- b82b3fc4-811b-4ddd-90d1-651c5037ce16
- Curves
- Curves
- false
- 9b548d52-14a3-4819-ba2a-bb66575cdbd7
- e22dc444-a9d6-4ca1-9fa8-bdec4f0867a8
- 2
-
3748
9794
46
20
-
3772.5
9804
- Preserve direction of input curves
- 82ccedbd-3560-494e-ab3a-2668d3290635
- Preserve
- Preserve
- false
- 0
-
3748
9814
46
20
-
3772.5
9824
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
- Curves
- Curves
- false
- 0
-
3824
9794
38
40
-
3844.5
9814
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 0848c2e1-bf66-439b-86d3-98f687a0e949
- Evaluate Length
- Evaluate Length
-
3733
9708
144
64
-
3807
9740
- Curve to evaluate
- 6eae68a9-0706-4499-94d5-83cec498962e
- Curve
- Curve
- false
- 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
- 1
-
3735
9710
57
20
-
3765
9720
- Length factor for curve evaluation
- 2e44d124-9fe8-4adf-837b-0e8d7770d3a4
- Length
- Length
- false
- 0
-
3735
9730
57
20
-
3765
9740
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- bb709d96-3bb8-459f-9a73-a2dd1f7ca919
- Normalized
- Normalized
- false
- 0
-
3735
9750
57
20
-
3765
9760
- 1
- 1
- {0}
- true
- Point at the specified length
- f830c52b-87b1-402a-9614-611f344646c9
- Point
- Point
- false
- 0
-
3822
9710
53
20
-
3850
9720
- Tangent vector at the specified length
- 7f8a83a8-5f73-4cfd-88a5-47b4623c7553
- Tangent
- Tangent
- false
- 0
-
3822
9730
53
20
-
3850
9740
- Curve parameter at the specified length
- 0abc1d7f-4fbe-4f0f-a099-fc37d0dd711c
- Parameter
- Parameter
- false
- 0
-
3822
9750
53
20
-
3850
9760
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- b8b2549f-b370-49e7-bfa1-b0006b67c848
- Rotate
- Rotate
-
3736
9625
138
64
-
3804
9657
- Base geometry
- c9538d5a-d62c-427f-9764-0f36f1785c17
- Geometry
- Geometry
- true
- 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
- 1
-
3738
9627
51
20
-
3765
9637
- Rotation angle in radians
- ae02de00-9686-41d5-8eb6-3a83bc8ed4c3
- Angle
- Angle
- false
- 0
- false
-
3738
9647
51
20
-
3765
9657
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 8891a7b9-2ecb-4f15-8078-2f6543e2f517
- Plane
- Plane
- false
- f830c52b-87b1-402a-9614-611f344646c9
- 1
-
3738
9667
51
20
-
3765
9677
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- a187d6f7-901e-4a57-b81c-57887296ebac
- Geometry
- Geometry
- false
- 0
-
3819
9627
53
30
-
3847
9642
- Transformation data
- 5f726ff3-988a-49ad-ad7b-a7b04291f074
- Transform
- Transform
- false
- 0
-
3819
9657
53
30
-
3847
9672
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- cdaf463b-e347-48f5-833f-a1e0838e3931
- Join Curves
- Join Curves
-
3746
9562
118
44
-
3809
9584
- 1
- Curves to join
- 5e8128e5-ee67-4aa0-a4c3-88ffd5bcc4b0
- Curves
- Curves
- false
- 3c048d0f-fb0a-445a-bf0e-7ba1c88f33c6
- a187d6f7-901e-4a57-b81c-57887296ebac
- 2
-
3748
9564
46
20
-
3772.5
9574
- Preserve direction of input curves
- 2711cd83-77fd-4c8f-a65a-4e0a2e0dc14e
- Preserve
- Preserve
- false
- 0
-
3748
9584
46
20
-
3772.5
9594
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 4017acfc-c5f4-4360-88a0-fb30d36f6d78
- Curves
- Curves
- false
- 0
-
3824
9564
38
40
-
3844.5
9584
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b3a26ec3-225e-4749-9a1f-d5f47e692ae6
- cffe417a-70fa-4fe7-b301-c33b00e0067e
- 52267b50-1f37-44ac-be6d-01357b9b1067
- 27480f60-8e25-4221-a310-6e3b1ee2be45
- f74aec3b-86bd-4ed7-9020-9f2d86c45dd0
- 0848c2e1-bf66-439b-86d3-98f687a0e949
- b8b2549f-b370-49e7-bfa1-b0006b67c848
- cdaf463b-e347-48f5-833f-a1e0838e3931
- 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
- 9
- 3dbe5a4f-9520-461c-b7a9-55161e8424fa
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a6053e60-d038-433b-a2fc-6eb3aece1ec1
- Panel
- false
- 0
- c4021ab4-235a-4b82-96c5-ab6df1d33381
- 1
- Double click to edit panel content…
-
3734
11143
145
20
- 0
- 0
- 0
-
3734.636
11143.07
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
- Curve
- Curve
- false
- 4017acfc-c5f4-4360-88a0-fb30d36f6d78
- 1
-
3781
9526
50
24
-
3806
9538.229
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
- 1
- 251642cc-53d1-4155-b8f9-31b81b470402
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 45fa6e2b-7726-4ce3-b5ad-b8bca22253b0
- Panel
- false
- 0
- 0
- 0.0013733120705119695*4*4
-
3679
11224
270
20
- 0
- 0
- 0
-
3679.058
11224.45
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- d781137a-8110-4106-a4c8-0c2474e530da
- Evaluate Length
- Evaluate Length
-
3733
9436
144
64
-
3807
9468
- Curve to evaluate
- da37fb64-e77e-4a2d-924b-23ca4c904224
- Curve
- Curve
- false
- 4017acfc-c5f4-4360-88a0-fb30d36f6d78
- 1
-
3735
9438
57
20
-
3765
9448
- Length factor for curve evaluation
- a6fe7665-8f4a-4cd5-85cf-7d138589a5b9
- Length
- Length
- false
- 0
-
3735
9458
57
20
-
3765
9468
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 1a0d7c8a-363c-4122-a7e8-3a7c3d64ed66
- Normalized
- Normalized
- false
- 0
-
3735
9478
57
20
-
3765
9488
- 1
- 1
- {0}
- true
- Point at the specified length
- 986c4b35-a986-44fc-8e63-19818b969ef1
- Point
- Point
- false
- 0
-
3822
9438
53
20
-
3850
9448
- Tangent vector at the specified length
- 467250fb-c2ee-4395-a784-3b2a6e77c311
- Tangent
- Tangent
- false
- 0
-
3822
9458
53
20
-
3850
9468
- Curve parameter at the specified length
- 87637400-23b3-4ce0-8fb9-b343ee2f4929
- Parameter
- Parameter
- false
- 0
-
3822
9478
53
20
-
3850
9488
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- df5a1603-3787-4e24-8583-d12d307fd6fd
- Expression
- Expression
-
3708
9214
194
28
-
3808
9228
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d89d4e08-6bb2-4021-97b4-45f716dc8e06
- Variable O
- O
- true
- 2cb656a4-ec06-49b9-bc58-dd7978dd5c78
- 1
-
3710
9216
14
24
-
3718.5
9228
- Result of expression
- 4eeb0406-147e-494d-8c8b-39fadcc20a85
- Result
-
- false
- 0
-
3891
9216
9
24
-
3897
9228
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 7bc34872-6323-4903-9256-fff4bb1813a5
- Deconstruct
- Deconstruct
-
3739
9348
132
64
-
3786
9380
- Input point
- 4c2d1f58-61fa-422e-b418-3c089d3cb1aa
- Point
- Point
- false
- 986c4b35-a986-44fc-8e63-19818b969ef1
- 1
-
3741
9350
30
60
-
3757.5
9380
- Point {x} component
- 2cb656a4-ec06-49b9-bc58-dd7978dd5c78
- X component
- X component
- false
- 0
-
3801
9350
68
20
-
3836.5
9360
- Point {y} component
- ac5c5633-dc00-4f66-a7fb-ec888daf42c6
- Y component
- Y component
- false
- 0
-
3801
9370
68
20
-
3836.5
9380
- Point {z} component
- c038d9c9-0abd-42bf-bfaa-b0f00cc970c6
- Z component
- Z component
- false
- 0
-
3801
9390
68
20
-
3836.5
9400
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
- Panel
- false
- 0
- 4eeb0406-147e-494d-8c8b-39fadcc20a85
- 1
- Double click to edit panel content…
-
3726
9182
160
20
- 0
- 0
- 0
-
3726.494
9182.221
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 246ad2c1-626a-454f-9aa8-bbafcd899aed
- Expression
- Expression
-
3708
9128
194
28
-
3808
9142
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 395f3c98-8f99-4d40-bf35-0d57d56e1171
- Variable O
- O
- true
- ac5c5633-dc00-4f66-a7fb-ec888daf42c6
- 1
-
3710
9130
14
24
-
3718.5
9142
- Result of expression
- c5e2889d-482a-4d51-943d-fb7409a75bd4
- Result
-
- false
- 0
-
3891
9130
9
24
-
3897
9142
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
- Panel
- false
- 0
- c5e2889d-482a-4d51-943d-fb7409a75bd4
- 1
- Double click to edit panel content…
-
3726
9093
160
20
- 0
- 0
- 0
-
3726.494
9093.797
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 9e6ecb05-d56c-432f-af9b-825392b28a58
- Division
- Division
-
3764
9026
82
44
-
3795
9048
- Item to divide (dividend)
- a1420282-650b-4a8e-80ea-6b2eae3a29dc
- A
- A
- false
- eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
- 1
-
3766
9028
14
20
-
3774.5
9038
- Item to divide with (divisor)
- 965d45ed-9b1c-496b-882e-0d8a8989d0ab
- B
- B
- false
- 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
- 1
-
3766
9048
14
20
-
3774.5
9058
- The result of the Division
- bda9ac7b-9765-4538-a4f8-23b0bbcadd92
- Result
- Result
- false
- 0
-
3810
9028
34
40
-
3828.5
9048
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7cc4addf-023b-44f8-a4af-916931180c33
- Panel
- false
- 0
- c4021ab4-235a-4b82-96c5-ab6df1d33381
- 1
- Double click to edit panel content…
-
3726
8938
160
20
- 0
- 0
- 0
-
3726.552
8938.911
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 15dddce0-0e1b-4a30-bce0-f450d57b1564
- Expression
- Expression
-
3708
8979
194
28
-
3808
8993
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 311b524e-fc5e-4173-8d70-afd10f2f5963
- Variable O
- O
- true
- bda9ac7b-9765-4538-a4f8-23b0bbcadd92
- 1
-
3710
8981
14
24
-
3718.5
8993
- Result of expression
- d0d54b74-bd9b-4ac8-8fb1-100e3e709549
- Result
-
- false
- 0
-
3891
8981
9
24
-
3897
8993
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c4021ab4-235a-4b82-96c5-ab6df1d33381
- Relay
- false
- d0d54b74-bd9b-4ac8-8fb1-100e3e709549
- 1
-
3785
8904
40
16
-
3805
8912
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 9932a4f2-08f3-4e18-b948-51507591c861
- Addition
- Addition
-
3764
8841
82
44
-
3795
8863
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 584358c4-e6f8-4c88-b3d6-f42b562c6518
- A
- A
- true
- 5659fb3a-e4ae-4b90-8979-0fa5af22fbe9
- 1
-
3766
8843
14
20
-
3774.5
8853
- Second item for addition
- 080bdcd0-c11c-4c50-9b0d-a721d53b63d6
- B
- B
- true
- eccd072a-e6a8-47ac-99dd-fc2e3c4a771f
- 1
-
3766
8863
14
20
-
3774.5
8873
- Result of addition
- 022d20de-fb27-4034-bfbc-6a877d3f67a9
- Result
- Result
- false
- 0
-
3810
8843
34
40
-
3828.5
8863
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- f46ed69f-b1eb-4476-b946-8f8cabd86dad
- Division
- Division
-
3764
8691
82
44
-
3795
8713
- Item to divide (dividend)
- 57dc4016-27e8-4dd4-a79e-59df520941d5
- A
- A
- false
- e5cfd78e-6de5-4679-ad21-f5b87fe45130
- 1
-
3766
8693
14
20
-
3774.5
8703
- Item to divide with (divisor)
- 80d84a71-1c78-45fa-98c0-2242f3da77a7
- B
- B
- false
- 0
-
3766
8713
14
20
-
3774.5
8723
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 0a526a49-b794-44c5-89a5-a95162115b36
- Result
- Result
- false
- 0
-
3810
8693
34
40
-
3828.5
8713
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 1eca1c19-a8f4-49cd-9222-51d85b78d014
- Expression
- Expression
-
3708
8643
194
28
-
3808
8657
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 226d101c-cfa9-4936-a5eb-88e11b7c5c89
- Variable O
- O
- true
- 0a526a49-b794-44c5-89a5-a95162115b36
- 1
-
3710
8645
14
24
-
3718.5
8657
- Result of expression
- a932c4b2-583b-466d-9119-77b66339029f
- Result
-
- false
- 0
-
3891
8645
9
24
-
3897
8657
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ddfc10a5-d2cd-4fa3-bb6d-b967aa1f7b45
- Panel
- false
- 0
- a932c4b2-583b-466d-9119-77b66339029f
- 1
- Double click to edit panel content…
-
3726
8610
160
20
- 0
- 0
- 0
-
3726.494
8610.139
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e5cfd78e-6de5-4679-ad21-f5b87fe45130
- Panel
- false
- 0
- a04fe26b-6b37-499c-8388-992389439821
- 1
- Double click to edit panel content…
-
3726
8762
160
20
- 0
- 0
- 0
-
3726.494
8762.049
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 4f3aa960-fddc-4094-a378-3c820581d11e
- Expression
- Expression
-
3708
8794
194
28
-
3808
8808
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 1453a362-58b2-4020-9eca-b6fe924ddf52
- Variable O
- O
- true
- 022d20de-fb27-4034-bfbc-6a877d3f67a9
- 1
-
3710
8796
14
24
-
3718.5
8808
- Result of expression
- a04fe26b-6b37-499c-8388-992389439821
- Result
-
- false
- 0
-
3891
8796
9
24
-
3897
8808
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- aa3317fe-01e5-49e4-a4a0-545f18f9a6fe
- Scale
- Scale
-
3728
8520
154
64
-
3812
8552
- Base geometry
- 6d7db568-3262-4991-b18b-f7df86ed55da
- Geometry
- Geometry
- true
- 12dcd912-2fb1-416e-9018-f48cd9ef2c9c
- 1
-
3730
8522
67
20
-
3773
8532
- Center of scaling
- 1cd941fc-0343-4fdb-ac95-5692a34084b5
- Center
- Center
- false
- 0
-
3730
8542
67
20
-
3773
8552
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- fb573978-ff58-4953-b663-f787460df2e6
- 1/X
- Factor
- Factor
- false
- ddfc10a5-d2cd-4fa3-bb6d-b967aa1f7b45
- 1
-
3730
8562
67
20
-
3773
8572
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 91c7cfb1-d886-4388-93eb-452ba2d6811a
- Geometry
- Geometry
- false
- 0
-
3827
8522
53
30
-
3855
8537
- Transformation data
- bc9f4d79-baff-4ba5-87b6-d378f8b73ecc
- Transform
- Transform
- false
- 0
-
3827
8552
53
30
-
3855
8567
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- e0c44022-95ec-431a-b6ac-3c9b92814529
- Curve
- Curve
- false
- 91c7cfb1-d886-4388-93eb-452ba2d6811a
- 1
-
3781
8058
50
24
-
3806.467
8070.496
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 8fbaba83-827d-4344-aac8-13d1142d93a0
- Expression
- Expression
-
3708
9301
194
28
-
3808
9315
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- bc784d8e-9a93-4525-9f00-6bd32d8c1622
- Variable O
- O
- true
- c038d9c9-0abd-42bf-bfaa-b0f00cc970c6
- 1
-
3710
9303
14
24
-
3718.5
9315
- Result of expression
- 49aefe12-b0f3-4e2b-ba9b-3a2bd33de342
- Result
-
- false
- 0
-
3891
9303
9
24
-
3897
9315
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3d81ae53-2d90-4091-8fdb-880e28db7265
- Panel
- false
- 0
- 49aefe12-b0f3-4e2b-ba9b-3a2bd33de342
- 1
- Double click to edit panel content…
-
3726
9267
160
20
- 0
- 0
- 0
-
3726.366
9267.994
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- fd185e0b-5eff-4ceb-89d0-899b754ee2c5
- Evaluate Length
- Evaluate Length
-
3733
8437
144
64
-
3807
8469
- Curve to evaluate
- c7e9a791-cb3e-4faf-9015-18e1bb366923
- Curve
- Curve
- false
- 91c7cfb1-d886-4388-93eb-452ba2d6811a
- 1
-
3735
8439
57
20
-
3765
8449
- Length factor for curve evaluation
- 11fe7708-3ac5-481e-aae7-fe87c5ea7b17
- Length
- Length
- false
- 0
-
3735
8459
57
20
-
3765
8469
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 627f153b-7f65-4a2d-9d99-47195bf0ce68
- Normalized
- Normalized
- false
- 0
-
3735
8479
57
20
-
3765
8489
- 1
- 1
- {0}
- true
- Point at the specified length
- 1b204eee-9c57-4a5d-accd-7cd8d6015f43
- Point
- Point
- false
- 0
-
3822
8439
53
20
-
3850
8449
- Tangent vector at the specified length
- 41b43eff-29d7-4067-b42d-b249e48136d0
- Tangent
- Tangent
- false
- 0
-
3822
8459
53
20
-
3850
8469
- Curve parameter at the specified length
- 2400ba44-d774-4380-9958-bdbf0aed9d35
- Parameter
- Parameter
- false
- 0
-
3822
8479
53
20
-
3850
8489
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 2d2c9a13-6f18-4b63-b16b-982f5f207b1d
- Expression
- Expression
-
3708
8220
194
28
-
3808
8234
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9e59839f-da67-42a4-a31f-0710093ae74a
- Variable O
- O
- true
- a3bad10d-f396-444e-86b8-6999caf7166b
- 1
-
3710
8222
14
24
-
3718.5
8234
- Result of expression
- 46f01101-5730-46be-b4aa-ed000eb7afea
- Result
-
- false
- 0
-
3891
8222
9
24
-
3897
8234
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 023d6ed4-d8cf-4983-97c4-e762f533d605
- Deconstruct
- Deconstruct
-
3739
8354
132
64
-
3786
8386
- Input point
- 2209ccb5-55ee-4a02-9481-1e67a51c6e46
- Point
- Point
- false
- 1b204eee-9c57-4a5d-accd-7cd8d6015f43
- 1
-
3741
8356
30
60
-
3757.5
8386
- Point {x} component
- a3bad10d-f396-444e-86b8-6999caf7166b
- X component
- X component
- false
- 0
-
3801
8356
68
20
-
3836.5
8366
- Point {y} component
- 44b274e4-12c8-4bd3-928a-d866b1f9b319
- Y component
- Y component
- false
- 0
-
3801
8376
68
20
-
3836.5
8386
- Point {z} component
- 1dbc4935-50aa-49f4-9032-d582513f020c
- Z component
- Z component
- false
- 0
-
3801
8396
68
20
-
3836.5
8406
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f994613c-79e3-4423-a1c7-5941f394260b
- Panel
- false
- 0
- 46f01101-5730-46be-b4aa-ed000eb7afea
- 1
- Double click to edit panel content…
-
3725
8188
160
20
- 0
- 0
- 0
-
3725.749
8188.498
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 6656a797-31bc-4afa-b33c-41944efe32e3
- Expression
- Expression
-
3708
8134
194
28
-
3808
8148
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- c5bed06b-6909-44d9-bc29-6984af8483c3
- Variable O
- O
- true
- 44b274e4-12c8-4bd3-928a-d866b1f9b319
- 1
-
3710
8136
14
24
-
3718.5
8148
- Result of expression
- 49697257-9f06-4043-92b9-4b7f781b6067
- Result
-
- false
- 0
-
3891
8136
9
24
-
3897
8148
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bf5d5229-bc45-49d0-8f32-31b60e0aec6e
- Panel
- false
- 0
- 49697257-9f06-4043-92b9-4b7f781b6067
- 1
- Double click to edit panel content…
-
3725
8101
160
20
- 0
- 0
- 0
-
3725.749
8101.789
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 1549ecf8-8453-4a13-9f8c-4ad9aaeed473
- Expression
- Expression
-
3708
8306
194
28
-
3808
8320
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- dace7ac6-a6ab-4901-9d1f-70c352a7f7ad
- Variable O
- O
- true
- 1dbc4935-50aa-49f4-9032-d582513f020c
- 1
-
3710
8308
14
24
-
3718.5
8320
- Result of expression
- a54657e5-b5bf-4e3d-95ab-57382678c65a
- Result
-
- false
- 0
-
3891
8308
9
24
-
3897
8320
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 03f97897-283b-4634-86b0-431945f07618
- Panel
- false
- 0
- a54657e5-b5bf-4e3d-95ab-57382678c65a
- 1
- Double click to edit panel content…
-
3726
8274
160
20
- 0
- 0
- 0
-
3726.494
8274.711
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b4622cd9-013d-4e09-ad4a-06ee6e3b6af3
- Panel
- false
- 0
- 0
- 0 256 0.0013733120705119695
0 4096 0.0000053644183496292
-
3625
11264
379
104
- 0
- 0
- 0
-
3625.994
11264.31
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 4bb07e56-0cd3-4737-a6d3-d621d22da99e
- Panel
- false
- 1
- 447adc57-9135-4da2-bcaf-a9e8d00dcf95
- 1
- Double click to edit panel content…
-
3629
10430
355
100
- 0
- 0
- 0
-
3629.573
10430.29
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 67f6db11-1233-4a02-b46a-f4fe966e1889
- Expression
- Expression
-
3709
10536
194
28
-
3809
10550
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e3c4a237-f358-47b1-b441-cc1a670db254
- Variable O
- O
- true
- 210595a4-1d10-4344-bd58-627eab3a32ef
- 1
-
3711
10538
14
24
-
3719.5
10550
- Result of expression
- 447adc57-9135-4da2-bcaf-a9e8d00dcf95
- Result
-
- false
- 0
-
3892
10538
9
24
-
3898
10550
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 26d9c13f-79ff-4367-baad-c775d2229988
- Number
- Number
- false
- fe23f036-7c14-45f0-96b8-41f076f4d4c3
- 1
-
3782
11670
50
24
-
3807.456
11682.97
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e0c44022-95ec-431a-b6ac-3c9b92814529
- 1
- e80c15aa-2326-4167-9956-982b625ae83c
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f4161164-94c0-4338-9747-25ef6aee8e11
- Expression
- Expression
-
3709
10971
194
28
-
3809
10985
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9d8f41b3-64ca-4905-b037-0a439fcde778
- Variable O
- O
- true
- f4a6511e-2fa9-4adc-845c-882c5823e3cf
- 1
-
3711
10973
14
24
-
3719.5
10985
- Result of expression
- e378179f-30cb-40e1-a207-c2d55bcf994f
- Result
-
- false
- 0
-
3892
10973
9
24
-
3898
10985
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1001b801-f1f0-43e1-92c0-e39a6260a7a7
- Panel
- false
- 0
- e378179f-30cb-40e1-a207-c2d55bcf994f
- 1
- Double click to edit panel content…
-
3710
10685
194
271
- 0
- 0
- 0
-
3710.263
10685.18
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f71a0d4d-671e-4330-a6e7-80d35dd45d24
- Relay
-
- false
- 1001b801-f1f0-43e1-92c0-e39a6260a7a7
- 1
-
3786
10648
40
16
-
3806
10656
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f4a6511e-2fa9-4adc-845c-882c5823e3cf
- Relay
-
- false
- 5ee66eb4-ccfc-4657-a144-114058b11774
- 1
-
3786
11016
40
16
-
3806
11024
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- f38b93d9-c175-4791-bd5c-d1441f533d0b
- true
- End Points
- End Points
-
4165
8537
96
44
-
4215
8559
- Curve to evaluate
- cb30bac8-a429-440f-9804-464a2f68418f
- true
- Curve
- Curve
- false
- 41748b73-5cfb-4a1d-9cb6-c4943e5aa8af
- 1
-
4167
8539
33
40
-
4185
8559
- Curve start point
- e1c175f2-b8af-46ce-aea7-bd25a14d2590
- true
- Start
- Start
- false
- 0
-
4230
8539
29
20
-
4246
8549
- Curve end point
- ea380322-5845-4e6e-b4af-64d48b287785
- true
- End
- End
- false
- 0
-
4230
8559
29
20
-
4246
8569
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 2339e525-83d3-4d01-912d-ab9e03b8008a
- true
- Rectangle 2Pt
- Rectangle 2Pt
-
4150
8434
126
84
-
4208
8476
- Rectangle base plane
- 6e8feeec-69c6-4ae8-9903-cf44ecfec6b9
- true
- Plane
- Plane
- false
- 0
-
4152
8436
41
20
-
4174
8446
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 1806c799-498f-4fa7-a98f-787b83cdbb6b
- true
- Point A
- Point A
- false
- e1c175f2-b8af-46ce-aea7-bd25a14d2590
- 1
-
4152
8456
41
20
-
4174
8466
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- e9c560ee-37e6-43d1-90bc-92f2996d37d1
- true
- Point B
- Point B
- false
- ea380322-5845-4e6e-b4af-64d48b287785
- 1
-
4152
8476
41
20
-
4174
8486
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 25da538d-9c86-480c-9679-5b83cc42a50e
- true
- Radius
- Radius
- false
- 0
-
4152
8496
41
20
-
4174
8506
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- b2fa1926-8f52-4ea6-941a-e9d57eb2d4d7
- true
- Rectangle
- Rectangle
- false
- 0
-
4223
8436
51
40
-
4250
8456
- Length of rectangle curve
- ff269275-4e88-49b5-af79-9d16beb9c1fb
- true
- Length
- Length
- false
- 0
-
4223
8476
51
40
-
4250
8496
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
- Retrieve the base plane and side intervals of a rectangle.
- true
- f2a145f6-158d-4b59-a4d2-f3bd7f69b240
- true
- Deconstuct Rectangle
- Deconstuct Rectangle
-
4142
8351
142
64
-
4210
8383
- Rectangle to deconstruct
- bcd6b502-a8ee-48e2-be67-e807cf73c582
- true
- Rectangle
- Rectangle
- false
- b2fa1926-8f52-4ea6-941a-e9d57eb2d4d7
- 1
-
4144
8353
51
60
-
4171
8383
- Base plane of rectangle
- a42a95f4-c93a-4f93-9dc0-141aec6c46d0
- true
- Base Plane
- Base Plane
- false
- 0
-
4225
8353
57
20
-
4255
8363
- Size interval along base plane X axis
- b09ed31f-4f86-43f6-b2e4-42d2b0b6c10a
- true
- X Interval
- X Interval
- false
- 0
-
4225
8373
57
20
-
4255
8383
- Size interval along base plane Y axis
- 86109d6c-4302-4086-8162-96f5c501e054
- true
- Y Interval
- Y Interval
- false
- 0
-
4225
8393
57
20
-
4255
8403
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 2ebaeea9-1442-4a1d-9f36-8e03d30ef743
- true
- Deconstruct Domain
- Deconstruct Domain
-
4161
8224
104
44
-
4219
8246
- Base domain
- 0237d9f7-6413-436a-813e-44861adbd2b7
- true
- Domain
- Domain
- false
- 86109d6c-4302-4086-8162-96f5c501e054
- 1
-
4163
8226
41
40
-
4185
8246
- Start of domain
- def919dc-a262-4e68-a506-5e292638a2f1
- true
- Start
- Start
- false
- 0
-
4234
8226
29
20
-
4250
8236
- End of domain
- d6ff5fb3-ba22-4277-8d29-850909e8107a
- true
- End
- End
- false
- 0
-
4234
8246
29
20
-
4250
8256
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- cfa0a41e-e230-4dd6-876a-05c70faef459
- true
- Deconstruct Domain
- Deconstruct Domain
-
4161
8286
104
44
-
4219
8308
- Base domain
- 92499bb2-edf9-48dd-9c7b-a95fa1f84141
- true
- Domain
- Domain
- false
- b09ed31f-4f86-43f6-b2e4-42d2b0b6c10a
- 1
-
4163
8288
41
40
-
4185
8308
- Start of domain
- 3a402873-353e-4c60-9d50-6e448f0150f5
- true
- Start
- Start
- false
- 0
-
4234
8288
29
20
-
4250
8298
- End of domain
- d91f57b9-0b9c-4d57-b884-e164ec49997b
- true
- End
- End
- false
- 0
-
4234
8308
29
20
-
4250
8318
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- 3df990c6-6fdf-453e-bca5-69914229de37
- true
- Scale NU
- Scale NU
-
4136
8101
154
104
-
4220
8153
- Base geometry
- a2ac7bfb-c1a6-40e2-9fa7-5afe9e6a46cc
- true
- Geometry
- Geometry
- true
- e0c44022-95ec-431a-b6ac-3c9b92814529
- 1
-
4138
8103
67
20
-
4181
8113
- Base plane
- d6afb48d-07b1-4014-8d27-f2a064a66cde
- true
- Plane
- Plane
- false
- 0
-
4138
8123
67
20
-
4181
8133
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 3cbb676d-c0cb-4961-92cd-a9e6b88595f5
- 1/X
- true
- Scale X
- Scale X
- false
- d91f57b9-0b9c-4d57-b884-e164ec49997b
- 1
-
4138
8143
67
20
-
4181
8153
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 2b7bf670-ec67-40e3-ba42-172dae623b65
- 1/X
- true
- Scale Y
- Scale Y
- false
- d6ff5fb3-ba22-4277-8d29-850909e8107a
- 1
-
4138
8163
67
20
-
4181
8173
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 52520657-e2e1-4f64-ade8-5bd8e349c3b6
- true
- Scale Z
- Scale Z
- false
- 0
-
4138
8183
67
20
-
4181
8193
- 1
- 1
- {0}
- 1
- Scaled geometry
- ae3a3542-a687-443b-ba02-4d3849851a81
- true
- Geometry
- Geometry
- false
- 0
-
4235
8103
53
50
-
4263
8128
- Transformation data
- 5e7d0554-3b09-42b2-ad14-1d97dcb2f9a6
- true
- Transform
- Transform
- false
- 0
-
4235
8153
53
50
-
4263
8178
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f38b93d9-c175-4791-bd5c-d1441f533d0b
- 2339e525-83d3-4d01-912d-ab9e03b8008a
- f2a145f6-158d-4b59-a4d2-f3bd7f69b240
- 2ebaeea9-1442-4a1d-9f36-8e03d30ef743
- cfa0a41e-e230-4dd6-876a-05c70faef459
- 3df990c6-6fdf-453e-bca5-69914229de37
- 41748b73-5cfb-4a1d-9cb6-c4943e5aa8af
- 1dbb7805-b8ad-4aef-8985-5107dc9aaffb
- 8
- 19d02496-bc48-4c16-839c-fc13707f5f1f
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 41748b73-5cfb-4a1d-9cb6-c4943e5aa8af
- true
- Curve
- Curve
- false
- e0c44022-95ec-431a-b6ac-3c9b92814529
- 1
-
4188
8599
50
24
-
4213.758
8611.335
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 1dbb7805-b8ad-4aef-8985-5107dc9aaffb
- true
- Curve
- Curve
- false
- ae3a3542-a687-443b-ba02-4d3849851a81
- 1
-
4188
8059
50
24
-
4213
8071.206
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 80d6a883-8558-4a4b-bb1b-d14373512a75
- Panel
- false
- 0
- 0
- 0.0013733120705119695
-
3679
11433
270
20
- 0
- 0
- 0
-
3679.058
11433.45
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fe738e39-d598-45df-a2ce-7ce4c85ea9bb
- Panel
- false
- 0
- 0
- 0.0000710748925500000001421
-
3679
11391
270
20
- 0
- 0
- 0
-
3679.058
11391.92
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7f754298-7155-4f9b-9563-7ebff30f06c3
- Panel
- false
- 0
- 0
- 0.0013733120705119695
-
3679
11466
270
20
- 0
- 0
- 0
-
3679.058
11466.39
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- fde3255c-a22e-4e12-a717-c573c914426d
- b209923c-3a28-4705-b6c2-2d7aa0c13cc7
- e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
- 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
- ffbd0ca9-452d-476b-aad7-d52654097132
- 25f75636-f71c-4e68-bc9c-52d7265bce09
- 959f42b6-9f27-447c-ad2e-ce1242d74400
- 81e762e6-cf7c-4ae1-9584-48cd20085421
- 115f0245-8d8d-4e08-9afd-473c7a08d0bd
- aca130b6-7d71-401a-8538-59d8d28c145e
- 035d0b92-726f-45b3-9b43-f98bcdec0cf5
- a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
- e8565a94-1105-499b-9121-d17b6a40c779
- 12a155cd-954b-41b5-9ebf-dfadc3960e64
- 6c6e888a-ea28-4db0-abf5-a2a050ebc430
- 9c4b4d0a-421b-4c53-895c-1221d23a8c23
- af294dd2-b04a-4838-88c8-0277f80bc3b0
- a6eac927-8a3c-4732-b1a8-90e4b25850df
- 5bda71fa-0d3a-4287-94fd-b5d399b8202f
- d23b18ad-2e9d-4af3-a33d-e2ae8d08d84a
- eedba66f-c09e-4b6a-a6f6-e360e1607858
- a3be89c0-1a37-4050-ae27-b5fc88bad330
- 22
- 29331690-919f-48ab-ad76-1dc739965de3
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ffbd0ca9-452d-476b-aad7-d52654097132
- 25f75636-f71c-4e68-bc9c-52d7265bce09
- 959f42b6-9f27-447c-ad2e-ce1242d74400
- 81e762e6-cf7c-4ae1-9584-48cd20085421
- 115f0245-8d8d-4e08-9afd-473c7a08d0bd
- aca130b6-7d71-401a-8538-59d8d28c145e
- 035d0b92-726f-45b3-9b43-f98bcdec0cf5
- a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
- e8565a94-1105-499b-9121-d17b6a40c779
- 12a155cd-954b-41b5-9ebf-dfadc3960e64
- 6c6e888a-ea28-4db0-abf5-a2a050ebc430
- 6c6c28be-b01b-42e5-b60a-91c314905c9e
- c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
- 13
- fde3255c-a22e-4e12-a717-c573c914426d
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
- b95d8a38-41aa-4736-824a-ba59abe8a164
- 93c43765-186a-4186-a1a9-e77f1750e486
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 65df7317-6c88-4fda-8fed-06e7d0688f08
- 6897aa6f-691a-4a9e-9c03-e572cb62cff8
- b707e471-1378-4bfb-bd26-10f57a654a96
- 5af3936c-a114-48c9-97e6-a71d4495fe1c
- 40fce33c-72c8-4b9e-b056-d06a290937b2
- 1d60a251-59c1-4374-b24a-8b67b3ca92c6
- 5dab1729-964c-4894-9f64-653823a0fdac
- 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
- bbb3902c-2630-4a7b-b951-351a62cef558
- cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
- fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
- 7ed3dd99-417d-4769-a70b-0badf48c5649
- 8f08f378-fe83-47ee-ba70-f262beab4dd0
- 3dc26939-4bac-457f-9c7c-219b4dc86741
- 9b8fe626-a4bb-4fca-8d8b-ac2298cbf3cb
- 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
- 6fb580be-4b7e-48e0-a5cf-431967be43a9
- 077563a1-d2cf-43fe-a93d-642285cd95b7
- b6d0afa1-3dec-42e7-9c93-de08ed9790f2
- 4d6b9775-db5a-464b-b178-f930dd568ce2
- 84e913bd-a348-462a-a472-eab93956daf2
- beb498f4-7162-49c3-842b-a972d8ad71d9
- f9713408-b850-40b1-ac2d-56af5c03c800
- 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
- 506eabeb-a640-43fd-9af7-b2232e3fa71b
- e86ea7ed-38b8-40b5-bb42-623a7c8059c6
- a6d884fb-514f-42c3-86a9-71ade0d41a40
- b379a0ac-4016-4778-8d99-3b57d052a769
- 1ceffb1c-921e-4c1d-ab03-e05135b9b5e0
- 82046283-082e-419e-a05f-023d3a681021
- 41ca37bd-04a2-4730-a104-ccfdfebcb019
- 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
- baea9c8f-4e59-442d-b5b4-d125979bf466
- 12c0d088-f108-4075-bb85-315d570d97ea
- 41093a5b-4ba4-4dfb-a5f8-1bd792353689
- 39d1ba4f-7fac-4207-98a7-67ceea5ef36c
- 42ced415-8369-4764-bd84-2655a9abcdd0
- 97be2d03-c12a-4c13-bcf1-179c5148fad7
- f9312303-3ba0-4d12-bf2a-4df8dd780ec7
- a0d0df39-1b14-428e-bf37-398cec030283
- 6717a073-4979-4ab7-8cca-94ec28dd910e
- 1e7003ad-1005-4315-9274-8625081eb42d
- c7834162-f8d6-4396-a928-93ded1c673be
- d49b543b-255e-4b1e-afad-506fdeb4a087
- 9033362e-88b7-4ca5-82ec-e83b690b9e1f
- e9edf9da-696f-47bd-a5e5-79c7729f8e89
- aacff86f-b554-4395-9c67-12ea7491563a
- 501fc599-56aa-405b-ad58-777fa1c4d11c
- 47a743e6-2557-42d2-a2c1-210a6a941e82
- 1dfb13cb-b934-40bc-a126-3ef4f67aa6cb
- af01224e-c0e0-4809-ad30-4e4bd74d845a
- 2e1813eb-afd7-4c67-ae5d-0aea5806a643
- 5365386e-73e6-497c-b44a-34b85df3bb28
- 3b624a89-a10e-4423-8d23-23c665342bea
- 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
- 4a81f039-0b6b-406b-837f-1176119811ff
- e82225cb-a1a5-4ad3-b28d-40b2efc10203
- 47309ff2-7be5-4758-9fcf-1729ec8314b8
- 98efd460-a431-49c8-aded-a62a77c59e5f
- 4ae5300f-9b3f-4375-87a5-52ce195ec59e
- 929e2d4c-e84d-4d02-91ac-5e7752c650a1
- 17740f5f-06e3-439c-b530-05a592105abb
- 86b9cd83-4404-471f-8e4d-246d772737f9
- 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
- d468ce15-4157-4fb6-a1ff-1a56b601419e
- 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
- e73e0f67-8dcc-4b89-a973-43217655652f
- 5f2c0952-b956-47bf-90b0-5d5a4cb6cee6
- 51d57fa6-afda-4229-afb4-90a25c9c6b8a
- e4026ef5-c10c-464e-9823-6797237c75c6
- a50ee4ed-1074-44c4-b42b-16f559369733
- da9c2d00-64fe-44a7-9401-d326fcdf51fa
- 040c5d9b-07ad-4ae2-aad9-21a946416a98
- 9bd8b728-8787-4303-ac8e-82b11f531453
- 74c717fe-6a47-4ebf-9159-b915086fdaa4
- bf3127fe-bbed-4fae-86c0-6819ff185956
- c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
- 2077772c-8556-4e37-b44d-c0a0d5d206ff
- e5bb3651-4fcd-4da1-9d37-64323a4cbaec
- 441bf542-5076-4985-9937-0bb3a042b678
- 75156aff-6128-4635-ba01-66f6e62c8b34
- 31ebe528-d55d-4dff-927d-a48736be9cc3
- 8487c049-6563-42c2-982d-a3d473c55e0b
- 34ec62fd-1b45-4131-8bb3-067f9ae32190
- be799453-059d-4d40-b651-349c7cf77c9d
- 3f3172f7-bff5-4e81-85a2-58943326f0a7
- c9632403-1835-45bf-a8da-51dd473c2104
- 3579a27a-9991-4bf3-94de-84223b4b0a72
- b7462a41-d690-4e75-b5bb-082a0185ec77
- 5e698680-d615-4e2a-aed9-fd28b0220a65
- ca297271-f533-4d51-a8fc-bdb7b204740c
- 9e3117d6-b3b4-4adc-84f3-2835a988e21e
- c8c317c7-391f-4b40-93d8-4c1994caecef
- 3b490da6-b955-4f9c-bddc-980384007a01
- c2fc9a4e-ff43-4e6b-ba22-4562fab58558
- 99
- 61bcf775-8597-4b5c-a39e-6aa822a67ed7
- Group
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
- Number
- Number
- false
- 96971adb-dc6f-4220-b87f-875d4c7c2611
- 1
-
4293
7043
50
24
-
4318.785
7055.021
- 1
- 1
- {0}
- 1024
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- b95d8a38-41aa-4736-824a-ba59abe8a164
- Curvature
- Curvature
-
4249
6873
137
64
-
4319
6905
- Curve to evaluate
- 19c1983b-2d95-47e4-8f56-f9ebcbdf4b86
- Curve
- Curve
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4251
6875
53
30
-
4279
6890
- Parameter on curve domain to evaluate
- 115baf5b-eaad-418a-8025-23991d12e2ee
- Parameter
- Parameter
- false
- 72571f4d-e390-4273-afe8-daa1b335cb89
- 1
-
4251
6905
53
30
-
4279
6920
- Point on curve at {t}
- 530f89ee-5568-4c47-990d-ddab27ed409e
- Point
- Point
- false
- 0
-
4334
6875
50
20
-
4360.5
6885
- Curvature vector at {t}
- 0740a746-92bd-42a5-be7d-7c4afad1589c
- Curvature
- Curvature
- false
- 0
-
4334
6895
50
20
-
4360.5
6905
- Curvature circle at {t}
- cd58e8b9-06e1-45b4-a606-81544cb9262d
- Curvature
- Curvature
- false
- 0
-
4334
6915
50
20
-
4360.5
6925
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 93c43765-186a-4186-a1a9-e77f1750e486
- Divide Curve
- Divide Curve
-
4255
6956
125
64
-
4305
6988
- Curve to divide
- d0f1a5a1-14fc-4928-a5ef-8feb9f1e8e65
- Curve
- Curve
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4257
6958
33
20
-
4275
6968
- Number of segments
- c80889e9-7d20-4519-a4fe-c7d376ff0d17
- Count
- Count
- false
- 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
- 1
-
4257
6978
33
20
-
4275
6988
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 798a9bca-31a3-4cc6-b5a7-d6320e4a9c6a
- Kinks
- Kinks
- false
- 0
-
4257
6998
33
20
-
4275
7008
- 1
- 1
- {0}
- false
- 1
- Division points
- 8f938e34-0564-4935-842c-a035ea89a910
- Points
- Points
- false
- 0
-
4320
6958
58
20
-
4350.5
6968
- 1
- Tangent vectors at division points
- c11a93a5-d484-4a27-a79d-20a0c829c1b9
- Tangents
- Tangents
- false
- 0
-
4320
6978
58
20
-
4350.5
6988
- 1
- Parameter values at division points
- 72571f4d-e390-4273-afe8-daa1b335cb89
- Parameters
- Parameters
- false
- 0
-
4320
6998
58
20
-
4350.5
7008
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 2
- Curve
- Curve
- false
- a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
- 1
-
4291
7472
53
24
-
4327.5
7484.836
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 65df7317-6c88-4fda-8fed-06e7d0688f08
- Deconstruct Arc
- Deconstruct Arc
-
4261
6792
114
64
-
4301
6824
- Arc or Circle to deconstruct
- 789da2de-584e-42a0-a38e-b29e6b35279e
- Arc
- Arc
- false
- cd58e8b9-06e1-45b4-a606-81544cb9262d
- 1
-
4263
6794
23
60
-
4276
6824
- Base plane of arc or circle
- 35a8e793-f0c7-4e6d-921e-18109ea98ceb
- Base Plane
- Base Plane
- false
- 0
-
4316
6794
57
20
-
4346
6804
- Radius of arc or circle
- 3654a9c9-a7f1-48df-8fa7-73ed1663a837
- Radius
- Radius
- false
- 0
-
4316
6814
57
20
-
4346
6824
- Angle domain (in radians) of arc
- 0a990d82-8970-40a7-827e-8fb7dedd1a8c
- Angle
- Angle
- false
- 0
-
4316
6834
57
20
-
4346
6844
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 6897aa6f-691a-4a9e-9c03-e572cb62cff8
- One Over X
- One Over X
-
4268
6296
100
28
-
4317
6310
- Input value
- 605ebcc2-3259-4435-82ad-d9a5c07f3466
- Value
- Value
- false
- 4ae5300f-9b3f-4375-87a5-52ce195ec59e
- 1
-
4270
6298
32
24
-
4287.5
6310
- Output value
- 65383476-e61d-4ddb-9403-69c36989070f
- Result
- Result
- false
- 0
-
4332
6298
34
24
-
4350.5
6310
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b707e471-1378-4bfb-bd26-10f57a654a96
- Quick Graph
- Quick Graph
- false
- 0
- 6fb580be-4b7e-48e0-a5cf-431967be43a9
- 1
-
4243
6114
150
150
-
4243.486
6114.676
- 0
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- 5af3936c-a114-48c9-97e6-a71d4495fe1c
- Line
- Line
-
4261
6360
114
44
-
4333
6382
- Line start point
- d77174e3-2f21-4b5a-a69b-36c3db06d110
- Start Point
- Start Point
- false
- 530f89ee-5568-4c47-990d-ddab27ed409e
- 1
-
4263
6362
55
20
-
4292
6372
- Line end point
- bcccc128-d879-4b75-8cca-bb5aac27fe03
- End Point
- End Point
- false
- 35a8e793-f0c7-4e6d-921e-18109ea98ceb
- 1
-
4263
6382
55
20
-
4292
6392
- Line segment
- ee24630f-f4f0-4780-abab-e012c957d4c6
- Line
- Line
- false
- 0
-
4348
6362
25
40
-
4362
6382
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 40fce33c-72c8-4b9e-b056-d06a290937b2
- Number Slider
-
- false
- 0
-
4240
5278
150
20
-
4240.236
5278.513
- 6
- 1
- 0
- 2
- 0
- 0
- 0.043752
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 1d60a251-59c1-4374-b24a-8b67b3ca92c6
- Line SDL
- Line SDL
-
4257
5160
122
64
-
4337
5192
- Line start point
- e22555ed-ce09-4f6a-86b7-694208f85afe
- Start
- Start
- false
- 530f89ee-5568-4c47-990d-ddab27ed409e
- 1
-
4259
5162
63
20
-
4300
5172
- Line tangent (direction)
- a5bec1ae-8462-420c-be22-d4988f1de771
- Direction
- Direction
- false
- 61f9e29f-feb3-4122-9ade-977c75c70121
- 1
-
4259
5182
63
20
-
4300
5192
- 1
- 1
- {0}
-
0
0
1
- Line length
- 20fc2090-edc5-4ea6-b00a-6537afd6b455
- -X
- Length
- Length
- false
- 501fc599-56aa-405b-ad58-777fa1c4d11c
- 1
-
4259
5202
63
20
-
4300
5212
- 1
- 1
- {0}
- 1
- Line segment
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- Line
- Line
- false
- 0
-
4352
5162
25
60
-
4366
5192
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 5dab1729-964c-4894-9f64-653823a0fdac
- Evaluate Length
- Evaluate Length
-
4246
4896
144
64
-
4320
4928
- Curve to evaluate
- 9629717c-17ba-4da9-b279-417bda8b5269
- Curve
- Curve
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4248
4898
57
20
-
4278
4908
- Length factor for curve evaluation
- 80b0ad13-9823-4b7a-b40a-3b34377e5d5e
- Length
- Length
- false
- 0
-
4248
4918
57
20
-
4278
4928
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- a7b905ec-d2c6-4035-978f-8400334a8ca8
- Normalized
- Normalized
- false
- 0
-
4248
4938
57
20
-
4278
4948
- 1
- 1
- {0}
- true
- Point at the specified length
- c8092559-5804-445a-b39b-40959ab7673b
- Point
- Point
- false
- 0
-
4335
4898
53
20
-
4363
4908
- Tangent vector at the specified length
- 9b982a23-a369-4aae-89b4-1d10c80fafd6
- Tangent
- Tangent
- false
- 0
-
4335
4918
53
20
-
4363
4928
- Curve parameter at the specified length
- 2059ff87-cc57-4684-a6cc-860c3e9f8fd4
- Parameter
- Parameter
- false
- 0
-
4335
4938
53
20
-
4363
4948
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
- Interpolate
- Interpolate
-
4255
4794
125
84
-
4322
4836
- 1
- Interpolation points
- 7211f213-a1bc-47a9-a942-2e9f99f244ea
- Vertices
- Vertices
- false
- c8092559-5804-445a-b39b-40959ab7673b
- 1
-
4257
4796
50
20
-
4283.5
4806
- Curve degree
- 1d00875e-8c8f-4255-8021-f9eace27906e
- Degree
- Degree
- false
- 0
-
4257
4816
50
20
-
4283.5
4826
- 1
- 1
- {0}
- 1
- Periodic curve
- b55b69f0-6548-4440-86b5-e2c5bca673d1
- Periodic
- Periodic
- false
- 0
-
4257
4836
50
20
-
4283.5
4846
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 5fa7d12e-58e2-4597-bf61-f6aac4ca69b6
- KnotStyle
- KnotStyle
- false
- 0
-
4257
4856
50
20
-
4283.5
4866
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- c1394789-448d-4011-a7a5-a9c725907596
- Curve
- Curve
- false
- 0
-
4337
4796
41
26
-
4359
4809.333
- Curve length
- 321f9f82-5399-40aa-9b71-d9fded5fdfe2
- Length
- Length
- false
- 0
-
4337
4822
41
27
-
4359
4836
- Curve domain
- a58dd5b1-6de2-4a22-a4c9-b6e6bb4ea3ef
- Domain
- Domain
- false
- 0
-
4337
4849
41
27
-
4359
4862.667
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
- b95d8a38-41aa-4736-824a-ba59abe8a164
- 93c43765-186a-4186-a1a9-e77f1750e486
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 65df7317-6c88-4fda-8fed-06e7d0688f08
- 6897aa6f-691a-4a9e-9c03-e572cb62cff8
- b707e471-1378-4bfb-bd26-10f57a654a96
- 42201d77-7bc4-437d-baaf-c8290f91a477
- 5af3936c-a114-48c9-97e6-a71d4495fe1c
- dc8b9948-0b61-495f-bb5c-30271010864e
- 40fce33c-72c8-4b9e-b056-d06a290937b2
- 1d60a251-59c1-4374-b24a-8b67b3ca92c6
- 90f74d47-d623-4b80-a1f4-bde635cc690f
- 5dab1729-964c-4894-9f64-653823a0fdac
- 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
- 84e913bd-a348-462a-a472-eab93956daf2
- beb498f4-7162-49c3-842b-a972d8ad71d9
- b6d0afa1-3dec-42e7-9c93-de08ed9790f2
- 4d6b9775-db5a-464b-b178-f930dd568ce2
- f9713408-b850-40b1-ac2d-56af5c03c800
- 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
- 6717a073-4979-4ab7-8cca-94ec28dd910e
- 1e7003ad-1005-4315-9274-8625081eb42d
- 17740f5f-06e3-439c-b530-05a592105abb
- 86b9cd83-4404-471f-8e4d-246d772737f9
- 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
- d468ce15-4157-4fb6-a1ff-1a56b601419e
- 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
- cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
- fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
- 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
- 51d57fa6-afda-4229-afb4-90a25c9c6b8a
- e4026ef5-c10c-464e-9823-6797237c75c6
- a50ee4ed-1074-44c4-b42b-16f559369733
- da9c2d00-64fe-44a7-9401-d326fcdf51fa
- 040c5d9b-07ad-4ae2-aad9-21a946416a98
- 9bd8b728-8787-4303-ac8e-82b11f531453
- 74c717fe-6a47-4ebf-9159-b915086fdaa4
- bf3127fe-bbed-4fae-86c0-6819ff185956
- c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
- 2077772c-8556-4e37-b44d-c0a0d5d206ff
- f12959c2-8cc4-4ce2-896d-7ff1a4aa1903
- 42
- bbb3902c-2630-4a7b-b951-351a62cef558
- Group
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
- Number
- Number
- false
- 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
- 1
-
4293
4445
50
24
-
4318
4457.974
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
- Curve
- Curve
- false
- c1394789-448d-4011-a7a5-a9c725907596
- 1
-
4293
4488
50
24
-
4318
4500.896
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 7ed3dd99-417d-4769-a70b-0badf48c5649
- Line SDL
- Line SDL
-
4257
3141
122
64
-
4337
3173
- Line start point
- a6313991-5fed-473e-8203-12902cc0ca23
- Start
- Start
- false
- c8092559-5804-445a-b39b-40959ab7673b
- 1
-
4259
3143
63
20
-
4300
3153
- Line tangent (direction)
- c5b0bce5-96d7-447a-9757-7e6cc6e689aa
- Direction
- Direction
- false
- c7834162-f8d6-4396-a928-93ded1c673be
- 1
-
4259
3163
63
20
-
4300
3173
- 1
- 1
- {0}
-
0
0
1
- Line length
- e968eda2-2fd9-48da-99dc-b168c5ce158c
- ABS(X)
- Length
- Length
- false
- 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
- 1
-
4259
3183
63
20
-
4300
3193
- 1
- 1
- {0}
- 1
- Line segment
- 3fe9ed31-c050-492d-94ea-c80218f2b732
- Line
- Line
- false
- 0
-
4352
3143
25
60
-
4366
3173
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 8f08f378-fe83-47ee-ba70-f262beab4dd0
- Evaluate Length
- Evaluate Length
-
4246
2818
144
64
-
4320
2850
- Curve to evaluate
- 0d9a8a58-4d0a-4434-a450-8e98b436a412
- Curve
- Curve
- false
- 441bf542-5076-4985-9937-0bb3a042b678
- 1
-
4248
2820
57
20
-
4278
2830
- Length factor for curve evaluation
- a1aca457-48b1-4d2a-a0cc-9aa18d7bfcdf
- Length
- Length
- false
- 0
-
4248
2840
57
20
-
4278
2850
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 1188ad96-f0f1-40b7-810f-9b69492635d4
- Normalized
- Normalized
- false
- 0
-
4248
2860
57
20
-
4278
2870
- 1
- 1
- {0}
- true
- Point at the specified length
- 18921b3c-23a8-4466-aa33-85dea6f5193e
- Point
- Point
- false
- 0
-
4335
2820
53
20
-
4363
2830
- Tangent vector at the specified length
- aa8f58ce-50c4-4bf8-b24d-039a80bdcd54
- Tangent
- Tangent
- false
- 0
-
4335
2840
53
20
-
4363
2850
- Curve parameter at the specified length
- 59b0d0c9-4175-42e9-936a-02e0b1b5547b
- Parameter
- Parameter
- false
- 0
-
4335
2860
53
20
-
4363
2870
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 3dc26939-4bac-457f-9c7c-219b4dc86741
- Interpolate
- Interpolate
-
4255
1815
125
84
-
4322
1857
- 1
- Interpolation points
- 9ce862c7-e83a-44f6-a90e-5d01a0ac4cb2
- Vertices
- Vertices
- false
- 75156aff-6128-4635-ba01-66f6e62c8b34
- 1
-
4257
1817
50
20
-
4283.5
1827
- Curve degree
- 035ee24e-d16b-4cf3-b607-7bc2fd7f69d6
- Degree
- Degree
- false
- 0
-
4257
1837
50
20
-
4283.5
1847
- 1
- 1
- {0}
- 1
- Periodic curve
- 280d1a76-ca69-4ee8-9b1c-a3fce38ab5c9
- Periodic
- Periodic
- false
- 0
-
4257
1857
50
20
-
4283.5
1867
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 9bf7f1ee-f145-4fe2-beef-c59418629ac7
- KnotStyle
- KnotStyle
- false
- 0
-
4257
1877
50
20
-
4283.5
1887
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
- Curve
- Curve
- false
- 0
-
4337
1817
41
26
-
4359
1830.333
- Curve length
- 38bf6ac5-4357-469b-9bba-7bba715cb5d1
- Length
- Length
- false
- 0
-
4337
1843
41
27
-
4359
1857
- Curve domain
- 7a5c3ecf-7823-4983-873e-ab2b1c6c868c
- Domain
- Domain
- false
- 0
-
4337
1870
41
27
-
4359
1883.667
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- 9b8fe626-a4bb-4fca-8d8b-ac2298cbf3cb
- Nurbs Curve
- Nurbs Curve
-
4259
4712
118
64
-
4319
4744
- 1
- Curve control points
- 2af9f5bc-8bea-48f0-8d9a-d37a5ba2a29f
- Vertices
- Vertices
- false
- c8092559-5804-445a-b39b-40959ab7673b
- 1
-
4261
4714
43
20
-
4284
4724
- Curve degree
- e692fbe6-a99c-4693-9a36-98b14d2f9d42
- Degree
- Degree
- false
- 0
-
4261
4734
43
20
-
4284
4744
- 1
- 1
- {0}
- 3
- Periodic curve
- b39e02b3-360a-4615-b920-7d6142b9ef32
- Periodic
- Periodic
- false
- 0
-
4261
4754
43
20
-
4284
4764
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- 901accb7-a63e-4aad-ad0b-1abd083399ab
- Curve
- Curve
- false
- 0
-
4334
4714
41
20
-
4356
4724
- Curve length
- e999b44b-5986-4917-a835-77c4f9bb1c4a
- Length
- Length
- false
- 0
-
4334
4734
41
20
-
4356
4744
- Curve domain
- 7d47fdce-c93c-4e8b-b930-65a7b9d2c548
- Domain
- Domain
- false
- 0
-
4334
4754
41
20
-
4356
4764
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
- Relative Differences
- Relative Differences
-
4254
4299
128
28
-
4307
4313
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 2e382b39-db26-4f00-ad60-867949e375ae
- Values
- Values
- false
- c1cbf3cc-c305-48cc-a958-e9cacfba5960
- 1
-
4256
4301
36
24
-
4275.5
4313
- 1
- Differences between consecutive items
- 52a4cb5e-e88f-43e5-bb41-82eb4d03ae2c
- Differenced
- Differenced
- false
- 0
-
4322
4301
58
24
-
4352.5
4313
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6fb580be-4b7e-48e0-a5cf-431967be43a9
- Relay
-
- false
- 65383476-e61d-4ddb-9403-69c36989070f
- 1
-
4298
6280
40
16
-
4318
6288
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- true
- 077563a1-d2cf-43fe-a93d-642285cd95b7
- true
- Derivatives
- Derivatives
-
4226
-9499
117
144
-
4296
-9427
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- c5ce250c-64e3-46c4-be52-06c57f3ae50e
- true
- Curve
- Curve
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4228
-9497
53
70
-
4256
-9462
- Parameter on curve domain to evaluate
- 6da23971-dde5-4d70-8a0c-4a507c037d78
- true
- Parameter
- Parameter
- false
- 72571f4d-e390-4273-afe8-daa1b335cb89
- 1
-
4228
-9427
53
70
-
4256
-9392
- Point on curve at {t}
- 95bfb75e-deb2-41b2-ba5e-9f8b1037d613
- true
- Point
- Point
- false
- 0
-
4311
-9497
30
20
-
4327.5
-9487
- First curve derivative at t (Velocity)
- c9af63c9-0143-479e-9052-49ae8662e1b1
- true
- false
- First derivative
- 1
- false
- 0
-
4311
-9477
30
20
-
4327.5
-9467
- Second curve derivative at t (Acceleration)
- 96867ac7-0810-4a7b-b16e-65dfb34d3ac7
- true
- false
- Second derivative
- 2
- false
- 0
-
4311
-9457
30
20
-
4327.5
-9447
- Third curve derivative at t (Jolt)
- 42ee3241-4c5c-463a-b0d9-dd12d62c2293
- true
- false
- Third derivative
- 3
- false
- 0
-
4311
-9437
30
20
-
4327.5
-9427
- Fourth curve derivative at t (Jounce)
- 533714a3-b663-4971-b5e9-26bce2a7de5c
- true
- false
- Fourth derivative
- 4
- false
- 0
-
4311
-9417
30
20
-
4327.5
-9407
- Fifth curve derivative at t
- 8a09c8bb-c54e-4691-8429-43124dd1c8b3
- true
- false
- Fifth derivative
- 5
- false
- 0
-
4311
-9397
30
20
-
4327.5
-9387
- Sixth curve derivative at t
- b52f3636-0270-4109-8b69-fa9470b344cd
- true
- false
- Sixth derivative
- 6
- false
- 0
-
4311
-9377
30
20
-
4327.5
-9367
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- b6d0afa1-3dec-42e7-9c93-de08ed9790f2
- Create Material
- Create Material
-
4246
5040
144
104
-
4330
5092
- Colour of the diffuse channel
- e2ff4e85-df78-45d2-bba7-7721635df2c5
- Diffuse
- Diffuse
- false
- 0
-
4248
5042
67
20
-
4283
5052
- 1
- 1
- {0}
-
255;247;247;247
- Colour of the specular highlight
- 389e0ea6-4a20-40c9-a249-fa446921528d
- Specular
- Specular
- false
- 0
-
4248
5062
67
20
-
4283
5072
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 6f17d147-73f0-4c6e-aca7-231c42be2227
- Emission
- Emission
- false
- 0
-
4248
5082
67
20
-
4283
5092
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- a6119520-e999-41f2-84c5-06f39b44ca96
- Transparency
- Transparency
- false
- 0
-
4248
5102
67
20
-
4283
5112
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- f9887e31-79e0-4d94-a182-2a888112f088
- Shine
- Shine
- false
- 0
-
4248
5122
67
20
-
4283
5132
- 1
- 1
- {0}
- 100
- Resulting material
- 6a9f7cab-703c-4616-a796-ebccc137552c
- Material
- Material
- false
- 0
-
4345
5042
43
100
-
4368
5092
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 4d6b9775-db5a-464b-b178-f930dd568ce2
- Custom Preview
- Custom Preview
-
4277
4978
82
44
-
4345
5000
- Geometry to preview
- true
- 6f52bd76-d249-4e5c-a489-b3503b532c14
- Geometry
- Geometry
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4279
4980
51
20
-
4306
4990
- The material override
- 792abb0c-57ae-4335-8671-0166a55e35bb
- Material
- Material
- false
- 6a9f7cab-703c-4616-a796-ebccc137552c
- 1
-
4279
5000
51
20
-
4306
5010
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 84e913bd-a348-462a-a472-eab93956daf2
- Create Material
- Create Material
-
4246
7303
144
104
-
4330
7355
- Colour of the diffuse channel
- 22e1a45c-bb8a-4800-aab5-ef60f9829b69
- Diffuse
- Diffuse
- false
- 0
-
4248
7305
67
20
-
4283
7315
- 1
- 1
- {0}
-
255;176;176;176
- Colour of the specular highlight
- 9233dd38-b5f3-4109-8975-987c7ae940b3
- Specular
- Specular
- false
- 0
-
4248
7325
67
20
-
4283
7335
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 07405682-f855-4989-8549-b94d930c00a3
- Emission
- Emission
- false
- 0
-
4248
7345
67
20
-
4283
7355
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 97f19c8e-e8a2-41d1-9c98-81c1b160b94c
- Transparency
- Transparency
- false
- 0
-
4248
7365
67
20
-
4283
7375
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- ef7f93e7-3f0d-469b-862d-f8aca466008d
- Shine
- Shine
- false
- 0
-
4248
7385
67
20
-
4283
7395
- 1
- 1
- {0}
- 100
- Resulting material
- 350a76f4-71b7-4b5e-854c-31a2ecaf6ee6
- Material
- Material
- false
- 0
-
4345
7305
43
100
-
4368
7355
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- beb498f4-7162-49c3-842b-a972d8ad71d9
- Custom Preview
- Custom Preview
-
4277
7242
82
44
-
4345
7264
- Geometry to preview
- true
- 8666d71b-9d2f-4e91-8d8a-210217567fa5
- Geometry
- Geometry
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4279
7244
51
20
-
4306
7254
- The material override
- 62dec059-7971-4a48-932a-ffe71052b16a
- Material
- Material
- false
- 350a76f4-71b7-4b5e-854c-31a2ecaf6ee6
- 1
-
4279
7264
51
20
-
4306
7274
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- f9713408-b850-40b1-ac2d-56af5c03c800
- Create Material
- Create Material
-
4246
4590
144
104
-
4330
4642
- Colour of the diffuse channel
- efb4e180-8efc-4284-8299-494c3de6e9f2
- Diffuse
- Diffuse
- false
- 0
-
4248
4592
67
20
-
4283
4602
- 1
- 1
- {0}
-
255;222;222;222
- Colour of the specular highlight
- 197f2502-11d7-49f9-9ca6-ac492a4514bf
- Specular
- Specular
- false
- 0
-
4248
4612
67
20
-
4283
4622
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- e9dc0475-0054-474e-9957-8202366a4204
- Emission
- Emission
- false
- 0
-
4248
4632
67
20
-
4283
4642
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 5cb49fe6-cfb0-49f8-bbaf-411d66898b82
- Transparency
- Transparency
- false
- 0
-
4248
4652
67
20
-
4283
4662
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 705fb819-8775-4ed6-9b93-8645fbc5e6ed
- Shine
- Shine
- false
- 0
-
4248
4672
67
20
-
4283
4682
- 1
- 1
- {0}
- 100
- Resulting material
- fd31e66a-00fc-487d-8951-8d93283f87df
- Material
- Material
- false
- 0
-
4345
4592
43
100
-
4368
4642
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
- Custom Preview
- Custom Preview
-
4277
4528
82
44
-
4345
4550
- Geometry to preview
- true
- ee9a19f8-4064-4d39-866c-85da768d1adc
- Geometry
- Geometry
- false
- fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
- 1
-
4279
4530
51
20
-
4306
4540
- The material override
- 0df5bf50-74e4-431c-b6d2-cbaada924eb5
- Material
- Material
- false
- fd31e66a-00fc-487d-8951-8d93283f87df
- 1
-
4279
4550
51
20
-
4306
4560
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 506eabeb-a640-43fd-9af7-b2232e3fa71b
- Create Material
- Create Material
-
4246
3016
144
104
-
4330
3068
- Colour of the diffuse channel
- 3e896be4-47f0-40cd-b969-157ca5690c40
- Diffuse
- Diffuse
- false
- 0
-
4248
3018
67
20
-
4283
3028
- 1
- 1
- {0}
-
255;240;240;240
- Colour of the specular highlight
- ad00ff37-039f-4c69-a05c-2bcf6543f28a
- Specular
- Specular
- false
- 0
-
4248
3038
67
20
-
4283
3048
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 56dcd222-a962-4e25-a153-d0c165d4a30b
- Emission
- Emission
- false
- 0
-
4248
3058
67
20
-
4283
3068
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 0082b394-bd76-4cdb-9ec8-3851d681e34c
- Transparency
- Transparency
- false
- 0
-
4248
3078
67
20
-
4283
3088
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 4394475e-dcc9-4a08-89ce-7fe1812de379
- Shine
- Shine
- false
- 0
-
4248
3098
67
20
-
4283
3108
- 1
- 1
- {0}
- 100
- Resulting material
- 6fa0a1de-70c2-4743-8be9-56400b02e090
- Material
- Material
- false
- 0
-
4345
3018
43
100
-
4368
3068
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- e86ea7ed-38b8-40b5-bb42-623a7c8059c6
- Custom Preview
- Custom Preview
-
4277
2954
82
44
-
4345
2976
- Geometry to preview
- true
- 23652758-9150-4810-9501-94d6bb7427a5
- Geometry
- Geometry
- false
- 3fe9ed31-c050-492d-94ea-c80218f2b732
- 1
-
4279
2956
51
20
-
4306
2966
- The material override
- f9d0f304-71ba-4d15-b680-4098daee205f
- Material
- Material
- false
- 6fa0a1de-70c2-4743-8be9-56400b02e090
- 1
-
4279
2976
51
20
-
4306
2986
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- a6d884fb-514f-42c3-86a9-71ade0d41a40
- Create Material
- Create Material
-
4246
1691
144
104
-
4330
1743
- Colour of the diffuse channel
- 1d225664-df37-44d8-8293-fc65fcfaa053
- Diffuse
- Diffuse
- false
- 0
-
4248
1693
67
20
-
4283
1703
- 1
- 1
- {0}
-
255;214;214;214
- Colour of the specular highlight
- 55624669-9d88-4e19-8a54-d6b340b905ea
- Specular
- Specular
- false
- 0
-
4248
1713
67
20
-
4283
1723
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 07248625-ab72-43b8-bef8-3badfeb52fb2
- Emission
- Emission
- false
- 0
-
4248
1733
67
20
-
4283
1743
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- ee9332dd-01f9-4de5-83cd-cf8d3516a179
- Transparency
- Transparency
- false
- 0
-
4248
1753
67
20
-
4283
1763
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 2e68d8ff-6779-4688-ad53-ea22a7ee0960
- Shine
- Shine
- false
- 0
-
4248
1773
67
20
-
4283
1783
- 1
- 1
- {0}
- 100
- Resulting material
- ef37cf89-ca4c-487b-9404-0d7f2ac5f894
- Material
- Material
- false
- 0
-
4345
1693
43
100
-
4368
1743
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- b379a0ac-4016-4778-8d99-3b57d052a769
- Custom Preview
- Custom Preview
-
4277
1631
82
44
-
4345
1653
- Geometry to preview
- true
- 5dd6a210-e7ec-4d78-b804-a7f2c5699174
- Geometry
- Geometry
- false
- 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
- 1
-
4279
1633
51
20
-
4306
1643
- The material override
- 6d313118-895b-4546-9b3a-cd4b04e08f51
- Material
- Material
- false
- ef37cf89-ca4c-487b-9404-0d7f2ac5f894
- 1
-
4279
1653
51
20
-
4306
1663
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 1ceffb1c-921e-4c1d-ab03-e05135b9b5e0
- Line SDL
- Line SDL
-
4224
-10762
122
64
-
4304
-10730
- Line start point
- 0c39c823-a263-4a95-b445-16304aeba6ec
- Start
- Start
- false
- 75156aff-6128-4635-ba01-66f6e62c8b34
- 1
-
4226
-10760
63
20
-
4267
-10750
- Line tangent (direction)
- 2614b05b-f2da-4a47-a084-b87ce2de0cc8
- Direction
- Direction
- false
- 42ee3241-4c5c-463a-b0d9-dd12d62c2293
- 1
-
4226
-10740
63
20
-
4267
-10730
- 1
- 1
- {0}
-
0
0
1
- Line length
- 562db1eb-3da9-4644-b300-679d6eabf7e0
- -X
- Length
- Length
- false
- 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
- 1
-
4226
-10720
63
20
-
4267
-10710
- 1
- 1
- {0}
- 1
- Line segment
- a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
- Line
- Line
- false
- 0
-
4319
-10760
25
60
-
4333
-10730
- 71b5b089-500a-4ea6-81c5-2f960441a0e8
- PolyLine
- Create a polyline connecting a number of points.
- true
- 82046283-082e-419e-a05f-023d3a681021
- PolyLine
- PolyLine
-
4259
2715
118
44
-
4319
2737
- 1
- Polyline vertex points
- f1fc21bf-11ce-4976-bb26-c53a6549a2c4
- Vertices
- Vertices
- false
- 75156aff-6128-4635-ba01-66f6e62c8b34
- 1
-
4261
2717
43
20
-
4284
2727
- Close polyline
- 7a088eac-054c-4089-8375-2217cc10dcbd
- Closed
- Closed
- false
- 0
-
4261
2737
43
20
-
4284
2747
- 1
- 1
- {0}
- false
- Resulting polyline
- 812209f4-d890-44eb-8174-2bf48726e54c
- Polyline
- Polyline
- false
- 0
-
4334
2717
41
40
-
4356
2737
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- 41ca37bd-04a2-4730-a104-ccfdfebcb019
- Explode
- Explode
-
4250
2652
136
44
-
4317
2674
- Curve to explode
- 93669a73-ddb7-4a6a-82e1-f3247b83dab9
- Curve
- Curve
- false
- 812209f4-d890-44eb-8174-2bf48726e54c
- 1
-
4252
2654
50
20
-
4278.5
2664
- Recursive decomposition until all segments are atomic
- a3eca606-0c18-4bd5-83e4-e0bb1e60b1d6
- Recursive
- Recursive
- false
- 0
-
4252
2674
50
20
-
4278.5
2684
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- 1aa63b77-1b30-4cd2-9d7d-88d1999ec0d8
- Segments
- Segments
- false
- 0
-
4332
2654
52
20
-
4359.5
2664
- 1
- Vertices of the exploded segments
- 51a45158-c586-46f6-88d2-01c79c67669f
- Vertices
- Vertices
- false
- 0
-
4332
2674
52
20
-
4359.5
2684
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
- 1
- Curve
- Curve
- false
- 1aa63b77-1b30-4cd2-9d7d-88d1999ec0d8
- 1
-
4292
2608
53
24
-
4328
2620.144
- 6f93d366-919f-4dda-a35e-ba03dd62799b
- Sort List
- Sort a list of numeric keys.
- true
- baea9c8f-4e59-442d-b5b4-d125979bf466
- Sort List
- Sort List
-
4253
2494
130
44
-
4318
2516
- 2
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- List of sortable keys
- 27eb4fd4-9a74-4641-903e-0228f03308d8
- Keys
- Keys
- false
- 6fa53b1f-925f-4bf9-a5d6-e49a44647f48
- 1
-
4255
2496
48
20
-
4280.5
2506
- 1
- Optional list of values to sort synchronously
- 0947c0bb-6fd7-465f-bd09-c7c651b3e131
- Values Values A
- Values A
- true
- 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
- 1
-
4255
2516
48
20
-
4280.5
2526
- 1
- Sorted keys
- dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
- Keys
- Keys
- false
- 0
-
4333
2496
48
20
-
4358.5
2506
- 1
- Synchronous values in Values A
- 020d407e-5a0d-434c-8f36-8ad74f04be54
- Values Values A
- Values A
- false
- 0
-
4333
2516
48
20
-
4358.5
2526
- c75b62fa-0a33-4da7-a5bd-03fd0068fd93
- Length
- Measure the length of a curve.
- true
- 12c0d088-f108-4075-bb85-315d570d97ea
- Length
- Length
-
4266
2558
104
28
-
4316
2572
- Curve to measure
- 396fc4e4-3161-49f2-bcd1-3c3c12aaf411
- Curve
- Curve
- false
- 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
- 1
-
4268
2560
33
24
-
4286
2572
- Curve length
- 6fa53b1f-925f-4bf9-a5d6-e49a44647f48
- Length
- Length
- false
- 0
-
4331
2560
37
24
-
4351
2572
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 41093a5b-4ba4-4dfb-a5f8-1bd792353689
- List Item
- List Item
-
4281
2017
74
64
-
4329
2049
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- f4a956fe-c4c8-4faa-ab37-46863b6ab8f7
- List
- List
- false
- dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
- 1
-
4283
2019
31
20
-
4300
2029
- Item index
- 795f3412-014f-42a0-bb3e-68ed9d6519c3
- Index
- Index
- false
- 0
-
4283
2039
31
20
-
4300
2049
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 94795b14-df1b-4254-875b-0b0c0f2f5fed
- Wrap
- Wrap
- false
- 0
-
4283
2059
31
20
-
4300
2069
- 1
- 1
- {0}
- false
- Item at {i'}
- 4d84ba38-35a7-4f3d-b366-8ad8331ebb7c
- false
- Item
- i
- false
- 0
-
4344
2019
9
60
-
4350
2049
- 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
- Dot Display
- Draw a collection of coloured dots
- true
- false
- 39d1ba4f-7fac-4207-98a7-67ceea5ef36c
- Dot Display
- Dot Display
-
4276
1918
83
64
-
4345
1950
- Dot location
- true
- 00b953b9-3188-468d-93c1-becbe89ee898
- Point
- Point
- false
- 75156aff-6128-4635-ba01-66f6e62c8b34
- 1
-
4278
1920
52
20
-
4313.5
1930
- Dot colour
- f449e9ac-4676-4153-8107-1b77272d00ba
- Colour
- Colour
- false
- 0
-
4278
1940
52
20
-
4313.5
1950
- 1
- 1
- {0}
-
255;194;194;194
- Dot size
- 37153672-679d-499c-85a8-bb1e26d25c8b
- X/2
- Size
- Size
- false
- 4d84ba38-35a7-4f3d-b366-8ad8331ebb7c
- 1
-
4278
1960
52
20
-
4313.5
1970
- 1
- 1
- {0}
- 1
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 42ced415-8369-4764-bd84-2655a9abcdd0
- Create Material
- Create Material
-
4213
-10886
144
104
-
4297
-10834
- Colour of the diffuse channel
- 23526173-3b15-42d7-a471-0759eadad650
- Diffuse
- Diffuse
- false
- 0
-
4215
-10884
67
20
-
4250
-10874
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- 428de005-cd25-40af-8285-d2bd9252f5b3
- Specular
- Specular
- false
- 0
-
4215
-10864
67
20
-
4250
-10854
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- f9a525b9-eab9-4b11-9c82-5a6d53d7cba0
- Emission
- Emission
- false
- 0
-
4215
-10844
67
20
-
4250
-10834
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 7a04b174-5152-4d1e-9872-a9491f98995c
- Transparency
- Transparency
- false
- 0
-
4215
-10824
67
20
-
4250
-10814
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 313e8f5e-fddb-487f-a280-06859fa8fad6
- Shine
- Shine
- false
- 0
-
4215
-10804
67
20
-
4250
-10794
- 1
- 1
- {0}
- 100
- Resulting material
- d7c0515a-62aa-41bd-a4bf-d5c02119a024
- Material
- Material
- false
- 0
-
4312
-10884
43
100
-
4335
-10834
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 97be2d03-c12a-4c13-bcf1-179c5148fad7
- Custom Preview
- Custom Preview
-
4244
-10949
82
44
-
4312
-10927
- Geometry to preview
- true
- 5c229870-d626-4d8a-8a53-2566190c6b40
- Geometry
- Geometry
- false
- a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
- 1
-
4246
-10947
51
20
-
4273
-10937
- The material override
- adb526d8-1109-4c75-bc7f-8b1a63d26467
- Material
- Material
- false
- d7c0515a-62aa-41bd-a4bf-d5c02119a024
- 1
-
4246
-10927
51
20
-
4273
-10917
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- f9312303-3ba0-4d12-bf2a-4df8dd780ec7
- Evaluate Length
- Evaluate Length
-
4213
-11033
144
64
-
4287
-11001
- Curve to evaluate
- d8e6535f-993b-441a-8f18-57c297ab434a
- Curve
- Curve
- false
- a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
- 1
-
4215
-11031
57
20
-
4245
-11021
- Length factor for curve evaluation
- ebf67458-8b7c-48e4-aab4-2ce5c99336d1
- Length
- Length
- false
- 0
-
4215
-11011
57
20
-
4245
-11001
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 2e2b937b-fe29-4e76-8bf1-327ada239851
- Normalized
- Normalized
- false
- 0
-
4215
-10991
57
20
-
4245
-10981
- 1
- 1
- {0}
- true
- Point at the specified length
- 4232e5bd-4b43-4b68-86a3-1efca2b2863e
- Point
- Point
- false
- 0
-
4302
-11031
53
20
-
4330
-11021
- Tangent vector at the specified length
- 5371f1e6-105b-42b3-9ca4-0f9e0a7f71f2
- Tangent
- Tangent
- false
- 0
-
4302
-11011
53
20
-
4330
-11001
- Curve parameter at the specified length
- c00145c8-bbdc-48a3-9c41-13e1f360e786
- Parameter
- Parameter
- false
- 0
-
4302
-10991
53
20
-
4330
-10981
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- a0d0df39-1b14-428e-bf37-398cec030283
- Interpolate
- Interpolate
-
4222
-11137
125
84
-
4289
-11095
- 1
- Interpolation points
- 151139fa-fa76-48be-87f4-c5c527e4e1b1
- Vertices
- Vertices
- false
- 4232e5bd-4b43-4b68-86a3-1efca2b2863e
- 1
-
4224
-11135
50
20
-
4250.5
-11125
- Curve degree
- 6f60e97f-e266-4e90-ad4b-9550433bbb96
- Degree
- Degree
- false
- 0
-
4224
-11115
50
20
-
4250.5
-11105
- 1
- 1
- {0}
- 3
- Periodic curve
- 1dc9dddf-b84b-433d-aa60-521d302ee78d
- Periodic
- Periodic
- false
- 0
-
4224
-11095
50
20
-
4250.5
-11085
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- d6c6ffbd-fd59-4f06-834c-dfdda0e3cde9
- KnotStyle
- KnotStyle
- false
- 0
-
4224
-11075
50
20
-
4250.5
-11065
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- ffa36bc2-d3b2-4655-954c-b3bb1caadc80
- Curve
- Curve
- false
- 0
-
4304
-11135
41
26
-
4326
-11121.67
- Curve length
- a073906c-f67b-4209-925d-0db2835809d1
- Length
- Length
- false
- 0
-
4304
-11109
41
27
-
4326
-11095
- Curve domain
- a63f1658-8db8-4c8f-a21f-5e41ed15efe3
- Domain
- Domain
- false
- 0
-
4304
-11082
41
27
-
4326
-11068.33
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
- Draws Rhino Curvature Graphs.
- true
- 6717a073-4979-4ab7-8cca-94ec28dd910e
- true
- Curvature Graph
- Curvature Graph
-
4277
7121
71
64
-
4334
7153
- Curve for Curvature graph display
- true
- 726626fc-0121-4a36-ad40-950aa805020d
- true
- Curve
- Curve
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4279
7123
40
20
-
4300.5
7133
- Sampling density of the Graph
- e4e6c4d1-2571-43ab-bafa-ffc8e537aa7e
- true
- Density
- Density
- false
- 0
-
4279
7143
40
20
-
4300.5
7153
- 1
- 1
- {0}
- 1
- Scale of graph
- c4ca2177-0ce3-417f-aa30-2a48677eaa94
- true
- Scale
- Scale
- false
- 1e7003ad-1005-4315-9274-8625081eb42d
- 1
-
4279
7163
40
20
-
4300.5
7173
- 1
- 1
- {0}
- 105
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1e7003ad-1005-4315-9274-8625081eb42d
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 87.0
-
4193
7211
250
20
-
4193.743
7211.873
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c7834162-f8d6-4396-a928-93ded1c673be
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4298
3223
40
16
-
4318
3231
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- d49b543b-255e-4b1e-afad-506fdeb4a087
- Remap Numbers
- Remap Numbers
-
4260
5470
115
64
-
4315
5502
- Value to remap
- 448a0515-aaa4-4e34-bf65-8331febff788
- Value
- Value
- false
- aacff86f-b554-4395-9c67-12ea7491563a
- 1
-
4262
5472
38
20
-
4282.5
5482
- Source domain
- 2af67ffd-d96e-4eed-825b-992ce2c4715f
- Source
- Source
- false
- 82ffcc9e-d4c9-4de1-a8ad-4da568b3d8c7
- 1
-
4262
5492
38
20
-
4282.5
5502
- 1
- 1
- {0}
-
0
1
- Target domain
- 13280d18-8cc4-4627-a46f-9fe1951b318f
- Target
- Target
- false
- 0
-
4262
5512
38
20
-
4282.5
5522
- 1
- 1
- {0}
-
0
1
- Remapped number
- a321ca1e-018e-41d6-8820-b2a1c8ac90ab
- Mapped
- Mapped
- false
- 0
-
4330
5472
43
30
-
4353
5487
- Remapped and clipped number
- 91e0b348-1054-48d9-bf59-ae8461fa1fac
- Clipped
- Clipped
- false
- 0
-
4330
5502
43
30
-
4353
5517
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 9033362e-88b7-4ca5-82ec-e83b690b9e1f
- Bounds
- Bounds
-
4257
5552
122
28
-
4321
5566
- 1
- Numbers to include in Bounds
- 516ce2d0-b7ae-47b4-81cc-cdb8cfe44911
- Numbers
- Numbers
- false
- aacff86f-b554-4395-9c67-12ea7491563a
- 1
-
4259
5554
47
24
-
4284
5566
- Numeric Domain between the lowest and highest numbers in {N}
- 82ffcc9e-d4c9-4de1-a8ad-4da568b3d8c7
- Domain
- Domain
- false
- 0
-
4336
5554
41
24
-
4358
5566
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- d49b543b-255e-4b1e-afad-506fdeb4a087
- 9033362e-88b7-4ca5-82ec-e83b690b9e1f
- c3830b7d-0858-410d-89db-9af833da8bf5
- 501fc599-56aa-405b-ad58-777fa1c4d11c
- aacff86f-b554-4395-9c67-12ea7491563a
- 40fce33c-72c8-4b9e-b056-d06a290937b2
- 47a743e6-2557-42d2-a2c1-210a6a941e82
- 476ce713-0dae-4d18-804a-2b7b11658f2a
- 15
- e9edf9da-696f-47bd-a5e5-79c7729f8e89
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- aacff86f-b554-4395-9c67-12ea7491563a
- Relay
-
- false
- 6fb580be-4b7e-48e0-a5cf-431967be43a9
- 1
-
4298
5599
40
16
-
4318
5607
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 501fc599-56aa-405b-ad58-777fa1c4d11c
- Relay
-
- false
- 95926409-f740-467c-80b4-734f46eb4123
- 1
-
4298
5243
40
16
-
4318
5251
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 47a743e6-2557-42d2-a2c1-210a6a941e82
- Multiplication
- Multiplication
-
4277
5315
82
44
-
4308
5337
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- dcbd1da4-8f69-4b06-8a33-0eecc767e991
- A
- A
- true
- f6322f85-aed1-4c85-95a8-8d761a4a73be
- 1
-
4279
5317
14
20
-
4287.5
5327
- Second item for multiplication
- 06fe588d-0bb9-4eda-9323-581799b3334d
- B
- B
- true
- 40fce33c-72c8-4b9e-b056-d06a290937b2
- 1
-
4279
5337
14
20
-
4287.5
5347
- Result of multiplication
- 95926409-f740-467c-80b4-734f46eb4123
- Result
- Result
- false
- 0
-
4323
5317
34
40
-
4341.5
5337
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- af01224e-c0e0-4809-ad30-4e4bd74d845a
- Remap Numbers
- Remap Numbers
-
4260
3505
115
64
-
4315
3537
- Value to remap
- 0dd9c290-89b3-4f7f-b7f7-fea0ad374ec8
- Value
- Value
- false
- 3b624a89-a10e-4423-8d23-23c665342bea
- 1
-
4262
3507
38
20
-
4282.5
3517
- Source domain
- 565f7896-5376-4be8-9b87-65aabf7ca350
- Source
- Source
- false
- 4dafdc57-390a-45b4-9dad-94993250d3c0
- 1
-
4262
3527
38
20
-
4282.5
3537
- 1
- 1
- {0}
-
0
1
- Target domain
- 8f2c29a0-d826-4f38-bc8c-1ca957ffc790
- Target
- Target
- false
- 0
-
4262
3547
38
20
-
4282.5
3557
- 1
- 1
- {0}
-
-1
1
- Remapped number
- 1900d5cb-3ebe-418f-b5c5-34f4f1f2980f
- Mapped
- Mapped
- false
- 0
-
4330
3507
43
30
-
4353
3522
- Remapped and clipped number
- 747cdfe4-2981-48ee-b96b-401136eee8d9
- Clipped
- Clipped
- false
- 0
-
4330
3537
43
30
-
4353
3552
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 2e1813eb-afd7-4c67-ae5d-0aea5806a643
- Bounds
- Bounds
-
4257
3588
122
28
-
4321
3602
- 1
- Numbers to include in Bounds
- 2c788be9-e936-471d-8ef8-12877fe1813c
- Numbers
- Numbers
- false
- 3b624a89-a10e-4423-8d23-23c665342bea
- 1
-
4259
3590
47
24
-
4284
3602
- Numeric Domain between the lowest and highest numbers in {N}
- 4dafdc57-390a-45b4-9dad-94993250d3c0
- Domain
- Domain
- false
- 0
-
4336
3590
41
24
-
4358
3602
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- af01224e-c0e0-4809-ad30-4e4bd74d845a
- 2e1813eb-afd7-4c67-ae5d-0aea5806a643
- c3830b7d-0858-410d-89db-9af833da8bf5
- 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
- 3b624a89-a10e-4423-8d23-23c665342bea
- 1dfb13cb-b934-40bc-a126-3ef4f67aa6cb
- 4a81f039-0b6b-406b-837f-1176119811ff
- b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
- 15
- 5365386e-73e6-497c-b44a-34b85df3bb28
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3b624a89-a10e-4423-8d23-23c665342bea
- Relay
-
- false
- a50ee4ed-1074-44c4-b42b-16f559369733
- 1
-
4298
3633
40
16
-
4318
3641
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
- Relay
-
- false
- 42398358-cfbe-4f21-96e5-282d62ee7e58
- 1
-
4298
3266
40
16
-
4318
3274
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 4a81f039-0b6b-406b-837f-1176119811ff
- Multiplication
- Multiplication
-
4277
3305
82
44
-
4308
3327
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- b76c491c-1771-4316-82a4-113c7bcdbb11
- A
- A
- true
- 519c9f7f-5560-40d4-af0b-8be47a07ff02
- 1
-
4279
3307
14
20
-
4287.5
3317
- Second item for multiplication
- 2ed48d06-e4d0-425d-975d-12021826cd1f
- B
- B
- true
- b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
- 1
-
4279
3327
14
20
-
4287.5
3337
- Result of multiplication
- 42398358-cfbe-4f21-96e5-282d62ee7e58
- Result
- Result
- false
- 0
-
4323
3307
34
40
-
4341.5
3327
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- e82225cb-a1a5-4ad3-b28d-40b2efc10203
- true
- Expression
- Expression
-
4221
6729
194
28
-
4321
6743
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- b5f45c4f-f8dd-49ac-82bc-318d09dd2a13
- true
- Variable O
- O
- true
- 4ae5300f-9b3f-4375-87a5-52ce195ec59e
- 1
-
4223
6731
14
24
-
4231.5
6743
- Result of expression
- 49fcf7f9-8ddd-41ec-a183-2131adb07f3b
- true
- Result
-
- false
- 0
-
4404
6731
9
24
-
4410
6743
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 47309ff2-7be5-4758-9fcf-1729ec8314b8
- Panel
- false
- 1
- 49fcf7f9-8ddd-41ec-a183-2131adb07f3b
- 1
- Double click to edit panel content…
-
4225
6443
185
271
- 0
- 0
- 0
-
4225.832
6443.893
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 98efd460-a431-49c8-aded-a62a77c59e5f
- Relay
-
- false
- 47309ff2-7be5-4758-9fcf-1729ec8314b8
- 1
-
4298
6420
40
16
-
4318
6428
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4ae5300f-9b3f-4375-87a5-52ce195ec59e
- Relay
-
- false
- 3654a9c9-a7f1-48df-8fa7-73ed1663a837
- 1
-
4298
6776
40
16
-
4318
6784
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e82225cb-a1a5-4ad3-b28d-40b2efc10203
- 47309ff2-7be5-4758-9fcf-1729ec8314b8
- 98efd460-a431-49c8-aded-a62a77c59e5f
- 4ae5300f-9b3f-4375-87a5-52ce195ec59e
- 4
- 929e2d4c-e84d-4d02-91ac-5e7752c650a1
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 17740f5f-06e3-439c-b530-05a592105abb
- true
- Expression
- Expression
-
4221
6029
194
28
-
4321
6043
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- febdeb41-753b-4759-9155-f4ee00efa396
- true
- Variable O
- O
- true
- d468ce15-4157-4fb6-a1ff-1a56b601419e
- 1
-
4223
6031
14
24
-
4231.5
6043
- Result of expression
- 6914912a-bdac-4a4d-a2db-868eed728741
- true
- Result
-
- false
- 0
-
4404
6031
9
24
-
4410
6043
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 86b9cd83-4404-471f-8e4d-246d772737f9
- Panel
- false
- 0
- 6914912a-bdac-4a4d-a2db-868eed728741
- 1
- Double click to edit panel content…
-
4218
5744
200
271
- 0
- 0
- 0
-
4218.899
5744.656
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
- Relay
-
- false
- 86b9cd83-4404-471f-8e4d-246d772737f9
- 1
-
4298
5701
40
16
-
4318
5709
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d468ce15-4157-4fb6-a1ff-1a56b601419e
- Relay
-
- false
- 6fb580be-4b7e-48e0-a5cf-431967be43a9
- 1
-
4298
6076
40
16
-
4318
6084
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 17740f5f-06e3-439c-b530-05a592105abb
- 86b9cd83-4404-471f-8e4d-246d772737f9
- 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
- d468ce15-4157-4fb6-a1ff-1a56b601419e
- 4
- 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
- Group
- c75b62fa-0a33-4da7-a5bd-03fd0068fd93
- Length
- Measure the length of a curve.
- true
- e73e0f67-8dcc-4b89-a973-43217655652f
- Length
- Length
-
4266
7426
104
28
-
4316
7440
- Curve to measure
- 23a61651-ddf4-4a20-9f47-60d37a73cc53
- Curve
- Curve
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4268
7428
33
24
-
4286
7440
- Curve length
- db26abf6-6a27-458b-8296-41880794893f
- Length
- Length
- false
- 0
-
4331
7428
37
24
-
4351
7440
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 5f2c0952-b956-47bf-90b0-5d5a4cb6cee6
- Multiplication
- Multiplication
-
4277
5378
82
44
-
4308
5400
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- d1b16463-773d-4691-8d64-4a9105876f41
- A
- A
- true
- 476ce713-0dae-4d18-804a-2b7b11658f2a
- 1
-
4279
5380
14
20
-
4287.5
5390
- Second item for multiplication
- 3eb60ebd-243d-4aaf-a6c6-959f8ca48089
- B
- B
- true
- a321ca1e-018e-41d6-8820-b2a1c8ac90ab
- 1
-
4279
5400
14
20
-
4287.5
5410
- Result of multiplication
- f6322f85-aed1-4c85-95a8-8d761a4a73be
- Result
- Result
- false
- 0
-
4323
5380
34
40
-
4341.5
5400
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 51d57fa6-afda-4229-afb4-90a25c9c6b8a
- Relay
- false
- 6fb580be-4b7e-48e0-a5cf-431967be43a9
- 1
-
4298
4407
40
16
-
4318
4415
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- e4026ef5-c10c-464e-9823-6797237c75c6
- Replace Nulls
- Replace Nulls
-
4250
4347
136
44
-
4336
4369
- 1
- Items to test for null
- 1d2318fa-82e4-419f-9eeb-557eecb11207
- Items
- Items
- false
- 51d57fa6-afda-4229-afb4-90a25c9c6b8a
- 1
-
4252
4349
69
20
-
4288
4359
- 1
- Items to replace nulls with
- a2b6febe-d6f0-409c-8289-483e5613c3fc
- Replacements
- Replacements
- false
- 0
-
4252
4369
69
20
-
4288
4379
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- c1cbf3cc-c305-48cc-a958-e9cacfba5960
- Items
- Items
- false
- 0
-
4351
4349
33
20
-
4369
4359
- Number of items replaced
- e42eb5df-9832-4e87-8857-c8e16a150234
- Count
- Count
- false
- 0
-
4351
4369
33
20
-
4369
4379
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a50ee4ed-1074-44c4-b42b-16f559369733
- Relay
- false
- 52a4cb5e-e88f-43e5-bb41-82eb4d03ae2c
- 1
-
4298
4262
40
16
-
4318
4270
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- da9c2d00-64fe-44a7-9401-d326fcdf51fa
- Quick Graph
- Quick Graph
- false
- 0
- 040c5d9b-07ad-4ae2-aad9-21a946416a98
- 1
-
4243
4062
150
150
-
4243.828
4062.635
- 0
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 040c5d9b-07ad-4ae2-aad9-21a946416a98
- Relay
-
- false
- a50ee4ed-1074-44c4-b42b-16f559369733
- 1
-
4298
4226
40
16
-
4318
4234
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 9bd8b728-8787-4303-ac8e-82b11f531453
- true
- Expression
- Expression
-
4221
3975
194
28
-
4321
3989
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f77b6382-e1b3-4533-818e-1ddfd58b503f
- true
- Variable O
- O
- true
- c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
- 1
-
4223
3977
14
24
-
4231.5
3989
- Result of expression
- 2b10f4b0-51cf-4386-8d0f-6069e3234145
- true
- Result
-
- false
- 0
-
4404
3977
9
24
-
4410
3989
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 74c717fe-6a47-4ebf-9159-b915086fdaa4
- Panel
- false
- 0
- 2b10f4b0-51cf-4386-8d0f-6069e3234145
- 1
- Double click to edit panel content…
-
4218
3692
200
271
- 0
- 0
- 0
-
4218.241
3692.615
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- bf3127fe-bbed-4fae-86c0-6819ff185956
- Relay
-
- false
- 74c717fe-6a47-4ebf-9159-b915086fdaa4
- 1
-
4298
3674
40
16
-
4318
3682
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
- Relay
-
- false
- 040c5d9b-07ad-4ae2-aad9-21a946416a98
- 1
-
4298
4022
40
16
-
4318
4030
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 9bd8b728-8787-4303-ac8e-82b11f531453
- 74c717fe-6a47-4ebf-9159-b915086fdaa4
- bf3127fe-bbed-4fae-86c0-6819ff185956
- c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
- da9c2d00-64fe-44a7-9401-d326fcdf51fa
- 040c5d9b-07ad-4ae2-aad9-21a946416a98
- 6
- 2077772c-8556-4e37-b44d-c0a0d5d206ff
- Group
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e5bb3651-4fcd-4da1-9d37-64323a4cbaec
- Multiplication
- Multiplication
-
4277
3406
82
44
-
4308
3428
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 233b5d7d-5e9c-4aab-a358-11af797d62ec
- A
- A
- true
- 1900d5cb-3ebe-418f-b5c5-34f4f1f2980f
- 1
-
4279
3408
14
20
-
4287.5
3418
- Second item for multiplication
- bd9787ef-65bc-41d8-b5c7-68871373c4a5
- B
- B
- true
- fb8adc2b-49b7-409f-930c-e67bde1e9980
- 1
-
4279
3428
14
20
-
4287.5
3438
- Result of multiplication
- 519c9f7f-5560-40d4-af0b-8be47a07ff02
- Result
- Result
- false
- 0
-
4323
3408
34
40
-
4341.5
3428
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 441bf542-5076-4985-9937-0bb3a042b678
- Curve
- Curve
- false
- 3fe9ed31-c050-492d-94ea-c80218f2b732
- 1
-
4293
2905
50
24
-
4318
2917.582
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 75156aff-6128-4635-ba01-66f6e62c8b34
- Relay
- false
- 18921b3c-23a8-4466-aa33-85dea6f5193e
- 1
-
4298
2783
40
16
-
4318
2791
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 31ebe528-d55d-4dff-927d-a48736be9cc3
- true
- Expression
- Expression
-
4221
2412
194
28
-
4321
2426
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 688ba6a6-9ee3-4856-8a10-8ab5b0316e87
- true
- Variable O
- O
- true
- be799453-059d-4d40-b651-349c7cf77c9d
- 1
-
4223
2414
14
24
-
4231.5
2426
- Result of expression
- 7388241d-d99f-4344-a537-5b48cc2edd76
- true
- Result
-
- false
- 0
-
4404
2414
9
24
-
4410
2426
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 8487c049-6563-42c2-982d-a3d473c55e0b
- Panel
- false
- 0
- 7388241d-d99f-4344-a537-5b48cc2edd76
- 1
- Double click to edit panel content…
-
4221
2129
194
271
- 0
- 0
- 0
-
4221.045
2129.177
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 34ec62fd-1b45-4131-8bb3-067f9ae32190
- Relay
-
- false
- 8487c049-6563-42c2-982d-a3d473c55e0b
- 1
-
4298
2111
40
16
-
4318
2119
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- be799453-059d-4d40-b651-349c7cf77c9d
- Relay
-
- false
- dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
- 1
-
4298
2457
40
16
-
4318
2465
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 31ebe528-d55d-4dff-927d-a48736be9cc3
- 8487c049-6563-42c2-982d-a3d473c55e0b
- 34ec62fd-1b45-4131-8bb3-067f9ae32190
- be799453-059d-4d40-b651-349c7cf77c9d
- 4
- 3f3172f7-bff5-4e81-85a2-58943326f0a7
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- c9632403-1835-45bf-a8da-51dd473c2104
- Create Material
- Create Material
-
4213
-11261
144
104
-
4297
-11209
- Colour of the diffuse channel
- 45fbcd4a-120c-4ab7-a1af-fe8c72e99a7a
- Diffuse
- Diffuse
- false
- 0
-
4215
-11259
67
20
-
4250
-11249
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- 4b010761-a439-40ca-b8d2-6e3bc0c13526
- Specular
- Specular
- false
- 0
-
4215
-11239
67
20
-
4250
-11229
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 65184dab-7d0a-4e0b-bf79-ec0ca699b455
- Emission
- Emission
- false
- 0
-
4215
-11219
67
20
-
4250
-11209
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 970c9b9d-64e0-40f4-89b3-92360e324de7
- Transparency
- Transparency
- false
- 0
-
4215
-11199
67
20
-
4250
-11189
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 32bc5c00-d6c0-4aa6-a2d6-9b346f7c9cb6
- Shine
- Shine
- false
- 0
-
4215
-11179
67
20
-
4250
-11169
- 1
- 1
- {0}
- 100
- Resulting material
- 2e6dccc8-6177-4800-bea6-4ea4ba2b9f92
- Material
- Material
- false
- 0
-
4312
-11259
43
100
-
4335
-11209
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 3579a27a-9991-4bf3-94de-84223b4b0a72
- Custom Preview
- Custom Preview
-
4244
-11324
82
44
-
4312
-11302
- Geometry to preview
- true
- 26eb909a-b46a-4478-9bb6-2fc20cf12003
- Geometry
- Geometry
- false
- ffa36bc2-d3b2-4655-954c-b3bb1caadc80
- 1
-
4246
-11322
51
20
-
4273
-11312
- The material override
- fe342583-bcbf-4e07-b919-4db37b6d38b2
- Material
- Material
- false
- 2e6dccc8-6177-4800-bea6-4ea4ba2b9f92
- 1
-
4246
-11302
51
20
-
4273
-11292
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f12959c2-8cc4-4ce2-896d-7ff1a4aa1903
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 256.0
-
4193
7085
250
20
-
4193.743
7085.877
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b7462a41-d690-4e75-b5bb-082a0185ec77
- Quick Graph
- Quick Graph
- false
- 0
- 95bfb75e-deb2-41b2-ba5e-9f8b1037d613
- 1
-
4211
-9664
150
150
-
4211.097
-9663.828
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 5e698680-d615-4e2a-aed9-fd28b0220a65
- Quick Graph
- Quick Graph
- false
- 0
- c9af63c9-0143-479e-9052-49ae8662e1b1
- 1
-
4211
-9833
150
150
-
4211.097
-9832.828
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- ca297271-f533-4d51-a8fc-bdb7b204740c
- Quick Graph
- Quick Graph
- false
- 0
- 96867ac7-0810-4a7b-b16e-65dfb34d3ac7
- 1
-
4211
-10001
150
150
-
4211.097
-10000.35
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 9e3117d6-b3b4-4adc-84f3-2835a988e21e
- Quick Graph
- Quick Graph
- false
- 0
- 42ee3241-4c5c-463a-b0d9-dd12d62c2293
- 1
-
4211
-10170
150
150
-
4211.097
-10169.35
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- c8c317c7-391f-4b40-93d8-4c1994caecef
- Quick Graph
- Quick Graph
- false
- 0
- 533714a3-b663-4971-b5e9-26bce2a7de5c
- 1
-
4210
-10340
150
150
-
4210.854
-10339.08
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 3b490da6-b955-4f9c-bddc-980384007a01
- Quick Graph
- Quick Graph
- false
- 0
- 8a09c8bb-c54e-4691-8429-43124dd1c8b3
- 1
-
4210
-10509
150
150
-
4210.854
-10508.86
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- c2fc9a4e-ff43-4e6b-ba22-4562fab58558
- Quick Graph
- Quick Graph
- false
- 0
- b52f3636-0270-4109-8b69-fa9470b344cd
- 1
-
4210
-10678
150
150
-
4210.854
-10677.6
- -1
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
- 2
- Curve
- Curve
- false
- c805c655-6882-4bac-bcea-fd9c2844f949
- 1
-
3945
7654
53
24
-
3981.334
7666.086
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 96971adb-dc6f-4220-b87f-875d4c7c2611
- X*4
- Number
- Number
- false
- b565e546-b7f7-4a1b-9c81-7e90c1d9e590
- 1
-
3945
7695
53
24
-
3981.804
7707.199
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- b209923c-3a28-4705-b6c2-2d7aa0c13cc7
- Relative Differences
- Relative Differences
-
4256
1505
128
28
-
4309
1519
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 4bd22293-c6e2-4782-ac84-5b600580b41c
- Values
- Values
- false
- 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
- 1
-
4258
1507
36
24
-
4277.5
1519
- 1
- Differences between consecutive items
- 0576e8b4-b93e-4625-ba08-32b7a12f9224
- Differenced
- Differenced
- false
- 0
-
4324
1507
58
24
-
4354.5
1519
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
- Relay
- false
- 0576e8b4-b93e-4625-ba08-32b7a12f9224
- 1
-
4300
1471
40
16
-
4320
1479
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
- Relay
- false
- a50ee4ed-1074-44c4-b42b-16f559369733
- 1
-
4300
1553
40
16
-
4320
1561
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 61f9e29f-feb3-4122-9ade-977c75c70121
- Relay
- false
- ee24630f-f4f0-4780-abab-e012c957d4c6
- 1
-
4298
6344
40
16
-
4318
6352
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 476ce713-0dae-4d18-804a-2b7b11658f2a
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4298
5443
40
16
-
4318
5451
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fb8adc2b-49b7-409f-930c-e67bde1e9980
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4298
3468
40
16
-
4318
3476
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- ffbd0ca9-452d-476b-aad7-d52654097132
- Line SDL
- Line SDL
-
4257
795
122
64
-
4337
827
- Line start point
- dfa13141-214f-4bdb-bcdf-fd35decbd4ce
- Start
- Start
- false
- 75156aff-6128-4635-ba01-66f6e62c8b34
- 1
-
4259
797
63
20
-
4300
807
- Line tangent (direction)
- c6523c5a-ebb1-4c5f-bf08-596ca65340a5
- Direction
- Direction
- false
- 25f75636-f71c-4e68-bc9c-52d7265bce09
- 1
-
4259
817
63
20
-
4300
827
- 1
- 1
- {0}
-
0
0
1
- Line length
- e337c9e9-e37b-49b4-a4f3-a62e9d52b221
- ABS(X)
- Length
- Length
- false
- a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
- 1
-
4259
837
63
20
-
4300
847
- 1
- 1
- {0}
- 1
- Line segment
- c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
- Line
- Line
- false
- 0
-
4352
797
25
60
-
4366
827
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 25f75636-f71c-4e68-bc9c-52d7265bce09
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4298
877
40
16
-
4318
885
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 81e762e6-cf7c-4ae1-9584-48cd20085421
- Remap Numbers
- Remap Numbers
-
4260
1159
115
64
-
4315
1191
- Value to remap
- b8054dea-0dba-4d47-a361-76c40d8e7028
- Value
- Value
- false
- 035d0b92-726f-45b3-9b43-f98bcdec0cf5
- 1
-
4262
1161
38
20
-
4282.5
1171
- Source domain
- 2dc4354d-6568-481e-9543-25086e8764ac
- Source
- Source
- false
- 4968227e-19f3-4a9f-97c2-33ce7e630f4f
- 1
-
4262
1181
38
20
-
4282.5
1191
- 1
- 1
- {0}
-
0
1
- Target domain
- 631bebd6-f133-4834-8203-c2a2316bf850
- Target
- Target
- false
- 0
-
4262
1201
38
20
-
4282.5
1211
- 1
- 1
- {0}
-
-1
1
- Remapped number
- 977d529a-74c3-4a92-b264-ffd1fdf99c1c
- Mapped
- Mapped
- false
- 0
-
4330
1161
43
30
-
4353
1176
- Remapped and clipped number
- c2a7c612-4761-43d5-bc2d-fa1631585f85
- Clipped
- Clipped
- false
- 0
-
4330
1191
43
30
-
4353
1206
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 115f0245-8d8d-4e08-9afd-473c7a08d0bd
- Bounds
- Bounds
-
4257
1242
122
28
-
4321
1256
- 1
- Numbers to include in Bounds
- 3ed0b4fa-c025-4e44-83fb-50c46e0be136
- Numbers
- Numbers
- false
- 035d0b92-726f-45b3-9b43-f98bcdec0cf5
- 1
-
4259
1244
47
24
-
4284
1256
- Numeric Domain between the lowest and highest numbers in {N}
- 4968227e-19f3-4a9f-97c2-33ce7e630f4f
- Domain
- Domain
- false
- 0
-
4336
1244
41
24
-
4358
1256
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 035d0b92-726f-45b3-9b43-f98bcdec0cf5
- Relay
-
- false
- e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
- 1
-
4298
1287
40
16
-
4318
1295
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
- Relay
-
- false
- fb6b6b3f-e722-4e8d-bc32-b6b0d0bb3a85
- 1
-
4298
920
40
16
-
4318
928
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e8565a94-1105-499b-9121-d17b6a40c779
- Multiplication
- Multiplication
-
4277
959
82
44
-
4308
981
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- db629085-728c-4432-ad6b-11fd7f0c8e83
- A
- A
- true
- 98c48af7-cad0-4141-8752-76b25a6547b3
- 1
-
4279
961
14
20
-
4287.5
971
- Second item for multiplication
- 86f3c8f9-f877-4cac-ae2a-fb2f2c9d9f48
- B
- B
- true
- c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
- 1
-
4279
981
14
20
-
4287.5
991
- Result of multiplication
- fb6b6b3f-e722-4e8d-bc32-b6b0d0bb3a85
- Result
- Result
- false
- 0
-
4323
961
34
40
-
4341.5
981
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 12a155cd-954b-41b5-9ebf-dfadc3960e64
- Multiplication
- Multiplication
-
4277
1060
82
44
-
4308
1082
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 7cb02247-b8fb-4071-99ef-c3eb7bc8f26e
- A
- A
- true
- 977d529a-74c3-4a92-b264-ffd1fdf99c1c
- 1
-
4279
1062
14
20
-
4287.5
1072
- Second item for multiplication
- 21b7d22c-0b3d-41c5-b6b5-c725c2e32b65
- B
- B
- true
- 6c6e888a-ea28-4db0-abf5-a2a050ebc430
- 1
-
4279
1082
14
20
-
4287.5
1092
- Result of multiplication
- 98c48af7-cad0-4141-8752-76b25a6547b3
- Result
- Result
- false
- 0
-
4323
1062
34
40
-
4341.5
1082
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6c6e888a-ea28-4db0-abf5-a2a050ebc430
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4298
1122
40
16
-
4318
1130
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
- 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
- b209923c-3a28-4705-b6c2-2d7aa0c13cc7
- 3
- 9c4b4d0a-421b-4c53-895c-1221d23a8c23
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- af294dd2-b04a-4838-88c8-0277f80bc3b0
- Create Material
- Create Material
-
4246
671
144
104
-
4330
723
- Colour of the diffuse channel
- 842d3b1b-9411-48c1-a4b2-090889ff22b0
- Diffuse
- Diffuse
- false
- 0
-
4248
673
67
20
-
4283
683
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- d514ba0e-8930-4c2b-a615-b7e12ced1b62
- Specular
- Specular
- false
- 0
-
4248
693
67
20
-
4283
703
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 635a8def-1a8d-4792-976c-d3f6d4930987
- Emission
- Emission
- false
- 0
-
4248
713
67
20
-
4283
723
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- f6dab51d-0c8f-479b-897a-f57ceedcacab
- Transparency
- Transparency
- false
- 0
-
4248
733
67
20
-
4283
743
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- c8456449-9caa-4f29-b972-11ccf6caa135
- Shine
- Shine
- false
- 0
-
4248
753
67
20
-
4283
763
- 1
- 1
- {0}
- 100
- Resulting material
- b603312a-32b7-4d61-9db7-5526a8b7f1fe
- Material
- Material
- false
- 0
-
4345
673
43
100
-
4368
723
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- a6eac927-8a3c-4732-b1a8-90e4b25850df
- Custom Preview
- Custom Preview
-
4277
609
82
44
-
4345
631
- Geometry to preview
- true
- 3beb0610-3674-43ef-adb2-e95400cf91c4
- Geometry
- Geometry
- false
- c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
- 1
-
4279
611
51
20
-
4306
621
- The material override
- c38e03f4-6478-47b4-92c4-a02cc432b018
- Material
- Material
- false
- b603312a-32b7-4d61-9db7-5526a8b7f1fe
- 1
-
4279
631
51
20
-
4306
641
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 5bda71fa-0d3a-4287-94fd-b5d399b8202f
- Evaluate Length
- Evaluate Length
-
4246
526
144
64
-
4320
558
- Curve to evaluate
- 96ffa41c-683e-4059-86c9-0564953e7936
- Curve
- Curve
- false
- c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
- 1
-
4248
528
57
20
-
4278
538
- Length factor for curve evaluation
- cdbe5b1f-9d31-46fb-93c5-ad7291a1eb36
- Length
- Length
- false
- 0
-
4248
548
57
20
-
4278
558
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 60ac828e-adc4-47bf-bc1d-0bdb52bac1e8
- Normalized
- Normalized
- false
- 0
-
4248
568
57
20
-
4278
578
- 1
- 1
- {0}
- true
- Point at the specified length
- 637e10b6-0bed-46d6-a76a-6a7a71d05708
- Point
- Point
- false
- 0
-
4335
528
53
20
-
4363
538
- Tangent vector at the specified length
- 33f9b60b-9f7d-4984-9b11-554b550460e5
- Tangent
- Tangent
- false
- 0
-
4335
548
53
20
-
4363
558
- Curve parameter at the specified length
- 2c8f1546-d78f-421e-b669-baed198bc74d
- Parameter
- Parameter
- false
- 0
-
4335
568
53
20
-
4363
578
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- d23b18ad-2e9d-4af3-a33d-e2ae8d08d84a
- Interpolate
- Interpolate
-
4255
422
125
84
-
4322
464
- 1
- Interpolation points
- 9e2e3a9b-904b-48d7-a2f8-5e5e1cfec8fc
- Vertices
- Vertices
- false
- 637e10b6-0bed-46d6-a76a-6a7a71d05708
- 1
-
4257
424
50
20
-
4283.5
434
- Curve degree
- 4a44671b-a1a5-4b70-a51b-1efe0327b5a7
- Degree
- Degree
- false
- 0
-
4257
444
50
20
-
4283.5
454
- 1
- 1
- {0}
- 1
- Periodic curve
- ef1234b2-7eb7-49ec-baea-03a92561ca54
- Periodic
- Periodic
- false
- 0
-
4257
464
50
20
-
4283.5
474
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 13c20af2-e6f4-40ed-9e06-2a3cee0e1310
- KnotStyle
- KnotStyle
- false
- 0
-
4257
484
50
20
-
4283.5
494
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
- Curve
- Curve
- false
- 0
-
4337
424
41
26
-
4359
437.3333
- Curve length
- ad2fce30-d14b-4547-b1e0-1e3fa991cd24
- Length
- Length
- false
- 0
-
4337
450
41
27
-
4359
464
- Curve domain
- ac261476-0de2-41ba-b51f-1417c8ec05fd
- Domain
- Domain
- false
- 0
-
4337
477
41
27
-
4359
490.6667
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- eedba66f-c09e-4b6a-a6f6-e360e1607858
- Create Material
- Create Material
-
4246
298
144
104
-
4330
350
- Colour of the diffuse channel
- 2ccdb9dd-ed00-46c0-9a61-9aeee619add6
- Diffuse
- Diffuse
- false
- 0
-
4248
300
67
20
-
4283
310
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- ec981619-883f-4f2f-a76a-7485b8c267b4
- Specular
- Specular
- false
- 0
-
4248
320
67
20
-
4283
330
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- cc6526b3-ec30-4593-a25f-9b0a3bd2b635
- Emission
- Emission
- false
- 0
-
4248
340
67
20
-
4283
350
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 0379919a-925c-4039-b44d-31c5860a383f
- Transparency
- Transparency
- false
- 0
-
4248
360
67
20
-
4283
370
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- e211802f-3037-4ef9-9665-9961a4f13bf4
- Shine
- Shine
- false
- 0
-
4248
380
67
20
-
4283
390
- 1
- 1
- {0}
- 100
- Resulting material
- 68dbb0fe-eefc-4062-b9b1-d9b0eec3d07b
- Material
- Material
- false
- 0
-
4345
300
43
100
-
4368
350
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- a3be89c0-1a37-4050-ae27-b5fc88bad330
- Custom Preview
- Custom Preview
-
4277
238
82
44
-
4345
260
- Geometry to preview
- true
- a444dc8e-4663-4484-a04c-13ad66a87be0
- Geometry
- Geometry
- false
- 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
- 1
-
4279
240
51
20
-
4306
250
- The material override
- 1edb010e-19a0-4324-a37b-2faf51ea7917
- Material
- Material
- false
- 68dbb0fe-eefc-4062-b9b1-d9b0eec3d07b
- 1
-
4279
260
51
20
-
4306
270
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c96083ca-5a8a-4085-b4fd-6d5eea9ca472
- 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
- 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
- cf8f325e-7066-4f00-bf52-f68e0880fb25
- ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
- a1a58fed-d57e-4141-b7b0-e1805b47e405
- edc3af5a-e25d-4381-a4d7-b2454ae6e271
- 547f9879-1f4b-4a31-b855-b187d0ccb44c
- e3bb7df2-b148-4b3e-a431-34c5a0a50196
- d79fb373-d285-4a32-9d35-a411dd8a2305
- 06be7652-b071-449f-9819-02867c2c1901
- ba639484-1f04-4eb3-bd96-f9911e7489f7
- c656fad9-200a-417f-ab8e-9ec2262e1bcb
- 8df7d7e6-cf5d-4502-9323-231be7021412
- 645a4fcb-3841-4062-9f82-8ce6675a59b7
- 3692f38f-1d1e-454f-9e1e-559f3a96e560
- b0f623ea-310b-4b24-9cb7-58687d55b42d
- 0968c388-eb63-4f69-97af-52e68422d260
- 8d280e70-d586-432d-9c66-602cd4f4fd53
- f6de1485-e329-4dce-a6e4-89cb0f7016af
- 322a6b5b-a423-48a5-b19d-a56aff79885e
- 8cf28910-ebf9-447f-b49a-b8133c4bc05e
- 22
- 7f8caa90-5f65-4c95-97fa-030e76b167df
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
- a1a58fed-d57e-4141-b7b0-e1805b47e405
- edc3af5a-e25d-4381-a4d7-b2454ae6e271
- 547f9879-1f4b-4a31-b855-b187d0ccb44c
- e3bb7df2-b148-4b3e-a431-34c5a0a50196
- d79fb373-d285-4a32-9d35-a411dd8a2305
- 06be7652-b071-449f-9819-02867c2c1901
- ba639484-1f04-4eb3-bd96-f9911e7489f7
- c656fad9-200a-417f-ab8e-9ec2262e1bcb
- 8df7d7e6-cf5d-4502-9323-231be7021412
- 645a4fcb-3841-4062-9f82-8ce6675a59b7
- 845cb04b-45f5-445d-9f62-abad64b02fd2
- af226fd0-4701-4be9-ac43-12af7cefc54c
- f77a5006-5ba9-4819-b46f-c7f246c09821
- 14
- c96083ca-5a8a-4085-b4fd-6d5eea9ca472
- Group
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
- Relative Differences
- Relative Differences
-
4257
125
128
28
-
4310
139
- 1
- List of data to operate on (numbers or points or vectors allowed)
- cf9b5280-1356-40a0-bd2f-b91b9fe0a0d5
- Values
- Values
- false
- cf8f325e-7066-4f00-bf52-f68e0880fb25
- 1
-
4259
127
36
24
-
4278.5
139
- 1
- Differences between consecutive items
- 1f168d2a-aa06-4c70-8dc4-2ea3b603bb80
- Differenced
- Differenced
- false
- 0
-
4325
127
58
24
-
4355.5
139
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
- Relay
- false
- 1f168d2a-aa06-4c70-8dc4-2ea3b603bb80
- 1
-
4301
91
40
16
-
4321
99
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- cf8f325e-7066-4f00-bf52-f68e0880fb25
- Relay
- false
- e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
- 1
-
4301
173
40
16
-
4321
181
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
- Line SDL
- Line SDL
-
4257
-602
122
64
-
4337
-570
- Line start point
- 6e2d24a9-2651-43b2-9059-a97658fefa94
- Start
- Start
- false
- 637e10b6-0bed-46d6-a76a-6a7a71d05708
- 1
-
4259
-600
63
20
-
4300
-590
- Line tangent (direction)
- 8d62e557-6e3c-4bf6-a04e-10b7a8808160
- Direction
- Direction
- false
- a1a58fed-d57e-4141-b7b0-e1805b47e405
- 1
-
4259
-580
63
20
-
4300
-570
- 1
- 1
- {0}
-
0
0
1
- Line length
- 48067a4f-d715-425d-9142-e9acdf7e2d16
- ABS(X)
- Length
- Length
- false
- ba639484-1f04-4eb3-bd96-f9911e7489f7
- 1
-
4259
-560
63
20
-
4300
-550
- 1
- 1
- {0}
- 1
- Line segment
- be2cf019-1305-48ce-adba-8f4655e5d2ee
- Line
- Line
- false
- 0
-
4352
-600
25
60
-
4366
-570
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a1a58fed-d57e-4141-b7b0-e1805b47e405
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4298
-520
40
16
-
4318
-512
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 547f9879-1f4b-4a31-b855-b187d0ccb44c
- Remap Numbers
- Remap Numbers
-
4260
-238
115
64
-
4315
-206
- Value to remap
- e2ce2793-7f92-435a-9592-107d9e9325c7
- Value
- Value
- false
- 06be7652-b071-449f-9819-02867c2c1901
- 1
-
4262
-236
38
20
-
4282.5
-226
- Source domain
- aca09565-ad3a-4dff-9c3a-f829a275ed12
- Source
- Source
- false
- 6366097d-daba-401d-a3bb-09908d45be64
- 1
-
4262
-216
38
20
-
4282.5
-206
- 1
- 1
- {0}
-
0
1
- Target domain
- 75fe238b-59fa-4483-9f0a-387f19e4effa
- Target
- Target
- false
- 0
-
4262
-196
38
20
-
4282.5
-186
- 1
- 1
- {0}
-
-1
1
- Remapped number
- f7db2e14-5eac-4497-8d7a-faed2f5f076b
- Mapped
- Mapped
- false
- 0
-
4330
-236
43
30
-
4353
-221
- Remapped and clipped number
- a79c8122-d5a3-4494-801e-dc132432acb4
- Clipped
- Clipped
- false
- 0
-
4330
-206
43
30
-
4353
-191
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- e3bb7df2-b148-4b3e-a431-34c5a0a50196
- Bounds
- Bounds
-
4257
-155
122
28
-
4321
-141
- 1
- Numbers to include in Bounds
- 65e00f66-a02a-4a1c-b13a-c34b1d32db8f
- Numbers
- Numbers
- false
- 06be7652-b071-449f-9819-02867c2c1901
- 1
-
4259
-153
47
24
-
4284
-141
- Numeric Domain between the lowest and highest numbers in {N}
- 6366097d-daba-401d-a3bb-09908d45be64
- Domain
- Domain
- false
- 0
-
4336
-153
41
24
-
4358
-141
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 547f9879-1f4b-4a31-b855-b187d0ccb44c
- e3bb7df2-b148-4b3e-a431-34c5a0a50196
- c3830b7d-0858-410d-89db-9af833da8bf5
- ba639484-1f04-4eb3-bd96-f9911e7489f7
- 06be7652-b071-449f-9819-02867c2c1901
- edc3af5a-e25d-4381-a4d7-b2454ae6e271
- c656fad9-200a-417f-ab8e-9ec2262e1bcb
- 14
- d79fb373-d285-4a32-9d35-a411dd8a2305
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 06be7652-b071-449f-9819-02867c2c1901
- Relay
-
- false
- 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
- 1
-
4298
-110
40
16
-
4318
-102
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ba639484-1f04-4eb3-bd96-f9911e7489f7
- Relay
-
- false
- 1ab4b573-b016-44f4-9322-bcb16dcb97b9
- 1
-
4298
-477
40
16
-
4318
-469
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- c656fad9-200a-417f-ab8e-9ec2262e1bcb
- Multiplication
- Multiplication
-
4277
-438
82
44
-
4308
-416
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- f38099fc-1a8f-4ec2-a980-4782834441e2
- A
- A
- true
- 4e4dd104-426c-41d2-bb08-6c08681a1283
- 1
-
4279
-436
14
20
-
4287.5
-426
- Second item for multiplication
- c981e6f7-dd08-4e71-86f1-5294401a4440
- B
- B
- true
- f77a5006-5ba9-4819-b46f-c7f246c09821
- 1
-
4279
-416
14
20
-
4287.5
-406
- Result of multiplication
- 1ab4b573-b016-44f4-9322-bcb16dcb97b9
- Result
- Result
- false
- 0
-
4323
-436
34
40
-
4341.5
-416
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 8df7d7e6-cf5d-4502-9323-231be7021412
- Multiplication
- Multiplication
-
4277
-337
82
44
-
4308
-315
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- eae22736-cc25-48be-82b9-82ae0596aed0
- A
- A
- true
- f7db2e14-5eac-4497-8d7a-faed2f5f076b
- 1
-
4279
-335
14
20
-
4287.5
-325
- Second item for multiplication
- 46ccac10-5ef7-43c0-b5e4-750578a78456
- B
- B
- true
- 645a4fcb-3841-4062-9f82-8ce6675a59b7
- 1
-
4279
-315
14
20
-
4287.5
-305
- Result of multiplication
- 4e4dd104-426c-41d2-bb08-6c08681a1283
- Result
- Result
- false
- 0
-
4323
-335
34
40
-
4341.5
-315
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 645a4fcb-3841-4062-9f82-8ce6675a59b7
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4298
-275
40
16
-
4318
-267
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
- cf8f325e-7066-4f00-bf52-f68e0880fb25
- 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
- 3
- 3692f38f-1d1e-454f-9e1e-559f3a96e560
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- b0f623ea-310b-4b24-9cb7-58687d55b42d
- Create Material
- Create Material
-
4246
-726
144
104
-
4330
-674
- Colour of the diffuse channel
- 0b2039c2-9096-48a6-a2a4-5e14c7289f90
- Diffuse
- Diffuse
- false
- 0
-
4248
-724
67
20
-
4283
-714
- 1
- 1
- {0}
-
255;224;224;224
- Colour of the specular highlight
- ba122001-38ee-4908-b388-560c17dc7b38
- Specular
- Specular
- false
- 0
-
4248
-704
67
20
-
4283
-694
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b19593ac-70b7-4a5b-a68d-d7c04b9d5039
- Emission
- Emission
- false
- 0
-
4248
-684
67
20
-
4283
-674
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- e50630b9-256d-4890-b2a2-710b1069a1a9
- Transparency
- Transparency
- false
- 0
-
4248
-664
67
20
-
4283
-654
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 3cb8a942-bbf6-485a-8eb7-177cc856e9d8
- Shine
- Shine
- false
- 0
-
4248
-644
67
20
-
4283
-634
- 1
- 1
- {0}
- 100
- Resulting material
- 9c578a14-3257-4ba9-bd47-aa9ac4e0f711
- Material
- Material
- false
- 0
-
4345
-724
43
100
-
4368
-674
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 0968c388-eb63-4f69-97af-52e68422d260
- Custom Preview
- Custom Preview
-
4277
-788
82
44
-
4345
-766
- Geometry to preview
- true
- 804b2077-26f5-49bd-bca2-9e59ee6a5fe0
- Geometry
- Geometry
- false
- be2cf019-1305-48ce-adba-8f4655e5d2ee
- 1
-
4279
-786
51
20
-
4306
-776
- The material override
- c84c562c-4cf7-4ae2-85fb-0f5c52a48b01
- Material
- Material
- false
- 9c578a14-3257-4ba9-bd47-aa9ac4e0f711
- 1
-
4279
-766
51
20
-
4306
-756
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 8d280e70-d586-432d-9c66-602cd4f4fd53
- Evaluate Length
- Evaluate Length
-
4246
-871
144
64
-
4320
-839
- Curve to evaluate
- 20375335-fe2f-4b9e-b95b-ff3bfc4229f7
- Curve
- Curve
- false
- be2cf019-1305-48ce-adba-8f4655e5d2ee
- 1
-
4248
-869
57
20
-
4278
-859
- Length factor for curve evaluation
- 091e548d-72b9-42a9-87cc-c90e4b9d833d
- Length
- Length
- false
- 0
-
4248
-849
57
20
-
4278
-839
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- ccbd7807-1a8d-4478-974e-eaeba34232b0
- Normalized
- Normalized
- false
- 0
-
4248
-829
57
20
-
4278
-819
- 1
- 1
- {0}
- true
- Point at the specified length
- c0df840f-e21c-4129-b503-719f49fc6b16
- Point
- Point
- false
- 0
-
4335
-869
53
20
-
4363
-859
- Tangent vector at the specified length
- ff9a3ab7-ae19-486e-8da8-c1e0a14e6800
- Tangent
- Tangent
- false
- 0
-
4335
-849
53
20
-
4363
-839
- Curve parameter at the specified length
- 11442010-ed08-406e-8f80-cab63dbe48de
- Parameter
- Parameter
- false
- 0
-
4335
-829
53
20
-
4363
-819
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- f6de1485-e329-4dce-a6e4-89cb0f7016af
- Interpolate
- Interpolate
-
4255
-975
125
84
-
4322
-933
- 1
- Interpolation points
- 07e3a62a-f138-4908-8022-e63d0db12106
- Vertices
- Vertices
- false
- c0df840f-e21c-4129-b503-719f49fc6b16
- 1
-
4257
-973
50
20
-
4283.5
-963
- Curve degree
- c7a9d37a-9597-4be7-8fb4-788c127c3da4
- Degree
- Degree
- false
- 0
-
4257
-953
50
20
-
4283.5
-943
- 1
- 1
- {0}
- 1
- Periodic curve
- e55e9e83-721d-4edc-8736-2486181af6fd
- Periodic
- Periodic
- false
- 0
-
4257
-933
50
20
-
4283.5
-923
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- f3235844-9d1d-4d99-bd61-222abdd54981
- KnotStyle
- KnotStyle
- false
- 0
-
4257
-913
50
20
-
4283.5
-903
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- eda997fc-a64a-410d-984f-4373353f22d8
- Curve
- Curve
- false
- 0
-
4337
-973
41
26
-
4359
-959.6667
- Curve length
- af975174-342f-4023-8176-c430b910aa01
- Length
- Length
- false
- 0
-
4337
-947
41
27
-
4359
-933
- Curve domain
- 72b77803-9b17-4bbf-8606-c8a01fc98876
- Domain
- Domain
- false
- 0
-
4337
-920
41
27
-
4359
-906.3334
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 322a6b5b-a423-48a5-b19d-a56aff79885e
- Create Material
- Create Material
-
4246
-1099
144
104
-
4330
-1047
- Colour of the diffuse channel
- 544f4ed3-57ae-49fe-8560-25df04b6d6b4
- Diffuse
- Diffuse
- false
- 0
-
4248
-1097
67
20
-
4283
-1087
- 1
- 1
- {0}
-
255;199;199;199
- Colour of the specular highlight
- d3f9d604-bf6f-4f65-85b0-64f38535d92f
- Specular
- Specular
- false
- 0
-
4248
-1077
67
20
-
4283
-1067
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 78f51403-90bc-41eb-973b-6a8618c61a9b
- Emission
- Emission
- false
- 0
-
4248
-1057
67
20
-
4283
-1047
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- d316c5f8-75ad-445c-b3fa-434bd3a704b5
- Transparency
- Transparency
- false
- 0
-
4248
-1037
67
20
-
4283
-1027
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 0b914229-1375-4735-a7ef-fcf88df61be4
- Shine
- Shine
- false
- 0
-
4248
-1017
67
20
-
4283
-1007
- 1
- 1
- {0}
- 100
- Resulting material
- 593cb676-3e96-41ce-a2a5-98139f80f758
- Material
- Material
- false
- 0
-
4345
-1097
43
100
-
4368
-1047
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 8cf28910-ebf9-447f-b49a-b8133c4bc05e
- Custom Preview
- Custom Preview
-
4277
-1159
82
44
-
4345
-1137
- Geometry to preview
- true
- 7f4d70c9-8898-4534-a476-a481f4657452
- Geometry
- Geometry
- false
- eda997fc-a64a-410d-984f-4373353f22d8
- 1
-
4279
-1157
51
20
-
4306
-1147
- The material override
- 165d0974-e17c-4dd5-9a5c-584173fc1f1a
- Material
- Material
- false
- 593cb676-3e96-41ce-a2a5-98139f80f758
- 1
-
4279
-1137
51
20
-
4306
-1127
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 2e7d434b-e497-40c2-9170-d80e0bf5bcba
- 7eb55334-5bfa-4486-9ff6-b5829dac3feb
- e9df2343-bcc4-4760-80bc-8ee2d703441d
- b83bd03c-6fc4-45b4-87b8-5e564aaac95b
- 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
- 6aaa1793-28e6-4756-99ff-42dbddf77a39
- 7a372be2-540a-4b8c-b985-ea311cfef976
- 7803a825-4dda-48df-aa28-6d873414abc3
- 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
- 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
- a47545e5-d679-4719-9a47-2c4466a7fd8b
- 27134342-2fa4-4066-889e-6f4ad894e999
- bdafdfb8-bb33-4d40-ad59-5e519f758096
- 25966e22-4fd9-419c-b905-ad0d899b9233
- 0ab3c753-c9f7-45bf-b85a-26d6499915ce
- 845cb04b-45f5-445d-9f62-abad64b02fd2
- 307e04c0-347d-42da-aac3-535ada9ac315
- 391984bd-bdf7-4963-92f0-2e256b508f09
- 8563ebf7-7afd-4569-aa53-0cc90bd1a378
- 91616bda-478d-47e7-987e-50b82258ce06
- 813e4314-bed9-4963-8fd6-132105ecb666
- ac616e7c-8b28-4c2e-bf9a-5a8c674ee521
- 22
- e415110b-3faf-49e8-889a-ea5803860fe9
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
- 6aaa1793-28e6-4756-99ff-42dbddf77a39
- 7a372be2-540a-4b8c-b985-ea311cfef976
- 7803a825-4dda-48df-aa28-6d873414abc3
- 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
- 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
- a47545e5-d679-4719-9a47-2c4466a7fd8b
- 27134342-2fa4-4066-889e-6f4ad894e999
- bdafdfb8-bb33-4d40-ad59-5e519f758096
- 25966e22-4fd9-419c-b905-ad0d899b9233
- 0ab3c753-c9f7-45bf-b85a-26d6499915ce
- ac588950-bc7f-4799-998b-6293a8136543
- 12
- 2e7d434b-e497-40c2-9170-d80e0bf5bcba
- Group
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 7eb55334-5bfa-4486-9ff6-b5829dac3feb
- Relative Differences
- Relative Differences
-
4255
-1284
128
28
-
4308
-1270
- 1
- List of data to operate on (numbers or points or vectors allowed)
- ae80ef1a-72c2-4f48-843a-15d379553646
- Values
- Values
- false
- b83bd03c-6fc4-45b4-87b8-5e564aaac95b
- 1
-
4257
-1282
36
24
-
4276.5
-1270
- 1
- Differences between consecutive items
- 5a957f96-5a4e-438c-beb4-d71a40d90f89
- Differenced
- Differenced
- false
- 0
-
4323
-1282
58
24
-
4353.5
-1270
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e9df2343-bcc4-4760-80bc-8ee2d703441d
- Relay
- false
- 5a957f96-5a4e-438c-beb4-d71a40d90f89
- 1
-
4302
-1318
40
16
-
4322
-1310
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b83bd03c-6fc4-45b4-87b8-5e564aaac95b
- Relay
- false
- 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
- 1
-
4299
-1236
40
16
-
4319
-1228
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
- Line SDL
- Line SDL
-
4260
-2012
122
64
-
4340
-1980
- Line start point
- f5b17117-d25b-41b1-842c-a3197dca9123
- Start
- Start
- false
- c0df840f-e21c-4129-b503-719f49fc6b16
- 1
-
4262
-2010
63
20
-
4303
-2000
- Line tangent (direction)
- 2a8085b2-3baf-44f9-b34e-1d2d96385c84
- Direction
- Direction
- false
- 6aaa1793-28e6-4756-99ff-42dbddf77a39
- 1
-
4262
-1990
63
20
-
4303
-1980
- 1
- 1
- {0}
-
0
0
1
- Line length
- 2af41a7d-df5e-4691-9848-2507f8ba3c97
- ABS(X)
- Length
- Length
- false
- 27134342-2fa4-4066-889e-6f4ad894e999
- 1
-
4262
-1970
63
20
-
4303
-1960
- 1
- 1
- {0}
- 1
- Line segment
- fa43f40d-b436-439a-bab2-aac4d1b2ae8b
- Line
- Line
- false
- 0
-
4355
-2010
25
60
-
4369
-1980
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6aaa1793-28e6-4756-99ff-42dbddf77a39
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4298
-1931
40
16
-
4318
-1923
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 7803a825-4dda-48df-aa28-6d873414abc3
- Remap Numbers
- Remap Numbers
-
4260
-1649
115
64
-
4315
-1617
- Value to remap
- 0c5b7722-f827-4fe2-94e4-2d203f324b13
- Value
- Value
- false
- a47545e5-d679-4719-9a47-2c4466a7fd8b
- 1
-
4262
-1647
38
20
-
4282.5
-1637
- Source domain
- da6b0a7a-afc2-472a-bb91-42cf57aaf2be
- Source
- Source
- false
- 0dbb88bc-fe27-4e6b-9f57-3dabd1d71520
- 1
-
4262
-1627
38
20
-
4282.5
-1617
- 1
- 1
- {0}
-
0
1
- Target domain
- 01d28205-64da-48f4-b28b-d9b155277b2d
- Target
- Target
- false
- 0
-
4262
-1607
38
20
-
4282.5
-1597
- 1
- 1
- {0}
-
-1
1
- Remapped number
- c395f5b4-45e8-4b90-b7b3-f484cd3aade4
- Mapped
- Mapped
- false
- 0
-
4330
-1647
43
30
-
4353
-1632
- Remapped and clipped number
- 6ed0ec77-ff5b-4d62-9aa8-e5e43c3c9bd0
- Clipped
- Clipped
- false
- 0
-
4330
-1617
43
30
-
4353
-1602
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
- Bounds
- Bounds
-
4257
-1566
122
28
-
4321
-1552
- 1
- Numbers to include in Bounds
- 49b06533-0be4-4801-9f1b-0d82020b6d5c
- Numbers
- Numbers
- false
- a47545e5-d679-4719-9a47-2c4466a7fd8b
- 1
-
4259
-1564
47
24
-
4284
-1552
- Numeric Domain between the lowest and highest numbers in {N}
- 0dbb88bc-fe27-4e6b-9f57-3dabd1d71520
- Domain
- Domain
- false
- 0
-
4336
-1564
41
24
-
4358
-1552
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 7803a825-4dda-48df-aa28-6d873414abc3
- 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
- c3830b7d-0858-410d-89db-9af833da8bf5
- 27134342-2fa4-4066-889e-6f4ad894e999
- a47545e5-d679-4719-9a47-2c4466a7fd8b
- 7a372be2-540a-4b8c-b985-ea311cfef976
- bdafdfb8-bb33-4d40-ad59-5e519f758096
- 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
- 15
- 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a47545e5-d679-4719-9a47-2c4466a7fd8b
- Relay
-
- false
- e9df2343-bcc4-4760-80bc-8ee2d703441d
- 1
-
4302
-1517
40
16
-
4322
-1509
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 27134342-2fa4-4066-889e-6f4ad894e999
- Relay
-
- false
- 8cea9731-8f9c-4e8b-85df-2050902b7807
- 1
-
4301
-1888
40
16
-
4321
-1880
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- bdafdfb8-bb33-4d40-ad59-5e519f758096
- Multiplication
- Multiplication
-
4277
-1851
82
44
-
4308
-1829
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 878222d7-48d3-4576-abd2-de0b7b2445f6
- A
- A
- true
- 817a1f1b-9353-4d8d-84f9-673116fd6d05
- 1
-
4279
-1849
14
20
-
4287.5
-1839
- Second item for multiplication
- d21e7beb-ac2d-43d2-b690-4bfd03921f06
- B
- B
- true
- 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
- 1
-
4279
-1829
14
20
-
4287.5
-1819
- Result of multiplication
- 8cea9731-8f9c-4e8b-85df-2050902b7807
- Result
- Result
- false
- 0
-
4323
-1849
34
40
-
4341.5
-1829
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 25966e22-4fd9-419c-b905-ad0d899b9233
- Multiplication
- Multiplication
-
4277
-1747
82
44
-
4308
-1725
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- c191cdf0-ce56-4ffa-83d6-d9e5ee1ce3ab
- A
- A
- true
- c395f5b4-45e8-4b90-b7b3-f484cd3aade4
- 1
-
4279
-1745
14
20
-
4287.5
-1735
- Second item for multiplication
- 2e0d80ea-79b2-4e23-b4b2-f1c47cb6d051
- B
- B
- true
- 0ab3c753-c9f7-45bf-b85a-26d6499915ce
- 1
-
4279
-1725
14
20
-
4287.5
-1715
- Result of multiplication
- 1f4d203a-7210-473f-9482-f99a19778d4f
- Result
- Result
- false
- 0
-
4323
-1745
34
40
-
4341.5
-1725
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0ab3c753-c9f7-45bf-b85a-26d6499915ce
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4295
-1685
40
16
-
4315
-1677
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e9df2343-bcc4-4760-80bc-8ee2d703441d
- b83bd03c-6fc4-45b4-87b8-5e564aaac95b
- 7eb55334-5bfa-4486-9ff6-b5829dac3feb
- 3
- 845cb04b-45f5-445d-9f62-abad64b02fd2
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 307e04c0-347d-42da-aac3-535ada9ac315
- Create Material
- Create Material
-
4246
-2137
144
104
-
4330
-2085
- Colour of the diffuse channel
- b17b0379-bc45-45ba-bd16-2a0eba0989df
- Diffuse
- Diffuse
- false
- 0
-
4248
-2135
67
20
-
4283
-2125
- 1
- 1
- {0}
-
255;217;217;217
- Colour of the specular highlight
- cadc18a2-76b6-48c9-85f4-e683444ac926
- Specular
- Specular
- false
- 0
-
4248
-2115
67
20
-
4283
-2105
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 45312f69-4306-4270-8336-9d4f988b53f5
- Emission
- Emission
- false
- 0
-
4248
-2095
67
20
-
4283
-2085
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 93837e64-6bec-4f2c-a8e7-70ab7b01b7e2
- Transparency
- Transparency
- false
- 0
-
4248
-2075
67
20
-
4283
-2065
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 117d8814-ca79-42a3-90fa-2d0ac9cb0bdb
- Shine
- Shine
- false
- 0
-
4248
-2055
67
20
-
4283
-2045
- 1
- 1
- {0}
- 100
- Resulting material
- dac4de77-9f6f-4daa-a2fb-101193a87ed7
- Material
- Material
- false
- 0
-
4345
-2135
43
100
-
4368
-2085
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 391984bd-bdf7-4963-92f0-2e256b508f09
- Custom Preview
- Custom Preview
-
4277
-2199
82
44
-
4345
-2177
- Geometry to preview
- true
- 0cbf1ec0-48a5-4725-b163-a93cd896f78a
- Geometry
- Geometry
- false
- fa43f40d-b436-439a-bab2-aac4d1b2ae8b
- 1
-
4279
-2197
51
20
-
4306
-2187
- The material override
- 67084f2a-d79d-4f1b-bd0d-c0baf2bc54f3
- Material
- Material
- false
- dac4de77-9f6f-4daa-a2fb-101193a87ed7
- 1
-
4279
-2177
51
20
-
4306
-2167
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 8563ebf7-7afd-4569-aa53-0cc90bd1a378
- Evaluate Length
- Evaluate Length
-
4246
-2282
144
64
-
4320
-2250
- Curve to evaluate
- 75e68839-7c56-486e-8934-2aec69846414
- Curve
- Curve
- false
- fa43f40d-b436-439a-bab2-aac4d1b2ae8b
- 1
-
4248
-2280
57
20
-
4278
-2270
- Length factor for curve evaluation
- df4e0f36-f4ca-4b09-b619-bd775693b056
- Length
- Length
- false
- 0
-
4248
-2260
57
20
-
4278
-2250
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- de2c86ac-e32a-4606-a129-52dcce0396b7
- Normalized
- Normalized
- false
- 0
-
4248
-2240
57
20
-
4278
-2230
- 1
- 1
- {0}
- true
- Point at the specified length
- 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
- Point
- Point
- false
- 0
-
4335
-2280
53
20
-
4363
-2270
- Tangent vector at the specified length
- 9dd89b63-2e2c-42b0-a2a2-48bbe718af2a
- Tangent
- Tangent
- false
- 0
-
4335
-2260
53
20
-
4363
-2250
- Curve parameter at the specified length
- c7b66ac2-eefe-4c24-bc83-ef966d86fd7b
- Parameter
- Parameter
- false
- 0
-
4335
-2240
53
20
-
4363
-2230
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 91616bda-478d-47e7-987e-50b82258ce06
- Interpolate
- Interpolate
-
4255
-2386
125
84
-
4322
-2344
- 1
- Interpolation points
- ef6f2b2f-7fc9-48b4-ab19-f8e956f17ef7
- Vertices
- Vertices
- false
- 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
- 1
-
4257
-2384
50
20
-
4283.5
-2374
- Curve degree
- 41b3d3c2-2d7b-496c-ad9b-d6395c994acc
- Degree
- Degree
- false
- 0
-
4257
-2364
50
20
-
4283.5
-2354
- 1
- 1
- {0}
- 1
- Periodic curve
- 5d892f8d-5082-4e8b-b695-aa53350b964c
- Periodic
- Periodic
- false
- 0
-
4257
-2344
50
20
-
4283.5
-2334
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 48df9416-48a3-431e-83bb-dfded5c7cf13
- KnotStyle
- KnotStyle
- false
- 0
-
4257
-2324
50
20
-
4283.5
-2314
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 678b8bf7-9aac-4970-8a9e-ee50acb3e43a
- Curve
- Curve
- false
- 0
-
4337
-2384
41
26
-
4359
-2370.667
- Curve length
- a5ea4950-35e0-413c-b420-38f10bcbc1dc
- Length
- Length
- false
- 0
-
4337
-2358
41
27
-
4359
-2344
- Curve domain
- b7207c89-8e70-43e8-98d7-c34853a94e21
- Domain
- Domain
- false
- 0
-
4337
-2331
41
27
-
4359
-2317.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 813e4314-bed9-4963-8fd6-132105ecb666
- Create Material
- Create Material
-
4246
-2510
144
104
-
4330
-2458
- Colour of the diffuse channel
- f81f1c89-8bc5-473f-b7c5-750a00edd80a
- Diffuse
- Diffuse
- false
- 0
-
4248
-2508
67
20
-
4283
-2498
- 1
- 1
- {0}
-
255;191;191;191
- Colour of the specular highlight
- 7eea7044-9ecc-498a-ac53-1d0937777605
- Specular
- Specular
- false
- 0
-
4248
-2488
67
20
-
4283
-2478
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 5e84ac81-5265-4b77-9fb4-9608d8e14a39
- Emission
- Emission
- false
- 0
-
4248
-2468
67
20
-
4283
-2458
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 273f6050-7148-4e70-8533-df9579105dda
- Transparency
- Transparency
- false
- 0
-
4248
-2448
67
20
-
4283
-2438
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 6fd3f45d-ffdd-47ca-8b53-5d632438bd38
- Shine
- Shine
- false
- 0
-
4248
-2428
67
20
-
4283
-2418
- 1
- 1
- {0}
- 100
- Resulting material
- 6f27c099-ecfb-4221-a1a3-f67aa8f90b49
- Material
- Material
- false
- 0
-
4345
-2508
43
100
-
4368
-2458
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- ac616e7c-8b28-4c2e-bf9a-5a8c674ee521
- Custom Preview
- Custom Preview
-
4277
-2570
82
44
-
4345
-2548
- Geometry to preview
- true
- b5ae2558-2f1a-4cb4-8602-975a07f8ba9f
- Geometry
- Geometry
- false
- 678b8bf7-9aac-4970-8a9e-ee50acb3e43a
- 1
-
4279
-2568
51
20
-
4306
-2558
- The material override
- 5170ecf1-f935-4d97-9b53-18f07f6c82d6
- Material
- Material
- false
- 6f27c099-ecfb-4221-a1a3-f67aa8f90b49
- 1
-
4279
-2548
51
20
-
4306
-2538
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 42e4b4aa-e5fd-4fa0-bf50-f55fc4f83c27
- 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
- 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
- 542cf401-da7e-48c8-b950-1a069d6a5222
- 8e072824-d558-4a16-83ee-15d5922d0358
- 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
- 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
- ccf5004f-68b3-4648-b104-7c06d5891746
- e6b170b8-81e9-4dc7-be29-53e442aef89b
- f6a70308-0365-4a62-ae8f-7b0c06d916af
- 698ed7a6-823a-4f3b-81d0-a53f97720331
- fb6c570f-5424-4449-a098-6b87ce055efc
- 7a0786f3-f3f2-42f2-9a17-842da33ce48b
- b42552e4-4295-43cd-9229-0f7fb6c498dc
- c13f3a2d-a96e-4f90-ab80-a783086b7ad0
- efceaa27-3a6e-434b-b4ce-dc47dc3cbd9f
- 2fd38000-615a-4f6c-925c-fae90fde2a8e
- 65ac4482-b933-4f95-9a07-b23d2cef1c6a
- 1db7d0ec-8709-47d7-82e0-4691e7efbe8b
- eefa2f3e-ae14-4853-9588-e0ad60346408
- a9846cd4-c92f-4ca4-904e-88b9fe76c39c
- 100d237b-fd67-4830-be89-c236745d92e8
- 22
- 9a7db9c9-43b6-4731-b3bb-087fd868b276
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8e072824-d558-4a16-83ee-15d5922d0358
- 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
- 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
- ccf5004f-68b3-4648-b104-7c06d5891746
- e6b170b8-81e9-4dc7-be29-53e442aef89b
- f6a70308-0365-4a62-ae8f-7b0c06d916af
- 698ed7a6-823a-4f3b-81d0-a53f97720331
- fb6c570f-5424-4449-a098-6b87ce055efc
- 7a0786f3-f3f2-42f2-9a17-842da33ce48b
- b42552e4-4295-43cd-9229-0f7fb6c498dc
- c13f3a2d-a96e-4f90-ab80-a783086b7ad0
- 7ea7c812-fbf2-4ab8-9a4e-7edd89c68a35
- 12
- 42e4b4aa-e5fd-4fa0-bf50-f55fc4f83c27
- Group
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
- Relative Differences
- Relative Differences
-
4254
-2680
128
28
-
4307
-2666
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 7f36f02f-6ddc-4cb0-a544-c62006d91a7e
- Values
- Values
- false
- 542cf401-da7e-48c8-b950-1a069d6a5222
- 1
-
4256
-2678
36
24
-
4275.5
-2666
- 1
- Differences between consecutive items
- 097201c1-1da3-4b40-8dd0-b049871b7d99
- Differenced
- Differenced
- false
- 0
-
4322
-2678
58
24
-
4352.5
-2666
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
- Relay
- false
- 097201c1-1da3-4b40-8dd0-b049871b7d99
- 1
-
4298
-2714
40
16
-
4318
-2706
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 542cf401-da7e-48c8-b950-1a069d6a5222
- Relay
- false
- e9df2343-bcc4-4760-80bc-8ee2d703441d
- 1
-
4298
-2632
40
16
-
4318
-2624
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 8e072824-d558-4a16-83ee-15d5922d0358
- true
- Line SDL
- Line SDL
-
4257
-3410
122
64
-
4337
-3378
- Line start point
- cfd18607-4057-4291-9223-81c906b9c49f
- true
- Start
- Start
- false
- 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
- 1
-
4259
-3408
63
20
-
4300
-3398
- Line tangent (direction)
- cb2d2ba5-e6f3-4841-9978-746af6500450
- true
- Direction
- Direction
- false
- 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
- 1
-
4259
-3388
63
20
-
4300
-3378
- 1
- 1
- {0}
-
0
0
1
- Line length
- 95296efb-57ab-4b1d-baea-2f0e4c3f9c8e
- ABS(X)
- true
- Length
- Length
- false
- fb6c570f-5424-4449-a098-6b87ce055efc
- 1
-
4259
-3368
63
20
-
4300
-3358
- 1
- 1
- {0}
- 1
- Line segment
- 9fd0b496-5590-469c-9d73-be4bb1965f90
- true
- Line
- Line
- false
- 0
-
4352
-3408
25
60
-
4366
-3378
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4298
-3328
40
16
-
4318
-3320
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- ccf5004f-68b3-4648-b104-7c06d5891746
- Remap Numbers
- Remap Numbers
-
4260
-3046
115
64
-
4315
-3014
- Value to remap
- 1f626e82-58ae-438a-90e6-0b36707c73dd
- Value
- Value
- false
- 698ed7a6-823a-4f3b-81d0-a53f97720331
- 1
-
4262
-3044
38
20
-
4282.5
-3034
- Source domain
- 96780f3e-9927-4116-be86-f0654fe684f5
- Source
- Source
- false
- efb5ced9-506b-4efb-aedb-6823b20f9f6e
- 1
-
4262
-3024
38
20
-
4282.5
-3014
- 1
- 1
- {0}
-
0
1
- Target domain
- 6cf6be25-bd2a-4cad-b8b5-a5fb8313d332
- Target
- Target
- false
- 0
-
4262
-3004
38
20
-
4282.5
-2994
- 1
- 1
- {0}
-
-1
1
- Remapped number
- e6c55d1f-8d23-47fb-9e63-67ee5eecb8ca
- Mapped
- Mapped
- false
- 0
-
4330
-3044
43
30
-
4353
-3029
- Remapped and clipped number
- 0e5bb633-c4ae-4720-8365-f59d27ff8f00
- Clipped
- Clipped
- false
- 0
-
4330
-3014
43
30
-
4353
-2999
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- e6b170b8-81e9-4dc7-be29-53e442aef89b
- Bounds
- Bounds
-
4257
-2963
122
28
-
4321
-2949
- 1
- Numbers to include in Bounds
- 41279e52-c8b2-44d2-a05f-a12da73d9726
- Numbers
- Numbers
- false
- 698ed7a6-823a-4f3b-81d0-a53f97720331
- 1
-
4259
-2961
47
24
-
4284
-2949
- Numeric Domain between the lowest and highest numbers in {N}
- efb5ced9-506b-4efb-aedb-6823b20f9f6e
- Domain
- Domain
- false
- 0
-
4336
-2961
41
24
-
4358
-2949
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- ccf5004f-68b3-4648-b104-7c06d5891746
- e6b170b8-81e9-4dc7-be29-53e442aef89b
- c3830b7d-0858-410d-89db-9af833da8bf5
- fb6c570f-5424-4449-a098-6b87ce055efc
- 698ed7a6-823a-4f3b-81d0-a53f97720331
- 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
- 7a0786f3-f3f2-42f2-9a17-842da33ce48b
- e9c988a3-a0f9-44b8-9dca-881e071528d5
- 15
- f6a70308-0365-4a62-ae8f-7b0c06d916af
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 698ed7a6-823a-4f3b-81d0-a53f97720331
- Relay
-
- false
- 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
- 1
-
4298
-2918
40
16
-
4318
-2910
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fb6c570f-5424-4449-a098-6b87ce055efc
- Relay
-
- false
- f238ee5d-fbdb-4636-ba07-216e3abf726a
- 1
-
4298
-3285
40
16
-
4318
-3277
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 7a0786f3-f3f2-42f2-9a17-842da33ce48b
- Multiplication
- Multiplication
-
4277
-3246
82
44
-
4308
-3224
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- a72226b1-1293-4dce-b956-5d0d458be578
- A
- A
- true
- d596036f-c261-4979-89f0-99a2e5d79241
- 1
-
4279
-3244
14
20
-
4287.5
-3234
- Second item for multiplication
- 31719fe6-f994-48d7-9ab2-4f5ecdbf23fe
- B
- B
- true
- e9c988a3-a0f9-44b8-9dca-881e071528d5
- 1
-
4279
-3224
14
20
-
4287.5
-3214
- Result of multiplication
- f238ee5d-fbdb-4636-ba07-216e3abf726a
- Result
- Result
- false
- 0
-
4323
-3244
34
40
-
4341.5
-3224
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- b42552e4-4295-43cd-9229-0f7fb6c498dc
- Multiplication
- Multiplication
-
4277
-3145
82
44
-
4308
-3123
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- ac0e6fc4-1bc1-41a0-ac67-6e577569d2e4
- A
- A
- true
- e6c55d1f-8d23-47fb-9e63-67ee5eecb8ca
- 1
-
4279
-3143
14
20
-
4287.5
-3133
- Second item for multiplication
- 318ea127-00ac-494e-b0d8-25457e3390c1
- B
- B
- true
- c13f3a2d-a96e-4f90-ab80-a783086b7ad0
- 1
-
4279
-3123
14
20
-
4287.5
-3113
- Result of multiplication
- d596036f-c261-4979-89f0-99a2e5d79241
- Result
- Result
- false
- 0
-
4323
-3143
34
40
-
4341.5
-3123
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c13f3a2d-a96e-4f90-ab80-a783086b7ad0
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4298
-3083
40
16
-
4318
-3075
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
- 542cf401-da7e-48c8-b950-1a069d6a5222
- 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
- 3
- efceaa27-3a6e-434b-b4ce-dc47dc3cbd9f
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 2fd38000-615a-4f6c-925c-fae90fde2a8e
- Create Material
- Create Material
-
4246
-3534
144
104
-
4330
-3482
- Colour of the diffuse channel
- bca6b15c-ead9-4a78-a63a-f69e99028d80
- Diffuse
- Diffuse
- false
- 0
-
4248
-3532
67
20
-
4283
-3522
- 1
- 1
- {0}
-
255;209;209;209
- Colour of the specular highlight
- ca1e6ad1-156d-4f2e-9298-0f63c1b2cfb9
- Specular
- Specular
- false
- 0
-
4248
-3512
67
20
-
4283
-3502
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 228c6c12-4d82-41c3-8f3f-029032a0cb64
- Emission
- Emission
- false
- 0
-
4248
-3492
67
20
-
4283
-3482
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- a3339c35-080c-45a8-a809-c9945cdaa329
- Transparency
- Transparency
- false
- 0
-
4248
-3472
67
20
-
4283
-3462
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 5e23e62d-4027-4195-9865-eab08a4a917c
- Shine
- Shine
- false
- 0
-
4248
-3452
67
20
-
4283
-3442
- 1
- 1
- {0}
- 100
- Resulting material
- ee93036d-9997-483c-8552-de089dd4c99c
- Material
- Material
- false
- 0
-
4345
-3532
43
100
-
4368
-3482
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 65ac4482-b933-4f95-9a07-b23d2cef1c6a
- Custom Preview
- Custom Preview
-
4277
-3596
82
44
-
4345
-3574
- Geometry to preview
- true
- f898a738-0820-4631-aeef-a5195fb0f7df
- Geometry
- Geometry
- false
- 9fd0b496-5590-469c-9d73-be4bb1965f90
- 1
-
4279
-3594
51
20
-
4306
-3584
- The material override
- 26559eaa-9c07-4e60-8e34-94ecd3d2ebf0
- Material
- Material
- false
- ee93036d-9997-483c-8552-de089dd4c99c
- 1
-
4279
-3574
51
20
-
4306
-3564
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 1db7d0ec-8709-47d7-82e0-4691e7efbe8b
- Evaluate Length
- Evaluate Length
-
4246
-3679
144
64
-
4320
-3647
- Curve to evaluate
- bc77b9c3-ff4d-43ee-9957-74e39a55ce61
- Curve
- Curve
- false
- 9fd0b496-5590-469c-9d73-be4bb1965f90
- 1
-
4248
-3677
57
20
-
4278
-3667
- Length factor for curve evaluation
- 6915e62a-edd4-44cb-bf03-7535a64afcac
- Length
- Length
- false
- 0
-
4248
-3657
57
20
-
4278
-3647
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 266bd85c-7f88-41d8-9c3b-3ce0b341a5f8
- Normalized
- Normalized
- false
- 0
-
4248
-3637
57
20
-
4278
-3627
- 1
- 1
- {0}
- true
- Point at the specified length
- 8d3777b7-0158-4820-9120-622aa905cd46
- Point
- Point
- false
- 0
-
4335
-3677
53
20
-
4363
-3667
- Tangent vector at the specified length
- c1141206-a7b5-4b08-945d-fae603d78f89
- Tangent
- Tangent
- false
- 0
-
4335
-3657
53
20
-
4363
-3647
- Curve parameter at the specified length
- da4c5437-7848-496c-b53a-7842912a6a34
- Parameter
- Parameter
- false
- 0
-
4335
-3637
53
20
-
4363
-3627
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- eefa2f3e-ae14-4853-9588-e0ad60346408
- Interpolate
- Interpolate
-
4255
-3783
125
84
-
4322
-3741
- 1
- Interpolation points
- df8c0ec6-5fac-4764-8313-e7a47148776a
- Vertices
- Vertices
- false
- 8d3777b7-0158-4820-9120-622aa905cd46
- 1
-
4257
-3781
50
20
-
4283.5
-3771
- Curve degree
- 8035489e-8099-4a6b-8f0b-573557cc8ffa
- Degree
- Degree
- false
- 0
-
4257
-3761
50
20
-
4283.5
-3751
- 1
- 1
- {0}
- 1
- Periodic curve
- 0ddd8548-ed83-4c21-a12b-2a19ff7067e8
- Periodic
- Periodic
- false
- 0
-
4257
-3741
50
20
-
4283.5
-3731
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 4871b378-5d48-4299-a11f-818b754ea8ba
- KnotStyle
- KnotStyle
- false
- 0
-
4257
-3721
50
20
-
4283.5
-3711
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- e2f91283-565e-4ab1-9d00-f5fd3962d8aa
- Curve
- Curve
- false
- 0
-
4337
-3781
41
26
-
4359
-3767.667
- Curve length
- d7ab0794-2125-44ea-a786-889086e9224f
- Length
- Length
- false
- 0
-
4337
-3755
41
27
-
4359
-3741
- Curve domain
- 4d96f078-c2cb-4b7a-85c1-451ddbb400a1
- Domain
- Domain
- false
- 0
-
4337
-3728
41
27
-
4359
-3714.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- a9846cd4-c92f-4ca4-904e-88b9fe76c39c
- Create Material
- Create Material
-
4246
-3907
144
104
-
4330
-3855
- Colour of the diffuse channel
- 4081cfba-8922-4ccc-b948-7aba29e7e1e4
- Diffuse
- Diffuse
- false
- 0
-
4248
-3905
67
20
-
4283
-3895
- 1
- 1
- {0}
-
255;184;184;184
- Colour of the specular highlight
- d723a763-d553-4cc2-ab56-75c9564fa4ff
- Specular
- Specular
- false
- 0
-
4248
-3885
67
20
-
4283
-3875
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 2ce26172-d066-4510-90d0-821d66b9c178
- Emission
- Emission
- false
- 0
-
4248
-3865
67
20
-
4283
-3855
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 1c055ac1-e75c-42d8-85f9-17e5fe94c3c0
- Transparency
- Transparency
- false
- 0
-
4248
-3845
67
20
-
4283
-3835
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 26da2058-31ab-414b-81d8-a0ef9a78f436
- Shine
- Shine
- false
- 0
-
4248
-3825
67
20
-
4283
-3815
- 1
- 1
- {0}
- 100
- Resulting material
- c4947d2a-cae5-43ca-8a4e-5871ca9ef4cc
- Material
- Material
- false
- 0
-
4345
-3905
43
100
-
4368
-3855
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 100d237b-fd67-4830-be89-c236745d92e8
- Custom Preview
- Custom Preview
-
4277
-3967
82
44
-
4345
-3945
- Geometry to preview
- true
- 55d282f5-6904-4842-8806-7ff55e58df22
- Geometry
- Geometry
- false
- e2f91283-565e-4ab1-9d00-f5fd3962d8aa
- 1
-
4279
-3965
51
20
-
4306
-3955
- The material override
- 22bdecdb-6352-498a-997a-71934bc18892
- Material
- Material
- false
- c4947d2a-cae5-43ca-8a4e-5871ca9ef4cc
- 1
-
4279
-3945
51
20
-
4306
-3935
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 6a9f6fc8-e007-4c87-9e66-f55fa953e45c
- 94fef812-42f9-4896-95a0-5c758161262c
- 255409ab-7bab-43a8-aaea-5e6d3f7310ab
- a091b70d-3ba1-4305-bb37-e15b698fe16a
- 2f126b04-498b-4c3f-b6b9-3930e501651f
- 4df78a5a-5077-4e48-a01a-683d75226473
- 26121879-3995-4c35-a66b-5ea41fec4602
- 245de714-0f3c-45d0-b6c4-c41f9515e3fa
- f997ee14-2084-4ab4-9437-5e10d7cd52d4
- 3f5a2e69-963e-465f-9a2d-669b8d27d21b
- 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
- 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
- 75e33218-a1f1-47f6-84f2-61f99d162294
- f4498488-3182-41de-bfe4-5dd1a2ecdfc7
- a98f3a41-8c19-4e9e-913a-28e05e4daf27
- e4f5b0a2-58e9-4e30-9461-33f00d5672c4
- ca4c5c4d-c0a4-480f-b0d8-31eaa72ee7f9
- a798d6fb-4c16-4f3b-bb88-1cde76f46b6c
- b19c1b10-a682-4bbb-addc-9ac35992fdbc
- 42179dd5-e5d6-452c-b478-e8ccc4329041
- ac4acc33-29c1-4609-86ba-b90878e9b36f
- 3dc4cf53-4a61-4a5b-9d43-57fdb91b7ff2
- 22
- cd50e1b3-e2b3-4550-979f-3a1e22383084
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 2f126b04-498b-4c3f-b6b9-3930e501651f
- 4df78a5a-5077-4e48-a01a-683d75226473
- 26121879-3995-4c35-a66b-5ea41fec4602
- 245de714-0f3c-45d0-b6c4-c41f9515e3fa
- f997ee14-2084-4ab4-9437-5e10d7cd52d4
- 3f5a2e69-963e-465f-9a2d-669b8d27d21b
- 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
- 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
- 75e33218-a1f1-47f6-84f2-61f99d162294
- f4498488-3182-41de-bfe4-5dd1a2ecdfc7
- a98f3a41-8c19-4e9e-913a-28e05e4daf27
- d8ca333f-274c-4def-b0be-659a62d86c0c
- 12
- 6a9f6fc8-e007-4c87-9e66-f55fa953e45c
- Group
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 94fef812-42f9-4896-95a0-5c758161262c
- Relative Differences
- Relative Differences
-
4244
-4097
128
28
-
4297
-4083
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 367de0f1-cc3a-4c51-94e2-68aeffec04de
- Values
- Values
- false
- a091b70d-3ba1-4305-bb37-e15b698fe16a
- 1
-
4246
-4095
36
24
-
4265.5
-4083
- 1
- Differences between consecutive items
- fe0b0f9d-25f6-4ef7-b130-46e021fb117c
- Differenced
- Differenced
- false
- 0
-
4312
-4095
58
24
-
4342.5
-4083
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 255409ab-7bab-43a8-aaea-5e6d3f7310ab
- Relay
- false
- fe0b0f9d-25f6-4ef7-b130-46e021fb117c
- 1
-
4288
-4131
40
16
-
4308
-4123
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a091b70d-3ba1-4305-bb37-e15b698fe16a
- Relay
- false
- 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
- 1
-
4288
-4049
40
16
-
4308
-4041
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 2f126b04-498b-4c3f-b6b9-3930e501651f
- true
- Line SDL
- Line SDL
-
4243
-4826
122
64
-
4323
-4794
- Line start point
- 67607b47-bb2d-4d1c-8424-3d09b8cfdd12
- true
- Start
- Start
- false
- 8d3777b7-0158-4820-9120-622aa905cd46
- 1
-
4245
-4824
63
20
-
4286
-4814
- Line tangent (direction)
- 729a0858-a439-4b71-ba15-9220fe10ce4e
- true
- Direction
- Direction
- false
- 4df78a5a-5077-4e48-a01a-683d75226473
- 1
-
4245
-4804
63
20
-
4286
-4794
- 1
- 1
- {0}
-
0
0
1
- Line length
- 0a98c27f-4e50-46be-8fad-f9ed4377317b
- ABS(X)
- true
- Length
- Length
- false
- 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
- 1
-
4245
-4784
63
20
-
4286
-4774
- 1
- 1
- {0}
- 1
- Line segment
- 8ed14837-7174-47e7-a5b8-f4c28f3778d0
- true
- Line
- Line
- false
- 0
-
4338
-4824
25
60
-
4352
-4794
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4df78a5a-5077-4e48-a01a-683d75226473
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4284
-4744
40
16
-
4304
-4736
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 245de714-0f3c-45d0-b6c4-c41f9515e3fa
- Remap Numbers
- Remap Numbers
-
4246
-4462
115
64
-
4301
-4430
- Value to remap
- 78220fc5-ef9a-417a-905c-062cb8ca437d
- Value
- Value
- false
- 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
- 1
-
4248
-4460
38
20
-
4268.5
-4450
- Source domain
- 00a02fca-ec20-4c0f-8779-783399520de1
- Source
- Source
- false
- 6638590f-751a-4472-9612-af35db224cba
- 1
-
4248
-4440
38
20
-
4268.5
-4430
- 1
- 1
- {0}
-
0
1
- Target domain
- ab1aeac0-047f-474f-90dd-c38a9f26cdfb
- Target
- Target
- false
- 0
-
4248
-4420
38
20
-
4268.5
-4410
- 1
- 1
- {0}
-
-1
1
- Remapped number
- d7a4705d-0f84-48f1-b027-18cee9d886c4
- Mapped
- Mapped
- false
- 0
-
4316
-4460
43
30
-
4339
-4445
- Remapped and clipped number
- 438d903d-32fb-47b6-92da-9741aaba417c
- Clipped
- Clipped
- false
- 0
-
4316
-4430
43
30
-
4339
-4415
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- f997ee14-2084-4ab4-9437-5e10d7cd52d4
- Bounds
- Bounds
-
4243
-4379
122
28
-
4307
-4365
- 1
- Numbers to include in Bounds
- d5615fe7-fa1d-4238-8ef1-e76cdc0dbe53
- Numbers
- Numbers
- false
- 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
- 1
-
4245
-4377
47
24
-
4270
-4365
- Numeric Domain between the lowest and highest numbers in {N}
- 6638590f-751a-4472-9612-af35db224cba
- Domain
- Domain
- false
- 0
-
4322
-4377
41
24
-
4344
-4365
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 245de714-0f3c-45d0-b6c4-c41f9515e3fa
- f997ee14-2084-4ab4-9437-5e10d7cd52d4
- c3830b7d-0858-410d-89db-9af833da8bf5
- 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
- 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
- 26121879-3995-4c35-a66b-5ea41fec4602
- 75e33218-a1f1-47f6-84f2-61f99d162294
- 2cf94056-6af5-459d-9d0b-edb8f8adea38
- 15
- 3f5a2e69-963e-465f-9a2d-669b8d27d21b
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
- Relay
-
- false
- 255409ab-7bab-43a8-aaea-5e6d3f7310ab
- 1
-
4284
-4334
40
16
-
4304
-4326
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
- Relay
-
- false
- 00fc5d31-f74d-43f8-ae07-8bb418bc4c5a
- 1
-
4284
-4701
40
16
-
4304
-4693
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 75e33218-a1f1-47f6-84f2-61f99d162294
- Multiplication
- Multiplication
-
4263
-4662
82
44
-
4294
-4640
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 4341fd90-ace9-4860-9ac1-6924c6f803bc
- A
- A
- true
- 4333ce65-0670-473c-869e-fd9bd04229cf
- 1
-
4265
-4660
14
20
-
4273.5
-4650
- Second item for multiplication
- b18c525e-47bb-4a4e-8c7f-7d37922cc8ac
- B
- B
- true
- 2cf94056-6af5-459d-9d0b-edb8f8adea38
- 1
-
4265
-4640
14
20
-
4273.5
-4630
- Result of multiplication
- 00fc5d31-f74d-43f8-ae07-8bb418bc4c5a
- Result
- Result
- false
- 0
-
4309
-4660
34
40
-
4327.5
-4640
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- f4498488-3182-41de-bfe4-5dd1a2ecdfc7
- Multiplication
- Multiplication
-
4263
-4561
82
44
-
4294
-4539
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 69c0e289-3b78-44a2-aa4a-c278eba7c73c
- A
- A
- true
- d7a4705d-0f84-48f1-b027-18cee9d886c4
- 1
-
4265
-4559
14
20
-
4273.5
-4549
- Second item for multiplication
- 2e5c99f5-44c0-4d0c-be99-a3a244abc0fc
- B
- B
- true
- a98f3a41-8c19-4e9e-913a-28e05e4daf27
- 1
-
4265
-4539
14
20
-
4273.5
-4529
- Result of multiplication
- 4333ce65-0670-473c-869e-fd9bd04229cf
- Result
- Result
- false
- 0
-
4309
-4559
34
40
-
4327.5
-4539
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a98f3a41-8c19-4e9e-913a-28e05e4daf27
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4284
-4499
40
16
-
4304
-4491
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 255409ab-7bab-43a8-aaea-5e6d3f7310ab
- a091b70d-3ba1-4305-bb37-e15b698fe16a
- 94fef812-42f9-4896-95a0-5c758161262c
- 3
- e4f5b0a2-58e9-4e30-9461-33f00d5672c4
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- ca4c5c4d-c0a4-480f-b0d8-31eaa72ee7f9
- Create Material
- Create Material
-
4232
-4950
144
104
-
4316
-4898
- Colour of the diffuse channel
- 25494929-7b84-4be2-88a7-a974558005a2
- Diffuse
- Diffuse
- false
- 0
-
4234
-4948
67
20
-
4269
-4938
- 1
- 1
- {0}
-
255;201;201;201
- Colour of the specular highlight
- 6c0fb82e-c5d5-479e-a322-ece4a03394a8
- Specular
- Specular
- false
- 0
-
4234
-4928
67
20
-
4269
-4918
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 236b244e-0db7-45f2-a214-61c0d38d3335
- Emission
- Emission
- false
- 0
-
4234
-4908
67
20
-
4269
-4898
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 9395af38-376a-418d-904c-112532c004a0
- Transparency
- Transparency
- false
- 0
-
4234
-4888
67
20
-
4269
-4878
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 7669361e-69da-4c47-a524-bcffd7cd2c0e
- Shine
- Shine
- false
- 0
-
4234
-4868
67
20
-
4269
-4858
- 1
- 1
- {0}
- 100
- Resulting material
- 6bd6548b-d902-40e4-bf34-1049267302b0
- Material
- Material
- false
- 0
-
4331
-4948
43
100
-
4354
-4898
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- a798d6fb-4c16-4f3b-bb88-1cde76f46b6c
- Custom Preview
- Custom Preview
-
4263
-5012
82
44
-
4331
-4990
- Geometry to preview
- true
- 64371237-cecb-44a0-be34-2f89426199a7
- Geometry
- Geometry
- false
- 8ed14837-7174-47e7-a5b8-f4c28f3778d0
- 1
-
4265
-5010
51
20
-
4292
-5000
- The material override
- 788d98bc-c6a3-46b2-93c7-68523390da47
- Material
- Material
- false
- 6bd6548b-d902-40e4-bf34-1049267302b0
- 1
-
4265
-4990
51
20
-
4292
-4980
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- b19c1b10-a682-4bbb-addc-9ac35992fdbc
- Evaluate Length
- Evaluate Length
-
4232
-5095
144
64
-
4306
-5063
- Curve to evaluate
- e85fd3f2-51bc-4d31-9131-07fedc772719
- Curve
- Curve
- false
- 8ed14837-7174-47e7-a5b8-f4c28f3778d0
- 1
-
4234
-5093
57
20
-
4264
-5083
- Length factor for curve evaluation
- bdc17ddd-a4be-4617-a9cf-bd0107e5aa04
- Length
- Length
- false
- 0
-
4234
-5073
57
20
-
4264
-5063
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- a0e1fe99-c517-44b7-9f34-ad29473bdb7f
- Normalized
- Normalized
- false
- 0
-
4234
-5053
57
20
-
4264
-5043
- 1
- 1
- {0}
- true
- Point at the specified length
- bc29cb88-c13f-4b12-8911-f97c489562ea
- Point
- Point
- false
- 0
-
4321
-5093
53
20
-
4349
-5083
- Tangent vector at the specified length
- 057801e0-d1f6-4f98-b8b2-544c0c8d667e
- Tangent
- Tangent
- false
- 0
-
4321
-5073
53
20
-
4349
-5063
- Curve parameter at the specified length
- 349e7af4-bf20-41de-8576-1c2270ac51e2
- Parameter
- Parameter
- false
- 0
-
4321
-5053
53
20
-
4349
-5043
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 42179dd5-e5d6-452c-b478-e8ccc4329041
- Interpolate
- Interpolate
-
4241
-5199
125
84
-
4308
-5157
- 1
- Interpolation points
- bd50e477-c50b-446f-bd00-4ad11163cf45
- Vertices
- Vertices
- false
- bc29cb88-c13f-4b12-8911-f97c489562ea
- 1
-
4243
-5197
50
20
-
4269.5
-5187
- Curve degree
- a1dd5264-df8e-453a-b0ea-cffa70db96a7
- Degree
- Degree
- false
- 0
-
4243
-5177
50
20
-
4269.5
-5167
- 1
- 1
- {0}
- 1
- Periodic curve
- c48e02d6-e69a-45aa-b9a2-e7d4fdb553dd
- Periodic
- Periodic
- false
- 0
-
4243
-5157
50
20
-
4269.5
-5147
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 0d00a672-6d63-4ea6-a79b-ba3516801867
- KnotStyle
- KnotStyle
- false
- 0
-
4243
-5137
50
20
-
4269.5
-5127
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 6b4d4575-8108-4fc8-bf3f-b8ba1640b2d0
- Curve
- Curve
- false
- 0
-
4323
-5197
41
26
-
4345
-5183.667
- Curve length
- 4203e371-b092-4bed-8271-4fcb88cff3d7
- Length
- Length
- false
- 0
-
4323
-5171
41
27
-
4345
-5157
- Curve domain
- de6c5fcd-a830-496a-a94c-439d602ba99e
- Domain
- Domain
- false
- 0
-
4323
-5144
41
27
-
4345
-5130.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- ac4acc33-29c1-4609-86ba-b90878e9b36f
- Create Material
- Create Material
-
4232
-5323
144
104
-
4316
-5271
- Colour of the diffuse channel
- e9457f5d-35ca-4456-8b63-804cd55e6539
- Diffuse
- Diffuse
- false
- 0
-
4234
-5321
67
20
-
4269
-5311
- 1
- 1
- {0}
-
255;176;176;176
- Colour of the specular highlight
- 4fd826f0-7cea-4d4e-886d-6e7e2995d0f7
- Specular
- Specular
- false
- 0
-
4234
-5301
67
20
-
4269
-5291
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 0bd816ff-a97c-4e7c-92cf-85b7122f1f60
- Emission
- Emission
- false
- 0
-
4234
-5281
67
20
-
4269
-5271
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 06efe0fa-c4ae-486d-be57-157afe35ad5a
- Transparency
- Transparency
- false
- 0
-
4234
-5261
67
20
-
4269
-5251
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 474b5db1-c730-44c9-ae2f-fbb407650768
- Shine
- Shine
- false
- 0
-
4234
-5241
67
20
-
4269
-5231
- 1
- 1
- {0}
- 100
- Resulting material
- d3757f9f-d417-4624-9492-43eea0d3d0aa
- Material
- Material
- false
- 0
-
4331
-5321
43
100
-
4354
-5271
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 3dc4cf53-4a61-4a5b-9d43-57fdb91b7ff2
- Custom Preview
- Custom Preview
-
4263
-5383
82
44
-
4331
-5361
- Geometry to preview
- true
- 7936315f-1721-480e-aa2d-cbdb015069de
- Geometry
- Geometry
- false
- 6b4d4575-8108-4fc8-bf3f-b8ba1640b2d0
- 1
-
4265
-5381
51
20
-
4292
-5371
- The material override
- 7e6ab2af-b6bc-4f1d-a6a1-2196adb89854
- Material
- Material
- false
- d3757f9f-d417-4624-9492-43eea0d3d0aa
- 1
-
4265
-5361
51
20
-
4292
-5351
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5ae9c4c4-0fdd-419a-8b20-550467d40768
- d84be735-4afa-4e87-89fd-0dd91e7ea031
- eff3ee73-0b0b-4d47-b016-c930d4e069aa
- 4041360f-7411-470c-899a-d7a45700e87d
- 1a6a7949-8787-48bd-b33a-603df220e9b8
- 2661cd71-a4df-4b62-bf83-1849fe5833ca
- f9947fea-968d-4a00-a6cd-c45f937d1dce
- 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
- 0894cd88-7d1c-4d0c-a116-d02b2766f541
- 91601ee3-b999-49b3-bc88-c3dbb40a1218
- e8543cfb-31ef-466a-8c10-2694678ddb24
- ce190195-9538-44f7-9ae0-aa92b1dbb12a
- 999185a1-bdc2-49c3-b856-3479900f254b
- b9d84ba3-9f37-4bdd-825b-3150762b1c2f
- 68c98248-62ad-4df2-af60-f6ecf0eeb005
- 36f70708-8c92-4e52-8db3-af3700d6ed05
- a18f6543-bddc-4707-b9f1-c3de54d04df8
- 766feee9-94ce-4ae1-b353-3eb30b90d548
- 2d5623dd-b6c4-4bca-99dc-1fdc753fa7a0
- a6e7cf50-568a-4a69-b260-d8239fd6cfd5
- cbcf528b-ec99-4366-88c9-7821ca0b3868
- eec36f4c-60cb-4742-bd1d-d2f59b355b07
- 22
- 64e60f06-119f-42f8-b231-33efdd935130
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 1a6a7949-8787-48bd-b33a-603df220e9b8
- 2661cd71-a4df-4b62-bf83-1849fe5833ca
- f9947fea-968d-4a00-a6cd-c45f937d1dce
- 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
- 0894cd88-7d1c-4d0c-a116-d02b2766f541
- 91601ee3-b999-49b3-bc88-c3dbb40a1218
- e8543cfb-31ef-466a-8c10-2694678ddb24
- ce190195-9538-44f7-9ae0-aa92b1dbb12a
- 999185a1-bdc2-49c3-b856-3479900f254b
- b9d84ba3-9f37-4bdd-825b-3150762b1c2f
- 68c98248-62ad-4df2-af60-f6ecf0eeb005
- 4bb2abaa-9c90-4ee1-9d3e-af6d1b129f69
- aeba0375-f313-4a4a-8b7e-4eacde97eba4
- 13
- 5ae9c4c4-0fdd-419a-8b20-550467d40768
- Group
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- d84be735-4afa-4e87-89fd-0dd91e7ea031
- Relative Differences
- Relative Differences
-
4239
-5582
128
28
-
4292
-5568
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 3e8be18c-9be8-4aa4-90e5-ccd06e444dd9
- Values
- Values
- false
- 4041360f-7411-470c-899a-d7a45700e87d
- 1
-
4241
-5580
36
24
-
4260.5
-5568
- 1
- Differences between consecutive items
- 1f562b80-f400-412b-99a5-ec6b24e18c2f
- Differenced
- Differenced
- false
- 0
-
4307
-5580
58
24
-
4337.5
-5568
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- eff3ee73-0b0b-4d47-b016-c930d4e069aa
- Relay
- false
- 1f562b80-f400-412b-99a5-ec6b24e18c2f
- 1
-
4283
-5616
40
16
-
4303
-5608
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4041360f-7411-470c-899a-d7a45700e87d
- Relay
- false
- 255409ab-7bab-43a8-aaea-5e6d3f7310ab
- 1
-
4283
-5534
40
16
-
4303
-5526
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 1a6a7949-8787-48bd-b33a-603df220e9b8
- true
- Line SDL
- Line SDL
-
4241
-6313
122
64
-
4321
-6281
- Line start point
- 1ca0d20b-076b-4ed9-a752-42758dee84b4
- true
- Start
- Start
- false
- bc29cb88-c13f-4b12-8911-f97c489562ea
- 1
-
4243
-6311
63
20
-
4284
-6301
- Line tangent (direction)
- 7835ecf1-4eba-488d-a140-57124bdc900a
- true
- Direction
- Direction
- false
- 2661cd71-a4df-4b62-bf83-1849fe5833ca
- 1
-
4243
-6291
63
20
-
4284
-6281
- 1
- 1
- {0}
-
0
0
1
- Line length
- d3022bee-fd8d-493c-b155-389266eb8c7a
- ABS(X)
- true
- Length
- Length
- false
- ce190195-9538-44f7-9ae0-aa92b1dbb12a
- 1
-
4243
-6271
63
20
-
4284
-6261
- 1
- 1
- {0}
- 1
- Line segment
- 6ac2ff09-23b9-49c7-9641-907d5bc90f18
- true
- Line
- Line
- false
- 0
-
4336
-6311
25
60
-
4350
-6281
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2661cd71-a4df-4b62-bf83-1849fe5833ca
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4282
-6231
40
16
-
4302
-6223
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
- Remap Numbers
- Remap Numbers
-
4244
-5949
115
64
-
4299
-5917
- Value to remap
- 58781ee9-9b39-42ed-acec-28c2b6c8c7f0
- Value
- Value
- false
- e8543cfb-31ef-466a-8c10-2694678ddb24
- 1
-
4246
-5947
38
20
-
4266.5
-5937
- Source domain
- dbb0ecd7-8560-4144-b022-18afb6942aa5
- Source
- Source
- false
- ace4b3f6-f707-4fd4-a9bd-fe4b81a1cc43
- 1
-
4246
-5927
38
20
-
4266.5
-5917
- 1
- 1
- {0}
-
0
1
- Target domain
- 14bea626-15dc-4bcd-a656-c2ae2fc2288d
- Target
- Target
- false
- 0
-
4246
-5907
38
20
-
4266.5
-5897
- 1
- 1
- {0}
-
-1
1
- Remapped number
- 05225228-e222-49df-931b-a1dfeaeab466
- Mapped
- Mapped
- false
- 0
-
4314
-5947
43
30
-
4337
-5932
- Remapped and clipped number
- c94c03ce-a99e-45d9-8d97-aa84fed03f33
- Clipped
- Clipped
- false
- 0
-
4314
-5917
43
30
-
4337
-5902
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 0894cd88-7d1c-4d0c-a116-d02b2766f541
- Bounds
- Bounds
-
4241
-5866
122
28
-
4305
-5852
- 1
- Numbers to include in Bounds
- 46ce88e0-d336-48e8-9271-b95f11a869ac
- Numbers
- Numbers
- false
- e8543cfb-31ef-466a-8c10-2694678ddb24
- 1
-
4243
-5864
47
24
-
4268
-5852
- Numeric Domain between the lowest and highest numbers in {N}
- ace4b3f6-f707-4fd4-a9bd-fe4b81a1cc43
- Domain
- Domain
- false
- 0
-
4320
-5864
41
24
-
4342
-5852
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
- 0894cd88-7d1c-4d0c-a116-d02b2766f541
- c3830b7d-0858-410d-89db-9af833da8bf5
- ce190195-9538-44f7-9ae0-aa92b1dbb12a
- e8543cfb-31ef-466a-8c10-2694678ddb24
- f9947fea-968d-4a00-a6cd-c45f937d1dce
- 999185a1-bdc2-49c3-b856-3479900f254b
- 14
- 91601ee3-b999-49b3-bc88-c3dbb40a1218
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e8543cfb-31ef-466a-8c10-2694678ddb24
- Relay
-
- false
- eff3ee73-0b0b-4d47-b016-c930d4e069aa
- 1
-
4282
-5821
40
16
-
4302
-5813
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ce190195-9538-44f7-9ae0-aa92b1dbb12a
- Relay
-
- false
- ace3cccc-1ad7-4fc7-bbb4-fbac97ba8718
- 1
-
4282
-6188
40
16
-
4302
-6180
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 999185a1-bdc2-49c3-b856-3479900f254b
- Multiplication
- Multiplication
-
4261
-6149
82
44
-
4292
-6127
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 5fb00b97-f199-404b-a29d-da89b6dde567
- A
- A
- true
- eaa9d3a2-bd6b-4033-a1a9-20654334c897
- 1
-
4263
-6147
14
20
-
4271.5
-6137
- Second item for multiplication
- 64d117fe-aace-435f-8590-100a0bea0086
- B
- B
- true
- aeba0375-f313-4a4a-8b7e-4eacde97eba4
- 1
-
4263
-6127
14
20
-
4271.5
-6117
- Result of multiplication
- ace3cccc-1ad7-4fc7-bbb4-fbac97ba8718
- Result
- Result
- false
- 0
-
4307
-6147
34
40
-
4325.5
-6127
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- b9d84ba3-9f37-4bdd-825b-3150762b1c2f
- Multiplication
- Multiplication
-
4261
-6048
82
44
-
4292
-6026
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 6ae60ffc-2358-4b3f-a9f1-2f9a6c2b73ed
- A
- A
- true
- 05225228-e222-49df-931b-a1dfeaeab466
- 1
-
4263
-6046
14
20
-
4271.5
-6036
- Second item for multiplication
- b01dfe5b-e061-4a22-ae58-0629c2f8cabd
- B
- B
- true
- 68c98248-62ad-4df2-af60-f6ecf0eeb005
- 1
-
4263
-6026
14
20
-
4271.5
-6016
- Result of multiplication
- eaa9d3a2-bd6b-4033-a1a9-20654334c897
- Result
- Result
- false
- 0
-
4307
-6046
34
40
-
4325.5
-6026
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 68c98248-62ad-4df2-af60-f6ecf0eeb005
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4282
-5986
40
16
-
4302
-5978
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- eff3ee73-0b0b-4d47-b016-c930d4e069aa
- 4041360f-7411-470c-899a-d7a45700e87d
- d84be735-4afa-4e87-89fd-0dd91e7ea031
- 3
- 36f70708-8c92-4e52-8db3-af3700d6ed05
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- a18f6543-bddc-4707-b9f1-c3de54d04df8
- Create Material
- Create Material
-
4230
-6437
144
104
-
4314
-6385
- Colour of the diffuse channel
- 4bfe5e86-c41e-4f30-89af-a24c4bd45b50
- Diffuse
- Diffuse
- false
- 0
-
4232
-6435
67
20
-
4267
-6425
- 1
- 1
- {0}
-
255;194;194;194
- Colour of the specular highlight
- 77e1e980-2949-416c-a018-b3c2ef85dcdf
- Specular
- Specular
- false
- 0
-
4232
-6415
67
20
-
4267
-6405
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- f2ad1c23-19e6-4bb7-a5c1-2bd0d1e214a1
- Emission
- Emission
- false
- 0
-
4232
-6395
67
20
-
4267
-6385
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 8b9db721-70d1-424e-b550-a789b17c303b
- Transparency
- Transparency
- false
- 0
-
4232
-6375
67
20
-
4267
-6365
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 7fa4e3a6-021a-4881-ba4d-46293c73c225
- Shine
- Shine
- false
- 0
-
4232
-6355
67
20
-
4267
-6345
- 1
- 1
- {0}
- 100
- Resulting material
- 8e039377-5e77-484b-8fd0-fb84649ce474
- Material
- Material
- false
- 0
-
4329
-6435
43
100
-
4352
-6385
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 766feee9-94ce-4ae1-b353-3eb30b90d548
- Custom Preview
- Custom Preview
-
4261
-6499
82
44
-
4329
-6477
- Geometry to preview
- true
- 296fdcd7-5819-4594-9960-b1aea4a38b5f
- Geometry
- Geometry
- false
- 6ac2ff09-23b9-49c7-9641-907d5bc90f18
- 1
-
4263
-6497
51
20
-
4290
-6487
- The material override
- 5275e0e9-2a77-4a7b-9d90-2e1073660d6a
- Material
- Material
- false
- 8e039377-5e77-484b-8fd0-fb84649ce474
- 1
-
4263
-6477
51
20
-
4290
-6467
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 2d5623dd-b6c4-4bca-99dc-1fdc753fa7a0
- Evaluate Length
- Evaluate Length
-
4230
-6582
144
64
-
4304
-6550
- Curve to evaluate
- 93e4ca7a-ac6e-4511-b4f4-9a97007f3708
- Curve
- Curve
- false
- 6ac2ff09-23b9-49c7-9641-907d5bc90f18
- 1
-
4232
-6580
57
20
-
4262
-6570
- Length factor for curve evaluation
- bcb7ffad-e641-47a0-a396-e7500991bc58
- Length
- Length
- false
- 0
-
4232
-6560
57
20
-
4262
-6550
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- b9a1a6e8-8119-4341-ae4c-3d8415523d47
- Normalized
- Normalized
- false
- 0
-
4232
-6540
57
20
-
4262
-6530
- 1
- 1
- {0}
- true
- Point at the specified length
- 67f3e77d-3352-4cab-bef0-40379ae22b9b
- Point
- Point
- false
- 0
-
4319
-6580
53
20
-
4347
-6570
- Tangent vector at the specified length
- c6f41415-c1d3-4db5-b0e9-411fde86fa5e
- Tangent
- Tangent
- false
- 0
-
4319
-6560
53
20
-
4347
-6550
- Curve parameter at the specified length
- 8b63082e-e6fb-4d63-8bef-5e12158500e0
- Parameter
- Parameter
- false
- 0
-
4319
-6540
53
20
-
4347
-6530
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- a6e7cf50-568a-4a69-b260-d8239fd6cfd5
- Interpolate
- Interpolate
-
4239
-6686
125
84
-
4306
-6644
- 1
- Interpolation points
- 8ede0505-6080-49f8-8a13-222ff3826775
- Vertices
- Vertices
- false
- 67f3e77d-3352-4cab-bef0-40379ae22b9b
- 1
-
4241
-6684
50
20
-
4267.5
-6674
- Curve degree
- 195d02d9-53aa-4d8f-972d-253ac00a5a97
- Degree
- Degree
- false
- 0
-
4241
-6664
50
20
-
4267.5
-6654
- 1
- 1
- {0}
- 1
- Periodic curve
- ba7e5a28-b315-4375-9e68-04c4735b8c3d
- Periodic
- Periodic
- false
- 0
-
4241
-6644
50
20
-
4267.5
-6634
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- b7284919-07be-414c-bbf6-c22fffdb03ae
- KnotStyle
- KnotStyle
- false
- 0
-
4241
-6624
50
20
-
4267.5
-6614
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 4371434e-cdd5-4319-b921-c6483ea00395
- Curve
- Curve
- false
- 0
-
4321
-6684
41
26
-
4343
-6670.667
- Curve length
- a6fc1d64-6585-4a06-ab5d-ab49123079c1
- Length
- Length
- false
- 0
-
4321
-6658
41
27
-
4343
-6644
- Curve domain
- f6768abc-a465-4932-8f04-ec5193f649a6
- Domain
- Domain
- false
- 0
-
4321
-6631
41
27
-
4343
-6617.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- cbcf528b-ec99-4366-88c9-7821ca0b3868
- Create Material
- Create Material
-
4230
-6810
144
104
-
4314
-6758
- Colour of the diffuse channel
- 2fbe3cfd-ff90-4db1-b765-c7e1d04fbb37
- Diffuse
- Diffuse
- false
- 0
-
4232
-6808
67
20
-
4267
-6798
- 1
- 1
- {0}
-
255;168;168;168
- Colour of the specular highlight
- 88874422-d8f7-4c08-babe-a5c500b043c3
- Specular
- Specular
- false
- 0
-
4232
-6788
67
20
-
4267
-6778
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 2df3ddb1-d60b-41d7-a15b-33a40d3773dd
- Emission
- Emission
- false
- 0
-
4232
-6768
67
20
-
4267
-6758
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 3d4f6ac3-b3d4-4c34-9edc-d645adaa9797
- Transparency
- Transparency
- false
- 0
-
4232
-6748
67
20
-
4267
-6738
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 76f0cb28-085f-42f6-9306-b3bcd5d525cf
- Shine
- Shine
- false
- 0
-
4232
-6728
67
20
-
4267
-6718
- 1
- 1
- {0}
- 100
- Resulting material
- 296b7776-70cb-4253-9bce-d083e5d76649
- Material
- Material
- false
- 0
-
4329
-6808
43
100
-
4352
-6758
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- eec36f4c-60cb-4742-bd1d-d2f59b355b07
- Custom Preview
- Custom Preview
-
4261
-6870
82
44
-
4329
-6848
- Geometry to preview
- true
- 042b6aa7-5cf0-41f2-9ca6-b9f834ffa2a5
- Geometry
- Geometry
- false
- 4371434e-cdd5-4319-b921-c6483ea00395
- 1
-
4263
-6868
51
20
-
4290
-6858
- The material override
- 9ab58b30-8fbb-437d-85eb-19be1daaa4fc
- Material
- Material
- false
- 296b7776-70cb-4253-9bce-d083e5d76649
- 1
-
4263
-6848
51
20
-
4290
-6838
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a90d60d2-8b5e-48d7-a33a-454602481a06
- 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
- 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
- 98a18393-1059-451a-ac38-07eec50efbb7
- 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
- 9d4b00cb-659e-4035-8c4c-0bfab49f732e
- 06c37c6f-92ed-4603-a7ef-6624026b46c0
- 60f1953e-44fb-46e3-bd82-14c3da791de3
- 72196528-b84a-4f1b-b7ca-76264abdc748
- fa933163-8b78-458d-b1ac-825f7bd3f6fd
- 9c9e8065-86c2-4798-93bf-1eb80b288f2a
- 69c43f9f-8ad5-4294-b6b7-417f23e6558d
- bc09a16c-abd9-4fa6-b060-f38c5f357782
- d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
- 34a14a42-f662-4a1d-9a93-054d477ac704
- 231e1df4-9237-4d03-9cb4-cb6329f1e5b4
- 4ac7d93a-83bc-4097-a09f-085ff4b7a496
- b176544c-2084-4538-95e4-30ad483bbbc3
- 3f7c293b-8bda-4841-bb51-5b3fee67daac
- 923b0d30-c122-4312-be66-898daa214df3
- d13ab75b-aade-4726-b7f6-bd13c77e36b4
- 254266e4-e3e4-4446-adb4-c5e696068203
- 22
- 7c42b68f-945c-4b1c-9b43-f8f3a6fcd50f
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
- 9d4b00cb-659e-4035-8c4c-0bfab49f732e
- 06c37c6f-92ed-4603-a7ef-6624026b46c0
- 60f1953e-44fb-46e3-bd82-14c3da791de3
- 72196528-b84a-4f1b-b7ca-76264abdc748
- fa933163-8b78-458d-b1ac-825f7bd3f6fd
- 9c9e8065-86c2-4798-93bf-1eb80b288f2a
- 69c43f9f-8ad5-4294-b6b7-417f23e6558d
- bc09a16c-abd9-4fa6-b060-f38c5f357782
- d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
- 34a14a42-f662-4a1d-9a93-054d477ac704
- 70b9b4d5-9f59-4bec-8b95-44a825aff278
- 12
- a90d60d2-8b5e-48d7-a33a-454602481a06
- Group
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
- Relative Differences
- Relative Differences
-
4243
-7068
128
28
-
4296
-7054
- 1
- List of data to operate on (numbers or points or vectors allowed)
- ffe32b16-1490-4131-bd81-59c1fffe0f1e
- Values
- Values
- false
- 98a18393-1059-451a-ac38-07eec50efbb7
- 1
-
4245
-7066
36
24
-
4264.5
-7054
- 1
- Differences between consecutive items
- e56d41ed-bf3f-48d5-8d46-11ca14422590
- Differenced
- Differenced
- false
- 0
-
4311
-7066
58
24
-
4341.5
-7054
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
- Relay
- false
- e56d41ed-bf3f-48d5-8d46-11ca14422590
- 1
-
4287
-7102
40
16
-
4307
-7094
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 98a18393-1059-451a-ac38-07eec50efbb7
- Relay
- false
- eff3ee73-0b0b-4d47-b016-c930d4e069aa
- 1
-
4287
-7020
40
16
-
4307
-7012
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
- true
- Line SDL
- Line SDL
-
4240
-7799
122
64
-
4320
-7767
- Line start point
- 357d12be-6f06-405b-8a7d-67b2956260bd
- true
- Start
- Start
- false
- 67f3e77d-3352-4cab-bef0-40379ae22b9b
- 1
-
4242
-7797
63
20
-
4283
-7787
- Line tangent (direction)
- 95d26d76-69dd-4889-bb53-dbce30dc7189
- true
- Direction
- Direction
- false
- 9d4b00cb-659e-4035-8c4c-0bfab49f732e
- 1
-
4242
-7777
63
20
-
4283
-7767
- 1
- 1
- {0}
-
0
0
1
- Line length
- 9332fed5-0709-4b9c-9e4e-e93bb1384bb9
- ABS(X)
- true
- Length
- Length
- false
- 69c43f9f-8ad5-4294-b6b7-417f23e6558d
- 1
-
4242
-7757
63
20
-
4283
-7747
- 1
- 1
- {0}
- 1
- Line segment
- 4bee827f-0abc-4f89-8ac3-16ac83a96459
- true
- Line
- Line
- false
- 0
-
4335
-7797
25
60
-
4349
-7767
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9d4b00cb-659e-4035-8c4c-0bfab49f732e
- Relay
- false
- 76eb6709-1b5d-4393-a09b-053dd6f6870c
- 1
-
4281
-7717
40
16
-
4301
-7709
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 60f1953e-44fb-46e3-bd82-14c3da791de3
- Remap Numbers
- Remap Numbers
-
4243
-7435
115
64
-
4298
-7403
- Value to remap
- 48593c74-64e0-426a-896d-644ed39e3452
- Value
- Value
- false
- 9c9e8065-86c2-4798-93bf-1eb80b288f2a
- 1
-
4245
-7433
38
20
-
4265.5
-7423
- Source domain
- 26edeb82-cc25-43f8-a59f-bd4e6e265821
- Source
- Source
- false
- 52d6fa59-3d0a-4f1a-96f7-cd7d2cd8dfc3
- 1
-
4245
-7413
38
20
-
4265.5
-7403
- 1
- 1
- {0}
-
0
1
- Target domain
- 3e73bc70-ae01-41e3-8294-9ace75912b23
- Target
- Target
- false
- 0
-
4245
-7393
38
20
-
4265.5
-7383
- 1
- 1
- {0}
-
-1
1
- Remapped number
- 624b5528-ad9d-4b73-a9c1-f233a4b61bf6
- Mapped
- Mapped
- false
- 0
-
4313
-7433
43
30
-
4336
-7418
- Remapped and clipped number
- 3783a63c-237b-41f7-a2fe-b7c3bb57d61b
- Clipped
- Clipped
- false
- 0
-
4313
-7403
43
30
-
4336
-7388
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 72196528-b84a-4f1b-b7ca-76264abdc748
- Bounds
- Bounds
-
4240
-7352
122
28
-
4304
-7338
- 1
- Numbers to include in Bounds
- b09502b8-e9f1-45b8-a33e-dbb71e90a920
- Numbers
- Numbers
- false
- 9c9e8065-86c2-4798-93bf-1eb80b288f2a
- 1
-
4242
-7350
47
24
-
4267
-7338
- Numeric Domain between the lowest and highest numbers in {N}
- 52d6fa59-3d0a-4f1a-96f7-cd7d2cd8dfc3
- Domain
- Domain
- false
- 0
-
4319
-7350
41
24
-
4341
-7338
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 60f1953e-44fb-46e3-bd82-14c3da791de3
- 72196528-b84a-4f1b-b7ca-76264abdc748
- c3830b7d-0858-410d-89db-9af833da8bf5
- 69c43f9f-8ad5-4294-b6b7-417f23e6558d
- 9c9e8065-86c2-4798-93bf-1eb80b288f2a
- 06c37c6f-92ed-4603-a7ef-6624026b46c0
- bc09a16c-abd9-4fa6-b060-f38c5f357782
- d20d51a6-0c15-4c64-97de-546619bd377a
- 15
- fa933163-8b78-458d-b1ac-825f7bd3f6fd
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9c9e8065-86c2-4798-93bf-1eb80b288f2a
- Relay
-
- false
- 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
- 1
-
4281
-7307
40
16
-
4301
-7299
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 69c43f9f-8ad5-4294-b6b7-417f23e6558d
- Relay
-
- false
- c4fd7ded-46c8-4ad0-8563-fdfb6416cee1
- 1
-
4281
-7674
40
16
-
4301
-7666
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- bc09a16c-abd9-4fa6-b060-f38c5f357782
- Multiplication
- Multiplication
-
4260
-7635
82
44
-
4291
-7613
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- e931389e-d169-4b88-ba1a-7c89d5f8bad3
- A
- A
- true
- 7c83abf2-e560-41e6-98fe-488382df6abf
- 1
-
4262
-7633
14
20
-
4270.5
-7623
- Second item for multiplication
- b104166d-8536-42fb-bf25-619fe95d6218
- B
- B
- true
- d20d51a6-0c15-4c64-97de-546619bd377a
- 1
-
4262
-7613
14
20
-
4270.5
-7603
- Result of multiplication
- c4fd7ded-46c8-4ad0-8563-fdfb6416cee1
- Result
- Result
- false
- 0
-
4306
-7633
34
40
-
4324.5
-7613
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
- Multiplication
- Multiplication
-
4260
-7534
82
44
-
4291
-7512
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 0b530e6f-5ebd-46de-a702-011d2a81307f
- A
- A
- true
- 624b5528-ad9d-4b73-a9c1-f233a4b61bf6
- 1
-
4262
-7532
14
20
-
4270.5
-7522
- Second item for multiplication
- 7f3bd519-2e72-4e91-9045-7f9488218fbb
- B
- B
- true
- 34a14a42-f662-4a1d-9a93-054d477ac704
- 1
-
4262
-7512
14
20
-
4270.5
-7502
- Result of multiplication
- 7c83abf2-e560-41e6-98fe-488382df6abf
- Result
- Result
- false
- 0
-
4306
-7532
34
40
-
4324.5
-7512
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 34a14a42-f662-4a1d-9a93-054d477ac704
- Relay
- false
- db26abf6-6a27-458b-8296-41880794893f
- 1
-
4281
-7472
40
16
-
4301
-7464
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
- 98a18393-1059-451a-ac38-07eec50efbb7
- 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
- 3
- 231e1df4-9237-4d03-9cb4-cb6329f1e5b4
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 4ac7d93a-83bc-4097-a09f-085ff4b7a496
- Create Material
- Create Material
-
4229
-7923
144
104
-
4313
-7871
- Colour of the diffuse channel
- 3ef6a971-3e75-463b-8293-b6d367e3c87e
- Diffuse
- Diffuse
- false
- 0
-
4231
-7921
67
20
-
4266
-7911
- 1
- 1
- {0}
-
255;186;186;186
- Colour of the specular highlight
- 40d2861e-7832-483d-ae74-a93e1b2c464a
- Specular
- Specular
- false
- 0
-
4231
-7901
67
20
-
4266
-7891
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 6e7fd49c-46eb-4f33-b2f3-4f931bd738be
- Emission
- Emission
- false
- 0
-
4231
-7881
67
20
-
4266
-7871
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- c86b6111-8fd5-4c21-a764-a53ebf94fc9b
- Transparency
- Transparency
- false
- 0
-
4231
-7861
67
20
-
4266
-7851
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- a352bbf1-25c4-4ce1-98f2-339669fe48f8
- Shine
- Shine
- false
- 0
-
4231
-7841
67
20
-
4266
-7831
- 1
- 1
- {0}
- 100
- Resulting material
- dbf70f62-537f-4179-b958-3a9a8519ee19
- Material
- Material
- false
- 0
-
4328
-7921
43
100
-
4351
-7871
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- b176544c-2084-4538-95e4-30ad483bbbc3
- Custom Preview
- Custom Preview
-
4260
-7985
82
44
-
4328
-7963
- Geometry to preview
- true
- 2b7b259b-c267-4303-8945-127bfb52841f
- Geometry
- Geometry
- false
- 4bee827f-0abc-4f89-8ac3-16ac83a96459
- 1
-
4262
-7983
51
20
-
4289
-7973
- The material override
- f17f6893-f9e7-4d3f-8c19-4c72a32eafc5
- Material
- Material
- false
- dbf70f62-537f-4179-b958-3a9a8519ee19
- 1
-
4262
-7963
51
20
-
4289
-7953
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 3f7c293b-8bda-4841-bb51-5b3fee67daac
- Evaluate Length
- Evaluate Length
-
4229
-8068
144
64
-
4303
-8036
- Curve to evaluate
- 8d326d08-6747-4dfc-b043-a9cab708d599
- Curve
- Curve
- false
- 4bee827f-0abc-4f89-8ac3-16ac83a96459
- 1
-
4231
-8066
57
20
-
4261
-8056
- Length factor for curve evaluation
- 9575e16a-b9dc-45b6-ad59-1237a8df15dd
- Length
- Length
- false
- 0
-
4231
-8046
57
20
-
4261
-8036
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 827eb3f9-fa1d-4245-889c-16958037f49c
- Normalized
- Normalized
- false
- 0
-
4231
-8026
57
20
-
4261
-8016
- 1
- 1
- {0}
- true
- Point at the specified length
- e19c4f4a-6476-45c5-85ec-a4bec3b7ee75
- Point
- Point
- false
- 0
-
4318
-8066
53
20
-
4346
-8056
- Tangent vector at the specified length
- 7cdc97d4-ab10-4674-add5-5707c5fd1985
- Tangent
- Tangent
- false
- 0
-
4318
-8046
53
20
-
4346
-8036
- Curve parameter at the specified length
- ca84891c-67ed-47da-a0e2-5c7230f5354a
- Parameter
- Parameter
- false
- 0
-
4318
-8026
53
20
-
4346
-8016
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 923b0d30-c122-4312-be66-898daa214df3
- Interpolate
- Interpolate
-
4238
-8172
125
84
-
4305
-8130
- 1
- Interpolation points
- c67aec7c-4ed3-46d5-8d61-c194e4d096f6
- Vertices
- Vertices
- false
- e19c4f4a-6476-45c5-85ec-a4bec3b7ee75
- 1
-
4240
-8170
50
20
-
4266.5
-8160
- Curve degree
- afb25838-4988-4047-94a0-6e3d6925ab7e
- Degree
- Degree
- false
- 0
-
4240
-8150
50
20
-
4266.5
-8140
- 1
- 1
- {0}
- 1
- Periodic curve
- 4b9d9664-1c8c-4bfe-a377-4914943cb9e3
- Periodic
- Periodic
- false
- 0
-
4240
-8130
50
20
-
4266.5
-8120
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 76d2c8d1-de05-4e59-87b8-d9919f4c9475
- KnotStyle
- KnotStyle
- false
- 0
-
4240
-8110
50
20
-
4266.5
-8100
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- cdae18ea-9257-4789-8ad0-379d60880a1d
- Curve
- Curve
- false
- 0
-
4320
-8170
41
26
-
4342
-8156.667
- Curve length
- b0bfa94c-3d40-46bc-827f-cf3598d4db23
- Length
- Length
- false
- 0
-
4320
-8144
41
27
-
4342
-8130
- Curve domain
- 4ab08a2c-4633-48bc-85e1-efd2d6ce0f08
- Domain
- Domain
- false
- 0
-
4320
-8117
41
27
-
4342
-8103.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- d13ab75b-aade-4726-b7f6-bd13c77e36b4
- Create Material
- Create Material
-
4229
-8296
144
104
-
4313
-8244
- Colour of the diffuse channel
- 62929bd9-b896-49d7-b494-a78afcb55441
- Diffuse
- Diffuse
- false
- 0
-
4231
-8294
67
20
-
4266
-8284
- 1
- 1
- {0}
-
255;161;161;161
- Colour of the specular highlight
- a172e753-e481-4551-8ecf-260e53d6377b
- Specular
- Specular
- false
- 0
-
4231
-8274
67
20
-
4266
-8264
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 5a23d84e-78d0-4e6a-8a93-f227f55fef79
- Emission
- Emission
- false
- 0
-
4231
-8254
67
20
-
4266
-8244
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- fb0c3977-f34e-4195-a43a-210565a20274
- Transparency
- Transparency
- false
- 0
-
4231
-8234
67
20
-
4266
-8224
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 5fdfc1ac-7a38-4f36-b361-e798b1b1bd7b
- Shine
- Shine
- false
- 0
-
4231
-8214
67
20
-
4266
-8204
- 1
- 1
- {0}
- 100
- Resulting material
- e757b9b3-9378-4b6b-be97-a751cf00ceff
- Material
- Material
- false
- 0
-
4328
-8294
43
100
-
4351
-8244
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 254266e4-e3e4-4446-adb4-c5e696068203
- Custom Preview
- Custom Preview
-
4260
-8356
82
44
-
4328
-8334
- Geometry to preview
- true
- 61956c77-9189-4364-92a2-371a92b1ba5f
- Geometry
- Geometry
- false
- cdae18ea-9257-4789-8ad0-379d60880a1d
- 1
-
4262
-8354
51
20
-
4289
-8344
- The material override
- 93dd7c30-a051-4709-8cd2-edea080c9a4e
- Material
- Material
- false
- e757b9b3-9378-4b6b-be97-a751cf00ceff
- 1
-
4262
-8334
51
20
-
4289
-8324
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 6c6c28be-b01b-42e5-b60a-91c314905c9e
- Quick Graph
- Quick Graph
- false
- 0
- e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
- 1
-
4246
1303
150
150
-
4246.364
1303
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- af226fd0-4701-4be9-ac43-12af7cefc54c
- Quick Graph
- Quick Graph
- false
- 0
- 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
- 1
-
4246
-76
150
150
-
4246.694
-75.37048
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- ac588950-bc7f-4799-998b-6293a8136543
- Quick Graph
- Quick Graph
- false
- 0
- e9df2343-bcc4-4760-80bc-8ee2d703441d
- 1
-
4246
-1489
150
150
-
4246
-1488.14
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7ea7c812-fbf2-4ab8-9a4e-7edd89c68a35
- Quick Graph
- Quick Graph
- false
- 0
- 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
- 1
-
4245
-2883
150
150
-
4245.352
-2882.188
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- d8ca333f-274c-4def-b0be-659a62d86c0c
- Quick Graph
- Quick Graph
- false
- 0
- 255409ab-7bab-43a8-aaea-5e6d3f7310ab
- 1
-
4230
-4301
150
150
-
4230
-4300.277
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 4bb2abaa-9c90-4ee1-9d3e-af6d1b129f69
- Quick Graph
- Quick Graph
- false
- 0
- eff3ee73-0b0b-4d47-b016-c930d4e069aa
- 1
-
4232
-5786
150
150
-
4232
-5785.794
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 70b9b4d5-9f59-4bec-8b95-44a825aff278
- Quick Graph
- Quick Graph
- false
- 0
- 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
- 1
-
4230
-7272
150
150
-
4230
-7271.181
- 0
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.250000000
-
4190
-1786
250
20
-
4190.949
-1785.593
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e9c988a3-a0f9-44b8-9dca-881e071528d5
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 3000.0
-
4211
-3180
250
20
-
4211.862
-3179.823
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- aeba0375-f313-4a4a-8b7e-4eacde97eba4
- Digit Scroller
-
- false
- 0
- 12
-
- 8
- 12000.0000
-
4169
-6087
250
20
-
4169.419
-6086.237
- dbe9fce4-b6b3-465f-9615-34833c4763bd
- Torsion
- Evaluate the torsion of a curve at a specified parameter.
- true
- 64165250-d573-4d15-aad6-e3cad180c5f8
- true
- Torsion
- Torsion
-
4575
7121
127
44
-
4645
7143
- Curve to evaluate
- 8054e998-d832-46fc-bfb2-e1ef57c32ba8
- true
- Curve
- Curve
- false
- 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
4577
7123
53
20
-
4605
7133
- Parameter on curve domain to evaluate
- bbfbc9c4-c5f9-49e9-b239-4fceb5cf0ccc
- true
- Parameter
- Parameter
- false
- 72571f4d-e390-4273-afe8-daa1b335cb89
- 1
-
4577
7143
53
20
-
4605
7153
- Point on curve at {t}
- eb0b4d93-e7c1-4cb4-8d25-95086f1fb7f5
- true
- Point
- Point
- false
- 0
-
4660
7123
40
20
-
4681.5
7133
- Curvature torsion at {t}
- c6f2b4b0-b317-4612-811a-fdd7e8d1025e
- true
- Torsion
- Torsion
- false
- 0
-
4660
7143
40
20
-
4681.5
7153
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e76869be-c61a-4fdc-909a-fc4100b302c8
- Panel
- false
- 0
- eb0b4d93-e7c1-4cb4-8d25-95086f1fb7f5
- 1
- Double click to edit panel content…
-
4822
7080
391
222
- 0
- 0
- 0
-
4822.472
7080.464
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- b565e546-b7f7-4a1b-9c81-7e90c1d9e590
- Number
- Number
- false
- 26d9c13f-79ff-4367-baad-c775d2229988
- 1
-
3781
7952
50
24
-
3806.921
7964.771
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b90c5c4a-28e8-406c-a48b-1e18f7e84271
- e5df8b8a-ee10-4243-b023-04465e1fd03a
- 5c9bc050-34d7-4f48-9eb5-d2a900577182
- dc7cd620-40ec-4bbf-8777-36e3f82bb67d
- f17fb7c5-c44a-431d-ba75-8edebac41101
- 9c4631ba-85e3-4b26-a0ed-ae48be61a573
- 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
- 62749b59-00b6-4050-8ac2-91ff2975c226
- 76b87ec4-3a97-42c3-8992-13acf6acf45f
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- e41d43db-4027-4b96-aff2-6b3977deeff6
- 57c81212-acf4-4901-86dd-71ef3e46c60d
- 6544fcf4-de8d-4376-8953-865024da35a3
- a1095b3a-a75d-4dfe-874e-c9513ed7d845
- 006e868d-4bf3-44a6-b8d4-708f9a679606
- 163281f3-4fdd-4ec9-89f5-d9ea2684d152
- aab83e7e-03d3-46f1-8567-daf390ccafe4
- d9dc4818-8226-43f0-826b-743fe4bf5353
- 0ffd18d8-99db-40a1-81a8-50617de9a6c3
- e492ffd1-044a-40ee-b734-c2796609a1e2
- 284185cb-9b1b-44c4-9a94-6a846b6478b6
- 66cd6f40-485a-4239-8096-f910fb72f4bc
- 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
- d732c384-05f7-4045-8076-3bfea40ab057
- 92a625da-b995-4055-bc08-7cd011bcb0ba
- c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
- 059a3e69-9d54-4680-897c-cdf195bad7a8
- 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
- 7fce1877-7d49-42f2-9d77-f20f971a3c8d
- be575d1d-b0b0-4169-9453-f139fa5a69fc
- 3500c3b9-cff8-4242-841b-b21739eb2ce5
- 6bf311af-c478-40b6-8287-b57e5ebd2de6
- 19e6ba9f-ea5b-4adf-a53c-e38f7d1c7c24
- c1950f77-cc1d-4a94-8226-38115fad3527
- 34
- 82153d97-efd1-4c43-adfc-7c18a2863960
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5202e00c-44d2-4c14-a5b6-ef33c742b491
- a72d5419-fd91-41c5-b117-b1511799de43
- 6799a162-9bf6-4690-8e87-a1f7b11fc186
- 3dd22ce8-293a-4588-a9e5-2f0539214a5c
- f1e198ee-8c72-43b0-bdfb-8896635b9001
- 749872a2-7981-49cb-a7d8-7f6b73442974
- 41b1f9fe-b540-498e-b66d-f9a253c44c97
- 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
- 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
- 64e05c4c-ae81-4d56-92b8-0d683e6178f7
- 401a4ec7-acb1-4812-b841-5ff8cafa66b1
- f6e745a8-7fe5-4039-af6b-f624d2e49c50
- 78dab7dd-d7e2-426b-bb90-b547c8224cb4
- c106ea49-3d33-4ec1-9439-7a451df09432
- ff3f4af7-3769-4434-b59a-235ecf1d678c
- 3bad1a66-165a-405e-94ae-9c7c448ecc44
- e606582f-8157-4dd3-9d74-b8545096f2b1
- 5a142162-4b8f-4585-967e-5ce611b2ed6b
- e9d1dc88-7240-4c0f-bb0a-9eef2eae717d
- 0119e2c8-ab78-45ad-b993-71b743e8bc99
- aad5e89f-1689-4ac6-8192-4f4373cbea4f
- 1fc6e624-7c49-41f9-becf-1b629588cf31
- 3198adc1-4a36-4f37-aea4-eff18ec21c4b
- ea9452ce-f391-4a3d-9fb3-f180e8edf584
- d8b69669-a2bd-4187-9589-204f3dbe274a
- 25
- 14ce4b09-3396-45db-b579-daf6cd4a779b
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e5df8b8a-ee10-4243-b023-04465e1fd03a
- 5c9bc050-34d7-4f48-9eb5-d2a900577182
- dc7cd620-40ec-4bbf-8777-36e3f82bb67d
- f17fb7c5-c44a-431d-ba75-8edebac41101
- 136cd97b-9deb-4449-b884-bf54a4c926d4
- 9c4631ba-85e3-4b26-a0ed-ae48be61a573
- 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
- 62749b59-00b6-4050-8ac2-91ff2975c226
- 76b87ec4-3a97-42c3-8992-13acf6acf45f
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- e41d43db-4027-4b96-aff2-6b3977deeff6
- 57c81212-acf4-4901-86dd-71ef3e46c60d
- 6544fcf4-de8d-4376-8953-865024da35a3
- a1095b3a-a75d-4dfe-874e-c9513ed7d845
- 006e868d-4bf3-44a6-b8d4-708f9a679606
- 163281f3-4fdd-4ec9-89f5-d9ea2684d152
- aab83e7e-03d3-46f1-8567-daf390ccafe4
- d9dc4818-8226-43f0-826b-743fe4bf5353
- 0ffd18d8-99db-40a1-81a8-50617de9a6c3
- e492ffd1-044a-40ee-b734-c2796609a1e2
- 284185cb-9b1b-44c4-9a94-6a846b6478b6
- 66cd6f40-485a-4239-8096-f910fb72f4bc
- 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
- d732c384-05f7-4045-8076-3bfea40ab057
- 92a625da-b995-4055-bc08-7cd011bcb0ba
- c1950f77-cc1d-4a94-8226-38115fad3527
- 26
- b90c5c4a-28e8-406c-a48b-1e18f7e84271
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5c9bc050-34d7-4f48-9eb5-d2a900577182
- dc7cd620-40ec-4bbf-8777-36e3f82bb67d
- f17fb7c5-c44a-431d-ba75-8edebac41101
- 136cd97b-9deb-4449-b884-bf54a4c926d4
- 9c4631ba-85e3-4b26-a0ed-ae48be61a573
- 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2
- 91acf8ab-b95d-4cf9-9042-41f5397d7e87
- 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
- 62749b59-00b6-4050-8ac2-91ff2975c226
- 76b87ec4-3a97-42c3-8992-13acf6acf45f
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- e41d43db-4027-4b96-aff2-6b3977deeff6
- 57c81212-acf4-4901-86dd-71ef3e46c60d
- 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc
- 92a625da-b995-4055-bc08-7cd011bcb0ba
- c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
- 16
- e5df8b8a-ee10-4243-b023-04465e1fd03a
- Group
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 5c9bc050-34d7-4f48-9eb5-d2a900577182
- Divide Curve
- Divide Curve
-
2740
5569
125
64
-
2790
5601
- Curve to divide
- 2f24b97e-99f8-443a-9082-19c1f91d8d3f
- Curve
- Curve
- false
- ba58928d-5703-4a2a-8fde-736407679f3d
- 1
-
2742
5571
33
20
-
2760
5581
- Number of segments
- 35f75e33-d5f6-4e6e-b9cf-1bfa3b8bb635
- Count
- Count
- false
- 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
- 1
-
2742
5591
33
20
-
2760
5601
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 87560cf5-edc9-4964-b195-b4f3d1dd8581
- Kinks
- Kinks
- false
- 0
-
2742
5611
33
20
-
2760
5621
- 1
- 1
- {0}
- false
- 1
- Division points
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- Points
- Points
- false
- 0
-
2805
5571
58
20
-
2835.5
5581
- 1
- Tangent vectors at division points
- 7a369f73-a46f-44bb-935a-990a674e70dc
- Tangents
- Tangents
- false
- 0
-
2805
5591
58
20
-
2835.5
5601
- 1
- Parameter values at division points
- b1597b58-9c8c-420f-bec1-50f6c1f5b5a1
- Parameters
- Parameters
- false
- 0
-
2805
5611
58
20
-
2835.5
5621
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- dc7cd620-40ec-4bbf-8777-36e3f82bb67d
- Line SDL
- Line SDL
-
2750
5652
106
64
-
2814
5684
- Line start point
- d958b718-e348-4709-aa78-fe7498a8766c
- Start
- Start
- false
- 0
-
2752
5654
47
20
-
2777
5664
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 8b52cc88-fbae-4974-afe9-a673b442bd74
- Direction
- Direction
- false
- 0
-
2752
5674
47
20
-
2777
5684
- 1
- 1
- {0}
-
1
0
0
- Line length
- 7114e2f7-7cc2-4d94-a5e4-ce6dc55624c4
- Length
- Length
- false
- 0
-
2752
5694
47
20
-
2777
5704
- 1
- 1
- {0}
- 1
- Line segment
- ba58928d-5703-4a2a-8fde-736407679f3d
- Line
- Line
- false
- 0
-
2829
5654
25
60
-
2843
5684
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- f17fb7c5-c44a-431d-ba75-8edebac41101
- Line SDL
- Line SDL
-
2750
5381
106
64
-
2814
5413
- Line start point
- eee0d4c1-93a0-442f-9fc5-d81d6dfd5aae
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2752
5383
47
20
-
2777
5393
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- ac30e536-d7a6-4642-8b04-31576a917a18
- Direction
- Direction
- false
- 0
-
2752
5403
47
20
-
2777
5413
- 1
- 1
- {0}
-
0
1
0
- Line length
- 8fab40a7-83b7-48c4-b1ba-e1dfbc420d51
- Length
- Length
- false
- 2da9ba30-40f8-4e2e-9ad5-a1bb181bc6aa
- 1
-
2752
5423
47
20
-
2777
5433
- 1
- 1
- {0}
- 1
- Line segment
- 6bb582bf-fb0d-4475-bd64-5159a23801fe
- Line
- Line
- false
- 0
-
2829
5383
25
60
-
2843
5413
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 9c4631ba-85e3-4b26-a0ed-ae48be61a573
- Multiplication
- Multiplication
-
2762
5506
82
44
-
2793
5528
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 3995eb05-caa2-438a-a9d9-c18e8358c01c
- A
- A
- true
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- 1
-
2764
5508
14
20
-
2772.5
5518
- Second item for multiplication
- 44a0505e-9be8-4f10-bbcb-6f5e50704123
- B
- B
- true
- c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
- 1
-
2764
5528
14
20
-
2772.5
5538
- Result of multiplication
- 2da9ba30-40f8-4e2e-9ad5-a1bb181bc6aa
- Result
- Result
- false
- 0
-
2808
5508
34
40
-
2826.5
5528
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
- true
- Expression
- Expression
-
2706
6220
194
28
-
2806
6234
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 253e074d-ddc9-4419-9a24-0a26722444e0
- true
- Variable O
- O
- true
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- 1
-
2708
6222
14
24
-
2716.5
6234
- Result of expression
- 2ce7b1d9-752c-4298-ae7a-ed9c0d830e16
- true
- Result
-
- false
- 0
-
2889
6222
9
24
-
2895
6234
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 62749b59-00b6-4050-8ac2-91ff2975c226
- Panel
- false
- 1
- 2ce7b1d9-752c-4298-ae7a-ed9c0d830e16
- 1
- Double click to edit panel content…
-
2696
5939
214
271
- 0
- 0
- 0
-
2696.397
5939.743
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 76b87ec4-3a97-42c3-8992-13acf6acf45f
- Relay
-
- false
- 62749b59-00b6-4050-8ac2-91ff2975c226
- 1
-
2783
5904
40
16
-
2803
5912
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- Relay
-
- false
- d9dc4818-8226-43f0-826b-743fe4bf5353
- 1
-
2783
6267
40
16
-
2803
6275
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
- 62749b59-00b6-4050-8ac2-91ff2975c226
- 76b87ec4-3a97-42c3-8992-13acf6acf45f
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- 4
- e41d43db-4027-4b96-aff2-6b3977deeff6
- Group
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 57c81212-acf4-4901-86dd-71ef3e46c60d
- Quick Graph
- Quick Graph
- false
- 0
- 3eef801e-d75b-4ffb-acb0-c36dec045e51
- 1
-
2728
5737
150
150
-
2728.496
5737.921
- 0
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- 6544fcf4-de8d-4376-8953-865024da35a3
- Curvature
- Curvature
-
2734
7073
137
64
-
2804
7105
- Curve to evaluate
- 33d173a0-8437-48af-8f44-804ef32ab2e1
- Curve
- Curve
- false
- 006e868d-4bf3-44a6-b8d4-708f9a679606
- 1
-
2736
7075
53
30
-
2764
7090
- Parameter on curve domain to evaluate
- 2dc7ebde-f021-4d43-858a-f7f5ad2f6afe
- Parameter
- Parameter
- false
- 9bebf09e-b007-45c5-b78a-b561aa38667f
- 1
-
2736
7105
53
30
-
2764
7120
- Point on curve at {t}
- 2d289b88-800e-4156-a6b1-c7434ad82dc7
- Point
- Point
- false
- 0
-
2819
7075
50
20
-
2845.5
7085
- Curvature vector at {t}
- 1a1dda0d-bbdd-40d9-90c1-6c9f0757da7a
- Curvature
- Curvature
- false
- 0
-
2819
7095
50
20
-
2845.5
7105
- Curvature circle at {t}
- 1e82bf09-1919-4f7a-88f8-6effdeb1461d
- Curvature
- Curvature
- false
- 0
-
2819
7115
50
20
-
2845.5
7125
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- a1095b3a-a75d-4dfe-874e-c9513ed7d845
- Divide Curve
- Divide Curve
-
2740
7156
125
64
-
2790
7188
- Curve to divide
- f2cb91dd-ffcf-4a87-8292-93a0b86821c1
- Curve
- Curve
- false
- 006e868d-4bf3-44a6-b8d4-708f9a679606
- 1
-
2742
7158
33
20
-
2760
7168
- Number of segments
- 98448139-6838-4cea-895a-19ef1e5ddb9a
- Count
- Count
- false
- 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
- 1
-
2742
7178
33
20
-
2760
7188
- 1
- 1
- {0}
- 10
- Split segments at kinks
- f33c48c8-66c6-41e8-8815-5480fd688987
- Kinks
- Kinks
- false
- 0
-
2742
7198
33
20
-
2760
7208
- 1
- 1
- {0}
- false
- 1
- Division points
- 362990c6-70f5-4e45-80e3-6e3b5820d61c
- Points
- Points
- false
- 0
-
2805
7158
58
20
-
2835.5
7168
- 1
- Tangent vectors at division points
- c03522f8-2bfc-4536-b892-e10a78a9b6b9
- Tangents
- Tangents
- false
- 0
-
2805
7178
58
20
-
2835.5
7188
- 1
- Parameter values at division points
- 9bebf09e-b007-45c5-b78a-b561aa38667f
- Parameters
- Parameters
- false
- 0
-
2805
7198
58
20
-
2835.5
7208
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 006e868d-4bf3-44a6-b8d4-708f9a679606
- true
- 2
- Curve
- Curve
- false
- a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
- 1
-
2777
7292
53
24
-
2813.437
7304.059
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 163281f3-4fdd-4ec9-89f5-d9ea2684d152
- Deconstruct Arc
- Deconstruct Arc
-
2746
6992
114
64
-
2786
7024
- Arc or Circle to deconstruct
- 1e500955-6ff2-4638-a014-022cb896ebeb
- Arc
- Arc
- false
- 1e82bf09-1919-4f7a-88f8-6effdeb1461d
- 1
-
2748
6994
23
60
-
2761
7024
- Base plane of arc or circle
- ce07b596-b533-42b3-a650-9f00f7be13dc
- Base Plane
- Base Plane
- false
- 0
-
2801
6994
57
20
-
2831
7004
- Radius of arc or circle
- 54837649-9551-4c51-b610-ce1c1a7990a3
- Radius
- Radius
- false
- 0
-
2801
7014
57
20
-
2831
7024
- Angle domain (in radians) of arc
- f6ce21ce-f13b-487e-b0a5-493bf815810f
- Angle
- Angle
- false
- 0
-
2801
7034
57
20
-
2831
7044
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- aab83e7e-03d3-46f1-8567-daf390ccafe4
- One Over X
- One Over X
-
2753
6328
100
28
-
2802
6342
- Input value
- 6c7c8189-b6b5-4c14-ba98-3f1237843ba4
- Value
- Value
- false
- 66cd6f40-485a-4239-8096-f910fb72f4bc
- 1
-
2755
6330
32
24
-
2772.5
6342
- Output value
- 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
- Result
- Result
- false
- 0
-
2817
6330
34
24
-
2835.5
6342
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d9dc4818-8226-43f0-826b-743fe4bf5353
- Relay
-
- false
- 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
- 1
-
2783
6299
40
16
-
2803
6307
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 0ffd18d8-99db-40a1-81a8-50617de9a6c3
- true
- Expression
- Expression
-
2706
6905
194
28
-
2806
6919
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 5bbe1694-ae4e-4af7-b5d0-0e814d1bd025
- true
- Variable O
- O
- true
- 66cd6f40-485a-4239-8096-f910fb72f4bc
- 1
-
2708
6907
14
24
-
2716.5
6919
- Result of expression
- aa5c7f71-4773-436c-9465-eb6cfe47daee
- true
- Result
-
- false
- 0
-
2889
6907
9
24
-
2895
6919
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e492ffd1-044a-40ee-b734-c2796609a1e2
- Panel
- false
- 1
- aa5c7f71-4773-436c-9465-eb6cfe47daee
- 1
- Double click to edit panel content…
-
2711
6615
185
271
- 0
- 0
- 0
-
2711.033
6615.335
-
255;255;255;255
- true
- true
- true
- false
- false
- false
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 284185cb-9b1b-44c4-9a94-6a846b6478b6
- Relay
-
- false
- e492ffd1-044a-40ee-b734-c2796609a1e2
- 1
-
2783
6577
40
16
-
2803
6585
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 66cd6f40-485a-4239-8096-f910fb72f4bc
- Relay
-
- false
- 54837649-9551-4c51-b610-ce1c1a7990a3
- 1
-
2783
6959
40
16
-
2803
6967
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
- Number
- Number
- false
- 96971adb-dc6f-4220-b87f-875d4c7c2611
- 1
-
2778
7248
50
24
-
2803.937
7260.646
- 1
- 1
- {0}
- 1024
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- d732c384-05f7-4045-8076-3bfea40ab057
- Curve
- Curve
- false
- 6bb582bf-fb0d-4475-bd64-5159a23801fe
- 1
-
2778
5327
50
24
-
2803.368
5339.088
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 5
-
255;255;255;255
- A group of Grasshopper objects
- d732c384-05f7-4045-8076-3bfea40ab057
- 1
- 92a625da-b995-4055-bc08-7cd011bcb0ba
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 3
- 0.068900000
-
2678
5468
250
20
-
2678.177
5468.286
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 059a3e69-9d54-4680-897c-cdf195bad7a8
- Move
- Move
-
2734
4900
138
44
-
2802
4922
- Base geometry
- 14e44962-2dfd-440d-82ec-807ce03623f2
- Geometry
- Geometry
- true
- d732c384-05f7-4045-8076-3bfea40ab057
- 1
-
2736
4902
51
20
-
2763
4912
- Translation vector
- 516286a3-d79c-4f44-b66a-629a6ff682ae
- Motion
- Motion
- false
- 0f9f7808-7869-4325-ad0a-d2198a518e33
- 1
-
2736
4922
51
20
-
2763
4932
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 1a211dc6-9d12-4255-9f70-29dc0d975fda
- Geometry
- Geometry
- false
- 0
-
2817
4902
53
20
-
2845
4912
- Transformation data
- a43be0c8-66f6-44cc-8f23-aaf95264f9aa
- Transform
- Transform
- false
- 0
-
2817
4922
53
20
-
2845
4932
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
- Vector XYZ
- Vector XYZ
-
2731
4962
155
64
-
2832
4994
- Vector {x} component
- 7cd953af-b064-4de0-a309-70d40bca17c0
- -X
- X component
- X component
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2733
4964
84
20
-
2784.5
4974
- 1
- 1
- {0}
- -1
- Vector {y} component
- 4cfa8292-ee09-4b96-b0ae-fb6cee43c9ea
- Y component
- Y component
- false
- 0
-
2733
4984
84
20
-
2784.5
4994
- 1
- 1
- {0}
- 0
- Vector {z} component
- 62e295ea-6f33-41f0-a0db-7aa786377b06
- Z component
- Z component
- false
- 0
-
2733
5004
84
20
-
2784.5
5014
- 1
- 1
- {0}
- 0
- Vector construct
- 0f9f7808-7869-4325-ad0a-d2198a518e33
- Vector
- Vector
- false
- 0
-
2847
4964
37
30
-
2867
4979
- Vector length
- b502d75b-da03-4ea8-b2d9-378c3d5e63f8
- Length
- Length
- false
- 0
-
2847
4994
37
30
-
2867
5009
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 7fce1877-7d49-42f2-9d77-f20f971a3c8d
- Series
- Series
-
2744
5046
117
64
-
2794
5078
- First number in the series
- e5962598-e389-423c-a85a-1e3c32fc81d7
- Start
- Start
- false
- 0
-
2746
5048
33
20
-
2764
5058
- 1
- 1
- {0}
- 1
- Step size for each successive number
- 931739e6-075e-4fad-9b6c-531639272855
- Step
- Step
- false
- 0
-
2746
5068
33
20
-
2764
5078
- 1
- 1
- {0}
- 1
- Number of values in the series
- d0353cba-1801-49d1-970d-a37da19a53d6
- Count
- Count
- false
- 3500c3b9-cff8-4242-841b-b21739eb2ce5
- 1
-
2746
5088
33
20
-
2764
5098
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 2
- Series
- Series
- false
- 0
-
2809
5048
50
60
-
2827.5
5078
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- be575d1d-b0b0-4169-9453-f139fa5a69fc
- List Length
- List Length
-
2748
5229
109
28
-
2787
5243
- 1
- Base list
- 62df7b1c-1f20-4713-86f1-5953c8e31639
- List
- List
- false
- 006e868d-4bf3-44a6-b8d4-708f9a679606
- 1
-
2750
5231
22
24
-
2762.5
5243
- Number of items in L
- 0d9d676a-f6a5-493c-bf53-6fccdfd6d2e8
- 1
- Length
- Length
- false
- 0
-
2802
5231
53
24
-
2822
5243
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3500c3b9-cff8-4242-841b-b21739eb2ce5
- Panel
- false
- 0
- 804204b5-0b21-42bc-a33b-bf59830956f2
- 1
- Double click to edit panel content…
-
2768
5129
50
20
- 0
- 0
- 0
-
2768.119
5129.574
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 5b850221-b527-4bd6-8c62-e94168cd6efa
- Mass Addition
- Perform mass addition of a list of items
- true
- 6bf311af-c478-40b6-8287-b57e5ebd2de6
- Mass Addition
- Mass Addition
-
2735
5167
135
44
-
2782
5189
- 1
- Input values for mass addition.
- e96db67d-f3fe-4b8a-a1b7-ed5f8f51b2c3
- Input
- Input
- false
- 0d9d676a-f6a5-493c-bf53-6fccdfd6d2e8
- 1
-
2737
5169
30
40
-
2753.5
5189
- Result of mass addition
- 804204b5-0b21-42bc-a33b-bf59830956f2
- Result
- Result
- false
- 0
-
2797
5169
71
20
-
2834
5179
- 1
- List of partial results
- dadbd113-cd60-4519-aab0-471e3119d138
- Partial Results
- Partial Results
- false
- 0
-
2797
5189
71
20
-
2834
5199
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 059a3e69-9d54-4680-897c-cdf195bad7a8
- 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
- 7fce1877-7d49-42f2-9d77-f20f971a3c8d
- be575d1d-b0b0-4169-9453-f139fa5a69fc
- 3500c3b9-cff8-4242-841b-b21739eb2ce5
- 6bf311af-c478-40b6-8287-b57e5ebd2de6
- b29ac3e2-b858-44d8-acce-0fb154f6a64a
- 28b8e0ed-0e44-4505-b866-bab948ef8584
- 50d6ea62-1933-4585-80ec-e31ffe7454f9
- 0a876c89-ef58-450e-ae46-5d661fc98802
- a8c2d2b8-7793-472a-add0-5c6add577a3e
- 11
- 19e6ba9f-ea5b-4adf-a53c-e38f7d1c7c24
- Group
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- c1950f77-cc1d-4a94-8226-38115fad3527
- Quick Graph
- Quick Graph
- false
- 0
- 66cd6f40-485a-4239-8096-f910fb72f4bc
- 1
-
2728
6410
150
150
-
2728.338
6410.525
- 0
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 5202e00c-44d2-4c14-a5b6-ef33c742b491
- Line SDL
- Line SDL
-
2751
3246
106
64
-
2815
3278
- Line start point
- 73576ba2-60f2-4199-85a0-b4261085e773
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2753
3248
47
20
-
2778
3258
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 789af781-e97d-4b8b-9f99-6237ec423f84
- Direction
- Direction
- false
- 0
-
2753
3268
47
20
-
2778
3278
- 1
- 1
- {0}
-
0
1
0
- Line length
- 517f58ad-11b5-49db-8e72-28cd683f268a
- Length
- Length
- false
- bc6ae7be-b2f7-495b-8309-85181ce50925
- 1
-
2753
3288
47
20
-
2778
3298
- 1
- 1
- {0}
- 1
- Line segment
- 589f826a-73e0-4e35-b5a6-2051359d273a
- Line
- Line
- false
- 0
-
2830
3248
25
60
-
2844
3278
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- a72d5419-fd91-41c5-b117-b1511799de43
- true
- Expression
- Expression
-
2706
3891
194
28
-
2806
3905
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- fa6931b6-c67f-4ed7-8fbd-87514531ddfe
- true
- Variable O
- O
- true
- f1e198ee-8c72-43b0-bdfb-8896635b9001
- 1
-
2708
3893
14
24
-
2716.5
3905
- Result of expression
- a73d77b0-5abb-417c-b1b1-5bfacb79d7fd
- true
- Result
-
- false
- 0
-
2889
3893
9
24
-
2895
3905
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6799a162-9bf6-4690-8e87-a1f7b11fc186
- Panel
- false
- 0.75034273974597454
- a73d77b0-5abb-417c-b1b1-5bfacb79d7fd
- 1
- Double click to edit panel content…
-
2696
3612
214
271
- 0
- 0
- 0
-
2696.37
3612.744
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3dd22ce8-293a-4588-a9e5-2f0539214a5c
- Relay
-
- false
- 6799a162-9bf6-4690-8e87-a1f7b11fc186
- 1
-
2783
3575
40
16
-
2803
3583
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f1e198ee-8c72-43b0-bdfb-8896635b9001
- Relay
-
- false
- 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
- 1
-
2783
3938
40
16
-
2803
3946
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 749872a2-7981-49cb-a7d8-7f6b73442974
- Quick Graph
- Quick Graph
- false
- 0
- f1e198ee-8c72-43b0-bdfb-8896635b9001
- 1
-
2728
3410
150
150
-
2728.469
3410.921
- 0
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3bad1a66-165a-405e-94ae-9c7c448ecc44
- Relay
-
- false
- 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
- 1
-
2783
4217
40
16
-
2803
4225
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 41b1f9fe-b540-498e-b66d-f9a253c44c97
- Relative Differences
- Relative Differences
-
2739
4051
128
28
-
2792
4065
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 83e171e6-8026-41d3-9b9a-04c48e91b757
- Values
- Values
- false
- fc90f942-eb44-4171-8b95-2c2a1d282bfc
- 1
-
2741
4053
36
24
-
2760.5
4065
- 1
- Differences between consecutive items
- 41859e78-5ecd-4eaf-9046-5daab3c22ed7
- Differenced
- Differenced
- false
- 0
-
2807
4053
58
24
-
2837.5
4065
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
- Relay
- false
- 41859e78-5ecd-4eaf-9046-5daab3c22ed7
- 1
-
2783
4017
40
16
-
2803
4025
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
- Relay
- false
- 3bad1a66-165a-405e-94ae-9c7c448ecc44
- 1
-
2783
4158
40
16
-
2803
4166
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
- 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
- 41b1f9fe-b540-498e-b66d-f9a253c44c97
- 401a4ec7-acb1-4812-b841-5ff8cafa66b1
- 4
- 64e05c4c-ae81-4d56-92b8-0d683e6178f7
- Group
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 401a4ec7-acb1-4812-b841-5ff8cafa66b1
- Replace Nulls
- Replace Nulls
-
2735
4096
136
44
-
2821
4118
- 1
- Items to test for null
- 008d496f-cfcd-4e98-87a1-e7de0148c944
- Items
- Items
- false
- 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
- 1
-
2737
4098
69
20
-
2773
4108
- 1
- Items to replace nulls with
- 65f6ffb7-2d70-44a6-a76f-1b8cb5988027
- Replacements
- Replacements
- false
- 0
-
2737
4118
69
20
-
2773
4128
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- fc90f942-eb44-4171-8b95-2c2a1d282bfc
- Items
- Items
- false
- 0
-
2836
4098
33
20
-
2854
4108
- Number of items replaced
- 97321661-04ba-4c03-92bb-cbf26ad904bb
- Count
- Count
- false
- 0
-
2836
4118
33
20
-
2854
4128
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- f6e745a8-7fe5-4039-af6b-f624d2e49c50
- Multiplication
- Multiplication
-
2762
3347
82
44
-
2793
3369
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 50da1217-a2c7-48ef-8ac1-27862b7a31af
- A
- A
- true
- f1e198ee-8c72-43b0-bdfb-8896635b9001
- 1
-
2764
3349
14
20
-
2772.5
3359
- Second item for multiplication
- 0f99ba1b-48e7-47a4-8313-07539c0f8265
- B
- B
- true
- 78dab7dd-d7e2-426b-bb90-b547c8224cb4
- 1
-
2764
3369
14
20
-
2772.5
3379
- Result of multiplication
- bc6ae7be-b2f7-495b-8309-85181ce50925
- Result
- Result
- false
- 0
-
2808
3349
34
40
-
2826.5
3369
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 78dab7dd-d7e2-426b-bb90-b547c8224cb4
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 3
- 4.392015000
-
2681
3327
250
20
-
2681.462
3327.034
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- c106ea49-3d33-4ec1-9439-7a451df09432
- Move
- Move
-
2734
3067
138
44
-
2802
3089
- Base geometry
- 03f50bc9-cdd3-4a9e-bf72-f9e5a13824fd
- Geometry
- Geometry
- true
- 589f826a-73e0-4e35-b5a6-2051359d273a
- 1
-
2736
3069
51
20
-
2763
3079
- Translation vector
- 27e55aae-32fb-4931-9e33-8276f3143253
- Motion
- Motion
- false
- 235ef89b-113b-4adb-8da2-d51550e4eacb
- 1
-
2736
3089
51
20
-
2763
3099
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 05694d97-021c-4a49-a1f3-e45b41b569e0
- Geometry
- Geometry
- false
- 0
-
2817
3069
53
20
-
2845
3079
- Transformation data
- d7c70fda-d3b4-4f52-8188-82500b831732
- Transform
- Transform
- false
- 0
-
2817
3089
53
20
-
2845
3099
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- ff3f4af7-3769-4434-b59a-235ecf1d678c
- Vector XYZ
- Vector XYZ
-
2720
3130
155
64
-
2821
3162
- Vector {x} component
- 5dda6578-81e3-4d08-a192-99efa4ef0918
- -X
- X component
- X component
- false
- d8b69669-a2bd-4187-9589-204f3dbe274a
- 1
-
2722
3132
84
20
-
2773.5
3142
- 1
- 1
- {0}
- -1
- Vector {y} component
- 51b8acc0-3713-4503-859f-00e28bbe1d12
- Y component
- Y component
- false
- 0
-
2722
3152
84
20
-
2773.5
3162
- 1
- 1
- {0}
- 1
- Vector {z} component
- 27131421-4d00-4a7e-acc4-6b6b401840d1
- Z component
- Z component
- false
- 0
-
2722
3172
84
20
-
2773.5
3182
- 1
- 1
- {0}
- 0
- Vector construct
- 235ef89b-113b-4adb-8da2-d51550e4eacb
- Vector
- Vector
- false
- 0
-
2836
3132
37
30
-
2856
3147
- Vector length
- eadaa5c9-b315-4cc0-883c-86b5919ef135
- Length
- Length
- false
- 0
-
2836
3162
37
30
-
2856
3177
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 19794563-a66c-483d-a5a7-3a141a317442
- Line SDL
- Line SDL
-
2750
1337
106
64
-
2814
1369
- Line start point
- 579116b0-0e3a-4726-acaa-4eaf385cfbb8
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2752
1339
47
20
-
2777
1349
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- d11cdf99-4df2-41e0-84cc-a41742432cef
- Direction
- Direction
- false
- 0
-
2752
1359
47
20
-
2777
1369
- 1
- 1
- {0}
-
0
1
0
- Line length
- 052c1243-cfed-4a87-84bf-3af3cfd8de0f
- Length
- Length
- false
- 04002786-e0c2-482a-a5b0-087deb210247
- 1
-
2752
1379
47
20
-
2777
1389
- 1
- 1
- {0}
- 1
- Line segment
- d8f86e25-327f-4bb8-b47a-52eb276b1670
- Line
- Line
- false
- 0
-
2829
1339
25
60
-
2843
1369
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- e791fbc6-af59-4ad4-b7b9-bf23b2eb991d
- true
- Expression
- Expression
-
2706
2081
194
28
-
2806
2095
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 277497d4-3cc9-4675-9df2-1bdad4551e7b
- true
- Variable O
- O
- true
- 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
- 1
-
2708
2083
14
24
-
2716.5
2095
- Result of expression
- 7a91e35e-fe42-4292-81a3-bab62edacffc
- true
- Result
-
- false
- 0
-
2889
2083
9
24
-
2895
2095
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
- Panel
- false
- 1
- 7a91e35e-fe42-4292-81a3-bab62edacffc
- 1
- Double click to edit panel content…
-
2696
1804
214
271
- 0
- 0
- 0
-
2696.01
1804.322
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c4b05861-4dcc-4fa6-9a55-cd2ef09186a2
- Relay
-
- false
- 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
- 1
-
2783
1768
40
16
-
2803
1776
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
- Relay
-
- false
- ac291d1c-68db-4960-a7e7-5db523fe6c22
- 1
-
2783
2128
40
16
-
2803
2136
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 67a350fe-d446-4487-9291-6bee5215236f
- Quick Graph
- Quick Graph
- false
- 0
- 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
- 1
-
2728
1602
150
150
-
2728.11
1602.499
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- e6ebbaf0-0ce2-416a-9da6-4b087003b097
- Relative Differences
- Relative Differences
-
2739
2241
128
28
-
2792
2255
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 78d2cb1e-3351-4a2b-9058-87a3e892866b
- Values
- Values
- false
- f82f722b-e058-4539-9262-05fb080d34b6
- 1
-
2741
2243
36
24
-
2760.5
2255
- 1
- Differences between consecutive items
- 89077281-b492-48e9-a85e-54f1b18d13e1
- Differenced
- Differenced
- false
- 0
-
2807
2243
58
24
-
2837.5
2255
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ac291d1c-68db-4960-a7e7-5db523fe6c22
- Relay
- false
- 89077281-b492-48e9-a85e-54f1b18d13e1
- 1
-
2783
2207
40
16
-
2803
2215
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
- Relay
- false
- 931f5277-2c60-43e1-83f4-396ccd594a3a
- 1
-
2783
2348
40
16
-
2803
2356
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 18d36f48-a4e9-48f8-a2d1-bab088228a1c
- Replace Nulls
- Replace Nulls
-
2735
2286
136
44
-
2821
2308
- 1
- Items to test for null
- 486e1cf2-b307-4115-a700-c1b678a5423b
- Items
- Items
- false
- bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
- 1
-
2737
2288
69
20
-
2773
2298
- 1
- Items to replace nulls with
- b4803253-ebb4-4f65-aa55-ef46e0615c40
- Replacements
- Replacements
- false
- 0
-
2737
2308
69
20
-
2773
2318
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- f82f722b-e058-4539-9262-05fb080d34b6
- Items
- Items
- false
- 0
-
2836
2288
33
20
-
2854
2298
- Number of items replaced
- 67596dde-04c0-445e-9f73-d5c3a5d8ac8c
- Count
- Count
- false
- 0
-
2836
2308
33
20
-
2854
2318
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 6fce7b17-02a7-4fe3-b8c9-47d13b69247f
- Multiplication
- Multiplication
-
2762
1454
82
44
-
2793
1476
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- edc9e8c0-0a99-450e-ab3f-dd67ef6b135a
- A
- A
- true
- 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
- 1
-
2764
1456
14
20
-
2772.5
1466
- Second item for multiplication
- 2a560f7c-5209-4e8c-a57a-db57f1802b79
- B
- B
- true
- e560636d-e6f0-4cec-9254-b1218b844a79
- 1
-
2764
1476
14
20
-
2772.5
1486
- Result of multiplication
- 04002786-e0c2-482a-a5b0-087deb210247
- Result
- Result
- false
- 0
-
2808
1456
34
40
-
2826.5
1476
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e560636d-e6f0-4cec-9254-b1218b844a79
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 4
- 281.08106675
-
2678
1417
250
20
-
2678.09
1417.532
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 29a022c6-b2ea-4f5b-8024-18d708b5bbd8
- Move
- Move
-
2734
1174
138
44
-
2802
1196
- Base geometry
- 7eda48ca-557a-43a2-91ab-7f55538e5e6b
- Geometry
- Geometry
- true
- d8f86e25-327f-4bb8-b47a-52eb276b1670
- 1
-
2736
1176
51
20
-
2763
1186
- Translation vector
- b649e3c1-aa59-4773-95ae-5a48561f84c8
- Motion
- Motion
- false
- d4dd9a2b-a6ba-4935-8c80-8821e6625ee6
- 1
-
2736
1196
51
20
-
2763
1206
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 5c55b193-0023-4ff8-875f-0339cdcf9c91
- Geometry
- Geometry
- false
- 0
-
2817
1176
53
20
-
2845
1186
- Transformation data
- 90a73c6e-4868-4058-8cd1-2421b3702fcc
- Transform
- Transform
- false
- 0
-
2817
1196
53
20
-
2845
1206
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- a3109dcd-b6cf-41a8-b769-b80a5894b219
- Vector XYZ
- Vector XYZ
-
2725
1239
155
64
-
2826
1271
- Vector {x} component
- 44969ae5-8746-4507-a6c1-31b16af59304
- -X
- X component
- X component
- false
- 45cacb59-db8f-4bcf-92f7-9858295e7129
- 1
-
2727
1241
84
20
-
2778.5
1251
- 1
- 1
- {0}
- -1
- Vector {y} component
- 70a752f0-8268-4395-a051-8f5ac3e5187c
- Y component
- Y component
- false
- 0
-
2727
1261
84
20
-
2778.5
1271
- 1
- 1
- {0}
- 2
- Vector {z} component
- 7d1751a9-6b18-4d20-af0c-d90afbd82213
- Z component
- Z component
- false
- 0
-
2727
1281
84
20
-
2778.5
1291
- 1
- 1
- {0}
- 0
- Vector construct
- d4dd9a2b-a6ba-4935-8c80-8821e6625ee6
- Vector
- Vector
- false
- 0
-
2841
1241
37
30
-
2861
1256
- Vector length
- f74aa292-aab1-4ce6-a9ae-6cb67ef5eb1b
- Length
- Length
- false
- 0
-
2841
1271
37
30
-
2861
1286
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 19794563-a66c-483d-a5a7-3a141a317442
- e791fbc6-af59-4ad4-b7b9-bf23b2eb991d
- 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
- c4b05861-4dcc-4fa6-9a55-cd2ef09186a2
- 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
- 67a350fe-d446-4487-9291-6bee5215236f
- e6ebbaf0-0ce2-416a-9da6-4b087003b097
- ac291d1c-68db-4960-a7e7-5db523fe6c22
- bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
- 18d36f48-a4e9-48f8-a2d1-bab088228a1c
- 6fce7b17-02a7-4fe3-b8c9-47d13b69247f
- e560636d-e6f0-4cec-9254-b1218b844a79
- 29a022c6-b2ea-4f5b-8024-18d708b5bbd8
- a3109dcd-b6cf-41a8-b769-b80a5894b219
- 931f5277-2c60-43e1-83f4-396ccd594a3a
- 2a80daa5-7f21-4cee-8c44-d32500908c11
- 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
- 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
- e3749bf3-dd2f-4da8-826c-372b05cde1be
- d37fe9ae-0bf0-4e5b-b780-b8ffbbe9b87b
- 66bf7298-94f5-4b70-9e91-e530523ea15e
- b7947ef7-88a1-45b5-96cb-4bbca7365312
- 1c193ff0-05e8-47a8-96fc-bbafada6a625
- bb422305-f56f-490b-b653-544931c09145
- 45cacb59-db8f-4bcf-92f7-9858295e7129
- 25
- e755cd13-50eb-45cb-81a9-a1569b22e5f0
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 931f5277-2c60-43e1-83f4-396ccd594a3a
- Relay
-
- false
- f1e198ee-8c72-43b0-bdfb-8896635b9001
- 1
-
2783
2382
40
16
-
2803
2390
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 66a4b758-7a62-4d07-a8d0-412ee9d032c8
- true
- Line SDL
- Line SDL
-
2762
-423
106
64
-
2826
-391
- Line start point
- 580103c3-dba4-4d4d-8db3-c5ce957e00ca
- true
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2764
-421
47
20
-
2789
-411
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- eb1bc218-593e-4f0f-883c-a5651a92571b
- true
- Direction
- Direction
- false
- 0
-
2764
-401
47
20
-
2789
-391
- 1
- 1
- {0}
-
0
1
0
- Line length
- 6745e242-fe3f-401b-9526-0a256ab4cbe4
- true
- Length
- Length
- false
- cb55f4ee-f70b-4570-a002-0e1149eab871
- 1
-
2764
-381
47
20
-
2789
-371
- 1
- 1
- {0}
- 1
- Line segment
- d0b5c3fe-016c-41f8-88bb-b8f9b2c3a272
- true
- Line
- Line
- false
- 0
-
2841
-421
25
60
-
2855
-391
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 66b05dfa-3cbf-42ec-8f9c-811a3b9ba050
- true
- Expression
- Expression
-
2706
252
194
28
-
2806
266
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 1f95b2d9-be8a-40b7-ba63-2c1e3c58b242
- true
- Variable O
- O
- true
- 7e2319c0-80b8-4035-93a2-acff99edf0e4
- 1
-
2708
254
14
24
-
2716.5
266
- Result of expression
- 76246871-dc5c-4fce-aec3-104f1e344229
- true
- Result
-
- false
- 0
-
2889
254
9
24
-
2895
266
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e2f4d4a2-4219-48d3-921e-84f34ef86664
- Panel
- false
- 1
- 76246871-dc5c-4fce-aec3-104f1e344229
- 1
- Double click to edit panel content…
-
2696
-38
214
271
- 0
- 0
- 0
-
2696.355
-37.07108
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5d453582-942a-43d2-92be-06c1d12de2a6
- Relay
-
- false
- e2f4d4a2-4219-48d3-921e-84f34ef86664
- 1
-
2783
-73
40
16
-
2803
-65
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7e2319c0-80b8-4035-93a2-acff99edf0e4
- Relay
-
- false
- ebd6e7da-401e-4c36-9647-c47021848030
- 1
-
2783
280
40
16
-
2803
288
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 11600905-2419-4939-b8c9-dbab8d35b7d3
- Quick Graph
- Quick Graph
- false
- 0
- 7e2319c0-80b8-4035-93a2-acff99edf0e4
- 1
-
2728
-241
150
150
-
2728.454
-240.0285
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 96bc0fe3-f065-4aa3-916f-5940bd50fd88
- Relative Differences
- Relative Differences
-
2737
353
128
28
-
2790
367
- 1
- List of data to operate on (numbers or points or vectors allowed)
- a1d0f6f4-4ba1-4086-8421-6e4e3358667f
- Values
- Values
- false
- ff57e150-073d-4bce-b863-68e84728b1ca
- 1
-
2739
355
36
24
-
2758.5
367
- 1
- Differences between consecutive items
- a599322f-0d2f-427b-b855-5f76e8e13e74
- Differenced
- Differenced
- false
- 0
-
2805
355
58
24
-
2835.5
367
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ebd6e7da-401e-4c36-9647-c47021848030
- Relay
- false
- a599322f-0d2f-427b-b855-5f76e8e13e74
- 1
-
2783
317
40
16
-
2803
325
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
- Relay
- false
- de531981-8867-4b45-8952-b36202bf4e1d
- 1
-
2785
464
40
16
-
2805
472
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 6b5426f7-8efd-4d40-8b6e-1bbb463df895
- Replace Nulls
- Replace Nulls
-
2737
399
136
44
-
2823
421
- 1
- Items to test for null
- dbcdcd49-3e92-4600-83c6-26173aa03331
- Items
- Items
- false
- b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
- 1
-
2739
401
69
20
-
2775
411
- 1
- Items to replace nulls with
- 6f8a5940-0853-4ccb-ad5a-b7db9ed51fad
- Replacements
- Replacements
- false
- 0
-
2739
421
69
20
-
2775
431
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- ff57e150-073d-4bce-b863-68e84728b1ca
- Items
- Items
- false
- 0
-
2838
401
33
20
-
2856
411
- Number of items replaced
- 0c5e93a4-81cf-489f-9695-468581e553cc
- Count
- Count
- false
- 0
-
2838
421
33
20
-
2856
431
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 0604e4e1-ad52-4e70-aa40-6b7bb7fec836
- Multiplication
- Multiplication
-
2762
-307
82
44
-
2793
-285
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- f8a24621-5889-44f3-be0f-7719de89ddea
- A
- A
- true
- 7e2319c0-80b8-4035-93a2-acff99edf0e4
- 1
-
2764
-305
14
20
-
2772.5
-295
- Second item for multiplication
- 2e633020-026b-4494-8b75-0bdc0ac0d480
- B
- B
- true
- 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
- 1
-
2764
-285
14
20
-
2772.5
-275
- Result of multiplication
- cb55f4ee-f70b-4570-a002-0e1149eab871
- Result
- Result
- false
- 0
-
2808
-305
34
40
-
2826.5
-285
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 4
- 2233.52343808
-
2678
-343
250
20
-
2678.434
-342.6825
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 4e44e341-6f47-4f00-a431-777a1b460d34
- Move
- Move
-
2734
-587
138
44
-
2802
-565
- Base geometry
- 8947fec3-8004-47b2-8f38-158813550f76
- Geometry
- Geometry
- true
- d0b5c3fe-016c-41f8-88bb-b8f9b2c3a272
- 1
-
2736
-585
51
20
-
2763
-575
- Translation vector
- 485a1315-bd80-458c-88e2-d817d8496ddc
- Motion
- Motion
- false
- 63fc990e-fddf-41f2-9b12-284f0462fe11
- 1
-
2736
-565
51
20
-
2763
-555
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
- Geometry
- Geometry
- false
- 0
-
2817
-585
53
20
-
2845
-575
- Transformation data
- 44b69aa6-bb49-4dd9-b3bf-0b3cd4a8ec76
- Transform
- Transform
- false
- 0
-
2817
-565
53
20
-
2845
-555
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- c22469cc-e888-4b1c-bd52-1bb4a2191b49
- Vector XYZ
- Vector XYZ
-
2725
-522
155
64
-
2826
-490
- Vector {x} component
- b09718a6-4876-4d94-a977-784ad2ed008d
- -X
- X component
- X component
- false
- f0a46a15-062c-4b96-9a51-0ebf280e5a4a
- 1
-
2727
-520
84
20
-
2778.5
-510
- 1
- 1
- {0}
- -1
- Vector {y} component
- 8ffd5027-e0ca-43f1-b014-9fa80cd55a48
- Y component
- Y component
- false
- 0
-
2727
-500
84
20
-
2778.5
-490
- 1
- 1
- {0}
- 3
- Vector {z} component
- 72a0e4ec-fd97-4061-8567-d5afc981a80d
- Z component
- Z component
- false
- 0
-
2727
-480
84
20
-
2778.5
-470
- 1
- 1
- {0}
- 0
- Vector construct
- 63fc990e-fddf-41f2-9b12-284f0462fe11
- Vector
- Vector
- false
- 0
-
2841
-520
37
30
-
2861
-505
- Vector length
- 7d9826bd-d248-43d9-9150-445b646fc6c3
- Length
- Length
- false
- 0
-
2841
-490
37
30
-
2861
-475
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 66a4b758-7a62-4d07-a8d0-412ee9d032c8
- 66b05dfa-3cbf-42ec-8f9c-811a3b9ba050
- e2f4d4a2-4219-48d3-921e-84f34ef86664
- 5d453582-942a-43d2-92be-06c1d12de2a6
- 7e2319c0-80b8-4035-93a2-acff99edf0e4
- 11600905-2419-4939-b8c9-dbab8d35b7d3
- 96bc0fe3-f065-4aa3-916f-5940bd50fd88
- ebd6e7da-401e-4c36-9647-c47021848030
- b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
- 6b5426f7-8efd-4d40-8b6e-1bbb463df895
- 0604e4e1-ad52-4e70-aa40-6b7bb7fec836
- 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
- 4e44e341-6f47-4f00-a431-777a1b460d34
- c22469cc-e888-4b1c-bd52-1bb4a2191b49
- de531981-8867-4b45-8952-b36202bf4e1d
- e909739f-f11a-4f63-961e-cbe23cb83593
- 84185437-01a9-46d2-8587-90dc91fbaeef
- a59697d7-edbc-4983-90af-5eeb0652d3e3
- a628cbff-e924-4087-b69a-6ae9e00ca171
- e02dc4a6-1ed5-4658-8ab5-2a962ae14431
- 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
- 4793db3b-823e-4fc7-9363-44884123053d
- 36470645-ff8a-4059-9665-a25ef0bc1bff
- f0a46a15-062c-4b96-9a51-0ebf280e5a4a
- 24
- 46694f6f-bc7f-49b1-b788-c73845685196
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- de531981-8867-4b45-8952-b36202bf4e1d
- Relay
-
- false
- 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
- 1
-
2783
500
40
16
-
2803
508
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- a215e2b8-03ec-47c3-a47b-74a2b0223ad1
- true
- Line SDL
- Line SDL
-
2766
-2213
106
64
-
2830
-2181
- Line start point
- 88c9e5e9-5534-4d81-a29a-e298d744d3f3
- true
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2768
-2211
47
20
-
2793
-2201
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 003f01d7-c77d-4202-84b1-47279a3f7288
- true
- Direction
- Direction
- false
- 0
-
2768
-2191
47
20
-
2793
-2181
- 1
- 1
- {0}
-
0
1
0
- Line length
- 2e1c9145-3960-4497-acd5-6ba3d6538a90
- true
- Length
- Length
- false
- 04b08fbe-172b-4933-9952-829403b1a725
- 1
-
2768
-2171
47
20
-
2793
-2161
- 1
- 1
- {0}
- 1
- Line segment
- e8152b51-a75c-4739-ae10-fb04a597422d
- true
- Line
- Line
- false
- 0
-
2845
-2211
25
60
-
2859
-2181
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c099f5d9-814b-4093-b58d-5105beb0ea10
- true
- Expression
- Expression
-
2706
-1550
194
28
-
2806
-1536
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 0c9ed85a-0c10-4294-a05a-08eccacd357a
- true
- Variable O
- O
- true
- 73e154f2-80c6-4ae6-bc3c-6465f74895ee
- 1
-
2708
-1548
14
24
-
2716.5
-1536
- Result of expression
- 54af680b-e20d-406c-be22-11cc537a8367
- true
- Result
-
- false
- 0
-
2889
-1548
9
24
-
2895
-1536
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b40d92d1-a240-45cd-a34c-b1e003fcb81a
- Panel
- false
- 1
- 54af680b-e20d-406c-be22-11cc537a8367
- 1
- Double click to edit panel content…
-
2696
-1842
214
271
- 0
- 0
- 0
-
2696.486
-1841.444
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- face4faf-9c7f-4e39-916f-957ffe7938f9
- Relay
-
- false
- b40d92d1-a240-45cd-a34c-b1e003fcb81a
- 1
-
2783
-1878
40
16
-
2803
-1870
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 73e154f2-80c6-4ae6-bc3c-6465f74895ee
- Relay
-
- false
- d2e976df-5bed-4b60-bcf0-53bc9faed943
- 1
-
2783
-1504
40
16
-
2803
-1496
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- dd0f6cee-8116-4a3b-a587-2587eed44998
- Quick Graph
- Quick Graph
- false
- 0
- 73e154f2-80c6-4ae6-bc3c-6465f74895ee
- 1
-
2728
-2044
150
150
-
2728.585
-2043.267
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 333b2be5-4551-45ff-8cde-28df0c73e1e3
- Relative Differences
- Relative Differences
-
2739
-1409
128
28
-
2792
-1395
- 1
- List of data to operate on (numbers or points or vectors allowed)
- ab0a368a-1844-4969-be9e-3749177d7e38
- Values
- Values
- false
- 3084c808-7cec-485b-ab86-376db1f115a1
- 1
-
2741
-1407
36
24
-
2760.5
-1395
- 1
- Differences between consecutive items
- 0cb5fa70-ea4c-406a-af82-30bab56f0c2b
- Differenced
- Differenced
- false
- 0
-
2807
-1407
58
24
-
2837.5
-1395
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d2e976df-5bed-4b60-bcf0-53bc9faed943
- Relay
- false
- 0cb5fa70-ea4c-406a-af82-30bab56f0c2b
- 1
-
2783
-1443
40
16
-
2803
-1435
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6a3d6332-c462-42bc-9c10-9d6432e71731
- Relay
- false
- 0576783e-c535-4691-b39c-477f6935999c
- 1
-
2783
-1302
40
16
-
2803
-1294
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 19366a9a-5dc4-4739-a801-49f17d8989b5
- Replace Nulls
- Replace Nulls
-
2735
-1364
136
44
-
2821
-1342
- 1
- Items to test for null
- c5fd2979-3f7a-4fea-a551-275772f36a8b
- Items
- Items
- false
- 6a3d6332-c462-42bc-9c10-9d6432e71731
- 1
-
2737
-1362
69
20
-
2773
-1352
- 1
- Items to replace nulls with
- e82548c9-e185-463a-af4c-9f9703b5f5ee
- Replacements
- Replacements
- false
- 0
-
2737
-1342
69
20
-
2773
-1332
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- 3084c808-7cec-485b-ab86-376db1f115a1
- Items
- Items
- false
- 0
-
2836
-1362
33
20
-
2854
-1352
- Number of items replaced
- 7cbcd3bf-8d2f-436f-8a76-6ac67870b3f8
- Count
- Count
- false
- 0
-
2836
-1342
33
20
-
2854
-1332
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- f9b0a7de-ecf1-4969-b872-fdadfa9af113
- Multiplication
- Multiplication
-
2762
-2113
82
44
-
2793
-2091
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 269ab055-0d40-468d-9d96-33528da5c12c
- A
- A
- true
- 73e154f2-80c6-4ae6-bc3c-6465f74895ee
- 1
-
2764
-2111
14
20
-
2772.5
-2101
- Second item for multiplication
- 6ddf6eae-0c4a-41bb-9f8f-40f021cc5850
- B
- B
- true
- c0e2db88-5789-426d-83c7-0588de3ef25b
- 1
-
2764
-2091
14
20
-
2772.5
-2081
- Result of multiplication
- 04b08fbe-172b-4933-9952-829403b1a725
- Result
- Result
- false
- 0
-
2808
-2111
34
40
-
2826.5
-2091
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c0e2db88-5789-426d-83c7-0588de3ef25b
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 5
- 20817.0283827
-
2678
-2133
250
20
-
2678.565
-2132.921
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- f9efa372-460e-4f62-b112-3081e9e3ef5e
- Move
- Move
-
2734
-2393
138
44
-
2802
-2371
- Base geometry
- 9c3296c6-7709-433e-9c14-dee1444eb571
- Geometry
- Geometry
- true
- e8152b51-a75c-4739-ae10-fb04a597422d
- 1
-
2736
-2391
51
20
-
2763
-2381
- Translation vector
- d0311c28-141d-44f3-bd9c-39ed49d81bb9
- Motion
- Motion
- false
- d9489a97-3b72-4c68-a11f-cd3f614bb8e6
- 1
-
2736
-2371
51
20
-
2763
-2361
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
- Geometry
- Geometry
- false
- 0
-
2817
-2391
53
20
-
2845
-2381
- Transformation data
- 6511a1f1-0c1c-4bdd-b0e1-e7e508faf1a7
- Transform
- Transform
- false
- 0
-
2817
-2371
53
20
-
2845
-2361
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- def11018-cdab-4a0d-8a79-53646db73041
- Vector XYZ
- Vector XYZ
-
2725
-2328
155
64
-
2826
-2296
- Vector {x} component
- 100046f4-03fb-441c-a3eb-b1857577ffa8
- -X
- X component
- X component
- false
- f49ae725-c6ea-4bce-920d-d82e9007d475
- 1
-
2727
-2326
84
20
-
2778.5
-2316
- 1
- 1
- {0}
- -1
- Vector {y} component
- d1bb1f9a-9302-4414-9aba-af01df8f861a
- Y component
- Y component
- false
- 0
-
2727
-2306
84
20
-
2778.5
-2296
- 1
- 1
- {0}
- 4
- Vector {z} component
- 4fa47ac3-b67d-4e38-8168-fd2aae2d9e5a
- Z component
- Z component
- false
- 0
-
2727
-2286
84
20
-
2778.5
-2276
- 1
- 1
- {0}
- 0
- Vector construct
- d9489a97-3b72-4c68-a11f-cd3f614bb8e6
- Vector
- Vector
- false
- 0
-
2841
-2326
37
30
-
2861
-2311
- Vector length
- 8bcf063d-7669-4c27-83b2-0bafbaad2aa7
- Length
- Length
- false
- 0
-
2841
-2296
37
30
-
2861
-2281
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a215e2b8-03ec-47c3-a47b-74a2b0223ad1
- c099f5d9-814b-4093-b58d-5105beb0ea10
- b40d92d1-a240-45cd-a34c-b1e003fcb81a
- face4faf-9c7f-4e39-916f-957ffe7938f9
- 73e154f2-80c6-4ae6-bc3c-6465f74895ee
- dd0f6cee-8116-4a3b-a587-2587eed44998
- 333b2be5-4551-45ff-8cde-28df0c73e1e3
- d2e976df-5bed-4b60-bcf0-53bc9faed943
- 6a3d6332-c462-42bc-9c10-9d6432e71731
- 19366a9a-5dc4-4739-a801-49f17d8989b5
- f9b0a7de-ecf1-4969-b872-fdadfa9af113
- c0e2db88-5789-426d-83c7-0588de3ef25b
- f9efa372-460e-4f62-b112-3081e9e3ef5e
- def11018-cdab-4a0d-8a79-53646db73041
- 0576783e-c535-4691-b39c-477f6935999c
- 373fcd53-e5a6-4804-a735-47b5d060439d
- 488f27d6-7474-41e8-8662-7a97ae90ccac
- ee5c627c-1bb9-411b-8539-5f5cfd653e05
- 3e7cc59c-5d43-43d2-a2fc-3ff56e225a0a
- 23406fea-d648-42ad-a9a6-9e6a5e871332
- 6e9a05fd-a63f-46c8-8e9c-6c2090966168
- 5b1003b9-09b0-4476-8f1b-58290691bc28
- dcb7528a-ecb2-455e-a7a9-bbc1925d8141
- f49ae725-c6ea-4bce-920d-d82e9007d475
- 24
- 63f630a9-0dcd-4541-82a2-b0a37918ce26
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0576783e-c535-4691-b39c-477f6935999c
- Relay
-
- false
- 7e2319c0-80b8-4035-93a2-acff99edf0e4
- 1
-
2783
-1268
40
16
-
2803
-1260
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 2a80daa5-7f21-4cee-8c44-d32500908c11
- Line SDL
- Line SDL
-
2750
1522
106
64
-
2814
1554
- Line start point
- 6973d845-c78b-4031-abff-d030ca769ebc
- Start
- Start
- false
- 0
-
2752
1524
47
20
-
2777
1534
- 1
- 1
- {0}
-
-2.12109391180815
1.99985794027194
0
- Line tangent (direction)
- 70b7f2d6-8386-46e4-83d1-81953d8f7fbd
- Direction
- Direction
- false
- 0
-
2752
1544
47
20
-
2777
1554
- 1
- 1
- {0}
-
0.0625
0.0625
0
- Line length
- aa139009-b95c-479b-a98b-045d7c8ced43
- Length
- Length
- false
- 0
-
2752
1564
47
20
-
2777
1574
- 1
- 1
- {0}
- 1
- Line segment
- 6b86b814-e46e-4186-82ec-e4a645aae545
- Line
- Line
- false
- 0
-
2829
1524
25
60
-
2843
1554
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 042c7918-1ded-400b-ba9c-adc3004fce23
- true
- Line SDL
- Line SDL
-
2755
-4019
106
64
-
2819
-3987
- Line start point
- 3fa6e5ea-adee-472e-8b3f-05dc29429866
- true
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2757
-4017
47
20
-
2782
-4007
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 29615d06-03ae-4c97-b722-93093d338683
- true
- Direction
- Direction
- false
- 0
-
2757
-3997
47
20
-
2782
-3987
- 1
- 1
- {0}
-
0
1
0
- Line length
- 9f596764-c393-41b4-b737-b159912b86d1
- true
- Length
- Length
- false
- 76dad168-9920-4c9d-9b0c-7840e0411195
- 1
-
2757
-3977
47
20
-
2782
-3967
- 1
- 1
- {0}
- 1
- Line segment
- c8946353-1197-4675-9f3c-83408d67f6da
- true
- Line
- Line
- false
- 0
-
2834
-4017
25
60
-
2848
-3987
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- bb4ec53c-c335-4888-a813-6dba4b0b3879
- true
- Expression
- Expression
-
2710
-3341
194
28
-
2810
-3327
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f87d3193-d293-441b-b2af-3d511bcd31a1
- true
- Variable O
- O
- true
- 50df359b-4457-448c-bbbc-234551b5fbea
- 1
-
2712
-3339
14
24
-
2720.5
-3327
- Result of expression
- 304ce3dc-ec45-463b-95a9-eb4796ff8aed
- true
- Result
-
- false
- 0
-
2893
-3339
9
24
-
2899
-3327
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 539290d9-dce9-43a1-adf4-e5affd26f6ea
- Panel
- false
- 1
- 304ce3dc-ec45-463b-95a9-eb4796ff8aed
- 1
- Double click to edit panel content…
-
2701
-3633
214
271
- 0
- 0
- 0
-
2701.717
-3632.704
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 238896a6-397f-4896-9866-4977be1c5cb8
- Relay
-
- false
- 539290d9-dce9-43a1-adf4-e5affd26f6ea
- 1
-
2787
-3676
40
16
-
2807
-3668
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 50df359b-4457-448c-bbbc-234551b5fbea
- Relay
-
- false
- b64f24de-d0b2-4d54-bf7e-07324953940a
- 1
-
2787
-3313
40
16
-
2807
-3305
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 06278da8-5577-4c01-9bca-f378277efc42
- Quick Graph
- Quick Graph
- false
- 0
- 50df359b-4457-448c-bbbc-234551b5fbea
- 1
-
2733
-3835
150
150
-
2733.816
-3834.528
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 075e2fbe-e8d0-4a47-912a-e40abbb65453
- Relative Differences
- Relative Differences
-
2743
-3200
128
28
-
2796
-3186
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 72b8a0b1-d1d3-4dcc-b243-4685a2d6f2c3
- Values
- Values
- false
- a841c1a5-bb93-4744-bf9c-c03e90064964
- 1
-
2745
-3198
36
24
-
2764.5
-3186
- 1
- Differences between consecutive items
- 7fc4d72d-84c3-4dd1-bf48-0a27e1a8a871
- Differenced
- Differenced
- false
- 0
-
2811
-3198
58
24
-
2841.5
-3186
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b64f24de-d0b2-4d54-bf7e-07324953940a
- Relay
- false
- 7fc4d72d-84c3-4dd1-bf48-0a27e1a8a871
- 1
-
2787
-3234
40
16
-
2807
-3226
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f209f4a2-f539-4aa3-ae96-2646314ce948
- Relay
- false
- dc4a89cc-6391-4120-a0c7-bb01947e616d
- 1
-
2787
-3093
40
16
-
2807
-3085
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 9c3b67af-a7a4-4fb2-b1fa-95d0eb77ef5b
- Replace Nulls
- Replace Nulls
-
2739
-3155
136
44
-
2825
-3133
- 1
- Items to test for null
- f4cf7b8c-094d-4232-8bd6-b670561fb534
- Items
- Items
- false
- f209f4a2-f539-4aa3-ae96-2646314ce948
- 1
-
2741
-3153
69
20
-
2777
-3143
- 1
- Items to replace nulls with
- 726e1471-dba4-428d-982b-cec7b3b6c89c
- Replacements
- Replacements
- false
- 0
-
2741
-3133
69
20
-
2777
-3123
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- a841c1a5-bb93-4744-bf9c-c03e90064964
- Items
- Items
- false
- 0
-
2840
-3153
33
20
-
2858
-3143
- Number of items replaced
- 0da654db-e64e-4aa3-bd42-1e3cdc517fe9
- Count
- Count
- false
- 0
-
2840
-3133
33
20
-
2858
-3123
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 814cda62-2c48-4bb8-9edc-976f47afdf2a
- Multiplication
- Multiplication
-
2770
-3898
82
44
-
2801
-3876
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 41f1a18d-0420-4bd8-927b-0dd17657e8a7
- A
- A
- true
- 50df359b-4457-448c-bbbc-234551b5fbea
- 1
-
2772
-3896
14
20
-
2780.5
-3886
- Second item for multiplication
- b694a7ae-c9fa-4cc7-a775-f46636839f1f
- B
- B
- true
- d2eb7a37-d5dd-4ee1-8748-628d8498578a
- 1
-
2772
-3876
14
20
-
2780.5
-3866
- Result of multiplication
- 76dad168-9920-4c9d-9b0c-7840e0411195
- Result
- Result
- false
- 0
-
2816
-3896
34
40
-
2834.5
-3876
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- d2eb7a37-d5dd-4ee1-8748-628d8498578a
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 5
- 56336.1968128
-
2682
-3937
250
20
-
2682.217
-3936.787
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 11047804-87b6-4b30-bd41-bf40de79677a
- Move
- Move
-
2738
-4182
138
44
-
2806
-4160
- Base geometry
- f49caf1a-65e2-45bb-aacd-2dfc52d04f59
- Geometry
- Geometry
- true
- c8946353-1197-4675-9f3c-83408d67f6da
- 1
-
2740
-4180
51
20
-
2767
-4170
- Translation vector
- ceeceab3-c17b-4e19-9177-d15f796f675c
- Motion
- Motion
- false
- db4d5bd9-6588-461b-99cc-36749b76ef54
- 1
-
2740
-4160
51
20
-
2767
-4150
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 2c9695ba-b315-4f78-85cd-abc3b3a78187
- Geometry
- Geometry
- false
- 0
-
2821
-4180
53
20
-
2849
-4170
- Transformation data
- 317fe4f6-2c97-4959-bc91-a97c0d7694e9
- Transform
- Transform
- false
- 0
-
2821
-4160
53
20
-
2849
-4150
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- 7559b255-f641-4d37-8771-422671c9d661
- Vector XYZ
- Vector XYZ
-
2729
-4119
155
64
-
2830
-4087
- Vector {x} component
- 86dcd50f-b6ae-4f17-9afc-cc4ef5b72aff
- -X
- X component
- X component
- false
- eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
- 1
-
2731
-4117
84
20
-
2782.5
-4107
- 1
- 1
- {0}
- -1
- Vector {y} component
- ca8927b3-a645-48f7-bea7-3e0c7c770d9c
- Y component
- Y component
- false
- 0
-
2731
-4097
84
20
-
2782.5
-4087
- 1
- 1
- {0}
- 5
- Vector {z} component
- a30b780b-5434-49c4-b140-fa9591b9e3a5
- Z component
- Z component
- false
- 0
-
2731
-4077
84
20
-
2782.5
-4067
- 1
- 1
- {0}
- 0
- Vector construct
- db4d5bd9-6588-461b-99cc-36749b76ef54
- Vector
- Vector
- false
- 0
-
2845
-4117
37
30
-
2865
-4102
- Vector length
- b2d573de-5c72-449f-801b-5c7ebd9594ae
- Length
- Length
- false
- 0
-
2845
-4087
37
30
-
2865
-4072
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 042c7918-1ded-400b-ba9c-adc3004fce23
- bb4ec53c-c335-4888-a813-6dba4b0b3879
- 539290d9-dce9-43a1-adf4-e5affd26f6ea
- 238896a6-397f-4896-9866-4977be1c5cb8
- 50df359b-4457-448c-bbbc-234551b5fbea
- 06278da8-5577-4c01-9bca-f378277efc42
- 075e2fbe-e8d0-4a47-912a-e40abbb65453
- b64f24de-d0b2-4d54-bf7e-07324953940a
- f209f4a2-f539-4aa3-ae96-2646314ce948
- 9c3b67af-a7a4-4fb2-b1fa-95d0eb77ef5b
- 814cda62-2c48-4bb8-9edc-976f47afdf2a
- d2eb7a37-d5dd-4ee1-8748-628d8498578a
- 11047804-87b6-4b30-bd41-bf40de79677a
- 7559b255-f641-4d37-8771-422671c9d661
- dc4a89cc-6391-4120-a0c7-bb01947e616d
- 3a1806c9-f1d1-40d4-b0c3-ba40727c7574
- 8500138e-2946-4f7c-be93-c3c7109b4c2f
- cad9f703-3621-4a15-835e-3c62c5728043
- 19800ae1-a0b6-4fea-a742-1c5c30324ec3
- ceffa153-887e-4858-9494-ff4113ed6ec8
- e9181e89-67db-453a-a90b-03cf875e54e4
- eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
- 22
- 60746e92-8e7d-4181-8157-9d909cfaa5af
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- dc4a89cc-6391-4120-a0c7-bb01947e616d
- Relay
-
- false
- 73e154f2-80c6-4ae6-bc3c-6465f74895ee
- 1
-
2787
-3059
40
16
-
2807
-3051
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 6f02b009-b1e7-40fb-982b-a4cc92989f93
- true
- Line SDL
- Line SDL
-
2758
-5797
106
64
-
2822
-5765
- Line start point
- 9b1f3040-25b4-465c-b48b-20d876ca8d30
- true
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2760
-5795
47
20
-
2785
-5785
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- ab363ead-60ce-42e6-abb6-fada154e2d83
- true
- Direction
- Direction
- false
- 0
-
2760
-5775
47
20
-
2785
-5765
- 1
- 1
- {0}
-
0
1
0
- Line length
- a12ca76e-b81d-4f86-82e5-94db0c56f6bc
- true
- Length
- Length
- false
- 219456fb-d7b5-4771-8625-546ff24ec0db
- 1
-
2760
-5755
47
20
-
2785
-5745
- 1
- 1
- {0}
- 1
- Line segment
- dbe25fd3-7c8f-4ba4-aa76-935deab2513d
- true
- Line
- Line
- false
- 0
-
2837
-5795
25
60
-
2851
-5765
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- e8ede47a-0766-46eb-98e9-795795777e72
- true
- Expression
- Expression
-
2711
-5159
194
28
-
2811
-5145
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 3a17e425-d670-4f6e-a8de-3f02eace241a
- true
- Variable O
- O
- true
- 052a3230-6371-4fd8-b081-e62dc726cb17
- 1
-
2713
-5157
14
24
-
2721.5
-5145
- Result of expression
- 2e133f21-2d54-4357-82b6-d6caa9c58bb9
- true
- Result
-
- false
- 0
-
2894
-5157
9
24
-
2900
-5145
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f0598189-5cbb-4645-844b-5261772d3d6f
- Panel
- false
- 1
- 2e133f21-2d54-4357-82b6-d6caa9c58bb9
- 1
- Double click to edit panel content…
-
2701
-5432
214
271
- 0
- 0
- 0
-
2701.714
-5431.091
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- abd6a449-9c16-4c76-8ef0-98e478cd83ad
- Relay
-
- false
- f0598189-5cbb-4645-844b-5261772d3d6f
- 1
-
2788
-5475
40
16
-
2808
-5467
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 052a3230-6371-4fd8-b081-e62dc726cb17
- Relay
-
- false
- 8dc32522-c682-4ff8-8b97-cbd1b23da515
- 1
-
2788
-5112
40
16
-
2808
-5104
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- d1b7aee9-6996-44d7-a2a8-751ca861756f
- Quick Graph
- Quick Graph
- false
- 0
- 052a3230-6371-4fd8-b081-e62dc726cb17
- 1
-
2733
-5633
150
150
-
2733.813
-5632.915
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 33d169ca-0346-4d9c-8215-357b9043028e
- Relative Differences
- Relative Differences
-
2744
-4999
128
28
-
2797
-4985
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 78975a9e-52d2-4a86-9086-68be735702ad
- Values
- Values
- false
- 9c15500f-157e-41a9-92a5-a20d78dd6d0a
- 1
-
2746
-4997
36
24
-
2765.5
-4985
- 1
- Differences between consecutive items
- e0b41d41-010c-450b-87c6-534ab840d77b
- Differenced
- Differenced
- false
- 0
-
2812
-4997
58
24
-
2842.5
-4985
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8dc32522-c682-4ff8-8b97-cbd1b23da515
- Relay
- false
- e0b41d41-010c-450b-87c6-534ab840d77b
- 1
-
2788
-5033
40
16
-
2808
-5025
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7b86bb78-229e-4e92-8975-52158c20193e
- Relay
- false
- c9a63204-827d-4fc8-89ca-1e01148b0d3d
- 1
-
2788
-4892
40
16
-
2808
-4884
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 81207625-50b7-466b-a33d-23c0e88f3ac9
- Replace Nulls
- Replace Nulls
-
2740
-4954
136
44
-
2826
-4932
- 1
- Items to test for null
- 0766398e-adae-4a68-af23-b7c778109ed1
- Items
- Items
- false
- 7b86bb78-229e-4e92-8975-52158c20193e
- 1
-
2742
-4952
69
20
-
2778
-4942
- 1
- Items to replace nulls with
- 32702515-c5ba-40c5-8d36-701e5e367bdb
- Replacements
- Replacements
- false
- 0
-
2742
-4932
69
20
-
2778
-4922
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- 9c15500f-157e-41a9-92a5-a20d78dd6d0a
- Items
- Items
- false
- 0
-
2841
-4952
33
20
-
2859
-4942
- Number of items replaced
- 799563c9-5274-4ae7-beb6-b23dee7a1a4e
- Count
- Count
- false
- 0
-
2841
-4932
33
20
-
2859
-4922
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 7239acaa-4bc2-4df7-9ccc-41202268cb8a
- Multiplication
- Multiplication
-
2770
-5693
82
44
-
2801
-5671
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- b43d79dd-62fc-46ee-9f3a-671373fd1cc3
- A
- A
- true
- 052a3230-6371-4fd8-b081-e62dc726cb17
- 1
-
2772
-5691
14
20
-
2780.5
-5681
- Second item for multiplication
- a4927aff-3c14-4dd1-8427-f305933617b5
- B
- B
- true
- 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
- 1
-
2772
-5671
14
20
-
2780.5
-5661
- Result of multiplication
- 219456fb-d7b5-4771-8625-546ff24ec0db
- Result
- Result
- false
- 0
-
2816
-5691
34
40
-
2834.5
-5671
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 6
- 271915.006280
-
2684
-5713
250
20
-
2684.547
-5712.496
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 4e1fee94-8bf0-4a03-9bb5-efb4198de1d7
- Move
- Move
-
2739
-5983
138
44
-
2807
-5961
- Base geometry
- ad9b15b9-3d25-44f8-835e-637cd41ab1f3
- Geometry
- Geometry
- true
- dbe25fd3-7c8f-4ba4-aa76-935deab2513d
- 1
-
2741
-5981
51
20
-
2768
-5971
- Translation vector
- 835cfb38-6c49-4afe-8da6-226f3a5aac91
- Motion
- Motion
- false
- 532b21ed-054c-48dc-9ad9-d23e32f3c462
- 1
-
2741
-5961
51
20
-
2768
-5951
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 6887d1d4-79dc-484f-ba0b-cbc72eeea403
- Geometry
- Geometry
- false
- 0
-
2822
-5981
53
20
-
2850
-5971
- Transformation data
- 7d36d4f0-da61-46e7-80c2-c9a571beca63
- Transform
- Transform
- false
- 0
-
2822
-5961
53
20
-
2850
-5951
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- 0e8fc1e8-082d-43ee-a7cb-5a08841c0259
- Vector XYZ
- Vector XYZ
-
2730
-5918
155
64
-
2831
-5886
- Vector {x} component
- 1b39f073-7197-461a-92d6-670b7c39add9
- -X
- X component
- X component
- false
- 647310bf-b19d-44df-ae6f-ffbd5b863fe9
- 1
-
2732
-5916
84
20
-
2783.5
-5906
- 1
- 1
- {0}
- -1
- Vector {y} component
- 3514c265-9042-4c28-8ab6-41303131d2d4
- Y component
- Y component
- false
- 0
-
2732
-5896
84
20
-
2783.5
-5886
- 1
- 1
- {0}
- 6
- Vector {z} component
- 7d33e313-0e01-4d2b-9bd6-5619cee4cb27
- Z component
- Z component
- false
- 0
-
2732
-5876
84
20
-
2783.5
-5866
- 1
- 1
- {0}
- 0
- Vector construct
- 532b21ed-054c-48dc-9ad9-d23e32f3c462
- Vector
- Vector
- false
- 0
-
2846
-5916
37
30
-
2866
-5901
- Vector length
- 3b99ba49-6ac8-43e3-bd99-f3213da6a2bf
- Length
- Length
- false
- 0
-
2846
-5886
37
30
-
2866
-5871
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 6f02b009-b1e7-40fb-982b-a4cc92989f93
- e8ede47a-0766-46eb-98e9-795795777e72
- f0598189-5cbb-4645-844b-5261772d3d6f
- abd6a449-9c16-4c76-8ef0-98e478cd83ad
- 052a3230-6371-4fd8-b081-e62dc726cb17
- d1b7aee9-6996-44d7-a2a8-751ca861756f
- 33d169ca-0346-4d9c-8215-357b9043028e
- 8dc32522-c682-4ff8-8b97-cbd1b23da515
- 7b86bb78-229e-4e92-8975-52158c20193e
- 81207625-50b7-466b-a33d-23c0e88f3ac9
- 7239acaa-4bc2-4df7-9ccc-41202268cb8a
- 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
- 4e1fee94-8bf0-4a03-9bb5-efb4198de1d7
- 0e8fc1e8-082d-43ee-a7cb-5a08841c0259
- c9a63204-827d-4fc8-89ca-1e01148b0d3d
- c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
- 91d19239-fa22-43d8-9328-a5aaa83c29d0
- c85fbe40-8c7e-4798-9c91-10dc94e3ce94
- 1ed8af89-73d9-46fb-9f92-85e97b1954ab
- 35cf69c6-1a64-47f3-beee-9ffa3d777872
- 9cb83053-a3f1-4d08-bad8-b0b6d4352272
- b0dc11e3-028a-4c68-abf7-dc7f220168c2
- 957995f5-c366-463c-b3ce-f70bdb0ab1f3
- 647310bf-b19d-44df-ae6f-ffbd5b863fe9
- 24
- 476c07b4-d4b7-48f5-ab23-63a6ae96d8b0
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c9a63204-827d-4fc8-89ca-1e01148b0d3d
- Relay
-
- false
- 50df359b-4457-448c-bbbc-234551b5fbea
- 1
-
2788
-4858
40
16
-
2808
-4850
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 7fad2a3d-6b73-4fd3-b85f-cbcca0edb0e9
- true
- Line SDL
- Line SDL
-
2755
-7608
106
64
-
2819
-7576
- Line start point
- d0cf9246-2f18-4473-bf16-83da1ef7502f
- true
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2757
-7606
47
20
-
2782
-7596
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 4ebccf48-81fd-4163-b2ad-9c377061e5b4
- true
- Direction
- Direction
- false
- 0
-
2757
-7586
47
20
-
2782
-7576
- 1
- 1
- {0}
-
0
1
0
- Line length
- 4c250e73-ca00-491e-8345-30d0c199d208
- true
- Length
- Length
- false
- eed75ede-9954-4e74-ba7c-3bd2194f1ac6
- 1
-
2757
-7566
47
20
-
2782
-7556
- 1
- 1
- {0}
- 1
- Line segment
- 37fc79be-f3e4-4303-9f79-031b628eb7dc
- true
- Line
- Line
- false
- 0
-
2834
-7606
25
60
-
2848
-7576
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f6e9f1c3-eee4-412c-baba-b0430add3abc
- true
- Expression
- Expression
-
2710
-6936
194
28
-
2810
-6922
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 8303f00c-4b96-4759-b910-899f66742b0e
- true
- Variable O
- O
- true
- 963d551b-51b2-47ee-a44a-02c105fb8854
- 1
-
2712
-6934
14
24
-
2720.5
-6922
- Result of expression
- d4046849-9388-4abb-ad4b-8c2a65b66e28
- true
- Result
-
- false
- 0
-
2893
-6934
9
24
-
2899
-6922
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 44d9ac45-165c-4030-80af-37df49237525
- Panel
- false
- 1
- d4046849-9388-4abb-ad4b-8c2a65b66e28
- 1
- Double click to edit panel content…
-
2701
-7229
214
271
- 0
- 0
- 0
-
2701.867
-7228.153
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a8aee104-1a78-4e6f-9c6b-f240f9e79dc3
- Relay
-
- false
- 44d9ac45-165c-4030-80af-37df49237525
- 1
-
2787
-7276
40
16
-
2807
-7268
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 963d551b-51b2-47ee-a44a-02c105fb8854
- Relay
-
- false
- 6234ac24-d0b0-412d-8309-3a3c0d7d470e
- 1
-
2787
-6889
40
16
-
2807
-6881
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- a010a0aa-e30f-4f91-a2a2-d90e6518b218
- Quick Graph
- Quick Graph
- false
- 0
- 963d551b-51b2-47ee-a44a-02c105fb8854
- 1
-
2732
-7430
150
150
-
2732.966
-7429.977
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 73b7337b-7d22-476b-b538-b7ba58edd468
- Relative Differences
- Relative Differences
-
2743
-6800
128
28
-
2796
-6786
- 1
- List of data to operate on (numbers or points or vectors allowed)
- f9008767-dc99-4bbc-80ec-9f00fdbe3638
- Values
- Values
- false
- 8e78b602-bf7b-41ab-acd6-75e9dd78a318
- 1
-
2745
-6798
36
24
-
2764.5
-6786
- 1
- Differences between consecutive items
- 86f264df-1e7e-42b2-bbf5-062c2f94d72e
- Differenced
- Differenced
- false
- 0
-
2811
-6798
58
24
-
2841.5
-6786
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6234ac24-d0b0-412d-8309-3a3c0d7d470e
- Relay
- false
- 86f264df-1e7e-42b2-bbf5-062c2f94d72e
- 1
-
2787
-6834
40
16
-
2807
-6826
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2ad015b5-75aa-4327-af12-ae66b821121a
- Relay
- false
- a9078840-89ba-460d-b861-d52f705e4fb5
- 1
-
2787
-6693
40
16
-
2807
-6685
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- fe79c4c0-7b7d-412d-9138-48cd990ffa41
- Replace Nulls
- Replace Nulls
-
2739
-6755
136
44
-
2825
-6733
- 1
- Items to test for null
- 91ecac42-f5a5-4b03-a9df-28662d8d96b0
- Items
- Items
- false
- 2ad015b5-75aa-4327-af12-ae66b821121a
- 1
-
2741
-6753
69
20
-
2777
-6743
- 1
- Items to replace nulls with
- 467868de-26c2-4f1f-a7ac-6f2f62ce628c
- Replacements
- Replacements
- false
- 0
-
2741
-6733
69
20
-
2777
-6723
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- 8e78b602-bf7b-41ab-acd6-75e9dd78a318
- Items
- Items
- false
- 0
-
2840
-6753
33
20
-
2858
-6743
- Number of items replaced
- 8493b36e-89a5-45ef-84f4-a49793c215a8
- Count
- Count
- false
- 0
-
2840
-6733
33
20
-
2858
-6723
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e36e38bd-69b6-4b50-aa47-e40c3308a856
- Multiplication
- Multiplication
-
2769
-7493
82
44
-
2800
-7471
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 06b7a419-33b2-4d8a-b837-1cdce113f55b
- A
- A
- true
- 963d551b-51b2-47ee-a44a-02c105fb8854
- 1
-
2771
-7491
14
20
-
2779.5
-7481
- Second item for multiplication
- 9c229038-e9c6-490f-a6e4-31f6e96af3b4
- B
- B
- true
- 232d4da2-850f-4939-a451-e2ac412c6f34
- 1
-
2771
-7471
14
20
-
2779.5
-7461
- Result of multiplication
- eed75ede-9954-4e74-ba7c-3bd2194f1ac6
- Result
- Result
- false
- 0
-
2815
-7491
34
40
-
2833.5
-7471
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 232d4da2-850f-4939-a451-e2ac412c6f34
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 6
- 383463.976640
-
2679
-7530
250
20
-
2679.178
-7529.615
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 6a844a25-3a25-4592-b8bd-990161e9c483
- Move
- Move
-
2738
-7784
138
44
-
2806
-7762
- Base geometry
- 5b63efe8-e076-4f0c-bc0b-c75f953f0de4
- Geometry
- Geometry
- true
- 37fc79be-f3e4-4303-9f79-031b628eb7dc
- 1
-
2740
-7782
51
20
-
2767
-7772
- Translation vector
- f8ec87b4-b92d-431e-bfb8-9cc293e8b169
- Motion
- Motion
- false
- 3276370e-5437-4e4d-a00b-34a267233b72
- 1
-
2740
-7762
51
20
-
2767
-7752
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
- Geometry
- Geometry
- false
- 0
-
2821
-7782
53
20
-
2849
-7772
- Transformation data
- 1613cb01-5f0f-4f26-a5e1-07023926a0ad
- Transform
- Transform
- false
- 0
-
2821
-7762
53
20
-
2849
-7752
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- f61f92f1-b10f-4586-86fa-3d41998aa56d
- Vector XYZ
- Vector XYZ
-
2729
-7719
155
64
-
2830
-7687
- Vector {x} component
- cd0e24e3-86ea-4f50-baf3-54c92ed21d6d
- -X
- X component
- X component
- false
- 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
- 1
-
2731
-7717
84
20
-
2782.5
-7707
- 1
- 1
- {0}
- -1
- Vector {y} component
- 06145659-02ed-467e-85b6-ae2cf3d98573
- Y component
- Y component
- false
- 0
-
2731
-7697
84
20
-
2782.5
-7687
- 1
- 1
- {0}
- 7
- Vector {z} component
- afd74686-31f3-4a45-86f7-739561f2eba1
- Z component
- Z component
- false
- 0
-
2731
-7677
84
20
-
2782.5
-7667
- 1
- 1
- {0}
- 0
- Vector construct
- 3276370e-5437-4e4d-a00b-34a267233b72
- Vector
- Vector
- false
- 0
-
2845
-7717
37
30
-
2865
-7702
- Vector length
- 0798d4b7-6861-49a8-80df-74eece16c617
- Length
- Length
- false
- 0
-
2845
-7687
37
30
-
2865
-7672
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 7fad2a3d-6b73-4fd3-b85f-cbcca0edb0e9
- f6e9f1c3-eee4-412c-baba-b0430add3abc
- 44d9ac45-165c-4030-80af-37df49237525
- a8aee104-1a78-4e6f-9c6b-f240f9e79dc3
- 963d551b-51b2-47ee-a44a-02c105fb8854
- a010a0aa-e30f-4f91-a2a2-d90e6518b218
- 73b7337b-7d22-476b-b538-b7ba58edd468
- 6234ac24-d0b0-412d-8309-3a3c0d7d470e
- 2ad015b5-75aa-4327-af12-ae66b821121a
- fe79c4c0-7b7d-412d-9138-48cd990ffa41
- e36e38bd-69b6-4b50-aa47-e40c3308a856
- 232d4da2-850f-4939-a451-e2ac412c6f34
- 6a844a25-3a25-4592-b8bd-990161e9c483
- f61f92f1-b10f-4586-86fa-3d41998aa56d
- a9078840-89ba-460d-b861-d52f705e4fb5
- 81849188-b493-4caf-b711-90072846d543
- 01de0c9e-9e9f-4576-b496-5f24525a07d9
- e6204409-8517-47d2-8bad-b618d6ba81d7
- f204596d-0539-42bc-b3c3-7a6c11f93504
- 4188728e-68e2-4d42-82f2-19bb6c40b380
- 844999aa-f0e7-431f-b0df-673861258066
- aced67d1-3056-41dd-ae2f-76dd69e0987e
- 820d65ee-b16e-41e8-bf3f-4da0ede194da
- 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
- 24
- a2cd357f-68cc-478e-bfc9-b15dcd14bcd8
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a9078840-89ba-460d-b861-d52f705e4fb5
- Relay
-
- false
- 052a3230-6371-4fd8-b081-e62dc726cb17
- 1
-
2787
-6659
40
16
-
2807
-6651
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- ad773b43-698a-43df-9f39-1c84baa567ca
- Create Material
- Create Material
-
2731
4777
144
104
-
2815
4829
- Colour of the diffuse channel
- ad67bb89-00f7-4f5d-80bb-5312e0b77548
- Diffuse
- Diffuse
- false
- 0
-
2733
4779
67
20
-
2768
4789
- 1
- 1
- {0}
-
255;247;247;247
- Colour of the specular highlight
- beb00b3d-6cd2-45bc-8d57-b861eb1da2a7
- Specular
- Specular
- false
- 0
-
2733
4799
67
20
-
2768
4809
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 4a12640f-dbac-4142-a987-4363e6401952
- Emission
- Emission
- false
- 0
-
2733
4819
67
20
-
2768
4829
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 7f2f25cc-1741-4494-9115-acc59237030b
- Transparency
- Transparency
- false
- 0
-
2733
4839
67
20
-
2768
4849
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 732e91ec-ef14-43b3-9c8c-ee3eff54ae40
- Shine
- Shine
- false
- 0
-
2733
4859
67
20
-
2768
4869
- 1
- 1
- {0}
- 100
- Resulting material
- f82ad4a3-12a6-426d-b37d-9cba6ac96914
- Material
- Material
- false
- 0
-
2830
4779
43
100
-
2853
4829
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 9183d5f8-089d-4708-9f00-983f03c9f90e
- Custom Preview
- Custom Preview
-
2762
4733
82
44
-
2830
4755
- Geometry to preview
- true
- b65a33e6-e0ae-4a17-8c26-6a37887699d7
- Geometry
- Geometry
- false
- 1a211dc6-9d12-4255-9f70-29dc0d975fda
- 1
-
2764
4735
51
20
-
2791
4745
- The material override
- 987365d5-4e94-4309-af90-c316b4fcfa7d
- Material
- Material
- false
- f82ad4a3-12a6-426d-b37d-9cba6ac96914
- 1
-
2764
4755
51
20
-
2791
4765
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ad773b43-698a-43df-9f39-1c84baa567ca
- 9183d5f8-089d-4708-9f00-983f03c9f90e
- 2
- b29ac3e2-b858-44d8-acce-0fb154f6a64a
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- e606582f-8157-4dd3-9d74-b8545096f2b1
- Create Material
- Create Material
-
2731
2941
144
104
-
2815
2993
- Colour of the diffuse channel
- f35f8c3b-42c1-4f8f-8bae-afa3e89c8adf
- Diffuse
- Diffuse
- false
- 0
-
2733
2943
67
20
-
2768
2953
- 1
- 1
- {0}
-
255;240;240;240
- Colour of the specular highlight
- 5ede20c4-85f8-476e-b24d-15a10ed8ec36
- Specular
- Specular
- false
- 0
-
2733
2963
67
20
-
2768
2973
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- d8e416fa-c61f-4474-b1cc-ed0e23dda398
- Emission
- Emission
- false
- 0
-
2733
2983
67
20
-
2768
2993
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- c5eaca7e-9f62-4201-8a59-2c655d613222
- Transparency
- Transparency
- false
- 0
-
2733
3003
67
20
-
2768
3013
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 64a96de1-9ad2-4973-b980-32a9b66896c5
- Shine
- Shine
- false
- 0
-
2733
3023
67
20
-
2768
3033
- 1
- 1
- {0}
- 100
- Resulting material
- 5fa6b6a9-e7b7-4492-8fb8-e076221c6ab0
- Material
- Material
- false
- 0
-
2830
2943
43
100
-
2853
2993
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 5a142162-4b8f-4585-967e-5ce611b2ed6b
- Custom Preview
- Custom Preview
-
2762
2879
82
44
-
2830
2901
- Geometry to preview
- true
- a775575b-6a9d-4faf-98e2-fcec280ac080
- Geometry
- Geometry
- false
- 05694d97-021c-4a49-a1f3-e45b41b569e0
- 1
-
2764
2881
51
20
-
2791
2891
- The material override
- 27e298d6-366b-40d7-adad-44c20aa72f49
- Material
- Material
- false
- 5fa6b6a9-e7b7-4492-8fb8-e076221c6ab0
- 1
-
2764
2901
51
20
-
2791
2911
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e606582f-8157-4dd3-9d74-b8545096f2b1
- 5a142162-4b8f-4585-967e-5ce611b2ed6b
- 2
- e9d1dc88-7240-4c0f-bb0a-9eef2eae717d
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
- Create Material
- Create Material
-
2731
1052
144
104
-
2815
1104
- Colour of the diffuse channel
- 862ecfb4-9dce-499f-aea5-424712d104e6
- Diffuse
- Diffuse
- false
- 0
-
2733
1054
67
20
-
2768
1064
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- 0cb9200c-9143-4763-a8ad-5051c5a83a76
- Specular
- Specular
- false
- 0
-
2733
1074
67
20
-
2768
1084
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 1f1703d7-7614-474f-82fd-f9dc460666b9
- Emission
- Emission
- false
- 0
-
2733
1094
67
20
-
2768
1104
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 25d1a990-b412-4b7d-a24f-9e51b52b2bae
- Transparency
- Transparency
- false
- 0
-
2733
1114
67
20
-
2768
1124
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 365c0911-7c14-4a89-905d-b4e5075d21f9
- Shine
- Shine
- false
- 0
-
2733
1134
67
20
-
2768
1144
- 1
- 1
- {0}
- 100
- Resulting material
- 44e5dd6b-0761-4b9d-82ab-234494eed3da
- Material
- Material
- false
- 0
-
2830
1054
43
100
-
2853
1104
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
- Custom Preview
- Custom Preview
-
2762
989
82
44
-
2830
1011
- Geometry to preview
- true
- aca82de9-175d-4131-a4db-7b596ef9748d
- Geometry
- Geometry
- false
- 5c55b193-0023-4ff8-875f-0339cdcf9c91
- 1
-
2764
991
51
20
-
2791
1001
- The material override
- e34f1e18-8aa0-4179-843c-f4a0d467e743
- Material
- Material
- false
- 44e5dd6b-0761-4b9d-82ab-234494eed3da
- 1
-
2764
1011
51
20
-
2791
1021
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
- 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
- 2
- e3749bf3-dd2f-4da8-826c-372b05cde1be
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- e909739f-f11a-4f63-961e-cbe23cb83593
- Create Material
- Create Material
-
2731
-711
144
104
-
2815
-659
- Colour of the diffuse channel
- 9dfb472c-5cc8-46c1-8cd5-0f2e7a48bcda
- Diffuse
- Diffuse
- false
- 0
-
2733
-709
67
20
-
2768
-699
- 1
- 1
- {0}
-
255;224;224;224
- Colour of the specular highlight
- 7c307556-214d-4f71-b322-4f69ce0ab7ed
- Specular
- Specular
- false
- 0
-
2733
-689
67
20
-
2768
-679
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- d19faa40-2451-47cc-a9df-b4aa836f36e1
- Emission
- Emission
- false
- 0
-
2733
-669
67
20
-
2768
-659
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- ce97aa24-ec44-4710-97d4-ac49f48d4c43
- Transparency
- Transparency
- false
- 0
-
2733
-649
67
20
-
2768
-639
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 469363af-0fc7-489b-bb94-4f8cb9e85d87
- Shine
- Shine
- false
- 0
-
2733
-629
67
20
-
2768
-619
- 1
- 1
- {0}
- 100
- Resulting material
- ac32a6b4-fcbd-4d08-a147-a6f41fb252cd
- Material
- Material
- false
- 0
-
2830
-709
43
100
-
2853
-659
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 84185437-01a9-46d2-8587-90dc91fbaeef
- Custom Preview
- Custom Preview
-
2762
-775
82
44
-
2830
-753
- Geometry to preview
- true
- 8c3a847d-108d-47cf-b9f2-b5f6ff0de7d4
- Geometry
- Geometry
- false
- 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
- 1
-
2764
-773
51
20
-
2791
-763
- The material override
- 34a16f33-55af-4ff7-a4cb-527a6ae14d66
- Material
- Material
- false
- ac32a6b4-fcbd-4d08-a147-a6f41fb252cd
- 1
-
2764
-753
51
20
-
2791
-743
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e909739f-f11a-4f63-961e-cbe23cb83593
- 84185437-01a9-46d2-8587-90dc91fbaeef
- 2
- a59697d7-edbc-4983-90af-5eeb0652d3e3
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 373fcd53-e5a6-4804-a735-47b5d060439d
- Create Material
- Create Material
-
2731
-2514
144
104
-
2815
-2462
- Colour of the diffuse channel
- 6a9969b5-d39c-418a-8e41-8cea0282875f
- Diffuse
- Diffuse
- false
- 0
-
2733
-2512
67
20
-
2768
-2502
- 1
- 1
- {0}
-
255;217;217;217
- Colour of the specular highlight
- 08335843-7ba9-47d9-9493-8a29bff63cb3
- Specular
- Specular
- false
- 0
-
2733
-2492
67
20
-
2768
-2482
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 899d01de-bbfa-4690-8f86-695d0c4022d4
- Emission
- Emission
- false
- 0
-
2733
-2472
67
20
-
2768
-2462
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- f0338b96-2125-4c44-a2ae-0427c3c7b14b
- Transparency
- Transparency
- false
- 0
-
2733
-2452
67
20
-
2768
-2442
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- a8fd779b-1d35-4470-8506-63f134c77f35
- Shine
- Shine
- false
- 0
-
2733
-2432
67
20
-
2768
-2422
- 1
- 1
- {0}
- 100
- Resulting material
- 72d97efc-127d-43bd-8b96-346c9d2de708
- Material
- Material
- false
- 0
-
2830
-2512
43
100
-
2853
-2462
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 488f27d6-7474-41e8-8662-7a97ae90ccac
- Custom Preview
- Custom Preview
-
2762
-2576
82
44
-
2830
-2554
- Geometry to preview
- true
- 2499e526-3d53-41ff-a140-6b6ed3766d97
- Geometry
- Geometry
- false
- 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
- 1
-
2764
-2574
51
20
-
2791
-2564
- The material override
- a9864782-8162-46a4-bd26-08eb8495c635
- Material
- Material
- false
- 72d97efc-127d-43bd-8b96-346c9d2de708
- 1
-
2764
-2554
51
20
-
2791
-2544
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 373fcd53-e5a6-4804-a735-47b5d060439d
- 488f27d6-7474-41e8-8662-7a97ae90ccac
- 2
- ee5c627c-1bb9-411b-8539-5f5cfd653e05
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 2c8dd4d6-85ae-4307-8e6b-7e1cb32cc6e4
- Create Material
- Create Material
-
2735
-4307
144
104
-
2819
-4255
- Colour of the diffuse channel
- e8083e49-d8fc-43e7-9e13-90196d88fd22
- Diffuse
- Diffuse
- false
- 0
-
2737
-4305
67
20
-
2772
-4295
- 1
- 1
- {0}
-
255;209;209;209
- Colour of the specular highlight
- 4c6d451b-8ce0-4895-8840-6333f6417f8f
- Specular
- Specular
- false
- 0
-
2737
-4285
67
20
-
2772
-4275
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- e5b83aa7-e213-4918-8fc2-73636ee06c40
- Emission
- Emission
- false
- 0
-
2737
-4265
67
20
-
2772
-4255
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 10ac19be-3776-44e0-8533-cd25d50459ba
- Transparency
- Transparency
- false
- 0
-
2737
-4245
67
20
-
2772
-4235
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- ebbfcc4f-ddad-4d5c-96d5-7b5091ab9879
- Shine
- Shine
- false
- 0
-
2737
-4225
67
20
-
2772
-4215
- 1
- 1
- {0}
- 100
- Resulting material
- f555af9a-1db5-40bd-b0e7-18bede30614a
- Material
- Material
- false
- 0
-
2834
-4305
43
100
-
2857
-4255
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 4c5340f4-b6ee-4d02-9738-f4534ec1d02d
- Custom Preview
- Custom Preview
-
2766
-4369
82
44
-
2834
-4347
- Geometry to preview
- true
- ea4e91dd-40e4-42d0-af6a-a4a80637f782
- Geometry
- Geometry
- false
- 2c9695ba-b315-4f78-85cd-abc3b3a78187
- 1
-
2768
-4367
51
20
-
2795
-4357
- The material override
- 910ce2f8-54a6-4c8f-a029-1ce8ebd6a538
- Material
- Material
- false
- f555af9a-1db5-40bd-b0e7-18bede30614a
- 1
-
2768
-4347
51
20
-
2795
-4337
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 2c8dd4d6-85ae-4307-8e6b-7e1cb32cc6e4
- 4c5340f4-b6ee-4d02-9738-f4534ec1d02d
- 2
- 3a1806c9-f1d1-40d4-b0c3-ba40727c7574
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
- Create Material
- Create Material
-
2736
-6107
144
104
-
2820
-6055
- Colour of the diffuse channel
- ffc5fc26-df97-4628-815d-1fbc69bbd8ce
- Diffuse
- Diffuse
- false
- 0
-
2738
-6105
67
20
-
2773
-6095
- 1
- 1
- {0}
-
255;201;201;201
- Colour of the specular highlight
- b4555e19-48b9-489f-9ede-b276df8e0ff5
- Specular
- Specular
- false
- 0
-
2738
-6085
67
20
-
2773
-6075
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- c2c70153-07dc-4b02-af76-d2a542ff3409
- Emission
- Emission
- false
- 0
-
2738
-6065
67
20
-
2773
-6055
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- d03ba336-d7ca-4b3d-8da3-5ce5393a2382
- Transparency
- Transparency
- false
- 0
-
2738
-6045
67
20
-
2773
-6035
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- b6c078d2-b806-4fe1-bd6c-38262eb48030
- Shine
- Shine
- false
- 0
-
2738
-6025
67
20
-
2773
-6015
- 1
- 1
- {0}
- 100
- Resulting material
- d036ce0d-4e57-4466-9ee5-b83c97c296ec
- Material
- Material
- false
- 0
-
2835
-6105
43
100
-
2858
-6055
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 91d19239-fa22-43d8-9328-a5aaa83c29d0
- Custom Preview
- Custom Preview
-
2767
-6170
82
44
-
2835
-6148
- Geometry to preview
- true
- 569d8839-4b6e-4511-a163-061f73b0c2c3
- Geometry
- Geometry
- false
- 6887d1d4-79dc-484f-ba0b-cbc72eeea403
- 1
-
2769
-6168
51
20
-
2796
-6158
- The material override
- 64463d3f-5ebe-4484-b8dd-78af72c4c971
- Material
- Material
- false
- d036ce0d-4e57-4466-9ee5-b83c97c296ec
- 1
-
2769
-6148
51
20
-
2796
-6138
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
- 91d19239-fa22-43d8-9328-a5aaa83c29d0
- 2
- c85fbe40-8c7e-4798-9c91-10dc94e3ce94
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 81849188-b493-4caf-b711-90072846d543
- Create Material
- Create Material
-
2735
-7943
144
104
-
2819
-7891
- Colour of the diffuse channel
- d45cbd41-93f0-467f-9696-2a9b3bf4f447
- Diffuse
- Diffuse
- false
- 0
-
2737
-7941
67
20
-
2772
-7931
- 1
- 1
- {0}
-
255;194;194;194
- Colour of the specular highlight
- 916b1084-e922-49cc-961b-81818ef69fbb
- Specular
- Specular
- false
- 0
-
2737
-7921
67
20
-
2772
-7911
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- d9c3425f-35ce-4ad2-bc04-7a7b6ad0c5b4
- Emission
- Emission
- false
- 0
-
2737
-7901
67
20
-
2772
-7891
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 1c04e62d-869e-4a43-bcc2-30f8bbd4de45
- Transparency
- Transparency
- false
- 0
-
2737
-7881
67
20
-
2772
-7871
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 6e7e40e6-3813-481e-9ca1-fb96e8f08a64
- Shine
- Shine
- false
- 0
-
2737
-7861
67
20
-
2772
-7851
- 1
- 1
- {0}
- 100
- Resulting material
- e5f7b402-d467-469c-9339-523875c835c0
- Material
- Material
- false
- 0
-
2834
-7941
43
100
-
2857
-7891
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 01de0c9e-9e9f-4576-b496-5f24525a07d9
- Custom Preview
- Custom Preview
-
2766
-8005
82
44
-
2834
-7983
- Geometry to preview
- true
- 393f6e0a-5bf5-4d57-9dd9-5769e8b30001
- Geometry
- Geometry
- false
- 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
- 1
-
2768
-8003
51
20
-
2795
-7993
- The material override
- dbbfe754-3ecd-4a4b-b535-cc9392f3c940
- Material
- Material
- false
- e5f7b402-d467-469c-9339-523875c835c0
- 1
-
2768
-7983
51
20
-
2795
-7973
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 81849188-b493-4caf-b711-90072846d543
- 01de0c9e-9e9f-4576-b496-5f24525a07d9
- 2
- e6204409-8517-47d2-8bad-b618d6ba81d7
- Group
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 176808cf-6dbb-4465-91a4-587fdbff58b1
- true
- Line SDL
- Line SDL
-
2774
-9428
106
64
-
2838
-9396
- Line start point
- 0f7ccecc-e0e9-4c5a-a5c2-37b6a1c89f94
- true
- Start
- Start
- false
- b2222aa6-f808-4c29-97c4-6993cf20b4b3
- 1
-
2776
-9426
47
20
-
2801
-9416
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 2dd18fad-fe56-49af-8d7c-ff770b16d28b
- true
- Direction
- Direction
- false
- 0
-
2776
-9406
47
20
-
2801
-9396
- 1
- 1
- {0}
-
0
1
0
- Line length
- d6a94cb8-a1d9-487a-b7d4-86174377d65a
- true
- Length
- Length
- false
- 363c1268-91ff-471d-af28-65ce38ad48b5
- 1
-
2776
-9386
47
20
-
2801
-9376
- 1
- 1
- {0}
- 1
- Line segment
- 3c7fbaad-3a66-4e9b-aa4a-1700eda029b9
- true
- Line
- Line
- false
- 0
-
2853
-9426
25
60
-
2867
-9396
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 689496b4-7709-4277-b48e-e5e34601568a
- true
- Expression
- Expression
-
2709
-8769
194
28
-
2809
-8755
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f7006f73-3992-4384-8c5d-3ba2718bac56
- true
- Variable O
- O
- true
- 1e4b2379-a416-4225-8721-480e7d2eb297
- 1
-
2711
-8767
14
24
-
2719.5
-8755
- Result of expression
- 3e3dadbe-dd8a-4bc6-8678-a7a7dc8a7cc3
- true
- Result
-
- false
- 0
-
2892
-8767
9
24
-
2898
-8755
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d55c439b-a720-4f39-ad97-9b9e49606d02
- Panel
- false
- 1
- 3e3dadbe-dd8a-4bc6-8678-a7a7dc8a7cc3
- 1
- Double click to edit panel content…
-
2701
-9062
214
271
- 0
- 0
- 0
-
2701.036
-9061.007
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1e81bf43-4be8-4eb1-864b-95a258d57f2f
- Relay
-
- false
- d55c439b-a720-4f39-ad97-9b9e49606d02
- 1
-
2786
-9108
40
16
-
2806
-9100
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1e4b2379-a416-4225-8721-480e7d2eb297
- Relay
-
- false
- 5964343a-531a-40e7-a7bd-a34379601d4d
- 1
-
2786
-8721
40
16
-
2806
-8713
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- bede73fe-828b-4f54-b263-8945e4b41bc3
- Quick Graph
- Quick Graph
- false
- 0
- 1e4b2379-a416-4225-8721-480e7d2eb297
- 1
-
2733
-9263
150
150
-
2733.136
-9262.829
- 0
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- c0a3dcb9-bca7-4fc5-9bb1-7cd02527dbdb
- Relative Differences
- Relative Differences
-
2742
-8632
128
28
-
2795
-8618
- 1
- List of data to operate on (numbers or points or vectors allowed)
- d846ee0d-8e0d-4df8-bb11-e468fa4098bb
- Values
- Values
- false
- d1b21b3f-8f9f-4bd0-adb1-cef864d42fa1
- 1
-
2744
-8630
36
24
-
2763.5
-8618
- 1
- Differences between consecutive items
- ecc1e601-f24b-4ebc-8c0f-4439786d6f00
- Differenced
- Differenced
- false
- 0
-
2810
-8630
58
24
-
2840.5
-8618
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5964343a-531a-40e7-a7bd-a34379601d4d
- Relay
- false
- ecc1e601-f24b-4ebc-8c0f-4439786d6f00
- 1
-
2786
-8666
40
16
-
2806
-8658
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
- Relay
- false
- 601aa3b6-34d0-4a75-9712-3a105ed8c617
- 1
-
2786
-8525
40
16
-
2806
-8517
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 70057e17-ddee-4825-99e2-ea1ec62f02db
- Replace Nulls
- Replace Nulls
-
2738
-8587
136
44
-
2824
-8565
- 1
- Items to test for null
- 5fe79787-3412-49fd-9e00-13330f43ed85
- Items
- Items
- false
- 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
- 1
-
2740
-8585
69
20
-
2776
-8575
- 1
- Items to replace nulls with
- 28f7a17d-7b5f-44cf-ab0b-c58199dec7ac
- Replacements
- Replacements
- false
- 0
-
2740
-8565
69
20
-
2776
-8555
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- d1b21b3f-8f9f-4bd0-adb1-cef864d42fa1
- Items
- Items
- false
- 0
-
2839
-8585
33
20
-
2857
-8575
- Number of items replaced
- d57bd584-4a69-4286-91fb-6cf3c15a06ef
- Count
- Count
- false
- 0
-
2839
-8565
33
20
-
2857
-8555
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 486b6841-9208-4a69-a5aa-9c08bdef0dcf
- Multiplication
- Multiplication
-
2777
-9324
82
44
-
2808
-9302
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 2307e579-998d-4f07-9d0e-c42c822c05fb
- A
- A
- true
- 1e4b2379-a416-4225-8721-480e7d2eb297
- 1
-
2779
-9322
14
20
-
2787.5
-9312
- Second item for multiplication
- 20fd6e60-24ce-4425-b4f2-1e331622ea1b
- B
- B
- true
- 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
- 1
-
2779
-9302
14
20
-
2787.5
-9292
- Result of multiplication
- 363c1268-91ff-471d-af28-65ce38ad48b5
- Result
- Result
- false
- 0
-
2823
-9322
34
40
-
2841.5
-9302
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 7
- 2183007.89888
-
2688
-9344
250
20
-
2688.392
-9343.671
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 6438715f-b0fd-4b4e-9310-90c8dc88eed7
- Move
- Move
-
2742
-9616
138
44
-
2810
-9594
- Base geometry
- 2940cc7e-bea0-49cb-9092-38052325b555
- Geometry
- Geometry
- true
- 3c7fbaad-3a66-4e9b-aa4a-1700eda029b9
- 1
-
2744
-9614
51
20
-
2771
-9604
- Translation vector
- ac17c328-5da0-4fe0-944f-7eda470ed7e5
- Motion
- Motion
- false
- ad7160db-5a22-4671-b943-afdf62fc6dfa
- 1
-
2744
-9594
51
20
-
2771
-9584
- 1
- 1
- {0}
-
0
0
10
- Translated geometry
- a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
- Geometry
- Geometry
- false
- 0
-
2825
-9614
53
20
-
2853
-9604
- Transformation data
- 28681979-1747-4c79-8901-2aa89c3702d7
- Transform
- Transform
- false
- 0
-
2825
-9594
53
20
-
2853
-9584
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
- Create a vector from {xyz} components.
- true
- 78ea33a1-9827-433a-be36-4e7b57a05958
- Vector XYZ
- Vector XYZ
-
2728
-9551
155
64
-
2829
-9519
- Vector {x} component
- a4403a75-80a5-4b9b-9744-7ae1fd69dadd
- -X
- X component
- X component
- false
- a5231a70-f4f4-4b81-9867-e1428a4b482a
- 1
-
2730
-9549
84
20
-
2781.5
-9539
- 1
- 1
- {0}
- -1
- Vector {y} component
- d927ae3d-fdf3-4174-bf3e-990487df0fcd
- Y component
- Y component
- false
- 0
-
2730
-9529
84
20
-
2781.5
-9519
- 1
- 1
- {0}
- 8
- Vector {z} component
- b218b573-f5ec-4514-a850-f7ad760fc03d
- Z component
- Z component
- false
- 0
-
2730
-9509
84
20
-
2781.5
-9499
- 1
- 1
- {0}
- 0
- Vector construct
- ad7160db-5a22-4671-b943-afdf62fc6dfa
- Vector
- Vector
- false
- 0
-
2844
-9549
37
30
-
2864
-9534
- Vector length
- 5ddbae44-47e6-45a8-b8fe-0e204073488f
- Length
- Length
- false
- 0
-
2844
-9519
37
30
-
2864
-9504
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 176808cf-6dbb-4465-91a4-587fdbff58b1
- 689496b4-7709-4277-b48e-e5e34601568a
- d55c439b-a720-4f39-ad97-9b9e49606d02
- 1e81bf43-4be8-4eb1-864b-95a258d57f2f
- 1e4b2379-a416-4225-8721-480e7d2eb297
- bede73fe-828b-4f54-b263-8945e4b41bc3
- c0a3dcb9-bca7-4fc5-9bb1-7cd02527dbdb
- 5964343a-531a-40e7-a7bd-a34379601d4d
- 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
- 70057e17-ddee-4825-99e2-ea1ec62f02db
- 486b6841-9208-4a69-a5aa-9c08bdef0dcf
- 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
- 6438715f-b0fd-4b4e-9310-90c8dc88eed7
- 78ea33a1-9827-433a-be36-4e7b57a05958
- 601aa3b6-34d0-4a75-9712-3a105ed8c617
- fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
- e1e086c6-b972-4c75-b268-a004ac8a9dd2
- 360d26a9-188d-4a04-ab85-c54f876af341
- 849853a5-9fa1-44dc-a6cb-6a6bd83c05a7
- db4363b4-d574-4300-84c6-5450a67bacc0
- a72749a1-3b33-4ce0-9980-144fc2c4dfd6
- d890eaf4-c21c-45e8-ac03-75c58ccbdf99
- 717103e5-0ed1-4969-ae88-8af3c23de426
- a5231a70-f4f4-4b81-9867-e1428a4b482a
- 24
- 11c51077-c738-44ff-b97c-c70596e4a90c
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 601aa3b6-34d0-4a75-9712-3a105ed8c617
- Relay
-
- false
- 963d551b-51b2-47ee-a44a-02c105fb8854
- 1
-
2786
-8491
40
16
-
2806
-8483
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
- Create Material
- Create Material
-
2734
-9775
144
104
-
2818
-9723
- Colour of the diffuse channel
- b174bc38-cf40-4d69-ba60-9f514adbf386
- Diffuse
- Diffuse
- false
- 0
-
2736
-9773
67
20
-
2771
-9763
- 1
- 1
- {0}
-
255;186;186;186
- Colour of the specular highlight
- 157d70e8-95da-47f3-a47d-565655495fb6
- Specular
- Specular
- false
- 0
-
2736
-9753
67
20
-
2771
-9743
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- ca2b9cd2-ba13-4a55-b373-e503d5fc893f
- Emission
- Emission
- false
- 0
-
2736
-9733
67
20
-
2771
-9723
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 5001bf57-64e1-4f1d-8c22-c98e35203217
- Transparency
- Transparency
- false
- 0
-
2736
-9713
67
20
-
2771
-9703
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 8a3823d8-a7cf-4ed3-b142-693eb42ead70
- Shine
- Shine
- false
- 0
-
2736
-9693
67
20
-
2771
-9683
- 1
- 1
- {0}
- 100
- Resulting material
- 5e878f84-d64f-488e-9c2b-cf28add842a9
- Material
- Material
- false
- 0
-
2833
-9773
43
100
-
2856
-9723
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- e1e086c6-b972-4c75-b268-a004ac8a9dd2
- Custom Preview
- Custom Preview
-
2765
-9837
82
44
-
2833
-9815
- Geometry to preview
- true
- c07540f6-ca1c-4703-90c1-dd0c7c7be7c5
- Geometry
- Geometry
- false
- a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
- 1
-
2767
-9835
51
20
-
2794
-9825
- The material override
- c497aebf-b647-4b79-8e5e-87d73179f881
- Material
- Material
- false
- 5e878f84-d64f-488e-9c2b-cf28add842a9
- 1
-
2767
-9815
51
20
-
2794
-9805
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
- e1e086c6-b972-4c75-b268-a004ac8a9dd2
- 2
- 360d26a9-188d-4a04-ab85-c54f876af341
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 28b8e0ed-0e44-4505-b866-bab948ef8584
- Evaluate Length
- Evaluate Length
-
2731
4633
144
64
-
2805
4665
- Curve to evaluate
- caf28ead-e3d6-40a7-91e8-d4e36841eee5
- Curve
- Curve
- false
- 1a211dc6-9d12-4255-9f70-29dc0d975fda
- 1
-
2733
4635
57
20
-
2763
4645
- Length factor for curve evaluation
- d8829370-f071-42b1-9ddc-5b2dfb1c1762
- Length
- Length
- false
- 0
-
2733
4655
57
20
-
2763
4665
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 388410ea-9e9d-4ae1-a9fb-62980d055bc9
- Normalized
- Normalized
- false
- 0
-
2733
4675
57
20
-
2763
4685
- 1
- 1
- {0}
- true
- Point at the specified length
- 46a8ffb0-0a6f-4f4a-af17-85da32781c16
- Point
- Point
- false
- 0
-
2820
4635
53
20
-
2848
4645
- Tangent vector at the specified length
- 7f8394c2-2c0f-4b2c-802d-b0a8d128058e
- Tangent
- Tangent
- false
- 0
-
2820
4655
53
20
-
2848
4665
- Curve parameter at the specified length
- b25e0766-e715-4b8d-9025-3e1aa0905b22
- Parameter
- Parameter
- false
- 0
-
2820
4675
53
20
-
2848
4685
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 50d6ea62-1933-4585-80ec-e31ffe7454f9
- Interpolate
- Interpolate
-
2740
4529
125
84
-
2807
4571
- 1
- Interpolation points
- b93cec8f-3919-43b3-9986-4220621f67e9
- Vertices
- Vertices
- false
- 46a8ffb0-0a6f-4f4a-af17-85da32781c16
- 1
-
2742
4531
50
20
-
2768.5
4541
- Curve degree
- 4d2826ec-8084-4c8d-9464-ad0a8136d22f
- Degree
- Degree
- false
- 0
-
2742
4551
50
20
-
2768.5
4561
- 1
- 1
- {0}
- 1
- Periodic curve
- d93bb10c-7eff-4cd2-be7f-d56be052b3fa
- Periodic
- Periodic
- false
- 0
-
2742
4571
50
20
-
2768.5
4581
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- a166b497-32cf-4d01-a3d6-ac10edf23528
- KnotStyle
- KnotStyle
- false
- 0
-
2742
4591
50
20
-
2768.5
4601
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 4b3e0cfc-1bf6-4465-bf99-c5f0e54e134f
- Curve
- Curve
- false
- 0
-
2822
4531
41
26
-
2844
4544.333
- Curve length
- 8c5df789-be84-4bba-93f8-9bea1a4d81e1
- Length
- Length
- false
- 0
-
2822
4557
41
27
-
2844
4571
- Curve domain
- c8ce1e91-9a93-4efe-be71-781d6411bb46
- Domain
- Domain
- false
- 0
-
2822
4584
41
27
-
2844
4597.667
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 0a876c89-ef58-450e-ae46-5d661fc98802
- Create Material
- Create Material
-
2731
4406
144
104
-
2815
4458
- Colour of the diffuse channel
- 187535bd-483f-4359-9955-cbaa80c28dfe
- Diffuse
- Diffuse
- false
- 0
-
2733
4408
67
20
-
2768
4418
- 1
- 1
- {0}
-
255;222;222;222
- Colour of the specular highlight
- 49a9589c-7e26-4199-b47f-2d628b0107f6
- Specular
- Specular
- false
- 0
-
2733
4428
67
20
-
2768
4438
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 59201c17-3176-4c8e-898b-9cbcc204db7c
- Emission
- Emission
- false
- 0
-
2733
4448
67
20
-
2768
4458
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 11cabf8f-8e8e-411f-ab2d-5b57498b3f3b
- Transparency
- Transparency
- false
- 0
-
2733
4468
67
20
-
2768
4478
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 6401c554-d3e2-4643-b23c-9ae4e5cbb028
- Shine
- Shine
- false
- 0
-
2733
4488
67
20
-
2768
4498
- 1
- 1
- {0}
- 100
- Resulting material
- 9962f537-c0cf-46f4-a78e-ecdfe3901837
- Material
- Material
- false
- 0
-
2830
4408
43
100
-
2853
4458
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 232fb359-d2a7-4c55-92a5-fe7f34103c48
- Custom Preview
- Custom Preview
-
2762
4344
82
44
-
2830
4366
- Geometry to preview
- true
- bd1a9e35-6632-4962-8e54-90d44cf1addf
- Geometry
- Geometry
- false
- 4b3e0cfc-1bf6-4465-bf99-c5f0e54e134f
- 1
-
2764
4346
51
20
-
2791
4356
- The material override
- a854219f-c8b6-4b07-a2d4-326ff44a5612
- Material
- Material
- false
- 9962f537-c0cf-46f4-a78e-ecdfe3901837
- 1
-
2764
4366
51
20
-
2791
4376
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 0a876c89-ef58-450e-ae46-5d661fc98802
- 232fb359-d2a7-4c55-92a5-fe7f34103c48
- 2
- a8c2d2b8-7793-472a-add0-5c6add577a3e
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 0119e2c8-ab78-45ad-b993-71b743e8bc99
- Evaluate Length
- Evaluate Length
-
2731
2796
144
64
-
2805
2828
- Curve to evaluate
- 3333f64c-2af5-44de-a880-e2fc7a1228ce
- Curve
- Curve
- false
- 05694d97-021c-4a49-a1f3-e45b41b569e0
- 1
-
2733
2798
57
20
-
2763
2808
- Length factor for curve evaluation
- 35823d4a-07d6-45ea-bbae-4d969549a7b7
- Length
- Length
- false
- 0
-
2733
2818
57
20
-
2763
2828
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 673a3038-d415-4c1c-9d51-997cb4db2b4f
- Normalized
- Normalized
- false
- 0
-
2733
2838
57
20
-
2763
2848
- 1
- 1
- {0}
- true
- Point at the specified length
- da6e1a4f-7342-4c2d-ba53-b75ff40d63bb
- Point
- Point
- false
- 0
-
2820
2798
53
20
-
2848
2808
- Tangent vector at the specified length
- 10c424d1-9914-425e-b107-92859d7f8413
- Tangent
- Tangent
- false
- 0
-
2820
2818
53
20
-
2848
2828
- Curve parameter at the specified length
- c7495475-a113-4d0b-a2c5-244c8b3d82e3
- Parameter
- Parameter
- false
- 0
-
2820
2838
53
20
-
2848
2848
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- aad5e89f-1689-4ac6-8192-4f4373cbea4f
- Interpolate
- Interpolate
-
2740
2692
125
84
-
2807
2734
- 1
- Interpolation points
- 5b853f36-6ff2-4cab-932b-1fc49f517c99
- Vertices
- Vertices
- false
- da6e1a4f-7342-4c2d-ba53-b75ff40d63bb
- 1
-
2742
2694
50
20
-
2768.5
2704
- Curve degree
- 3e0c70d2-c5ae-4d39-9aed-b0b3540f767b
- Degree
- Degree
- false
- 0
-
2742
2714
50
20
-
2768.5
2724
- 1
- 1
- {0}
- 1
- Periodic curve
- 0b0227db-9aeb-4899-b796-20910564fc8b
- Periodic
- Periodic
- false
- 0
-
2742
2734
50
20
-
2768.5
2744
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 74c0b564-26ac-4175-af76-eed0523089d3
- KnotStyle
- KnotStyle
- false
- 0
-
2742
2754
50
20
-
2768.5
2764
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 2fda8a5c-a335-4f9c-b920-73287d3f5422
- Curve
- Curve
- false
- 0
-
2822
2694
41
26
-
2844
2707.333
- Curve length
- a352c05d-0573-4dc9-ae04-191182727d3c
- Length
- Length
- false
- 0
-
2822
2720
41
27
-
2844
2734
- Curve domain
- b744393d-0624-4eaa-87c1-50dd3b860c51
- Domain
- Domain
- false
- 0
-
2822
2747
41
27
-
2844
2760.667
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 1fc6e624-7c49-41f9-becf-1b629588cf31
- Create Material
- Create Material
-
2731
2569
144
104
-
2815
2621
- Colour of the diffuse channel
- e1eb9e3a-f03b-4fc0-a345-5991dc5820ae
- Diffuse
- Diffuse
- false
- 0
-
2733
2571
67
20
-
2768
2581
- 1
- 1
- {0}
-
255;214;214;214
- Colour of the specular highlight
- 9a84ad35-7dd9-4846-81bb-43c14ea38c15
- Specular
- Specular
- false
- 0
-
2733
2591
67
20
-
2768
2601
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- f667f166-c5fd-4a9c-8714-b482f16d0c90
- Emission
- Emission
- false
- 0
-
2733
2611
67
20
-
2768
2621
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- a6a79189-a0df-48b8-a360-cbbf5e96e255
- Transparency
- Transparency
- false
- 0
-
2733
2631
67
20
-
2768
2641
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 0ff4fbe8-f24f-4914-bbb0-03354dc14eef
- Shine
- Shine
- false
- 0
-
2733
2651
67
20
-
2768
2661
- 1
- 1
- {0}
- 100
- Resulting material
- 66a9c6af-38bc-4d3f-a19d-af81e5ae48cf
- Material
- Material
- false
- 0
-
2830
2571
43
100
-
2853
2621
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 3198adc1-4a36-4f37-aea4-eff18ec21c4b
- Custom Preview
- Custom Preview
-
2762
2507
82
44
-
2830
2529
- Geometry to preview
- true
- 326eedbe-9d1d-46a7-a68a-5de5a0ca6a5c
- Geometry
- Geometry
- false
- 2fda8a5c-a335-4f9c-b920-73287d3f5422
- 1
-
2764
2509
51
20
-
2791
2519
- The material override
- ec27fd3b-058e-4ef3-aeee-d5ab782d682f
- Material
- Material
- false
- 66a9c6af-38bc-4d3f-a19d-af81e5ae48cf
- 1
-
2764
2529
51
20
-
2791
2539
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 1fc6e624-7c49-41f9-becf-1b629588cf31
- 3198adc1-4a36-4f37-aea4-eff18ec21c4b
- 2
- ea9452ce-f391-4a3d-9fb3-f180e8edf584
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- d37fe9ae-0bf0-4e5b-b780-b8ffbbe9b87b
- Evaluate Length
- Evaluate Length
-
2731
905
144
64
-
2805
937
- Curve to evaluate
- 07060f14-c6ce-415a-a7e3-26d336871d87
- Curve
- Curve
- false
- 5c55b193-0023-4ff8-875f-0339cdcf9c91
- 1
-
2733
907
57
20
-
2763
917
- Length factor for curve evaluation
- 4c3318bf-fa32-4624-b087-ed4c29ce7d2f
- Length
- Length
- false
- 0
-
2733
927
57
20
-
2763
937
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 052a21ce-a9b3-4784-8d47-3d5f0cb90e27
- Normalized
- Normalized
- false
- 0
-
2733
947
57
20
-
2763
957
- 1
- 1
- {0}
- true
- Point at the specified length
- 4837c179-4459-4b6b-a179-288feb8ea049
- Point
- Point
- false
- 0
-
2820
907
53
20
-
2848
917
- Tangent vector at the specified length
- cc1c29d8-f214-4102-b61e-af2010d2d1bf
- Tangent
- Tangent
- false
- 0
-
2820
927
53
20
-
2848
937
- Curve parameter at the specified length
- 3bafbba0-e362-4f44-8749-bad014c79515
- Parameter
- Parameter
- false
- 0
-
2820
947
53
20
-
2848
957
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 66bf7298-94f5-4b70-9e91-e530523ea15e
- Interpolate
- Interpolate
-
2740
801
125
84
-
2807
843
- 1
- Interpolation points
- 3d9ce99d-7c33-4373-a86d-f6dd7ff0603d
- Vertices
- Vertices
- false
- 4837c179-4459-4b6b-a179-288feb8ea049
- 1
-
2742
803
50
20
-
2768.5
813
- Curve degree
- ec9a5bc7-e43a-40c0-86d2-b330c682b730
- Degree
- Degree
- false
- 0
-
2742
823
50
20
-
2768.5
833
- 1
- 1
- {0}
- 1
- Periodic curve
- e17b9f44-b3f9-47d6-bcb3-639799270b83
- Periodic
- Periodic
- false
- 0
-
2742
843
50
20
-
2768.5
853
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- c1f91afb-9db6-4499-b567-2397b7e769ec
- KnotStyle
- KnotStyle
- false
- 0
-
2742
863
50
20
-
2768.5
873
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 16088e98-5016-47cf-9e06-33de8403752e
- Curve
- Curve
- false
- 0
-
2822
803
41
26
-
2844
816.3333
- Curve length
- 9eb0f0ea-2965-4fc8-b572-ef5296567ba4
- Length
- Length
- false
- 0
-
2822
829
41
27
-
2844
843
- Curve domain
- b475e5c3-0c60-4abe-9d2e-5a898b27707b
- Domain
- Domain
- false
- 0
-
2822
856
41
27
-
2844
869.6666
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- b7947ef7-88a1-45b5-96cb-4bbca7365312
- Create Material
- Create Material
-
2731
678
144
104
-
2815
730
- Colour of the diffuse channel
- 40a5ebe3-7b8d-4c9b-920f-6f90ffe39f9c
- Diffuse
- Diffuse
- false
- 0
-
2733
680
67
20
-
2768
690
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- e57ee3f0-2d4e-47d4-9f76-165fa4feca9f
- Specular
- Specular
- false
- 0
-
2733
700
67
20
-
2768
710
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 1fa8318b-5c7e-4f2a-a16a-9c18f1eb1c96
- Emission
- Emission
- false
- 0
-
2733
720
67
20
-
2768
730
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- be82d0b7-6946-4b3f-8c47-30f33589bb4b
- Transparency
- Transparency
- false
- 0
-
2733
740
67
20
-
2768
750
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 705f39c6-8b1f-4839-874c-bab611bc7933
- Shine
- Shine
- false
- 0
-
2733
760
67
20
-
2768
770
- 1
- 1
- {0}
- 100
- Resulting material
- 29efeab3-518b-400b-8807-f7536d0764bb
- Material
- Material
- false
- 0
-
2830
680
43
100
-
2853
730
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 1c193ff0-05e8-47a8-96fc-bbafada6a625
- Custom Preview
- Custom Preview
-
2762
616
82
44
-
2830
638
- Geometry to preview
- true
- 026cae0e-93ad-480a-a99e-61ecb378d4c4
- Geometry
- Geometry
- false
- 16088e98-5016-47cf-9e06-33de8403752e
- 1
-
2764
618
51
20
-
2791
628
- The material override
- 68d59d9f-5684-43a8-aab8-2d3b87155155
- Material
- Material
- false
- 29efeab3-518b-400b-8807-f7536d0764bb
- 1
-
2764
638
51
20
-
2791
648
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b7947ef7-88a1-45b5-96cb-4bbca7365312
- 1c193ff0-05e8-47a8-96fc-bbafada6a625
- 2
- bb422305-f56f-490b-b653-544931c09145
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- a628cbff-e924-4087-b69a-6ae9e00ca171
- Evaluate Length
- Evaluate Length
-
2731
-858
144
64
-
2805
-826
- Curve to evaluate
- 7d680361-612f-4597-b92e-e7a39e433b82
- Curve
- Curve
- false
- 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
- 1
-
2733
-856
57
20
-
2763
-846
- Length factor for curve evaluation
- ecb7d58d-f12b-4083-a286-3c860ec02870
- Length
- Length
- false
- 0
-
2733
-836
57
20
-
2763
-826
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- e74be359-5cba-4fe2-b76e-d5984b3df516
- Normalized
- Normalized
- false
- 0
-
2733
-816
57
20
-
2763
-806
- 1
- 1
- {0}
- true
- Point at the specified length
- d2941202-8d0a-4dd6-bfc8-2c750ee6b352
- Point
- Point
- false
- 0
-
2820
-856
53
20
-
2848
-846
- Tangent vector at the specified length
- e2bb87aa-c7e9-49e3-94d1-b6bf4496d193
- Tangent
- Tangent
- false
- 0
-
2820
-836
53
20
-
2848
-826
- Curve parameter at the specified length
- 06fa28fb-0615-47b5-94dd-222c17617c39
- Parameter
- Parameter
- false
- 0
-
2820
-816
53
20
-
2848
-806
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- e02dc4a6-1ed5-4658-8ab5-2a962ae14431
- Interpolate
- Interpolate
-
2740
-962
125
84
-
2807
-920
- 1
- Interpolation points
- 1c02e629-be1d-464f-a454-fb753462143c
- Vertices
- Vertices
- false
- d2941202-8d0a-4dd6-bfc8-2c750ee6b352
- 1
-
2742
-960
50
20
-
2768.5
-950
- Curve degree
- e9fcd0c7-60d3-46b8-86cb-60060d76f560
- Degree
- Degree
- false
- 0
-
2742
-940
50
20
-
2768.5
-930
- 1
- 1
- {0}
- 1
- Periodic curve
- 6fb52cf2-f3cd-4410-8c7f-12b46722b7fd
- Periodic
- Periodic
- false
- 0
-
2742
-920
50
20
-
2768.5
-910
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 31efb708-8f46-42f6-9447-9c6fe45d1c6f
- KnotStyle
- KnotStyle
- false
- 0
-
2742
-900
50
20
-
2768.5
-890
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 28cadc91-34c8-4ad0-8a0c-e13862554c89
- Curve
- Curve
- false
- 0
-
2822
-960
41
26
-
2844
-946.6667
- Curve length
- 5c7d6f64-079a-4ae4-af56-0d6f63d06ed5
- Length
- Length
- false
- 0
-
2822
-934
41
27
-
2844
-920
- Curve domain
- 0c74b56c-c91f-4e48-8147-a035074f3602
- Domain
- Domain
- false
- 0
-
2822
-907
41
27
-
2844
-893.3334
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
- Create Material
- Create Material
-
2731
-1085
144
104
-
2815
-1033
- Colour of the diffuse channel
- fdaf6f4f-d379-4e03-8e14-1ae5af262073
- Diffuse
- Diffuse
- false
- 0
-
2733
-1083
67
20
-
2768
-1073
- 1
- 1
- {0}
-
255;199;199;199
- Colour of the specular highlight
- 2eb9cb51-059e-4efb-9574-6ab5d513b44b
- Specular
- Specular
- false
- 0
-
2733
-1063
67
20
-
2768
-1053
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- a37ffe1b-5ee8-46c8-afc4-b479eacfc6b2
- Emission
- Emission
- false
- 0
-
2733
-1043
67
20
-
2768
-1033
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 08bdb14d-4890-4185-bb41-eeb1d208541b
- Transparency
- Transparency
- false
- 0
-
2733
-1023
67
20
-
2768
-1013
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 209ab11b-1c07-4264-b2ea-3abddf2938fb
- Shine
- Shine
- false
- 0
-
2733
-1003
67
20
-
2768
-993
- 1
- 1
- {0}
- 100
- Resulting material
- 0465f47b-cc56-49f2-a4a4-1c51e7d15db0
- Material
- Material
- false
- 0
-
2830
-1083
43
100
-
2853
-1033
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 4793db3b-823e-4fc7-9363-44884123053d
- Custom Preview
- Custom Preview
-
2762
-1147
82
44
-
2830
-1125
- Geometry to preview
- true
- ee4b8549-14aa-4c33-ba01-ded1f5e8b6f1
- Geometry
- Geometry
- false
- 28cadc91-34c8-4ad0-8a0c-e13862554c89
- 1
-
2764
-1145
51
20
-
2791
-1135
- The material override
- feef5d5d-af6d-46de-bbd9-9be97643707e
- Material
- Material
- false
- 0465f47b-cc56-49f2-a4a4-1c51e7d15db0
- 1
-
2764
-1125
51
20
-
2791
-1115
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
- 4793db3b-823e-4fc7-9363-44884123053d
- 2
- 36470645-ff8a-4059-9665-a25ef0bc1bff
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 3e7cc59c-5d43-43d2-a2fc-3ff56e225a0a
- Evaluate Length
- Evaluate Length
-
2731
-2656
144
64
-
2805
-2624
- Curve to evaluate
- 5291eaad-112f-4858-b476-8a63ec73f9ab
- Curve
- Curve
- false
- 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
- 1
-
2733
-2654
57
20
-
2763
-2644
- Length factor for curve evaluation
- f531c7b0-3e27-4250-b0e1-ceadc8fd1bfc
- Length
- Length
- false
- 0
-
2733
-2634
57
20
-
2763
-2624
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 6bbfeab5-3df3-42c1-91d8-4cd62b4e9d7c
- Normalized
- Normalized
- false
- 0
-
2733
-2614
57
20
-
2763
-2604
- 1
- 1
- {0}
- true
- Point at the specified length
- 392dd8ca-50b1-4832-9c2a-70b3c5c08ace
- Point
- Point
- false
- 0
-
2820
-2654
53
20
-
2848
-2644
- Tangent vector at the specified length
- 0b49d03c-7253-4a06-aed5-ea6f4c64964f
- Tangent
- Tangent
- false
- 0
-
2820
-2634
53
20
-
2848
-2624
- Curve parameter at the specified length
- 39ee3f46-1864-4eb2-812d-8b03f5df68cd
- Parameter
- Parameter
- false
- 0
-
2820
-2614
53
20
-
2848
-2604
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 23406fea-d648-42ad-a9a6-9e6a5e871332
- Interpolate
- Interpolate
-
2740
-2760
125
84
-
2807
-2718
- 1
- Interpolation points
- 28909a9b-01ce-4f31-a16d-6322153d5598
- Vertices
- Vertices
- false
- 392dd8ca-50b1-4832-9c2a-70b3c5c08ace
- 1
-
2742
-2758
50
20
-
2768.5
-2748
- Curve degree
- 722d2441-f0fc-4557-a48d-18c999cf1aa6
- Degree
- Degree
- false
- 0
-
2742
-2738
50
20
-
2768.5
-2728
- 1
- 1
- {0}
- 1
- Periodic curve
- 9654d4c8-c749-4e5b-9f92-86217d9b75d1
- Periodic
- Periodic
- false
- 0
-
2742
-2718
50
20
-
2768.5
-2708
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 083481ca-4714-4e50-bbdb-975ab796d19d
- KnotStyle
- KnotStyle
- false
- 0
-
2742
-2698
50
20
-
2768.5
-2688
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- cf73f88f-731e-4747-b666-01db880b93b4
- Curve
- Curve
- false
- 0
-
2822
-2758
41
26
-
2844
-2744.667
- Curve length
- eab89f53-0c10-44ed-b69e-b76065c74526
- Length
- Length
- false
- 0
-
2822
-2732
41
27
-
2844
-2718
- Curve domain
- 74f2a6ab-5a65-4809-ae93-c553136974db
- Domain
- Domain
- false
- 0
-
2822
-2705
41
27
-
2844
-2691.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 6e9a05fd-a63f-46c8-8e9c-6c2090966168
- Create Material
- Create Material
-
2731
-2883
144
104
-
2815
-2831
- Colour of the diffuse channel
- 1b77150c-56dc-458c-96ed-001110e8d77e
- Diffuse
- Diffuse
- false
- 0
-
2733
-2881
67
20
-
2768
-2871
- 1
- 1
- {0}
-
255;191;191;191
- Colour of the specular highlight
- 3fc82104-3c05-4b51-8b46-e5715460b6d8
- Specular
- Specular
- false
- 0
-
2733
-2861
67
20
-
2768
-2851
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- bbb5f55a-b345-4752-a8f8-d6d623e4fdca
- Emission
- Emission
- false
- 0
-
2733
-2841
67
20
-
2768
-2831
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- d0b3ee2c-3902-4b56-9522-710d7ec8d8f5
- Transparency
- Transparency
- false
- 0
-
2733
-2821
67
20
-
2768
-2811
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1e93df78-1421-4a87-8d5e-81f66824b877
- Shine
- Shine
- false
- 0
-
2733
-2801
67
20
-
2768
-2791
- 1
- 1
- {0}
- 100
- Resulting material
- 4842bdcf-dc78-4ab6-8b3a-93e6f341072f
- Material
- Material
- false
- 0
-
2830
-2881
43
100
-
2853
-2831
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 5b1003b9-09b0-4476-8f1b-58290691bc28
- Custom Preview
- Custom Preview
-
2762
-2945
82
44
-
2830
-2923
- Geometry to preview
- true
- e4f0e23f-3d02-4af6-8ddd-9eb89b7f9270
- Geometry
- Geometry
- false
- cf73f88f-731e-4747-b666-01db880b93b4
- 1
-
2764
-2943
51
20
-
2791
-2933
- The material override
- 7de66a47-dc70-4ff5-a337-9a15eca19455
- Material
- Material
- false
- 4842bdcf-dc78-4ab6-8b3a-93e6f341072f
- 1
-
2764
-2923
51
20
-
2791
-2913
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 6e9a05fd-a63f-46c8-8e9c-6c2090966168
- 5b1003b9-09b0-4476-8f1b-58290691bc28
- 2
- dcb7528a-ecb2-455e-a7a9-bbc1925d8141
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 33d169ca-0346-4d9c-8215-357b9043028e
- 8dc32522-c682-4ff8-8b97-cbd1b23da515
- 7b86bb78-229e-4e92-8975-52158c20193e
- 81207625-50b7-466b-a33d-23c0e88f3ac9
- c9a63204-827d-4fc8-89ca-1e01148b0d3d
- 5
- d4852463-f9fa-4e3e-83d1-08d306826395
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 8500138e-2946-4f7c-be93-c3c7109b4c2f
- Evaluate Length
- Evaluate Length
-
2735
-4453
144
64
-
2809
-4421
- Curve to evaluate
- 1bd32a94-d147-45be-8a0f-1e4dce95c4a4
- Curve
- Curve
- false
- 2c9695ba-b315-4f78-85cd-abc3b3a78187
- 1
-
2737
-4451
57
20
-
2767
-4441
- Length factor for curve evaluation
- f024bb82-6011-45dd-bff5-acfe413195ee
- Length
- Length
- false
- 0
-
2737
-4431
57
20
-
2767
-4421
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 59ab80ba-f9eb-4352-b012-6afab2e1bc28
- Normalized
- Normalized
- false
- 0
-
2737
-4411
57
20
-
2767
-4401
- 1
- 1
- {0}
- true
- Point at the specified length
- 0dc9f2cb-fa29-4c8e-8186-db35e5abf4af
- Point
- Point
- false
- 0
-
2824
-4451
53
20
-
2852
-4441
- Tangent vector at the specified length
- a3e505b1-2bf5-4fb5-8813-cbaff30d53da
- Tangent
- Tangent
- false
- 0
-
2824
-4431
53
20
-
2852
-4421
- Curve parameter at the specified length
- b5d70c8b-a430-4da0-b488-c56572a09b2d
- Parameter
- Parameter
- false
- 0
-
2824
-4411
53
20
-
2852
-4401
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- cad9f703-3621-4a15-835e-3c62c5728043
- Interpolate
- Interpolate
-
2744
-4559
125
84
-
2811
-4517
- 1
- Interpolation points
- 5ed9bce7-4015-4df0-b8f5-0de94c1cbf95
- Vertices
- Vertices
- false
- 0dc9f2cb-fa29-4c8e-8186-db35e5abf4af
- 1
-
2746
-4557
50
20
-
2772.5
-4547
- Curve degree
- 151fcd36-e8e1-4f57-a353-9e136351155b
- Degree
- Degree
- false
- 0
-
2746
-4537
50
20
-
2772.5
-4527
- 1
- 1
- {0}
- 1
- Periodic curve
- 44d97364-de0d-42c1-b461-d89223876d34
- Periodic
- Periodic
- false
- 0
-
2746
-4517
50
20
-
2772.5
-4507
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 25ca8fff-1ec8-414d-95c3-374462bea822
- KnotStyle
- KnotStyle
- false
- 0
-
2746
-4497
50
20
-
2772.5
-4487
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 66845570-eed1-42c1-b834-160fef10c84f
- Curve
- Curve
- false
- 0
-
2826
-4557
41
26
-
2848
-4543.667
- Curve length
- 36c22447-bf2f-47c5-87e0-7772131609ba
- Length
- Length
- false
- 0
-
2826
-4531
41
27
-
2848
-4517
- Curve domain
- 531ca2f9-4502-433d-a846-7e6e38102384
- Domain
- Domain
- false
- 0
-
2826
-4504
41
27
-
2848
-4490.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 19800ae1-a0b6-4fea-a742-1c5c30324ec3
- Create Material
- Create Material
-
2735
-4682
144
104
-
2819
-4630
- Colour of the diffuse channel
- 798af4f9-0b91-4c67-a146-f8ad1602f43d
- Diffuse
- Diffuse
- false
- 0
-
2737
-4680
67
20
-
2772
-4670
- 1
- 1
- {0}
-
255;184;184;184
- Colour of the specular highlight
- 161df7f9-b363-4f5b-a5d8-62681df0dfb6
- Specular
- Specular
- false
- 0
-
2737
-4660
67
20
-
2772
-4650
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 22752c53-b4e2-4979-abb6-386367b72112
- Emission
- Emission
- false
- 0
-
2737
-4640
67
20
-
2772
-4630
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- b34e8871-494d-47ba-a649-f8b835b14530
- Transparency
- Transparency
- false
- 0
-
2737
-4620
67
20
-
2772
-4610
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- e3c15594-84a4-42e2-80f7-176381f104a4
- Shine
- Shine
- false
- 0
-
2737
-4600
67
20
-
2772
-4590
- 1
- 1
- {0}
- 100
- Resulting material
- 4acb491c-4b2c-4547-9db6-02d779e78cef
- Material
- Material
- false
- 0
-
2834
-4680
43
100
-
2857
-4630
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- ceffa153-887e-4858-9494-ff4113ed6ec8
- Custom Preview
- Custom Preview
-
2766
-4744
82
44
-
2834
-4722
- Geometry to preview
- true
- 365e9e83-b0ce-4edf-92d4-e61353683006
- Geometry
- Geometry
- false
- 66845570-eed1-42c1-b834-160fef10c84f
- 1
-
2768
-4742
51
20
-
2795
-4732
- The material override
- 195e77de-8ce9-40c3-940e-66add71fd5a7
- Material
- Material
- false
- 4acb491c-4b2c-4547-9db6-02d779e78cef
- 1
-
2768
-4722
51
20
-
2795
-4712
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 19800ae1-a0b6-4fea-a742-1c5c30324ec3
- ceffa153-887e-4858-9494-ff4113ed6ec8
- 2
- e9181e89-67db-453a-a90b-03cf875e54e4
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 1ed8af89-73d9-46fb-9f92-85e97b1954ab
- Evaluate Length
- Evaluate Length
-
2736
-6254
144
64
-
2810
-6222
- Curve to evaluate
- 317be7dc-eb4a-4b04-a50a-3d099775df9f
- Curve
- Curve
- false
- 6887d1d4-79dc-484f-ba0b-cbc72eeea403
- 1
-
2738
-6252
57
20
-
2768
-6242
- Length factor for curve evaluation
- cf6786f7-c209-49b2-9c1d-b5738c2930bf
- Length
- Length
- false
- 0
-
2738
-6232
57
20
-
2768
-6222
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 5a5a4805-c174-42bf-b1c2-2dabbf02147b
- Normalized
- Normalized
- false
- 0
-
2738
-6212
57
20
-
2768
-6202
- 1
- 1
- {0}
- true
- Point at the specified length
- 5fcc74ba-0e29-4f6c-85df-f1a715ae68be
- Point
- Point
- false
- 0
-
2825
-6252
53
20
-
2853
-6242
- Tangent vector at the specified length
- 73cb7946-f977-44ec-b1c4-35587265ebd7
- Tangent
- Tangent
- false
- 0
-
2825
-6232
53
20
-
2853
-6222
- Curve parameter at the specified length
- 6d9240b7-36e9-49be-9f55-bc39647103ec
- Parameter
- Parameter
- false
- 0
-
2825
-6212
53
20
-
2853
-6202
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 35cf69c6-1a64-47f3-beee-9ffa3d777872
- Interpolate
- Interpolate
-
2745
-6360
125
84
-
2812
-6318
- 1
- Interpolation points
- 0e79b795-d38e-4540-9f76-3cae416aa75d
- Vertices
- Vertices
- false
- 5fcc74ba-0e29-4f6c-85df-f1a715ae68be
- 1
-
2747
-6358
50
20
-
2773.5
-6348
- Curve degree
- 023486d2-3d90-4c94-85a8-6ec7e26d3f54
- Degree
- Degree
- false
- 0
-
2747
-6338
50
20
-
2773.5
-6328
- 1
- 1
- {0}
- 1
- Periodic curve
- f0bd6571-6ddf-4f9a-9010-6afb2db35516
- Periodic
- Periodic
- false
- 0
-
2747
-6318
50
20
-
2773.5
-6308
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- c29a4089-d1df-4eb7-87b8-5760006cd8f1
- KnotStyle
- KnotStyle
- false
- 0
-
2747
-6298
50
20
-
2773.5
-6288
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 3d8a624c-87ce-442d-bd4d-01088ae62c90
- Curve
- Curve
- false
- 0
-
2827
-6358
41
26
-
2849
-6344.667
- Curve length
- 5bf8f24a-c210-4f9f-b69d-6bc3edeb020a
- Length
- Length
- false
- 0
-
2827
-6332
41
27
-
2849
-6318
- Curve domain
- b2911b12-0c31-412f-b48e-4c87f541b21d
- Domain
- Domain
- false
- 0
-
2827
-6305
41
27
-
2849
-6291.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 9cb83053-a3f1-4d08-bad8-b0b6d4352272
- Create Material
- Create Material
-
2736
-6483
144
104
-
2820
-6431
- Colour of the diffuse channel
- e4ebfa9c-8dff-4e98-9e81-9e94f8912f89
- Diffuse
- Diffuse
- false
- 0
-
2738
-6481
67
20
-
2773
-6471
- 1
- 1
- {0}
-
255;176;176;176
- Colour of the specular highlight
- a45bbbd8-5417-4fa8-a90e-537d5562f7ff
- Specular
- Specular
- false
- 0
-
2738
-6461
67
20
-
2773
-6451
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 74ef5c1a-cb30-48a5-9045-fc4ac82ef322
- Emission
- Emission
- false
- 0
-
2738
-6441
67
20
-
2773
-6431
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 3064c491-155d-4541-a63b-4d60abb4fd63
- Transparency
- Transparency
- false
- 0
-
2738
-6421
67
20
-
2773
-6411
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 8a33f754-f6af-46d8-9c3b-b4e8a215f771
- Shine
- Shine
- false
- 0
-
2738
-6401
67
20
-
2773
-6391
- 1
- 1
- {0}
- 100
- Resulting material
- 11050eac-b82c-4dfe-b312-13b0f6b7bd38
- Material
- Material
- false
- 0
-
2835
-6481
43
100
-
2858
-6431
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- b0dc11e3-028a-4c68-abf7-dc7f220168c2
- Custom Preview
- Custom Preview
-
2767
-6545
82
44
-
2835
-6523
- Geometry to preview
- true
- cdc9bf03-a4a6-4d0b-8389-a75eda5e95c6
- Geometry
- Geometry
- false
- 3d8a624c-87ce-442d-bd4d-01088ae62c90
- 1
-
2769
-6543
51
20
-
2796
-6533
- The material override
- 2a5f5d5d-72d3-442e-996f-30723a10cdf5
- Material
- Material
- false
- 11050eac-b82c-4dfe-b312-13b0f6b7bd38
- 1
-
2769
-6523
51
20
-
2796
-6513
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9cb83053-a3f1-4d08-bad8-b0b6d4352272
- b0dc11e3-028a-4c68-abf7-dc7f220168c2
- 2
- 957995f5-c366-463c-b3ce-f70bdb0ab1f3
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- f204596d-0539-42bc-b3c3-7a6c11f93504
- Evaluate Length
- Evaluate Length
-
2735
-8087
144
64
-
2809
-8055
- Curve to evaluate
- 5d07980d-9b5d-4839-9837-673407fab7e2
- Curve
- Curve
- false
- 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
- 1
-
2737
-8085
57
20
-
2767
-8075
- Length factor for curve evaluation
- 4fba7df1-34b1-4fae-842c-94ab12f833d3
- Length
- Length
- false
- 0
-
2737
-8065
57
20
-
2767
-8055
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 4da6ac45-93c0-4778-bf44-2170ee05988f
- Normalized
- Normalized
- false
- 0
-
2737
-8045
57
20
-
2767
-8035
- 1
- 1
- {0}
- true
- Point at the specified length
- ac7b3481-1027-4677-86c0-0467cd2f6b29
- Point
- Point
- false
- 0
-
2824
-8085
53
20
-
2852
-8075
- Tangent vector at the specified length
- 9b09da1b-d90b-4e0e-8413-616830d9269b
- Tangent
- Tangent
- false
- 0
-
2824
-8065
53
20
-
2852
-8055
- Curve parameter at the specified length
- aa85df81-6dd0-4755-83a0-661676b646df
- Parameter
- Parameter
- false
- 0
-
2824
-8045
53
20
-
2852
-8035
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 4188728e-68e2-4d42-82f2-19bb6c40b380
- Interpolate
- Interpolate
-
2744
-8193
125
84
-
2811
-8151
- 1
- Interpolation points
- 20e3d53a-42b1-4313-b071-46dba1b25a71
- Vertices
- Vertices
- false
- ac7b3481-1027-4677-86c0-0467cd2f6b29
- 1
-
2746
-8191
50
20
-
2772.5
-8181
- Curve degree
- 6ce624b9-0b32-4b5c-a581-6fc102f9456f
- Degree
- Degree
- false
- 0
-
2746
-8171
50
20
-
2772.5
-8161
- 1
- 1
- {0}
- 1
- Periodic curve
- 4f7b9876-037c-489e-a1ee-d69840321db6
- Periodic
- Periodic
- false
- 0
-
2746
-8151
50
20
-
2772.5
-8141
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- c75613a9-6ea8-4f77-a3e5-6e2d236bed31
- KnotStyle
- KnotStyle
- false
- 0
-
2746
-8131
50
20
-
2772.5
-8121
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- b577260e-1f33-4ead-9e5e-d3fd4bde379a
- Curve
- Curve
- false
- 0
-
2826
-8191
41
26
-
2848
-8177.667
- Curve length
- 8c82ae2b-09c9-4079-ac43-d59ad8341e81
- Length
- Length
- false
- 0
-
2826
-8165
41
27
-
2848
-8151
- Curve domain
- 52e29a2f-1c7b-4db7-8117-c0141924e05e
- Domain
- Domain
- false
- 0
-
2826
-8138
41
27
-
2848
-8124.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 844999aa-f0e7-431f-b0df-673861258066
- Create Material
- Create Material
-
2735
-8316
144
104
-
2819
-8264
- Colour of the diffuse channel
- 2fabe4e0-a17b-4cc8-8636-c46f20d35512
- Diffuse
- Diffuse
- false
- 0
-
2737
-8314
67
20
-
2772
-8304
- 1
- 1
- {0}
-
255;168;168;168
- Colour of the specular highlight
- 6e381911-f2cd-4b19-8843-4a7b22a3c5b8
- Specular
- Specular
- false
- 0
-
2737
-8294
67
20
-
2772
-8284
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b57b9b21-e4a7-4532-9d71-e0c219a7f3ba
- Emission
- Emission
- false
- 0
-
2737
-8274
67
20
-
2772
-8264
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 1a3bb167-f4f0-42a7-a29d-15464d045612
- Transparency
- Transparency
- false
- 0
-
2737
-8254
67
20
-
2772
-8244
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- a67b3a4e-371b-4da9-8e68-d995d117f98e
- Shine
- Shine
- false
- 0
-
2737
-8234
67
20
-
2772
-8224
- 1
- 1
- {0}
- 100
- Resulting material
- 13d86a2c-22d1-4f55-9666-48646c3be46e
- Material
- Material
- false
- 0
-
2834
-8314
43
100
-
2857
-8264
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- aced67d1-3056-41dd-ae2f-76dd69e0987e
- Custom Preview
- Custom Preview
-
2766
-8378
82
44
-
2834
-8356
- Geometry to preview
- true
- c9c40787-4cec-4597-b4a0-acedae807771
- Geometry
- Geometry
- false
- b577260e-1f33-4ead-9e5e-d3fd4bde379a
- 1
-
2768
-8376
51
20
-
2795
-8366
- The material override
- 557aa6cd-3da5-442a-aaf3-bee6d3c4fa2a
- Material
- Material
- false
- 13d86a2c-22d1-4f55-9666-48646c3be46e
- 1
-
2768
-8356
51
20
-
2795
-8346
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 844999aa-f0e7-431f-b0df-673861258066
- aced67d1-3056-41dd-ae2f-76dd69e0987e
- 2
- 820d65ee-b16e-41e8-bf3f-4da0ede194da
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 849853a5-9fa1-44dc-a6cb-6a6bd83c05a7
- Evaluate Length
- Evaluate Length
-
2734
-9921
144
64
-
2808
-9889
- Curve to evaluate
- e0f26723-e6ff-4ce9-b582-f65ee6484a2a
- Curve
- Curve
- false
- a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
- 1
-
2736
-9919
57
20
-
2766
-9909
- Length factor for curve evaluation
- 681bc8ed-8583-4ef7-98fd-e37c031a5189
- Length
- Length
- false
- 0
-
2736
-9899
57
20
-
2766
-9889
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- eb5fc821-c2da-4bae-b1ec-e9520fb0ce91
- Normalized
- Normalized
- false
- 0
-
2736
-9879
57
20
-
2766
-9869
- 1
- 1
- {0}
- true
- Point at the specified length
- b579a4ce-06f7-4362-ab8d-dcced9e2a355
- Point
- Point
- false
- 0
-
2823
-9919
53
20
-
2851
-9909
- Tangent vector at the specified length
- 901e95ff-01af-4061-8ffd-d8fe531bd4a7
- Tangent
- Tangent
- false
- 0
-
2823
-9899
53
20
-
2851
-9889
- Curve parameter at the specified length
- 5b6fd995-922d-4361-891b-63b05b0af517
- Parameter
- Parameter
- false
- 0
-
2823
-9879
53
20
-
2851
-9869
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- db4363b4-d574-4300-84c6-5450a67bacc0
- Interpolate
- Interpolate
-
2743
-10027
125
84
-
2810
-9985
- 1
- Interpolation points
- e67764f8-b843-4b5f-bda6-7642b40f29e6
- Vertices
- Vertices
- false
- b579a4ce-06f7-4362-ab8d-dcced9e2a355
- 1
-
2745
-10025
50
20
-
2771.5
-10015
- Curve degree
- a4cad95c-dfd4-4581-8d89-b20327c89a1e
- Degree
- Degree
- false
- 0
-
2745
-10005
50
20
-
2771.5
-9995
- 1
- 1
- {0}
- 1
- Periodic curve
- 1cb94c23-c004-45a3-924b-67f12eca2f39
- Periodic
- Periodic
- false
- 0
-
2745
-9985
50
20
-
2771.5
-9975
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- bd640419-7486-46af-91f3-bc0a191b0cd4
- KnotStyle
- KnotStyle
- false
- 0
-
2745
-9965
50
20
-
2771.5
-9955
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- ec5436f0-1b36-4ea0-81a5-dc0d95baba79
- Curve
- Curve
- false
- 0
-
2825
-10025
41
26
-
2847
-10011.67
- Curve length
- cb23c111-31ed-4d24-a5df-095fee07f63b
- Length
- Length
- false
- 0
-
2825
-9999
41
27
-
2847
-9985
- Curve domain
- 28600d5d-d27b-4fc7-92e2-d6b582f95712
- Domain
- Domain
- false
- 0
-
2825
-9972
41
27
-
2847
-9958.334
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- a72749a1-3b33-4ce0-9980-144fc2c4dfd6
- Create Material
- Create Material
-
2734
-10150
144
104
-
2818
-10098
- Colour of the diffuse channel
- c5926cab-4646-449b-904f-b2af563a3fee
- Diffuse
- Diffuse
- false
- 0
-
2736
-10148
67
20
-
2771
-10138
- 1
- 1
- {0}
-
255;161;161;161
- Colour of the specular highlight
- 6fc6c729-2250-4c8f-84d7-bc281aac89f1
- Specular
- Specular
- false
- 0
-
2736
-10128
67
20
-
2771
-10118
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b16c46b9-0e96-4ad5-8781-82c985711738
- Emission
- Emission
- false
- 0
-
2736
-10108
67
20
-
2771
-10098
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 940ae8b1-661d-4b15-a408-4a4a2eb2e3b3
- Transparency
- Transparency
- false
- 0
-
2736
-10088
67
20
-
2771
-10078
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1ab3380c-8e2c-471a-bc81-cef12c23e22f
- Shine
- Shine
- false
- 0
-
2736
-10068
67
20
-
2771
-10058
- 1
- 1
- {0}
- 100
- Resulting material
- fd4cd563-5745-49a3-a2b6-97794306ac59
- Material
- Material
- false
- 0
-
2833
-10148
43
100
-
2856
-10098
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- d890eaf4-c21c-45e8-ac03-75c58ccbdf99
- Custom Preview
- Custom Preview
-
2765
-10212
82
44
-
2833
-10190
- Geometry to preview
- true
- 49248837-c4b5-4f81-a8c4-2a5f6db96f58
- Geometry
- Geometry
- false
- ec5436f0-1b36-4ea0-81a5-dc0d95baba79
- 1
-
2767
-10210
51
20
-
2794
-10200
- The material override
- 92d87252-f0c4-46f8-9a9a-d4cef4af76a1
- Material
- Material
- false
- fd4cd563-5745-49a3-a2b6-97794306ac59
- 1
-
2767
-10190
51
20
-
2794
-10180
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a72749a1-3b33-4ce0-9980-144fc2c4dfd6
- d890eaf4-c21c-45e8-ac03-75c58ccbdf99
- 2
- 717103e5-0ed1-4969-ae88-8af3c23de426
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f77a5006-5ba9-4819-b46f-c7f246c09821
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 2.0000000
-
4189
-376
250
20
-
4189.567
-375.0449
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0437500000
-
4195
1022
250
20
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.05635200000
-
4205
3368
250
20
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2cf94056-6af5-459d-9d0b-edb8f8adea38
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.100000
-
4183
-4601
250
20
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- d20d51a6-0c15-4c64-97de-546619bd377a
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.300000
-
4176
-7571
250
20
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 55afe88e-7557-479e-9e1c-b4203f6192a6
- Relay
- false
- 210595a4-1d10-4344-bd58-627eab3a32ef
- 1
-
3776
10414
40
16
-
3796
10422
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4227074c-5231-425a-b277-d5164885ffc0
- Relay
- false
- 9ceab0bb-ef18-4345-9200-ef7c70eb6654
- 1
-
3786
10191
40
16
-
3806
10199
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0c9278c9-41ff-4720-aab1-bab44aeb2749
- Scale
- Scale
-
3735
10227
154
64
-
3819
10259
- Base geometry
- 78ba6dbf-381a-4729-9459-5e3d95034b04
- Geometry
- Geometry
- true
- ae3f2420-9704-498d-850c-ca28fe138783
- 1
-
3737
10229
67
20
-
3780
10239
- Center of scaling
- fdc2ecf5-677c-44bf-8e7c-34a2b894854d
- Center
- Center
- false
- 0
-
3737
10249
67
20
-
3780
10259
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- a27fb2b2-c82a-421e-9dc2-95b7ed6cb938
- 2^X
- Factor
- Factor
- false
- 710ff60f-7299-433f-bde9-7885ee19b9ca
- 1
-
3737
10269
67
20
-
3780
10279
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 9ceab0bb-ef18-4345-9200-ef7c70eb6654
- Geometry
- Geometry
- false
- 0
-
3834
10229
53
30
-
3862
10244
- Transformation data
- 514b4484-f8d9-4fff-b013-f63c889560be
- Transform
- Transform
- false
- 0
-
3834
10259
53
30
-
3862
10274
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 710ff60f-7299-433f-bde9-7885ee19b9ca
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 16.00000
-
3681
10311
250
20
-
3681.04
10311.38
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5d91aef4-3441-4a3b-9dc2-547980473cf4
- 85ee6eeb-392d-4c79-b3c5-af1bf84e29a9
- 2
- 9260f95b-108f-4253-b9a3-822f423289c2
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 0c9278c9-41ff-4720-aab1-bab44aeb2749
- 710ff60f-7299-433f-bde9-7885ee19b9ca
- 2
- ca2d1f68-0d4b-4b97-ba76-467d79e8b927
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 1/X
- a598cad4-d1e2-46ad-bc9b-a7dbf66bbaf0
- Expression
-
3765
11625
79
28
-
3807
11639
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 627964b4-e998-497f-a4bc-4001f97662e5
- Variable X
- X
- true
- 26d9c13f-79ff-4367-baad-c775d2229988
- 1
-
3767
11627
14
24
-
3775.5
11639
- Result of expression
- 741061e5-8838-40ff-af91-077bcc0dd190
- Result
- false
- 0
-
3833
11627
9
24
-
3839
11639
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a45e2b7f-bd84-46c3-ae14-f8de9c721e80
- 2be13947-d202-4d6c-8661-bb52cdd4559b
- c11491fd-5330-4b29-89af-d635ad183d27
- 47b940f0-6a69-42c7-b488-28d4fcf07751
- 73d58913-c57b-480b-a2d6-b364fe4a8709
- 00eba88b-f92d-486d-968c-ef25222e80f8
- 6d2839a1-e43f-4aae-8139-56c8a3457cb7
- 60fc7e6e-0905-4df6-a879-c9490492de11
- c670c4f7-058a-46e7-8fed-cf9ea24de8be
- 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
- 97ee1972-ee6d-4dc7-aa10-315de104a993
- 5d23a2dd-2bae-4676-ac88-a3ffa5aca37c
- 78fe7cba-ec07-4f12-a980-d38d4fe178df
- 1a4eb693-9f0e-41c4-bb80-c90308becfb0
- 711ff170-ddf9-4a8e-b98f-8b34fe1af746
- 2760faa9-211f-407b-956c-0955bc0da208
- 3f86c888-3f3e-4db9-8579-4ec92539d7e9
- a755fe4d-5521-4a0b-a268-02d5cfd8903f
- 9ca8501c-7a2b-4b0c-ac18-31e182203589
- 46da597d-016c-4a41-ba7f-97e839de7a7c
- 7ce16bf7-e715-456c-b186-116f096c7300
- 626883ba-251e-4f51-b191-919abecd3c18
- f7d9b247-c182-4e98-ac93-bb39b82182b1
- 832096f9-889a-4701-b1d2-a84dba0f1b0e
- 10940583-c6ca-4b99-bd7b-959739d9d2e3
- 34a4ce13-1c47-4398-9b9a-a0fde71ccbdc
- f2660d87-cb05-456f-95ae-bcc6d758382c
- 032c37df-7075-4d52-b69b-071ee5566de8
- f9b75dc3-fe04-4057-9984-d294d2ec4e12
- be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
- c36315ab-000f-431f-956e-8d3f39ccd5eb
- 49431070-a862-4701-a56c-d3b9d5b4ca7e
- 850f77e3-253a-4758-833e-f86700b16848
- e83325b8-c6c9-40d4-b320-79b7dca87819
- a6959f7e-1cb0-44c3-9f28-d81ad07ed447
- 50861111-0562-4cd5-87f4-576cac894cf2
- cda3bf8c-fb84-4a4b-b4b7-d2247839716a
- f0284d88-cbb4-4fbe-a78d-06f04695f526
- 1af46a8d-1db1-4274-90fa-39f1d18d58d1
- 711a318e-c3c4-40bd-bd83-91013b79755b
- 022a4e61-381f-4954-9ab4-dd8f7cb690cc
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- 712a4212-4aab-445a-a323-f0a1cc93baf0
- e420d856-6202-42cf-af09-faeb400ac89f
- 10cca06e-aec1-424f-a900-2a2f5c79ab18
- 497375b1-6f36-4c5e-8902-1f8499a6c89b
- b7a44b6d-2dd1-4d2a-afef-c4948f723e1a
- 3c3cced9-57f0-45d0-8bda-c9399c010249
- 4715df04-415c-41cc-8f14-73dbdc59b1b9
- 1650bed7-08da-4fe8-bf2b-c93b3838b2d0
- 4a024c0a-c68d-4474-af3e-5d0033cead14
- 3e42318e-cbf7-4476-998b-46550a4d3d82
- 96cc284a-abce-42d7-be47-574463189553
- 44f07163-efd6-4af3-b1fd-ffe3391bdefe
- 10d04f0c-09d7-4141-afa2-68af0490cc1e
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 068e8deb-57ea-4dba-a25e-bb297e4df76e
- 90f1cab6-4df3-4148-8b42-c9426d3a090b
- 4485ea51-adcd-4a4f-b040-963091ac0ec0
- 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
- dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
- 718407b4-0abc-4bca-a225-a6fae160c6ce
- 62
- 776abed5-1ba5-429e-8b57-6c9b3db2624d
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 46da597d-016c-4a41-ba7f-97e839de7a7c
- 1
- a45e2b7f-bd84-46c3-ae14-f8de9c721e80
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c11491fd-5330-4b29-89af-d635ad183d27
- 47b940f0-6a69-42c7-b488-28d4fcf07751
- 73d58913-c57b-480b-a2d6-b364fe4a8709
- 00eba88b-f92d-486d-968c-ef25222e80f8
- 6d2839a1-e43f-4aae-8139-56c8a3457cb7
- 60fc7e6e-0905-4df6-a879-c9490492de11
- c670c4f7-058a-46e7-8fed-cf9ea24de8be
- 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
- 5d23a2dd-2bae-4676-ac88-a3ffa5aca37c
- 97ee1972-ee6d-4dc7-aa10-315de104a993
- a45e2b7f-bd84-46c3-ae14-f8de9c721e80
- dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
- 718407b4-0abc-4bca-a225-a6fae160c6ce
- 13
- 2be13947-d202-4d6c-8661-bb52cdd4559b
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- c11491fd-5330-4b29-89af-d635ad183d27
- Duplicate Data
- Duplicate Data
-
3930
16432
104
64
-
3989
16464
- 1
- Data to duplicate
- 212d2ce5-1141-4df6-8677-c37360c7c035
- Data
- Data
- false
- cc9ab0d6-775f-4267-a313-c957dc638053
- 1
-
3932
16434
42
20
-
3954.5
16444
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- f466188a-7338-4fbb-b7d6-4d637ad0d28c
- Number
- Number
- false
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 1
-
3932
16454
42
20
-
3954.5
16464
- 1
- 1
- {0}
- 500
- Retain list order
- b4c80a08-78e7-41d6-b438-744bb1f496e2
- Order
- Order
- false
- 0
-
3932
16474
42
20
-
3954.5
16484
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 99042d74-0e8b-438f-ab47-ce22a8e27a51
- Data
- Data
- false
- 0
-
4004
16434
28
60
-
4019.5
16464
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 47b940f0-6a69-42c7-b488-28d4fcf07751
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
3925
15473
116
44
-
3986
15495
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 15c17e24-4798-41af-a693-12c59c59aaea
- Forward
- Forward
- true
- 1
- true
- 99042d74-0e8b-438f-ab47-ce22a8e27a51
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
3927
15475
44
20
-
3950.5
15485
- 1
- false
- Script Variable Left
- da61bd1f-5977-4b7b-9e05-71dd9cd6bc59
- Left
- Left
- true
- 1
- true
- 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
3927
15495
44
20
-
3950.5
15505
- Print, Reflect and Error streams
- 6fd06940-4df2-4317-8c29-2f9e22d5eb3e
- Output
- Output
- false
- 0
-
4001
15475
38
20
-
4021.5
15485
- Output parameter Points
- 18e384ae-d247-44fc-bc3d-f479f1740b7a
- Points
- Points
- false
- 0
-
4001
15495
38
20
-
4021.5
15505
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 73d58913-c57b-480b-a2d6-b364fe4a8709
- Point
- Point
- false
- 36d249d4-0f1a-493f-a5f7-cb03a891e629
- 1
-
3943
15171
50
24
-
3968
15183.48
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 00eba88b-f92d-486d-968c-ef25222e80f8
- Series
- Series
-
3933
15941
101
64
-
3983
15973
- First number in the series
- d8dccfe6-8012-4e19-9658-782635b2501b
- Start
- Start
- false
- 0
-
3935
15943
33
20
-
3953
15953
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 207360ac-23e0-4183-8a79-dd9f9e009e40
- Step
- Step
- false
- 10b16b4e-dda0-4767-ae4d-33ca60339161
- 1
-
3935
15963
33
20
-
3953
15973
- 1
- 1
- {0}
- 1
- Number of values in the series
- c9d27e41-6e66-4f2e-b8b6-85cf9e0d546f
- Count
- Count
- false
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 1
-
3935
15983
33
20
-
3953
15993
- 1
- Series of numbers
- c67311cc-dbc4-46e5-829b-e623c45b3537
- Series
- Series
- false
- 0
-
3998
15943
34
60
-
4016.5
15973
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 6d2839a1-e43f-4aae-8139-56c8a3457cb7
- Number Slider
-
- false
- 0
-
3910
16605
150
20
-
3910.028
16605.26
- 0
- 1
- 0
- 65536
- 0
- 0
- 256
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 60fc7e6e-0905-4df6-a879-c9490492de11
- Radians
- Radians
-
3923
16066
120
28
-
3984
16080
- Angle in degrees
- d3a19c9c-8033-4485-bb74-197a488edd7d
- Degrees
- Degrees
- false
- c4bdd32b-2f4b-4512-97a3-269f4e7691df
- 1
-
3925
16068
44
24
-
3948.5
16080
- Angle in radians
- 10b16b4e-dda0-4767-ae4d-33ca60339161
- Radians
- Radians
- false
- 0
-
3999
16068
42
24
-
4021.5
16080
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c670c4f7-058a-46e7-8fed-cf9ea24de8be
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00000007490
-
3856
16378
250
20
-
3856.99
16378.15
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- 97ee1972-ee6d-4dc7-aa10-315de104a993
- Interpolate (t)
- Interpolate (t)
-
3900
14893
144
84
-
3986
14935
- 1
- Interpolation points
- 1241badb-44bf-417a-b788-d8fabac4ca70
- Vertices
- Vertices
- false
- 3fa4d838-4e57-49ec-8096-0e35d0a39602
- 1
-
3902
14895
69
20
-
3938
14905
- Tangent at start of curve
- ea550354-4d07-49f7-95a5-ccaf94882dd8
- Tangent Start
- Tangent Start
- false
- 0
-
3902
14915
69
20
-
3938
14925
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- e8f5a884-6055-4049-b250-b916788cbb59
- Tangent End
- Tangent End
- false
- 0
-
3902
14935
69
20
-
3938
14945
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 2fb587a4-6c49-49a7-b689-eeb5262517bb
- KnotStyle
- KnotStyle
- false
- 0
-
3902
14955
69
20
-
3938
14965
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
- Curve
- Curve
- false
- 0
-
4001
14895
41
26
-
4023
14908.33
- Curve length
- e0fd3b44-4702-46dd-9652-eb3dbe74bd68
- Length
- Length
- false
- 0
-
4001
14921
41
27
-
4023
14935
- Curve domain
- 31fbcd10-a7f2-4bbf-b4b1-aaacd1eaffda
- Domain
- Domain
- false
- 0
-
4001
14948
41
27
-
4023
14961.67
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c11491fd-5330-4b29-89af-d635ad183d27
- 47b940f0-6a69-42c7-b488-28d4fcf07751
- 73d58913-c57b-480b-a2d6-b364fe4a8709
- 00eba88b-f92d-486d-968c-ef25222e80f8
- 6d2839a1-e43f-4aae-8139-56c8a3457cb7
- 60fc7e6e-0905-4df6-a879-c9490492de11
- c670c4f7-058a-46e7-8fed-cf9ea24de8be
- 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
- 5feac64c-534d-4c48-92aa-1f8db786693c
- c4bdd32b-2f4b-4512-97a3-269f4e7691df
- 10
- 5d23a2dd-2bae-4676-ac88-a3ffa5aca37c
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 78fe7cba-ec07-4f12-a980-d38d4fe178df
- Evaluate Length
- Evaluate Length
-
3900
14725
144
64
-
3974
14757
- Curve to evaluate
- cefbf56b-09bc-4c52-9336-4d2f53998e9b
- Curve
- Curve
- false
- 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
- 1
-
3902
14727
57
20
-
3932
14737
- Length factor for curve evaluation
- ff9ae3ac-c6cd-4a44-85a8-3b9dda0c2f7a
- Length
- Length
- false
- 0
-
3902
14747
57
20
-
3932
14757
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- ef0b3dd5-57bf-4caa-aec2-d45a6017d2f6
- Normalized
- Normalized
- false
- 0
-
3902
14767
57
20
-
3932
14777
- 1
- 1
- {0}
- true
- Point at the specified length
- a1e3744f-973b-4d9d-9dd4-4d485d002b69
- Point
- Point
- false
- 0
-
3989
14727
53
20
-
4017
14737
- Tangent vector at the specified length
- 2f45b093-16ef-4f43-bd20-d292bb0a199e
- Tangent
- Tangent
- false
- 0
-
3989
14747
53
20
-
4017
14757
- Curve parameter at the specified length
- 8873a632-441a-4b05-8539-072cd43d835e
- Parameter
- Parameter
- false
- 0
-
3989
14767
53
20
-
4017
14777
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 1a4eb693-9f0e-41c4-bb80-c90308becfb0
- Mirror
- Mirror
-
3903
14663
138
44
-
3971
14685
- Base geometry
- 6e16e1c9-5c5f-4ca3-b317-f8e95d655379
- Geometry
- Geometry
- true
- 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
- 1
-
3905
14665
51
20
-
3932
14675
- Mirror plane
- 6931536e-6cd7-42d5-a620-67a80c7dc285
- Plane
- Plane
- false
- 6e1d81c0-2717-4165-8880-da73cb47d0f3
- 1
-
3905
14685
51
20
-
3932
14695
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 73835f60-b27b-41d5-8317-d6b1f68e1468
- Geometry
- Geometry
- false
- 0
-
3986
14665
53
20
-
4014
14675
- Transformation data
- 7c20ddcd-0b54-43f9-b14b-b3c7e0bd4a48
- Transform
- Transform
- false
- 0
-
3986
14685
53
20
-
4014
14695
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 711ff170-ddf9-4a8e-b98f-8b34fe1af746
- Line SDL
- Line SDL
-
3919
14809
106
64
-
3983
14841
- Line start point
- ed327cca-d332-4e15-a0c5-0aa042b1d777
- Start
- Start
- false
- a1e3744f-973b-4d9d-9dd4-4d485d002b69
- 1
-
3921
14811
47
20
-
3946
14821
- Line tangent (direction)
- e12c95e6-e01f-478f-a6b5-ff0155067431
- Direction
- Direction
- false
- 2f45b093-16ef-4f43-bd20-d292bb0a199e
- 1
-
3921
14831
47
20
-
3946
14841
- 1
- 1
- {0}
-
0
0
1
- Line length
- 76e8344a-287f-45ec-9862-5b5d5b0a0373
- Length
- Length
- false
- 0
-
3921
14851
47
20
-
3946
14861
- 1
- 1
- {0}
- 1
- Line segment
- 6e1d81c0-2717-4165-8880-da73cb47d0f3
- Line
- Line
- false
- 0
-
3998
14811
25
60
-
4012
14841
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 2760faa9-211f-407b-956c-0955bc0da208
- Join Curves
- Join Curves
-
3913
14601
118
44
-
3976
14623
- 1
- Curves to join
- fcaf2b81-38b4-4ea6-96c3-9dfbbe12da3c
- Curves
- Curves
- false
- 6d08cfbf-3e4c-4f71-996c-3d95c0dac78e
- 73835f60-b27b-41d5-8317-d6b1f68e1468
- 2
-
3915
14603
46
20
-
3939.5
14613
- Preserve direction of input curves
- d0f3721b-2187-49a6-9ecc-12ff8ea0ca7b
- Preserve
- Preserve
- false
- 0
-
3915
14623
46
20
-
3939.5
14633
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
- Curves
- Curves
- false
- 0
-
3991
14603
38
40
-
4011.5
14623
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 3f86c888-3f3e-4db9-8579-4ec92539d7e9
- Evaluate Length
- Evaluate Length
-
3900
14517
144
64
-
3974
14549
- Curve to evaluate
- 1275b4e6-7602-4122-ae9d-7ffbedc35459
- Curve
- Curve
- false
- 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
- 1
-
3902
14519
57
20
-
3932
14529
- Length factor for curve evaluation
- 890497f2-50c8-4abf-a885-2499035e273a
- Length
- Length
- false
- 0
-
3902
14539
57
20
-
3932
14549
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 8c35faea-2f72-4f79-83a0-047b09ba1205
- Normalized
- Normalized
- false
- 0
-
3902
14559
57
20
-
3932
14569
- 1
- 1
- {0}
- true
- Point at the specified length
- 451b5434-dab5-482e-9a6d-787d60c3f06c
- Point
- Point
- false
- 0
-
3989
14519
53
20
-
4017
14529
- Tangent vector at the specified length
- 84243467-65a9-4cbb-a438-bf0032956480
- Tangent
- Tangent
- false
- 0
-
3989
14539
53
20
-
4017
14549
- Curve parameter at the specified length
- c6d57112-5b3f-46ac-a670-8973b71d8952
- Parameter
- Parameter
- false
- 0
-
3989
14559
53
20
-
4017
14569
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- a755fe4d-5521-4a0b-a268-02d5cfd8903f
- Rotate
- Rotate
-
3903
14434
138
64
-
3971
14466
- Base geometry
- 2e0a23a9-421d-4c2a-aefe-d430d836beed
- Geometry
- Geometry
- true
- 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
- 1
-
3905
14436
51
20
-
3932
14446
- Rotation angle in radians
- 0978cad3-0fe2-4025-ac1a-7fa1ca7f5fd0
- Angle
- Angle
- false
- 0
- false
-
3905
14456
51
20
-
3932
14466
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 14f1ad5d-7687-46ef-bbea-e92a304146ac
- Plane
- Plane
- false
- 451b5434-dab5-482e-9a6d-787d60c3f06c
- 1
-
3905
14476
51
20
-
3932
14486
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 8100fe34-ee80-416f-b5f6-2b9f96aae8c9
- Geometry
- Geometry
- false
- 0
-
3986
14436
53
30
-
4014
14451
- Transformation data
- 5fca03d7-1fcd-44ea-a612-2e2fb2019766
- Transform
- Transform
- false
- 0
-
3986
14466
53
30
-
4014
14481
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 9ca8501c-7a2b-4b0c-ac18-31e182203589
- Join Curves
- Join Curves
-
3913
14371
118
44
-
3976
14393
- 1
- Curves to join
- 0f1d3de6-034b-487f-a904-f1a09444a9d7
- Curves
- Curves
- false
- 47852f2c-3e6b-4c14-a46e-7f293a8ae1a0
- 8100fe34-ee80-416f-b5f6-2b9f96aae8c9
- 2
-
3915
14373
46
20
-
3939.5
14383
- Preserve direction of input curves
- 15bf7b33-7c70-463d-b751-8058d597e384
- Preserve
- Preserve
- false
- 0
-
3915
14393
46
20
-
3939.5
14403
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- be586885-b930-4685-830f-15e020656b38
- Curves
- Curves
- false
- 0
-
3991
14373
38
40
-
4011.5
14393
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 97ee1972-ee6d-4dc7-aa10-315de104a993
- 78fe7cba-ec07-4f12-a980-d38d4fe178df
- 1a4eb693-9f0e-41c4-bb80-c90308becfb0
- 711ff170-ddf9-4a8e-b98f-8b34fe1af746
- 2760faa9-211f-407b-956c-0955bc0da208
- 3f86c888-3f3e-4db9-8579-4ec92539d7e9
- a755fe4d-5521-4a0b-a268-02d5cfd8903f
- 9ca8501c-7a2b-4b0c-ac18-31e182203589
- 626883ba-251e-4f51-b191-919abecd3c18
- 9
- 46da597d-016c-4a41-ba7f-97e839de7a7c
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7ce16bf7-e715-456c-b186-116f096c7300
- Panel
- false
- 0
- e83325b8-c6c9-40d4-b320-79b7dca87819
- 1
- Double click to edit panel content…
-
3912
16035
145
20
- 0
- 0
- 0
-
3912.374
16035.2
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 626883ba-251e-4f51-b191-919abecd3c18
- Curve
- Curve
- false
- be586885-b930-4685-830f-15e020656b38
- 1
-
3948
14336
50
24
-
3973.738
14348.68
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 626883ba-251e-4f51-b191-919abecd3c18
- 1
- f7d9b247-c182-4e98-ac93-bb39b82182b1
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 832096f9-889a-4701-b1d2-a84dba0f1b0e
- Panel
- false
- 0
- 0
- 0.0013733120705119695*4*4
-
3856
16116
270
20
- 0
- 0
- 0
-
3856.796
16116.58
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 10940583-c6ca-4b99-bd7b-959739d9d2e3
- Evaluate Length
- Evaluate Length
-
3900
14245
144
64
-
3974
14277
- Curve to evaluate
- 79080a81-dd0a-4698-a858-d8505d1d7fdf
- Curve
- Curve
- false
- be586885-b930-4685-830f-15e020656b38
- 1
-
3902
14247
57
20
-
3932
14257
- Length factor for curve evaluation
- 887a4ace-5ba4-489d-bd44-60e892cf988b
- Length
- Length
- false
- 0
-
3902
14267
57
20
-
3932
14277
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 81cc3855-2fe5-46cd-8bd5-d88130382bf9
- Normalized
- Normalized
- false
- 0
-
3902
14287
57
20
-
3932
14297
- 1
- 1
- {0}
- true
- Point at the specified length
- 07b2fc88-ae16-4c06-9155-e3da7d6e6def
- Point
- Point
- false
- 0
-
3989
14247
53
20
-
4017
14257
- Tangent vector at the specified length
- 34ba120a-3dae-40b7-baee-4be095e32883
- Tangent
- Tangent
- false
- 0
-
3989
14267
53
20
-
4017
14277
- Curve parameter at the specified length
- a534e31f-9642-4573-934b-8edb69bf0e4a
- Parameter
- Parameter
- false
- 0
-
3989
14287
53
20
-
4017
14297
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 34a4ce13-1c47-4398-9b9a-a0fde71ccbdc
- Expression
- Expression
-
3875
14023
194
28
-
3975
14037
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9929237c-5891-4be0-88b3-1b825140f548
- Variable O
- O
- true
- 62f0c229-a1e3-4de2-ac84-cca846328068
- 1
-
3877
14025
14
24
-
3885.5
14037
- Result of expression
- c2cc5bf2-5d1f-4219-9998-d56de8f5f9e3
- Result
-
- false
- 0
-
4058
14025
9
24
-
4064
14037
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- f2660d87-cb05-456f-95ae-bcc6d758382c
- Deconstruct
- Deconstruct
-
3906
14157
132
64
-
3953
14189
- Input point
- 76014b31-cd3c-4faf-85d3-9ed20608f1c7
- Point
- Point
- false
- 07b2fc88-ae16-4c06-9155-e3da7d6e6def
- 1
-
3908
14159
30
60
-
3924.5
14189
- Point {x} component
- 62f0c229-a1e3-4de2-ac84-cca846328068
- X component
- X component
- false
- 0
-
3968
14159
68
20
-
4003.5
14169
- Point {y} component
- b64a2e76-2db2-4e40-92e2-69b2889487a9
- Y component
- Y component
- false
- 0
-
3968
14179
68
20
-
4003.5
14189
- Point {z} component
- 22991e0f-6b45-4f26-abcc-1289cf0d3ff1
- Z component
- Z component
- false
- 0
-
3968
14199
68
20
-
4003.5
14209
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 032c37df-7075-4d52-b69b-071ee5566de8
- Panel
- false
- 0
- c2cc5bf2-5d1f-4219-9998-d56de8f5f9e3
- 1
- Double click to edit panel content…
-
3894
13992
160
20
- 0
- 0
- 0
-
3894.232
13992.68
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f9b75dc3-fe04-4057-9984-d294d2ec4e12
- Expression
- Expression
-
3875
13937
194
28
-
3975
13951
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 84a2e453-a92d-41b6-8652-16ea1683e0b0
- Variable O
- O
- true
- b64a2e76-2db2-4e40-92e2-69b2889487a9
- 1
-
3877
13939
14
24
-
3885.5
13951
- Result of expression
- 696b6bb5-5954-4ea5-8256-1e0a1bfe07fd
- Result
-
- false
- 0
-
4058
13939
9
24
-
4064
13951
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
- Panel
- false
- 0
- 696b6bb5-5954-4ea5-8256-1e0a1bfe07fd
- 1
- Double click to edit panel content…
-
3894
13904
160
20
- 0
- 0
- 0
-
3894.232
13904.25
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- c36315ab-000f-431f-956e-8d3f39ccd5eb
- Division
- Division
-
3931
13835
82
44
-
3962
13857
- Item to divide (dividend)
- 8d98f3ad-300c-47ae-9072-27095ea7d4bb
- A
- A
- false
- 032c37df-7075-4d52-b69b-071ee5566de8
- 1
-
3933
13837
14
20
-
3941.5
13847
- Item to divide with (divisor)
- 34a82367-2a70-49dd-9873-a54c3167e085
- B
- B
- false
- be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
- 1
-
3933
13857
14
20
-
3941.5
13867
- The result of the Division
- df35c167-bcd9-49e6-8281-92c63864fe32
- Result
- Result
- false
- 0
-
3977
13837
34
40
-
3995.5
13857
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 49431070-a862-4701-a56c-d3b9d5b4ca7e
- Panel
- false
- 0
- e83325b8-c6c9-40d4-b320-79b7dca87819
- 1
- Double click to edit panel content…
-
3894
13749
160
20
- 0
- 0
- 0
-
3894.29
13749.37
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 850f77e3-253a-4758-833e-f86700b16848
- Expression
- Expression
-
3875
13788
194
28
-
3975
13802
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 1e780145-ca26-4633-a204-0a918f616817
- Variable O
- O
- true
- df35c167-bcd9-49e6-8281-92c63864fe32
- 1
-
3877
13790
14
24
-
3885.5
13802
- Result of expression
- 6430bc25-9eae-4187-ad62-7d69e39fdcf1
- Result
-
- false
- 0
-
4058
13790
9
24
-
4064
13802
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e83325b8-c6c9-40d4-b320-79b7dca87819
- Relay
- false
- 6430bc25-9eae-4187-ad62-7d69e39fdcf1
- 1
-
3952
13713
40
16
-
3972
13721
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- a6959f7e-1cb0-44c3-9f28-d81ad07ed447
- Addition
- Addition
-
3931
13650
82
44
-
3962
13672
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 2266ab5b-bda2-40c9-9308-f4d48efb661a
- A
- A
- true
- be45bd02-80b2-4a2a-8b8c-076a7cc0efeb
- 1
-
3933
13652
14
20
-
3941.5
13662
- Second item for addition
- 3347b569-8973-44ef-8d82-6b1c998ca3cc
- B
- B
- true
- 032c37df-7075-4d52-b69b-071ee5566de8
- 1
-
3933
13672
14
20
-
3941.5
13682
- Result of addition
- 4523110a-9a4b-47ae-a91c-4b2efe54effb
- Result
- Result
- false
- 0
-
3977
13652
34
40
-
3995.5
13672
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 50861111-0562-4cd5-87f4-576cac894cf2
- Division
- Division
-
3931
13500
82
44
-
3962
13522
- Item to divide (dividend)
- a2daad46-969e-4344-b89a-7769a111231d
- A
- A
- false
- 1af46a8d-1db1-4274-90fa-39f1d18d58d1
- 1
-
3933
13502
14
20
-
3941.5
13512
- Item to divide with (divisor)
- 4eca21d9-c9ac-467a-ac3d-f168b5712564
- B
- B
- false
- 0
-
3933
13522
14
20
-
3941.5
13532
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- c1bc0109-fe34-450d-9f5e-65f5cb82cc00
- Result
- Result
- false
- 0
-
3977
13502
34
40
-
3995.5
13522
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- cda3bf8c-fb84-4a4b-b4b7-d2247839716a
- Expression
- Expression
-
3875
13452
194
28
-
3975
13466
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 5b721167-8cd0-471c-bc56-9551ac8ff85d
- Variable O
- O
- true
- c1bc0109-fe34-450d-9f5e-65f5cb82cc00
- 1
-
3877
13454
14
24
-
3885.5
13466
- Result of expression
- 9bed50d4-0250-4707-ba45-cec394e082cd
- Result
-
- false
- 0
-
4058
13454
9
24
-
4064
13466
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f0284d88-cbb4-4fbe-a78d-06f04695f526
- Panel
- false
- 0
- 9bed50d4-0250-4707-ba45-cec394e082cd
- 1
- Double click to edit panel content…
-
3894
13420
160
20
- 0
- 0
- 0
-
3894.232
13420.59
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1af46a8d-1db1-4274-90fa-39f1d18d58d1
- Panel
- false
- 0
- fe9a622b-f243-4d41-93d6-3e533d213b5b
- 1
- Double click to edit panel content…
-
3894
13572
160
20
- 0
- 0
- 0
-
3894.232
13572.5
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 711a318e-c3c4-40bd-bd83-91013b79755b
- Expression
- Expression
-
3875
13603
194
28
-
3975
13617
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d785e6e7-130a-4976-be34-7ada854edc1b
- Variable O
- O
- true
- 4523110a-9a4b-47ae-a91c-4b2efe54effb
- 1
-
3877
13605
14
24
-
3885.5
13617
- Result of expression
- fe9a622b-f243-4d41-93d6-3e533d213b5b
- Result
-
- false
- 0
-
4058
13605
9
24
-
4064
13617
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 022a4e61-381f-4954-9ab4-dd8f7cb690cc
- Scale
- Scale
-
3895
13329
154
64
-
3979
13361
- Base geometry
- 221778e4-c5a5-428b-866a-e7daaf2b081d
- Geometry
- Geometry
- true
- 626883ba-251e-4f51-b191-919abecd3c18
- 1
-
3897
13331
67
20
-
3940
13341
- Center of scaling
- b3819b39-8c95-4454-a072-96d8bb95c204
- Center
- Center
- false
- 0
-
3897
13351
67
20
-
3940
13361
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- bedd39e9-e835-4f0c-a2a8-a897bcb0de37
- 1/X
- Factor
- Factor
- false
- f0284d88-cbb4-4fbe-a78d-06f04695f526
- 1
-
3897
13371
67
20
-
3940
13381
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- f409b8fb-a35c-4fc5-95e6-0d9e982103bd
- Geometry
- Geometry
- false
- 0
-
3994
13331
53
30
-
4022
13346
- Transformation data
- e1dfbda5-158d-4151-a74a-8f27edda3a0c
- Transform
- Transform
- false
- 0
-
3994
13361
53
30
-
4022
13376
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- Curve
- Curve
- false
- f409b8fb-a35c-4fc5-95e6-0d9e982103bd
- 1
-
3949
12868
50
24
-
3974.205
12880.95
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 712a4212-4aab-445a-a323-f0a1cc93baf0
- Expression
- Expression
-
3875
14110
194
28
-
3975
14124
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 5b24470e-be57-4758-88dd-8f13767bc8cc
- Variable O
- O
- true
- 22991e0f-6b45-4f26-abcc-1289cf0d3ff1
- 1
-
3877
14112
14
24
-
3885.5
14124
- Result of expression
- 6f6c2ed4-8a96-493c-b092-a9b424c4e692
- Result
-
- false
- 0
-
4058
14112
9
24
-
4064
14124
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e420d856-6202-42cf-af09-faeb400ac89f
- Panel
- false
- 0
- 6f6c2ed4-8a96-493c-b092-a9b424c4e692
- 1
- Double click to edit panel content…
-
3894
14078
160
20
- 0
- 0
- 0
-
3894.104
14078.45
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 10cca06e-aec1-424f-a900-2a2f5c79ab18
- Evaluate Length
- Evaluate Length
-
3900
13246
144
64
-
3974
13278
- Curve to evaluate
- d8076d4c-6b57-4b21-b7ea-5954019ae871
- Curve
- Curve
- false
- f409b8fb-a35c-4fc5-95e6-0d9e982103bd
- 1
-
3902
13248
57
20
-
3932
13258
- Length factor for curve evaluation
- 73070b10-a608-4990-9fc7-c5cf5b836b26
- Length
- Length
- false
- 0
-
3902
13268
57
20
-
3932
13278
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- a96e13c9-8421-49bc-9cb4-426fde3d06d7
- Normalized
- Normalized
- false
- 0
-
3902
13288
57
20
-
3932
13298
- 1
- 1
- {0}
- true
- Point at the specified length
- 46162371-ae34-4e16-9692-6abb7a61cdc6
- Point
- Point
- false
- 0
-
3989
13248
53
20
-
4017
13258
- Tangent vector at the specified length
- 276e76ca-0d9a-4219-a49b-8d87c9936903
- Tangent
- Tangent
- false
- 0
-
3989
13268
53
20
-
4017
13278
- Curve parameter at the specified length
- b7b8dd63-083d-486c-9751-94404f406720
- Parameter
- Parameter
- false
- 0
-
3989
13288
53
20
-
4017
13298
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 497375b1-6f36-4c5e-8902-1f8499a6c89b
- Expression
- Expression
-
3875
13029
194
28
-
3975
13043
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 977c665e-2605-4638-8ec1-c7e92735574f
- Variable O
- O
- true
- 2dcafbcc-0ac2-4bb3-915e-9c31f8d9a2f9
- 1
-
3877
13031
14
24
-
3885.5
13043
- Result of expression
- 3d65f7b4-af0d-49d6-a3ea-987f6ddb0ec7
- Result
-
- false
- 0
-
4058
13031
9
24
-
4064
13043
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- b7a44b6d-2dd1-4d2a-afef-c4948f723e1a
- Deconstruct
- Deconstruct
-
3906
13163
132
64
-
3953
13195
- Input point
- 0a52f508-70ae-4790-8604-6781768989e6
- Point
- Point
- false
- 46162371-ae34-4e16-9692-6abb7a61cdc6
- 1
-
3908
13165
30
60
-
3924.5
13195
- Point {x} component
- 2dcafbcc-0ac2-4bb3-915e-9c31f8d9a2f9
- X component
- X component
- false
- 0
-
3968
13165
68
20
-
4003.5
13175
- Point {y} component
- 965c147e-3f38-40c6-9b1e-32a7bfd226b2
- Y component
- Y component
- false
- 0
-
3968
13185
68
20
-
4003.5
13195
- Point {z} component
- 1dfe58e9-8784-46e4-ac51-007ea1fcf731
- Z component
- Z component
- false
- 0
-
3968
13205
68
20
-
4003.5
13215
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3c3cced9-57f0-45d0-8bda-c9399c010249
- Panel
- false
- 0
- 3d65f7b4-af0d-49d6-a3ea-987f6ddb0ec7
- 1
- Double click to edit panel content…
-
3893
12998
160
20
- 0
- 0
- 0
-
3893.487
12998.95
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 4715df04-415c-41cc-8f14-73dbdc59b1b9
- Expression
- Expression
-
3875
12943
194
28
-
3975
12957
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d1471bc4-6b88-425a-98ce-c2af3a14f3d4
- Variable O
- O
- true
- 965c147e-3f38-40c6-9b1e-32a7bfd226b2
- 1
-
3877
12945
14
24
-
3885.5
12957
- Result of expression
- b4e49e4c-c357-4054-9fe7-c7761ca6f37e
- Result
-
- false
- 0
-
4058
12945
9
24
-
4064
12957
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1650bed7-08da-4fe8-bf2b-c93b3838b2d0
- Panel
- false
- 0
- b4e49e4c-c357-4054-9fe7-c7761ca6f37e
- 1
- Double click to edit panel content…
-
3893
12912
160
20
- 0
- 0
- 0
-
3893.487
12912.25
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 4a024c0a-c68d-4474-af3e-5d0033cead14
- Expression
- Expression
-
3875
13115
194
28
-
3975
13129
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d625a29d-a2cc-416b-8d43-f78812b545c6
- Variable O
- O
- true
- 1dfe58e9-8784-46e4-ac51-007ea1fcf731
- 1
-
3877
13117
14
24
-
3885.5
13129
- Result of expression
- 004397eb-c10e-42f5-ab82-5ae82b253e58
- Result
-
- false
- 0
-
4058
13117
9
24
-
4064
13129
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3e42318e-cbf7-4476-998b-46550a4d3d82
- Panel
- false
- 0
- 004397eb-c10e-42f5-ab82-5ae82b253e58
- 1
- Double click to edit panel content…
-
3894
13085
160
20
- 0
- 0
- 0
-
3894.232
13085.17
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 96cc284a-abce-42d7-be47-574463189553
- Panel
- false
- 0
- 0
- 0 256 0.0013733120705119695
0 4096 0.0000053644183496292
-
3803
16156
379
104
- 0
- 0
- 0
-
3803.732
16156.44
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 44f07163-efd6-4af3-b1fd-ffe3391bdefe
- Panel
- false
- 1
- f2d24f8b-b4bd-45ec-9446-d23045930859
- 1
- Double click to edit panel content…
-
3797
15240
355
100
- 0
- 0
- 0
-
3797.311
15240.75
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 10d04f0c-09d7-4141-afa2-68af0490cc1e
- Expression
- Expression
-
3886
15426
194
28
-
3986
15440
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 805ed27e-fc3c-4471-9144-c7291cdedae9
- Variable O
- O
- true
- 18e384ae-d247-44fc-bc3d-f479f1740b7a
- 1
-
3888
15428
14
24
-
3896.5
15440
- Result of expression
- f2d24f8b-b4bd-45ec-9446-d23045930859
- Result
-
- false
- 0
-
4069
15428
9
24
-
4075
15440
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- Number
- Number
- false
- 6d2839a1-e43f-4aae-8139-56c8a3457cb7
- 1
-
3960
16563
50
24
-
3985.194
16575.1
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- 1
- f361bc50-81d2-4660-954e-7da817156972
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 068e8deb-57ea-4dba-a25e-bb297e4df76e
- Expression
- Expression
-
3886
15861
194
28
-
3986
15875
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 28b1645e-0422-4786-a5b8-42d2270dfd2b
- Variable O
- O
- true
- 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
- 1
-
3888
15863
14
24
-
3896.5
15875
- Result of expression
- 97f55ec8-7cd6-4436-b1c5-843a9c8f5ccd
- Result
-
- false
- 0
-
4069
15863
9
24
-
4075
15875
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 90f1cab6-4df3-4148-8b42-c9426d3a090b
- Panel
- false
- 0
- 97f55ec8-7cd6-4436-b1c5-843a9c8f5ccd
- 1
- Double click to edit panel content…
-
3888
15577
194
271
- 0
- 0
- 0
-
3888.001
15577.31
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4485ea51-adcd-4a4f-b040-963091ac0ec0
- Relay
-
- false
- 90f1cab6-4df3-4148-8b42-c9426d3a090b
- 1
-
3963
15538
40
16
-
3983
15546
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0eaa8d0f-9a1a-40d9-b58d-723fd03c8bb7
- Relay
-
- false
- c67311cc-dbc4-46e5-829b-e623c45b3537
- 1
-
3963
15906
40
16
-
3983
15914
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- ae174cc8-14c6-4c07-a85d-3b4ecf2e012c
- End Points
- End Points
-
4332
13346
96
44
-
4382
13368
- Curve to evaluate
- de27ae8f-7271-4e5a-97d5-323495c48d90
- Curve
- Curve
- false
- 5bb6ccef-9110-4508-b1c4-1cc9b75d6a5a
- 1
-
4334
13348
33
40
-
4352
13368
- Curve start point
- 3b0ce0ef-9add-4197-9fbe-df6a52cf9256
- Start
- Start
- false
- 0
-
4397
13348
29
20
-
4413
13358
- Curve end point
- 4c5dc04d-089e-4779-a563-4469dcd2614e
- End
- End
- false
- 0
-
4397
13368
29
20
-
4413
13378
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 22ff4b0d-595e-45dc-8e77-cb0dd4d496ea
- Rectangle 2Pt
- Rectangle 2Pt
-
4317
13243
126
84
-
4375
13285
- Rectangle base plane
- 33ee1ed9-0107-4855-82e6-ac719998e661
- Plane
- Plane
- false
- 0
-
4319
13245
41
20
-
4341
13255
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 41106f62-1178-40c0-a6a1-cc9bb8e11b63
- Point A
- Point A
- false
- 3b0ce0ef-9add-4197-9fbe-df6a52cf9256
- 1
-
4319
13265
41
20
-
4341
13275
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- cce2cecb-7a40-49b6-b447-ad881f7b8bc0
- Point B
- Point B
- false
- 4c5dc04d-089e-4779-a563-4469dcd2614e
- 1
-
4319
13285
41
20
-
4341
13295
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 24a73d42-76d1-49c5-a115-a709a67ea2a1
- Radius
- Radius
- false
- 0
-
4319
13305
41
20
-
4341
13315
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 9bf4b333-ad84-4618-b946-ddc148251ced
- Rectangle
- Rectangle
- false
- 0
-
4390
13245
51
40
-
4417
13265
- Length of rectangle curve
- fec0cd4c-6403-4d97-9848-14cf50104a8a
- Length
- Length
- false
- 0
-
4390
13285
51
40
-
4417
13305
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
- Retrieve the base plane and side intervals of a rectangle.
- true
- e43aef83-d47f-4a21-85bf-24a309d91844
- Deconstuct Rectangle
- Deconstuct Rectangle
-
4309
13160
142
64
-
4377
13192
- Rectangle to deconstruct
- a95e3174-92fa-448f-bbaa-91db21e443c6
- Rectangle
- Rectangle
- false
- 9bf4b333-ad84-4618-b946-ddc148251ced
- 1
-
4311
13162
51
60
-
4338
13192
- Base plane of rectangle
- 1b36909e-7cc2-41c6-90d6-272045cb4455
- Base Plane
- Base Plane
- false
- 0
-
4392
13162
57
20
-
4422
13172
- Size interval along base plane X axis
- 0f119bb0-53dd-40a3-b660-0e65f9e794c3
- X Interval
- X Interval
- false
- 0
-
4392
13182
57
20
-
4422
13192
- Size interval along base plane Y axis
- eb4dc28a-6e71-4413-8733-6e8b19762f57
- Y Interval
- Y Interval
- false
- 0
-
4392
13202
57
20
-
4422
13212
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 36733665-feab-44dc-a40c-eb37a575d1cd
- Deconstruct Domain
- Deconstruct Domain
-
4328
13033
104
44
-
4386
13055
- Base domain
- 20624b80-b81d-4389-99c2-1e82de9b3e18
- Domain
- Domain
- false
- eb4dc28a-6e71-4413-8733-6e8b19762f57
- 1
-
4330
13035
41
40
-
4352
13055
- Start of domain
- cf23777c-43e0-4679-81d6-2332d57183dc
- Start
- Start
- false
- 0
-
4401
13035
29
20
-
4417
13045
- End of domain
- 0f97bdf0-fbd7-4b4e-a03e-24601583c651
- End
- End
- false
- 0
-
4401
13055
29
20
-
4417
13065
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 926140fa-b81a-4e6d-9695-4cae28ec00a6
- Deconstruct Domain
- Deconstruct Domain
-
4328
13095
104
44
-
4386
13117
- Base domain
- df5daabc-5d4e-40f3-86a2-c542e37c2eab
- Domain
- Domain
- false
- 0f119bb0-53dd-40a3-b660-0e65f9e794c3
- 1
-
4330
13097
41
40
-
4352
13117
- Start of domain
- 9fcabcd4-e867-462a-b4a6-bc8994a4bb9e
- Start
- Start
- false
- 0
-
4401
13097
29
20
-
4417
13107
- End of domain
- c5ce1e02-d156-4332-86ab-cee8079d26d4
- End
- End
- false
- 0
-
4401
13117
29
20
-
4417
13127
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- ae93279f-87d7-4af4-add7-9d8f0fb9c67d
- Scale NU
- Scale NU
-
4303
12910
154
104
-
4387
12962
- Base geometry
- 991af3e2-703c-402c-b961-f8aa46085313
- Geometry
- Geometry
- true
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- 1
-
4305
12912
67
20
-
4348
12922
- Base plane
- 57b2416e-a4e5-49d2-beaf-acaf982eb18f
- Plane
- Plane
- false
- 0
-
4305
12932
67
20
-
4348
12942
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 6bb7e740-e1fe-4f0c-bb44-389bbc1bb918
- 1/X
- Scale X
- Scale X
- false
- c5ce1e02-d156-4332-86ab-cee8079d26d4
- 1
-
4305
12952
67
20
-
4348
12962
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- d01b10c5-907f-4605-8923-4f2b1680b8d5
- 1/X
- Scale Y
- Scale Y
- false
- 0f97bdf0-fbd7-4b4e-a03e-24601583c651
- 1
-
4305
12972
67
20
-
4348
12982
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 27138051-36ab-47b1-aa3e-2013b80b8cac
- Scale Z
- Scale Z
- false
- 0
-
4305
12992
67
20
-
4348
13002
- 1
- 1
- {0}
- 1
- Scaled geometry
- aeacac62-b59f-4f52-9376-abb4b3dae6b9
- Geometry
- Geometry
- false
- 0
-
4402
12912
53
50
-
4430
12937
- Transformation data
- 67e1fbe3-6ecc-4376-a975-dd4251aa2490
- Transform
- Transform
- false
- 0
-
4402
12962
53
50
-
4430
12987
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ae174cc8-14c6-4c07-a85d-3b4ecf2e012c
- 22ff4b0d-595e-45dc-8e77-cb0dd4d496ea
- e43aef83-d47f-4a21-85bf-24a309d91844
- 36733665-feab-44dc-a40c-eb37a575d1cd
- 926140fa-b81a-4e6d-9695-4cae28ec00a6
- ae93279f-87d7-4af4-add7-9d8f0fb9c67d
- 5bb6ccef-9110-4508-b1c4-1cc9b75d6a5a
- 81f088dd-94a4-48be-b31f-7aba0efd2713
- 8
- 5bb0b17f-8cd4-42d8-b387-ad9b4200e5a4
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 5bb6ccef-9110-4508-b1c4-1cc9b75d6a5a
- Curve
- Curve
- false
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- 1
-
4356
13409
50
24
-
4381.496
13421.79
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 81f088dd-94a4-48be-b31f-7aba0efd2713
- Curve
- Curve
- false
- aeacac62-b59f-4f52-9376-abb4b3dae6b9
- 1
-
4355
12869
50
24
-
4380.738
12881.66
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6b59e572-2fa5-41aa-b410-4898d051b922
- Panel
- false
- 0
- 0
- 0.0013733120705119695
-
3856
16325
270
20
- 0
- 0
- 0
-
3856.796
16325.58
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3f2f742c-35d6-4f06-82af-a2490aeb04f6
- Panel
- false
- 0
- 0
- 0.0000710748925500000001421
-
3856
16284
270
20
- 0
- 0
- 0
-
3856.796
16284.04
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 46eb5cee-44e0-482e-a3a9-e448befc68ed
- Panel
- false
- 0
- 0
- 0.0013733120705119695
-
3856
16358
270
20
- 0
- 0
- 0
-
3856.796
16358.52
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- e3433f5e-24e1-4bb1-b6fc-19300815f5fc
- Number
- Number
- false
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 1
-
3949
12673
50
24
-
3974.659
12685.76
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 36d249d4-0f1a-493f-a5f7-cb03a891e629
- Relay
- false
- 18e384ae-d247-44fc-bc3d-f479f1740b7a
- 1
-
3943
15223
40
16
-
3963
15231
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3fa4d838-4e57-49ec-8096-0e35d0a39602
- Relay
- false
- 5d9ab525-130a-484d-92f6-120959d913b4
- 1
-
3953
15000
40
16
-
3973
15008
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
- Scale
- Scale
-
3902
15036
154
64
-
3986
15068
- Base geometry
- d00a7f07-d761-4206-abf5-9a69a7655518
- Geometry
- Geometry
- true
- 73d58913-c57b-480b-a2d6-b364fe4a8709
- 1
-
3904
15038
67
20
-
3947
15048
- Center of scaling
- 0dab37bd-9135-4706-b00c-41b3dc3a83af
- Center
- Center
- false
- 0
-
3904
15058
67
20
-
3947
15068
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 96012918-4786-4a17-aa2a-6e91467fadcf
- 2^X
- Factor
- Factor
- false
- 718407b4-0abc-4bca-a225-a6fae160c6ce
- 1
-
3904
15078
67
20
-
3947
15088
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 5d9ab525-130a-484d-92f6-120959d913b4
- Geometry
- Geometry
- false
- 0
-
4001
15038
53
30
-
4029
15053
- Transformation data
- f7f9547b-a2e9-40af-aae6-72c2f8e59fd4
- Transform
- Transform
- false
- 0
-
4001
15068
53
30
-
4029
15083
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 718407b4-0abc-4bca-a225-a6fae160c6ce
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 16.00000
-
3848
15121
250
20
-
3848.778
15121.84
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- dcf0e723-d17b-4c29-9ee2-2ccf301e96e2
- 718407b4-0abc-4bca-a225-a6fae160c6ce
- 2
- f6239726-8ae1-43d2-8e49-101ba1b5b8ae
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 1/X
- true
- 5feac64c-534d-4c48-92aa-1f8db786693c
- Expression
-
3942
16515
79
28
-
3984
16529
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- c92d241b-4166-40f1-a895-4e6461448c6c
- Variable X
- X
- true
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 1
-
3944
16517
14
24
-
3952.5
16529
- Result of expression
- cc9ab0d6-775f-4267-a313-c957dc638053
- Result
- false
- 0
-
4010
16517
9
24
-
4016
16529
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 58d810fb-ae08-42e2-a647-4abb24f51d7b
- 088679fe-0d9d-4734-b02e-df8da927fc6d
- 7fa5374f-eb1f-41c8-9449-9aca419e1334
- e16c01ae-b0ec-4bd3-8756-736445c58074
- af6fe750-f67c-4850-99f4-b3fdf8819875
- 8f8737df-7669-451f-8f03-930ee478c87e
- 9c12faa7-f51a-44f3-84b8-f74e0ca74788
- 1254cf24-304f-4243-ac04-bb238f264a35
- 3a2c256b-9088-44c5-befd-33cdcc48c807
- 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
- ce611084-9d1c-4d17-b689-e5a62b2c6eb7
- a49e82c3-c536-409d-9166-af71d95ebe90
- 93c314d3-46db-461f-b761-4608ff2db869
- 4a9a1cbf-6193-4196-974f-7236e5b8cab4
- c224342c-801f-4459-9224-44879ddf539f
- 89eea354-b996-41e9-8764-49aa12c19e31
- 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
- 620e0f28-52e8-42da-a659-0dcd81cf296e
- f248edc9-bcde-4aa1-b292-051e8917fd76
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- fa724b88-6e46-46b7-a815-5b5e75263c2e
- 1f097239-760b-4d9e-a731-f084f3a5590c
- 0a4acbc7-897f-4daf-af3e-2456c722c81b
- 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
- 9e484615-75b8-44b4-9dff-1315c2b8b430
- c7de736c-245a-4709-8150-9915efa12ce0
- c429793a-ecca-4a47-810c-0efcd2ddb010
- 9e29a813-762d-427d-8a8f-09f4aea42f59
- 115c2663-08f3-4bef-8b5b-09991598ca70
- 9a564a00-5ceb-4c3e-b479-f74af4d4016c
- b29420b3-ac20-4258-b338-f96b92f3d0f9
- da0a78c2-e42a-41b3-9209-0836aaa1e3d8
- 57377b8d-3759-45e5-a018-b5343227155b
- a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
- 961c3b67-0bd4-48ec-b4ef-ef516f992b9d
- d42768ea-2a3f-4d90-9d2d-fc59d8c2e312
- 414a009a-97be-48e4-82ce-6c3acea9858c
- e9aeaf87-e233-4357-a19b-af3034a1b9e8
- 4f0d1c53-bbb0-40bb-85a1-81f8f1bd7c2c
- 87ac02d4-cab2-4c41-92c8-274e16b1549e
- b53ceaef-e556-45b9-aa1c-effb45fde9f9
- faa3d4bd-4095-4604-9eb0-5c4980686920
- 3bd9ec17-73cd-44e7-b087-4ecfd543cf61
- d4a78052-b2be-4baf-a749-ab1493095336
- 2d98e3c7-4ec0-412e-af88-fe5d831e3541
- 6e292688-68a2-40e2-bac4-6beffb026567
- 0a89620d-6e81-41d7-a186-5e60bdf8bf82
- e0bb1d65-8f43-4e62-9a82-d1e96f795827
- f9297beb-af46-4739-8357-5e88101b9779
- f5c91f32-d2d2-466e-9380-e4d127f11275
- 904892d5-d7a3-4d91-a85c-d65902b5cb8f
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- d0eecc54-1b50-441f-81ac-ce055c2d1aa9
- 2f0f6452-fa94-4a66-9243-fee7125d79f9
- 112ae8ba-f1e3-4b59-9f12-8d359c1e3095
- fb9e5b67-1dd9-43ef-9b6c-d72a088ea77e
- cb52044a-de63-4450-b103-a635f3a1f429
- 89d6b908-26b0-472d-988e-e629ad5109d0
- 0d560297-f006-4fd3-8db6-690017c41c52
- b7dbb186-1611-4c53-b4f7-01fa6b4ae529
- 04401445-ab23-493e-999a-f5e4ee341658
- 4155937e-e3fb-4df8-bd49-e36e359a98d6
- 680df784-c22a-415e-a32e-710a9df95f88
- 97fab6c6-9ead-4054-833f-221a3603ba37
- 2b5446d4-2662-40c1-90ef-28bce3dad14a
- 33e20571-35ad-4b71-9b27-b96292662551
- e4e81a6b-49cd-4934-bc18-1fc9fc697ada
- f3fde9a5-2ea1-4afe-9d9a-928b067af03e
- 1f7639fc-9e90-4129-b924-89e68f321767
- 2990a666-db3a-47b9-94fc-9242b4498c1b
- 8317b12d-ff53-48f0-81f0-88795d1f61d1
- 7139f8e3-eaa9-4693-b756-639fca419fc2
- 3154d2c4-7bdd-49b5-b43d-59aa89efc602
- cf5f65dd-af9a-4743-8528-ed3e3a3756f4
- 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
- 946c731f-dff8-494b-887e-c414085f65fd
- 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
- 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
- bb4603b8-07f0-49ad-aad4-05a629f7587a
- c7939aa7-8fff-41f0-b836-5d909adc77bc
- 036b35d9-b1a1-4aef-91e0-5825bc907926
- 753d2f70-ec97-49d5-be42-ca631f83d557
- 0d7e2e50-a5bd-4802-9b01-5d484618175f
- 83
- 160a4f05-4776-4de7-80a9-f3f872cb9a85
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 088679fe-0d9d-4734-b02e-df8da927fc6d
- 7fa5374f-eb1f-41c8-9449-9aca419e1334
- e16c01ae-b0ec-4bd3-8756-736445c58074
- af6fe750-f67c-4850-99f4-b3fdf8819875
- 8f8737df-7669-451f-8f03-930ee478c87e
- 9c12faa7-f51a-44f3-84b8-f74e0ca74788
- 1254cf24-304f-4243-ac04-bb238f264a35
- 3a2c256b-9088-44c5-befd-33cdcc48c807
- 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
- ce611084-9d1c-4d17-b689-e5a62b2c6eb7
- a49e82c3-c536-409d-9166-af71d95ebe90
- 93c314d3-46db-461f-b761-4608ff2db869
- 4a9a1cbf-6193-4196-974f-7236e5b8cab4
- c224342c-801f-4459-9224-44879ddf539f
- 89eea354-b996-41e9-8764-49aa12c19e31
- 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
- 620e0f28-52e8-42da-a659-0dcd81cf296e
- f248edc9-bcde-4aa1-b292-051e8917fd76
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- fa724b88-6e46-46b7-a815-5b5e75263c2e
- 1f097239-760b-4d9e-a731-f084f3a5590c
- 0a4acbc7-897f-4daf-af3e-2456c722c81b
- 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
- 9e484615-75b8-44b4-9dff-1315c2b8b430
- c7de736c-245a-4709-8150-9915efa12ce0
- c429793a-ecca-4a47-810c-0efcd2ddb010
- 9e29a813-762d-427d-8a8f-09f4aea42f59
- 115c2663-08f3-4bef-8b5b-09991598ca70
- 9a564a00-5ceb-4c3e-b479-f74af4d4016c
- b29420b3-ac20-4258-b338-f96b92f3d0f9
- da0a78c2-e42a-41b3-9209-0836aaa1e3d8
- 57377b8d-3759-45e5-a018-b5343227155b
- a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
- 961c3b67-0bd4-48ec-b4ef-ef516f992b9d
- d42768ea-2a3f-4d90-9d2d-fc59d8c2e312
- 414a009a-97be-48e4-82ce-6c3acea9858c
- e9aeaf87-e233-4357-a19b-af3034a1b9e8
- 4f0d1c53-bbb0-40bb-85a1-81f8f1bd7c2c
- 87ac02d4-cab2-4c41-92c8-274e16b1549e
- b53ceaef-e556-45b9-aa1c-effb45fde9f9
- faa3d4bd-4095-4604-9eb0-5c4980686920
- 3bd9ec17-73cd-44e7-b087-4ecfd543cf61
- d4a78052-b2be-4baf-a749-ab1493095336
- 2d98e3c7-4ec0-412e-af88-fe5d831e3541
- 6e292688-68a2-40e2-bac4-6beffb026567
- 0a89620d-6e81-41d7-a186-5e60bdf8bf82
- e0bb1d65-8f43-4e62-9a82-d1e96f795827
- f9297beb-af46-4739-8357-5e88101b9779
- f5c91f32-d2d2-466e-9380-e4d127f11275
- 904892d5-d7a3-4d91-a85c-d65902b5cb8f
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- d0eecc54-1b50-441f-81ac-ce055c2d1aa9
- 2f0f6452-fa94-4a66-9243-fee7125d79f9
- 112ae8ba-f1e3-4b59-9f12-8d359c1e3095
- fb9e5b67-1dd9-43ef-9b6c-d72a088ea77e
- cb52044a-de63-4450-b103-a635f3a1f429
- 89d6b908-26b0-472d-988e-e629ad5109d0
- 0d560297-f006-4fd3-8db6-690017c41c52
- b7dbb186-1611-4c53-b4f7-01fa6b4ae529
- 04401445-ab23-493e-999a-f5e4ee341658
- 4155937e-e3fb-4df8-bd49-e36e359a98d6
- 680df784-c22a-415e-a32e-710a9df95f88
- 97fab6c6-9ead-4054-833f-221a3603ba37
- 2b5446d4-2662-40c1-90ef-28bce3dad14a
- 33e20571-35ad-4b71-9b27-b96292662551
- e4e81a6b-49cd-4934-bc18-1fc9fc697ada
- f3fde9a5-2ea1-4afe-9d9a-928b067af03e
- 1f7639fc-9e90-4129-b924-89e68f321767
- 2990a666-db3a-47b9-94fc-9242b4498c1b
- 8317b12d-ff53-48f0-81f0-88795d1f61d1
- 7139f8e3-eaa9-4693-b756-639fca419fc2
- 3154d2c4-7bdd-49b5-b43d-59aa89efc602
- cf5f65dd-af9a-4743-8528-ed3e3a3756f4
- 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
- 946c731f-dff8-494b-887e-c414085f65fd
- 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
- 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
- bb4603b8-07f0-49ad-aad4-05a629f7587a
- c7939aa7-8fff-41f0-b836-5d909adc77bc
- 79
- 58d810fb-ae08-42e2-a647-4abb24f51d7b
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
- 1
- 088679fe-0d9d-4734-b02e-df8da927fc6d
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e16c01ae-b0ec-4bd3-8756-736445c58074
- 1
- 7fa5374f-eb1f-41c8-9449-9aca419e1334
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- af6fe750-f67c-4850-99f4-b3fdf8819875
- 1
- e16c01ae-b0ec-4bd3-8756-736445c58074
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8f8737df-7669-451f-8f03-930ee478c87e
- 1
- af6fe750-f67c-4850-99f4-b3fdf8819875
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9c12faa7-f51a-44f3-84b8-f74e0ca74788
- 1
- 8f8737df-7669-451f-8f03-930ee478c87e
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 1254cf24-304f-4243-ac04-bb238f264a35
- 1
- 9c12faa7-f51a-44f3-84b8-f74e0ca74788
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
- 1
- 1254cf24-304f-4243-ac04-bb238f264a35
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 3a2c256b-9088-44c5-befd-33cdcc48c807
- Curve
- Curve
- false
- 0
-
5464
16621
50
24
-
5489.311
16633.09
- 1
- 1
- {0;0;0;0}
- -1
-
pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 3a2c256b-9088-44c5-befd-33cdcc48c807
- 1
- 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9a564a00-5ceb-4c3e-b479-f74af4d4016c
- 1
- ce611084-9d1c-4d17-b689-e5a62b2c6eb7
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 93c314d3-46db-461f-b761-4608ff2db869
- 4a9a1cbf-6193-4196-974f-7236e5b8cab4
- c224342c-801f-4459-9224-44879ddf539f
- 89eea354-b996-41e9-8764-49aa12c19e31
- 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
- 620e0f28-52e8-42da-a659-0dcd81cf296e
- f248edc9-bcde-4aa1-b292-051e8917fd76
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- 1f097239-760b-4d9e-a731-f084f3a5590c
- fa724b88-6e46-46b7-a815-5b5e75263c2e
- ce611084-9d1c-4d17-b689-e5a62b2c6eb7
- 2cdda1a3-22cf-4f64-82aa-c5a3bad275af
- e4e81a6b-49cd-4934-bc18-1fc9fc697ada
- f3fde9a5-2ea1-4afe-9d9a-928b067af03e
- 1f7639fc-9e90-4129-b924-89e68f321767
- 2990a666-db3a-47b9-94fc-9242b4498c1b
- 8317b12d-ff53-48f0-81f0-88795d1f61d1
- 7139f8e3-eaa9-4693-b756-639fca419fc2
- 97fab6c6-9ead-4054-833f-221a3603ba37
- 2b5446d4-2662-40c1-90ef-28bce3dad14a
- 20
- a49e82c3-c536-409d-9166-af71d95ebe90
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 93c314d3-46db-461f-b761-4608ff2db869
- Duplicate Data
- Duplicate Data
-
5442
17638
104
64
-
5501
17670
- 1
- Data to duplicate
- 38fbd148-261f-4aea-bf66-13e2b8c7132e
- Data
- Data
- false
- f70822e3-31a4-4282-bec8-3922e48d70b0
- 1
-
5444
17640
42
20
-
5466.5
17650
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- fffd7802-1be4-4911-a182-3cc5d55ced95
- Number
- Number
- false
- 33e20571-35ad-4b71-9b27-b96292662551
- 1
-
5444
17660
42
20
-
5466.5
17670
- 1
- 1
- {0}
- 500
- Retain list order
- f59921a9-216c-4308-a13f-3fda41516909
- Order
- Order
- false
- 0
-
5444
17680
42
20
-
5466.5
17690
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- f22241aa-2819-474a-8675-d52584c26780
- Data
- Data
- false
- 0
-
5516
17640
28
60
-
5531.5
17670
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 4a9a1cbf-6193-4196-974f-7236e5b8cab4
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
5428
15977
116
44
-
5489
15999
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 7b2f4fbb-4219-4b2e-9416-ec0ee1c1b820
- Forward
- Forward
- true
- 1
- true
- f22241aa-2819-474a-8675-d52584c26780
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
5430
15979
44
20
-
5453.5
15989
- 1
- false
- Script Variable Left
- 6b024569-57b7-4bf0-a26e-538262e1e1e1
- Left
- Left
- true
- 1
- true
- d63382c0-8c72-4c9e-b48c-4524b1fd9d2f
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
5430
15999
44
20
-
5453.5
16009
- Print, Reflect and Error streams
- 4e66a084-5fa1-45f8-aba4-16b3579dc259
- Output
- Output
- false
- 0
-
5504
15979
38
20
-
5524.5
15989
- Output parameter Points
- 7e56875d-6195-4648-9416-e7dbfed38f2c
- Points
- Points
- false
- 0
-
5504
15999
38
20
-
5524.5
16009
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 89eea354-b996-41e9-8764-49aa12c19e31
- Series
- Series
-
5439
17041
101
64
-
5489
17073
- First number in the series
- 37bff983-b892-4386-9f3a-32d2e875e126
- Start
- Start
- false
- 0
-
5441
17043
33
20
-
5459
17053
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 943a2fab-5868-4e4f-8ae7-ab93fbdf1b3b
- Step
- Step
- false
- 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
- 1
-
5441
17063
33
20
-
5459
17073
- 1
- 1
- {0}
- 1
- Number of values in the series
- b818483e-50d9-4cd5-84cb-50f74f50c8ef
- Count
- Count
- false
- 33e20571-35ad-4b71-9b27-b96292662551
- 1
-
5441
17083
33
20
-
5459
17093
- 1
- Series of numbers
- 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
- Series
- Series
- false
- 0
-
5504
17043
34
60
-
5522.5
17073
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
- Number Slider
-
- false
- 0
-
5421
17810
150
20
-
5421.991
17810.19
- 0
- 1
- 0
- 65536
- 0
- 0
- 256
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 620e0f28-52e8-42da-a659-0dcd81cf296e
- Radians
- Radians
-
5426
17243
120
28
-
5487
17257
- Angle in degrees
- 96fe2758-2ce7-43f6-866e-63a10a3bb8bc
- Degrees
- Degrees
- false
- 34dd5b72-ea07-47ca-81bb-f79a2688ae4f
- 1
-
5428
17245
44
24
-
5451.5
17257
- Angle in radians
- f2db67b6-36a8-4c16-930b-5f8777edaacb
- Radians
- Radians
- false
- 0
-
5502
17245
42
24
-
5524.5
17257
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f248edc9-bcde-4aa1-b292-051e8917fd76
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00140149998
-
5362
17546
251
20
-
5362.703
17546.98
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- fa724b88-6e46-46b7-a815-5b5e75263c2e
- Interpolate (t)
- Interpolate (t)
-
5414
15212
144
84
-
5500
15254
- 1
- Interpolation points
- 3034ddd9-02ca-4c96-90a6-00a6c21c74d6
- Vertices
- Vertices
- false
- 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
- 1
-
5416
15214
69
20
-
5452
15224
- Tangent at start of curve
- aba4a021-9895-4c2f-91a0-940a1f1b6adb
- Tangent Start
- Tangent Start
- false
- 0
-
5416
15234
69
20
-
5452
15244
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- a8bb886c-9fa1-43e1-90a5-893e6052a6ff
- Tangent End
- Tangent End
- false
- 0
-
5416
15254
69
20
-
5452
15264
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- ee359cd8-e9fa-4b93-b15b-7fedfb9af172
- KnotStyle
- KnotStyle
- false
- 0
-
5416
15274
69
20
-
5452
15284
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 49f11615-022f-40f0-b338-3261f9fba31e
- Curve
- Curve
- false
- 0
-
5515
15214
41
26
-
5537
15227.33
- Curve length
- 37263645-78fa-4a92-b6fa-55d9c83b36f5
- Length
- Length
- false
- 0
-
5515
15240
41
27
-
5537
15254
- Curve domain
- 6d4edb64-ac53-458b-8d6e-c0096709e83f
- Domain
- Domain
- false
- 0
-
5515
15267
41
27
-
5537
15280.67
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 93c314d3-46db-461f-b761-4608ff2db869
- 4a9a1cbf-6193-4196-974f-7236e5b8cab4
- c224342c-801f-4459-9224-44879ddf539f
- 89eea354-b996-41e9-8764-49aa12c19e31
- 1699eb4f-ae50-4220-bdbe-9e81fb7f6221
- 620e0f28-52e8-42da-a659-0dcd81cf296e
- f248edc9-bcde-4aa1-b292-051e8917fd76
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- cf5f65dd-af9a-4743-8528-ed3e3a3756f4
- a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
- 680df784-c22a-415e-a32e-710a9df95f88
- 3154d2c4-7bdd-49b5-b43d-59aa89efc602
- 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
- 6a0d61a0-055d-484a-8ad8-79cab07d7a8a
- 14
- 1f097239-760b-4d9e-a731-f084f3a5590c
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 0a4acbc7-897f-4daf-af3e-2456c722c81b
- Evaluate Length
- Evaluate Length
-
5414
15044
144
64
-
5488
15076
- Curve to evaluate
- b1662b3f-d362-458f-8864-e9be4ac4f4ea
- Curve
- Curve
- false
- 49f11615-022f-40f0-b338-3261f9fba31e
- 1
-
5416
15046
57
20
-
5446
15056
- Length factor for curve evaluation
- 5435c4e9-3d20-46b4-9a36-bd783498541c
- Length
- Length
- false
- 0
-
5416
15066
57
20
-
5446
15076
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- c962cf96-d0e7-4abe-93a8-476e8123ba4a
- Normalized
- Normalized
- false
- 0
-
5416
15086
57
20
-
5446
15096
- 1
- 1
- {0}
- true
- Point at the specified length
- 50365429-838c-4805-8409-9ec71f4a9545
- Point
- Point
- false
- 0
-
5503
15046
53
20
-
5531
15056
- Tangent vector at the specified length
- f488a10f-84bf-4e7e-ab23-4de568b0aaa0
- Tangent
- Tangent
- false
- 0
-
5503
15066
53
20
-
5531
15076
- Curve parameter at the specified length
- e17b88df-9103-4889-af2f-ed81a23f8db6
- Parameter
- Parameter
- false
- 0
-
5503
15086
53
20
-
5531
15096
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
- Mirror
- Mirror
-
5417
14982
138
44
-
5485
15004
- Base geometry
- 731a12ca-0eca-40c9-8288-aaeb8edb25d2
- Geometry
- Geometry
- true
- 49f11615-022f-40f0-b338-3261f9fba31e
- 1
-
5419
14984
51
20
-
5446
14994
- Mirror plane
- 2bf1366e-2815-4a05-a44b-c50e8e602d8d
- Plane
- Plane
- false
- 026ace1d-4007-416d-abc1-889de4f9eaea
- 1
-
5419
15004
51
20
-
5446
15014
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 98e89619-5461-41f8-b419-a5cb0c6a7724
- Geometry
- Geometry
- false
- 0
-
5500
14984
53
20
-
5528
14994
- Transformation data
- 887489b0-6146-458b-b41b-18af26de18e8
- Transform
- Transform
- false
- 0
-
5500
15004
53
20
-
5528
15014
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 9e484615-75b8-44b4-9dff-1315c2b8b430
- Line SDL
- Line SDL
-
5433
15128
106
64
-
5497
15160
- Line start point
- 74bf2370-117d-4c81-bc97-22d1c7432be9
- Start
- Start
- false
- 50365429-838c-4805-8409-9ec71f4a9545
- 1
-
5435
15130
47
20
-
5460
15140
- Line tangent (direction)
- 636da2f8-cef0-423b-8689-10cceb83311f
- Direction
- Direction
- false
- f488a10f-84bf-4e7e-ab23-4de568b0aaa0
- 1
-
5435
15150
47
20
-
5460
15160
- 1
- 1
- {0}
-
0
0
1
- Line length
- 0a68b130-e957-42d4-8c1c-d5e4941dc773
- Length
- Length
- false
- 0
-
5435
15170
47
20
-
5460
15180
- 1
- 1
- {0}
- 1
- Line segment
- 026ace1d-4007-416d-abc1-889de4f9eaea
- Line
- Line
- false
- 0
-
5512
15130
25
60
-
5526
15160
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- c7de736c-245a-4709-8150-9915efa12ce0
- Join Curves
- Join Curves
-
5427
14920
118
44
-
5490
14942
- 1
- Curves to join
- 01211884-bcf0-4a39-95a4-e3afb1974a17
- Curves
- Curves
- false
- 49f11615-022f-40f0-b338-3261f9fba31e
- 98e89619-5461-41f8-b419-a5cb0c6a7724
- 2
-
5429
14922
46
20
-
5453.5
14932
- Preserve direction of input curves
- d58c4818-7123-4707-93cb-3b97188ef12c
- Preserve
- Preserve
- false
- 0
-
5429
14942
46
20
-
5453.5
14952
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- d568abf7-1f1b-49a1-9f2f-1d0f115b029b
- Curves
- Curves
- false
- 0
-
5505
14922
38
40
-
5525.5
14942
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- c429793a-ecca-4a47-810c-0efcd2ddb010
- Evaluate Length
- Evaluate Length
-
5414
14836
144
64
-
5488
14868
- Curve to evaluate
- edbfd1bf-9014-47a6-9984-23c216e5d7cf
- Curve
- Curve
- false
- d568abf7-1f1b-49a1-9f2f-1d0f115b029b
- 1
-
5416
14838
57
20
-
5446
14848
- Length factor for curve evaluation
- 479dbb6c-c333-4a8e-9ec9-8159c81550e3
- Length
- Length
- false
- 0
-
5416
14858
57
20
-
5446
14868
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- b53773bb-0c6c-4910-a4f9-79d04e076032
- Normalized
- Normalized
- false
- 0
-
5416
14878
57
20
-
5446
14888
- 1
- 1
- {0}
- true
- Point at the specified length
- af398e9e-0876-40a2-a865-465179b4fc82
- Point
- Point
- false
- 0
-
5503
14838
53
20
-
5531
14848
- Tangent vector at the specified length
- 293074fe-9517-469d-9cf3-55fb6fb86c72
- Tangent
- Tangent
- false
- 0
-
5503
14858
53
20
-
5531
14868
- Curve parameter at the specified length
- 87a43a1b-20e4-4f50-9cfb-2103f3d7724d
- Parameter
- Parameter
- false
- 0
-
5503
14878
53
20
-
5531
14888
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 9e29a813-762d-427d-8a8f-09f4aea42f59
- Rotate
- Rotate
-
5417
14753
138
64
-
5485
14785
- Base geometry
- bdfb7505-6a77-411f-bff2-5cc373cd290a
- Geometry
- Geometry
- true
- d568abf7-1f1b-49a1-9f2f-1d0f115b029b
- 1
-
5419
14755
51
20
-
5446
14765
- Rotation angle in radians
- a2b5c049-3acb-43f0-8157-44a3c2d9b3ce
- Angle
- Angle
- false
- 0
- false
-
5419
14775
51
20
-
5446
14785
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- a307de1c-b965-40ac-b657-dca31e465458
- Plane
- Plane
- false
- af398e9e-0876-40a2-a865-465179b4fc82
- 1
-
5419
14795
51
20
-
5446
14805
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 3b3bb12d-a4bf-45c5-b60c-fbab8ae4f566
- Geometry
- Geometry
- false
- 0
-
5500
14755
53
30
-
5528
14770
- Transformation data
- 729f59a7-041b-4632-be82-036f8be715fe
- Transform
- Transform
- false
- 0
-
5500
14785
53
30
-
5528
14800
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 115c2663-08f3-4bef-8b5b-09991598ca70
- Join Curves
- Join Curves
-
5427
14690
118
44
-
5490
14712
- 1
- Curves to join
- 4596e284-6e1c-415d-b008-a6fd91bd113c
- Curves
- Curves
- false
- d568abf7-1f1b-49a1-9f2f-1d0f115b029b
- 3b3bb12d-a4bf-45c5-b60c-fbab8ae4f566
- 2
-
5429
14692
46
20
-
5453.5
14702
- Preserve direction of input curves
- 54bfaf20-55eb-49cf-93fd-2651cfa67ba7
- Preserve
- Preserve
- false
- 0
-
5429
14712
46
20
-
5453.5
14722
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- be40b0c6-4870-487e-b6ec-0a4c47fcf0ea
- Curves
- Curves
- false
- 0
-
5505
14692
38
40
-
5525.5
14712
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- fa724b88-6e46-46b7-a815-5b5e75263c2e
- 0a4acbc7-897f-4daf-af3e-2456c722c81b
- 7c4926b7-0bf7-451e-a08b-f14ef0b9c41e
- 9e484615-75b8-44b4-9dff-1315c2b8b430
- c7de736c-245a-4709-8150-9915efa12ce0
- c429793a-ecca-4a47-810c-0efcd2ddb010
- 9e29a813-762d-427d-8a8f-09f4aea42f59
- 115c2663-08f3-4bef-8b5b-09991598ca70
- da0a78c2-e42a-41b3-9209-0836aaa1e3d8
- ac0563c4-269d-48f2-89e5-9a7e37533987
- b883c1db-e29a-419a-b27d-3b96c2dc49e7
- 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
- 0d292809-70fb-4714-b8b2-a4596f68805b
- af76057b-70c5-4de0-822b-c12366bb72b7
- 04b97450-c000-42e5-b63f-6bbaaadb98c0
- 15
- 9a564a00-5ceb-4c3e-b479-f74af4d4016c
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b29420b3-ac20-4258-b338-f96b92f3d0f9
- Panel
- false
- 0
- d4a78052-b2be-4baf-a749-ab1493095336
- 1
- Double click to edit panel content…
-
5415
17126
145
20
- 0
- 0
- 0
-
5415.731
17126.74
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- da0a78c2-e42a-41b3-9209-0836aaa1e3d8
- Curve
- Curve
- false
- be40b0c6-4870-487e-b6ec-0a4c47fcf0ea
- 1
-
5464
14650
50
24
-
5489.311
14662.25
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- da0a78c2-e42a-41b3-9209-0836aaa1e3d8
- 1
- 57377b8d-3759-45e5-a018-b5343227155b
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a1ff6f26-d0d3-4273-b8f6-1b2e90e55515
- Panel
- false
- 0
- 0
- 0.35721403168191375/4/4
-
5269
17300
439
20
- 0
- 0
- 0
-
5269.292
17300.89
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 961c3b67-0bd4-48ec-b4ef-ef516f992b9d
- Evaluate Length
- Evaluate Length
-
5414
14564
144
64
-
5488
14596
- Curve to evaluate
- 8f8d1815-de3e-45d5-9bb3-8531f2d0676f
- Curve
- Curve
- false
- be40b0c6-4870-487e-b6ec-0a4c47fcf0ea
- 1
-
5416
14566
57
20
-
5446
14576
- Length factor for curve evaluation
- 57bda122-df02-4c15-9341-7089c498c75f
- Length
- Length
- false
- 0
-
5416
14586
57
20
-
5446
14596
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 8fa75b22-b43d-4e39-b7ed-df31c65b6750
- Normalized
- Normalized
- false
- 0
-
5416
14606
57
20
-
5446
14616
- 1
- 1
- {0}
- true
- Point at the specified length
- ae50478e-fea3-4e06-afe3-d1746baaeed9
- Point
- Point
- false
- 0
-
5503
14566
53
20
-
5531
14576
- Tangent vector at the specified length
- f65a84b8-620a-44f4-832f-52018e9792bf
- Tangent
- Tangent
- false
- 0
-
5503
14586
53
20
-
5531
14596
- Curve parameter at the specified length
- 18eb4b62-ce65-437e-940a-713ddddd37e3
- Parameter
- Parameter
- false
- 0
-
5503
14606
53
20
-
5531
14616
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- d42768ea-2a3f-4d90-9d2d-fc59d8c2e312
- Expression
- Expression
-
5389
14342
194
28
-
5489
14356
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4e9f5cf1-f207-4dea-adde-5fc62e19d034
- Variable O
- O
- true
- 75f0c148-a26b-44a8-a252-cded50fad262
- 1
-
5391
14344
14
24
-
5399.5
14356
- Result of expression
- 5d69fbe7-8b2a-4806-9d4b-7e76faf50b16
- Result
-
- false
- 0
-
5572
14344
9
24
-
5578
14356
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 414a009a-97be-48e4-82ce-6c3acea9858c
- Deconstruct
- Deconstruct
-
5420
14476
132
64
-
5467
14508
- Input point
- c79bcb08-7452-4bfc-bdb5-3f389667c5ea
- Point
- Point
- false
- ae50478e-fea3-4e06-afe3-d1746baaeed9
- 1
-
5422
14478
30
60
-
5438.5
14508
- Point {x} component
- 75f0c148-a26b-44a8-a252-cded50fad262
- X component
- X component
- false
- 0
-
5482
14478
68
20
-
5517.5
14488
- Point {y} component
- 6eb9d368-dd27-4c4f-89f4-4fd61cc0e52b
- Y component
- Y component
- false
- 0
-
5482
14498
68
20
-
5517.5
14508
- Point {z} component
- a7ad4e7b-7d95-461f-9be9-06a4f128e61f
- Z component
- Z component
- false
- 0
-
5482
14518
68
20
-
5517.5
14528
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e9aeaf87-e233-4357-a19b-af3034a1b9e8
- Panel
- false
- 0
- 5d69fbe7-8b2a-4806-9d4b-7e76faf50b16
- 1
- Double click to edit panel content…
-
5408
14315
160
20
- 0
- 0
- 0
-
5408.081
14315.83
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 4f0d1c53-bbb0-40bb-85a1-81f8f1bd7c2c
- Expression
- Expression
-
5389
14256
194
28
-
5489
14270
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- a37aa2f2-32b0-47f2-8374-79cf06d36272
- Variable O
- O
- true
- 6eb9d368-dd27-4c4f-89f4-4fd61cc0e52b
- 1
-
5391
14258
14
24
-
5399.5
14270
- Result of expression
- 3129179e-8d32-46dc-bd65-2fdaccae77ec
- Result
-
- false
- 0
-
5572
14258
9
24
-
5578
14270
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 87ac02d4-cab2-4c41-92c8-274e16b1549e
- Panel
- false
- 0
- 3129179e-8d32-46dc-bd65-2fdaccae77ec
- 1
- Double click to edit panel content…
-
5408
14227
160
20
- 0
- 0
- 0
-
5408.081
14227.4
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- b53ceaef-e556-45b9-aa1c-effb45fde9f9
- Division
- Division
-
5445
14154
82
44
-
5476
14176
- Item to divide (dividend)
- 673d3b3f-3f5b-4e46-97f7-acfe5d90a2b2
- A
- A
- false
- e9aeaf87-e233-4357-a19b-af3034a1b9e8
- 1
-
5447
14156
14
20
-
5455.5
14166
- Item to divide with (divisor)
- 455e6a18-f788-43a4-a426-bea0637160b1
- B
- B
- false
- 87ac02d4-cab2-4c41-92c8-274e16b1549e
- 1
-
5447
14176
14
20
-
5455.5
14186
- The result of the Division
- 88b10a5b-30cb-4fa3-bb36-d1fcfe59fb32
- Result
- Result
- false
- 0
-
5491
14156
34
40
-
5509.5
14176
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- faa3d4bd-4095-4604-9eb0-5c4980686920
- Panel
- false
- 0
- d4a78052-b2be-4baf-a749-ab1493095336
- 1
- Double click to edit panel content…
-
5408
14079
160
20
- 0
- 0
- 0
-
5408.321
14079.89
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 3bd9ec17-73cd-44e7-b087-4ecfd543cf61
- Expression
- Expression
-
5389
14107
194
28
-
5489
14121
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 381e0442-8e34-4cfd-bee2-ed73b7fca949
- Variable O
- O
- true
- 88b10a5b-30cb-4fa3-bb36-d1fcfe59fb32
- 1
-
5391
14109
14
24
-
5399.5
14121
- Result of expression
- 4397d970-0f4a-46a4-8b6f-f5d0880e1989
- Result
-
- false
- 0
-
5572
14109
9
24
-
5578
14121
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d4a78052-b2be-4baf-a749-ab1493095336
- Relay
- false
- 4397d970-0f4a-46a4-8b6f-f5d0880e1989
- 1
-
5466
14032
40
16
-
5486
14040
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 2d98e3c7-4ec0-412e-af88-fe5d831e3541
- Addition
- Addition
-
5445
13969
82
44
-
5476
13991
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 52c083db-77df-4448-8f5a-6dffb97d1c5c
- A
- A
- true
- 87ac02d4-cab2-4c41-92c8-274e16b1549e
- 1
-
5447
13971
14
20
-
5455.5
13981
- Second item for addition
- bfa58218-d333-4ce6-85f6-7f48c0d048b7
- B
- B
- true
- e9aeaf87-e233-4357-a19b-af3034a1b9e8
- 1
-
5447
13991
14
20
-
5455.5
14001
- Result of addition
- 6ebf73a5-50ed-4a96-a4ec-240a28474784
- Result
- Result
- false
- 0
-
5491
13971
34
40
-
5509.5
13991
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 6e292688-68a2-40e2-bac4-6beffb026567
- Division
- Division
-
5445
13819
82
44
-
5476
13841
- Item to divide (dividend)
- 0e0919a3-1bf2-4d70-82fc-d377221f2da4
- A
- A
- false
- f9297beb-af46-4739-8357-5e88101b9779
- 1
-
5447
13821
14
20
-
5455.5
13831
- Item to divide with (divisor)
- 817fa8db-e8a9-407e-bdea-5eddf4887fb6
- B
- B
- false
- 0
-
5447
13841
14
20
-
5455.5
13851
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 8a4bdaf2-4664-4778-87bb-d446233c45e4
- Result
- Result
- false
- 0
-
5491
13821
34
40
-
5509.5
13841
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 0a89620d-6e81-41d7-a186-5e60bdf8bf82
- Expression
- Expression
-
5389
13771
194
28
-
5489
13785
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 29d8848c-6c48-45ad-b388-eb5115547684
- Variable O
- O
- true
- 8a4bdaf2-4664-4778-87bb-d446233c45e4
- 1
-
5391
13773
14
24
-
5399.5
13785
- Result of expression
- 7a5739d2-9dd3-42cb-873f-a2ed403f97c7
- Result
-
- false
- 0
-
5572
13773
9
24
-
5578
13785
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e0bb1d65-8f43-4e62-9a82-d1e96f795827
- Panel
- false
- 0
- 7a5739d2-9dd3-42cb-873f-a2ed403f97c7
- 1
- Double click to edit panel content…
-
5408
13743
160
20
- 0
- 0
- 0
-
5408.081
13743.75
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f9297beb-af46-4739-8357-5e88101b9779
- Panel
- false
- 0
- 36c90317-6fdf-486a-9a48-40ac666a7f4f
- 1
- Double click to edit panel content…
-
5408
13895
160
20
- 0
- 0
- 0
-
5408.081
13895.66
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f5c91f32-d2d2-466e-9380-e4d127f11275
- Expression
- Expression
-
5389
13922
194
28
-
5489
13936
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e8aa17a0-1e79-4b7e-ad06-21668baadbf3
- Variable O
- O
- true
- 6ebf73a5-50ed-4a96-a4ec-240a28474784
- 1
-
5391
13924
14
24
-
5399.5
13936
- Result of expression
- 36c90317-6fdf-486a-9a48-40ac666a7f4f
- Result
-
- false
- 0
-
5572
13924
9
24
-
5578
13936
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 904892d5-d7a3-4d91-a85c-d65902b5cb8f
- Scale
- Scale
-
5409
13648
154
64
-
5493
13680
- Base geometry
- 6ed1aa2a-1a44-4e97-9f30-ac13d292c946
- Geometry
- Geometry
- true
- da0a78c2-e42a-41b3-9209-0836aaa1e3d8
- 1
-
5411
13650
67
20
-
5454
13660
- Center of scaling
- dbce7019-415c-49d5-aae1-29df5c6f5db9
- Center
- Center
- false
- 0
-
5411
13670
67
20
-
5454
13680
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 6e5b68b8-04d6-4442-bca0-e386a1916c8a
- 1/X
- Factor
- Factor
- false
- e0bb1d65-8f43-4e62-9a82-d1e96f795827
- 1
-
5411
13690
67
20
-
5454
13700
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 26926bd0-16e1-498c-8f99-6b3d60362da9
- Geometry
- Geometry
- false
- 0
-
5508
13650
53
30
-
5536
13665
- Transformation data
- c91aaa21-1755-4027-b205-2a8f523cdc2f
- Transform
- Transform
- false
- 0
-
5508
13680
53
30
-
5536
13695
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- Curve
- Curve
- false
- 26926bd0-16e1-498c-8f99-6b3d60362da9
- 1
-
5462
13049
50
24
-
5487.061
13061.25
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- d0eecc54-1b50-441f-81ac-ce055c2d1aa9
- Expression
- Expression
-
5389
14429
194
28
-
5489
14443
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 445840c5-340b-4067-9907-f993dfb6e55a
- Variable O
- O
- true
- a7ad4e7b-7d95-461f-9be9-06a4f128e61f
- 1
-
5391
14431
14
24
-
5399.5
14443
- Result of expression
- ee2a5ea9-d39c-4ed8-be57-0dc8ed20bec2
- Result
-
- false
- 0
-
5572
14431
9
24
-
5578
14443
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 2f0f6452-fa94-4a66-9243-fee7125d79f9
- Panel
- false
- 0
- ee2a5ea9-d39c-4ed8-be57-0dc8ed20bec2
- 1
- Double click to edit panel content…
-
5408
14401
160
20
- 0
- 0
- 0
-
5408.951
14401.6
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 112ae8ba-f1e3-4b59-9f12-8d359c1e3095
- Evaluate Length
- Evaluate Length
-
5414
13438
144
64
-
5488
13470
- Curve to evaluate
- d100e1ef-6f4f-4d6f-9297-2ac07a16cb1e
- Curve
- Curve
- false
- 26926bd0-16e1-498c-8f99-6b3d60362da9
- 1
-
5416
13440
57
20
-
5446
13450
- Length factor for curve evaluation
- 2658d7a3-e47e-4465-bbf7-e198f28ff969
- Length
- Length
- false
- 0
-
5416
13460
57
20
-
5446
13470
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 799ef59f-1a1c-439f-b3ec-1ef05011c197
- Normalized
- Normalized
- false
- 0
-
5416
13480
57
20
-
5446
13490
- 1
- 1
- {0}
- true
- Point at the specified length
- 97832c2c-1966-4787-8114-997dd6c5640d
- Point
- Point
- false
- 0
-
5503
13440
53
20
-
5531
13450
- Tangent vector at the specified length
- fb3cbe54-8624-42bf-a7c8-6640b034d701
- Tangent
- Tangent
- false
- 0
-
5503
13460
53
20
-
5531
13470
- Curve parameter at the specified length
- eeb4620c-e6e2-4ec1-be63-aa27c3a85832
- Parameter
- Parameter
- false
- 0
-
5503
13480
53
20
-
5531
13490
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- fb9e5b67-1dd9-43ef-9b6c-d72a088ea77e
- Expression
- Expression
-
5389
13221
194
28
-
5489
13235
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 45bb4473-bacb-4c2e-b6c6-e78437ff4210
- Variable O
- O
- true
- f3aa052e-061b-4fbd-a512-bf8c8671cd17
- 1
-
5391
13223
14
24
-
5399.5
13235
- Result of expression
- 334ee449-bb91-4040-87f4-5bfeebbe8c25
- Result
-
- false
- 0
-
5572
13223
9
24
-
5578
13235
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- cb52044a-de63-4450-b103-a635f3a1f429
- Deconstruct
- Deconstruct
-
5420
13355
132
64
-
5467
13387
- Input point
- 65205cc4-abb0-43b7-8ab4-c06c52bcf289
- Point
- Point
- false
- 97832c2c-1966-4787-8114-997dd6c5640d
- 1
-
5422
13357
30
60
-
5438.5
13387
- Point {x} component
- f3aa052e-061b-4fbd-a512-bf8c8671cd17
- X component
- X component
- false
- 0
-
5482
13357
68
20
-
5517.5
13367
- Point {y} component
- bd425996-dd75-45a7-a5b7-1d684203bc1f
- Y component
- Y component
- false
- 0
-
5482
13377
68
20
-
5517.5
13387
- Point {z} component
- b98ab803-461a-49eb-94fe-2af517b0ccfd
- Z component
- Z component
- false
- 0
-
5482
13397
68
20
-
5517.5
13407
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 89d6b908-26b0-472d-988e-e629ad5109d0
- Panel
- false
- 0
- 334ee449-bb91-4040-87f4-5bfeebbe8c25
- 1
- Double click to edit panel content…
-
5408
13189
160
20
- 0
- 0
- 0
-
5408.331
13189.17
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 0d560297-f006-4fd3-8db6-690017c41c52
- Expression
- Expression
-
5389
13135
194
28
-
5489
13149
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d7a21b21-241b-4ac0-bebd-2ff02e4c9829
- Variable O
- O
- true
- bd425996-dd75-45a7-a5b7-1d684203bc1f
- 1
-
5391
13137
14
24
-
5399.5
13149
- Result of expression
- 4b1c81f1-8711-491e-b47e-7e0588d09b15
- Result
-
- false
- 0
-
5572
13137
9
24
-
5578
13149
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b7dbb186-1611-4c53-b4f7-01fa6b4ae529
- Panel
- false
- 0
- 4b1c81f1-8711-491e-b47e-7e0588d09b15
- 1
- Double click to edit panel content…
-
5408
13103
160
20
- 0
- 0
- 0
-
5408.342
13103.54
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 04401445-ab23-493e-999a-f5e4ee341658
- Expression
- Expression
-
5389
13307
194
28
-
5489
13321
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 0184b245-3f14-4c97-8b3b-2ea6f1abe1d3
- Variable O
- O
- true
- b98ab803-461a-49eb-94fe-2af517b0ccfd
- 1
-
5391
13309
14
24
-
5399.5
13321
- Result of expression
- e9861c3e-27b5-4bfd-acc2-9a94e9a0ced6
- Result
-
- false
- 0
-
5572
13309
9
24
-
5578
13321
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 4155937e-e3fb-4df8-bd49-e36e359a98d6
- Panel
- false
- 0
- e9861c3e-27b5-4bfd-acc2-9a94e9a0ced6
- 1
- Double click to edit panel content…
-
5408
13275
160
20
- 0
- 0
- 0
-
5408.081
13275.38
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 680df784-c22a-415e-a32e-710a9df95f88
- Panel
- false
- 0
- 0
- 1 16 0.35721403168191375
1 256 0.0014014999884235925
1 4096
-
5306
17383
379
104
- 0
- 0
- 0
-
5306.737
17383.36
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 97fab6c6-9ead-4054-833f-221a3603ba37
- Panel
- false
- 0
- 180acb8f-4e37-4c84-8292-6421f7e5b08e
- 1
- Double click to edit panel content…
-
5320
15639
337
276
- 0
- 0
- 0
-
5320.271
15639.17
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 2b5446d4-2662-40c1-90ef-28bce3dad14a
- Expression
- Expression
-
5389
15929
194
28
-
5489
15943
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- b04ba87e-0a9d-42d2-b72f-3ed0d2c3ebfc
- Variable O
- O
- true
- 7e56875d-6195-4648-9416-e7dbfed38f2c
- 1
-
5391
15931
14
24
-
5399.5
15943
- Result of expression
- 180acb8f-4e37-4c84-8292-6421f7e5b08e
- Result
-
- false
- 0
-
5572
15931
9
24
-
5578
15943
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 33e20571-35ad-4b71-9b27-b96292662551
- Number
- Number
- false
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 1
-
5472
17768
50
24
-
5497.042
17780.48
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- e4e81a6b-49cd-4934-bc18-1fc9fc697ada
- true
- Curve Graph Mapper
- Curve Graph Mapper
-
5317
16161
160
224
-
5385
16273
- 1
- One or multiple graph curves to graph map values with
- 92522141-2b43-43bf-a53b-30970a9e51fc
- true
- Curves
- Curves
- false
- 8040d8b5-20c7-45dd-8317-e46a038236d5
- 1
-
5319
16163
51
27
-
5346
16176.75
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- fe5b00f2-a7b3-4a51-9d11-edef1a97f723
- true
- Rectangle
- Rectangle
- false
- ffe95e94-6ae4-4ded-b8da-8dcc2650942b
- 1
-
5319
16190
51
28
-
5346
16204.25
- 1
- 1
- {0;0;0;0;0}
-
0
0
0
1
0
0
0
1
0
-
0
1
0
1
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- c78510bf-4fba-4c6c-85c3-15ff74378e8a
- true
- Values
- Values
- false
- 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
- 1
-
5319
16218
51
27
-
5346
16231.75
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 32eba012-a22b-432b-8410-af553315ce4a
- true
- X Axis
- X Axis
- true
- 0
-
5319
16245
51
28
-
5346
16259.25
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- a8a46fed-4cff-4d19-97a9-663e3e9f1e2d
- true
- Y Axis
- Y Axis
- true
- 0
-
5319
16273
51
27
-
5346
16286.75
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 03d70106-b718-484d-8f8e-53b54dda0a64
- true
- Flip
- Flip
- false
- 0
-
5319
16300
51
28
-
5346
16314.25
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 027a6efd-3ded-4828-b071-063698cb2a64
- true
- Snap
- Snap
- false
- 0
-
5319
16328
51
27
-
5346
16341.75
- 1
- 1
- {0}
- false
- Size of the graph labels
- c01bf397-1423-42a8-b6b9-dd848c41a424
- true
- Text Size
- Text Size
- false
- 0
-
5319
16355
51
28
-
5346
16369.25
- 1
- 1
- {0}
- 0.015625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 655eaf8d-d9bd-47a0-b7e9-00f288846cf5
- true
- Mapped
- Mapped
- false
- 0
-
5400
16163
75
20
-
5439
16173
- 1
- The graph curves inside the boundary of the graph
- 21afb9ee-6a63-47e3-a916-042886bbd142
- true
- Graph Curves
- Graph Curves
- false
- 0
-
5400
16183
75
20
-
5439
16193
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- 1ff48f80-a0a1-425c-81ca-0e0be7ce7628
- true
- Graph Points
- Graph Points
- false
- 0
-
5400
16203
75
20
-
5439
16213
- 1
- The lines from the X Axis input values to the graph curves
- true
- 6c0516ee-59f4-4192-9b9c-8066a1c997d6
- true
- Value Lines
- Value Lines
- false
- 0
-
5400
16223
75
20
-
5439
16233
- 1
- The points plotted on the X Axis which represent the input values
- true
- 07af53b3-bc6e-44e1-b8fc-f371d56bbdec
- true
- Value Points
- Value Points
- false
- 0
-
5400
16243
75
20
-
5439
16253
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 5788b688-f198-4822-8ded-05a4450550ee
- true
- Mapped Lines
- Mapped Lines
- false
- 0
-
5400
16263
75
20
-
5439
16273
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 04bab464-8ccd-47a7-b0e6-28036d6f0760
- true
- Mapped Points
- Mapped Points
- false
- 0
-
5400
16283
75
20
-
5439
16293
- The graph boundary background as a surface
- b4bcb671-84d1-41d3-afd1-85b96f4effe7
- true
- Boundary
- Boundary
- false
- 0
-
5400
16303
75
20
-
5439
16313
- 1
- The graph labels as curve outlines
- e1b54202-131b-4eba-87cd-4040eab95063
- true
- Labels
- Labels
- false
- 0
-
5400
16323
75
20
-
5439
16333
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 6ea78899-dfdd-4250-9f24-311acdf08c16
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
5400
16343
75
20
-
5439
16353
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 44271429-a98c-424c-857c-e84bf6334810
- true
- Intersected
- Intersected
- false
- 0
-
5400
16363
75
20
-
5439
16373
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- f3fde9a5-2ea1-4afe-9d9a-928b067af03e
- End Points
- End Points
-
5438
16521
96
44
-
5488
16543
- Curve to evaluate
- 454c9eb3-ee73-4b71-a8ba-bf1ebbcc7908
- Curve
- Curve
- false
- 8040d8b5-20c7-45dd-8317-e46a038236d5
- 1
-
5440
16523
33
40
-
5458
16543
- Curve start point
- f5a67493-fe18-4e80-b678-918b995b1305
- Start
- Start
- false
- 0
-
5503
16523
29
20
-
5519
16533
- Curve end point
- cf79c7ad-ce0c-44be-b241-c1cc28038fe1
- End
- End
- false
- 0
-
5503
16543
29
20
-
5519
16553
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 1f7639fc-9e90-4129-b924-89e68f321767
- Rectangle 2Pt
- Rectangle 2Pt
-
5423
16419
126
84
-
5481
16461
- Rectangle base plane
- 1a0b033a-2d6d-4dba-a264-94b51f53be45
- Plane
- Plane
- false
- 0
-
5425
16421
41
20
-
5447
16431
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 90cbb827-ab89-4d58-bf90-1d4243890157
- Point A
- Point A
- false
- f5a67493-fe18-4e80-b678-918b995b1305
- 1
-
5425
16441
41
20
-
5447
16451
- 1
- 1
- {0;0;0;0;0}
-
0
0
0
- Second corner point.
- e71cbccd-670f-4c09-9884-173b6da6c1b2
- Point B
- Point B
- false
- cf79c7ad-ce0c-44be-b241-c1cc28038fe1
- 1
-
5425
16461
41
20
-
5447
16471
- 1
- 1
- {0;0;0;0;0}
-
1
1
0
- Rectangle corner fillet radius
- a54396ac-dcff-47d4-8517-cbc7dd3e7feb
- Radius
- Radius
- false
- 0
-
5425
16481
41
20
-
5447
16491
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- ffe95e94-6ae4-4ded-b8da-8dcc2650942b
- Rectangle
- Rectangle
- false
- 0
-
5496
16421
51
40
-
5523
16441
- Length of rectangle curve
- d5693f1b-3c15-4d81-bfa2-1f179f6c2f0e
- Length
- Length
- false
- 0
-
5496
16461
51
40
-
5523
16481
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 2990a666-db3a-47b9-94fc-9242b4498c1b
- GraphMapper+
- GraphMapper+
- false
-
5477
16281
126
104
-
5544
16333
- External curve as a graph
- f61a827b-5792-492d-968a-df0fb0479f5e
- Curve
- Curve
- false
- 8040d8b5-20c7-45dd-8317-e46a038236d5
- 1
-
5479
16283
50
20
-
5505.5
16293
- Optional Rectangle boundary. If omitted the curve's would be landed
- c6cd0c35-928d-4b13-b801-c6c62bc98485
- Boundary
- Boundary
- true
- ffe95e94-6ae4-4ded-b8da-8dcc2650942b
- 1
-
5479
16303
50
20
-
5505.5
16313
- 1
- List of input numbers
- 805be465-f0c7-4ae5-a1b6-27e71e11f4c2
- Numbers
- Numbers
- false
- 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
- 1
-
5479
16323
50
20
-
5505.5
16333
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- b96f2d8c-3146-45f4-b3a6-90c2f1c2e899
- Input
- Input
- true
- fa2b0deb-c337-4c3b-97df-b062aaba5cca
- 1
-
5479
16343
50
20
-
5505.5
16353
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 701a6e51-9925-418b-900a-7a3e9218efc8
- Output
- Output
- true
- fa2b0deb-c337-4c3b-97df-b062aaba5cca
- 1
-
5479
16363
50
20
-
5505.5
16373
- 1
- Output Numbers
- 648c670e-390a-49db-8bb5-efde35578e09
- Number
- Number
- false
- 0
-
5559
16283
42
100
-
5581.5
16333
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- 8317b12d-ff53-48f0-81f0-88795d1f61d1
- Stream Filter
- Stream Filter
-
5452
16078
89
64
-
5497
16110
- 3
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- 4089ee28-5768-4313-a1c2-7c33ab0550d6
- Gate
- Gate
- false
- 7139f8e3-eaa9-4693-b756-639fca419fc2
- 1
-
5454
16080
28
20
-
5469.5
16090
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 7944637b-2cba-4d72-917a-6a02b5aec705
- false
- Stream 0
- 0
- true
- 655eaf8d-d9bd-47a0-b7e9-00f288846cf5
- 1
-
5454
16100
28
20
-
5469.5
16110
- 2
- Input stream at index 1
- c23701e4-96ac-42e5-970e-ee9c34554fe0
- false
- Stream 1
- 1
- true
- 648c670e-390a-49db-8bb5-efde35578e09
- 1
-
5454
16120
28
20
-
5469.5
16130
- 2
- Filtered stream
- d63382c0-8c72-4c9e-b48c-4524b1fd9d2f
- false
- Stream
- S(1)
- false
- 0
-
5512
16080
27
60
-
5527
16110
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 7139f8e3-eaa9-4693-b756-639fca419fc2
- Number Slider
-
- false
- 0
-
5418
16050
150
20
-
5418.701
16050.77
- 0
- 1
- 0
- 1
- 0
- 0
- 1
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3154d2c4-7bdd-49b5-b43d-59aa89efc602
- Panel
- false
- 1
- 1060c1be-e29f-4869-9de5-5e30f9be912d
- 1
- Double click to edit panel content…
-
5398
16709
185
271
- 0
- 0
- 0
-
5398.771
16709.79
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- cf5f65dd-af9a-4743-8528-ed3e3a3756f4
- Bounds
- Bounds
-
5427
16660
122
28
-
5491
16674
- 1
- Numbers to include in Bounds
- 0f35c9be-c009-4484-938b-387d42faade0
- Numbers
- Numbers
- false
- 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
- 1
-
5429
16662
47
24
-
5454
16674
- Numeric Domain between the lowest and highest numbers in {N}
- fa2b0deb-c337-4c3b-97df-b062aaba5cca
- Domain
- Domain
- false
- 0
-
5506
16662
41
24
-
5528
16674
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 7e4bb94a-30dd-495f-af75-5de6e4c1f4f4
- true
- Expression
- Expression
-
5389
16996
194
28
-
5489
17010
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 697cd88b-0970-4e60-b0c0-9ea4bf2ce758
- true
- Variable O
- O
- true
- 5d4b7eff-11a3-4f76-adc0-6dedb58fc783
- 1
-
5391
16998
14
24
-
5399.5
17010
- Result of expression
- 1060c1be-e29f-4869-9de5-5e30f9be912d
- true
- Result
-
- false
- 0
-
5572
16998
9
24
-
5578
17010
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:0.00000000000000000000}",O)
- true
- 946c731f-dff8-494b-887e-c414085f65fd
- Expression
- Expression
-
5303
17195
367
28
-
5489
17209
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 3e74eedc-08b4-4e2d-91c9-039ed265ab24
- Variable O
- O
- true
- f2db67b6-36a8-4c16-930b-5f8777edaacb
- 1
-
5305
17197
14
24
-
5313.5
17209
- Result of expression
- d5fe8339-6e63-4bf8-824e-dfd20728398a
- Result
-
- false
- 0
-
5659
17197
9
24
-
5665
17209
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 48cb32bb-5de4-4d6e-a0ed-d17555f2ae26
- Panel
- false
- 0
- d5fe8339-6e63-4bf8-824e-dfd20728398a
- 1
- Double click to edit panel content…
-
5398
17166
179
20
- 0
- 0
- 0
-
5398.911
17166.96
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- 1
- 9e6c0b46-d97c-4b94-92ce-e41f8d8f7975
- Group
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- bb4603b8-07f0-49ad-aad4-05a629f7587a
- Scale
- Scale
-
5409
13563
154
64
-
5493
13595
- Base geometry
- 703bff70-3767-4406-b6dc-d2f74f5d1575
- Geometry
- Geometry
- true
- 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
- 1
-
5411
13565
67
20
-
5454
13575
- Center of scaling
- 7eba0228-0ab3-4a10-a2a5-2050d1c780a7
- Center
- Center
- false
- 0
-
5411
13585
67
20
-
5454
13595
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 1d1f712d-e597-475b-a4de-606ecb8c93e6
- 1/X
- Factor
- Factor
- false
- e0bb1d65-8f43-4e62-9a82-d1e96f795827
- 1
-
5411
13605
67
20
-
5454
13615
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- d1abe780-8f64-4e2e-a0cf-edcc5149c963
- Geometry
- Geometry
- false
- 0
-
5508
13565
53
30
-
5536
13580
- Transformation data
- 5e640669-a63d-4577-82c5-9183d28a06d4
- Transform
- Transform
- false
- 0
-
5508
13595
53
30
-
5536
13610
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- c7939aa7-8fff-41f0-b836-5d909adc77bc
- Point
- Point
- false
- d1abe780-8f64-4e2e-a0cf-edcc5149c963
- 1
-
5463
13527
50
24
-
5488.061
13539.42
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 036b35d9-b1a1-4aef-91e0-5825bc907926
- Mirror
- Mirror
-
5414
12905
138
44
-
5482
12927
- Base geometry
- 12addec4-1027-4b71-b570-0e481d653339
- Geometry
- Geometry
- true
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- 1
-
5416
12907
51
20
-
5443
12917
- Mirror plane
- e3a2d039-c112-4709-a8da-a69a699d2e89
- Plane
- Plane
- false
- 0
-
5416
12927
51
20
-
5443
12937
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 83fbefb6-b996-46d3-ac18-058f8ef6dcbf
- Geometry
- Geometry
- false
- 0
-
5497
12907
53
20
-
5525
12917
- Transformation data
- 9496e689-66a0-4008-8dd7-b97bce32ef2e
- Transform
- Transform
- false
- 0
-
5497
12927
53
20
-
5525
12937
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 753d2f70-ec97-49d5-be42-ca631f83d557
- Curve
- Curve
- false
- b5dbf3e2-2824-40ad-8378-eb6f716817aa
- 1
-
5462
12800
50
24
-
5487.311
12812.43
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8040d8b5-20c7-45dd-8317-e46a038236d5
- Relay
- false
- 006eedfb-60cf-4eff-bd38-f7c31c0b08f9
- 1
-
5468
16588
40
16
-
5488
16596
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 65a27db8-6cdf-412c-80cf-9074bb1e2ce6
- Curve
- Curve
- false
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- 1
-
4909
16859
50
24
-
4934.321
16871.49
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 006eedfb-60cf-4eff-bd38-f7c31c0b08f9
- Curve
- Curve
- false
- b00a8555-14a9-42c1-b73a-df344f84da7e
- 1
-
4909
16657
50
24
-
4934.417
16669.52
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 3efed958-c8aa-42a6-8c98-99350727cda7
- Scale
- Scale
-
4856
16696
154
64
-
4940
16728
- Base geometry
- 14c7022a-ec32-41ce-bdc9-ff3e529b1ca3
- Geometry
- Geometry
- true
- 65a27db8-6cdf-412c-80cf-9074bb1e2ce6
- 1
-
4858
16698
67
20
-
4901
16708
- Center of scaling
- 7bcaac63-3d4b-433a-885b-c8c9e58c0cc3
- Center
- Center
- false
- 0
-
4858
16718
67
20
-
4901
16728
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- c1a3945d-0322-4554-bb1f-77db0917105c
- 2^X
- Factor
- Factor
- false
- 2ce48945-3ebb-4f8c-92dd-73095625a0cf
- 1
-
4858
16738
67
20
-
4901
16748
- 1
- 1
- {0}
- 1
- Scaled geometry
- b00a8555-14a9-42c1-b73a-df344f84da7e
- Geometry
- Geometry
- false
- 0
-
4955
16698
53
30
-
4983
16713
- Transformation data
- 456f5327-5a27-4139-a472-74223ee06b1a
- Transform
- Transform
- false
- 0
-
4955
16728
53
30
-
4983
16743
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 65a27db8-6cdf-412c-80cf-9074bb1e2ce6
- 006eedfb-60cf-4eff-bd38-f7c31c0b08f9
- 3efed958-c8aa-42a6-8c98-99350727cda7
- 27899f96-8899-44d3-a06c-50d23c4c5623
- 288aead7-3cdd-4e1d-8e5e-f8c1121bff23
- 2ce48945-3ebb-4f8c-92dd-73095625a0cf
- d36ec6f3-96bc-4f5f-9d8d-7ee30562d78c
- 7
- 6e31f6c1-3023-4703-945c-66643f71adad
- Group
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 0d7e2e50-a5bd-4802-9b01-5d484618175f
- Move
- Move
-
5414
12841
138
44
-
5482
12863
- Base geometry
- 031ae77b-721a-4661-8340-f08dec6a7e9a
- Geometry
- Geometry
- true
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- 1
-
5416
12843
51
20
-
5443
12853
- Translation vector
- 3d657963-2313-45a1-abbc-36da546ef377
- Motion
- Motion
- false
- 0
-
5416
12863
51
20
-
5443
12873
- 1
- 1
- {0}
-
2
2
0
- Translated geometry
- b5dbf3e2-2824-40ad-8378-eb6f716817aa
- Geometry
- Geometry
- false
- 0
-
5497
12843
53
20
-
5525
12853
- Transformation data
- 46ededc2-6f80-4ac0-afb5-c6a105fc879b
- Transform
- Transform
- false
- 0
-
5497
12863
53
20
-
5525
12873
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 288aead7-3cdd-4e1d-8e5e-f8c1121bff23
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 30.9312132004
-
4809
16818
250
20
-
4809.717
16818.88
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 2ce48945-3ebb-4f8c-92dd-73095625a0cf
- Panel
- false
- 0
- 0
- 16.93121320041889709
-
4866
16782
144
20
- 0
- 0
- 0
-
4866.884
16782.23
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- d36ec6f3-96bc-4f5f-9d8d-7ee30562d78c
- Curve
- Curve
- false
- 0
-
4909
16614
50
24
-
4934.417
16626.52
- 1
- 1
- {0;0;0;0}
- -1
-
zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
- 00000000-0000-0000-0000-000000000000
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- e1fec703-67c6-4d34-97d2-e1d9d2581fc7
- Curve
- Curve
- false
- 0
-
4987
16859
50
24
-
5012.039
16871.42
- 1
- 1
- {0;0;0;0}
- -1
-
zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
- 00000000-0000-0000-0000-000000000000
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ac0c2f92-5c8e-4a64-9f0f-f79bb037cf97
- Panel
- false
- 0
- 0
- 0.00137956207
-
5269
17346
439
20
- 0
- 0
- 0
-
5269.292
17346.89
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- a2a06c5a-3db9-4c29-b002-538ab4285c23
- true
- End Points
- End Points
-
5845
13483
96
44
-
5895
13505
- Curve to evaluate
- 40455b52-a4c8-4ce1-9fbc-66d544fc9abc
- true
- Curve
- Curve
- false
- 5ba91209-70bf-441b-84c9-1c6489a2c35f
- 1
-
5847
13485
33
40
-
5865
13505
- Curve start point
- 01fab085-2513-4dcc-8c03-0f4487e36c87
- true
- Start
- Start
- false
- 0
-
5910
13485
29
20
-
5926
13495
- Curve end point
- e03b999a-e7c6-4486-924f-91b26deff32c
- true
- End
- End
- false
- 0
-
5910
13505
29
20
-
5926
13515
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 002c3aaf-2bae-4b70-b8d5-2b41e6f6ef58
- true
- Rectangle 2Pt
- Rectangle 2Pt
-
5830
13380
126
84
-
5888
13422
- Rectangle base plane
- 748371db-4b89-48fa-a228-a987e16d23f9
- true
- Plane
- Plane
- false
- 0
-
5832
13382
41
20
-
5854
13392
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- febf0d58-1a2a-403d-8ead-c8c23586042a
- true
- Point A
- Point A
- false
- 01fab085-2513-4dcc-8c03-0f4487e36c87
- 1
-
5832
13402
41
20
-
5854
13412
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- 1c0be1b0-95a7-4245-a3e0-d61ea9bce3ff
- true
- Point B
- Point B
- false
- e03b999a-e7c6-4486-924f-91b26deff32c
- 1
-
5832
13422
41
20
-
5854
13432
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- e4a50f63-9a04-407d-94e1-e94ad8fef7bf
- true
- Radius
- Radius
- false
- 0
-
5832
13442
41
20
-
5854
13452
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 0a1d1fcd-c5ae-4783-8942-4c2d7037e2a4
- true
- Rectangle
- Rectangle
- false
- 0
-
5903
13382
51
40
-
5930
13402
- Length of rectangle curve
- e0fe2cea-f20a-4ec3-9e7e-430cb777911a
- true
- Length
- Length
- false
- 0
-
5903
13422
51
40
-
5930
13442
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
- Retrieve the base plane and side intervals of a rectangle.
- true
- 7dc9b1fa-34a3-4910-b157-fd5d6df71320
- true
- Deconstuct Rectangle
- Deconstuct Rectangle
-
5822
13297
142
64
-
5890
13329
- Rectangle to deconstruct
- 91dbd219-1e2c-4397-a6ab-f547f9717387
- true
- Rectangle
- Rectangle
- false
- 0a1d1fcd-c5ae-4783-8942-4c2d7037e2a4
- 1
-
5824
13299
51
60
-
5851
13329
- Base plane of rectangle
- 98d4862a-37a7-47d9-ad5d-279ef0887f5b
- true
- Base Plane
- Base Plane
- false
- 0
-
5905
13299
57
20
-
5935
13309
- Size interval along base plane X axis
- e8b7ce31-3d4d-44a6-b64c-7c4e514a3f30
- true
- X Interval
- X Interval
- false
- 0
-
5905
13319
57
20
-
5935
13329
- Size interval along base plane Y axis
- ec429665-a7b5-498a-8b07-1c5b5cb1aa55
- true
- Y Interval
- Y Interval
- false
- 0
-
5905
13339
57
20
-
5935
13349
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 2ebf6e7a-f8fb-4d09-8da4-8f406721bb40
- true
- Deconstruct Domain
- Deconstruct Domain
-
5841
13170
104
44
-
5899
13192
- Base domain
- 4138a53d-36a1-49d2-a384-66119792f159
- true
- Domain
- Domain
- false
- ec429665-a7b5-498a-8b07-1c5b5cb1aa55
- 1
-
5843
13172
41
40
-
5865
13192
- Start of domain
- 6ce6e327-8b68-44c4-b7b7-12b3bd61e879
- true
- Start
- Start
- false
- 0
-
5914
13172
29
20
-
5930
13182
- End of domain
- b113f25a-0b9d-4821-8344-0796767beef1
- true
- End
- End
- false
- 0
-
5914
13192
29
20
-
5930
13202
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- c1328565-f4da-42d6-8c15-c1953a257c1d
- true
- Deconstruct Domain
- Deconstruct Domain
-
5841
13232
104
44
-
5899
13254
- Base domain
- 6098ca9c-4ad6-4287-990a-568c93a2aa0a
- true
- Domain
- Domain
- false
- e8b7ce31-3d4d-44a6-b64c-7c4e514a3f30
- 1
-
5843
13234
41
40
-
5865
13254
- Start of domain
- dd3ac956-4a4e-472e-b660-56b73450d91e
- true
- Start
- Start
- false
- 0
-
5914
13234
29
20
-
5930
13244
- End of domain
- d9ffd57c-36f6-485e-8318-995beeeb67b9
- true
- End
- End
- false
- 0
-
5914
13254
29
20
-
5930
13264
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- d4189abd-c2f9-41b2-9d89-cf401d5a055e
- true
- Scale NU
- Scale NU
-
5816
13047
154
104
-
5900
13099
- Base geometry
- 434d96a4-8a58-40c3-8d45-5084012fa1b1
- true
- Geometry
- Geometry
- true
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- 1
-
5818
13049
67
20
-
5861
13059
- Base plane
- 7e8101ad-3c6e-4cb8-b72a-f1ae595d678b
- true
- Plane
- Plane
- false
- 0
-
5818
13069
67
20
-
5861
13079
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 872a1606-cb52-4eb5-b3c7-3520c2096f0f
- 1/X
- true
- Scale X
- Scale X
- false
- d9ffd57c-36f6-485e-8318-995beeeb67b9
- 1
-
5818
13089
67
20
-
5861
13099
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 9e9716a2-c113-4357-ae99-8552a9985a50
- 1/X
- true
- Scale Y
- Scale Y
- false
- b113f25a-0b9d-4821-8344-0796767beef1
- 1
-
5818
13109
67
20
-
5861
13119
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 5fbf3f11-27ce-4f8e-a45d-51a9b5fa1847
- true
- Scale Z
- Scale Z
- false
- 0
-
5818
13129
67
20
-
5861
13139
- 1
- 1
- {0}
- 1
- Scaled geometry
- 3e270a6f-f85b-41a6-b4dc-8ff949f32e10
- true
- Geometry
- Geometry
- false
- 0
-
5915
13049
53
50
-
5943
13074
- Transformation data
- 4e2e0107-a19a-4cfe-9f39-e4f172ffc936
- true
- Transform
- Transform
- false
- 0
-
5915
13099
53
50
-
5943
13124
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a2a06c5a-3db9-4c29-b002-538ab4285c23
- 002c3aaf-2bae-4b70-b8d5-2b41e6f6ef58
- 7dc9b1fa-34a3-4910-b157-fd5d6df71320
- 2ebf6e7a-f8fb-4d09-8da4-8f406721bb40
- c1328565-f4da-42d6-8c15-c1953a257c1d
- d4189abd-c2f9-41b2-9d89-cf401d5a055e
- 5ba91209-70bf-441b-84c9-1c6489a2c35f
- 7eaee9d9-87c9-4eef-8256-64df6d1afecb
- f747c5b6-a0fa-49c2-ab44-3b6a1e483c52
- eacb2384-049a-4ead-8722-725b92dcd001
- 10
- a3502f60-ca5f-4241-b01e-1fc95f471a8b
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 5ba91209-70bf-441b-84c9-1c6489a2c35f
- true
- Curve
- Curve
- false
- f1aea4ec-a8bb-4e50-8784-40578c2299f6
- 1
-
5869
13553
50
24
-
5894.623
13565.59
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 7eaee9d9-87c9-4eef-8256-64df6d1afecb
- true
- Curve
- Curve
- false
- 3e270a6f-f85b-41a6-b4dc-8ff949f32e10
- 1
-
5868
13025
50
24
-
5893.865
13037.46
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- f747c5b6-a0fa-49c2-ab44-3b6a1e483c52
- true
- Move
- Move
-
5824
12905
138
44
-
5892
12927
- Base geometry
- c9e04664-18e8-40df-a499-1626b14dba3c
- true
- Geometry
- Geometry
- true
- 7eaee9d9-87c9-4eef-8256-64df6d1afecb
- 1
-
5826
12907
51
20
-
5853
12917
- Translation vector
- 24e26d31-109f-4a3e-a8b4-8681868cc443
- true
- Motion
- Motion
- false
- 0
-
5826
12927
51
20
-
5853
12937
- 1
- 1
- {0}
-
0
1
0
- Translated geometry
- 6f7533c2-e995-4de1-a50e-9e2321ea252b
- true
- Geometry
- Geometry
- false
- 0
-
5907
12907
53
20
-
5935
12917
- Transformation data
- 55433255-fc94-41cc-8042-bc44ed4932c1
- true
- Transform
- Transform
- false
- 0
-
5907
12927
53
20
-
5935
12937
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- eacb2384-049a-4ead-8722-725b92dcd001
- true
- Curve
- Curve
- false
- 6f7533c2-e995-4de1-a50e-9e2321ea252b
- 1
-
5868
12852
50
24
-
5893.738
12864.46
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 125d3a1c-930f-4463-9347-52d3fdf7374e
- Panel
- false
- 0
- 0
- 0.00032220000
0.00000220000
-
5269
17507
439
22
- 0
- 0
- 0
-
5269.598
17507.85
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 51a5ccd4-fe7a-4905-946e-cc623d85be8c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00007777700
-
5362
17604
251
20
-
5362.203
17604.73
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 34dd5b72-ea07-47ca-81bb-f79a2688ae4f
- Panel
- false
- 0
- 0
- 0.00137956207
-
5269
17566
439
20
- 0
- 0
- 0
-
5269.042
17566.89
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 1/X
- true
- 6a0d61a0-055d-484a-8ad8-79cab07d7a8a
- Expression
-
5454
17718
79
28
-
5496
17732
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4faed1ce-4873-4795-8daa-638e471653fa
- Variable X
- X
- true
- 33e20571-35ad-4b71-9b27-b96292662551
- 1
-
5456
17720
14
24
-
5464.5
17732
- Result of expression
- f70822e3-31a4-4282-bec8-3922e48d70b0
- Result
- false
- 0
-
5522
17720
9
24
-
5528
17732
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 801d94bb-da1a-4765-8d5f-80e3b14be793
- Move
- Move
-
3918
12792
138
44
-
3986
12814
- Base geometry
- a8fd8c13-9926-44dc-9299-0920feb37321
- Geometry
- Geometry
- true
- 90e19fa7-f6b1-4d31-96cb-4efdb2699129
- 1
-
3920
12794
51
20
-
3947
12804
- Translation vector
- e255673c-7411-4f34-9b31-b1f040fe174a
- Motion
- Motion
- false
- 0
-
3920
12814
51
20
-
3947
12824
- 1
- 1
- {0}
-
0
2
0
- Translated geometry
- 09d02923-a736-4695-b9f9-2969520949b2
- Geometry
- Geometry
- false
- 0
-
4001
12794
53
20
-
4029
12804
- Transformation data
- 6d016aea-4756-4a1b-beee-468606cf1aba
- Transform
- Transform
- false
- 0
-
4001
12814
53
20
-
4029
12824
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- d72bdd86-fcc5-489b-922f-820eed5ab644
- Curve
- Curve
- false
- 09d02923-a736-4695-b9f9-2969520949b2
- 1
-
3961
12744
50
24
-
3986
12756.73
- c9785b8e-2f30-4f90-8ee3-cca710f82402
- Entwine
- Flatten and combine a collection of data streams
- false
- true
- 5ec4d760-d1d0-4fa0-91cb-4e75eb9e4582
- Entwine
- Entwine
-
4883
12238
97
164
-
4929
12320
- 8
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data to entwine
- 63a7ea77-f675-4feb-91b9-35c7f9e60e54
- false
- Branch {0;x}
- {0;x}
- true
- e0c44022-95ec-431a-b6ac-3c9b92814529
- 1
-
4885
12240
29
20
-
4901
12250
- 2
- Data to entwine
- 50bd0a59-26b5-455e-b568-d0ae40672c88
- false
- Branch {1;x}
- {1;x}
- true
- d72bdd86-fcc5-489b-922f-820eed5ab644
- 1
-
4885
12260
29
20
-
4901
12270
- 2
- Data to entwine
- 18656fbe-1894-47e8-9abc-b623f4711834
- false
- Branch {2;x}
- {2;x}
- true
- 5d2b4f82-e973-403a-91a1-1837ec84137e
- 1
-
4885
12280
29
20
-
4901
12290
- 2
- Data to entwine
- ff76948c-a81b-411a-9ff8-14071469d96d
- false
- Branch {3;x}
- {3;x}
- true
- 753d2f70-ec97-49d5-be42-ca631f83d557
- 1
-
4885
12300
29
20
-
4901
12310
- 2
- Data to entwine
- 0ca85c19-7d18-4a3e-b447-eafc52a55385
- false
- Branch {4;x}
- {4;x}
- true
- 0acb87a9-1c34-4be4-9a0a-51d135ea71a9
- 1
-
4885
12320
29
20
-
4901
12330
- 2
- Data to entwine
- 82669f82-f5c2-4900-a525-57bcc5cc5e75
- false
- Branch {5;x}
- {5;x}
- true
- 0
-
4885
12340
29
20
-
4901
12350
- 2
- Data to entwine
- bd04a5ec-3e4e-468b-bf65-807bb1ae7074
- false
- Branch {6;x}
- {6;x}
- true
- 0
-
4885
12360
29
20
-
4901
12370
- 2
- Data to entwine
- 396248f8-a048-43a0-afb4-8700d2b0e39e
- false
- Branch {7;x}
- {7;x}
- true
- 0
-
4885
12380
29
20
-
4901
12390
- Entwined result
- 23d638bb-eaf7-4140-8cea-d4d59de419f0
- Result
- Result
- false
- 0
-
4944
12240
34
160
-
4962.5
12320
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- c805c655-6882-4bac-bcea-fd9c2844f949
- Curve
- Curve
- false
- 23d638bb-eaf7-4140-8cea-d4d59de419f0
- 1
-
3948
7793
50
24
-
3973.804
7805.155
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d8b69669-a2bd-4187-9589-204f3dbe274a
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2773
3215
40
16
-
2793
3223
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 45cacb59-db8f-4bcf-92f7-9858295e7129
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2782
1321
40
16
-
2802
1329
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f0a46a15-062c-4b96-9a51-0ebf280e5a4a
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2789
-439
40
16
-
2809
-431
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f49ae725-c6ea-4bce-920d-d82e9007d475
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2782
-2246
40
16
-
2802
-2238
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2786
-4035
40
16
-
2806
-4027
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 647310bf-b19d-44df-ae6f-ffbd5b863fe9
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2788
-5834
40
16
-
2808
-5826
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2787
-7638
40
16
-
2807
-7630
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a5231a70-f4f4-4b81-9867-e1428a4b482a
- Relay
- false
- e987d189-a3ef-46bd-bffd-d627e83d8e15
- 1
-
2790
-9468
40
16
-
2810
-9460
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c4bdd32b-2f4b-4512-97a3-269f4e7691df
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00000331207
-
3856
16398
250
20
-
3856.99
16398.15
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- ac0563c4-269d-48f2-89e5-9a7e37533987
- Point
- Point
- false
- b883c1db-e29a-419a-b27d-3b96c2dc49e7
- 1
-
5485
15509
50
24
-
5510.019
15521.45
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b883c1db-e29a-419a-b27d-3b96c2dc49e7
- Relay
- false
- 7e56875d-6195-4648-9416-e7dbfed38f2c
- 1
-
5490
15559
40
16
-
5510
15567
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4df4065a-2f69-448d-8bf5-8bdb5ff2cfd2
- Relay
- false
- 30e44a79-a5f5-4524-bb24-e6f86372367c
- 1
-
5490
15336
40
16
-
5510
15344
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0d292809-70fb-4714-b8b2-a4596f68805b
- Scale
- Scale
-
5433
15372
154
64
-
5517
15404
- Base geometry
- 2e27ff84-f3f9-4058-9ef2-8c952b224c43
- Geometry
- Geometry
- true
- ac0563c4-269d-48f2-89e5-9a7e37533987
- 1
-
5435
15374
67
20
-
5478
15384
- Center of scaling
- e1c5a546-5e92-4c39-9a6c-b254595a7974
- Center
- Center
- false
- 0
-
5435
15394
67
20
-
5478
15404
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 42701b69-b1cc-4e61-9b9d-a79c84d7f909
- 2^X
- Factor
- Factor
- false
- 04b97450-c000-42e5-b63f-6bbaaadb98c0
- 1
-
5435
15414
67
20
-
5478
15424
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 30e44a79-a5f5-4524-bb24-e6f86372367c
- Geometry
- Geometry
- false
- 0
-
5532
15374
53
30
-
5560
15389
- Transformation data
- e37754f6-eab7-4149-a31b-4879926f50c2
- Transform
- Transform
- false
- 0
-
5532
15404
53
30
-
5560
15419
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 04b97450-c000-42e5-b63f-6bbaaadb98c0
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 16.00000
-
5389
15453
250
20
-
5389.797
15453.81
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ac0563c4-269d-48f2-89e5-9a7e37533987
- 1
- af76057b-70c5-4de0-822b-c12366bb72b7
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 817a1f1b-9353-4d8d-84f9-673116fd6d05
- Relay
- false
- 1f4d203a-7210-473f-9482-f99a19778d4f
- 1
-
4327
-1769
40
16
-
4347
-1761
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- d197346e-1ec5-40f0-983c-c7a6ead3065e
- Move
- Move
-
4318
12762
138
44
-
4386
12784
- Base geometry
- a423dcdd-4853-4b7d-a2f3-cffe291f9850
- Geometry
- Geometry
- true
- 81f088dd-94a4-48be-b31f-7aba0efd2713
- 1
-
4320
12764
51
20
-
4347
12774
- Translation vector
- 408bfb91-bcf5-4126-8885-85433413bdcf
- Motion
- Motion
- false
- 0
-
4320
12784
51
20
-
4347
12794
- 1
- 1
- {0}
-
0
4
0
- Translated geometry
- fe8ab74c-cf45-4b89-8ea1-35bc99c27d5b
- Geometry
- Geometry
- false
- 0
-
4401
12764
53
20
-
4429
12774
- Transformation data
- 1bc666a9-3ed9-4da4-9700-9ed0d2b28c54
- Transform
- Transform
- false
- 0
-
4401
12784
53
20
-
4429
12794
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- 5d2b4f82-e973-403a-91a1-1837ec84137e
- Curve
- Curve
- false
- fe8ab74c-cf45-4b89-8ea1-35bc99c27d5b
- 1
-
4361
12722
50
24
-
4386.667
12734.07
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 818cae34-4f9c-4a98-a357-da5e0454ab34
- 8b9a3012-f494-4be4-96eb-9046c4b5c4be
- 7026d177-417b-48d9-89bd-1b653119ba4d
- 4349e7b3-029c-4438-8455-d081a0551ea7
- 330d0272-c7e2-4aee-9324-9b82cd45051e
- c57af627-40bd-41eb-9023-2b3d876665ad
- 6
- 0101e44a-c070-45c9-afd3-723f4eb84969
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 71b37780-b90b-4013-bfd4-0ab8e9747212
- b03e833c-fca6-4ccb-92b1-6861e0602af5
- 9d42db50-e21b-4ca7-8257-ab545d2d537a
- 93048264-4b36-421d-9dc8-6f63b09e2e02
- 8a073dea-ee64-41a0-a142-f0419aa1983a
- c7bfe210-2c9c-4606-a81e-4c841f6a26e7
- de5ef085-d946-4cbc-a865-d62c7ac5b59f
- 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
- 5e9559ab-b36f-4135-a20b-0f83883d0c16
- e7231421-695c-411b-be55-ddb09db98c02
- 4b2a6410-7370-4694-9e32-2aa5978d40f9
- b70db8ac-ad66-4443-85b9-31ebfab630d6
- 146dd4e9-d31a-47ab-96a2-4e5a7b067380
- a37ed670-3231-4174-9012-88b689f8c3ec
- c224342c-801f-4459-9224-44879ddf539f
- a16b5aba-6b7d-4c32-900e-608495f6304a
- e7644f26-8c06-4185-a067-2a43d69f923f
- 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
- eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- 9ba04202-972f-46cf-bbdb-ec7165cf9218
- 15f4b4a9-678a-4279-bcbf-8c346070768f
- 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
- efd312fd-5e18-4a1e-b794-4ff2fce83a8c
- fff9a471-5152-49fd-99a1-8314714ec684
- a5e32ddc-34b6-4c3a-b077-6d8835921880
- f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
- 3d813d91-92fa-4852-945d-e3a25c964c7e
- 991e2e02-facb-422f-94b3-f99e9e5fb37c
- 32bdb325-7b6d-415f-adf0-86c7bbba7c50
- 3bf63ba3-f267-4d79-aaef-631ecd541cb9
- cc9c241b-c6a7-47bd-8026-177029f27f11
- 51762e9b-3278-4635-b56f-bbed71f7be4a
- 92dea64a-2d16-439e-9f27-9c0d88d741dc
- e54e9014-dac7-4d48-b29e-4e9328a0c364
- 88286176-d253-439c-ad14-7da02c75ca8b
- 2e9fc4e7-11d6-46e7-bbe2-4be37b0bfe47
- 6c2c0e34-fde6-416e-b38f-17e237ffa612
- 96103962-5729-44c6-919b-b5e668bb459d
- cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
- 6b265988-c729-43d9-88ad-548c22e07a09
- 376fda74-51b3-4127-b018-e74a14bf6894
- 29b0ed52-1bf6-4d5b-b0dd-81f23322e72e
- 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
- fdb4fd70-bdff-4175-8783-9cf3c3a117db
- c501f714-9d8e-43b6-8bac-048ca2bb80cf
- 0b08a1a9-9bef-44f3-b7d3-687ca9617c3f
- 913fa83a-7c8e-40f4-ba27-a4799bffb36e
- 7493d9a5-e75e-4270-943a-49f011ebc376
- de444b16-e90f-46ab-bc54-6b6b8ba29496
- c43c079b-63ca-493a-8642-e54578ba8b03
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 9cbe6a37-a7e2-4fd1-9eaf-24df74f69a5c
- 316f3779-ed94-4d88-a48c-0bcda6b652ff
- ec81026f-aaf0-400a-a481-5a2730b38b20
- 6508b285-8a59-4d0c-a67a-44a3db97fc39
- edd134a4-57ee-42b4-9a96-203dd2d224a1
- 1ee22ab9-d81d-496a-95aa-c79966d9f1ee
- 38d1a553-d197-4de9-be8f-831f3678bc16
- 97ee1782-c906-46c4-91b5-f223dbe502df
- c0237c22-ae4e-4bcc-a7f3-8849e1f79852
- b98c6ab4-6826-4894-b815-39419e0c3a74
- 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
- fa5f5265-773a-47ad-93dd-9e26a91e6025
- d73f2344-3af1-4e8b-aa88-550107d9e330
- a581cb4b-1814-48fc-a1b8-43b1d1292aed
- 9325032a-eb1d-4417-917b-7ac65f028126
- 34b3f794-c511-49ff-92c6-10cd056aa48c
- 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
- a1119ab4-5e53-41b5-800a-934be5132300
- 6d014d07-0f02-444c-ac9d-e170313d1517
- 1753a518-f0a0-46e5-8dd8-9caf11fd6412
- 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
- 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
- 723d57d4-e61b-41f3-a500-fda5845c7a33
- ef313551-48ea-4e3c-b4c0-4a190bd7321a
- 63453c88-bf0b-4d36-85c6-a269170a7b71
- b14cb3b4-9404-4bbf-adca-ddf843b42203
- 3ce6ef90-b08d-4cde-aaac-5cd8c3a27dff
- 99b9d330-df78-461e-a740-618abd0be001
- f8e459ea-0b4f-43ea-ba11-4269ab3fae7e
- 0acb87a9-1c34-4be4-9a0a-51d135ea71a9
- 2ae4353f-5da3-48ee-b4ec-327901fe84b9
- 83
- 6f908309-1408-4e8c-be44-93157dd82c8a
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b03e833c-fca6-4ccb-92b1-6861e0602af5
- 9d42db50-e21b-4ca7-8257-ab545d2d537a
- 93048264-4b36-421d-9dc8-6f63b09e2e02
- 8a073dea-ee64-41a0-a142-f0419aa1983a
- c7bfe210-2c9c-4606-a81e-4c841f6a26e7
- de5ef085-d946-4cbc-a865-d62c7ac5b59f
- 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
- 5e9559ab-b36f-4135-a20b-0f83883d0c16
- e7231421-695c-411b-be55-ddb09db98c02
- 4b2a6410-7370-4694-9e32-2aa5978d40f9
- b70db8ac-ad66-4443-85b9-31ebfab630d6
- 146dd4e9-d31a-47ab-96a2-4e5a7b067380
- a37ed670-3231-4174-9012-88b689f8c3ec
- c224342c-801f-4459-9224-44879ddf539f
- a16b5aba-6b7d-4c32-900e-608495f6304a
- e7644f26-8c06-4185-a067-2a43d69f923f
- 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
- eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- 9ba04202-972f-46cf-bbdb-ec7165cf9218
- 15f4b4a9-678a-4279-bcbf-8c346070768f
- 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
- efd312fd-5e18-4a1e-b794-4ff2fce83a8c
- fff9a471-5152-49fd-99a1-8314714ec684
- a5e32ddc-34b6-4c3a-b077-6d8835921880
- f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
- 3d813d91-92fa-4852-945d-e3a25c964c7e
- 991e2e02-facb-422f-94b3-f99e9e5fb37c
- 32bdb325-7b6d-415f-adf0-86c7bbba7c50
- 3bf63ba3-f267-4d79-aaef-631ecd541cb9
- cc9c241b-c6a7-47bd-8026-177029f27f11
- 51762e9b-3278-4635-b56f-bbed71f7be4a
- 92dea64a-2d16-439e-9f27-9c0d88d741dc
- e54e9014-dac7-4d48-b29e-4e9328a0c364
- 88286176-d253-439c-ad14-7da02c75ca8b
- 2e9fc4e7-11d6-46e7-bbe2-4be37b0bfe47
- 6c2c0e34-fde6-416e-b38f-17e237ffa612
- 96103962-5729-44c6-919b-b5e668bb459d
- cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
- 6b265988-c729-43d9-88ad-548c22e07a09
- 376fda74-51b3-4127-b018-e74a14bf6894
- 29b0ed52-1bf6-4d5b-b0dd-81f23322e72e
- 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
- fdb4fd70-bdff-4175-8783-9cf3c3a117db
- c501f714-9d8e-43b6-8bac-048ca2bb80cf
- 0b08a1a9-9bef-44f3-b7d3-687ca9617c3f
- 913fa83a-7c8e-40f4-ba27-a4799bffb36e
- 7493d9a5-e75e-4270-943a-49f011ebc376
- de444b16-e90f-46ab-bc54-6b6b8ba29496
- c43c079b-63ca-493a-8642-e54578ba8b03
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 9cbe6a37-a7e2-4fd1-9eaf-24df74f69a5c
- 316f3779-ed94-4d88-a48c-0bcda6b652ff
- ec81026f-aaf0-400a-a481-5a2730b38b20
- 6508b285-8a59-4d0c-a67a-44a3db97fc39
- edd134a4-57ee-42b4-9a96-203dd2d224a1
- 1ee22ab9-d81d-496a-95aa-c79966d9f1ee
- 38d1a553-d197-4de9-be8f-831f3678bc16
- 97ee1782-c906-46c4-91b5-f223dbe502df
- c0237c22-ae4e-4bcc-a7f3-8849e1f79852
- b98c6ab4-6826-4894-b815-39419e0c3a74
- 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
- fa5f5265-773a-47ad-93dd-9e26a91e6025
- d73f2344-3af1-4e8b-aa88-550107d9e330
- a581cb4b-1814-48fc-a1b8-43b1d1292aed
- 9325032a-eb1d-4417-917b-7ac65f028126
- 34b3f794-c511-49ff-92c6-10cd056aa48c
- 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
- a1119ab4-5e53-41b5-800a-934be5132300
- 6d014d07-0f02-444c-ac9d-e170313d1517
- 1753a518-f0a0-46e5-8dd8-9caf11fd6412
- 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
- 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
- 723d57d4-e61b-41f3-a500-fda5845c7a33
- ef313551-48ea-4e3c-b4c0-4a190bd7321a
- 63453c88-bf0b-4d36-85c6-a269170a7b71
- b14cb3b4-9404-4bbf-adca-ddf843b42203
- 3ce6ef90-b08d-4cde-aaac-5cd8c3a27dff
- 99b9d330-df78-461e-a740-618abd0be001
- 79
- 71b37780-b90b-4013-bfd4-0ab8e9747212
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b14cb3b4-9404-4bbf-adca-ddf843b42203
- 1
- b03e833c-fca6-4ccb-92b1-6861e0602af5
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 93048264-4b36-421d-9dc8-6f63b09e2e02
- 1
- 9d42db50-e21b-4ca7-8257-ab545d2d537a
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8a073dea-ee64-41a0-a142-f0419aa1983a
- 1
- 93048264-4b36-421d-9dc8-6f63b09e2e02
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c7bfe210-2c9c-4606-a81e-4c841f6a26e7
- 1
- 8a073dea-ee64-41a0-a142-f0419aa1983a
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- de5ef085-d946-4cbc-a865-d62c7ac5b59f
- 1
- c7bfe210-2c9c-4606-a81e-4c841f6a26e7
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
- 1
- de5ef085-d946-4cbc-a865-d62c7ac5b59f
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e7231421-695c-411b-be55-ddb09db98c02
- 1
- 1d6f877a-787d-4e01-ba5f-0bd8ce3cfbd6
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 5e9559ab-b36f-4135-a20b-0f83883d0c16
- Curve
- Curve
- false
- 0
-
6902
16621
50
24
-
6927.354
16633.31
- 1
- 1
- {0;0;0;0}
- -1
-
pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5e9559ab-b36f-4135-a20b-0f83883d0c16
- 1
- e7231421-695c-411b-be55-ddb09db98c02
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 32bdb325-7b6d-415f-adf0-86c7bbba7c50
- 1
- 4b2a6410-7370-4694-9e32-2aa5978d40f9
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 146dd4e9-d31a-47ab-96a2-4e5a7b067380
- a37ed670-3231-4174-9012-88b689f8c3ec
- c224342c-801f-4459-9224-44879ddf539f
- a16b5aba-6b7d-4c32-900e-608495f6304a
- e7644f26-8c06-4185-a067-2a43d69f923f
- 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
- eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- 15f4b4a9-678a-4279-bcbf-8c346070768f
- 9ba04202-972f-46cf-bbdb-ec7165cf9218
- 4b2a6410-7370-4694-9e32-2aa5978d40f9
- e7231421-695c-411b-be55-ddb09db98c02
- 9325032a-eb1d-4417-917b-7ac65f028126
- 34b3f794-c511-49ff-92c6-10cd056aa48c
- 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
- a1119ab4-5e53-41b5-800a-934be5132300
- 6d014d07-0f02-444c-ac9d-e170313d1517
- 1753a518-f0a0-46e5-8dd8-9caf11fd6412
- fa5f5265-773a-47ad-93dd-9e26a91e6025
- d73f2344-3af1-4e8b-aa88-550107d9e330
- 20
- b70db8ac-ad66-4443-85b9-31ebfab630d6
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 146dd4e9-d31a-47ab-96a2-4e5a7b067380
- Duplicate Data
- Duplicate Data
-
6880
17638
104
64
-
6939
17670
- 1
- Data to duplicate
- 432d2d62-6a24-494d-bcfa-22ba08c6901b
- Data
- Data
- false
- 3ad7dfe7-0bcc-40c5-ba1e-131b10b2e1e0
- 1
-
6882
17640
42
20
-
6904.5
17650
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- 3a7f67fc-9e30-4d01-af92-8a22caf1cd63
- Number
- Number
- false
- a581cb4b-1814-48fc-a1b8-43b1d1292aed
- 1
-
6882
17660
42
20
-
6904.5
17670
- 1
- 1
- {0}
- 500
- Retain list order
- 19e13fca-58e6-4de7-8df0-45fc14125c83
- Order
- Order
- false
- 0
-
6882
17680
42
20
-
6904.5
17690
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 44f0502a-3401-4938-b9ac-11e734bde58a
- Data
- Data
- false
- 0
-
6954
17640
28
60
-
6969.5
17670
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- a37ed670-3231-4174-9012-88b689f8c3ec
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
6866
15977
116
44
-
6927
15999
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 744c6902-9d5c-4582-ba51-cb4b5fe416c9
- Forward
- Forward
- true
- 1
- true
- 44f0502a-3401-4938-b9ac-11e734bde58a
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
6868
15979
44
20
-
6891.5
15989
- 1
- false
- Script Variable Left
- 52fc1124-4208-4f8f-b122-c00559927a62
- Left
- Left
- true
- 1
- true
- b33b8004-7930-480a-ac46-8cdfdfe4c3fd
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
6868
15999
44
20
-
6891.5
16009
- Print, Reflect and Error streams
- 19f9cffa-730b-4a74-944a-dc68c27659a7
- Output
- Output
- false
- 0
-
6942
15979
38
20
-
6962.5
15989
- Output parameter Points
- cc0559b1-a1cc-49c2-a2e5-a855627d3509
- Points
- Points
- false
- 0
-
6942
15999
38
20
-
6962.5
16009
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- a16b5aba-6b7d-4c32-900e-608495f6304a
- Series
- Series
-
6877
17041
101
64
-
6927
17073
- First number in the series
- 9c31dfae-88de-46d8-b753-bbdefdb960cd
- Start
- Start
- false
- 0
-
6879
17043
33
20
-
6897
17053
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 53488e46-8c08-4996-819d-c90fcc76e959
- Step
- Step
- false
- 63453c88-bf0b-4d36-85c6-a269170a7b71
- 1
-
6879
17063
33
20
-
6897
17073
- 1
- 1
- {0}
- 1
- Number of values in the series
- 5f10196d-4db6-4b93-9f3c-9b531348ae11
- Count
- Count
- false
- a581cb4b-1814-48fc-a1b8-43b1d1292aed
- 1
-
6879
17083
33
20
-
6897
17093
- 1
- Series of numbers
- d600ac99-97d4-49fd-83df-b1b6d6afdef2
- Series
- Series
- false
- 0
-
6942
17043
34
60
-
6960.5
17073
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- e7644f26-8c06-4185-a067-2a43d69f923f
- Number Slider
-
- false
- 0
-
6860
17810
150
20
-
6860.035
17810.41
- 0
- 1
- 0
- 65536
- 0
- 0
- 256
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
- Radians
- Radians
-
6864
17243
120
28
-
6925
17257
- Angle in degrees
- 3b639ada-9a77-4ac0-ada9-20b70a3c8cfc
- Degrees
- Degrees
- false
- 007508b2-f339-4553-8d9f-37c194c198e4
- 1
-
6866
17245
44
24
-
6889.5
17257
- Angle in radians
- 795cb8d8-c83c-4a7a-a3dc-11c297145099
- Radians
- Radians
- false
- 0
-
6940
17245
42
24
-
6962.5
17257
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00140149998
-
6800
17547
251
20
-
6800.747
17547.2
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- 9ba04202-972f-46cf-bbdb-ec7165cf9218
- Interpolate (t)
- Interpolate (t)
-
6852
15212
144
84
-
6938
15254
- 1
- Interpolation points
- cc093273-492e-4d1e-a636-91b1bd476a4a
- Vertices
- Vertices
- false
- 7026d177-417b-48d9-89bd-1b653119ba4d
- 1
-
6854
15214
69
20
-
6890
15224
- Tangent at start of curve
- 4eab187c-ac00-4ae8-af02-d74d82b3abb6
- Tangent Start
- Tangent Start
- false
- 0
-
6854
15234
69
20
-
6890
15244
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- e3107843-c6d2-46db-b0b7-2f07cfb85280
- Tangent End
- Tangent End
- false
- 0
-
6854
15254
69
20
-
6890
15264
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 650cb869-7f2f-4d83-8e51-fe36b2b6d11f
- KnotStyle
- KnotStyle
- false
- 0
-
6854
15274
69
20
-
6890
15284
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 7335fc5e-2f53-45be-a90e-b994f0a163d7
- Curve
- Curve
- false
- 0
-
6953
15214
41
26
-
6975
15227.33
- Curve length
- 0e96ab2a-4239-4660-aea1-ded9799d471d
- Length
- Length
- false
- 0
-
6953
15240
41
27
-
6975
15254
- Curve domain
- 11fdecd1-6ec8-4ea9-b805-8645a753aae3
- Domain
- Domain
- false
- 0
-
6953
15267
41
27
-
6975
15280.67
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 146dd4e9-d31a-47ab-96a2-4e5a7b067380
- a37ed670-3231-4174-9012-88b689f8c3ec
- c224342c-801f-4459-9224-44879ddf539f
- a16b5aba-6b7d-4c32-900e-608495f6304a
- e7644f26-8c06-4185-a067-2a43d69f923f
- 6c80b4d2-3fdb-4d83-9180-7423b7ec5c80
- eca9c127-5b9d-47ca-a4b5-0c1fd80e0916
- bade2dc2-5919-4723-bde3-ebdd9bc0713a
- 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
- 92dea64a-2d16-439e-9f27-9c0d88d741dc
- 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
- 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
- 723d57d4-e61b-41f3-a500-fda5845c7a33
- 8559c532-2d07-4a7d-9687-32d3d6a8d21d
- 14
- 15f4b4a9-678a-4279-bcbf-8c346070768f
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
- Evaluate Length
- Evaluate Length
-
6852
15044
144
64
-
6926
15076
- Curve to evaluate
- cd87cea7-8b64-45ec-b441-63b4ea9641e8
- Curve
- Curve
- false
- 7335fc5e-2f53-45be-a90e-b994f0a163d7
- 1
-
6854
15046
57
20
-
6884
15056
- Length factor for curve evaluation
- 0ac6cc97-2b50-4c22-8a64-aab512b0fd27
- Length
- Length
- false
- 0
-
6854
15066
57
20
-
6884
15076
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 52bb28ee-2360-4448-a022-f17157ac36cf
- Normalized
- Normalized
- false
- 0
-
6854
15086
57
20
-
6884
15096
- 1
- 1
- {0}
- true
- Point at the specified length
- 80bde40b-b7f1-4388-ad90-deebf5bbe4b7
- Point
- Point
- false
- 0
-
6941
15046
53
20
-
6969
15056
- Tangent vector at the specified length
- 4af12d93-41e4-4c3e-a671-450d903ce2d9
- Tangent
- Tangent
- false
- 0
-
6941
15066
53
20
-
6969
15076
- Curve parameter at the specified length
- 068e87c8-2e5e-43bf-a881-662a96c97c1b
- Parameter
- Parameter
- false
- 0
-
6941
15086
53
20
-
6969
15096
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- efd312fd-5e18-4a1e-b794-4ff2fce83a8c
- Mirror
- Mirror
-
6855
14982
138
44
-
6923
15004
- Base geometry
- 9252772e-0621-46d3-af11-f8d7ada86a67
- Geometry
- Geometry
- true
- 7335fc5e-2f53-45be-a90e-b994f0a163d7
- 1
-
6857
14984
51
20
-
6884
14994
- Mirror plane
- b3c2c055-3b2b-40c6-bfd1-fc902eddd5ff
- Plane
- Plane
- false
- 2a3024ad-0c46-4a3c-a8be-ecf6a7d5a5b3
- 1
-
6857
15004
51
20
-
6884
15014
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 1ed2cae7-489d-450a-bb13-578ad1f75da8
- Geometry
- Geometry
- false
- 0
-
6938
14984
53
20
-
6966
14994
- Transformation data
- 9e3491f3-4791-4ab1-9760-3d628a61e78a
- Transform
- Transform
- false
- 0
-
6938
15004
53
20
-
6966
15014
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- fff9a471-5152-49fd-99a1-8314714ec684
- Line SDL
- Line SDL
-
6871
15128
106
64
-
6935
15160
- Line start point
- 172d8b2d-b3da-4259-999b-af1cd5fe5908
- Start
- Start
- false
- 80bde40b-b7f1-4388-ad90-deebf5bbe4b7
- 1
-
6873
15130
47
20
-
6898
15140
- Line tangent (direction)
- f4e0c70a-e4ae-4ece-8ae6-58e5afb78ed7
- Direction
- Direction
- false
- 4af12d93-41e4-4c3e-a671-450d903ce2d9
- 1
-
6873
15150
47
20
-
6898
15160
- 1
- 1
- {0}
-
0
0
1
- Line length
- ef8f041a-92a8-4f8e-bb78-e2faac1d98a9
- Length
- Length
- false
- 0
-
6873
15170
47
20
-
6898
15180
- 1
- 1
- {0}
- 1
- Line segment
- 2a3024ad-0c46-4a3c-a8be-ecf6a7d5a5b3
- Line
- Line
- false
- 0
-
6950
15130
25
60
-
6964
15160
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- a5e32ddc-34b6-4c3a-b077-6d8835921880
- Join Curves
- Join Curves
-
6865
14920
118
44
-
6928
14942
- 1
- Curves to join
- 718175f0-5683-4661-aec5-ba43e9625ee7
- Curves
- Curves
- false
- 7335fc5e-2f53-45be-a90e-b994f0a163d7
- 1ed2cae7-489d-450a-bb13-578ad1f75da8
- 2
-
6867
14922
46
20
-
6891.5
14932
- Preserve direction of input curves
- 3893ca90-0261-40d0-bf20-664c3c887e1d
- Preserve
- Preserve
- false
- 0
-
6867
14942
46
20
-
6891.5
14952
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- c8245540-9ccf-4c49-b97d-9c03f5c238f7
- Curves
- Curves
- false
- 0
-
6943
14922
38
40
-
6963.5
14942
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
- Evaluate Length
- Evaluate Length
-
6852
14836
144
64
-
6926
14868
- Curve to evaluate
- 69840715-b3f4-4652-a9b7-6ef1c782c769
- Curve
- Curve
- false
- c8245540-9ccf-4c49-b97d-9c03f5c238f7
- 1
-
6854
14838
57
20
-
6884
14848
- Length factor for curve evaluation
- 2c4a4d71-593a-47c5-a549-28ae38db738e
- Length
- Length
- false
- 0
-
6854
14858
57
20
-
6884
14868
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 8b86e75a-e75f-481e-9ebd-b74c8666de17
- Normalized
- Normalized
- false
- 0
-
6854
14878
57
20
-
6884
14888
- 1
- 1
- {0}
- true
- Point at the specified length
- 80b75d2a-cde6-4c0a-8714-8f5f6f351931
- Point
- Point
- false
- 0
-
6941
14838
53
20
-
6969
14848
- Tangent vector at the specified length
- 08064a23-4b64-4fe5-8943-8a596b576b4f
- Tangent
- Tangent
- false
- 0
-
6941
14858
53
20
-
6969
14868
- Curve parameter at the specified length
- a7e1f55e-2d8e-4570-aea5-0e00591e758d
- Parameter
- Parameter
- false
- 0
-
6941
14878
53
20
-
6969
14888
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 3d813d91-92fa-4852-945d-e3a25c964c7e
- Rotate
- Rotate
-
6855
14753
138
64
-
6923
14785
- Base geometry
- 41df0193-3654-45b5-b544-1d264056a1d7
- Geometry
- Geometry
- true
- c8245540-9ccf-4c49-b97d-9c03f5c238f7
- 1
-
6857
14755
51
20
-
6884
14765
- Rotation angle in radians
- 41513c05-39a8-4c2f-b48b-d6f5def30e2e
- Angle
- Angle
- false
- 0
- false
-
6857
14775
51
20
-
6884
14785
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 8da2b837-d09c-4ccb-b28f-4b4c3d9fd292
- Plane
- Plane
- false
- 80b75d2a-cde6-4c0a-8714-8f5f6f351931
- 1
-
6857
14795
51
20
-
6884
14805
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- b791e682-97a7-45da-89a7-f788fb0877e7
- Geometry
- Geometry
- false
- 0
-
6938
14755
53
30
-
6966
14770
- Transformation data
- ce8cb4c0-433e-4826-ad7b-b0af78b6841e
- Transform
- Transform
- false
- 0
-
6938
14785
53
30
-
6966
14800
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 991e2e02-facb-422f-94b3-f99e9e5fb37c
- Join Curves
- Join Curves
-
6865
14690
118
44
-
6928
14712
- 1
- Curves to join
- c22aa788-dc65-4752-ba31-7a70e831849d
- Curves
- Curves
- false
- c8245540-9ccf-4c49-b97d-9c03f5c238f7
- b791e682-97a7-45da-89a7-f788fb0877e7
- 2
-
6867
14692
46
20
-
6891.5
14702
- Preserve direction of input curves
- f71968ba-1a09-45b5-a370-cb8e22bdb286
- Preserve
- Preserve
- false
- 0
-
6867
14712
46
20
-
6891.5
14722
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- fc8429ea-b288-4e5f-8717-57ac43d070f5
- Curves
- Curves
- false
- 0
-
6943
14692
38
40
-
6963.5
14712
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9ba04202-972f-46cf-bbdb-ec7165cf9218
- 1e52f4b2-82cc-48eb-8e5b-ef5f9c2058c8
- efd312fd-5e18-4a1e-b794-4ff2fce83a8c
- fff9a471-5152-49fd-99a1-8314714ec684
- a5e32ddc-34b6-4c3a-b077-6d8835921880
- f3728d4e-06c7-4eb8-a2db-8e0d8a28f2f7
- 3d813d91-92fa-4852-945d-e3a25c964c7e
- 991e2e02-facb-422f-94b3-f99e9e5fb37c
- cc9c241b-c6a7-47bd-8026-177029f27f11
- 818cae34-4f9c-4a98-a357-da5e0454ab34
- 8b9a3012-f494-4be4-96eb-9046c4b5c4be
- 7026d177-417b-48d9-89bd-1b653119ba4d
- 4349e7b3-029c-4438-8455-d081a0551ea7
- c57af627-40bd-41eb-9023-2b3d876665ad
- 330d0272-c7e2-4aee-9324-9b82cd45051e
- 15
- 32bdb325-7b6d-415f-adf0-86c7bbba7c50
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3bf63ba3-f267-4d79-aaef-631ecd541cb9
- Panel
- false
- 0
- 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
- 1
- Double click to edit panel content…
-
6853
17126
145
20
- 0
- 0
- 0
-
6853.774
17126.96
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- cc9c241b-c6a7-47bd-8026-177029f27f11
- Curve
- Curve
- false
- fc8429ea-b288-4e5f-8717-57ac43d070f5
- 1
-
6902
14650
50
24
-
6927.354
14662.47
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- cc9c241b-c6a7-47bd-8026-177029f27f11
- 1
- 51762e9b-3278-4635-b56f-bbed71f7be4a
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 92dea64a-2d16-439e-9f27-9c0d88d741dc
- Panel
- false
- 0
- 0
- 0.35721403168191375/4/4
-
6707
17301
439
20
- 0
- 0
- 0
-
6707.335
17301.11
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- e54e9014-dac7-4d48-b29e-4e9328a0c364
- Evaluate Length
- Evaluate Length
-
6852
14564
144
64
-
6926
14596
- Curve to evaluate
- c618e0a6-5834-480e-9a56-d1645320b677
- Curve
- Curve
- false
- fc8429ea-b288-4e5f-8717-57ac43d070f5
- 1
-
6854
14566
57
20
-
6884
14576
- Length factor for curve evaluation
- 5e252022-adfb-4149-b4c1-55f412e2f722
- Length
- Length
- false
- 0
-
6854
14586
57
20
-
6884
14596
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- c5927de9-af36-495e-b466-c3b256972da2
- Normalized
- Normalized
- false
- 0
-
6854
14606
57
20
-
6884
14616
- 1
- 1
- {0}
- true
- Point at the specified length
- 85f5a83b-6f04-46aa-980e-b5b5cca654ed
- Point
- Point
- false
- 0
-
6941
14566
53
20
-
6969
14576
- Tangent vector at the specified length
- a1bcf24f-b713-496a-bda8-20443864a59d
- Tangent
- Tangent
- false
- 0
-
6941
14586
53
20
-
6969
14596
- Curve parameter at the specified length
- 26a2448e-7567-49b0-ba79-7e70d69c52d1
- Parameter
- Parameter
- false
- 0
-
6941
14606
53
20
-
6969
14616
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 88286176-d253-439c-ad14-7da02c75ca8b
- Expression
- Expression
-
6827
14342
194
28
-
6927
14356
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 0568d588-3beb-49ea-b452-a96d06407d4c
- Variable O
- O
- true
- 30827a16-3332-47cb-94ee-6a55276f8962
- 1
-
6829
14344
14
24
-
6837.5
14356
- Result of expression
- da6b1fed-141c-40e8-89e8-131a3465fa02
- Result
-
- false
- 0
-
7010
14344
9
24
-
7016
14356
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 2e9fc4e7-11d6-46e7-bbe2-4be37b0bfe47
- Deconstruct
- Deconstruct
-
6858
14476
132
64
-
6905
14508
- Input point
- 8e83c129-779b-4ca0-b212-0eefe34230f1
- Point
- Point
- false
- 85f5a83b-6f04-46aa-980e-b5b5cca654ed
- 1
-
6860
14478
30
60
-
6876.5
14508
- Point {x} component
- 30827a16-3332-47cb-94ee-6a55276f8962
- X component
- X component
- false
- 0
-
6920
14478
68
20
-
6955.5
14488
- Point {y} component
- eac5f733-f99a-4af6-a291-d796050d3c1c
- Y component
- Y component
- false
- 0
-
6920
14498
68
20
-
6955.5
14508
- Point {z} component
- 53a53c44-c8d4-47df-9d00-8ffdc5031427
- Z component
- Z component
- false
- 0
-
6920
14518
68
20
-
6955.5
14528
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6c2c0e34-fde6-416e-b38f-17e237ffa612
- Panel
- false
- 0
- da6b1fed-141c-40e8-89e8-131a3465fa02
- 1
- Double click to edit panel content…
-
6846
14316
160
20
- 0
- 0
- 0
-
6846.125
14316.05
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 96103962-5729-44c6-919b-b5e668bb459d
- Expression
- Expression
-
6827
14256
194
28
-
6927
14270
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d90e1818-cad6-4beb-8c04-acf83d1da21f
- Variable O
- O
- true
- eac5f733-f99a-4af6-a291-d796050d3c1c
- 1
-
6829
14258
14
24
-
6837.5
14270
- Result of expression
- e17eb789-6be7-4eaa-8299-4f50d695429f
- Result
-
- false
- 0
-
7010
14258
9
24
-
7016
14270
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
- Panel
- false
- 0
- e17eb789-6be7-4eaa-8299-4f50d695429f
- 1
- Double click to edit panel content…
-
6846
14227
160
20
- 0
- 0
- 0
-
6846.125
14227.62
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 6b265988-c729-43d9-88ad-548c22e07a09
- Division
- Division
-
6883
14154
82
44
-
6914
14176
- Item to divide (dividend)
- 78f608cb-7062-4725-90b3-2eb2d47d8145
- A
- A
- false
- 6c2c0e34-fde6-416e-b38f-17e237ffa612
- 1
-
6885
14156
14
20
-
6893.5
14166
- Item to divide with (divisor)
- ac61823e-3ddf-46a6-9ce5-2534f38a44a5
- B
- B
- false
- cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
- 1
-
6885
14176
14
20
-
6893.5
14186
- The result of the Division
- 25075bce-e1d1-41e4-af05-77b4eeff1de5
- Result
- Result
- false
- 0
-
6929
14156
34
40
-
6947.5
14176
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 376fda74-51b3-4127-b018-e74a14bf6894
- Panel
- false
- 0
- 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
- 1
- Double click to edit panel content…
-
6846
14080
160
20
- 0
- 0
- 0
-
6846.364
14080.11
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 29b0ed52-1bf6-4d5b-b0dd-81f23322e72e
- Expression
- Expression
-
6827
14107
194
28
-
6927
14121
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d0b96673-3aed-4fbf-8e4d-9632ce138f49
- Variable O
- O
- true
- 25075bce-e1d1-41e4-af05-77b4eeff1de5
- 1
-
6829
14109
14
24
-
6837.5
14121
- Result of expression
- 92dda82d-3eec-4851-9a38-6fefa8dd7dd7
- Result
-
- false
- 0
-
7010
14109
9
24
-
7016
14121
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 797b4939-3d21-4cfa-a596-b6c5c8ee1bf9
- Relay
- false
- 92dda82d-3eec-4851-9a38-6fefa8dd7dd7
- 1
-
6904
14032
40
16
-
6924
14040
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- fdb4fd70-bdff-4175-8783-9cf3c3a117db
- Addition
- Addition
-
6883
13969
82
44
-
6914
13991
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- a969c7e4-0d1c-41a5-9eb0-56fba8863cbe
- A
- A
- true
- cbeb3cfd-7f39-4b53-8a39-4596c77b9c6b
- 1
-
6885
13971
14
20
-
6893.5
13981
- Second item for addition
- f3a826ee-c2c3-48fd-8631-9fe975d38742
- B
- B
- true
- 6c2c0e34-fde6-416e-b38f-17e237ffa612
- 1
-
6885
13991
14
20
-
6893.5
14001
- Result of addition
- 5f3b1174-311c-40f1-8716-cd0ace71680d
- Result
- Result
- false
- 0
-
6929
13971
34
40
-
6947.5
13991
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- c501f714-9d8e-43b6-8bac-048ca2bb80cf
- Division
- Division
-
6883
13819
82
44
-
6914
13841
- Item to divide (dividend)
- 5007c73e-4f74-4750-9879-bee494dfd1a0
- A
- A
- false
- 7493d9a5-e75e-4270-943a-49f011ebc376
- 1
-
6885
13821
14
20
-
6893.5
13831
- Item to divide with (divisor)
- a69bc258-00ec-4324-8cc3-bc918e362c62
- B
- B
- false
- 0
-
6885
13841
14
20
-
6893.5
13851
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- b3993f62-42b6-4fb9-9b28-2211eb8806f7
- Result
- Result
- false
- 0
-
6929
13821
34
40
-
6947.5
13841
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 0b08a1a9-9bef-44f3-b7d3-687ca9617c3f
- Expression
- Expression
-
6827
13771
194
28
-
6927
13785
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d6e6767c-c3c0-414f-96c5-f4af729b296a
- Variable O
- O
- true
- b3993f62-42b6-4fb9-9b28-2211eb8806f7
- 1
-
6829
13773
14
24
-
6837.5
13785
- Result of expression
- 73d1c055-8222-4f71-8c50-8a872cf6cf11
- Result
-
- false
- 0
-
7010
13773
9
24
-
7016
13785
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 913fa83a-7c8e-40f4-ba27-a4799bffb36e
- Panel
- false
- 0
- 73d1c055-8222-4f71-8c50-8a872cf6cf11
- 1
- Double click to edit panel content…
-
6846
13743
160
20
- 0
- 0
- 0
-
6846.125
13743.97
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7493d9a5-e75e-4270-943a-49f011ebc376
- Panel
- false
- 0
- 30c8051a-7feb-42f7-b490-93aea9d26a8b
- 1
- Double click to edit panel content…
-
6846
13895
160
20
- 0
- 0
- 0
-
6846.125
13895.88
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- de444b16-e90f-46ab-bc54-6b6b8ba29496
- Expression
- Expression
-
6827
13922
194
28
-
6927
13936
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- afe2af60-e5c3-4037-b6b3-a7bc5afb40cd
- Variable O
- O
- true
- 5f3b1174-311c-40f1-8716-cd0ace71680d
- 1
-
6829
13924
14
24
-
6837.5
13936
- Result of expression
- 30c8051a-7feb-42f7-b490-93aea9d26a8b
- Result
-
- false
- 0
-
7010
13924
9
24
-
7016
13936
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- c43c079b-63ca-493a-8642-e54578ba8b03
- Scale
- Scale
-
6847
13648
154
64
-
6931
13680
- Base geometry
- de499428-93eb-475c-9e53-a916b398a633
- Geometry
- Geometry
- true
- cc9c241b-c6a7-47bd-8026-177029f27f11
- 1
-
6849
13650
67
20
-
6892
13660
- Center of scaling
- 011c2b05-c91d-4d4e-aa86-37821546ecca
- Center
- Center
- false
- 0
-
6849
13670
67
20
-
6892
13680
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- df4a4967-6d20-4154-a796-f1e10e303498
- 1/X
- Factor
- Factor
- false
- 913fa83a-7c8e-40f4-ba27-a4799bffb36e
- 1
-
6849
13690
67
20
-
6892
13700
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- b146afbb-b984-4270-98bd-a5c5e4decde4
- Geometry
- Geometry
- false
- 0
-
6946
13650
53
30
-
6974
13665
- Transformation data
- adfdc112-fb27-4eeb-8ee6-d910d5a50efe
- Transform
- Transform
- false
- 0
-
6946
13680
53
30
-
6974
13695
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- Curve
- Curve
- false
- b146afbb-b984-4270-98bd-a5c5e4decde4
- 1
-
6900
13049
50
24
-
6925.104
13061.47
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 9cbe6a37-a7e2-4fd1-9eaf-24df74f69a5c
- Expression
- Expression
-
6827
14429
194
28
-
6927
14443
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9cc20c5b-0aad-4a76-8799-5618857d7cbf
- Variable O
- O
- true
- 53a53c44-c8d4-47df-9d00-8ffdc5031427
- 1
-
6829
14431
14
24
-
6837.5
14443
- Result of expression
- 6f991fab-af6c-41fb-ba85-20da3062ee48
- Result
-
- false
- 0
-
7010
14431
9
24
-
7016
14443
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 316f3779-ed94-4d88-a48c-0bcda6b652ff
- Panel
- false
- 0
- 6f991fab-af6c-41fb-ba85-20da3062ee48
- 1
- Double click to edit panel content…
-
6846
14401
160
20
- 0
- 0
- 0
-
6846.995
14401.82
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- ec81026f-aaf0-400a-a481-5a2730b38b20
- Evaluate Length
- Evaluate Length
-
6852
13438
144
64
-
6926
13470
- Curve to evaluate
- 724dfc03-4a01-4628-925e-2fa9ba491185
- Curve
- Curve
- false
- b146afbb-b984-4270-98bd-a5c5e4decde4
- 1
-
6854
13440
57
20
-
6884
13450
- Length factor for curve evaluation
- 0e460a08-226a-4f98-bd37-41f44c443db4
- Length
- Length
- false
- 0
-
6854
13460
57
20
-
6884
13470
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 1d59fa3e-b687-4eb9-afa1-a414c2b8bb08
- Normalized
- Normalized
- false
- 0
-
6854
13480
57
20
-
6884
13490
- 1
- 1
- {0}
- true
- Point at the specified length
- 38b05bbc-62e7-40e7-8489-6773a9d2dd9d
- Point
- Point
- false
- 0
-
6941
13440
53
20
-
6969
13450
- Tangent vector at the specified length
- d4a0fd95-7f8e-402a-ada1-4afbf333ba3f
- Tangent
- Tangent
- false
- 0
-
6941
13460
53
20
-
6969
13470
- Curve parameter at the specified length
- 08a437d4-0e42-4cb2-856f-09ba4c37bb87
- Parameter
- Parameter
- false
- 0
-
6941
13480
53
20
-
6969
13490
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 6508b285-8a59-4d0c-a67a-44a3db97fc39
- Expression
- Expression
-
6827
13221
194
28
-
6927
13235
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 2bb13d42-f309-44b9-b9ee-c6512e1a26bd
- Variable O
- O
- true
- 013e28c5-00c7-4b0f-a894-2351e9bcba9e
- 1
-
6829
13223
14
24
-
6837.5
13235
- Result of expression
- 6ae89430-3b55-4283-95d6-72edf8aea781
- Result
-
- false
- 0
-
7010
13223
9
24
-
7016
13235
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- edd134a4-57ee-42b4-9a96-203dd2d224a1
- Deconstruct
- Deconstruct
-
6858
13355
132
64
-
6905
13387
- Input point
- 98c309aa-58e3-4474-a276-3c1859834940
- Point
- Point
- false
- 38b05bbc-62e7-40e7-8489-6773a9d2dd9d
- 1
-
6860
13357
30
60
-
6876.5
13387
- Point {x} component
- 013e28c5-00c7-4b0f-a894-2351e9bcba9e
- X component
- X component
- false
- 0
-
6920
13357
68
20
-
6955.5
13367
- Point {y} component
- 31865eff-3999-4f34-b33a-4592611410b3
- Y component
- Y component
- false
- 0
-
6920
13377
68
20
-
6955.5
13387
- Point {z} component
- acd62f9f-fce9-479c-9e17-c17634e78b4c
- Z component
- Z component
- false
- 0
-
6920
13397
68
20
-
6955.5
13407
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1ee22ab9-d81d-496a-95aa-c79966d9f1ee
- Panel
- false
- 0
- 6ae89430-3b55-4283-95d6-72edf8aea781
- 1
- Double click to edit panel content…
-
6846
13189
160
20
- 0
- 0
- 0
-
6846.375
13189.39
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 38d1a553-d197-4de9-be8f-831f3678bc16
- Expression
- Expression
-
6827
13135
194
28
-
6927
13149
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 412be963-af87-45b6-861c-fd80a8ac935a
- Variable O
- O
- true
- 31865eff-3999-4f34-b33a-4592611410b3
- 1
-
6829
13137
14
24
-
6837.5
13149
- Result of expression
- 9dcb2313-d8c3-402d-9098-1a54686d1385
- Result
-
- false
- 0
-
7010
13137
9
24
-
7016
13149
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 97ee1782-c906-46c4-91b5-f223dbe502df
- Panel
- false
- 0
- 9dcb2313-d8c3-402d-9098-1a54686d1385
- 1
- Double click to edit panel content…
-
6846
13103
160
20
- 0
- 0
- 0
-
6846.385
13103.76
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c0237c22-ae4e-4bcc-a7f3-8849e1f79852
- Expression
- Expression
-
6827
13307
194
28
-
6927
13321
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 00115f47-de0e-4eb8-a92f-6dbf606b38a5
- Variable O
- O
- true
- acd62f9f-fce9-479c-9e17-c17634e78b4c
- 1
-
6829
13309
14
24
-
6837.5
13321
- Result of expression
- 41436266-95f6-4db9-ac5f-fd5e1afc5627
- Result
-
- false
- 0
-
7010
13309
9
24
-
7016
13321
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b98c6ab4-6826-4894-b815-39419e0c3a74
- Panel
- false
- 0
- 41436266-95f6-4db9-ac5f-fd5e1afc5627
- 1
- Double click to edit panel content…
-
6846
13275
160
20
- 0
- 0
- 0
-
6846.125
13275.6
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 08ff8e60-bc3f-4c50-8dab-f517a15f28ac
- Panel
- false
- 0
- 0
- 1 16 0.35721403168191375
1 256 0.0014014999884235925
1 4096
-
6744
17383
379
104
- 0
- 0
- 0
-
6744.78
17383.58
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fa5f5265-773a-47ad-93dd-9e26a91e6025
- Panel
- false
- 0
- f9b597d7-e7e9-4cf4-a495-b1dc5b56fa82
- 1
- Double click to edit panel content…
-
6758
15639
337
276
- 0
- 0
- 0
-
6758.314
15639.39
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- d73f2344-3af1-4e8b-aa88-550107d9e330
- Expression
- Expression
-
6827
15929
194
28
-
6927
15943
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- b623fc8b-7899-4132-a07f-ad90008bd4ab
- Variable O
- O
- true
- cc0559b1-a1cc-49c2-a2e5-a855627d3509
- 1
-
6829
15931
14
24
-
6837.5
15943
- Result of expression
- f9b597d7-e7e9-4cf4-a495-b1dc5b56fa82
- Result
-
- false
- 0
-
7010
15931
9
24
-
7016
15943
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- a581cb4b-1814-48fc-a1b8-43b1d1292aed
- Number
- Number
- false
- c0d01861-3c4c-4bb3-83b8-8eb9e6c23951
- 1
-
6910
17768
50
24
-
6935.085
17780.7
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- 9325032a-eb1d-4417-917b-7ac65f028126
- true
- Curve Graph Mapper
- Curve Graph Mapper
-
6755
16161
160
224
-
6823
16273
- 1
- One or multiple graph curves to graph map values with
- 0f5238b5-962a-4449-a37f-b83452708e99
- true
- Curves
- Curves
- false
- 1b74b401-f27b-49e6-9626-6edd9c832a56
- 1
-
6757
16163
51
27
-
6784
16176.75
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- bb5926c8-b9d1-4ecd-9cd4-b32ced703abe
- true
- Rectangle
- Rectangle
- false
- 0f7b89d3-7996-42ee-8772-0c17266d2e97
- 1
-
6757
16190
51
28
-
6784
16204.25
- 1
- 1
- {0;0;0;0;0}
-
0
0
0
1
0
0
0
1
0
-
0
1
0
1
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 1253dedb-fcef-48eb-a7e6-79efac3fd7be
- true
- Values
- Values
- false
- d600ac99-97d4-49fd-83df-b1b6d6afdef2
- 1
-
6757
16218
51
27
-
6784
16231.75
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 01c15511-a078-4c96-ade8-0f0b6a624d58
- true
- X Axis
- X Axis
- true
- 0
-
6757
16245
51
28
-
6784
16259.25
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- b830b13e-448d-44d4-858a-77d04b30353c
- true
- Y Axis
- Y Axis
- true
- 0
-
6757
16273
51
27
-
6784
16286.75
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- c4f43e77-5feb-41de-95a4-e4b36a49512c
- true
- Flip
- Flip
- false
- 0
-
6757
16300
51
28
-
6784
16314.25
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- bc4bc4c9-3d21-4264-8bda-50f75e16678a
- true
- Snap
- Snap
- false
- 0
-
6757
16328
51
27
-
6784
16341.75
- 1
- 1
- {0}
- false
- Size of the graph labels
- bc982548-351e-4c63-b1ad-03f915c2795f
- true
- Text Size
- Text Size
- false
- 0
-
6757
16355
51
28
-
6784
16369.25
- 1
- 1
- {0}
- 0.015625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 011386d1-e099-452e-bab7-c5dbfbefb515
- true
- Mapped
- Mapped
- false
- 0
-
6838
16163
75
20
-
6877
16173
- 1
- The graph curves inside the boundary of the graph
- c698696a-32e5-4809-8dcd-5365f87e8c9f
- true
- Graph Curves
- Graph Curves
- false
- 0
-
6838
16183
75
20
-
6877
16193
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- c0db385f-5512-4eaf-bccc-62d01193c09c
- true
- Graph Points
- Graph Points
- false
- 0
-
6838
16203
75
20
-
6877
16213
- 1
- The lines from the X Axis input values to the graph curves
- true
- fa37ee92-0a24-416d-badb-1a6a138f01e8
- true
- Value Lines
- Value Lines
- false
- 0
-
6838
16223
75
20
-
6877
16233
- 1
- The points plotted on the X Axis which represent the input values
- true
- 6640fc97-76ff-4e77-9522-712d6b65e5da
- true
- Value Points
- Value Points
- false
- 0
-
6838
16243
75
20
-
6877
16253
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 4aa8681c-1516-4d1d-98b9-02acfc57482d
- true
- Mapped Lines
- Mapped Lines
- false
- 0
-
6838
16263
75
20
-
6877
16273
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- ebead631-594f-42aa-a4fd-18092310b626
- true
- Mapped Points
- Mapped Points
- false
- 0
-
6838
16283
75
20
-
6877
16293
- The graph boundary background as a surface
- d8ce45e5-0a15-4805-b4dc-555c7e8b3cda
- true
- Boundary
- Boundary
- false
- 0
-
6838
16303
75
20
-
6877
16313
- 1
- The graph labels as curve outlines
- 52c86fc7-b169-460d-9c29-9db6362cbb6f
- true
- Labels
- Labels
- false
- 0
-
6838
16323
75
20
-
6877
16333
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- bb3fa2d1-533f-4438-8d57-b3b5ba7eb84d
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
6838
16343
75
20
-
6877
16353
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- c07faeb2-9a2f-47d5-9d83-bcebc16f762b
- true
- Intersected
- Intersected
- false
- 0
-
6838
16363
75
20
-
6877
16373
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 34b3f794-c511-49ff-92c6-10cd056aa48c
- End Points
- End Points
-
6876
16521
96
44
-
6926
16543
- Curve to evaluate
- d858e62d-5fb2-44e7-8a88-85f63040ad09
- Curve
- Curve
- false
- 1b74b401-f27b-49e6-9626-6edd9c832a56
- 1
-
6878
16523
33
40
-
6896
16543
- Curve start point
- c766a1eb-bd60-4aff-9a5a-acec00503bd5
- Start
- Start
- false
- 0
-
6941
16523
29
20
-
6957
16533
- Curve end point
- 552406bf-ef4c-44fc-931e-cd49b038f197
- End
- End
- false
- 0
-
6941
16543
29
20
-
6957
16553
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 647ed54a-1949-45a9-a9d2-a7f6cbbd09c3
- Rectangle 2Pt
- Rectangle 2Pt
-
6861
16419
126
84
-
6919
16461
- Rectangle base plane
- 43f3f04c-c4b5-453d-a04d-ae143e26c2ad
- Plane
- Plane
- false
- 0
-
6863
16421
41
20
-
6885
16431
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 788062c0-7e8e-4b50-9146-f6ab498210d2
- Point A
- Point A
- false
- c766a1eb-bd60-4aff-9a5a-acec00503bd5
- 1
-
6863
16441
41
20
-
6885
16451
- 1
- 1
- {0;0;0;0;0}
-
0
0
0
- Second corner point.
- 6fb88a11-52ac-44ac-adb6-079fb454ad9c
- Point B
- Point B
- false
- 552406bf-ef4c-44fc-931e-cd49b038f197
- 1
-
6863
16461
41
20
-
6885
16471
- 1
- 1
- {0;0;0;0;0}
-
1
1
0
- Rectangle corner fillet radius
- 37ca533c-9322-43f2-89ff-977506ec18ff
- Radius
- Radius
- false
- 0
-
6863
16481
41
20
-
6885
16491
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 0f7b89d3-7996-42ee-8772-0c17266d2e97
- Rectangle
- Rectangle
- false
- 0
-
6934
16421
51
40
-
6961
16441
- Length of rectangle curve
- 67af2704-c31c-42bc-9333-bd2fc0bd3bed
- Length
- Length
- false
- 0
-
6934
16461
51
40
-
6961
16481
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- a1119ab4-5e53-41b5-800a-934be5132300
- GraphMapper+
- GraphMapper+
- false
-
6915
16281
126
104
-
6982
16333
- External curve as a graph
- 904b7a78-b77f-477b-83ef-602a42402909
- Curve
- Curve
- false
- 1b74b401-f27b-49e6-9626-6edd9c832a56
- 1
-
6917
16283
50
20
-
6943.5
16293
- Optional Rectangle boundary. If omitted the curve's would be landed
- c894c604-e5ec-4f9b-b0ac-909fafb4abd0
- Boundary
- Boundary
- true
- 0f7b89d3-7996-42ee-8772-0c17266d2e97
- 1
-
6917
16303
50
20
-
6943.5
16313
- 1
- List of input numbers
- aebc8dae-8731-4075-ac22-a47249b9aef8
- Numbers
- Numbers
- false
- d600ac99-97d4-49fd-83df-b1b6d6afdef2
- 1
-
6917
16323
50
20
-
6943.5
16333
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 2b8af201-5eb0-41a7-ad17-858345067966
- Input
- Input
- true
- 9760d0ab-7937-4289-b202-4edca57e8024
- 1
-
6917
16343
50
20
-
6943.5
16353
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- f8843e7d-9718-48ca-aff1-de5663e4e81e
- Output
- Output
- true
- 9760d0ab-7937-4289-b202-4edca57e8024
- 1
-
6917
16363
50
20
-
6943.5
16373
- 1
- Output Numbers
- 1dd04826-157e-4b52-bfd3-12b8923553fe
- Number
- Number
- false
- 0
-
6997
16283
42
100
-
7019.5
16333
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- 6d014d07-0f02-444c-ac9d-e170313d1517
- Stream Filter
- Stream Filter
-
6890
16078
89
64
-
6935
16110
- 3
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- fa964bb7-c4d9-4921-b361-17278365f386
- Gate
- Gate
- false
- 1753a518-f0a0-46e5-8dd8-9caf11fd6412
- 1
-
6892
16080
28
20
-
6907.5
16090
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- da7eb75b-1d1d-4af4-85c0-bb96144d5479
- false
- Stream 0
- 0
- true
- 011386d1-e099-452e-bab7-c5dbfbefb515
- 1
-
6892
16100
28
20
-
6907.5
16110
- 2
- Input stream at index 1
- ca2a0d47-d578-475e-8060-bc2ff7f1a9f9
- false
- Stream 1
- 1
- true
- 1dd04826-157e-4b52-bfd3-12b8923553fe
- 1
-
6892
16120
28
20
-
6907.5
16130
- 2
- Filtered stream
- b33b8004-7930-480a-ac46-8cdfdfe4c3fd
- false
- Stream
- S(1)
- false
- 0
-
6950
16080
27
60
-
6965
16110
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 1753a518-f0a0-46e5-8dd8-9caf11fd6412
- Number Slider
-
- false
- 0
-
6856
16050
150
20
-
6856.745
16050.99
- 0
- 1
- 0
- 1
- 0
- 0
- 1
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 8ed754eb-0acb-4ed3-a236-3d6c4264ffec
- Panel
- false
- 1
- 381507ca-69e4-41bf-b449-b49ecf24853e
- 1
- Double click to edit panel content…
-
6836
16710
185
271
- 0
- 0
- 0
-
6836.814
16710.01
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 7ba7c37b-2ea9-4cdd-a61b-074d36d0b502
- Bounds
- Bounds
-
6865
16660
122
28
-
6929
16674
- 1
- Numbers to include in Bounds
- 5769d565-6652-4d0e-a386-2eca5c734e92
- Numbers
- Numbers
- false
- d600ac99-97d4-49fd-83df-b1b6d6afdef2
- 1
-
6867
16662
47
24
-
6892
16674
- Numeric Domain between the lowest and highest numbers in {N}
- 9760d0ab-7937-4289-b202-4edca57e8024
- Domain
- Domain
- false
- 0
-
6944
16662
41
24
-
6966
16674
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 723d57d4-e61b-41f3-a500-fda5845c7a33
- true
- Expression
- Expression
-
6827
16996
194
28
-
6927
17010
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 1c6a839e-b6f1-4505-91de-342ea754d5a2
- true
- Variable O
- O
- true
- d600ac99-97d4-49fd-83df-b1b6d6afdef2
- 1
-
6829
16998
14
24
-
6837.5
17010
- Result of expression
- 381507ca-69e4-41bf-b449-b49ecf24853e
- true
- Result
-
- false
- 0
-
7010
16998
9
24
-
7016
17010
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:0.00000000000000000000}",O)
- true
- ef313551-48ea-4e3c-b4c0-4a190bd7321a
- Expression
- Expression
-
6741
17195
367
28
-
6927
17209
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 5f7349b6-6fe2-48ad-924f-9f80b070576f
- Variable O
- O
- true
- 795cb8d8-c83c-4a7a-a3dc-11c297145099
- 1
-
6743
17197
14
24
-
6751.5
17209
- Result of expression
- fffd1cd6-ddbc-4c4c-9af1-5e6d5196a1f9
- Result
-
- false
- 0
-
7097
17197
9
24
-
7103
17209
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 63453c88-bf0b-4d36-85c6-a269170a7b71
- Panel
- false
- 0
- fffd1cd6-ddbc-4c4c-9af1-5e6d5196a1f9
- 1
- Double click to edit panel content…
-
6836
17167
179
20
- 0
- 0
- 0
-
6836.955
17167.18
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 1
- b14cb3b4-9404-4bbf-adca-ddf843b42203
- Group
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 3ce6ef90-b08d-4cde-aaac-5cd8c3a27dff
- Scale
- Scale
-
6847
13563
154
64
-
6931
13595
- Base geometry
- 29ec6822-9f32-4735-ac6e-e9de0174cffc
- Geometry
- Geometry
- true
- 7026d177-417b-48d9-89bd-1b653119ba4d
- 1
-
6849
13565
67
20
-
6892
13575
- Center of scaling
- ae20d631-4337-4bdc-92c1-f56bab23662b
- Center
- Center
- false
- 0
-
6849
13585
67
20
-
6892
13595
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 890f1ffc-39c5-4772-95f2-3b43ccbbf990
- 1/X
- Factor
- Factor
- false
- 913fa83a-7c8e-40f4-ba27-a4799bffb36e
- 1
-
6849
13605
67
20
-
6892
13615
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 58f6450e-2a4b-48c0-9d7c-595dec969df6
- Geometry
- Geometry
- false
- 0
-
6946
13565
53
30
-
6974
13580
- Transformation data
- f5f0a553-a703-4ba1-bd50-2fb5c09fc891
- Transform
- Transform
- false
- 0
-
6946
13595
53
30
-
6974
13610
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 99b9d330-df78-461e-a740-618abd0be001
- Point
- Point
- false
- 58f6450e-2a4b-48c0-9d7c-595dec969df6
- 1
-
6901
13527
50
24
-
6926.104
13539.64
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- f8e459ea-0b4f-43ea-ba11-4269ab3fae7e
- Mirror
- Mirror
-
6852
12905
138
44
-
6920
12927
- Base geometry
- bd8fb4a1-624a-44d3-95d8-7f0555d129fc
- Geometry
- Geometry
- true
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 1
-
6854
12907
51
20
-
6881
12917
- Mirror plane
- 09e1c099-572d-4aec-a6c2-40d1cd563889
- Plane
- Plane
- false
- 0
-
6854
12927
51
20
-
6881
12937
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- aaed0ecd-e5a3-47f3-9c89-855bf34ecf9a
- Geometry
- Geometry
- false
- 0
-
6935
12907
53
20
-
6963
12917
- Transformation data
- c5b132a6-1f8f-4fac-9f6f-243d6f928dfc
- Transform
- Transform
- false
- 0
-
6935
12927
53
20
-
6963
12937
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- 0acb87a9-1c34-4be4-9a0a-51d135ea71a9
- Curve
- Curve
- false
- 96a2e07e-f9f4-48cf-88f2-619a1da4816e
- 1
-
6900
12800
50
24
-
6925.354
12812.65
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1b74b401-f27b-49e6-9626-6edd9c832a56
- Relay
- false
- 4c3d6f0a-1a3d-42fc-ba4c-f7a6253681d7
- 1
-
6906
16588
40
16
-
6926
16596
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 28f7a517-369a-47f4-ab2d-61c770da64a9
- Curve
- Curve
- false
- 81f088dd-94a4-48be-b31f-7aba0efd2713
- 1
-
6347
16859
50
24
-
6372.364
16871.71
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 4c3d6f0a-1a3d-42fc-ba4c-f7a6253681d7
- Curve
- Curve
- false
- f4ff4579-8945-47b9-96e3-99cde3ffad6b
- 1
-
6347
16657
50
24
-
6372.46
16669.74
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 6d4a2a1f-cf79-4c4c-91d4-2a31b1cbbc7b
- Scale
- Scale
-
6294
16696
154
64
-
6378
16728
- Base geometry
- ec88baa9-a234-4fca-82cb-4e2da68104f9
- Geometry
- Geometry
- true
- 28f7a517-369a-47f4-ab2d-61c770da64a9
- 1
-
6296
16698
67
20
-
6339
16708
- Center of scaling
- 454545c7-d4b9-48b2-b34b-87350dab6d0d
- Center
- Center
- false
- 0
-
6296
16718
67
20
-
6339
16728
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 2ba86669-8366-424a-baeb-8c3651e44550
- 2^X
- Factor
- Factor
- false
- a4bb390c-3cb3-4726-8ae4-049fed6f9f5d
- 1
-
6296
16738
67
20
-
6339
16748
- 1
- 1
- {0}
- 1
- Scaled geometry
- f4ff4579-8945-47b9-96e3-99cde3ffad6b
- Geometry
- Geometry
- false
- 0
-
6393
16698
53
30
-
6421
16713
- Transformation data
- 55391c68-247a-42f2-b366-ef983380c73a
- Transform
- Transform
- false
- 0
-
6393
16728
53
30
-
6421
16743
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 28f7a517-369a-47f4-ab2d-61c770da64a9
- 4c3d6f0a-1a3d-42fc-ba4c-f7a6253681d7
- 6d4a2a1f-cf79-4c4c-91d4-2a31b1cbbc7b
- 27899f96-8899-44d3-a06c-50d23c4c5623
- 16352977-0c47-4807-ac27-7e6e1c8aa3d0
- a4bb390c-3cb3-4726-8ae4-049fed6f9f5d
- 5c82da50-ba91-4829-93ac-d30b7bb06ba0
- 7
- a050f731-85b7-406b-98f7-abb1de3b7df3
- Group
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 2ae4353f-5da3-48ee-b4ec-327901fe84b9
- Move
- Move
-
6852
12841
138
44
-
6920
12863
- Base geometry
- 8f3598b9-3426-4369-977f-151ca75c941f
- Geometry
- Geometry
- true
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 1
-
6854
12843
51
20
-
6881
12853
- Translation vector
- f8670bc8-b266-4d46-a732-760aca4c6a24
- Motion
- Motion
- false
- 0
-
6854
12863
51
20
-
6881
12873
- 1
- 1
- {0}
-
2
4
0
- Translated geometry
- 96a2e07e-f9f4-48cf-88f2-619a1da4816e
- Geometry
- Geometry
- false
- 0
-
6935
12843
53
20
-
6963
12853
- Transformation data
- 3a5df1aa-cebe-4f7b-bcea-6c2fe7a5c46e
- Transform
- Transform
- false
- 0
-
6935
12863
53
20
-
6963
12873
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 16352977-0c47-4807-ac27-7e6e1c8aa3d0
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 30.9312132004
-
6247
16819
250
20
-
6247.76
16819.1
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a4bb390c-3cb3-4726-8ae4-049fed6f9f5d
- Panel
- false
- 0
- 0
- 16.93121320041889709
-
6304
16782
144
20
- 0
- 0
- 0
-
6304.927
16782.45
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 5c82da50-ba91-4829-93ac-d30b7bb06ba0
- Curve
- Curve
- false
- 0
-
6347
16614
50
24
-
6372.46
16626.74
- 1
- 1
- {0;0;0;0}
- -1
-
zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
- 00000000-0000-0000-0000-000000000000
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 1fb2e7f3-3db0-4bae-aa6f-0d22308f98ea
- Curve
- Curve
- false
- 0
-
6425
16859
50
24
-
6450.083
16871.64
- 1
- 1
- {0;0;0;0}
- -1
-
zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
- 00000000-0000-0000-0000-000000000000
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a64bb5c7-d622-4fba-af56-0efe1ca2545e
- Panel
- false
- 0
- 0
- 0.00137956207
-
6707
17347
439
20
- 0
- 0
- 0
-
6707.335
17347.11
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 6dfe9960-5cb6-4710-b358-d13a8cf132a9
- true
- End Points
- End Points
-
7283
13483
96
44
-
7333
13505
- Curve to evaluate
- e2b75845-a13d-4155-b9ee-c5bf47ad3e85
- true
- Curve
- Curve
- false
- 3adde76a-58cf-4501-958f-0df2da9ec5fb
- 1
-
7285
13485
33
40
-
7303
13505
- Curve start point
- da66e959-b2d5-4e3b-9152-11e5b7d5e08d
- true
- Start
- Start
- false
- 0
-
7348
13485
29
20
-
7364
13495
- Curve end point
- 7925d5f1-7e7a-43e3-bb55-16c7b2bc97bb
- true
- End
- End
- false
- 0
-
7348
13505
29
20
-
7364
13515
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 3b3019a8-9f4e-4abd-9be4-32f44addad75
- true
- Rectangle 2Pt
- Rectangle 2Pt
-
7268
13380
126
84
-
7326
13422
- Rectangle base plane
- 32784160-a334-4c01-b851-1f76085d4ddc
- true
- Plane
- Plane
- false
- 0
-
7270
13382
41
20
-
7292
13392
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 9191c15d-c5a1-4f91-81d8-cd61ee1e7d9f
- true
- Point A
- Point A
- false
- da66e959-b2d5-4e3b-9152-11e5b7d5e08d
- 1
-
7270
13402
41
20
-
7292
13412
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- d213591a-88ec-435e-8453-824a03b6de7e
- true
- Point B
- Point B
- false
- 7925d5f1-7e7a-43e3-bb55-16c7b2bc97bb
- 1
-
7270
13422
41
20
-
7292
13432
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 52029b52-5d2a-4db8-8079-f2afddfa4afd
- true
- Radius
- Radius
- false
- 0
-
7270
13442
41
20
-
7292
13452
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- bc2d255b-8d45-4b38-bf3d-bb8001456d14
- true
- Rectangle
- Rectangle
- false
- 0
-
7341
13382
51
40
-
7368
13402
- Length of rectangle curve
- 6245d13a-4f5b-4a29-b897-24082c40ac42
- true
- Length
- Length
- false
- 0
-
7341
13422
51
40
-
7368
13442
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
- Retrieve the base plane and side intervals of a rectangle.
- true
- 2e0c4e78-1d06-4c1e-97d9-73182319f6a1
- true
- Deconstuct Rectangle
- Deconstuct Rectangle
-
7260
13297
142
64
-
7328
13329
- Rectangle to deconstruct
- b6e2727e-5775-4180-8c9b-40bfa7ac05c7
- true
- Rectangle
- Rectangle
- false
- bc2d255b-8d45-4b38-bf3d-bb8001456d14
- 1
-
7262
13299
51
60
-
7289
13329
- Base plane of rectangle
- 66d0b103-f47c-402d-9fc3-8203e0a5859c
- true
- Base Plane
- Base Plane
- false
- 0
-
7343
13299
57
20
-
7373
13309
- Size interval along base plane X axis
- 88127139-aacf-44d9-90a4-83008f48ac09
- true
- X Interval
- X Interval
- false
- 0
-
7343
13319
57
20
-
7373
13329
- Size interval along base plane Y axis
- 23a22d70-ce55-40ac-9c37-99862f1b8f7d
- true
- Y Interval
- Y Interval
- false
- 0
-
7343
13339
57
20
-
7373
13349
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 842cdb6b-cc33-47f2-a40d-da25a1f7b040
- true
- Deconstruct Domain
- Deconstruct Domain
-
7279
13170
104
44
-
7337
13192
- Base domain
- fcc9c338-eafe-4882-a4ae-34de93e25a0c
- true
- Domain
- Domain
- false
- 23a22d70-ce55-40ac-9c37-99862f1b8f7d
- 1
-
7281
13172
41
40
-
7303
13192
- Start of domain
- c4a23226-0a6a-493f-8230-ae87fed7e335
- true
- Start
- Start
- false
- 0
-
7352
13172
29
20
-
7368
13182
- End of domain
- cc77d38c-a5ae-40fb-a692-05acf6b325ad
- true
- End
- End
- false
- 0
-
7352
13192
29
20
-
7368
13202
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 0a40a34c-688b-4d7a-a320-fdf66a2134b5
- true
- Deconstruct Domain
- Deconstruct Domain
-
7279
13232
104
44
-
7337
13254
- Base domain
- 188b8c86-8c69-40db-ab22-0df9aaca98f1
- true
- Domain
- Domain
- false
- 88127139-aacf-44d9-90a4-83008f48ac09
- 1
-
7281
13234
41
40
-
7303
13254
- Start of domain
- 9b8ece22-1993-481f-8cc9-b3339bef2afd
- true
- Start
- Start
- false
- 0
-
7352
13234
29
20
-
7368
13244
- End of domain
- 911a88ad-5385-4d8d-9d45-04b9207f9dd4
- true
- End
- End
- false
- 0
-
7352
13254
29
20
-
7368
13264
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- 8bb05e5e-b580-470e-920b-6d8726060587
- true
- Scale NU
- Scale NU
-
7254
13047
154
104
-
7338
13099
- Base geometry
- 95b0b11f-bc1e-4458-9606-d0428926bce4
- true
- Geometry
- Geometry
- true
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 1
-
7256
13049
67
20
-
7299
13059
- Base plane
- 7a6374bc-e5e0-46f1-9cfd-7b2824e23394
- true
- Plane
- Plane
- false
- 0
-
7256
13069
67
20
-
7299
13079
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- dcb26664-cfd6-4535-ac11-49f5b53120cb
- 1/X
- true
- Scale X
- Scale X
- false
- 911a88ad-5385-4d8d-9d45-04b9207f9dd4
- 1
-
7256
13089
67
20
-
7299
13099
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- f1484f83-eeef-40f2-a863-a50d7a2225ef
- 1/X
- true
- Scale Y
- Scale Y
- false
- cc77d38c-a5ae-40fb-a692-05acf6b325ad
- 1
-
7256
13109
67
20
-
7299
13119
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- f6600f01-23ea-490c-96f3-1412d6db3033
- true
- Scale Z
- Scale Z
- false
- 0
-
7256
13129
67
20
-
7299
13139
- 1
- 1
- {0}
- 1
- Scaled geometry
- 03f315ff-9a6e-4253-8c71-ef439acd3970
- true
- Geometry
- Geometry
- false
- 0
-
7353
13049
53
50
-
7381
13074
- Transformation data
- d703ce36-f93f-428e-aacf-6ac9fd751cb8
- true
- Transform
- Transform
- false
- 0
-
7353
13099
53
50
-
7381
13124
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 6dfe9960-5cb6-4710-b358-d13a8cf132a9
- 3b3019a8-9f4e-4abd-9be4-32f44addad75
- 2e0c4e78-1d06-4c1e-97d9-73182319f6a1
- 842cdb6b-cc33-47f2-a40d-da25a1f7b040
- 0a40a34c-688b-4d7a-a320-fdf66a2134b5
- 8bb05e5e-b580-470e-920b-6d8726060587
- 3adde76a-58cf-4501-958f-0df2da9ec5fb
- ce28329e-9c86-45f0-87d0-fe87fcbe6818
- 68803261-a9b4-4a6f-b325-f62a9bd69dab
- ad923099-21cb-49ab-a3b9-4baff6fa881d
- 10
- 8089e68a-a88f-49de-a701-9c448439be03
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 3adde76a-58cf-4501-958f-0df2da9ec5fb
- true
- Curve
- Curve
- false
- 00c03ab1-9ce8-4428-8686-be8bf8753098
- 1
-
7307
13553
50
24
-
7332.667
13565.81
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- ce28329e-9c86-45f0-87d0-fe87fcbe6818
- true
- Curve
- Curve
- false
- 03f315ff-9a6e-4253-8c71-ef439acd3970
- 1
-
7306
13025
50
24
-
7331.909
13037.68
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 68803261-a9b4-4a6f-b325-f62a9bd69dab
- true
- Move
- Move
-
7262
12905
138
44
-
7330
12927
- Base geometry
- 5187b29f-4ecb-4f53-8731-3aed05b8a490
- true
- Geometry
- Geometry
- true
- ce28329e-9c86-45f0-87d0-fe87fcbe6818
- 1
-
7264
12907
51
20
-
7291
12917
- Translation vector
- 92473a51-3eba-4c8d-a194-3cb6aa13e9a5
- true
- Motion
- Motion
- false
- 0
-
7264
12927
51
20
-
7291
12937
- 1
- 1
- {0}
-
0
1
0
- Translated geometry
- 916f32fc-3b0e-435d-8040-05a868538939
- true
- Geometry
- Geometry
- false
- 0
-
7345
12907
53
20
-
7373
12917
- Transformation data
- ec66bb14-9c97-4ccd-b24b-b84f6a99397c
- true
- Transform
- Transform
- false
- 0
-
7345
12927
53
20
-
7373
12937
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- ad923099-21cb-49ab-a3b9-4baff6fa881d
- true
- Curve
- Curve
- false
- 916f32fc-3b0e-435d-8040-05a868538939
- 1
-
7306
12852
50
24
-
7331.781
12864.68
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 075cb523-28a2-4c82-bfda-9ae04abc6a55
- Panel
- false
- 0
- 0
- 0.00032220000
0.00000220000
-
6707
17508
439
22
- 0
- 0
- 0
-
6707.642
17508.07
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ec6a4618-1b45-4427-b8d3-34c62c6f53f9
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00007777700
-
6800
17604
251
20
-
6800.247
17604.95
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 007508b2-f339-4553-8d9f-37c194c198e4
- Panel
- false
- 0
- 0
- 0.00137956207
-
6707
17567
439
20
- 0
- 0
- 0
-
6707.085
17567.11
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 1/X
- true
- 8559c532-2d07-4a7d-9687-32d3d6a8d21d
- Expression
-
6892
17718
79
28
-
6934
17732
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 16b3eab5-de4a-4248-b04d-7b8ad4830f27
- Variable X
- X
- true
- a581cb4b-1814-48fc-a1b8-43b1d1292aed
- 1
-
6894
17720
14
24
-
6902.5
17732
- Result of expression
- 3ad7dfe7-0bcc-40c5-ba1e-131b10b2e1e0
- Result
- false
- 0
-
6960
17720
9
24
-
6966
17732
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 818cae34-4f9c-4a98-a357-da5e0454ab34
- Point
- Point
- false
- 8b9a3012-f494-4be4-96eb-9046c4b5c4be
- 1
-
6923
15509
50
24
-
6948.063
15521.67
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8b9a3012-f494-4be4-96eb-9046c4b5c4be
- Relay
- false
- cc0559b1-a1cc-49c2-a2e5-a855627d3509
- 1
-
6928
15559
40
16
-
6948
15567
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7026d177-417b-48d9-89bd-1b653119ba4d
- Relay
- false
- 5bf352b3-6639-46ea-a98b-19c6289cc839
- 1
-
6928
15336
40
16
-
6948
15344
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 4349e7b3-029c-4438-8455-d081a0551ea7
- Scale
- Scale
-
6871
15372
154
64
-
6955
15404
- Base geometry
- f839f96a-3866-465a-96a5-afe9bcecb52f
- Geometry
- Geometry
- true
- 818cae34-4f9c-4a98-a357-da5e0454ab34
- 1
-
6873
15374
67
20
-
6916
15384
- Center of scaling
- 349caa30-53e1-4800-acbb-dd6cf36f4433
- Center
- Center
- false
- 0
-
6873
15394
67
20
-
6916
15404
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 2d112deb-80c9-4bb1-a329-68f386e16a06
- 2^X
- Factor
- Factor
- false
- 330d0272-c7e2-4aee-9324-9b82cd45051e
- 1
-
6873
15414
67
20
-
6916
15424
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 5bf352b3-6639-46ea-a98b-19c6289cc839
- Geometry
- Geometry
- false
- 0
-
6970
15374
53
30
-
6998
15389
- Transformation data
- 9b431a70-10c3-4b63-82e1-e7883d6fe6b4
- Transform
- Transform
- false
- 0
-
6970
15404
53
30
-
6998
15419
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 330d0272-c7e2-4aee-9324-9b82cd45051e
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 16.00000
-
6827
15454
250
20
-
6827.84
15454.03
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 818cae34-4f9c-4a98-a357-da5e0454ab34
- 1
- c57af627-40bd-41eb-9023-2b3d876665ad
- Group
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABKQSURBVHhe7d3rslZFfgZwbyYXkgvILeQGUpkkZar8MDCxrJqar8l8GEvjWB4q4pGSUVFBIIqgIILHkcFT3AiITFQUOQqTHz5TXW33evfeE9ZKZb9rd1nLftfut1+qn/X8z93rtts22xKswJ8224ZdgT8/fv79/zlq271791tvvVUvy4kTJ958880ffvjhv39sX3zxxblz577++utvvvlG/8qVK6us4eXLl2/cuFEPeP/993ft2jXqP3lDTmZNpoLwxRdf/PTTTxtULl269L971nsIz5w54yc25KqP+o+eEEIUQbWGN6+//np959q1a2BGwbNnz/6lLLx48eKePXtGXY0NOdmEEO7du7fhHLH5ySef+EkisUhFclWDZW7WLWBnZM9CNw8ePOhXNuTCj/ePngpCK3vgwIFGewWPr7766vvvv79w4YIrYfjll18iK4347bffwqlu2Pndd9+546+DEvjdd9/dVIdTQfjSSy8dOXKkV3uQIwDRzhU2SHnq1Kk//thA2IyHHBTdvHr1KpOnn21lZWVTHU4FIXKwGJtFL0jADzyuIPz8888JWLrQnUjU0nz87LPPkNU8WNhjDFd273gyaUPONBWEyPHxxx83EBKh169fBwl033nnHddXXnmFPnv11VcPHTqEtbyOP1Ttww8/NIwFFEsHxh6Cxhp6+eWX9+3btyHXfqR/9IQQole93MQmGiHWAw88EMDefvvtqMzHHnvsnnvueeihh44dO/bBBx/8/scGYM1HAAPPVNiZTt0OHz5MaI+0GhtymqkgJEiJx3qtrT4MQAgVLv/Ro0cZI9YMQoj42muvwTXIGQBdfZ3jx4/rRyNqJGfjexg2c4tmKgipqNoAIT9JUT+m895776HgG2+8gUCPPPLIzp070eiFF17wFX+iHdH04Ycf1gctKQpCMCOxr7ueP3++fjJwfeYWzVQQkpCslbLWZekps7vvvht4lBwUoQXFRx999PHHH3/qqafA9txzzxGqOOqvcH3++eex8/777y9OhUeh9lUgOnOLZhIIY1/Upgf3riDKExBVYcjQfEaiGrTETuFKKvqTDkkLzshS/ZrQ+mFkGslsqjlbNJNAiIJEX82VosMI0u3bt+PZfffdhz1E6BNPPPHkk0/iIuEJSJgBD0dLA2FNaAatB6KWpSg7ZyJOAiEmkX71KpN+6BKrkv0JP+IU0uSkj0AlS13xDx6ArBuO1pj1bj5aE7kb0poc4x89CYR9mqlWYPpQQTKWC2sFZiSqO67/1TVBcPdqKzQhuvr5IFc9DbOVpZNAyMrnoDcsLHI1NBIX1RFdEyZNdE2Ahm1C0v7E7xv6kBBB/Rdac7Z26SQQWk3YNBCWj4EQWpD46KOPIKeTDDA9F3QjdRe1PkzDXp0tESeBkCBt4pm16KMOgQQtTKLGiFOBNHGAOP5GcufdXyU5nJxGA7Bo6jw14vgQxhytBV2jvXxENRACCQs1oVEQ+oqmI7iKo8YkoNNzMYmq/r6IwQwjNeNDSIpyDOr1xa0mtkn5UYFAwjbsQUpBFg23WC5Fa+ojJTgbudrHaPJz7ot6zy2VPz6EpGgTA+tXnP7TQBUIZX25DamG6mnHKYRx7Vf0Rml5YjwWIJxVKn9kCOHHpWtEHNVVfHOi0kdoIWLSgdwGVNMAWbL5g8LTmOJd9PHu8pXTp0/PyjodGUJrB5sGgOIDwM/Ss0hpwfgPJ0+eDAvxzzBIh3OufdFGBDJFaP7BxFP53VnVJ44J4SAFrXUinLFiEjiFECKGhYwXTmQBXifWzSK/gkSNoK7jrs1D40f3798/E6U4MoR9bYTljgNQOrE7YoIyYXgUGuSgS07qkIRNdr5BCIk9DfUz0Qtej8hMxOloELLmpXCbpYyf52ZT+eI+DHCFOYOFrNM0T8B6ojMmhHFEMdHai9z8MwTt5pDQHw1CixUtVbf44DEg64UGIf3nioVc+4RmQAiPdULoV1DW/K6NAVz+AYg+ByKOA2Ef147yCwVjZ9bQhj0RpNQh/BJyi6VKUwJGWxNOMxucWtNelrojjL70GnEcCD3sTaVMbJaoxoaC7sQW5RoSsHWZtvuoSUiSsTFcB4Gpb8a7WCROPR9LT8QRIORHM/96xkTbLRJ0gmGShZgHJwBEFzaTNKndQTj9hEnQcTDklvD3GFm5/79zjADhYNVvyOdaG6IFAzI2Tn3usIPuvPNOCT+ou8kiJWCtvvpEGfw1iVieg8GRnpXlNmpGgJCkQqBm+Yrr3UvRqElQccDj2/EL1V6kTE0LpTBSFpCwXRNCItc82uDeKBbvcsvSESBkL/RCLF5EnIdBDFLw4oswg5bxveZbPWvYaMSiepufYx8td/riViHsU0tZwdiKi1QUFnIq2J+FczqxLbNdBrHi6a9JwQzwuPitvtbbn5ZeHd4qhNQMD7pf6Bj6tNRgnAWEKUSjEeULVccQmLzD7HLKNm54GAAAM6zpXRiWwFs/0m8R0Uts1NwqhIRhH5QJLUoYbJBJBCw1ybWgq9Jxp5alwMBCpORTmk0DUhLFPagGw2+ROlQYt8Te4a1CSM00Cd4i2ax+Iplx7QNGEu6uYEO4hLmF2fAvfn1BCx4Zr+m7j5fYSQKznozXGK7uGJBgeljbPzH07hIbpbcKIWOvKVYrEFpZzLC4vH4wi2WHc6krJD8TFNUMyzXUJFTh1Dfz+K6AnK+nI6eh0AaKniSzRfv2EComXuJa4REgtI79qoEkAhCEwABzCkeTWgKnKxigErumtDiFwB5svg571zSlpyCMzQn7RdbTJoSrBSYWCdKIQcRKpBRFcCs4pUN4gopryPkLHoQqekEOtKkvBWfT3ExAPB3fMjJh7ijLunS/PFjLXbF/qywczDHFqQDhIqfQAH+FLl5iFSJiUnxEvmCS+4tSSIPGkW+tYs6wmTfNmYVEZCb0xTJWmTEZK3+wihA8QStFwCmniL0TIKMd1+8X+kp+ro8G+C2Buk2nYiGEiw4nCS0CzCBv6DDYGxCckqNoRg7aJoOzxd8YdO2hK/q6xDsublWQwrY/Isiknv2UzS+SpVQgchgAOdaN/aHEXWDgGMRPoBTJ2PUEaPyKZ2Uw94vomwG2NfIs/IrBYHQyFYNhbvdBlawvsAUH7rrrLuoKBmycGKVhz3oyFcCOATzoFHoONsPca0DoGScVe66UZNPgyvIH0DeHPqFadlY04bG+mGqQkYkELcr6LrdfD5sRBGm/ITQLHQgTvO6Xnv/Ao0DB2vLUz86KtEXlFPVsMV8TI+1/haBebkU4DoRZo365A+Hg/gdQxXokgQk6viA30fgkLhg4OlAZtGYbnBJJX2T68hqXW4qOA6FZLFNjd5TaJ3gMWjQpiOKhC+4k2ulqkkGrcpFFU6o68rj0belT9mNC2ITZyLcs6yCEsVeNEWERaRNm4x1muxMsAYmC63HtU+qPsoNa06Oz3LZojJQRdKFZctJITYJSeLHIrwgLEz5ldpbDZ6GSsOeaKfsyc8yZnoLLHRotRuY4EMZxroMpZX0XQYgiCBRBmpRv8vUYSaKuEpkrUJUNU1Dv8cbyOVBwNBaaSDanVkhFSy3aghTRFxYSpzpJa8SwTO5pdVkaKbpor6HQzxInmGo/bxwWxqJhWBaKFEPUKg9aKECy+lgolVgyt8UViRIlXRcZpWXawUfEF5feEB1ZkJqucfDLPphBliTAnX3YqZfRSWgtTl6qEZMEHgx2l/mbDTd5hmayIWZMcyaCVMClsLD26BuLH2ZCaEamzCIlo/nioORMMWPvDsYT7TdskMnzoeCYupBRWr/AYBUIxdXEuK1+dtxThLW0pAtF2mCcP/mYg4EbCKMIozUbc9TZYUtcKdNHO0fThYxSp00UMFaBkGDst7Ft37Hj339z71M7diCcvxKqKWdi0MoJ59UIpdXCuZG0S5+XmBBCU3v2S6CygbCWkGzFeH6pHb0Z1rl24293/uttv/7rO174be/e9VK0NmGas2lmtct+ZF3YhNlqK6PJNxGMHEEwJD10M697/U//9h/3/tW//M2v7/1NH2vti4nruGs9ObCdTbrECfrBnNFogjQQKmEKjepVbvbupkgiuYiYMNdvXP/g3fdPHHnv2JtH/Sn2DkWoAxWxm+Z9CcWEKWG8/OjSb5/4v4Cw1JTWodFG1imPBwkgc2KJTEXNvJTVJI+YEinWTfP6rmLCNE6hX5+VLTq+IOVXEJIhRDmrRL+xOHh76IJAxqQIqqQJU75WHAz3s+m3UZDlmWgyWfN84cGYgrR+yU+O+cnSpzaphgFOUKQImTM58SKmja8QofHxs7MJSE2ApjZHa6PJeE/lEpc5LSqeGBNCdoSz0gNVraUGAygBlTEiwMa6ofni3hGe0EXcHrzMXMfN64cD8DMJijZYjglhXMMi90pQpmZkYIimDAtz4kVMmJySkN0t5C1/A6KNjZpa08xT7wKnWWeoCMeMzuTRqF3DEkAJ24qSS9l1SKZF4fnohPVHt22z66LIT/ejL6Fbvl6nlnIiQ+Cc7WtjxmRhgt3l9JJ6fYvEg4cj8fMuSipQyUxiaWj3++PH97928Onf7SASURMvEcsYIG3bti1Bg8YErZ+M5d5EuEgRjs9CogwqvZQrshQG6BJh+5PatStX7zuw7+4/Hn3i2B6efirbkg40GMwZnMMtMn9t15h2tq9QG5+Fpaa0MURr1yJJpVSQgidbCW8e2H3xZjW3lgq2XAtmjSNfM9Js87RlxmehdVR6G5Y0R1AgU537JQPdYXyySOPgn1w5eeniRTcJz8HCmeYIm9opnPPLt0ZmYe1X9LVrdWKIYZkqXqzNbkJEhCs1ycfoN6cBrCmoqTOFs7VlxmdhXRbc+xLRXmFYSoF9VP4kClo8EOIUHnEwwmYtIrQYpblZPxDzjMuMH2DLjGRpBOZgyUUCb/6USDcgBTZzDHBOP8wZCnVQzeDauC24ZueUj0lQzDAuMxWE9atimhxFVj/FbQRpaJoKNuQjS0nLvlzK4MHymcJLT8Os0vQTRmcydX0GBvYMHh3kJtjCRbqQ2MypshGedUA1m34L8+pOkb3zOcN58mRTCdCUrdu1G5fVhwdHPgfHsF9yKnCyTnHnwZljaHRcmTYZHJ+kuJI1WWWj5hlam0qQ5njS2Cx1PDMQgserJsk9b3712skHH3zQVbzGG319K6/OKs3HOOxPP/20F8TG0888ta2kcm62TuH4FmkhYoq1+82FUkteno1/UJHWwFelbxBNotF4MhZTY9ok5RTiGpPMYiAsfr07y30awiqhtalYGHWYStE+zURsKhIkG5955hmvyg7h3IElkuVU7sRlGggxMjHxBkIjl34T6OooWpDb0vTWBHydA0BIPy2CEAsZLyRnklPas88+m8BpUkuATFwttoyPIF8EIbrP2RydSpCW4xEHWUjuxUnHM7IxIVB9JCuS08eIUDf1Cd4GwqILPQ1zVoRTQVjOE+p1IUHKbEn8OkWIyR0m1JITuGIEpRMuEstUZq0LS8gbujPZhLZIBE4iSMsBCv2GBxCyYkouF8lA5aPrX8RC/+74hXN7T1oP5CQQ5kioOBXN6U+cv/2OUSckaT57Qq9dVRpFhrrmzqUrV5wae/PgWB1kdars5ctnvji7b+++2pwpEM623qJgOQmECVeSdcRjHVvh6XMeXt29++K5c9977aRdL17ys7Li4/lTp9w5f/r0hbNnvz1z5sKPfzq/suKm/sqJP/xu5zOO+KqzxElc8P3n7NdPpQtBiIjMkOak5Zf27Hlx167Hbr/9jV/8wn+Ht2x95e/+/uAdd+i//vOf37xu2XJ469ZDW7bo7//ZPxy4/Z+PGLl1685/+seHfvVLgPUQLv07DNb0AiZhoV9l0RR7JJ6cJqitjvvQkSOcOybpVYVPN254M5OPwtuuOUddnFRo59r16wa4qW8H6d5du2pzJrO5ynJsmjPj+4VJOaXMsCkCRppYpFrcvjA1dmkxQeMa/sQv3DesC53ftulUTAJhXiETdVhYqMMiZemkXjReIJx8dNVff3SmJCPnnOydMMCWGFv2dTZnJbhpW0yK7QMY5iUuox/aJbpWu/bSSRyV2iJN0hGQCY6vqTCWeMBUurBkDZtDYdaEEDYCLr5FDmevL6iEuRsIc2awNnP8prJIzVuOXW8CNKsL0pSMMoVwyyTejpeX1EtR+VizMH49DbrEh26vU3JMxcLyRrworeIMBEJQDepCIPHzZC00eQzh7/QFzWsIydsUd892K0yN7oQQlgN962C3sw+gSzZqBGb2GpKKrrkJLdlgRiaVqagJI7dv367WlGROGrl+Jua5rbdh508grE3Hzf4GWoE/OxWb/9vQK/A/SnhUo9dnbOwAAAAASUVORK5CYII=